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Introduction

The present thesis is centered around the computation of the so called virtual
cohomological dimension of Mapping Class Groups of orientable surfaces.
Given any topological group Γ, Milnor has proved that there always exists a clas-
sifying Γ-space Y (see [30]). Using Milnor’s result it is easy to prove that we can
choose such a space to be a CW-complex. Moreover, if we require that Y admits
a CW-complex structure, then such a classifying Γ-space is unique up to homotopy
equivalence. However, the space produced by Milnor’s construction is always enor-
mous and thus a natural question is if, at least in some specific cases, his construction
can be improved. Suppose for example that the topology on Γ is the discrete topol-
ogy. In this case a classifying Γ-space is also called a K(Γ, 1)-space. Let Y be a
K(Γ, 1)-space that is also a CW complex of dimension n (possibly n =∞). We can
take this dimension to be the minimum possible and call it the geometric cohomo-
logical dimension of Γ, also denoted by geom.cd(Γ). For example if Γ has non-trivial
torsion, then geom.cd(Γ) is always ∞.
There is also an algebraic notion of group cohomological dimension: given a group
Γ the cohomological dimension of Γ, also denoted by cd(Γ), is the projective dimen-
sion of Z as a ZΓ-module, where Γ acts trivially on Z; i.e. cd(Γ) is the infimum of
the set of integers n such that Z (considered as a ZΓ-module) admits a projective
resolution of length n. One can show that whenever cd(Γ) 6= 2 (the case cd(Γ) =∞
is not excluded) the equality cd(Γ) = geom.cd(Γ) holds (here geom.cd(Γ) refers
to Γ when endowed with the discrete topology). For cd(Γ) = 2, we still have
cd(Γ) ≤ geom.cd(Γ) but it is not known if this inequality can be strict. The Eilen-
berg–Ganea conjecture claims that the equality holds also when cd(Γ) = 2.
To compute the cohomological dimension of groups we will stress the followng result.

Theorem 0.0.1. Let Y be a K(Γ, 1)-space with a finite dimensional structure of
CW-complex. Suppose in addition that Y is a compact topological manifold of di-
mension d with boundary (possibly ∂Y = ∅). Then:
(a) if ∂Y = ∅, then cd Γ = d;
(b) if ∂Y 6= ∅, then cd Γ = d − m − 1 where m is the minimum integer such
that H̃m(∂Ỹ ) 6= 0 (there always exists an m such that H̃m(∂Ỹ ) 6= 0) and Ỹ is the
universal cover of Y .
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When a group Γ has non-trivial torsion, in order to get an interesting invariant,
one can consider its virtual cohomological dimension. The virtual cohomological di-
mension of Γ is defined only when Γ admits a finite-index and torsion-free subgroup
Γ′ and, in this case, it is equal to vcd(Γ) = cd(Γ′). A theorem of Serre states that
this number does not depend on the choice of the particular subgroup Γ′.

In this thesis we will deal with the problem of computing the virtual cohomological
dimension of Mapping Class Groups of orientable surfaces.
On this point, let Sbg be a compact and orientable surface of genus g and with b
boundary components. The Mapping Class Group of Sbg is defined to be

Mod(Sbg) = Diff+(Sbg)/Diff0(Sbg).

where Diff+(Sbg) is the group of orientation-preserving diffeomorphisms of Sbg and
Diff0(Sbg) is the (normal) subgroup of those diffeomorphisms isotopic to 1Sbg . Clearly
Mod(Sbg) is an algebraic invariant of Sbg. In order to compute vcd(Mod(Sbg)) in the
general case we will first consider the cases (g, b) ∈ N0×{0}∪{(0, 1), (0, 2), (0, 3), (1, 1)}
and then use induction on b for fixed g, starting with (g, b) ∈ N≥2×{0}∪{(0, 3), (1, 1)}.
The cases (g, b) ∈ {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1)} are treated using directly
the definitions, while the cases g ≥ 2 and b = 0 require much more work. Suppose
g ≥ 2 and b = 0. The first problem to solve is to find a finite-index and torsion-free
subgroup of Mod(Sg). This is done in Chapter 2 where we find infinitely many of
such subgroups, one for each m ∈ N, m ≥ 3. These groups are called congruence
subgroups of Mod(Sg) and are denoted by Mod(Sg)[m]. Next we want to find a
K(Mod(Sg)[m], 1)-complex that is also a compact topological manifold (possibly
with boundary). To that end, consider the Teichmüller space TSg of Sg i.e.

TSg = HypMet(Sg)/Diff0(Sg).

where HypMet(Sg) is the space of all hyperbolic metrics on Sg (since χ(Sg) = 2 −
2g < 0 this space is non-empty) and Diff0(Sg) acts on it by pullback. We can endow
TSg with a differential structure that makes it diffeomorphic to R6g−6. Clearly the
Mapping Class Group of Sg acts on TSg by f ·X = [φ∗(h)] ∈ TSg if f = [φ] ∈ Mod(Sg)
and X = [h] ∈ TSg . This action is proper discontinuous and with finite stabilizers.
In particular, since Mod(Sg)[m] is torsion-free, the action of Mod(Sg)[m] on TSg
is proper discontinuous and free, thus the quotient TSg/Mod(Sg)[m] is naturally a
smooth manifold. The problem is that it fails to be compact. We will thus replace it
with a suitable submanifold with corners Xg of TSg having the following properties.

Theorem 0.0.2. The space Xg is a smooth manifold with corners of dimension
6g − 6 such that:
(a) both Xg and ∂Xg are invariant under the action of Mod(Sg);
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(b) Xg/Mod(Sg) is compact;
(c) Xg is contractible;
(d) ∂Xg is homotopically equivalent to |C(Sg)|.

Here C(Sg) is the complex of curves of Sg, i.e. the simplicial complex having as
k-simplices the isotopy classes of collections of k + 1 embedded S1 in Sg such that
each loop is homotopically non-trivial and no two loops are isotopic. In Chapter 3
we prove that the realization |C(Sg)| is 2g−3 connected, thus, by (d) of the previous
theorem, also ∂Xg is.
At this point we easily obtain the upper bound vcd(Mod(S)) ≤ 4g − 5 for g ≥ 2.
Indeed, for every fixed m ≥ 3, the space Yg = Xg/Mod(Sg)[m] is a compact smooth
manifold with corners of dimension 6g − 6 (in particular a finite CW-complex) and
a K(Mod(Sg)[m], 1)-space, its universal cover is Xg whose boundary is 2g − 3 con-
nected and thus H̃k(∂Xg) = 0 for all k ≤ 2g−3. Applying Theorem 0.0.1, we obtain
that vcd(Mod(Sg)) = cd(Mod(Sg)[m]) ≤ 4g − 5.
The proof of the reverse inequality uses the existence of the so called Mess sub-
groups Bg of Mod(Sg). They are torsion-free subgroups of cohomological dimension
cd(Bg) = 4g − 5. The computation of cd(Bg) is again done by constructing a
K(Bg, 1)-space satisfying the properties required to apply Theorem 0.0.1. Using
the existence of such subgroups, we have that Bg ∩ Mod(Sg)[m] is a finite-index
and torsion-free subgroup of Bg and thus it has cohomological dimension 4g − 5.
Hence vcd(Mod(Sg)) = cd(Mod(Sg)[m]) ≥ cd(Bg ∩ Mod(Sg)[m]) = 4g − 5 where
the inequality ≥ is due to the fact that, in general, if Γ is any group and Γ′ ⊆ Γ is
any subgroup than cd(Γ′) ≤ cd(Γ). In conclusion, we will have proved the following
result:

Theorem 0.0.3. For g ≥ 2 we have vcd(Mod(Sg)) = 4g − 5.

This theorem, as well as the computation of vcd(Mod(S)) in the general case
in which S has non-empty boundary, is due to Harer (see [19]). Another proof is
contained in [24]. Instead, the proof we present in this thesis follows the approach
in [25]. This proof uses very little about the theory of group cohomology and do
not use the full description of the homotopy type of the complex of curves C(S)
(use only the description of the homotopy type of C(S) when S is a closed surface
of genus g ≥ 2).
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Chapter 1

The virtual cohomological dimension
of a group

The first chapter of this thesis is intended to be a short introduction to the
concept of cohomology of groups. It will provide the reader with the necessary
results needed to understand the notion of virtual cohomological dimension of a
group and present some of the tools necessary for doing some computations. For a
much more complete exposition of this topic we recommend [6].

1.1 The cohomological dimension of a group

We begin with some basic definitions and preliminaries about the group coho-
mology.

Let R be a unitary ring and M a left R-module.

Definition 1.1.1. The projective dimension of M over R, denoted by proj dimR

M, is the infimum of the set of intengers n such that M admits a projective resultion
of lenght n.

As the following lemma explains, there many other equivalent definitions :

Lemma 1.1.2. The following conditions are equivalent:
(a) proj dimR M ≤ n;
(b) ExtiR(M,−) = 0 for i > n;
(c) Extn+1

R (M,−) = 0;
(d) if 0 → K → Pn−1 → ... → P0 → M → 0 is any exact sequence of R-modules
with each Pi projective, then K is projective.
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Proof. The implications (d)⇒ (a)⇒ (b)⇒ (c) are clear. We now prove (c)⇒ (d).
Complete Pn−1 → ...→ P0 →M → 0 to a projective resolution

...
dn+2−−−→ Pn+1

dn+1−−−→ ...→ P0
d0−→M → 0

Then K is isomorphic to the image of Pn
dn−→ Pn−1. Call L the image of dn+1. Since

Pn+1
dn+1−−−→ L is in the kernel of HomR(Pn+1, L)

−◦dn+2−−−−→ HomR(Pn+2, L) and, by
hypothesis, Extn+1

R (M,L) = 0, there exists ψ : Pn → L such that ψ ◦ dn+1 = dn+1.
Hence, being dn+1 : Pn+1 → L surjective, it must be ψ|L = 1L and, considering the
short exact sequence 0 → L ↪→ Pn

dn−→ K → 0, we obtain that Pn = K ⊕ L. Thus
K is projective.

We will only be interested in the case R = ZΓ and M = Z, where Γ is a group
that acts trivially on Z.

Definition 1.1.3. The cohomological dimension of Γ is cd Γ= proj dimZΓZ
(possibly equal to ∞).

For any group Γ there is a unique (up to homotopy equivalence) connected
CW-complex, denoted by K(Γ, 1), which has a contractible universal cover and
fundamental group isomorphic to Γ (see the Appendix B.2).

Definition 1.1.4. The geometrical cohomological dimension of Γ, denoted
geom.cd(Γ), is the minimum of the dimensions of a K(Γ, 1)-complex.

Proposition 1.1.5. cd Γ ≤ geom.cd(Γ).

Proof. It is enough to observe that if K̃(Γ, 1)→ K(Γ, 1) is the universal cover of a n-
dimensional K(Γ, 1)-complex, then K̃(Γ, 1) has a natural structure of CW-complex
preserved by the action of Γ by deck transformations and with respect to which the
augmented cellular chain complex

0→ Hn(K̃(Γ, 1)
n

, K̃(Γ, 1)
n−1

)→ ...→ H0(K̃(Γ, 1)
0

, ∅) ε−→ Z→ 0

is a free ZΓ-resolution of Z.

The simplest cases are when Γ is either a free group or a finite group.

Example 1.1.6. Clearly, if Γ = {1}, cd Γ = 0. Vice versa, if cd Γ = 0, then Z is a
projective ZΓ-module, thus the canonical projection ZΓ

ε−→ Z→ 0 splits. So Z is a
ZΓ-submodule of ZΓ. In particular g · 1 = 1 for all g ∈ Γ. Equivalently, Γ = {1}.
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Example 1.1.7. Consider Γ = F (S) the free group with generator set S 6= ∅ and
put X =

∨
s∈S S

1. Then X is a 1-dimensional CW-complex with fundamental group
Γ. Called X̃ its universal covering space, πi(X̃) = πi(X) = 0. To see this we can
proceed as follows. Clearly π1(X̃) = 0 thus, using induction on i, we may assume
that πi(X̃) = 0 and hence, by Hurewicz Theorem, we have πi+1(X̃) = Hi+1(X̃) = 0

where the last equaility follows from the fact that X̃ a CW-complex of dimension
1. Since Γ 6= {1}, it follows that cd Γ = 1.

Example 1.1.8. Let Γ be a finite group of order n, with generator t. Call N =∑n−1
i=0 t

i. From the free ZΓ resolution

...→ ZΓ
t−1−−→ ZΓ

N−→ ZΓ
t−1−−→ ZΓ

ε−→ Z→ 0

we deduce that, for each ZΓ-module M and i ≥ 1, Ext2i
ZΓ(Z,M) = ker(M

N−→
M)/Im(M

t−1−−→M). In particular cd Γ =∞.

Next, we explore some properties of cd Γ.

Proposition 1.1.9. If cd Γ < ∞ then cd Γ = max{n ∈ N : ExtiZΓ(Z, F ) 6= 0 for
some free ZΓ−module F}.

Proof. The inequality ≥ is obvious. We will prove ≤. Call n the cohomological
dimension of Γ and let M be a ZΓ-module such that ExtnZΓ(Z,M) 6= 0. For any
short exact sequence of ZΓ-modules

0→M
′ → F →M → 0

where F is free, and any projective resolution P → Z → 0, we get a short exact
sequance of chains complexes

0→ HomZΓ(P,M ′)→ HomZΓ(P, F )→ HomZΓ(P,M)→ 0

(the map HomZΓ(P, F ) → HomZΓ(P,M) is surjective because P is a projective
resolution) and, consequently, a long exact sequence

...→ ExtnZΓ(Z, F )→ ExtnZΓ(Z,M)→ Extn+1
ZΓ (Z,M ′) = 0

In particular ExtnZΓ(Z, F ) 6= 0.

Next we would like to find a relation between cd Γ′ and cd Γ when Γ′ ⊆ Γ is a
subgroup.

Recall that the tensor product M ⊗R N is defined whenever M is a right R-module
and N left R-module. However, unless one between M and N is a R-bimodule, it
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has not in general a structure of R-module. In case R = ZΓ we can avoid having to
distinguish between left and right modules by using the anti-automorphism g 7→ g−1

of Γ. Treat ZΓ as a right ZΓ (or ZΓ′)-module by right multiplication. Then, for
any left ZΓ-module M, the tensor product ZΓ⊗ZΓ′M has a natural structure of left
ZΓ-module by g′ · (g ⊗m) = g′g ⊗m for any g′, g ∈ γ and m ∈M .
Consider now the functor Hom. For any left ZΓ′-module M , we have the abelian
group HomZΓ′(ZΓ,M), where ZΓ is regarded as a left ZΓ′-module by the left mul-
tiplication. Since the natural right action of ZΓ on itself commutes with the left
action of ZΓ′, we can make HomZΓ′(ZΓ,M) to be a left ZΓ (and so a ZΓ′)-module
by (g · f)(g′) = f(g′g) for g, g′ ∈ Γ and f ∈ HomZΓ′(ZΓ,M). There is a natural
ZΓ′-morphism π : HomZΓ′(ZΓ,M) → M defined as π(f) = f(1). Moreover, the
following property holds:
• given a ZΓ-module N and a ZΓ′ map f : N →M , there is a unique ZΓ-morphism
f̃ : N → HomZΓ′(ZΓ,M) such that π ◦ f̃ = f :

HomZΓ′(ZΓ,M)

π

��
N

f̃
77

f //M.

Namely, f̃(n)(g) = (g · f̃(n))(1) = f̃(gn)(1) = π(f̃(gn)) = f(gn) for all n ∈ N
and g ∈ ZΓ.
Thus, we have

HomZΓ′(N,M) ∼= HomZΓ(N,HomZΓ′(ZΓ,M)) as groups. (1.1)

for all ZΓ′-module M and ZΓ-module N .

Lemma 1.1.10. For any ZΓ′-module M, we have

ExtiZΓ′(Z,M) ∼= ExtiZΓ(Z,HomZΓ′(ZΓ,M))

as groups.

Proof. It is a consequence of Equation 1.1, after having observed that a ZΓ projective
resolution of Z is also a projective resolution over ZΓ′.

Proposition 1.1.11. Let Γ′ ⊆ Γ be a subgroup. Then cd Γ′ ≤ cd Γ and equality
holds if cd Γ <∞ and [Γ : Γ′] <∞.

Proof. The first inequality follows from the fact that a projective resolution of Z
over ZΓ is also a projective resolution of of Z over ZΓ′.
Suppose that cd Γ = n <∞ and [Γ : Γ′] <∞. By Proposition 1.1.9, we can find a
free ZΓ-module F such that ExtnZΓ(Z, F ) 6= 0. Clearly, if B is a basis of F over ZΓ and
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F ′ is a free ZΓ′-module with basis B, then F ∼= ZΓ ⊗ZΓ′ F
′. Moreover, by Lemma

1.1.10, ExtnZΓ′(Z, F ′) ∼= ExtnZΓ(Z,HomZΓ′(ZΓ, F ′)). Finally, since [Γ : Γ′] < ∞ ,
we have that ZΓ is a free left ZΓ′-module of finite rank, with basis any set of
representatives of Γ′\Γ. It follows that (as ZΓ-modules)

HomZΓ′(ZΓ,ZΓ′)⊗ZΓ′ F
′ ∼= HomZΓ′(ZΓ, F ′)

f ⊗ u 7→ ZΓ′ −morphism defined by g 7→ f(g)u

where HomZΓ′(ZΓ,ZΓ′) is the group of the ZΓ′-morphisms ZΓ→ ZΓ′ endowed with
the structures of left ZΓ-module specified above and right ZΓ′-module defined by
(f · h)(g′) = f(hg′) = h(f(g′)) for all g′ ∈ Γ, h ∈ Γ′ and f ∈ HomZΓ′(ZΓ,ZΓ′).
Observe that HomZΓ′(ZΓ,ZΓ′) is isomorphic (with respect to both structures) to
ZΓ. An isomorphism is

HomZΓ′(ZΓ,ZΓ′)→ ZΓ⊗ZΓ′ ZΓ′ ∼= ZΓ

f 7→
∑

gΓ′∈Γ/Γ′

g ⊗ f(g−1).

To find the inverse map, first consider

ZΓ′ → HomZΓ′(ZΓ,ZΓ′)

h 7→ ZΓ′ −morphism ϕh defined over Γ by g 7→

{
gh if g ∈ Γ′,

0 if g ∈ Γ r Γ′;

then our inverse is

ZΓ⊗ZΓ′ ZΓ′ → HomZΓ′(ZΓ,ZΓ′)

g1 ⊗ h 7→ ZΓ′ −morphism defined by g2 7→ ϕh(g2g1).

Therefore,

HomZΓ′(ZΓ, F ′) ∼= HomZΓ′(ZΓ,ZΓ′)⊗ZΓ′ F
′ ∼= ZΓ⊗ZΓ′ F

′ ∼= F

as ZΓ-modules and thus ExtnZΓ′(Z, F ′) 6= 0.

Corollary 1.1.12. If cd Γ <∞ then Γ is torsion-free.

Proof. It follows from the previous proposition and Example 1.1.8.
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1.2 The topological point of view

We have seen that the existence of a finite dimensional K(Γ, 1)-complex gives
information about cd Γ. The first theorem of this section shows that, in most of
cases, cd Γ = geom.cd (Γ).

Theorem 1.2.1. If n = max{3, cd Γ}, then there exists a n-dimensional K(Γ, 1)-
complex. In particular, cd Γ = geom.cd(Γ) whenever cd Γ ≥ 3.

Before starting the proof note the following result

Lemma 1.2.2. If P is a projective module over an arbitrary ring R, then there is a
free module F such that P ⊕ F ∼= F .

Proof. Let F ′ → P → 0 be an exact sequence of R-modules, where F ′ is free. Since
this sequence splits, there exists an R-module Q such that F ′ ∼= P ⊕Q.
Take

F = (P ⊕Q)⊕ (P ⊕Q)⊕ .... = P ⊕ (Q⊕ P )⊕ ...

.

Proof of Theorem 1.2.1. Let Y 2 be a 2-complex such that π1(Y ) ∼= Γ (for the exis-
tence of such a Γ see [20], Corollary 1.28). Call Ỹ 2 its universal cover and observe
that H1(Ỹ 2) = 0.
We will contruct the k-skeleton of n-dimensional K(Γ, 1)-complex Y by induction
on k. For, suppose we have Y k and that Hi(Ỹ k) = 0 for 0 < i < k, where Ỹ k denote
the universal cover of Y k, and choose a set of generators {hα} of the ZΓ-module
Hk(Ỹ k). By the Hurewicz Theorem, there exist continuous maps fα : Sk → Ỹ k such
that Hk(fα) sends a generator of Hk(S

k) to hα. Define

Y k+1 = Y k ∪α ek+1
α

where the cell eαk+1 is attached to Y k by the map Sk fα−→ Ỹ k → Y k. Call {vα} the
following basis of the ZΓ-module Hk(Ỹ k+1, Ỹ k): vα is the image under Hk+1(χα) of a
generator of Hk+1(Dk+1, Sk), where χα : (Dk+1, Sk)→ (Ỹ k+1, Ỹ k) is a characteristic
map for the cell attached via fα.
We now check that Hi(Ỹ k+1) = 0 for 0 < i < k + 1. Observe that the k-skeleton of
Ỹ k+1 is Ỹ k. The long exact sequence of the pair (Ỹ k+1, Ỹ k):

0→ Hk+1(Ỹ k+1)→Hk+1(Ỹ k+1, Ỹ k)
∂−→ Hk(Ỹ k)→ Hk(Ỹ k+1)→ 0 = Hk(Ỹ k+1, Ỹ k)→ ...

...→ 0 =Hi+1(Ỹ k+1, Ỹ k)→ Hi(Ỹ k)→ Hi(Ỹ k+1)→ 0 = Hi+1(Ỹ k+1, Ỹ k)→ ...
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gives Hi(Ỹ k+1) = 0 for 0 < i < k and that, in order to prove Hk(Ỹ k+1) = 0, it is
enough to check that ∂ is surjective. But, the diagram

Hk+1(Dk+1, Sk)

Hk+1(χα)
��

∂ // Hk(S
k)

Hk(fα)
��

Hk+1(Ỹ k+1, Ỹ k)
∂
// Hk(Ỹ k)

commutes and thus ∂(vα) = ±hα. Hence, ∂ is surjective.
Note also that if Hk(Ỹ k) is free with basis {hα}, then ∂ is an isomorphism and so
Hk+1(Ỹ k+1) = 0.
Finally if n = ∞, set Y =

⋃
k Y

k so that π1(Y ) ∼= π1(Y 2) ∼= Γ and Hk(Ỹ ) =

Hk(Ỹ k+1) = 0 for all k > 0. Then, by Hurewicz Theorem, πi(Ỹ ) = 0 for all i > 0

and so Ỹ is contractible, being a CW-complex (by Whitehead’s Theorem).
If instead n < ∞, consider Y n−1. The augmented cellular chain complex of Ỹ n−1

gives a partial projective resolution of Z over ZΓ of length n− 1:

Hn−1(Ỹ n−1, Ỹ n−2)
dn−1−−−→ ...

d1−→ H0(Ỹ 0, ∅) ε−→ 0

and since ker(dn−1) = Hn−1(Ỹ n−1), Lemma 1.1.2 gives that Hn−1(Ỹ n−1) is a pro-
jective ZΓ-module. Let F be any free module such that Hn−1(Ỹ n−1)⊕ F ∼= F and
replace Y n−1 with Y n−1 ∨ Sn−1 ∨ Sn−1 ∨ .., one copy of Sn−1 for each basis element
of F . Note that, even in the case n = 3, by Van Kampen’s Theorem, π1(Y n−1)
is unchanged after this operation. The effect of doing so on the augmented chain
complex of Ỹ n−1 is just changing Hn−1(Ỹ n−1, Ỹ n−2) with Hn−1(Ỹ n−1, Ỹ n−2) ⊕ F

while dn−1|F = 0. In particular Hn−1(Ỹ n−1) is now free. It follows that Y = Y n =

Y n−1 ∪
⋃
enα constructed as above using as {hα} a basis of Hn−1(Ỹ n−1) works.

