D-BAUG Dr. Meike Akveld Analysis I/II

Exam problems

1. [10 Points] Consider the region

$$B = \left\{ z \in \mathbb{C} \setminus \{0\} \, \Big| \, \operatorname{Im}\left(\frac{z+2}{iz}\right) > 0 \right\}.$$

- a) Sketch the region B in the complex plane.
- b) The polynomial $z^3 + \frac{7}{2}z^2 + 7z + 6$ has one zero whose real part equals -1. Determine all the zeroes of this polynomial both in normal and in polar form.
- c) Which of the above zeroes lie in B?
- 2. [10 Points] Determine the value of the following terms:

a)
$$\int_{-\pi}^{\pi} \frac{|\sin x|}{1 + \cos^2 x} dx$$

b)
$$\int_{2}^{3} \frac{x - 7}{(x + 2)^2 - 9} dx$$

c)
$$\lim_{x \to 1} \frac{1 - \cos(1 - x^2)}{(1 - x)^2}$$

3. [10 Points] Determine the general real solution of the following differential equation

$$y^{(4)}(x) - y'(x) = 0,$$

where $y^{(4)}(x)$ denotes the fourth derivative of y w.r.t. x and determine from this all the solutions that satisfy the following conditions

$$\lim_{x \to \infty} y(x) = 2, \quad y(0) = 1, \quad y'(0) = 0.$$

4. [10 Points] Remarks to the rating: Each statement is either true or false - please tick the appropriate box. If you want to remove a tick, please do this very clearly.

Every statement a) - j) gives +1 point, when your answer is correct, -1 when your answer is wrong and 0 when you do not answer the question. The total number of points of this question will, however, never be negative - we round up to 0.

a) The following

$$\int_{1}^{3} \int_{-y}^{0} f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \int_{1}^{3} \int_{-x}^{3} f(x,y) \, \mathrm{d}y \, \mathrm{d}x$$

yields a correct change of the order of integration.

true false \Box

b) The region

$$D = \left\{ (x, y, z) \in \mathbb{R}^3 \, | \, 0 \le x \le 1, \, 0 \le y \le \sqrt{1 - x^2}, \, 0 \le z \le \sqrt{1 - x^2} \right\}$$

describes one eighth of a solid ball.

true false \Box

c) Consider the vector field $\mathbf{F} = (2x, -y)$ and let C be the ellipse with semiaxes 2 and 3 and center (3, 2) oriented in an anti-clockwise manner, then $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0.$

true false \Box

d) The following vector field $\mathbf{F} = (f(y), g(x))$ is conservative on \mathbb{R}^2 .

true false \Box

Siehe nächstes Blatt!

The following three figures show each a three-dimensional vector field \mathbf{F} in the *x-y*-plane. The vector fields looks identical to this in all other planes parallel to the *x-y*-plane i.e. \mathbf{F} is independent of *z* and its *z*-component is constant and equal to 0.

The following two questions refer to the above three figures.

e) All three vector fields have zero divergence.

true false \Box

f) For all three vector fields the rotation is given by the zero vector.

true false \Box

The following statement refers to the figure below which shows a twodimensional vector field and two points P and Q:

g) Both div $\mathbf{F}|_P > 0$ and div $\mathbf{F}|_Q > 0$.

true false \Box

h) Extend the function $f(x) = x^2 \sin x \cos x$ defined on the interval $[-\pi, \pi]$ periodically to all of \mathbb{R} and let its Fourier series be given by

$$a_0 + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

Then $a_0 \neq 0$ and $a_n = 0, n \geq 1$.

true false \Box

Bitte wenden!

i) Consider the 2π -periodic extension of the function f(x) = x for $0 \le x \le 2\pi$. Then the Fourier series of the function converges at $x = 2\pi$ to π .

true false \Box

j) Let $u_1(x, y)$ and $u_2(x, y)$ be two solutions of the partial differential equation

$$yu_{xx} + xu_{yy} = 0.$$

Then the function $u_1 - u_2$ is in general also a solution of this equation.

true false \Box

5. [10 Points] Determine and classify the critical points of the following function

$$f(x,y) = -(x^2 - 1)^2 - (x^2 - e^y)^2.$$

6. [10 Points] Consider the region

$$G = \left\{ (x, y) \in \mathbb{R}^2 \, | \, r_0 \le \sqrt{x^2 + y^2} \le 2, \, y \ge 0 \right\}$$

with constant density $\rho \equiv 1$.

- a) Determine the center of mass of G when $r_0 = 1$.
- **b)** Let $r_0 \in (0, 2)$ the maximal value, for which the center of mass of G still lies in G. Determine a quadratic equation of the form $r_0^2 + pr_0 + q = 0$ which r_0 has to satisfy.
- c) Determine r_0 .
- 7. [10 Points] Determine the net outward flux of the vector field $\mathbf{F}(x, y, z) = (x^2, y, z)$ across the boundary of

$$B = \{ (x, y, z) \in \mathbb{R}^3 \, | \, y^2 + z^2 \le 1 + x^2 \le 2 \}.$$

Tip: Use the following cylindrical coordinates $x = x, y = r \cos \varphi, z = r \sin \varphi$.

- 8. [10 Points] Consider the function $f(x) = e^x$ defined on the interval $[0, \pi]$.
 - a) Sketch the odd and the even 2π -periodic extension of f on the interval $[-\pi, 3\pi]$.
 - b) Determine the Fourier series for the odd extension.
- **9.** [10 Points] Determine a solution u(x,t) of the following initial and boundary value problem using the method of separating variables $u(x,t) = X(x) \cdot T(t)$.

$$\begin{cases} t^3 u_{xx} - u_t &= 0, & \text{f0} < x < \frac{\pi}{2} \text{ and } t > 0\\ u(0,t) &= 0, & \text{for } t > 0\\ u(\pi/2,t) &= 0, & \text{for } t > 0\\ u(x,0) &= 8\sin(6x), & \text{for } 0 < x < \frac{\pi}{2}. \end{cases}$$