Among all the ZΓ-modules there is ZΓ itself. Actually, as the rest of the section
explains, we can use it to compute the cohomological dimension of Γ as soon as we
know that cd Γ <∞.

Assume, for the rest of the section, that cd Γ < ∞ and let Y be a finite K(Γ, 1)-
complex and Ỹ its universal cover.

Lemma 1.2.3. ExtiZΓ(Z, F ) = 0 for every free ZΓ-module F if and only if ExtiZΓ(Z,ZΓ) =
0.

Proof. We need to check the implication (⇐). First, if F = ZΓm then ExtiZΓ(Z, F ) =
ExtiZΓ(Z,ZΓ)m = 0. Now the genearal statement follows in this way:
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Step 1 any free ZΓ-module F is equal to the direct limit of its finitely generated free
submodules: F = lim−→Fj;

Step 2 if Pk = Hk(Ỹ k, Ỹ k−1), then Pi is a projective and finitely generated ZΓ-module,
thus HomZΓ(Pk, F ) ∼= P ∗k ⊗ZΓ F ∼= lim−→P ∗k ⊗ZΓ Fj ∼= lim−→HomZΓ(Pk, Fj);

Step 3 since taking the homology commutes with the direct limit and P → Z→ 0 is
a free ZΓ-resolution of Z, we get ExtiZΓ(Z, F ) = lim−→ExtiZΓ(Z, Fj) = 0.

Corollary 1.2.4. cd Γ = max {n ∈ N : ExtnZΓ(Z,ZΓ) 6= 0}.

Lemma 1.2.5. Let M be a left ZΓ-module. Call Homc(M,Z) ⊆ HomZ(M,Z) the
set of all Abelian group homomorphisms f : M → Z such that, for every m ∈ M ,
f(gm) = 0 for all but finitely many g ∈ Γ. There is a natural isomorphism of groups

HomZΓ(M,ZΓ) ∼= Homc(M,Z).

Proof. Any ZΓ-morphism ϕ : M → ZΓ can be written as ϕ(m) =
∑

g∈Γ fg(m)g for
some homomorphisms fg : M → Z in Homc(M,Z). Since for m ∈ M and h ∈ Γ
ϕ(hm) = hϕ(m), it follows that fhg(hm) = fg(m) for all h, g ∈ Γ and m ∈ M . In
particular, fg(m) = f1(g−1m) for all g ∈ Γ and m ∈ M . The claimed isomorphism
is then obtained by associating ϕ to f1.

Lemma 1.2.6. ExtiZΓ(Z,ZΓ) is isomorphic as a group to the cohomology group with
compact support H i

c(Ỹ ).

Proof. Applying the previous lemma with M = Hk(Ỹ
k, Ỹ k−1) we obtain that the

two chain complexes

...← HomZΓ(Hk(Ỹ
k, Ỹ k−1),ZΓ)← ...← HomZΓ(H0(Ỹ 0, ∅),ZΓ)← 0

and

...← Homc(Hk(Ỹ
k, Ỹ k−1),Z)← ...← Homc(H0(Ỹ 0, ∅),Z)← 0

are isomorphic. The lemma follows then from the fact that the augmented ho-
mology chain complex of Ỹ is a projective resolution of Z over ZΓ and that the
homology groups of the second complex are the cohomology groups with compact
support of Ỹ .

Note that, in particular, H0
c (Ỹ ) = 0 unless Γ = {1}.
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Corollary 1.2.7. There always exist n ∈ N such that Hn
c (Ỹ ) 6= 0. Moreover, cd

Γ = max {n ∈ N : Hn
c (Ỹ ) 6= 0} .

Finally we can prove the result that will allow us to compute the cohomological
dimesion of those groups we will be interested in later.

Theorem 1.2.8. Suppose, in addition, that Y is a compact topological manifold of
dimension d with boundary (possibly ∂Y = ∅). Then:
(a) if ∂Y = ∅, then cd Γ = d;
(b) if ∂Y 6= ∅, then cd Γ = d −m − 1 where m is the minimum integer such that
H̃m(∂Ỹ ) 6= 0 (there always exists an m such that H̃m(∂Ỹ ) 6= 0).

Proof. First assume that Y is orientable. Note that ∂Y = ∅ if and only if ∂Ỹ = ∅.
If ∂Y = ∅, by Poincaré Duality, Hn

c (Ỹ ) ∼= Hd−n(Ỹ ) is different from 0 if and only
if n = d (Ỹ is contractible). Thus the previous corollary yields cd Γ = d. Assume
∂Y 6= ∅. The Poincaré-Lefschetz duality and the long exact sequence of the pair
(Ỹ , ∂Ỹ ) give Hn

c (Ỹ ) ∼= Hd−n(Ỹ , ∂Ỹ ) ∼= H̃d−n−1(∂Ỹ ). Now apply the previous corol-
lary. This completes the proof for Y orientable.
Now suppose that Y is not orientable. The orientation covering Y ′ of Y is a com-
pact and orientable manifold (with boundary) of the same dimension of Y , it is a
K(π1(Y ′), 1)-complex, π1(Y ′) is a subgroup of index 2 in Γ and its universal covering
space is Ỹ the same of Y . Since by hypothesis cd(Γ) < ∞, by Proposition 1.1.11,
we have cd(Γ) = cd(π1(Y ′) and we can apply the previous case.

1.3 Serre’s Theorem

Many groups are not torsion-free and in this case, according to Corollary 1.1.12,
their cohomological dimension is not interesting at all. Nevertheless, we can asso-
ciate to them another quantity, their virtual cohomological dimesion, thanks to the
following theorem:

Theorem 1.3.1 (Serre’s Theorem). If Γ is torsion-free and Γ′ ⊆ Γ is a finite index
subgroup, then cd Γ = cd Γ′.

In particular, cd Γ′ = cd Γ′′ for any two torsion free and finite index subgroups
of any group Γ.

Definition 1.3.2. Whenever Γ admits a torsion-free and finite index subgroup Γ′,
we define the virtual cohomological dimension of Γ to be vcd Γ = cd Γ′.

Proof of Serre’s Theorem. Thanks to Proposition 1.1.11, we need only to show that
if cd Γ′ <∞ then cd Γ <∞. Let Y be a finite dimensional K(Γ′, 1)-complex and Ỹ
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its universal cover. Denote by HomΓ′(−,−) the maps in the category of left Γ′-sets.
Observe that Γ′ acts on Ỹ by deck transformations and on Γ by left multiplication.
Call X = HomΓ′(Γ, Ỹ ). Since the right action of Γ on itself commutes with the left
action of Γ′, there is an induced left action of Γ on X, namely (h · f)(g) = f(gh) for
g, h ∈ Γ and f ∈ X. Let g1, ..., gn be a set of representatives for Γ′\Γ and consider
the bijection

ϕ : X →
n∏
i=1

Ỹ

defined by ϕ(f) = (f(g1), ..., f(gn)).
The space

∏n
i=1 Ỹ has a natural structure of CW-complex whose cells are products

of the cells of the factors Ỹ (note that the correspondent topology does not coincide
with the product topology in general) and we will endow X with the CW-complex
structure induced by ϕ. This structure is independent of the choice of g1, ..., gn
because if instead we consider g′1g1, ...., g

′
ngn where g′i ∈ Γ′, the new ϕ is the com-

position of the old with the CW-isomorphism
∏n

i=1 g
′
i :
∏n

i=1 Ỹ →
∏n

i=1 Ỹ . Clearly,
neither reordering g1, ..., gn affects the induced CW-complex structure.
Note that X has finite dimension.
For any g ∈ Γ we have the commutative triangle

X

τ ##

g· // X

ϕ{{∏n
i=1 Ỹ

where τ(f) = (f(g1g), ..., f(gng)). Since g1g, ..., gng is still a set of representatives of
Γ′\Γ, it follows that the left action of Γ on X preserves this CW-complex structure.
Moreover, the action on the cells of X is free. To see this, first observe that the
Γ′-morphism X → Ỹ given by f 7→ f(1) takes cells to cells and thus, since Γ′ acts
freely on the cells of Ỹ , Γ′ acts freely on X. In other words, for any cell σ of X,
{1} = stabΓ′(σ) = stabΓ(σ) ∩ Γ′. Therefore, since Γ′ has finite index in Γ, for every
cell σ of X, stabΓ(σ) must be finite and, since Γ is torsion free, must be trivial.
Finally X is clearly contractible. It follows that the quotient X/Γ is a finite dimen-
sional K(Γ, 1)-complex.

The virtual cohomological dimension of SL(2,Z)

We conclude this section with an example of computation that is interesting for
our later purposes.
Before, we recall the so called ping-pong Lemma:
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Lemma 1.3.3 (Ping-pong Lemma). Let Γ be a group acting on a set X and a, b ∈ Γ.
Suppose there exist non-empty subsets A,B ⊆ X such that A∩B = ∅ and an(B) ⊆ A
and bn(A) ⊆ B for every n ∈ N+. Then the subgroup Γ′ generated by a and b is free.

Proof. We need to prove that any non trivial freely reduced word in a and b repre-
sents a non-trivial element of Γ.
If w is one of such words that starts and ends with a non-trivial power of a, then
w(B) ⊆ A thus w 6= 1. The result follows then by observing that any non-trivial
freely reduced word in a and b is conjugated in Γ′ to one that starts and ends with
a non-trivial power of a.

Example 1.3.4. Consider now Γ = SL(2,Z).
The ping-pong Lemma applied with

a =

[
1 2
0 1

]
, b =

[
1 0
2 1

]
, X = Z2,

A = {(n,m) : |n| > |m|} and B = {(n,m) : |n| < |m|}

yields that Γ′ = 〈a, b〉 is free. If we prove that [Γ : Γ′] < ∞, then vcd SL2(Z) = 1.
To see that [Γ : Γ′] <∞ consider the natural reduction map

SL(2,Z)→ SL(2,Z/2Z).

Let Γ(2) be its kernel. We will prove that Γ(2) is generated by −I, a and b; so that
[Γ : Γ′] = [Γ : Γ(2)][Γ(2) : Γ′] <∞.
The inclusion 〈−I, a, b〉 ⊆ Γ(2) is obvious. To prove the reverse inclusion, first
observe that

if m,n ∈ Z and m 6= 0, we can write n = qm+ r where r, q ∈ Z and |r| ≤ |m|/2.
Now pick

x =

[
x1,1 x1,2

x2,1 x2,2

]
∈ Γ(2),

so x1,2 and x2,1 are even and x1,1 and x2,2 are odd. If x2,1 = 0, then

x = ±
[

1 ±2k
0 1

]
= ±a±k

for some k ∈ N. If x2,1 6= 0, we distinguish two cases: either |x1,1| > |x2,1| or
|x1,1| < |x2,1| (|x1,1| 6= |x2,1| because x1,1 is odd and x2,1 is even). In the first case,
write x1,1 = (2x2,1)q + r with q, r ∈ Z and |r| ≤ |x2,1|, and consider

a−qx =

[
1 −2q
0 1

] [
x1,1 x1,2

x2,1 x2,2

]
=

[
r x1,2 − 2qx2,2

x2,1 x2,2

]
.
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In the second case, write x2,1 = (2x1,1)q + r with q, r ∈ Z and |r| ≤ |x1,1|, and
consider

b−qx =

[
1 0
−2q 1

] [
x1,1 x1,2

x2,1 x2,2

]
=

[
x1,1 x1,2

r x2,2 − 2qx1,2

]
.

It follows by induction on max {|x1,1|, |x2,1|} that x ∈ 〈−I, a, b〉.
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Chapter 2

Preliminary results about surfaces

This second chapter is dedicated to a brief summary of the main results about
surfaces that we will use throughtout the rest of the thesis.

2.1 The classification theorem

A surface is a 2-dimensional topological manifold, possibly with boundary. We
assume manifolds to be Hausdorff and to have a countable basis.

Our tratment will constantly rely on the following theorem:

Theorem 2.1.1. (a) Any closed, connected, orientable surface is homeomorphic to
the connected sum of a sphere with g ≥ 0 tori;
(b) any compact, connected, orientable surface is homeomorphic to the complement
of b ≥ 0 open disks with disjoint closure inside the connected sum of a sphere with
g ≥ 0 tori.

The g in the theorem is called the genus of the surface and the b is the num-
ber of component boundaries. The compact surface of genus g and b boundary
components will be denoted by Sbg and in the case b = 0 simply by Sg. Note that
the Euler characteristic of Sbg is χ(Sbg) = 2− 2g − b.

The following two theorems will allow us to use differential techniques to study
surfaces.

Theorem 2.1.2. Every surface has a smooth structure.

Proof. See [22].

Theorem 2.1.3. Homeomorphic surfaces are diffeomorphic.
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Proof. See [22].

Indeed, a much stronger result is true. See the section 2.4 of this chapter.

In the rest of the thesis, for a surface will always mean a compact, connected
and orientable 2-dimensional smooth manifold Sbg. Sometimes we will also consider
surfaces with corners that are compact, connected and orientable 2-dimensional
smooth manifold with corners.

2.2 Hyperbolic metrics

Definition 2.2.1. A hyperbolic metric on a surface S is a complete Riemannian
metric curvature −1 for which the boundary of S is totally geodesic (this means
that the geodesics of ∂S are geodesics of S).

Remark 2.2.2. One can prove that S admits a hyperbolic metric if and only if
χ(S) < 0. Suppose S is endowed with a hyperbolic metric and call S̃ the universal
cover of S. If ∂S = ∅, then S̃ is a simply connected riemannian 2-manifold with
constant curvature −1, thus it is isometric to the hyperbolic plane H2. If instead
∂S 6= ∅, then S̃ is isometric to a totally geodesic convex subspace of H2.

The orientation-preserving isometries of H2

The orientation-preserving isometries of H2 are classified: making the identifica-
tion H2 = {z ∈ C : Im(z) > 0}, we have Isom+(H2) ∼= PSL(2,R) where[

a b
c d

]
· z =

az + b

cz + d

It is useful to compactify H2. For this, consider the inclusions H2 ⊆ C ⊆ P 1(C)
where C is identified with {[z, 1] ∈ P 1(C) : z ∈ C}, and take the closure H2 of H2 in
P 1(C). Note that H2 is homeomorphic to a disk and that the action of PSL(2,R)
preserves ∂H2 = H2 rH2. It follows that every A ∈ PSL(2,R) has a fixed point in
H2. Let A ∈ PSL(2,R). Then exactly one of the following holds:

1. A has three fixed point in H2. In this case A must be the identity isometry;

2. A has exactly two fixed points in H2 and they lie in ∂H2. In this case, A is
said to be a hyperbolic isometry. Moreover, A is conjugated in Isom+(H2)
to an isometry of the form z 7→ kz for some positive real number k 6= 1 and
thus |tr(A)| > 2;
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3. A has exactly one fixed point in H2 and it lies in ∂H2. In this case A is said
to be a parabolic isometry. Moreover, A is conjugated in Isom+(H2) to an
isometry of the form z 7→ z + b for some b ∈ Rr {0} and thus |tr(A)| = 2;

4. A has exactly one fixed point in H2 and it lies in H2. In this case, A is said to be
an elliptic isometry. Moreover A is conjugated in Isom+(H2) to an isometry
of the form z 7→ cos(θ)z−sin(θ)

sin(θ)z+cos(θ)
with θ ∈ (0, 2π) r {π} and thus |tr(A)| < 2.

Note that A cannot have a fixed point in H2 and one in ∂H2 unless A = 1H2 .
Note also that being the identity, hyperbolic, parabolic or elliptic is invariant under
conjugation.

2.2.1 Two useful coordinate systems on H2

Fermi coordinates

Let γ be an oriented geodesic line in H2 (identified with the Poincarè half-space).
In particular, using the standard orientation on H2, it makes sense to talk about
the left and the right side of γ. Suppose R 3 t 7→ γ(t) is a parametrization by arc
length of γ and for all x = γ(t) (t ∈ R), let Xx ∈ TxH2 be the unique unitary vector
such that (γ′(t), Xx) is a positive basis of TxH2.

Definition 2.2.3. We will call

ϕ : R× R→ H2

(ρ, t) 7→ expγ(t)(ρXγ(t))

the Fermi coordinates on H2.

Lemma 2.2.4. The metric tensor in the Fermi coordinates (ρ, t) is ds2 = dρ2 +
cosh(ρ)2dt2.

Proof. Clearly, up to an orientation-preserving isometry of H2, me may assume that
γ(t) = iet. Also we will use the notation (u1, u2) instead of (ρ, t). Since the curves
u1 = ρ and u2 = const are unit-speed geodesics, we have g11 = 1 and

0 =
∂2uk
∂ρ2

+
∑
i,j

Γki,j
∂ui
∂ρ

∂uj
∂ρ

u1 = ρ, u2 = const

for k = 1, 2. Therefore Γ1
11 = Γ2

11 = 0. But

0 = Γ1
11 =

1

2

∑
l

g1l{∂g1l

∂u1

+
∂gl1
∂u1

− ∂g11

∂ul
} = g12∂g12

∂u1
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for k = 1, 2 and g12 = − g12
det(gij)

, thus g12
∂g12
∂u1

= 0. Since g12(0, u2) = 0, we obtain
g12 = 0. This proves that ds2 = du2

1 + g22du
2
2, where (necessarily) g22 > 0. Finally

we have

−1 = K =
R1212

g22

=

∑
lR

l
121gl2
g22

=
g22R

2
121

g22

= R2
121 =

=
∑
l

Γl11Γ2
2l −

∑
l

Γl21Γ2
1l +

∂Γ2
11

∂u2

− ∂Γ2
21

∂u1

= −Γ2
21Γ2

12 −
∂Γ2

21

∂u1

and since Γ2
12 = Γ2

21 = 1
2
g22 ∂g22

∂u1
we have obtained

−1 = − 1

4g2
22

(
∂g22

∂u1

)2 − 1

2

∂

∂u1

(

∂g22
∂u1

g22

) = −1

2

(∂
2g22
∂u21

)2

g22

+
1

4

(∂g22
∂u1

)2

g2
22

= −
∂2
√
g22

∂u21√
g22

and imposing g22(0, 1) = 1 we have g22(u1, u2) = cosh(u1)2.

Polar coordinates

Another coordinate system are the polar coordinates. Fix a unitary vector v ∈
TxH2.

Definition 2.2.5. The polar coordinates centered at a point x on H2 are

(0,∞)× (0, 2π)→ H2

(ρ, θ) 7→ expx(ρRθ(v))

where Rθ : TxH2 → TxH2 is the rotation of angle θ.

Reasoning as above, we obtain the following lemma.

Lemma 2.2.6. The metric tensor in the polar coordinates (ρ, θ) becomes ds2 =
dρ2 + sinh(ρ)2dθ2.

2.3 Circles and arcs on surfaces

Let S be a surface.

2.3.1 Some terminology

Definition 2.3.1. For a circle C in S we will mean a smooth 1-dimensional sub-
manifold of S r ∂S diffeomorphic to S1.
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Definition 2.3.2. Two circles C0 and C1 (or a circle and a boundary component of
S or two boundary components of S) are said to be homotopic if there is a smooth
homotopy F : S1 × [0, 1] → S such that F |S1×{t} is a diffeomorphism onto Ct for
t = 0, 1; while are said isotopic if they are homotopic through a smooth homotopy
F such that F (−, t) is an embedding in S for each fixed t ∈ [0, 1].

Remark 2.3.3. Clearly, being isotopic is an equivalence relation.

Remark 2.3.4. Let C0 and C1 be two circles, or a circle and a boundary component
or two boundary components of S and suppose that there is a continuous homotopy
F : S1× [0, 1]→ S such that F |S1×{t} is a diffeomorphism onto Ct for t = 0, 1. Then
C0 and C1 are homotopic, i.e. there is a smooth homotopy F̃ : S1 × [0, 1]→ S such
that F̃ |S1×{t} is a diffeomorphism onto Ct for t = 0, 1. To see this, first replace F
with a new continuous homotopy G : S1× [0, 1]→ S defined by G(x, t) = F (x, ρ(t)),
where ρ : [0, 1]→ [0, 1] is smooth bump function that is 0 on a neighborhood of 0 and
1 on a neighborhood of 1. The advantage is that G is smooth on a neighborhood of
S1×∂[0, 1] = S1×{0, 1} and thus we can find a smooth function F̃ : S1× [0, 1]→ S
that agrees with G on a neighborhood of S1×{0, 1} (see the proof of Theorem 6.29
in Chapter 6 of [29]. Note that in the proof of this theorem the author assumes M
without boundary only because in this way M can be embedded in some RN and
it is possible to find an open set U of RN containing M and a smooth retraction
r : U →M . In our case M = S can have non-empty boundary, but the existence of
such an open set U in R3 and of a smooth retraction r is obvious). Clearly F̃ has
the required properties.

Definition 2.3.5. Let C be a circle in S. The circle C is said trivial if it is
homotopic to a point, is said peripheral if it is homotopic to a boundary component
of S and finally is said essential if it is neither trivial nor peripheral.

Definition 2.3.6. A circle C in S is said non-separating if S r C is connected,
otherwise C is said separating.

Definition 2.3.7. Let C be a circle in S. The result of cutting S along C is the
compact, orientable 2-dimensional smooth manifold SC having as many connected
components as SrC and for which exists an orientation-preserving diffeomorphisms
f : ∂1 → ∂2 between two of its boundary components such that the quotient SC/x ∼
f(x) is diffeomorphic to S via an orientation-preserving diffeomorphism that sends
the image of ∂1 and ∂2 under the quotient map to the circle C. Finally, if ∆ is a
collection of disjoint circles on S, we will denote by S∆ the result of cutting S along
each of the circles in S.

Definition 2.3.8. Two circles will be said to be of the same type if there exists
an orientation-preserving diffeomorphism of S taking one to the other.
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Definition 2.3.9. By an arc of S we will mean a submanifold diffeomorphic to
[0, 1]. An arc γ will be said proper if it is a neat submanifold of S, that is a
submanifold with the following further properties: ∂γ = γ ∩ ∂S and γ t ∂S.

Definition 2.3.10. Two proper arcs γ0 and γ1 of S are said to be isotopic if there
exists a smooth homotopy F : [0, 1]×[0, 1]→ S such that F (−, t) is a C∞-embedding
for each t ∈ [0, 1], F (0, t), F (1, t) ∈ ∂S for all t ∈ [0, 1] and F ([0, 1] × {0}) = γ0,
F ([0, 1]× {1}) = γ1.

Remark 2.3.11. Clearly being isotopic is an equivalence relation.

Definition 2.3.12. Let γ be a proper arc in S. The result of cutting S along γ is
the surface Sγ for which exists an orientation-preserving diffeomorphisms f : γ1 → γ2

between two arcs of Sγ contained in ∂Sγ such that the quotient Sγ/x ∼ f(x) is a
surface diffeomorphic to S via an orientation-preserving diffeomorphism that sends
the image of γ1 and γ2 under the quotient map to the arc γ. Finally, if ∆ is a
collection of disjoint proper arcs of S, we will denote by S∆ the result of cutting S
along each of the arcs in S.

Definition 2.3.13. Let ∆ = {C1, ..., Ck, γ1, ..., γm} be a collection of circles and
proper arcs of S such that every arc of ∆ is disjoint from every other element of ∆
and the circles of ∆ are pairwise transverse. We define the result of cutting S
along the circles and arcs of ∆ inductively on k. If k = 0 we have already defined
S∆. Suppose k > 0. Let S ′ = SC1 and identify S with a quotient of S ′ as explained
in Definition 2.3.7. Let ∆′ = {C ′1, ..., C ′k′ , γ′1, ..., γ′m′} be a collection of circles and
proper arcs of the connected components of S ′ (that are surfaces) satisfying the
same conditions as ∆ and such that π−1(∪ki=1Ci ∪ ∪mj=1γj) = ∪k′i=1C

′
i ∪ ∪m

′
j=1γ

′
j where

π : S ′ → S is the quotient map. Note that k′ = k − 1. Define S∆ = (S ′)∆′ .

2.3.2 Intersection of circles

Given two circles C0 and C1 in S there are at least two ways of counting the
number of intersection points between them.

Definition 2.3.14. If C0 and C1 are oriented, choose an orientation preserving
diffeomorphism f : S1 → C1 and a smooth map f̃ homotopic to f and transverse to
C0, then the algebraic intersection number of C0 and C1 is

î(C0, C1) =
∑

θ∈f̃−1(C0)

indθf̃ ,

where indθf̃ ∈ {±1} is +1 if, for positive vectors wF̃ (θ) ∈ TF̃ (θ)C0 and vθ ∈ TθS
1,

the pair (wF̃ (θ), dθF̃ (vθ)) is a positive basis of TF̃ (θ)S, and it is −1 otherwise.
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Remark 2.3.15. In the case S = Sg with g ≥ 1, there is also another, sometimes
more convenient, description of the algebraic intersection number of the oriented
circles C0 and C1. Consider the standard symplectic basis α1, β1, ..., αg, βg of
H1(Sg,Z) presented below:

β1 β2 βg

α1 α2 αg

Figure 2.1 The standard symplectic basis of H1(Sg,Z).

and call ω =
∑g

i=1[αi]
∗ ∧ [βi]

∗ ∈
∧2(H1(Sg,Z)). Here [α1]∗, [β1]∗, ..., [αg]

∗, [βg]
∗ is

the dual basis of α1, β1, ..., αg, βg in H1(Sg,Z) ∼= HomZ(H1(Sg,Z),Z). Assume that
Sg is oriented in such a way that α1 and β1 intersect positively. Then

î(C0, C1) = ω([C0], [C1])

where [Ci] ∈ H1(Sg,Z) is the homology class of Ci for i = 0, 1 (remember that the
Ci are oriented).

Another way of counting the number of intersection points between two circles
consists of considering their geometric intersection number.

Definition 2.3.16. Let C0 and C1 be two circles in S. The geometric intersection
number between C0 and C1 is

i(C0, C1) = min{|C̃0 ∩ C̃1| : C̃i is a circle of S belonging

to the homotopy class of Ci for i = 0, 1}.

We will say that C0 and C1 are in minimal position if they are transverse and
i(C0, C1) = |C0 ∩ C1|.

There is a pratical way to check that two transverse circles C0 and C1 are in
minimal position, it is the bigon criterion.
First a definition.

Definition 2.3.17. Two circles C0 and C1 form a bigon if there is an embedded
disk in S (the bigon) whose boundary is the union of two connected pieces of C0

and C1 intersecting in exactly two points:

19



Figure 2.2: A bigon.

Proposition 2.3.18. Two transverse circles C0 and C1 are in minimal position if
and only if they do not form a bigon.

Proof. See Proposition 1.7 in chapter 1 of [12].

2.3.3 Circles and hyperbolic geometry

Now suppose that S admits a hyperbolic metric and thus endow S with a hy-
perbolic metric.

Geodesic circles

Definition 2.3.19. For a geodesic circle of S we will mean either a circle of S
that is also the image of some geodesic of S or a boundary component of S, that,
by hypothesis, is the image of a geodesic of S.

The next results show the utility of this notion.

Proposition 2.3.20. Any non-trivial circle C is homotopic to a unique geodesic
circle of S. Moreover this geodesic circle is characterized by the property of being
the shortest circle in the homotopy class of C.

Proof. See Proposition 1.3 in chapter 1 of [12].

Corollary 2.3.21. A geodesic circle in S is never homotopic to a point of S.

Proposition 2.3.22. Distinct geodesic circles of S are in minimal position.

Proof. Note that two distinct geodesic circles are always transversal. Suppose they
form a bigon. Then, since the bigon is simply connected, we can lift it to a bigon in
the hyperbolic plane bounded by two geodesics. But, this contradicts the fact that
the geodesic between any two points of H2 unique.

Corollary 2.3.23. Let C0 and V0 be two homotopically non-trivial, disjoint circles
in a hyperbolic surface S which are not homotopic to each other. Then the unique
geodesic circles C1 and V1 in the isotopy class of C0 and V0 respectively are disjoint.

20



Remark 2.3.24. Let α : S1 → C ⊆ Sg (g ≥ 2) be a parametrization of a non-trivial
circle C in Sg and fix a universal covering map p : H2 → Sg in such a way that p
is a local isometry. The deck transformation of H2 associated to α (that is defined
modulo conjugation in Isom+(H2)) is a hyperbolic isometry. Indeed, it cannot be
the identity otherwise C would be trivial, it cannot be elliptic because the group of
deck tranformations acts in a free way on H2 and it cannot be parabolic otherwise in
Sg there would be closed geodesics (that fail to be smooth in at most one point) of
arbitrary small length and if this length is small enough we could lift these geodesics
to closed geodesics in H2 having a contradiction (see also Lemma 2.3.27).
Now extend α by periodicity to a map R→ Sg, that we still call α, and let α̃ : R→
H2 be a lift of α. Then the limits limt→±∞ α̃(t) exist and belong to ∂H2. To see this
use the fact that any hyperbolic isometry of H2 is conjugated to an isometry of the
form z 7→ kz where k > 0. We will call these two limits the end points of α̃.

Injectivity radius

We now restrict our attention to the case S = Sg with g ≥ 2. The surface S is
still endowed with a fixed hyperbolic metric.

Definition 2.3.25. For each x in Sg define the injectivity radius of Sg at x,
denoted by rx(Sg), to be the supremum of all r such that {y ∈ Sg : d(x, y) < r} is
isometric to a hyperbolic disk. Define also the injectivity radius of Sg, denoted
by r(Sg), to be the infimum of all rx(Sg) where x ∈ Sg.
Remark 2.3.26. The function r : Sg → [0,∞) defined by x 7→ rx(Sg) is continuous.
Indeed if d(x, y) < rp(Sg), then rp(Sg)− d(p, q) ≤ rq(Sg).

Lemma 2.3.27. There exists a shortest geodesic circle C in Sg. Moreover the
injectivity radius of Sg is equal to r(Sg) = l(C)

2
.

Proof. First fix x ∈ Sg and let r = rx(Sg). Then the lifts of x in H2 have pairwise
distance of at least 2r and there are two such lifts, say x1 and x2, having distance
exactly 2r. The geodesic arc between x1 and x2 is sent under the covering map
H2 → Sg to a geodesic circle Cx (that may fail to be smooth at x) of length 2r.
Note that Cx does not autoinsersect. Clearly Cx is the shortest simple loop in
Sg based at x. Now consider the function r of the previous remark. Since Sg is
compact, r has a minimum at some point x0 ∈ Sg. It follows that Cx0 is the shortest
loop in Sg, thus the unique geodesic circle C in its homotopy class has length equal
l(C) = l(Cx0). This proves the lemma.

2.3.4 Isotopies and homotopies of circles

In this subsection we investigate the relation between homotopies and isotopies
of circles and prove the so called change of variable principle, that is the analogous
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for understanding change of basis in a vector space.

Proposition 2.3.28. Let C0 and C1 be two homotopic circles (or a circle and a
boundary component or two boundary components) in a surface S and suppose that
they are homotopically non-trivial in S and that their intersection is empty. Then
they bound an annulus in S.

Proof. First assume S = Sg with g ≥ 2. Then S can be endowed with an hyperblic
metric and its universal cover S̃ is isometric to H2. Let F be an homotopy between
C0 and C1. Extend F by periodicity to a map R × [0, 1] → Sg, that we still call
F , and let F̃ : R × [0, 1] → H2 be a lift of F . Then Im(F̃0) and Im(F̃1) do not
intersect and F̃0 and F̃1 have the same endpoints. The deck transformation φ of H2

determined by F̃0|[0,1] is a hyperbolic isometry of H2 that acts as a translation on
both Im(F̃i) for i = 0, 1. Let R̃ be the connected region delimited by Im(F̃0) and
Im(F̃1) in H2. Then, φ preserves R̃. Indeed, φ fix (as set) the boundary of R̃ and
the complementary of R̃ in H2 has two connected component each with boundary
one boundary component of R̃. Call R = R̃/〈φ〉 and p : R → p(R) ⊆ Sg the map
induced by the universal cover map. Note that R is an annulus and that p is a
covering map that can have only one sheet, thus p must be an homeomorphism. In
particular C0 and C1 bound an annulus in Sg. Finally we deal with the general case.
The case in which ∂S 6= ∅ is easily reduced to the case S = Sg with g ≥ 2 by glueing
a surface of genus 2 and one hole at each boundary component of S. Then, by the
case S = Sg (g ≥ 2), cutting the resulting surface Sg along C0 and C1 we obtain
at least one component that is an annulus and this annulus is necessarily contained
in S. What remains are the cases S = S2 and S = T 2. If S = S2, any circle in S
is trivial. If S = T 2 is the torus, then cutting S along C0 we obtain an annulus A
(use the classification theorem of surfaces) and cutting agian along C1 we obtain two
annuli (use the classification theorem of surfaces). This completes the proof.

Lemma 2.3.29. If a circle or a boundary component is homotopic to a point then
it bounds a disk in S.

Proof. This is Theorem 1.7 of [11].

Corollary 2.3.30. Two circles (or a circle and a boundary component or two bound-
ary components) C0 and C1 are homotopic if and only if they are isotopic.

Remark 2.3.31. Note that for us circles are not maps, but submanifolds. This is
crucial here. For example, the clockwise parametrization of a circle C around 0 in
the closed disk D2 is not isotopic (as a map) to the counterclockwise parametrization
of the same circle, while they are both homotopic to a constant map and thus are
homotopic. To see that they are not isotopic observe that, by the Theorem 2.3.34,
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if they were isotopic, we would have a diffeomorphism of the annulus bounded by
∂D2 and C whose differential is the identity in the points of ∂D2 and has negative
deteminant in those of C, contradicting the description of the connected components
of GL(2,R).

Proof of the Corollary. If C0 and C1 are homotopic to a point the Corollary follows
from Lemma 2.3.29 and the Disk Theorem (see Theorem C.1.3 in the Appendix C).
Suppose that C0 and C1 are not homotopic to a point. By an isotopy of C0 we can
make C0 to be transverse to C1. Then, C0 and C1 form a bigon or are disjoint. If
they form a bigon, we can take this bigon to be innermost with respect to C0 and
C1. This means that it is an embedded disk D in S bounded by one arc of C0 and
one arc of C1 and D̊ ∩ (C0 ∪C1) = ∅. Such a bigon prescribes an isotopy of C0 that
reduces the intersection. Thus we can remove the bigons one by one by isotopies
of C0 untill C0 ∩ C1 = ∅. But then C0 and C1 bound an annulus of S and so are
isotopic.

Now we explain a technique, called change of coordinates principle, that
is used quite frequently and that will allow us to reduce the proof of statements
about general situations to the proof of the same statement for a few easier specific
situations.

Definition 2.3.32. LetM be smooth manifold and N ⊆M a smooth submanifold.
A smooth map F : N × [0, 1] → M is said a smooth isotopy if Ft is a smooth
embedding for all t ∈ [0, 1]. The support of the isotopy F is the closure of the set
of x ∈ N such that Ft(x) = x for all t ∈ [0, 1]. Similarly, for a smooth diffeotopy
we mean is a smooth map M × [0, 1] → M such that Ft is a diffeomorphism of M
for all t ∈ [0, 1].

Remark 2.3.33. Note that if M is compact and connected (for example if M =
S is a surface) any smooth embedding M → M is a diffeomorphism. Indeed,
being an open and closed map it is necessarily surjective. Thus any smooth isotopy
M × [0, 1]→M is actually a smooth diffeotopy.

Theorem 2.3.34. Let M be a manifold and N ⊆ M a submanifold. If ∂N 6= ∅
we require N to be a neat submanifold. Let F : N × [0, 1] → M be a smooth
isotopy of N such that F (N × [0, 1]) ⊆ M r ∂M or F (N × [0, 1]) ⊆ ∂M . Then F
extends to a smooth diffeotopy of M having compact support. Moreover, in the case
F (N × [0, 1]) ⊆M r ∂M , the diffeotopy can be chosen with support in M r ∂M .

Proof. See Theorem 1.3 in chapter 8 of [23].

Corollary 2.3.35. If C0 and C1 are two isotopic circles of S, then there exists a
smooth diffeotopy of S taking C0 to C1 and fixing pointwise ∂S.
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Lemma 2.3.36 (Change of coordinates principle). Two circles C1 and C2 are of
the same type if and only if SC0 and SC1 are diffeomorphic.

Proof. The implication (⇒) is clear. We prove (⇐). Since there exist an orientation-
reversing diffeomorphisms of SC0 , composing with such a diffeomorphism, we see
that there is an orientation-preserving diffeomorphism between SC0 and SC1 . Our
argument is based upon the following two observations:

Obs 1 Every two orientation-preserving diffeomorphisms of S1 are isotopic. Indeed,
given f ∈ Diff+(S1) we may first replace f with another diffeomorphism, that
we still call f , that is isotopic to f and that has a fixed point x ∈ S1. Then f
acts as the identity on π1(S1, x) and thus the lift f̃ : R → R of f ◦ p (where
p : R → S1 is the usual covering map p(θ) = e2πiθ) that sends 0 in 0 has the
property that f̃(n+ θ) = f̃(θ) + n for all θ ∈ R and n ∈ Z. It follows that the
straight-line homotopy F between f̃ and 1R induces an homotopy between f
and 1S1 . Finally the derivative of Ft with respect to θ is always positive, so
our homotopy happens to be an isotopy.

Obs 2 If S is any surface with at least two boundary components ∂1 and ∂2, then
there exists an orientation-preserving diffeomorphism of S taking ∂1 to ∂2 and
fixing pointwise the other boundary components of S. Indeed, let γ be a
proper arc in S connecting ∂1 and ∂2. We can choose a closed neighborhood
N of ∂1 ∪ ∂2 ∪ γ diffeomorphic to the closed disk with two holes corresponding
to ∂1 and ∂2. In particular, there exists a diffeomorphism of N taking ∂1 to
∂2 and fixing the other boundary component. Extend this diffeomorphism to
a diffeomorphism of S to be the identity out of N .

Using these two observations it is easy to conclude. Identify SCi with S r N̊i where
Ni is a closed neighborhood of Ci in S such that there is an orientation-preserving
diffeomorphism (Ni, Ci) ∼= (S1 × [0, 1], S1 × {1/2}) (i = 0, 1). By hypothesis, there
is an orientation-preserving diffeomorphism S r N̊0 → S r N̊1 and, by the second
observation, we may assume that it takes ∂N0 to ∂N1. Using the first observation,
we finally extend this diffeomorphism to an orientation-preserving diffeomorphism
S → S taking C0

∼= S1 × {1/2} ⊆ S1 × [0, 1] to C1
∼= S1 × {1/2} ⊆ S1 × [0, 1].

Corollary 2.3.37. Two nonseparating circles in S are of the same type.

Proof. If C is a non-separating circle of S = Sbg, then SC = Sb+2
g′ for some g′, that can

be determined by looking at χ(SC). Write S = (SrC)∪N where N ∼= S1×[0, 1] is a
closed neighborhood of C in S. Then χ(S) = χ(SrC)+χ(N)−χ(NrC) = χ(SC).
In particular, g′ = g − 1 and the corollary follows from the Lemma 2.3.36.
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2.3.5 Alexander Method

In order to study a diffeomorphism of a surface S one can try to find some circles
in S that remain fixed, possibly modulo isotopy, under the action of it, then cut S
along such circles obtaining a collection of simpler surfaces and study the behaviour
of the induced diffeomorphism on this collection.

One important result in this direction is the following proposition.

Proposition 2.3.38 (Alexander method). Let S be a surface and let Fi i = 1, 2 be
two families of k non-trivial circles of S such that for each i = 1, 2:

1. every two distinct circles in Fi are in minimal position;

2. every two distinct circles in Fi are not isotopic;

3. for distinct Ci1, Ci2 and Ci3 circles in Fi at least one of Ci1 ∩ Ci2, Ci1 ∩ Ci3
and Ci2 ∩ Ci3 is empty.

Suppose, in addiction, that every circle Ci of F1 is isotopic to a (unique) circle C ′i of
F2. Then there exists a smooth diffeotopy of S relative to ∂S taking simultaneously
each Ci to C ′i .

Proof. We proceed by induction on k. If k = 1 then this is Corollary 2.3.35. Suppose
k > 1. By the inductive hypothesis, there is a smooth diffeotopy of S relative to
∂S taking Ci to C ′i for all i < k. Thus, we may assume from the beginning that
Ci = C ′i for all i < k and prove that there is a smooth diffeotopy of S relative to
∂S taking Ck to C ′k and fixing setwise each Ci for i < k. Call ∆ = ∪i<kCi. We can
think to ∆ as a graph with vertices at the intersection points of two circles Ci and
Cj with i < j < k. First of all, we perform a smooth diffeotopy rel(∂S ∪ ∆) that
makes Ck to be transverse to C ′k. This can be done as follows. Observe that from
the hypothesis 3, Ck is disjoint from the vertices of ∆ and that, by the hypothesis
1, both Ck and C ′k intersect the edges of ∆ in a finite number of points, thus we can
make Ck transverse to C ′k along these edges through a relative smooth diffeotopy of
S that fixes ∂S ∪∆. Finally, using Theorem 2.3.34, we perform a smooth diffeotopy
of S relative to ∂S ∪∆ that perturbs Ck to intersect C ′k transversely in S r ∆.
Next we perform a relative smooth diffeotopy of S that fixes setwise ∆ and pointwise
∂S and takes Ck to be disjoint from C ′k as follows. If at this point Ck ∩ C ′k 6= ∅,
then they form a bigon. We can take this bigon to be innermost with respect to
Ck and C ′k. By the hypothesis 3 and non-triviality of the circles in question, the
intersection of ∆ with this bigon is a collection of disjoint arcs that, by the hypotesis
1, connect one boundary arc of the bigon with the other. Thus there is a smooth
diffeotopy of S relative to ∂S fixing setwise each Ci for i < k that pushes Ck across

25



the bigon. Repeating this process we makes Ck to have empty intersection with C ′k.
From Proposition 2.3.4, Ck and C ′k bound an annulus in S. As before and using 2,
the intersection of ∆ with this annulus is a collection of disjoint arcs connecting Ck
to C ′k and thus there is a smooth diffeotopy of S relative to ∂S that takes Ck to C ′k
and fixed setwise each Ci for i < k.

Two immediate corollaries that are worth to be pointed out are the following.

Corollary 2.3.39. Let Fi i = 1, 2 be two families of k non-trivial circles in a surface
S, each such that every two distinct circles of Fi have empty intersection and are
not isotopic (i = 1, 2). Suppose that every circle Ci of F1 is isotopic to a (unique)
circle C ′i of F2. Then there exists a smooth diffeotopy of S relative to ∂S taking
simultaneously each Ci to C ′i .

Corollary 2.3.40. Let F = {C1, C2} and F ′ = {C ′1, C ′2} be two families each con-
sisting of two non-trivial and non-isotopic circles of S that are in minimal position
and such that Ci and C ′i are isotopic for i = 1, 2. Then, there exists a smooth
diffeotopy of S relative to ∂S taking each Ci to C ′i for i = 1, 2.

2.4 Isotopies and homotopies of diffeomorphisms and
homeomorphisms

In this subsection we collect some useful facts about diffeomorphisms and home-
omorphisms of surfaces that will allow us to replace one kind of map with a better
one.

Definition 2.4.1. An isotopy of diffeomorphisms (respectively of homeomorphisms)
between two diffeomorphisms (respectively homeomorphisms) f, g : S → S is a con-
tinuous homotopy F : S × [0, 1] → S between f and g such that for all t ∈ [0, 1]
F (−, t) is a diffeomorphism (respectively a homeomorphism) of S.

Remark 2.4.2. Clearly, being isotopic is an equivalence relation.

Any homeomorphism of a surface S is isotopic to a diffeomorphism of S

Theorem 2.4.3. Any homeomorphism of a surface S is isotopic to a diffeomorphism
of S. Moreover if a homeomorphism restricts to the identity on ∂S, then the isotopy
can be chosen to be relative to ∂S.

Proof. See [22]. For the second part of the statement, note that if a homeomorphism
of a surface S restricts to the identity in ∂S, then it is isotopic to a homeomorphism
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that is the identity on a neighborhood of ∂S (in particular it is smooth in a neigh-
borhood of ∂S). Thus we can apply what is proved in [22]. To see this, glue to each
boundary component of ∂S an annulus, obtaining a new surface S ′ homeomorphic
to S. Consider the continuous map F : S × [0, 1]→ S ′ obtained by stretching S to
become S ′. See the figure below.

S S ′

Figure 2.3: Definition of F.

In particular, F0 is the inclusion S ↪→ S ′, Ft is a topological embedding for all
t ∈ [0, 1], F1 is a homeomorphism S → S ′. Then, given a homeomorphism φ : S → S
that is the identity on ∂S, we can extend φ to a homeomorphism φ̄ : S ′ → S ′ that
is the identity on S ′ r S and observe that F−1

1 ◦ φ̄ ◦ F1 is a homeomorphism of S
isotopic to φ (in S) and is the identity on a neighborhood of ∂S. Here we are using
the fact that the map S× [0, 1]→ S defined by (x, t) 7→ F−1

t (φ̂(Ft(x)) is continuous.
This follows from the fact that the group the homeomorphisms of S endowed with
the compact-open topology is a topological group.

Continuous and smooth homotopies and isotopies

There is also a further peculiarity in dimension 2. That is, continuous and
smooth homotopies and isotopies are not truly different.

Here is the main result.

Theorem 2.4.4. Let f : S → S be a diffeomorphism. Then:
(a) if f is continuously homotopic to 1S through an homotopy that, if ∂S 6= ∅,
preserves setwise each boundary component of S, then f is smoothly isotopic to 1S;
(b) if ∂S 6= ∅, f |∂S = 1∂S and f is continuously homotopic to 1S via an homotopy
relative to ∂S, then f is smoothly isotopic to 1S via an isotopy relative to ∂S.

Remark 2.4.5. If ∂S 6= ∅, and f ∈ Diff(S) preserves setwise each component of ∂S,
using Observation 1 in Lemma 2.3.36 and Theorem 2.3.34, we see that f is smoothly
isotopic to a new diffeomorphism that restricts to the identity on ∂S. Thus in the
case ∂S 6= ∅, it is enough to prove the statement (b) of the theorem.

We now give the proof of this theorem, starting with some special cases.

The main ingredient is the following result due to the mathematician Stephen Smale.
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Theorem 2.4.6 (Smale’s Theorem). The space Diff(D2, ∂D2) of the diffeomor-
phisms of the disk fixing pointwise ∂D2, endowed with the C∞-topology, is con-
tractible.

Corollary 2.4.7. Theorem 2.4.4 holds for S = D2.

Another useful result is the following.

Lemma 2.4.8. Let Homeo([0, 1], {0, 1}) and Diff([0, 1], {0, 1}) be respectively the
space of homeomorphisms and diffeomorphisms of [0, 1] fixing the points 0 and 1.
Endow Homeo([0, 1], {0, 1}) with the compact-open topology and Diff([0, 1], {0, 1})
with one between the compact-open topology or the C∞-topology. Then all these
spaces are contractible.

Proof. All of them deformation retract to the identity map with deformation map
F (f, t)(x) = tf(x) + (1− t)x.

Lemma 2.4.9. Theorem 2.4.4 holds for S = A = S1 × [0, 1].

Proof. Let f ∈ Diff(A, ∂A). Let γ be the straight-line arc from (1, 0) to (1, 1) in
A. Then f(γ) is a proper arc of A with ∂f(γ) = {(1, 0), (1, 1)} = ∂γ. We claim
that there is a smooth isotopy of A relative to ∂A taking f(γ) to γ. To see this, let
Ā be the surface diffeomorphic to the torus obtained by glueing the two boundary
components of A in such a way that (1, 0) and (1, 1) correspond. Then γ and ∂A
become non-trivial circles in Ā. Call these circles C1 and C2 respectively. Note
that f defines a diffeomorphism f̄ of Ā that restricts to the identity on C2. The
circles f̄(C1) is homotopic to C1 and f̄ |C2 = 1C2 . An argument similar to the one
in Proposition 2.3.38, show that f̄ is smoothly isotopic to a diffeomorphism that
fix setwise each Ci for i = 1, 2 via an isotopy that does not move the points in C2.
Since Diff([0, 1], {0, 1}) is contractible and f̄ fixes a point of C1, we can also assume
that f̄ |C1 = 1C1 . Equivalently, we may assume that f |γ = 1γ. Cutting A along γ we
obtain a square Q. The proof of Theorem 2.4.3, shows that the map induced by f
on this square is smoothly isotopic to one that is the identity in a neigborhood of
∂Q via an isotopy rel ∂Q. Equivalently we may have assumed from the beginning
that f were the identity on a neighborhood of γ ∪ ∂A. To conclude apply Smale’s
Theorem to the map induced by f on Q 1.

Lemma 2.4.10. Theorem 2.4.4 holds for S = S2.

We will give two proofs of this lemma.
1A priori, Q has corners, thus it is not diffeomorphic to a disk D2. However, since f is the

identity on a neighborhood U of ∂Q, we can apply Smale’s Theorem to a smaller disk D′ ⊆ Q
containing Qr Ū .
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Proof 1. We will prove that any orientation-preserving diffeomorphism of S2 is
smoothly isotopic to 1S2 . First we note that every orientation-preserving diffeo-
morphisms of S2 is smoothly isotopic to another diffeomorphism that is the identity
on a disk of S2. Indeed, let f ∈ Diff+(S2) be a diffeomorphism and D ⊆ S2 a
disk. Then, by Theorem C.1.3, the inclusion map i : D ↪→ S2 and f |D are smoothly
isotopic. Using Theorem 2.3.34, it follows that we can find a smooth isotopy F
between F0 = 1S2 and F1 such that F1 ◦ f is the identity on a disk D′ ⊆ D.
Thus we may assume from the beginning that f is the identity on a disk D of
S2. To conclude the proof, we can apply Smale’s Theorem to the map obtained by
restricting f to S2 r D̊.

Proof 2. Consider an orientation-preserving diffeomorphism f : S2 → S2. Let C be
the equator of S2. Orient C and call U and V respectively the two open sets of
S2 rC on the left and on the right of C. Since f(C) and C are homotopic we may
assume that φ(C) = C and, possibly composing f with a rotation, that f(U) = U
and f(V ) = V . In particular, now f |C is an orientation preserving diffeomorphism of
C. By the observation 1 in Lemma 2.3.36 and the Theorem 2.3.34, we can actually
assume that f |C = 1C . Finally, applying Smale’s Theorem to U ∪C and V ∪C, we
obtain that f is smoothly isotopic to 1S2 .

Lemma 2.4.11. Theorem 2.4.4 holds for S = S3
0 .

Proof. Let f be any diffeomorphism of S3
0 that restricts to the identity on each

component of ∂S3
0 . We will prove that f is smoothly isotopic to 1S3

0
through an

isotopy rel ∂S3
0 . Let ∂1, ∂2 and ∂3 be the boundary components of S3

0 . For 1 ≤ i <
j ≤ 3, let γij be a proper arc of S3

0 connecting ∂i and ∂j. We can choose these
arcs to be disjoint. As in the proof of Lemma 2.4.9, considering the double of S3

0

and using an argument similar to the one in Proposition 2.3.38, we see that, up to
a smooth isotopy, we can assume that f fixes setwise each of the γij. Hence, since
Diff([0, 1], {0, 1}) is contractible, we can actually assume that f |γij = 1γij . Cutting
S3

0 along every γij we obtain two disks, D1 and D2, each of which is preserved by
f , being f the identity on ∂S3

0 . As in the proof of Theorem 2.4.3, we see that, for
i = 1, 2, the restriction of f to Di is smoothly isotopic to a diffeomorphism that is
the identity on a neighborhood of ∂Di through an isotopy relative to ∂Di. Thus we
can apply Smale’s Theorem to conclude the proof.

To finally prove the theorem for all the remaining cases we will use a particular
subdivision of the surface in disks and annuli, as explained in the next lemma.

Lemma 2.4.12. Let S be a surface, S 6= S2, D2, A, S3
0 . Then there exists a collection

F of circles of S satisfying the following conditions:

1. F satisfy the hypotheses of Proposition 2.3.38;
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2. the result of cutting S along all the circles in F is a collection C of disks and
annuli. In addiction, C contains exactly n distinct annuli A1, ..., An, one for
each boundary component ∂i of S and ∂i ⊆ ∂Ai for all i = 1, ..., n;

3. if Ci 6= Cj are two circles in F , then |Ci ∪ Cj| ≤ 1;

4. for every C ∈ F , there exists V 6= C in F such that C ∩ V 6= ∅.

Proof. Using the following circles

Figure 2.4: Reduction of the problem to the case b ≤ 1 and g ≥ 1.

we reduce ourself to prove the case b ≤ 1 and g ≥ 1. If b = 0 we can choose F
as below

g = 1 g = 2 g ≥ 3

Figure 2.5: A possible choice of F for b = 0.

Finally when b = 1 we can choose F to be as below

g = 1 g = 2 g ≥ 3

Figure 2.6: A possible choice of F for b = 1.
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The proof is complete.

Proof of Theorem 2.4.4 in the remaining cases. Let S 6= D2, S2, A, S3
0 be a surface.

Let f ∈ Diff(S) be as in (a) if ∂S = ∅ or as in (b) if ∂S 6= ∅. Suppose ∂S = ∂1t...t∂n
where n ≥ 0. Let F be a family of circles of S satifying the conditions of the previous
lemma. By Proposition 2.3.38, we may assume that f(C) = C for all C ∈ F . In
particular, f fixes every point of S of the form Ci ∩ Cj where Ci 6= Cj ∈ F . Since
for all C ∈ F , the set C r ∪V ∈F :V 6=CV is a collection of intervals whose boundary
points are fixed by f , it follows that f preserves each of these intervals and, since
Diff([0, 1], {0, 1}) is contractible, we can actually assume that f is the identity on
each C ∈ F . Now cut S along all the circles in F and observe that f must preserves
each component of the cutting surface. As in the proof of Theorem 2.4.3, the
restriction of f on each component Q is smoothly isotopic to a diffeomorphism that
is the identity on a neighborhood of Q via an isotopy relative to ∂Q, equivalently we
may have assumed from the beginning that f is the identity on a neighborhood of
each C ∈ F . Applying Smale’s Theorem to the disks in C, we see that f is smoothly
isotopic to a map that is supported in a collection of annuli corresponding to the
boundary components of S. In particular if ∂S = ∅ we are done. The proof of
statemet (b) will be finished after we have introduced Dehn twists. See Corollary
3.2.9.

Reformulation of the previous results

We will now reformulate the content of Theorem 2.4.4 and Theorem 2.4.3 in
terms of spaces of functions.

Define

Homeo(S) = {f : S → S : f is a homeomorphism};
Diff(S) = {f : S → S : f is a diffeomorphism};
Homeo(S, ∂S) = {f : S → S : f is a homeomorphism and f |∂S = 1∂S};
Diff(S, ∂S) = {f : S → S : f is a diffeomorphisms and f |∂S = 1∂S}.

Endow the spaces of homeomorphisms with the compact-open topology and the
spaces of diffeomorphisms indifferently with the compact-open topology or the C∞-
topology.

Proposition 2.4.13. The inclusions Diff(S) ↪→ Homeo(S) and Diff(S, ∂S) ↪→
Homeo(S, ∂S) induce bijections

π0(Diff(S))→ π0(Homeo(S))

and
π0(Diff(S, ∂S))→ π0(Homeo(S, ∂S)).
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If we fix an orientation on S, we can also consider the subspaces (with the induced
topology)

Homeo+(S) = {f : S → S : f is an orientation preserving homeomorphism};
Diff+(S) = {f : S → S : f is an orientation preserving diffeomorphism};
Homeo+(S, ∂S) = Homeo+(S) ∩ Homeo(S, ∂S);

Diff+(S, ∂S) = Diff+(S) ∩Diff(S, ∂S);

By an orientation-preserving homeomorphism f we mean that the orientation class
[S, ∂S] ∈ H2(S, ∂S) is preserved under H2(f). Since isotopic homeomorphisms are
in particular homotopic through an homotopy that preserves setwise ∂S, they are
necessarily both orientation-preserving or both orientation-reversing. Thus we have
also the following proposition.

Proposition 2.4.14. The inclusions Diff+(S) ↪→ Homeo+(S) and Diff+(S, ∂S) ↪→
Homeo+(S, ∂S) induce bijections

π0(Diff+(S))→ π0(Homeo+(S))

and
π0(Diff+(S, ∂S))→ π0(Homeo+(S, ∂S)).

2.5 Pants decomposition of a surface

As we have seen it can be useful to cut a surface along some circles and arcs in
such a way to obtain a collection of disks on which to work. This section introduces
another useful decomposition of surfaces.

Definition 2.5.1. A pair of pants is a surface diffeomorphic to sphere with three
holes.

There are at least two equivalent definitions of what it is a pants decomposition
of S.
Let χ(S) < 0.

Definition 2.5.2. A pants decomposition of S is a collection ∆ of disjoint circles
of S with the property that S∆ is disjoint union of pair of pants. Equivalently, a
pants decomposition of S is a maximal collection ∆ of disjoint essential circles that
are pairwise not isotopic.

The equivalence between the two definitions is easy. First, suppose ∆ is as in the
first definition. Then the circles in ∆ must be essential. They must be non-trivial
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otherwise there would be a circle that cuts S in two components one of which is
a disk not containing any other circle of ∆, but then this means that ∆ does not
satisfy the first definition. They cannot be isotopic to a boundary component of
S otherwise S∆ would have a component that is an annulus or a disk. It is also
clear that the circles in ∆ must be pairwise not isotopic, otherwise S∆ would have
a component that is an annulus or a disk. Moreover, since every circle in a pair of
pants is either homotopic to a boundary component or to a point, we cannot add
to ∆ an essential circle of S disjoint from and not isotopic to the circles in ∆. Vice
versa, suppose ∆ is as in the second definition and, by contradiction, that there is a
component of S∆ that is not a pair of pants. Note that S∆ cannot have components
that are diffeomorphic to a sphere with b = 0, 1 or 2 boundary components (here
we use that χ(S) < 0), thus S∆ has a component that either has positive genus or
is a sphere with more than three boundary components. But then such component
contains a essential circle and this would contradict the maximality of ∆.

Definition 2.5.3. We will say that two pants decompositions ∆1 and ∆2 are of
the same type if there exists an orientation-preserving diffeomorphism φ of S such
that φ(∆1) = ∆2.

Remark 2.5.4. An application of Lemma 2.3.36 gives that there is only a finite
number of types of pants decomposition of S.

Lemma 2.5.5. Let ∆ be a pants decomposition of S = Sbg. Then |∆| = 3g + b− 3.

Proof. Consider the decomposition in components S∆ = P1 t ... t Pk. Then

2− 2g − b = χ(S) = χ(S∆) = χ(P1) + ...+ χ(Pk) = −k

(note that χ(Pi) = 1 for all i = 1, ..., k) thus

|∆| = 3k − b
2

=
6g − 6 + 2b

2
= 3g − 3 + b.

Suppose S is endowed with a fixed hyperbolic metric.

Proposition 2.5.6. Let ∆ be a pants decomposition of S. Substituting each circle
C in ∆ with the unique geodesic circle in the isotopy class of C we obtain another
pants decomposition of S.

Proof. By Corollary 2.3.23, the new geodesic circles are pairwise disjoint. Now check
the conditions in the second definition. Note that maximality follows from Lemma
2.5.5.
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Chapter 3

The Mapping Class Group

This third chapter introduces the main protagonist of our story, namely the
Mapping Class Group of a surface, Mod(S). We will study some first examples
and properties of this group that, as it will immediately be clear, encode many
information about the surface. The main reference for this chapter is [12].

3.1 Definition and first examples

Definition 3.1.1. TheMapping Class Group of a surface S, denoted by Mod(S),
can be defined in many equivalent ways. Here are some equivalent definitions:

1. Mod(S) is the group of isotopy (or homotopy, where homotopies are required
to fix setwise the boundary) classes of orientation-preserving diffeomorphisms
of S;

2. Mod(S) = Diff+(S)/Diff+
0 (S), where Diff+

0 (S) denotes the normal subgroup
of Diff+(S) consisting of those diffeomorphism isotopic (or homotopic through
an homotopy fixing setwise the boundary) to the identity;

3. Mod(S) = π0(Diff+(S)), where Diff+(S) is endowed with the compact-open
topology;

4. Mod(S) = π0(Diff+(S)), where Diff+(S) is endowed with the C∞-topology;

5. Mod(S) is the group of isotopy (or homotopy, where homotopies are required
to fix setwise the boundary) classes of orientation-preserving homeomorphisms
of S;

6. Mod(S) = Homeo+(S)/Homeo+
0 (S), where Homeo+

0 (S) denotes the normal
subgroup of Homeo+(S) consisting of those homeomorphisms isotopic (or ho-
motopic through an homotopy fixing setwise the boundary) to the identity;
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7. Mod(S) = π0(Homeo+(S)), where Homeo+(S) is endowed with the compact-
open topology.

Remark 3.1.2. We will use the equivalence of these definitions from the very be-
ginning even if, a priori, we are not allowed to untill we will have finished the proof
of Theorem 2.4.4. The reader who wants to read the end of the proof before pro-
ceeding any further can read now Example 3.1.9, Definition 3.2.3, Proposition 3.2.6
and Corollary 3.2.9 in this order.

There are many other variants of Mod(S). Here are the other variants we will
be interested in.

Definition 3.1.3. Define

Mod(S, ∂S) = Diff+(S, ∂S)/Diff+
0 (S, ∂S)

where Diff+
0 (S, ∂S) is the normal subgroup of Diff+(S, ∂S) consisting of those dif-

feomorphisms homotopic relatively to ∂S to 1S.

Clearly, similarly to Mod(S), one obtain many equivalent definitions of Mod(S, ∂S)
using the results in section 2.4.

Remark 3.1.4. Note that, if ∂S 6= ∅, a diffeomorphism of S fixing pointwise ∂S is
necessarily orientation preserving. Moreover, if ∂S = ∅, the two definitions coincide.

Another interesting variant arises when considering distinguished points in S.
Let {x1, ..., xn} be distinct points in S r ∂S.

Definition 3.1.5. Define
Mod(S; {x1, ..., xn})

to be the group of the relative homotopy classes of orientation-preserving home-
omorphisms of S fixing setwise {x1, ..., xn}, where homotopies are required to be
relative to {x1, ..., xn} and preserve setwise ∂S.

Remark 3.1.6. At least when n = 1, the group Mod(S, {x}) can also be described
to be the relative isotopy classes of orientation-preserving homeomorphisms of S,
where isotopies are required to be relative to {x}. This follows from Theorem 6.3
of [11] or one can improve the results of the previous chapter.

Now we present some examples of computations that can be worked out directly
from the definitions.
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Example 3.1.7 (Alexander’s Lemma). By Smale’s Theorem Mod(D2, ∂D2) = {1}.
Moreover if φ ∈ Diff+(D2), then φ is smoothly isotopic to a diffeomorphism that
restricts to the identity on ∂D2, thus Mod(D2) = {1}. There are many other
possible strategies to prove this same result once we have the equivalence of all the
definitions of Mapping Class Group. For example if φ ∈ Diff(D2, ∂D2), then the
straight-line homotopy between φ and 1D2 is a smooth homotopy rel ∂D2. A further
possibility is to consider

F : I ×D2 → D2 F (t, x) =

{
(1− t)φ( x

1−t) 0 ≤ |x| < 1− t
x 1− t ≤ |x| ≤ 1

that is an isotopy (of homeomorphisms) rel ∂D2 between φ and 1D2 .
Finally, we note that using this last isotopy we also obtain Mod(D2; {0}) = {1}.

Example 3.1.8. The proofs of Lemma 2.4.10 show that that Mod(S2) = {1}.

Example 3.1.9. We show that Mod(A, ∂A) ∼= Z, where A is the annulus A =
S1 × [0, 1].
Let p : Ã = R×[0, 1]→ A = S1×[0, 1] be the universal cover of A, p(θ, t) = (e2πiθ, t).
For every diffeomorphism φ of A fixing pointwise ∂A, call φ̃ : Ã→ Ã the lift of φ ◦ p
such that φ̃(0) = 0 and φ̃i : R × {i} = R → R × {i} = R the restriction of φ̃ to
R × {i} for i ∈ {0, 1}. Note that φ̃i is a lift of R → S1 defined by θ 7→ e2πiθ, in
particular it is a translation of R by an integer and, since φ̃(0) = 0, φ̃0 must be the
identity.
Consider the homomorphism of groups

τ : Diff(A, ∂A)→ Z

defined by the formula τ(φ) = φ̃1(1).
We claim that it is surjective and has kernel Diff0(A, ∂A). Surjectivity is easily
established. Indeed, every matrix

M =

[
1 n
0 1

]
defines a diffeomorphism of Ã sending 0 to 0. This diffeomorphism passes to the
quotient and gives a diffeomorphism φM of A such that τ(φM) = n.
In order to find the kernel of τ , we give another equivalent definition of τ . Call δ
the straight oriented arc of A from (1, 0) to (1, 1). For every φ ∈ Diff(A, ∂A), the
loop (φ ◦ δ) · δ−1 is based at δ(0) = (1, 0). Identifying π1(A, (1, 0)) = Z[α] ∼= Z,
where α(t) = (e2πit, 0) 0 ≤ t ≤ 1. We have τ(φ) = [(φ ◦ δ) · δ−1] ∈ π1(A, (1, 0))
does not depend on the choice of a representative in [φ] ∈ Mod(A, ∂A) and thus
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Diff0(A, ∂A) ⊆ ker(τ). Finally, suppose that τ(φ) = 0. Then φ̃1 = 1R. Note that the
straight-line homotopy between φ̃ and 1R×[0,1] is always equivariant under the action
of deck transformations. This means that for every n ∈ Z and ((θ, t), s) ∈ Ã× [0, 1]

p(sφ̃(θ + n, t) + (1− s)(θ + n, t)) = p(sφ̃(θ, t) + (1− s)(θ, t)).

Indeed, (θ, t) 7→ φ̃(θ + n, t) and (θ, t) 7→ φ̃(θ, t) + (n, 0) always coincide since, for
fixed n, both are lifts of φ◦p sending 0 to (n, 0). But, under our hypothesis, it is also
true that the straight-line fixes ∂Ã and thus induced an homotopy rel ∂A between
φ and 1A. Therefore Diff0(A, ∂A) = ker(τ) and we have completed the proof.

Before starting next example, we derive a useful lemma from the Examples 3.1.7
and 3.1.9.

Lemma 3.1.10. Let S be a surface with at least one boundary component and call
S ′ the surface obtained from S by collapsing each boundary component ∂i of S to a
point xi (one point for each boundary component). Then, the natural homomorphism
of groups

Mod(S)→ Mod(S ′; {x1, ..., xn})

is an isomorphism.

Proof. Note that the quotient map restricts to a homomorphism S r ∂S → S ′ r
{x1, ..., xn}. Using this identification, if φ ∈ Homeo+(S), then the class of φ is sent
to the class of φ̂ ∈ Homeo+(S ′, {x1, ...xn}), where φ̂ is equal to φ in S ′r{x1, ..., xn} =
S r ∂S and sends xi to xj if φ sends the boundary component ∂i to the boundary
component ∂j. We first prove that our homomorphism is injective. Suppose that
φ ∈ Diff+(S) is such that [φ̂] = [1S′ ] ∈ Mod(S ′; {x1, ..., xn}). In particular φ must fix
setwise each boundary component of S. From Observation 1 in Lemma 2.3.36 and
Theorem 2.3.34, we may assume that φ|∂S = 1∂S and thus, as in the proof of Theorem
2.4.3, that φ is the identity on a neighborhood of ∂S. This is the same that saying
that φ̂ is the identity on a neighborhood U of {x1, ..., xn}. Let G̃ be an homotopy
of S ′ relative to {x1, ..., xn} such that G̃0 = φ̂ and G̃1 = 1S′ and let d : S ′ → [0, 1]
be a smooth map that is 0 on a neighborhood V ⊆ U of {x1, ..., xn} and 1 outside
U . The map G : S ′ × [0, 1] → S ′ defined by G(x, t) = G̃(x, d(x)t) is an homotopy
between φ̂ and a map that is the identity out of U rV . We may assume that Ū rV
is a collection of annuli around the xi and thus we have proved that φ is homoopic
to a map that is the identity of S out of a collection of annuli with boundary
components that are isotopic to a boundary component of S. Since the homotopies
used to define Mod(S) are not required to fix pointwise ∂S, Example 3.1.9 shows
that [φ] = [1S] in Mod(S). Finally, we prove that our homomorphism is surjective.
Let ψ ∈ Homeo+(S, {x1, ..., xn}). For i = 1, ..., n, let Di be closed disks in S ′ around
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xi. Fix i and consider ψ|Di : Di → ψ(Di). Observe that ψ(Di) is a closed disk in S ′
around ψ(xi) = xj for some j. According to Example 3.1.7, we can modify ψ inside
Di as we want not changing the class of ψ in Mod(S ′, {x1, ..., xn}), as long as Di is
sent homeomorphically onto ψ(Di) and xi is sent to xj. For a suitable changes, the
restriction of ψ to Sr∂S = Sr {x1, ..., xn} can be extended to an homeomorphism
φ : S → S and clearly [φ] ∈ Mod(S) is sent to [ψ] ∈ Mod(S, {x1, ..., xn}) under our
homomorphism. The proof is complete.

Example 3.1.11. Now we compute Mod(S2, {x1, x2}), where x1, x2 are two distin-
guished points in S2. By Lemma 3.1.10, Mod(S2, {x1, x2}) = Mod(A). Call Σ2 the
group of permutations of {x1, x2}. We claim that the homomorphism

Mod(S2, {x1, x2})→ Σ2

given by the action of Mod(S2, {x1, x2}) on {x1, x2} is an isomorphism of groups.
Indeed, it is clearly surjective and injectivity follows from the fact that, by Example
3.1.9, if φ ∈ Diff+(A) preserves setwise each component of ∂A, then φ is isotopic to
1S.

Example 3.1.12. Next we compute Mod(S2, {x1, x2, x3}), where x1, x2 and x3 are
three distinguished points in S2. Note that, thanks to Lemma 3.1.10, we have
Mod(P ) ∼= Mod(S2, {x1, x2, x3}) where P is a pair of pants, that is a surface home-
omorphic to S3

0 .
Call Σ3 the group of permutations of {x1, x2, x3}. We claim that the natural homo-
morphism of groups

Mod(S2, {x1, x2, x3})→ Σ3

given by the action of Mod(S2, {x1, x2, x3}) on {x1, x2, x3} is an isomorphism of
groups. It is clearly a surjection. We only need to prove it is injective. But if
φ ∈ Diff+(S3

0) preserves each boundary component of S3
0 , then it is diffeotopic to a

diffeomorphism that restricts to the identity on ∂S3
0 and injectivity follows from the

proof of Lemma 2.4.11.

Example 3.1.13. We now compute the Mapping Class Group of the torus T 2 =
S1 × S1. There is an homomorphism of groups

τ : Mod(T 2)→ GL(2,Z)

given by the action of Mod(T 2) on H1(T 2,Z) ∼= Z2.
We claim that this is injective with image SL(2,Z); in particular Mod(T 2) ∼=
SL(2,Z).
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First, we see that τ takes values in SL(2,Z). Let [α], [β] ∈ π1(T 2, 0̄) be the standard
symplectic basis of H1(T 2) and

ω : H1(T 2)×H1(T 2)→ Z

be the intersection form ω = [α]∗ ∧ [β]∗. Then for every orientation-preserving
diffeomorphism φ of T 2,

1 = î(α, β) = î(φ(α), φ(β)) = ω(H1(φ)([α]), H1(φ)([β])) = det(H1(φ)).

Therefore Imτ ⊆ SL(2,Z).
Moreover, every M ∈ SL(2,Z) defines an orientation-preserving diffeomorphisms of
R2 and this diffeormiphism induces, by passing to the quotient, a diffeomorphism
φM of T 2 = R2/Z2 such that τ([φM ]) = A. So Imτ = SL(2,Z).
It remains to prove that τ is injective. Suppose that φ ∈ Diff+(T 2) is such that
H1(φ) = 1H1(T 2). We may assume that φ(x) = x where x = α ∩ β, otherwise we
replace φ with h ◦ φ where h ∈ Diff0(T 2) is such that h(φ(x)) = x. Then, since
π1(T 2, x) ∼= H1(T 2) is abelian, it follows that φ acts trivially on it. Equivalently, if
p : R2 → R2/Z2 is the quotient map and φ̃ : R2 → R2 is the lift of φ ◦ p such that
φ̃(0) = 0, then φ̃ is such that φ̃(x + n) = φ̃(x) + n for all x ∈ R2 and n ∈ Z2 and
thus the straight-line homotopy between φ̃ and 1R2 induces an homotopy between φ
and 1T 2 , by passing to the quotient. The proof is complete.

Example 3.1.14. Finally we compute the Mapping Class Group of the torus with
one point distinguished, or equivalently the Mapping Class Group of S1

1 . We have
an homomorpshism of groups τ obtained by composition

τ : Mod(T 2, {x})→ Mod(T 2)
∼=−→ SL(2,Z).

Observe that τ is exactly the homomorphism given by the action of Mod(T 2, {x}) on
H1(T 2 r x) ∼= H1(T 2) ∼= Z2. We claim that this is an isomorphism. It is surjective
since any element M of SL(2,Z) fixes the origin and discends to a diffeomorphism
of T 2 fixing the point 0̄ = p(0) in T 2, where p the covering map p : R2 → R2/Z =
T 2, and whose class in Mod(T 2, {x}) is sent to M under τ . Now we prove that
τ is injective. Maybe in this case it is easier to work with Mod(S1

1) instead of
Mod(T 2, {x}). Thus, suppose that φ is a diffeomorphism of S1

1 such that H1(φ) =
1H1(S1

1). We want to prove that φ is isotopic to 1S1
1
. Let α, β be the standard

symplectic basis of H1(T 2). Clearly, identifying α and β with their images, we
may assume that α ∪ β ⊆ S1

1 , where S1
1 ⊆ T 2 is considered as a submanifold.

Then, since π1(S1
1) = H1(S1

1) and H1(φ) = 1H1(S1
1), we have that φ(α) and φ(β) are

isotopic (in S1
1) to α and β respectively and, by Corollary 2.3.40, we can modify φ

by an isotopy so that it fixes setwise α and β. In particular φ fixes α ∩ β = {x}
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and, since φ is orientation-preserving, the restrictions maps φ|α : α → α and φ|β :
β → β are necessarily both orientation-preserving or both orientation-reversing.
But, π1(φ) = 1π1(S1

1 ,x) : π1(S1
1 , x) → π1(S1

1 , x) and thus φ|α and φ|β are necessarily
both orientation-preserving. Since Diff([0, 1]{0, 1}) is contractible, we may actually
assume that φ|α = 1α and φ|β = 1β. Now cut S1

1 along α ∪ β, obtaining an annulus
A. Since the restriction of the map induced by φ on A is the identity when restricted
to the boundary component ∂ of A corresponding to α ∪ β, from Example 3.1.9, it
follows that this map is isotopic to 1A through an isotopy relative to ∂, equivalently
φ is isotopic to 1S1

1
.

3.2 Dehn twists

In this section we introduce some types of mapping classes, called Dehn twists
and study some of their properties.

First we consider the annulus.

Definition 3.2.1. Let A = S1 × [0, 1] be the annulus, oriented using the counter-
closkwise orientation on S1. Let ρ : [0, 1]→ [0, 1] be a smooth bump function such
that ρ(0) = 0 and ρ(1) = 1. Define

T : A→ A T (e2πiθ, t) = (e2πi(θ+ρ(t)), t).

Figure 3.1: Spiegazione del Dehn Twist.

We will call the mapping class of T the Dehn twist about the circle C =
S1 × {1/2}.

Remark 3.2.2. Observe that, from Example 3.1.9, the mapping class determined
by T does not depend on the choice of ρ.

Now consider an arbitrary surface S and a circle C in S. Let N be a closed
tubular neighborhood of C in S r ∂S. Thus, we have an orientation-preserving
diffeomorphism φ : (N,C) ∼= (A, S1 × {1/2}).
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Definition 3.2.3. The Dehn twist about C is the class in Mod(S) of

TC : S → S TC(x) =

{
φ−1 ◦ T ◦ φ(x) x ∈ N ;

x x /∈ N.

Remark 3.2.4. This definition does not dependent on the choice of the closed
tubular neighborhood. To see this, first note that, for fixed N , it does not depend on
the choice of φ. This follows from Example 3.1.9. Then, use Theorem 6.5 in chapter
4 and Theorem 1.7 in chapter 8 of [23] to see that the definition is independent of
the choice of N . Finally, an application of Theorem 2.3.34 gives that this definition
does not even depend on the choice of the representative in the isotopy class of C.

Example 3.2.5. Let A = S1 × [0, 1] Then Example 3.1.9 can be reformulated
by saying that Mod(A, ∂A) ∼= Z[T ] where T is the Dehn twist about the circle
S1 × {1/2}.

Dehn twists can be studied by looking at their action on the circles of S.

Proposition 3.2.6. Let C0 and C1 be essential circles in S and k ∈ Z. Then

i(T kC0
(C1), C1) = |k| i(C0, C1)2

Proof. Choose representatives C̃0 and C̃1 in the homotopy class of C0 and C1 re-
spectively that are in minimal position. Observe that Ci and C̃i are isotopic, so
TC̃i = TCi for i = 0, 1. We will indicate C̃i with Ci for i = 0, 1.
We now describe T kC0

(C1). Take k i(C0, C1) curves C(i)
0 i = 1, ..., k i(C0, C1) parallel

to C0 = C
(1)
0 , each in minimal position with C1. If at each intersection point between

C1 and C(i)
0 we do the surgery in figure

C
(i)
0

C1

Figure 3.2: The operation of surgery.

we obtain a circle C ′1 of S in the isotopy class of T kC0
(C1) with |C ′1 ∩ C0| =

|k| i(C0, C1)2. The following figure should explain the situation:
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C1

C
(1)
0 C

(2)
0 C

(3)
0 C

(4)
0

C ′1

Figure 3.3: The circles C0, C1 and C ′1 for k = 2 and i(C0, C1) = 2.

To conclude the proof it is enough to check that C ′1 and C1, as shown in the
figure, do not form a bigon. There a two types of candidate bigons. They are
presented in the figure below

C
(i)
0 C

(i)
0C

(i−1)
0

γ1 γ2

Figure 3.4: Candidate bigons

γ1 corresponds to the case in which the two intersection point of the two arcs of
C ′1 and C1 have the same orientation, γ2 to the case this orientation is opposite.
But, γ1 cannot border a bigon because the orientations of the intersection points in
γ1 are the same; while if γ2 bordered a bigon then C0 and C1 would form a bigon
and this would be a contradiction.

Corollary 3.2.7. (a) Dehn twists about essential circles have infinite order in
Mod(S);
(b) Dehn twists about peripheral but non-trivial circles have infinite order in Mod(S, ∂S).

Proof. We start with the first statement. It is enough to prove that for each essential
circle C0 there is another essential circle C1 such that i(C0, C1) > 0. Using Lemma
2.3.36 we reduce to check few possible cases for C0.
If C0 is non-separating, then the surface must have at least genus 1 and we may
assume the situation is that presented below and choose C1 as in the figure:
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C0

C1

Figure 3.5: Case in which C0 is non-separating

If C0 separates S = Sbg, write SC = S1 t S2 where Si = Sbigi i = 1, 2 and
b1 + b2 = b+ 2 and g = g1 + g2. Again the relation g = g1 + g2 can be obtained from
the identity χ(S1) + χ(S2) = χ(SC) = χ(S).
If g1, g2 > 0, we may assume we are in the situation presented below and choose C1

as shown:

C0

C1

Figure 3.6: Case in which C0 is separating.

where on the left side of C0 we have S1 and on the right side S2.
The case in which g1 · g2 = 0 can be treated similarly. Note that in this case at least
one between b1 and b2 is ≥ 3. This concludes the proof of the first statement.
Now suppose that C0 is peripheral and non-trivial. Consider the double S̄ of S. In
S̄ the circle C0 is essential. If TC0 were trivial in Mod(S, ∂S) then it would be trivial
in Mod(S) contradicting the previous cases.

The previous result can also be generalized as follows.

Proposition 3.2.8. Let C1, ..., Ck be a collection of disjoint non-trivial and non-
isotopic circles of S. Then the subgroup of Mod(S, ∂S) generated by TC1 , ..., TCk is
⊕ki=1ZTCi.

Proof. If χ(S) ≥ 0 the result is trivial. Assume χ(S) < 0. Clearly the TCi commute
in Mod(S, ∂S) thus we only need to prove that if T = T n1

C1
· ...T nkCk = 1 in Mod(S, ∂S)

then n1 = ... = nk = 0. If ∂S 6= ∅, let S̄ be the double of S, otherwise set
S̄ = S. Clearly T = 1 in Mod(S̄). Moreover, the circles C1, ..., Ck are essential
and pairwise non-isotopic in S̄. We will find for each i = 1, ..., k a circle Vi of S̄
such that Vi ∩ Cj = ∅ for i 6= j and i(Vi, Ci) > 0. After that, for all i = 1, ..., k,
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we will have 0 = i(Vi, Vi) = i(Vi, T (Vi)) = i(Vi, T
ni
Ci

(Vi)) = |ni|i(Vi, Ci)2 from which
ni = 0. Therefore we only need to find the circles Vi. To do this, let ∆ be a pants
decomposition of S̄ with {C1, ..., Ck} ⊆ ∆. Call ∆i = ∆r{Ci}. The cutting surface
S̄∆i

has a component R that is either homeomorphic to S4
0 or to S1

1 . In the first case
there is a circle Vi in S̄ disjoint from every circle in ∆i and such that i(Ci, Vi) = 1
and in the second case there is a circle Vi of S̄ disjoint from all the circles in ∆i and
such that i(Ci, Vi) = 2. This completes the proof.

We can finally prove the statement (b) in Theorem 2.4.4. It will follow from the
following result.

Corollary 3.2.9. Let S be a surface with χ(S) < 0 and ∂S = ∂1 t ... t ∂n where
n ≥ 1. Let φ be a diffeomorphism of S such that:

1. φ is the identity out of some annular neighborhoods Ai of ∂i for i = 1, ..., n;

2. φ|∂S = 1∂S;

3. φ is continuously homotopic to 1S via an homotopy relative to ∂S.

Then φ is smoothly isotopic to 1S through an isotopy relative to ∂S.

Proof. For i = 1, ..., n, call φi the restriction of φ to Ai. We will prove that each
φi is smoothly isotopic to the identity through an isotopy relative to ∂Ai. Thanks
to Lemma 2.4.9, we know that Theorem 2.4.4 holds for the cylinder. Thanks to
Example 3.2.5, we know that the class of φi in Mod(Ai, ∂Ai) is a power of the Dehn
twist about a circle isotopic to a boundary component of Ai. Thus, it is enough to
prove that this power is 0. This follows from the previous proposition.

3.2.1 Pairs of filling circles

We now apply the theory of Dehn twists to prove the existence of pairs of filling
circles in Sg for g ≥ 2.

Definition 3.2.10. We say that a pair of circles {C1, C2} fills a surface S if they
are in minimal position and S r (C1 ∪C2) is union of disks or, equivalently, for any
non-trivial circle C in S we have |C ∩ (C1 ∪ C2)| > 0.

Lemma 3.2.11. Let C1 and C2 be two circles in a suface S that are in minimal posi-
tion. Given a third circle C, there exists in the homotopy class of C a representative
that is simultaneously in minimal position with C1 and C2.
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Proof. Clearly, by pertubating C, we may assume that C is transverse to both C1 and
C2. If C is not in minimal position with C1 then they form a bigon. By transversality
and compactness, C ∩ C1 is finite and since C and C1 do not autointersect, we can
take this bigon D to be innermost with respect to C and C1. By assumption, C1

and C2 are in minimal position, thus every intersection of C2 with this bigon is
a colletion of arcs of C2 each either connecting the C1-side of the bigon with the
C-side or two points of the C-side of the bigon. If there is an arc of the second
type, then we have a bigon formed by C2 and C inside our original bigon. We can
take this bigon to be innermost with respect to C and C2. Moreover, since it is
contained in our original bigon D, this new bigon does not intersect C1 and thus
we can push C by homotopy across this new bigon reducing the number of bigon
formed by C2 and C inside D and preserving the number of intersection points of
C with C1. Repeating this operation we reduce ourself to the case in which every
arc of C2 in D connects the C side of D with the C1 side. In this case we can push
C by homotopy across the bigon D. This procedure gives a circle homotopic to C
that is in minimal position with C1. Now repeat the argument with C2 replacing C1

and observe that, since C and C1 do not form a any bigon, now the intersection of
C1 with any innermost bigon formed by C2 and C is a collection of arcs connecting
the C2-side of the bigon with the C-side.

Proposition 3.2.12. Let g ≥ 2. There exists a pair of filling circles in Sg.

Proof. Let ∆ = {C1, ..., C3g−3} and C as shown below in figure. Then ∆ is a pants
decomposition of Sg and C is a non-trivial circle in Sg.

C1
C2

C3

C4
C5

C3g−3

C

Figure 3.7 Definition of ∆ and C.

By the bigon criterion, C is in minimal position with each Ci. Let M = TC1 ◦
... ◦ TC3g−3 . We claim that for any non-trivial circle V of Sg

|i(M(C), V )−
3g−3∑
i=1

i(Ci, V )| ≤ i(C, V ).
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From which it easily follows that C and the representative C ′ constructed as in
the proof of Proposition 3.2.6 in the homotopy class of M(C) are a pair of filling
circles for Sg. Indeed, by the bigon criterion, C and C ′ are in minimal position.
Let V be any non-trivial circle in Sg. If i(V,C) = i(V,M(C)) = 0, then it must
be i(Ci, V ) = 0 for all i = 1, ..., k and, by maximality of ∆, the circle V must be
isotopic to some Ci. But, then, i(V,C) > 0 and this would be a contradiction. Thus
either |V ∩ C| ≥ i(V,C) > 0 or |V ∩ C ′| ≥ i(V,C ′) > 0.
We need only to prove the claim. Fix a circle V ′ in Sg in the homotopy class of
V that is simultaneously in minimal position with both C and C ′. This is possible
thanks to the previous lemma. By perturbing V ′ we may assume that it does not
pass through C ∩ C ′. Hence, we have the following inequalities:

3g−3∑
i=1

i(Ci, V
′) ≤

3g−3∑
i=1

|Ci∩V ′| ≤ |(C∪C ′)∩V ′| ≤ |V ′∩C|+|V ′∩C ′| = i(V,C)+i(V,M(C)).

It remains to prove that

i(M(C), V ) ≤
3g−3∑
i=1

i(Ci, V ) + i(C, V ).

But this is quite obvious: take as a representative of [M(C)] a circle that lies in the
union of C and small tubular neighborhoods of the Ci and as a representative of [V ]
one that intersects C in i(C, V ) points and cuts across every Ci-annulus in i(Ci, V )
arcs; then they intersect in

∑3g−3
i=1 i(Ci, V ) + i(C, V ) points.

3.3 Congruence subgroups

In this section we define the congruence subgroups Mod(Sg)[m] for m ≥ 2.
They will be finite-index subgroups and, for m ≥ 3, torsion-free. Our interest for
this kind of subgroups should be clear from the content of chapter 1.

First of all, we note that, for g ≥ 1, Mod(Sg) has always non-trivial torsion.

Example 3.3.1. The rotation φ by π about the indicated axes gives a non-trivial
mapping class of finite order.
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C

Figure 3.8: Example of a non-trivial mapping class with finite order.

To see that φ determines a non-trivial element of Mod(Sg) observe that if [C] ∈
H1(S) is the homology class of the oriented circle C, then [C] 6= 0 and H1(φ)([C]) =
−[C].

3.3.1 The symplectic representation of Mod(Sg)

Recall that the linear symplectic group Sp(2g,Z) is the subgroup of GL(2g,Z)
consisting of those matrix A satisfying ATJA = J , where J is the block diagonal
matrix having diagonal blocks [

0 1
−1 0

]
.

Let g ≥ 1. Observe that the matrix of the symplectic intersection form ω with
respect to the standard symplectic basis is exactly the matrix J . We identify
H1(Sg;Z) ∼= Z2g, using the standard symplectic basis of H1(Sg;Z). The action
of Mod(Sg) on H1(Sg;Z) defines an homomorphism of groups

Ψ : Mod(Sg)→ Aut(H1(Sg;Z)) ∼= Aut(Z2g) ∼= GL(2g,Z)

Since every orientation-preserving diffeomorphism of Sg preserves î, it also preserves
ω and thus Ψ takes values in Sp(2g,Z). For this reason, Ψ is called the symplectic
representation of Mod(Sg). Using Ψ, we will deduce some properties of Mod(Sg)
from those of Sp(2g,Z).

Congruence subgroups of Sp(2g,Z)

Let m ≥ 2 and g ≥ 1. The level m congruence subgroup Sp(2g,Z)[m] is
defined to be the kernel of the reduction homomorphism of groups

Sp(2g,Z)→ Sp(2g,Z/mZ)

Proposition 3.3.2. Sp(2g,Z)[m] is torsion-free for m ≥ 3.

Observe that, when m = 2, −I ∈ Sp(2g,Z)[2], so it is not torsion-free.
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Proof. We first note that it is enough to prove the case m = pa where either p = 2
and a > 1 or p is an odd prime and a=1. Indeed, if n is a divisor ofm, Sp(2g,Z)[m] ⊆
Sp(2g,Z)[n].
Consider I 6= h ∈ Sp(2g,Z)[m] and k ≥ 2 an integer. We want to prove that hk 6= I.
Clearly it enough to check the case in which k is a prime number.
Write h = I + pdT where d ≥ a and T is a matrix with at least one entry that is
not divisible by p. There are two cases to be considered:
Case 1: if p = k, then

hk = (I+pdT )k = I+kpdT+

(
k

2

)
p2dT 2+... ≡ I+kpdT = I+pd+1T 6≡ I (mod pd+2)

where in the first congruence we used that m 6= 2.
Case 2: if p 6= k, then

hk = (I + pdT )k = I + kpdT +

(
k

2

)
p2dT 2 + ... ≡ I + kpdT 6≡ I (mod pd+1)

This completes the proof.

Congruence subgroups of Mod(Sg)

Let m ≥ 2 and g ≥ 1.

Definition 3.3.3. The level m congruence subgroup of Mod(Sg) is the kernel
of the composition

Mod(Sg)
Ψ−→ Sp(2g,Z)→ Sp(2g,Z/mZ)

Equivalently, it is the subgroup of those elements acting trivially on H1(Sg,Z/mZ).

Theorem 3.3.4. Let g ≥ 1. If φ ∈ Diff(Sg) is an orientation-preserving diffeomor-
phism of finite order that defines a non-trivial mapping class in Mod(Sg), then it
does not act trivially on H1(Sg,Z).

Proof. If g = 1 the result follows from follows from Example 3.1.13. Assume g ≥ 2
and suppose φk = 1Sg .
First, we prove that φ has isolated fixed points. Let x ∈ Fix(φ) any fixed point of
φ. Choose any riemannian metric h on Sg and average it by taking h+φ∗(h) + ...+
(φk−1)∗(h), so that φ becomes an isometry of Sg with this new metric. Since φ is an
isometry between two compact connected riemannian manifold, φ is completely de-
termined by φ(x) = x and dxφ. The differential dxφ is an orthogonal transformation
with positive determinant (this is because φ is orientation-preserving), thus it is a
rotation. Observe that it cannot be the trivial rotation, otherwise φ would be the
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identity. Thus 1 is not an eigenvalue of dxφ and x must be an isolated fixed point
of φ.
Since φ has isolated fixed points we can apply Lefschetz fixed point Theorem, ob-
taining

0 ≤
∑

x∈Fix(φ)

indx(φ) =
2∑
i=0

(−1)itr(Hi(φ)) = 2− tr(H1(φ))

where in the first inequality we have used the fact that if R is a non-trivial rotation of
the plane then R−I is orientation-preserving and thus indx(φ) = 1 for all x ∈ Fix(φ).
Since g ≥ 2, it follows that H1(φ) 6= 1H1(Sg ,Z).

This theorem has strong implications for the study of Mod(Sg). In fact, any
periodic element of Mod(Sg) has a representative that is a periodic diffeomorphism
of Sg, for g ≥ 2.

Theorem 3.3.5. Let g ≥ 2. If f ∈ Mod(Sg) is an element of finite order k, then
there is a representative φ ∈ Diff(Sg) of f so that φk = 1Sg .

Proof. See Theorem 7.1 in chapter 7 of [12].

We can now easily deduce the following

Corollary 3.3.6. Let g ≥ 2 and m ≥ 3. The group Mod(Sg)[m] is torsion-free.

Proof. If there exist 1 6= f ∈ Mod(Sg)[m] having finite order, then Ψ(f) 6= 1 belongs
to Sp(2g,Z)[m] and has finite order. This contradicts the fact that Sp(2g,Z)[m] is
torsion-free.

49



Chapter 4

The complex of curves C(S)

To any surface S we can associate a simplicial complex defined as follows.

Definition 4.0.1. The complex of curves of a surface S is the simplicial complex
C(S) specified by the following data:

vertices: the vertices are the isotopy classes of essential circle in S;

k-simplices: k+1 distict isotopy classes of essential circles C0, ..., Ck in S form
a k-simplex of C(S) if and only if i(Ci, Cj) = 0 for all 0 ≤ i 6= j ≤ k.

We will restrict our attention to the case S = Sg with g ≥ 2 and thus endow S
with an auxiliary hyperbolic metric.
In this case, C(S) can also be described as the simplicial complex having one vertex
for each geodesic circle of S and as k-simplices the sets of k+ 1 geodesic circles of S
that are pairwise non-intersecting. This is because each geodesic circle is necessarily
essential being ∂S = ∅, each essential circle of S is isotopic to a unique geodesic
circle of S and the geodesic circles corresponding to two disjoint, non-isotopic and
non-trivial circles of S are disjoint.

4.1 Connectivity of C(S)

It is known (see [18]) that the geometric realization of C(S) is e(S)-connected,
where

e(S) =

{
−χ(S)− 1 = 2g − 3 if ∂S = ∅;
−χ(S)− 2 = 2g − 4 + b if ∂S 6= ∅.

Note that if g ≥ 2 then e(S) > 0.

We will prove this result only for S = Sg and g ≥ 2. This is all we need for
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our purposes.

For the rest of the chapter assume S = Sg where g ≥ 2. The objective of this
chapter is to give a proof of the following theorem:

Theorem 4.1.1. Let g ≥ 2. Then the complex of curves C(Sg) is −χ(Sg)−1 = 2g−3
connected.

The proof presented here follows [24].

4.1.1 Reformulation of the problem

Let f : S → R be a smooth function.

Definition 4.1.2. We will say that a component of the level set f−1(a) is non-
singular if it does not contain a critical point of f .

In particular, this component must be a circle C in S.
Note that if g is close to f in the C∞-topology, then g−1(a) has a non-singular
component that is a circle in S isotopic to C.

Definition 4.1.3. We will say that f is non-degenerate if there is a level set of
f containing a non-singular component that is a non-trivial circle of S.

Definition 4.1.4. Let P be a topological space. For a family of functions {ft :
S → R}t∈P we will mean a continuous map P → C∞(S,R) sending t to ft, where
C∞(S,R) is endowed with the C∞-topology.

Note that, since S is compact, the strong and the weak C∞-topology on C∞(S;R)
coincide.

From functions to circles

To any family of non-degenerate functions {ft : S → R}t∈P it can be associated
(in a non-unique way) a certain simplicial complex CP and a simplicial map CP →
C(S) as now we explain.
For each t ∈ P choose at ∈ R such that f−1

t (at) contains a non-singular component
that is a non-trivial circle Ct of S. For each t ∈ P , there exists an open neighborhood
Ut of t in P such that for all u ∈ Ut the level set f−1

u (at) has a non-singular component
that is a non-trivial circle Ct,u of S isotopic to Ct. Let {Ut}t∈V be any subcover of
{Ut}t∈P and consider the nerve CP of this subcover and

V → C(S)

t 7→ Ct

51



We claim that this map induces a simplicial map CP → C(S), i.e. if t0, ..., tk ∈ V
are such that Ut0 ∩ ... ∩ Utk 6= ∅, then {Ct0 , ..., Ctk} is a simplex of C(S). Indeed, if
u ∈ Ut0 ∩ ... ∩ Utk we have that Cti,u = Cti in C(S) for each i = 0, ..., k and, since
Ct0,u, ..., Ctk,u are components of some level set of a unique function, fu, any two of
them either do not intersect at all or coincide. This proves our claim.

Definition 4.1.5. We will call a simplicial map constructed in this way a realiza-
tion of the family {ft}t∈P .

This construction has the following extension property: suppose we have been
given a realization CQ → C(S) of the family {ft}t∈Q where Q ⊆ P is a subspace;
then, there exists a realization CP → C(S) of {ft}t∈P such that CQ is a subcomplex
of CP and CP → C(S) extends CQ → C(S).
Indeed, CQ is the nerve of some covering {Ut}t∈V (V ⊆ Q) of Q and CQ → C(S)
is determined by the association V 3 t 7→ Ct ∈ C(S), where Ct is a non-singular
component of some f−1

t (at) that is also a non-trivial circle of S. Now, every Ut is of
the form Ut = U ′t∩Q for some open neighborhood of t in P and U ′t can also be choosen
such that for every u ∈ U ′t the level set f−1

u (at) has a non-singular component that is
a non-trivial circle of S isotopic to Ct. By using for the construction of CP → C(S)
any covering containing {U ′t}t∈V we have done.

From circles to functions

Actually, every simplicial map C → C(S), with C a finite simplex, arises as a
realization of some family of non-degenerate functions.

To prove this, we start by recalling a very simple lemma.

Lemma 4.1.6. Let C be a simplicial complex and let v0, ..., vk be vertices of C. For
i = 0, ..., k, let St(vi) denote the closed star of vi in the first barycentric subdivision
of C. Then {v0, ..., vk} is a simplex of C if and only if St(v0) ∩ ... ∩ St(vk) 6= ∅.

Proposition 4.1.7. Let C be a finite simplicial complex. Any simplicial map C →
C(S) is a realization of some family of non-degenerate function {ft : S → R}t∈|C|.
In addition, if |C| is a smooth manifold, the family {ft}t∈|C| can be chosen such that
the evaluation map

f : |C| × S → R f(t, x) = ft(x)

is smooth.

Proof. Suppose C → C(S) sends the vertex v to the geodesic circle Cv. For each
Cv choose a closed tubular neighborhood Nv of Cv in S such that Nv ∩ Nw = ∅ if
Cv ∩ Cw = ∅. This is possible because C has a finite number of vertices. Next, for
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each Nv choose a smooth function gv : Nv → [0,∞) such that Cv = g−1
v (av) for some

regular value av ∈ (0,∞) of gv and g−1
v (0) = ∂Nv.

Consider the map

g :
⋃
v∈V

St(v)×Nv → R g(t, x) = gv(x) if (t, x) ∈ St(v)×Nv,

where V is the set of vertices of C and St(v) is, as in the previous lemma, the closed
star of v in the first barycentric subdivision of C. Extend g to a continuous map
f : |C| × S → R such that for every t ∈ |C| ft is smooth as follows. First consider
the functions

fv : St(v)× S → R fv(t, x) =

{
gv(x) if x ∈ Nv,

0 otherwise;

then extends each fv to a smooth function f̃v that is 0 out of |C| ×Nv, by means of
bump functions, and finally set f(t, x) =

∑
v:t∈St(v) f̃v(x) for (t, x) ∈ |C| × S.

What is more, {St(v)}v∈V is a covering of |C| whose nerve, by the previous lemma,
is exactly C. We can choose open neighborhoods Uv of St(v) small enough such
that the nerve of the open covering {Uv}v∈V is still C and for each u ∈ Uv the
level set f−1

u (av) contains a non-singular component that is a non-trivial circle of
S isotopic to Cv. The realization of {ft}t∈|C| associated to the cover {Uv}v∈V and
circles {Cv}v∈V solves the problem.

The strategy for the proof

Finally, we explain how the previous construction can be used to investigate the
connectivity of the complex of curves of S.

Notation 4.1.1. We will denote by C∞W and by C∞S the space of smooth maps from
two manifolds endowed with the weak and the strong C∞-topology respectively.

Notation 4.1.2. For d ≥ 0, call X(d) the subset of C∞(Rd × S,R) consisting of
those functions f such that for all t ∈ Rd ft is non-degenerate.
We introduce, for ε > 0, a particular open neighborhood N (f, ε) of a function f in
C∞S (Rd × S,R) defined as follows. Let {(U1, ϕ1), ..., (Uk, ϕk)} be an adequate atlas
on S. This means that it is an atlas of S with ϕi(Ui) = R2 for every i = 1, ..., k and
{ϕ−1

i (D2)}ki=1 is a cover of S. Then N (f, ε) consists of those functions g such that

|f ◦ (1Rd × ϕ−1
i )(t, x)− g ◦ (1Rd × ϕ−1

i )(t, x)| < ε

and
|D(f ◦ (1Rd × ϕ−1

i ))(t, x)−D(g ◦ (1Rd × ϕ−1
i ))(t, x)| < ε

for all (t, x) ∈ Rd ×D2 and i = 1, ..., k.
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To see that N (f, ε) is an open set, consider the atlas Φ of Rd × S given by the
charts (Rd × Ui, 1R × ϕi) for i = 1, ..., k and the compact subsets Kn,i = Dd(n) ×
ϕ−1
i (D2) ⊆ Rd×Ui where n ∈ N0 and Dd(n) is the closed disk of radius n and center

0 in Rd. Then N (f, ε) is exactly N 1(f,Φ, ,Ψ, K, ε) as defined in [23], where Ψ is
the trivial atlas on R and K = {Ki,n}.

Theorem 4.1.8. Suppose that for d = 0, ...,m the space X(d) is dense in C∞S (Rd×
S,R), then C(S) is (m− 1)-connected.

Proof. Let n ≤ m − 1 and g : Sn → |C(S)| be a continuous map. Consider a
triangulation of Sn ∼= |C|, where C is a finite simplicial complex. If the triangulation
is fine enough, then g is homotopic to the geometric realization of some simplicial
map h : C → C(S). Moreover, h is a realization of some family of non-degenerate
functions {ft}t∈|C|=Sn such that the evaluation map f : |C| × S → R defined by
f(t, x) = ft(x) is smooth. Note that, since R is convex, f con be extended to a
smooth function f̃ : Rd × S → R. For example, if ρ : [0,∞) → [0, 1] is a smooth
function that is equal to 0 in a neighborhood of 0 and equal to 1 in 1, we can take
f̃(t, x) = ρ(t)f(t/|t|, x) (well defined also for t = 0 being ρ(0) = 0). Now, f̃ need
not to be a family of non-degenerate functions. But, by hypothesis, there exists
an arbitrary close approximation f ′ of f̃ , with f ′t non-degenerate functions for all
t ∈ Rd. If ε > 0 is sufficiently small and f ′ ∈ N (f, ε), then h is also a realization of
{f ′t}t∈Sn . Indeed, with the notations of the previous proposition, it is clear that, for
small ε, for every vertex v of C and for all t ∈ St(v) the level set f ′−1

t (av) contains a
non-singular component that is a non-trivial circle of S isotopic to Cv. Now, maybe
replacing the Uv with smaller open neighborhoods of St(v), repeat the argument of
the proposition to conclude.
By applying the extension property with Q = Sn ⊆ P = Dn+1 we obtain an
extension of h, h̄ : CP → C(S). This can be done in such a way that |CP | = Dn+1.
For example, we can use as cover of Dn+1 one containing for each vertex v of C a
convex open set U ′v as in the definition of CP and take all the other open sets to
be finitely many open balls of Dn+1 r ∂Dn+1. This would be a finite good cover of
Dn+1 and thus the geometric realization of its nerve is Dn+1. Finally, |h̄| extends
|h| to Dn+1 and the proof is complete.

4.1.2 Proof of the connectivity of C(S)

First of all, we recall a result from Differential Topology. See Appendix A for
the details.

In this subsection will make use of the notion of maps of finite type (see Defini-
tion A.2.16). The properties of maps of finite type we will use are:
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1. Let M be a smooth manifold and let f : M → R be a smooth map of finite
type. Then, the singular points of f are isolated and, around each singular
point, there is a chart of M with respect to which it is representated by a
polynomial. See Definition A.2.4 and Corollary A.2.5. Note also that, by the
Implicit Function Theorem, around a non-singular point f is represented, in
some chart, by a polynomial of degree 1.

2. Let M be a smooth manifold. Every smooth map Rd × M → R can be
approximated arbitrarily well (in C∞S (Rd × M,R)) by another smooth map
f : Rd ×M → R such that for every t ∈ Rd the map ft is of finite type. See
Theorem A.2.17.

Branch numbers

Suppose we have been given a map of finite type f : S → R. Then, around each
singular point, in some coordinates, it is a polynomial in two variables.

Lemma 4.1.9. Let (0, 0) be a point of a real 1-dimesional (with respect to the Zariski
topology) irreducible algebraic variety V ⊆ R2. Then, in a suitable neighborhood
of (0, 0), V is the union of finitely many topological subspaces B1, ..., Bn, called
branches of V at (0, 0), with the following properties:

1. for i 6= j, we have Bi ∩Bj = {(0, 0)};

2. each branch is homeomorphic to an open interval of R under a homeomorphism
that, unless V ⊆ {x1 = 0}, can be chosen of the form

r(t) = (x(t), y(t)) = ±(tµ, a1t+ a2t
2 + ....) |t| < ε

where ai ∈ R and µ ∈ N+.

This lemma is Lemma 3.3 on page 27 of [31]. We copy here the proof for com-
pleteness.

Proof. We assume V 6⊆ {x1 = 0} and we prove the existence of such a parametriza-
tion. We will use the fact that the lemma holds in the complex case. Precisely,
a complex irreducible curve VC in C2 with 0 ∈ V a non-isolated point is, around
0, union of finitely many topological subspaces B1, ..., Bn, called branches of VC at
(0, 0), with the following properties:

1. for i 6= j, we have Bi ∩Bj = {(0, 0)};
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2. each branch is homeomorphic to an open disk of C under a homeomorphism
that, unless V ⊆ {z1 = 0}, can be chosen of the form

r(t) = (x(t), y(t)) = ±(tµ, a1t+ a2t
2 + ....) |t| < ε

where ai ∈ C and µ ∈ N+.

Call VC the closure of V in C2 (with respect to the Zariski topology of C2). Then
VC is irreducible, for if VC = V1 ∪ V2 is union of two closed sets of C2, then V =
(V1 ∩ R2) ∪ (V2 ∩ R2) and each Vi ∩ R2 i = 1, 2 is closed in the Zariski topology of
R2. Thus V = Vi ∩ R2 for some i and it must be VC = Vi.
Since VC 6⊆ {z1 = 0}, we can parametrize its branches as above stated. Moreover, if
(tµ, a1t+a2t

2 + ....) ∈ R2 then t = ξs where ξµ = ±1 and s ∈ R. Substituting t = ξs
in a1t+ a2t

2 + .... we obtain a new power serie (a1ξ)s+ (a2ξ
2)s2 + ... that is real for

all small s if all aiξi are real and otherwise is not real for all small s 6= 0. Indeed,
suppose there is a sequence {sn} ⊆ R r {0} convergent to 0 on which this power
serie takes real values. Then we can use this sequence to compute the derivatives of
our power serie at 0 obtaining that they all are real and thus that all the aiξi are
real, too.
In conclusion the real case has been reduced to the complex one and the lemma
follows.

Definition 4.1.10. Let V be a 1-dimensional algebraic variety in R2 and (x1, x2) ∈
V a non-isolated point of V . Note that V is finite union of 1-dimensional irreducible
algebraic varieties. Let B1, ..., Bn be the branches of V at (x1, x2) and for i =
1, ..., n let ri : (−ε, ε) → R2 be parametrizations of B1, ..., Bn respectively as above
explained. We will call the images of the half-intervals [0, ε) and (−ε, 0] under ri an
half-branch.

Remark 4.1.11. Note that if V = V1 ∪ ... ∪ Vk is the decomposition of V in
irreducible components and for i = 1, ..., k the sets Bi

1, ..., B
i
ji

are the branches of
Vi in (x1, x2) ∈ V , then for all 1 ≤ s, t ≤ k and 1 ≤ h ≤ js, 1 ≤ i ≤ jt such that
s 6= t or s = t but h 6= i we have |Bs

h ∩ Bt
i | < ∞. Thus we can actually assume

Bs
h ∩ Bt

i = {(x1, x2)}. This is beacause if s 6= t then |Vs ∩ Vt| <∞ and if s = t but
h 6= i from Lemma 4.1.9 we have Bs

h ∩Bt
i = {(x1, x2)}.

Definition 4.1.12. For each critical point x of a finite type map f , we define the
branch number of f in x to be bf (x) =number of branches at x of the level set
f−1(f(x)) (this number is 0 if x is an isolated point of V = f−1(f(x))).

Lemma 4.1.13. Suppose bf (x) ≥ n ≥ 1. Then there exist coordinates u1 and u2

around x such that for all 0 < i + j < n we have ∂i+jf

∂ui1∂u
j
2

(x) = 0. Consequently, this
equality holds for all coordinates around x.
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Proof. Let u1 and u2 be coordinates around x with respect to which f is a poly-
nomial and f(0) = 0. According to the previous lemma, every branch of f−1(0) is
parametrized by a(j)

k(j)t
k(j) + a

(j)
k(j)+1t

k(j)+1 + ... with a(j)
i ∈ R2 and a(j)

k(j) 6= 0, thus, up
to a further linear change of coordinates that brings all the a(j)

k(j) in the right half
plane, we may assume that each a

(j)
k(j) actually belongs to the right half plane. In

particular, the open right half plane contains at least half of the half branches of
f−1(0).
Call m = deg(f) the degree of f and write f =

∑
1≤i+j≤m aiju

i
1u

j
2. Using the

substitution (u1, u2) 7→ (u1 + γu2, u2) where γ ∈ R, the coefficient of um2 becomes∑m
j=1 am−j,jγ

m−j where am−j,j 6= 0 for some j, being deg(f) = m. Thus we may
assume that the coefficient a0m of um2 is different from 0 and, if γ is small enough,
the open right half plane still contains each of the a(j)

k(j) for j = 1, ..., n and thus at
least half of the half branches of f−1(0).
Now write f = pm(u1)um2 +pm−1(u1)um−1

2 + ...+p0(u1) where pj(u1) =
∑

i≤m−j aiju
i
1

and in particular pm(u1) = a0m 6= 0. Thus, fixed u1, the polynomial f = f(u1, u2)
has exactly m complex roots (up to multiplicity) and we can find ε > 0 and
continuous functions rj : [0, ε) → C j = 1, ...,m such that, for all t ∈ [0, ε),
the {rj(t)}j=1,...,m are exactly the roots of f(t, u2). To see this consider the set
V = {(u1, z2) ∈ [0,∞) × C : f(u1, z2) = 0}. From the proof of the previous lemma
V ∩[0, ε)×C is equal to the unionm sets of the form B = {±(tµ, a0 +a1t+a2t

2 +...) :
t ∈ C, |t| < ε, tµ ∈ [0,∞)} for some a0, a1, a2, ... ∈ C and µ ∈ N+. Since
tµ ∈ [0,∞), it must be t = ξs where ξµ = 1 and s ∈ [0,∞). Thus, up to ex-
changing each ai with aiξi for all i, we can assume t = s ∈ [0, ε). Equivalently we
have B = {(u1, a0 + a1u

1/µ
1 + ....) : u1 ∈ [0, ε1/µ)}. So the rj can be chosen of the

form r(t) = a0 + a1t
1/µ + a2t

2/µ + .... Note that the rj are smooth in (0, ε). Between
the rj there are at least n corresponding to half branches of f−1(0) in the open right
half plane. Suppose that such rj are the first n. For them we have that a(j)

k(j) belongs
to the right half plane, thus µ ≤ k(j) and rj(u1) = O(u1) for u1 → 0.
Therefore, in the strip [0, ε)×R, we can write f = a0,m(u2−r1(u1))·...·(u2−rm(u1)).
We claim that from this it follows that ∂i+j

∂ui1∂u
j
2

f(0, 0) = 0 for all 0 ≤ i + j ≤ n − 1.
Indeed, for all 0 ≤ j ≤ n− 1 we have

∂jf

∂uj2
(u1, u2) =

∑
0≤i1<...<ij≤m

f(u1, u2)∏
t∈{i1,...,ij}(u2 − rt(u1))

and thus

∂jf

∂uj2
(u1, 0) = (−1)j

∑
0≤i1<...<ij≤m

f(u1, 0)∏
t∈{i1,...,ij} rt(u1)

= (−1)m−ja0,m

∑
0≤i1<...<ij≤m

∏
t/∈{i1,...,ij}

rt(u1)
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Note that this equality holds also for j = 0. Since j < n, each product
∏

t/∈{i1,...,ij} rt(u1)

contains at least one rj(u1) with j ≤ n, and, since rj(0) = 0 for j ≤ n, we have
∂jf

∂uj2
(0, 0) = 0 for all 0 ≤ j < n. Now let i + j ≤ n − 1. We will prove by induction

on i (while j remains fixed) that ∂i+j

∂ui1∂u
j
2

f(0, 0) = 0. If i = 0 we have already proved
the result. Let i > 0. Then

∂i

∂ui1
(
∂j

∂uj2
f(u1, 0)) = lim

u1→0

∂i−1

∂ui−1
1

( ∂j

∂uj2
f(u1, 0))

u1

=

= i! lim
u1→0

∂j

∂uj2
f(u1, 0)

ui1
=

= i!(−1)m−ja0,m lim
u1→0

∑
0≤i1<...<ij≤m

∏
t/∈{i1,...,ij} rt(u1)

ui1
= 0

where in the first equality we have used the inductive hypothesis and the definition
of derivative, in the second equality we have used L’Hopital’s rule and in the last
inequality the fact that, since j ≤ n−1−i, in each product

∏
t/∈{i1,...,ij} rt(u1) appear

at least i + 1 terms equal to rj(u1) with j ≤ n and, if j ≤ n, rj(u1) = O(u1) for
u1 → 0. This completes the proof.

Let k be a positive intenger and n = (n1, ..., nk) ∈ Nk
+.

Notation 4.1.3. For h ≥ 1 set Ch =
(
h+1

2

)
−3. We will denote by X(d, n) the subset

of C∞(Rd×S,R) of those functions f such that ft is of finite type for all t ∈ Rd and
satisfying the following property : if ft has a level set f−1

t (a) containing k distinct
critical points with bf (xi) ≥ ni for all i = 1, ..., k, then

∑k
i=1(Cni + 1) ≤ d + 1.

Finally define X ′(d) =
⋂
k∈N+,n∈Nk+

X(d, n).

Proposition 4.1.14. For every d ∈ N and n ∈ Nk
+ the set X(d, n) is residual in

C∞S (Rd × S,R).

Before proceeding with the proof of the proposition the reader should read the
notational remark A.1.1 in the appendix A in which we give the definition of the
spaces S(k) and J(S,R)(k) and of the map Ψf for f a smooth map S → R.

Before starting the proof of the proposition we also point out a very simple ob-
servation from Linear Algebra.

Lemma 4.1.15. Let V and W be vector spaces and let U ⊆ V ⊕ W be a vector
subspace. Call π : V ⊕W → V the projection. Then

codim(π(U), V ) ≥ codim(U, V ⊕W )− dimW.

58



Proof. Let z1, ..., zj be a basis of π(U) ⊆ V and z1, ..., zj, v1, ..., vm a basis of V (thus
m = codim(π(U), V )). Let w1, ..., wk be a basis ofW . Thus z1, ..., zj, v1, ..., vm, w1, ...,
wk is a basis of V ⊕W . Finally let u1, ..., uj ∈ U be such that π(ui) = zi for all
i = 1, ..., j. In particular u1, ..., uj are linearly independent and j ≤ dimU . Then
u1, ..., uj, v1, ..., vm, w1, ..., wk is still a basis of V ⊕W and thus

codim(π(U), V ) + dimW = m+ k = dimV + dimW − j ≥
≥ dimV + dimW − dimU = codim(U, V ⊕W ).

Proof of Proposition 4.1.14. This is an application of Theorem A.1.1. Consider the
map τ : Jn(S,R)(k) → Rk defined by τ(Jn1−1

x1
f1, ..., J

nk−1
xk

fk) = (f1(x1), ..., fk(xk))
and let ∆ = τ−1(∆Rk). Here ∆Rk = {(y1, ..., yk) ∈ Rk : y1 = ... = yk}. Then ∆ is
a closed submanifold of codimension k − 1. Put Z ⊆ Jn(S,R)(k) the submanifold
consisting of those points (Jn1−1

x1
f1, ..., J

nk−1
xk

fk) where each Jni−1
xi

fi is the class of a
constant function. Then Z is a closed submanifold of codimension

(
n1+1

2

)
− 1 + ...+(

nk+1
2

)
− 1 =

∑k
i=1Cni + 2k. What is more, Z t ∆, thus Y = Z ∩ ∆ is a closed

submanifold of Jn(S,R)(k) of codimension
∑k

i=1Cni + 3k − 1.
Now observe that if f ∈ C∞(Rd × S,R) is such that ft is of finite type for all
t ∈ Rd and Ψf t Y , then, if non-empty, Ψ−1

f (Y ) is a submanifold of Rd × S(k) of
codimension

∑k
i=1Cni + 3k − 1. Note that if Ψ−1

f (Y ) = ∅ then, by Lemma 4.1.13,
f ∈ X(d, n). Suppose Ψ−1

f (Y ) 6= ∅ and let (t, x) ∈ Ψ−1
f (Y ). Call π : Ψ−1

f (Y ) → Rd

the projection map. Then d ≥ codim(Im(d(t,x)π),Rd) ≥
∑k

i=1Cni + 3k − 1 − 2k,
where in the second inequality we applied the previous lemma with d(t,x)π in place
of π, and thus f ∈ X(d, n). Hence the proposition follows from Theorem A.1.1 and
Theorem A.2.17.

Corollary 4.1.16. For every d ∈ N the set X ′(d) is residual in C∞S (Rd × S,R).

Note that, since C∞S (Rd × S,R) is a Baire space, residual ⇒ dense in this case.

Proof of the density of X(d)

Lemma 4.1.17. Let h : S → R be a Morse function with critical points having all
different image under h. Then h is non-degenerate.

Proof. Since S = Sg with g ≥ 2, we have
∑

(−1)indx(h) = χ(Sg) < 0 (here indx(h) is
the Morse index of h at x) and thus h has a critical point x of index indx(h) = 1. Set
a = h(x) and let ε > 0 be such that a is the only critical value of h in [a− ε, a+ ε].
Call N the component of h−1([a− ε, a+ ε]) containing x and A0 the component of
h−1(a) containing x and A± = h−1(a± ε) ∩N . By hypothesis, x is the only critical
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point of h in N ; in particular, A0 is connected with one only singular point at x
which is a saddle for h. It follows that A0 is a figure 8.

x

III

III IV

A+

A+

A−A−

Figure 4.1: Levels and gradients at x.

One should ask how the four half-branches I, II, III and IV of A0 are connected.
We will do the case in which I connects to IV and II to III, the other cases are
similar. Notice that A+ is connected, for otherwise we could follow the top part of A+

around A0 and some gradient line would intersect twice A+, but this is impossible.

x

I

II

III IV

A+

A+

gradient line

A−

Figure 4.2: Impossible situation.
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The same argument gives that both the right and the left branches of A− must
each close up. This describes how all the level sets around a critical point of odd
index of h look like.
Now consider, in our case, a component of A−. If it bounds a disk in S, then h has
an extreme point in such a disk, in particular the index of h at this point is even.
Since χ(S) < 0 there must be a critical point x of odd index for h such that one
component of A− or A+ does not bound a disk of S. In particular this component
is a non-trivial circle of S.

Theorem 4.1.18. For d ≤ e(S)+1 = −χ(S), we have X ′(d) ⊆ X(d). In particular,
X(d) is dense in C∞S (Rd × S,R).

Proof. Let f ∈ X ′(d). This means that for every t ∈ Rd, the map ft is of finite type
and if f−1

t (a) contains k distinct critical points x1, ..., xk such that for all i = 1, ..., k
bft(xi) ≥ ni ≥ 1, then

∑k
i=1(Cni + 1) ≤ d+ 1. We will call this property (P ).

Fix t and call g = ft. We will prove that g is non-degenerate. Suppose g−1(a) con-
tains exactly k critical points x1, ..., xk with bg(xi) = ni ≥ 0 for i = 1, ..., k. Then it
is the disjoint union of a graph L with k vertices and (2n1 +...+2nk)/2 = n1 +...+nk
edges and some circles, in particular χ(g−1(a)) = χ(L) = k−n1− ...−nk. Let ε > 0
be such that a is the unique critical value of g in [a− ε, a + ε]. Since g is a proper
map and the critical points of g are isolated, the critical value of g are also isolated
and thus such an ε exists.
Let Lε ⊆ g−1([a− ε, a+ ε]) be the union of those components of g−1([a− ε, a+ ε])
containing a component of L. For small ε, the space Lε is a manifold with boundary
that retracts by deformation onto L, in particular χ(Lε) = k−n1− ...−nk. If some
component of ∂Lε ⊆ g−1(a− ε) ∪ g−1(a+ ε) is a non-trivial circle of S then we are
done. Suppose that every component of ∂Lε is a trivial circle of S, equivalently that
every component of ∂Lε bounds a disk of S. We distinguish two cases.
Case 1: Suppose there is not a component of ∂Lε that bounds a disk containing a
component L. Then we can write S = Lε∪

⋃m
j=1D

2 where D2 are disks of S bounded
by the boundary components of Lε. Moreover, χ(S) = χ(Lε) +

∑m
j=1 χ(D2) =

χ(Lε) + m. Observe that it must be m ≥ 2, otherwise ∂Lε is diffeomorphic to S1

and thus χ(S) = −1 while χ(S) < −1. Therefore −χ(S) = n1 + ...+ nk − k −m ≤
n1 + ... + nk − k − 2 and this inequality continue to hold if we discard those ni
equal to 0 or 1 and reduce k accordingly. We will assume ni ≥ 2 for all i ≤ k′.
Then Cni − ni + 2 ≥ 0 for all i ≤ k′ and thus 0 ≤

∑k′

i=1(Cni − ni + 2) or equiv-
alently n1 + ... + nk′ − k′ − 2 ≤

∑k′

i=1 Cni + k′ − 2. We have finally obtained
d ≤ −χ(S) ≤ n1 + ... + nk′ − k′ − 2 ≤

∑k′

i=1 Cni + k′ − 2, but this contradicts the
properties of g.
Case 2: Suppose there is a component of ∂Lε bounding a disk containing a compo-
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nent L. In this case, consider a function that is equal to g outside this disk and has
only one Morse critical point in the disk with image under h that is not a critical
value of g. Note that in particular the branch number of h at this point is 0 and
that h satisfy the property (P ). Moreover, g has a level set with a non-singular
component that is a non-trivial circle of S if and only if h has. This is because every
non-singular component of any level set of h or g contained in the disk is trivial.
Repeating the argument with h instead of g we see that every component of L is
contained in a disk bounded by some component of ∂Lε. Make a similar substitution
for each of such disk. Finally repeat the argument for the other critical values of g
obtaining a Morse function on S with critical point having all different image. From
the previous lemma, this function is non-degenerate and thus g was non-degenerate,
too.

4.2 A remark on the action of Mod(Sg)[m] on C(Sg)

This last section is dedicated to prove a property of the action of Mod(Sg)[m]
on C(Sg).

Let m ≥ 3 and g ≥ 2. We want to prove that if f ∈ Mod(Sg)[m] fixes a sim-
plex of C(Sg) then it fixes all the vertices of the simplex.

First a general result about graphs and automorphisms of graphs. For us, a graph
can have loops, but multiple edges between two vertices are not allowed.

Lemma 4.2.1. Let f be an automorphism of a finite connected graph X. If f fixes
all the end vertices of X (that is edges from which only one edge emanates) and
induces the identity on H1(|X|,Z/mZ) then either f is the identity automorphism
of X or |X| is a circle and |f | a rotation.

Proof. First assume that X is a tree. Then each vertex of X is contained in a
geodesic of X joining two end verteces, that is a path without return between two
end vertices of X. But, if f fixes the end points of a geodesic then f fixes the entire
geodesic. It follows that f is the identity.
Consider now the general case. Let T be a maximal tree in X and call e1, ..., en the
edges of X that do not lie in T . Call gi the unique geodesic of T joining the vertices
of ei and ci the circle gi ∪ ei for i = 1, ..., n. If ei is a loop then gi = ∅. We choose
an orientation for the circles ci. Then [c1], ..., [cn] ∈ H1(|X|,Z/mZ) is a basis of
H1(|X|,Z/mZ). Indeed, if we collapse an edge of |X| with different end points we
obtain a space that is homotopically equivalent through the quotient map, to |X|, so
repeating this argument we see that the quotient map p : |X| → |X|/|T | =

∨n
i=1 |ci|

is an homotopy equivalence.
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We now claim that f(ci) = ci for all i = 1, ..., n.
Fix i. Let ei1 , ..., eik be those edges between e1, ..., en that lie in f(ci). Then
H1(|f |)([ci]) = [ci] must be linear combination with coefficients in Z/mZ of [ci1 ], ..., [cik ],
it follows that f(ci) does not contain any ej for j 6= i. Moreover, f(ci) r ei ⊆ T
cannot be a circle, thus ei ∈ f(ci) and f(ci) r ei is a geodesic of T joining the end
points of ei, by uniqueness of geodesics in a tree we obtain f(ci) = ci.
Consider now

⋃n
i=1 ci and let X1, ..., Xk be its components. Since f(ci) = ci for all

i, it must be f(Xi) = Xi for all i. Let X ′ be a new graph obtained from X by
contracting each Xi to a point. Call f ′ the map induced by f . Since each end vertex
of X ′ comes from an end vertex of X, the map f ′ fixes all the end vertices of X ′.
Now we claim that X ′ is a tree and thus, from what we have seen at the beginning
of the proof, f ′ must be the identity map.
The fact that X ′ is a tree can be seen as follows. Any circle C ′ in X ′ lifts to a circle
C in X. If ei occurs in C we can replace ei with gi and doing so for all ei we obtain
a closed curve C̃ that does not contain any ei and thus is contained in T . Note that,
orienting such curve, we obtain a non-trivial element of H1(|T |,Z/mZ). This follows
from the fact that |C̃| is sent to the circle |C ′| in |X ′| under the qoutient map. But
T is a tree and thus H1(|T |,Z/mZ) = 0. This proves that X ′ cannot contain circles
and must be a tree.
Now, since f ′ is the identity, f must fix all the edges of X not in

⋃n
i=1 ci.

Finally consider the action of f on ci. SinceH1(|f |) : H1(|ci|,Z/mZ)→ H1(|ci|,Z/mZ)
is the identity and m ≥ 3 (thus [ci] 6= −[ci])), f must be a rotation of ci. If some
edge not in

⋃n
i=1 ci emanates from ci then f must be the identity on ci. If not, then,

since X is connected, either X = ci or ci intersect some cj for j 6= i. If X = ci, the
lemma holds. Suppose that there exists j 6= i such that gi ∩ gj = ci ∩ cj 6= ∅. Now
gi ∩ gj is a geodesic of X preserved by f because f(ci ∩ cj) = f(ci)∩ f(cj) = ci ∩ cj,
thus f is the identity on gi ∩ gj and thus f is the identity on ci and on cj.
The lemma follows.

Theorem 4.2.2. Let ∆ ⊆ Sg be a 1-dimensional submanifold that is the union of
finitely many non-trivial circles of Sg and let φ : Sg → Sg be a diffeomorphism of
Sg such that φ(∆) = ∆ and H1(φ) : H1(Sg,Z/mZ)→ H1(Sg,Z/mZ) is the identity.
Then φ leaves each component of ∆ invariant.

Proof. Consider the following graph X: X has one vertex for each component of S∆

and two (not necessarily distinct) verteces of X are connected by one edge iff the
corresponding components of S∆ have a boundary component that correspond to the
same circle in ∆. Observe that X is connected. Clearly, φ induces an automorphism
f of X. In addiction, there exists a continuous map p : Sg → |X| such that the
inverse image of the midpoint of each edge is the component of ∆ corresponding to
this edge, H1(p) : H1(Sg,Z/mZ) → H1(|X|,Z/mZ) is surjective and the following
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diagram

H1(Sg,Z/mZ)

H1(p)

��

H1(φ)=1// H1(Sg,Z/mZ)

H1(p)

��
H1(|X|,Z/mZ)

H1(|f |)
// H1(|X|,Z/mZ)

commutes. In particular, H1(|f |) must be the identity.
We claim that f fixes all the end vertices of X.
For, let v be an end vertex of X and call R the component of S∆ corresponding to
v. Since v is an end vertex, ∂R consist of a single component that is a non-trivial
circle of Sg. Then R is not a disk and must have genus ≥ 1. Note that the map
H1(R,Z/mZ) → H1(Sg,Z/mZ) induced by the inclusion of R in Sg is injective.
This is easily seen for R like in the picture below

R

Sg

Figure 4.3 The easy case.

and the general case follows from Lemma 2.3.36.
The map H1(φ) takes H1(R,Z/mZ) (considered as a subset of H1(Sg,Z/mZ)) to
the image of H1(φ(R),Z/mZ) ↪→ H1(Sg,Z/mZ). There are two possibilities: either
φ(R) = R (and thus f fixes v) or φ(R) 6= R. In the latter case, since φ(∂R) ⊆ ∆, it
must be φ(R)∩R ⊆ ∂R. But, then, H1(φ(R),Z/mZ) 6= H1(R,Z/mZ) as subsets of
H1(Sg) contradicting the fact that H1(φ) is the identity. This completes the proof
of our claim.
Now, applying the previous lemma, we obtain that f is the identity or X is a circle
and f is a rotation. If f is the identity we are done. Suppose, instead, that X
is a circle and f is a non-trivial rotation. In particular, the boundary of every
component of S∆ has two components each of which is a non-trivial circle of Sg.
Now we see that in this case every component R of S∆ must be an annulus, but this
would mean that Sg is a torus while by assumption g ≥ 2. In this way we will have
proved the theorem. Suppose that R is not an annulus, i.e. that has genus ≥ 1 and
thus H1(R,Z/mZ) 6= 0. Since f is a non-trivial rotation we have φ(R) 6= R, thus
φ(R) ∩R ⊆ ∂R and, as above, this contradicts the fact that H1(φ) = 1.

Finally, combining Theorem 4.2.2 and Corollary 2.3.39 we immediately obtain
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Proposition 4.2.3. Let m ≥ 3 and g ≥ 2. Let f ∈ Mod(Sg)[m] and σ be a simplex
of C(Sg). If f fixes σ, then f fixes every vertex of σ.
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Chapter 5

Teichmüller space

This chapter introduces another protagonist of our story, namely the Teichmüller
Space of a surface. It will be a smooth manifold diffeomorphic to some Euclidean
Space. In particular, we will be interested in a submanifold with corners of the
Teichmüller space obtained by discarding some pieces near infinity.

5.1 Definition of Teichmüller space

Let S = Sbg with χ(S) < 0.

Definition 5.1.1. A hyperbolic structure on S is the data of a diffeomorphism
φ : S → X where X is a surface endowed with a hyperbolic metric.

We can record such a hyperbolic structure by the pair (X,φ).

Definition 5.1.2. Two hyperbolic structures (X1, φ1) and (X2, φ2) are said homo-
topic if there is an isometry i : X1 → X2 so that i ◦φ1 and φ2 are homotopic maps.
Here homotopies are allowed to move points of the boundary of S, but must preserve
∂S setwise.

Definition 5.1.3. The Teichmüller space of S is

TS = {hyperbolic structures on S}/homotopy

Equivalently, if HypMet(S) is the set of all hyperbolic metrics on S, we have a right
action of Diff0(S) on HypMet(S) given by the pullback and

TS = HypMet(S)/Diff0(S).

The equivalence of the two definitions follows from the results of chapter 2.
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5.2 Fenchel-Nielsen coordinates

We will now introduce on TS, where S = Sbg, a structure of smooth manifold
with respect to which it will be diffeomorphic to R6g−6+3b.

Length functions on S

Call S the set of all homotopy classes of non-trivial circles of S and let X ∈ TS.

Definition 5.2.1. The length function of X is the function

lX : S → R+

defined as as follows. Let C be a representative of an homotopy class and h a
hyperbolic metric that is a representative of the equivalence class X . Set

lX ([C]) = length of the unique geodesic circle (with respect to h) of S in the

isotopy class of C

Note that this definition does not depend on the choice of the representatives.

5.2.1 Definition of the Fenchel-Nielsen coordinates

Fix once and for all a pants decomposition ∆ = {C1, ..., C3g−3+b} of S. We will
associate to ∆ a bijection

Ψ = Ψ(∆) : R3g−3+2b
+ × R3g−3+b → TS.

in such a way that, for each two pants decomposition ∆1 and ∆2, the composition

Ψ(∆1)−1 ◦Ψ(∆2)

is a smooth map and thus we will have provided TS with a smooth structure.

Actually, we will not prove that this is an atlas for TS, but we will just define
the functions Ψ.

Hexagons and pair of pants

Definition 5.2.2. By a marked hexagon (or a marked pentagon) we will mean a
hexagon (or a pentagon) with one vertex distinguished.
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Let H denote the set of all equivalence classes of marked right-angled geodesic
hexagons inH2, where two marked hexagons are equivalent if there exists an orientation-
preserving isometry of H2 taking one hexagon to the other and the marked point of
the first to the marked point of the second.

Lemma 5.2.3. The map W : H → R3
+ defined by taking the lengths of every other

side of a hexagon, starting at the marked point and traveling counterclockwise, is a
bijection.

Before starting the proof of the lemma, it is better to make some general remarks.

Remark 5.2.4. It is a stardand fact from hyperbolic geometry that for two dis-
joint geodesic lines in H2 with four distinct endpoints in ∂H2 passes a unique
third geodesic line that is perpendicular to both. A possible proof is the fol-
lowing. Using the half-plane model of H2, we may assume that one of the two
geodesic line is G1 = {(x1, x2) ∈ H2 : x1 = 0} and the other, G2, is a semicir-
cle that can be parametrized by γ(t) = (x0 + R cos(t), sin(t)) for t ∈ (0, π), where
0 < R < |x0|. The generic geodesic line perpendicular to G1 can be parametrized
by α(t) = (r cos(t), r sin(t)) for t ∈ (0, π). Imposing that this curve meets perpen-
dicularly G2 we obtain a unique solution for r > 0.

Remark 5.2.5. Let H and H ′ be two marked geodesic right-angled hexagons in H2

with sides (enumerated starting from the distinguished point and traveling coun-
terclockwise) a1, b1, a2, b2, a3, b3 and a′1, b

′
1, a
′
2, b
′
2, a
′
3, b
′
3 respectively. Suppose that

l(a1) = l(a′1), l(b1) = l(b′1) and l(a2) = l(a′2), then H and H ′ define the same class in
H. This follows from the Remark 5.2.4 and the fact that the orientation-preserving
isometries of H2 act transitively on the unit tangent bundle UT (H2).
A similar conclusion holds for marked geodesic right-angles pentagons in H2. If two
marked geodesic right-angled pentagons H and H ′ in H2 have sides (enumerated
starting from the distinguished point and traveling counterclockwise) a1, b1, a2, b2, a3

and a′1, b
′
1, a
′
2, b
′
2, a
′
3 respectively and l(a1) = l(a′1), l(b1) = l(b′1), then there is an

orientation-preserving isometry of H2 taking H to H ′ and making the marked points
to correspond.

Proof of Lemma 5.2.3. We first prove that W is surjective. Let (l1, l2, l3) ∈ R3
+, we

want to construct a right-angled geodesic hexagon H in H2 such that the lengths of
three pairwise non-consecutive sides of H are l1, l2 and l3. We start by defining two
functions f, g : (0,∞) → (0,∞) that will be useful in the proof. Let l > 0 and fix
three geodesics G,G′ and G′′ in H2 as shown in the figure below.

68



0•

H2

G

G′

G′′ x0

•

x(l)
•

l f(l)

Figure 5.1: Definition of f .

Here we are using the Poincaré disk model of H2. The geodesics G,G′ and G′′
are pairwise orthogonal and the distance between G′′∩G′ and G′∩G is l. The point
x(l) is the point of G closest to x0 and lying on the right side of x0 in G such that the
geodesic line perpendicular to G at x(l) does not intersect the geodesic G′′. Finally,
f(l) = dH2(x0, x(l)). Note that f(l) does not depends on the choice of x0 ∈ G. This
is because for all x ∈ G there is an isometry of H2 preserving G and its orientation,
and sending x0 to x. The function g is defined in the same manner as f , but now
g(l) = dH2(x0, y(l)), where the point y(l) is the point of G closest to x0 and lying on
the left side of x0 in G such that the geodesic line perpendicular to G at y(l) does
not intersect the geodesic G′′. Now for all λ ≥ 0 we make the construction shown
below

H2

G

G′

G′′ x0

•

x(l)
•

y0•y(l)
•

l3 f(l3)
λ
g(l1)

l1
µ

Figure 5.2: Construction of a right-angles hexagon H such that W (H) = (l1, l2, l3).

Here all the angles are right angles and the geodesic line in which lies the arc
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of length µ is the unique geodesic line in H2 perpendicular to both the other two
geodesic lines of H2 that pass through the vertices of the arc of length µ. The
function µ : [0,∞) → [0,∞) is a continuous function in λ with µ(0) = 0 and
µ(∞) = ∞. Thus there exists λ ∈ [0,∞) such that µ(λ) = l2. In this way, we
have constructed a right-angles hexagon in H2 with marked point y0 and such that
W (H) = (l1, l2, l3).
Next we prove injectivity. Consider two marked geodesic right-angled hexagons H
and H ′ in H2. Let a1, b1, a2, b2, a3, b3 and a′1, b′1, a′2, b′2, a′3, b′3 be the sides (enumerated
starting from the distinguished point and traveling counterclockwise) of H and H ′
respectively. Suppose that l(ai) = l(a′i) for all i = 1, 2, 3 and, by absurd, that
H and H ′ do not define the same class in H. Then, by Remark 5.2.5, it must
be l(b1) 6= l(b1). Suppose l(b′1) > l(b1). Consider the unique geodesic line L in H
perpendicular to both the side b1 and a3. This line divides a3 into two arcs of lengths
γ and δ and b1 into two arcs of lenghts α and β. Say dH2(L ∩ a3, b3 ∩ a3) = γ and
dH2(L∩ a3, b2∩ a3) = δ, dH2(L∩ b1, a1∩ b1) = α and dH2(L∩ b1, b1∩ a2) = β. Clearly
l(a3) = γ + δ and l(b1) = α+ β. Now erect the geodesic line L1 perpendicular to b′1
at distance α from a′1 ∩ b′1 and the geodesic line L2 perpendicular to b′1 at distance
β from b′1 ∩ a′2. See the picture below.

H ′

b′1

a′2

b′2a′3b′3

a′1

L1

L2

δ

γ

α β

Figure 5.3: Proof of injectivity of W .

In this picture all the angles are right angles except for that formed by L1 and
a′3 and that formed by L2 and a′3.
Note that the geodesic lines L1 and L2 intersect ∂H ′ in a point of a′3, other than
in the point of b′1 from which they start out. To see that L2 ∩ a′2 = ∅ we can use
the Gauss Bonnet Theorem (see Theorem 1.4.2 in chapter 1 of [27]), after that we
know that there exist a (unique) right-angled pentagon with two consecutive edges
of lengths β and l(a′2), thus we can construct such a pentagon as shown in the figure
inside H ′, in particular L2 can intersect b′2 only above such a pentagon, but this
is forbidden by the Gauss-Bonnet Theorem. This also proves that the lengths of
certain edges in the picture are γ or δ. Note that, by the first variational formula
(see Theorem 1.5 in chapter 1 of [8]), the distance in H2 between L1 and b′3 is γ and
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between L2 and b′2 is δ.
From this, we obtain that l(a′3) > γ + δ = l(a3) and this is a contradiction.

Lemma 5.2.6. Let P be a pair of pants endowed with a hyperbolic metric. For
i = 1, 2, 3, call ∂i its boundary components. For all 1 ≤ i 6= j ≤ 3 there exists a
unique geodesic δi,j joining ∂i and ∂j and meeting them perpendicularly. Moreover,
the δi,j are pairwise disjoint proper arcs of P .

Proof. Consider the double P̄ of P . Then P̄ is a closed surface of genus g = 2 and,
since P has geodesic boundary it can be endowed with a hyperbolic metric that
restricted to P ⊆ P̄ is exactly the metric of P . for i = 1, 2 let the Ci be the circle of
P̄ that goes around the i-th hole of P̄ . Note that they can be chosen to be disjoint.
For each i replace Ci with the unique geodesic circle of P̄ in its isotopy class. By
symmetry each Ci must intersect the boundary of P perpendicularly. Take as δij the
pieces of the Ci that lie in P . This proves the existence of the δij. Moreover, the Ci
are disjoint by Corollary 2.3.23, thus the δij are disjoint, too. Finally we prove the
uniqueness. Any geodesic δij joining ∂i and ∂j and meeting them perpendicularly
is contained in a unique geodesic circle of P̄ that goes around a hole of P̄ . Thus
the uniqueness of the δij follows from the uniqueness of the geodesic circle in any
isotopic class of circles.

Proposition 5.2.7. Let P be a pair of pants with boundary components ∂1, ∂2, ∂3.
Then, the map

TP → R3
+ X 7→ (lX (∂1), lX (∂2), lX (∂3))

is a bijection.

Proof. First we prove it is surjective. Let (l1, l2, l3) ∈ R3
+. Consider H ∈ W−1(l1/2,

l2/2, l3/2) a marked hexagon in H2. The map W here is the map of the previous
proposition. Create a second hexagon H ′ be reflecting H over the edge lying first
in the clockwise direction from the marked point. Enumerate the edges of H from
1 to 6 starting from the marked point and traveling counterclockwise. Similarly,
enumerate the edges of H ′ from 1 to 6 starting from the marked point and traveling
clockwise. Finally identify the edge number i of H with the edge number i of H ′
for i = 2, 4, 6 in such a way to obtain a pair of pants endowed with a hyperbolic
structure with respect to which the boundaries have lengths l1, l2 and l3. Vice versa,
let (X1, φ1) and (X2, φ2) be two hyperbolic surfaces diffeomorphic to S via the φk and
such that the lengths of φk(∂1), φk(∂2) and φk(∂3) are respectively l1, l2 and l3. For
each k = 1, 2 let δ(k)

i,j be as in the previous lemma for Xk. Cut Xk along all the δ(k)
i,j ,

obtaining two hyperbolic hexagons Hk and H ′k. Choose in each of them the point in
δ

(k)
13 ∩ φk(∂1) as distinguished point. Then, Lemma 5.2.3 gives that Hk and H ′k are
isometric by an orientation-preserving isometry taking the distinguished point of the
first to the distinguished point of the second and making the δ(k)

i,j correspond (note
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that any right-angled hyperbolic hexagon is isometric to a right-angles hexagon in
H2 because it can first be isometrically embedded into a pair of pants as done above
and then, being simply connected, lifted to the universal covering). In particular,
this means that the δ(k)

i,j cut each φk(∂i) in two pieces of equal length li/2. Again,
Lemma 5.2.3 gives that H1 and H2 are isometric through an orientation-preserving
isometry and the same is true for H ′1 and H ′2. Moreover, such isometries make to
correspond the distinguished points and the boundary arcs associated to the ∂i. It
follows that (X1, φ1) and (X2, φ2) are isometric through an orientation-preserving
isometry i such that φ−1

2 ◦ i ◦ φ1 fixes setwise the components of ∂P and thus is
isotopic to 1P (see Example 3.1.12).

The surjection L∆

Recall that ∆ = {C1, ..., C3g−3+b} is a fixed pants decomposition of S.

Corollary 5.2.8. The map

L∆ : TS → R3g−3+2b
+ L∆(X ) = (lX (C1), ..., lX (C3g−3+b), lX (∂1), ..., lX (∂b))

is surjective.

Proof. Let (l1, ..., l3g−3+2b) ∈ R3g−3+2b
+ . Consider the decomposition in components

of S∆: S∆ = P1 t .... t Pn. If ∂i,j are the boundary components of the Pi, using
the previous result, we can endow each Pi with a hyperbolic metric such that if ∂i,j
corresponds to the circle Ch in ∆ then its length is lh and if it corresponds the the
boundary component ∂h of S its length is lh+3g−3+b. Finally, gluing back the pairs
of pants, we obtain a hyperbolic metric on S whose class in TS is sent, under L∆, to
(l1, ..., l3g−3+2b).

Construction of a section of L∆

The goal of this subsection is to find a (canonical) section of the surjection L∆.

Lemma 5.2.9. There exists a collection ∆′ of circles and proper arcs of S containing
∆ and such that S∆′ is union of disks with exactly 6 corners points.

Proof. For each pair of pants Pi of S∆ with boundary component ∂i,1, ∂i,2 and ∂i,3
consider proper and disjoint arcs δi,j of Pi joining ∂i,j with ∂i,j+1 (where ∂i,4 = ∂i,1 for
convention). Consider the boundary component ∂i,j. If it correspond to a circle of ∆
there is another boundary component ∂i′,j′ corresponding to the same circle. Glue
∂i,j and ∂i′,j′ in such a way that ∂i,j ∩ δi,j correspond to ∂i′,j′ ∩ δi′,j′ and ∂i,j ∩ δi,j−1 to
∂i′,j′ ∩ δi′,j′−1 (where by convention ∂i,0 = ∂i,3 for all i). Repeat this process for all
∂i,j corresponding to some circle of ∆, we obtain a surface S ′ that is diffeomorphic to
S through a diffeomorphism that sends ∆ to a pants decomposition of S ′ for which
the lemma holds. Therefore the lemma holds for ∆, too.
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Fix a collection ∆′ as in the lemma. Note that in the lemma we are just saying
that S∆′ is union of hexagons. Moreover each hexagon is naturally contained in some
pair of paint of S∆ and each pair of pants of S∆ is obtained by suitably gluing two
hexagons. To fix the notation, let P1, ..., Pk be the pair of pants in S∆ and let Hi,k

for k = 1, 2 be the hexagons of S∆′ inside Pi. For k = 1, 2, call ιi,k : Hi,k → Pi the
natural embedding of Hi,k in Pi. Note that the Pi and the Hi,k come with a natural
orientation induced by that of S. For j = 1, 2, 3, let ∂i,j be the boundary components
of Pi and, for convenience, set ∂i,4 = ∂i,1. For k = 1, 2, call ∂i,j,k = ∂i,j ∩ ιi,k(Hi,k)
and δi,j,k the arc of ∂Hi,k joining ι−1

i,k (∂i,j,k) and ιi,k(∂i,j+1,k). Finally call δi,j the arc
of Pi joining ∂i,j with ∂i,j+1 given by ιi,1(δi,j,1) = ιi,2(δi,j,2) = δi,j.
We can choose, for all i, k, orientation-preserving diffeomorphisms φi,k : Hi,k → H ′i
where H ′i ⊆ H2 are hyperbolic right-angled hexagons such that:

1. the length of φi,k(∂i,j,k) is lh/2 if ∂i,j comes from the circle Ch of ∆ and length
lh+3g−3+b if it comes from the boundary component ∂h of S;

2. the identity ιi,1 ◦ φ−1
i,1 ◦ φi,2|δi,j,2 = ιi,j,1|δi,j,2 holds for all i, j;

3. whenever ιi,k(∂i,j,k) = ιi′,k′(∂i′,j′,k′), we also have φi,k(∂i,j,k) = φi′,k′(∂i′,j′,k′) and
the identity of maps ιi,k ◦ φ−1

i,k ◦ φi′,k′|∂i′,j′,k′ = ιi′,j′|∂i′,j′,k′ holds.

Then S admits a (unique) hyperbolic metric h such that (φ−1
i,k )∗ι∗i,k(h) is exactly

the hyperbolic metric of H ′i for all i, k and, from 1, we have Ψ([h]) = (l1, ..., l3g−3+2b).
Thus we have defined a section

σ : R3g−3+2b
+ → TS

of L∆. Note that [h] does not depend on the choice of H ′i or of the diffeomorphisms
φi,k, but it depends on the choice of ∆′.

Definition of Ψ

We now introduce an action Θ of R3g−3+b on TS such that

Ψ : R3g−3+2b
+ × R3g−3+b → TS Ψ(l, θ) = Θθ(σ(l))

has the properties claimed at the beginning of this section.

We will just define Ψ. For the verifications of the claimed properties see chap-
ter 2 of [1].

Let X = [h] ∈ TS. Replace the circles Ci of ∆ with the corresponding geodesic
circles (with respect to h). We will call these circles Ci again. For each x ∈ Ci let
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γx be the geodesic line starting at x, orthogonal to Ci and oriented in such a way
that (α′i(0), γ′x(0)) is a positive basis of TxS. Here αi : S1 → Ci is a parametrization
of Ci (the definition of Θθ(X ) will be independent from the choice of the orientation
of the Ci induced by the αi, but will only depend on the orientation of S). We shall
assume that both Ci and δx are parametrized by arc length.
Since Ci is compact, there is an ε > 0 such that

Ci × [0, 3ε]→ S (x, t) 7→ γx(t)

is a diffeomorphism onto its image Ui. Clearly, we may assume that Ui ∩Uj = ∅ for
i 6= j.
Now we use this diffeomorphism to define a diffeomorphism φi of Ui depending on
θ ∈ R3g−3+b. Consider the universal covering R of Ci chosen in such a way that the
projection p is an orientation preserving local isometry. Note that if a = lX (Ci) then
p(t) = p(s) if and only if s = t+ na for some n ∈ Z. Consider the diffeomorphism

φ̃i : R× [0, 3ε]→ R× [0, 3ε] φ̃i(t, s) = (t+ ρ(s)θi, s)

where ρ is the smooth map

1

ε 2ε 3ε

Note that φ̃i(t1 + t2, s) = φ̃i(t1, s) + (t2, 0) for all t1, t2 ∈ R and s ∈ [0, 3ε] and
thus φ̃i induces a diffeomorphism

φi : Ci × [0, 3ε]→ Ci × [0, 3ε]

that is an isometry on a neighborhood of Ci×{0} and the identity out of Ci× [0, 2ε].
It follows that

h′ =

{
h outside

⋃3g−3+b
i=1 Ui;

φ∗i (h) in Ui,

is a new (smooth) hyperbolic metric on S. Observe that h′ depends on many choices
we have done: h, αi, ε, ρ; but its class in TS does not. Set Θθ(X ) = [h′] ∈ TS.

5.3 Moduli Space

Now we will study the Moduli Space of a surface, defined as the quotient of the
Teichmüller space under the action of the Mapping Class Group.

74



5.3.1 The action of Mod(S) on TS

Let S = Sbg be a surface with χ(S) < 0. Regarding the points of TS as equiv-
alence classes of pairs (X,φ) where X is a hyperbolic surface and φ : S → X is
a diffeomorphism, we can introduce a left action of Mod(S) on TS as follows: for
f ∈ Mod(S) and X = [(X,φ)] ∈ TS choose a representative ψ ∈ Diff+(S) of f and
set

f · X = [(X,φ ◦ ψ−1)].

Definition 5.3.1. The Moduli Space of S is the quotientM(S) = TS/Mod(S).

The Collar Lemma

In order to investigate the properties of this action, we first recall the so called
Collar Lemma and derive some of its corollaries.

The existence of a right-angled geodesic pentagon in H2 is easily established.

Lemma 5.3.2. For any right-angled geodesic pentagon in H2 with consecutive sides
a, b, α, c, β (listed traveling counterclockwise) we have

cosh(l(c)) = sinh(l(a))sinh(l(b))

Proof. See Theorem 2.3.4 in chapter 2 of [7].

Proposition 5.3.3 (Collar Lemma). Let P be a pair of pants endowed with a hy-
perbolic metric. Let ∂1, ∂2, ∂3 be the boundary components of P . Then, the sets

Ci = {x ∈ P : sinh(dist(x, ∂i))sinh(
l(∂i)

2
) ≤ 1}

are disjoints.

Proof. Let δij be as in Lemma 5.2.6. The closure of the two components of Pr(∪δij)
are hyperbolic right-angled hexagons H1 and H2. By Lemma 5.2.3, H1 and H2 are
isometric. Fix H = Hi for i ∈ {1, 2}. We now show that Ci ∩ Cj ∩H = ∅ if i 6= j.
Let k be such that {i, j, k} = {1, 2, 3}. Call hk the shortest path in H from ∂k to
δi,j. Such an hk exists because ∂k ∩ H and δij are compact. Then, hk must be a
geodesic path in H and, by the first variational formula, it must be perpendicular
to both ∂k and δi,j (See the figure below). It follows that the distance between hk
and ∂i∩H is the length of the arc of δij between the two points δij ∩ ∂i and hk ∩ δij;
and, for the same reason, the distance between hk and δik is the length of the arc of
∂k ∩H between the two points δi,k ∩ ∂k and ∂k ∩ hk. Thus the previous lemma gives

1 < cosh(dist(hk, δi,k)) = sinh(
l(∂1)

2
) sinh(dist(hk, ∂i ∩H))
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In particular, hk does not meet Ci and the result is now obvious.

∂i ∩H

δij

∂j ∩H
δjk

∂k ∩H

δik

hk

Ci

Figure 5.4: Explanation of the proof.

Corollary 5.3.4. Let ∆ be a pants decomposition of a hyperbolic surface S and for
all Ci ∈ ∆ ∪ {boundary components of S} set

Ci = {x ∈ S : sinh(dist(x,Ci)) sinh(
l(Ci)

2
) ≤ 1}.

Then the Ci are disjoint annuli in S.

Corollary 5.3.5. Let S be a surface with χ(S) < 0 and 0 < ε < 2 sinh−1(1/2). Any
hyperbolic metric on S has the following property: if C1 and C2 are two geodesic
circles in S of length ≤ ε then either C1 = C2 or C1 ∩ C2 = ∅.

Proof. Indeed, suppose that C1 6= C2 are two geodesic circles of S with x0 ∈ C1∩C2

and l(Ci) ≤ ε for i = 1, 2. Note that they meet transversally at x0. Let, for i = 1, 2,
C̃i be a lift of Ci in H2 with z0 ∈ C̃1 ∩ C̃2 in the fiber of x0. Since C̃1 and C̃2 are
geodesics, the point z0 is the only intersection point between them. Consider the
subset of H2

C̃ = {z ∈ H2 : sinh(dist(z, C̃1)) sinh(
l(C1)

2
) ≤ 1/2}.

Then C̃2 must connect two boundary components of C̃, otherwise C2 would not be
a closed curve. Thus,

2 sinh−1(1/2) > l(C2) = l(C̃2) ≥ 2 sinh−1(
1

2 sinh( l(C1)
2

)
) ≥ 2 sinh−1(1)

and this is a contradiction.
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Proper discontinuiy of the action

Recall that the action of a group G on a topological space X by homeomorphisms
is properly discontinuous if, for any compact set B ⊆ X, the set

{g ∈ G : g ·B ∩B 6= ∅}

is finite.

Our goal is now to prove the following important result.

Theorem 5.3.6. Let g ≥ 2. The action of Mod(Sg) on TSg is properly discontinu-
ous.

Proof. Suppose, by contradiction, that that there is a compact subsetK ⊆ TSg and a
sequence {fn = [φn]}n∈N of distinct elements of Mod(Sg) such that fn ·K∩K 6= ∅ for
all n ∈ N. This means that there is a sequence {Xn}n∈N ⊆ K such that fn · Xn ∈ K
for all n ∈ N. Let C1 and C2 be two circles in Sg that fill Sg. Since the map K → R+

X 7→ lX ([C1]) + lX ([C2]) is continuous and K is compact, there is R > 0 such that
lX ([Ci]) ≤ R for all X ∈ K and i = 1, 2. However, we will prove that, for some
i = 1, 2, the set {lfn·Xn([Ci]) = lXn(φ−1

n ([Ci])}n∈N is unbounded and thus we will
have a contradiction. We proceed in steps.

Step 1 We first prove that at least one between the set of homotopy classes {[φ−1
n (C1)]}n∈N

and the set {[φ−1
n (C2)]}n∈N is infinite.

Otherwise, for infinite n we would have [φ−1
n (C1)] = [C ′1] and [φ−1

n (C2)] = [C ′2]
for some circles C ′1 and C ′2 that fill Sg. By Corollary 2.3.40, up to changing the
representatives of the fn, we may assume that φ−1

n (C1) = C ′1 and φ−1
n (C2) = C ′2

for infinite n. This implies that for all these n the mapping class fn of the
diffeomorphism φn is determined by the bijective correspondence between the
disks of Sgr (C1∪C2) and the disks of Sgr (C ′1∪C ′2) that it induces. But the
disks are finitely many and the fn = [φn] are all distinct. This is impossible.

Step 2 Thus we may assume that the {[Vn] = [φ−1
n (C1)]}n∈N are all distinct.

We now claim that there is a pants decomposition ∆ of Sg such that {i(Vn, C)}n∈N
is unbounded for some C ∈ ∆. Such a ∆ can be constructed as follows. Start
with any pants decomposition ∆′ of Sg and suppose that for all C ∈ ∆′ and
n ∈ N we have i(C, Vn) ≤ N . Therefore, modulo a homotopy of the Vn, we
may assume that the number of arcs of Vn r (∪C∈∆′C) is bounded indepen-
dently from n. What is more, there are infinite n such that the number of
arcs of Vn r (∪C∈∆′C) connecting the boundary components ∂i,j and ∂i,k of
the component Pi of (Sg)∆ is exactly mijk for all i, j, k. It follows that there
exists a circle of Sg, that we call V , and mapping classes, that we call Mn,
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belonging to the subgroup of Mod(Sg) generated by the Dehn twists around
the circles C ∈ ∆′, such that [Vn] = [Mn(V )] are the same homotopy class for
all of such n. Since the [Vn] are all distinct, also the mapping classesMn are all
distinct. Note that, by Proposition 3.2.8, this subgroup is ⊕C∈∆′ZTC . Up to
extracting a subsequence, there is a C ′ ∈ ∆′ such that TC′ appears as a factor
in all Mn and with arbitrary large power. Let C be a non-trivial circle of Sg
non isotopic to any circle in ∆′rC ′ and such that either i(C ′, C) = 2 if S∆′rC′

contains a sphere with four holes as a component or i(C ′, C) = 1 if S∆′rC′ has
a component that is a torus with one hole. Setting ∆ = (∆′ r C ′) ∪ C we
obtain the desired result.

Step 3 For all X ∈ TSg let h(X ) be a hyperbolic metric of Sg such that C is a geodesic
circle for h(X ) and [h(X )] = X in TSg . From the continuity of length functions,
the compactness of K and Corollary 5.3.4, we can find ε > 0 such that for
all X ∈ K the set {x ∈ Sg : disth(X )(x,C) ≤ ε} is an annulus around C.
Thus, from the previous step, {lfn·Xn([C1]) = lXn([Vn]) ≥ ε · i(Vn, C)}n∈N is
unbounded as claimed.

Stabilizers of points

Let g ≥ 2. We want to determine the stabilizer of a point X ∈ TSg with respect
to the action of Mod(Sg).

Lemma 5.3.7. For every X = [(X,φ)] ∈ TSg , there is a bijection

Stab(X )→ Isom+(X).

Proof. An element f = [ψ] ∈ Mod(Sg) stabilizes X if and only if φ ◦ ψ−1 ◦ φ−1 is
homotopic (and thus isotopic) to an isometry τ : X → X. Observe that since ψ
is orientation-preserving, τ must be orientation-preserving, too. We claim that two
isometries of X that are homotopic, are the same. The lemma then follows at once.
We now prove our claim. Suppose given two homotopic isometries g0 and g1 of X
and let g be an homotopy between g0 and g1. Then, g gives an homotopy g̃ between
two isometries g̃0 and g̃1 of H2. Moreover, dH2(g̃1

−1(g̃0(x)), x) = dH2(g̃0(x), g̃1(x)) ≤
diam(X) < ∞ for all x ∈ H2. It follows that g̃1

−1 ◦ g̃0 = 1H2 and thus g0 = g1.
Indeed, for any geodesic line γ in H2, we have that dist(γ, g̃1

−1 ◦ g̃0(γ)) is bounded
and thus γ and g̃1

−1 ◦ g̃0(γ) are two geodesic lines with the same end points in ∂H2.
Hence, g̃1

−1 ◦ g̃0 is the identity on ∂H2 and thus on all H2.

Proposition 5.3.8. Let X be a hyperbolic surface diffeomorphic to Sg, where g ≥ 2.
Then Isom(X) is finite.
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Proof. Consider Isom(X) as a subspace of C0(X,X), endowed with the topology
induced by the distance d(g0, g1) = max{dX(g0(x), g1(x)) : x ∈ X}. Note that, for
every hyperbolic distance dX , the distance d induces the compact-open topology on
C0(X,X) (combine Proposition 2.6 in chapter 7 of [9] and Theorem 2.12 in chapter
7 of [4]). We will prove that, with respect to this topology, Isom(X) is compact and
discrete.
Clearly, it is closed in C0(X,X). Morover it is relatively compact by Ascoli-Arzelà
Theorem. To apply Ascoli-Arzelà Theorem, we need to check that Isom(X) is
pointwise limited and equicontinuous. But diam(X) < ∞, thus the first check
is immediate, while the equicontinuity follows from the fact that for all x ∈ X and
g ∈ Isom(X) we have dX(g(x), g(y)) = dX(x, y). This proves that Isom(X) is com-
pact.
Finally we prove that it is discrete. For every g ∈ Isom(X) we have an homeo-
morphism, given by the composition with g−1, between the path component of g
and the path component of 1X . Therefore, it is enough to observe that, as proved
in the previous lemma, C0

0(X,X) ∩ Isom(X) = 1X (where C0
0(X,X) is the space

of continuous maps X → X homotopic to 1X) and that the path components in
C0(X,X) are open.
This last statement can be seen as follows. Embed X in R3. The metric of R3

induces the same topology on X as that it already has, thus, using Theorem 2.12
in chapter 7 of [4] again, the compact-open topology on C0(X,X) is induced by
the distance, that we call d again, d(g0, g1) = max{dR3(g0(x), g1(x)) : x ∈ X} for
g0, g1 ∈ C0(X,X). Let X ⊆ U ⊆ R3 be an ε- neighborhood of X in R3 and
r : U → X a smooth retraction. If d(g0, g1) < ε, then r ◦ (tg1 + (1 − t)g0) is an
homotopy from g0 to g1. Hence, C0(X,X) is locally path-conected.

Corollary 5.3.9. For every X ∈ TSg , Stab(X ) is finite.

Corollary 5.3.10. Let m ≥ 3. Then the action of Mod(Sg)[m] on TSg is free.

Remark 5.3.11. In particular, the action of Mod(Sg)[m] (m ≥ 3) on TSg is free
and properly discontinuous and thus the quotient TSg/Mod(Sg)[m] has a natural
structure of smooth manifold.

5.4 The submanifolds with corners Xg(δ)

In this section we define a particular submanifold Xg(δ) ⊆ TSg and prove some
of its properties.

Let S be a surface with χ(S) < 0 and let 0 < ε < 2 sinh−1(1/2).
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Remark 5.4.1. Thanks to Corollary 5.3.5, if C1, ..., Ck are circles in S such that
lX ([C1]), ..., lX ([Ck]) ≤ ε for some X ∈ TS, then the set of homotopy classes {[C1], ..., [Ck]}
is a simplex (not necessarily with k vertices) in C(S). This also means that there
cannot be more than 3g− 3 + b distinct isotopy classes of circles of length ≤ ε with
respect to some X .

Let 0 < δ < ε.

Definition 5.4.2. We define the spaces TS(δ) and XS(δ) as follows:

TS(δ) = {X ∈ TS : lX (∂i) = δ for all boundary components ∂i of S}

and
XS(δ) = {X ∈ TS(δ) : lX ([C]) ≥ δ for all essential circles [C] of S}

That is, X ∈ XS(δ) if and only if the length with respect to X of all boundary
components is δ and of all essential circles is ≥ δ.

Observe that TS(δ) is a smooth submanifold of TS diffeomorphic to R3g−3+b
+ ×

R3g−3+b by the the restriction of the Fenchel-Nielsen coordinates to TS(δ).

To simplify the notation, if S = Sg (g ≥ 2), we will also use the symbol Xg(δ)
for XSg(δ).

Proposition 5.4.3. XS(δ) is a smooth manifold with corners. Moreover, X ∈
∂XS(δ) if and only if lX ([C]) = δ for some essential circle C in S.

The proof of this proposition relies on the following lemma.

Lemma 5.4.4. Let η < ε. For any X0 ∈ TS(δ) there is an open neighborhood U
of X0 in TS(δ) such that for all X ∈ U and essential circle C of S, lX ([C]) > η if
lX0([C]) > η.

The proof of this lemma is not so easy. It involves the construction of a certain
distance on TS, the Teichmüller distance dTeich. The reader can see Lemma 4.5 in
[24] for the proof of this lemma and chapter 11 of [12] for the definition of dTeich.

proof of the Proposition 5.4.3. Let X0 ∈ XS(δ) and δ < η < ε. Let U be an open
set of TS(δ) containing X0 as in the lemma. Call σ the set of the isotopy classes of
the essential circles C in S with lX0([C]) ≤ η. Since η < ε, then σ is a simplex of
C(S) and in particular is finite. Moreover,

U ∩XS(δ) = {X ∈ U : lX ([C]) ≥ δ for all [C] ∈ σ}.

Therefore it is enough to choose a pants decomposition ∆ of S with σ ⊆ ∆ and
consider some Fenchel-Nielsen coordinates associated to ∆ to see that XS(δ) is a
smooth manifold with corner and that X0 ∈ ∂XS(δ) if and only if there exists an
essential circle C in S such that lX0([C]) = δ.
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Remark 5.4.5. Obviously, XS(δ) is preserved by the action of Mod(S) and, from
the Proposition 5.4.3, the same is true for ∂XS(δ).

The following theorem summarizes the main properties of Xg(δ).

Theorem 5.4.6. The space Xg(δ) is a smooth manifold with corners of dimension
6g − 6 such that:
(a) both Xg(δ) and ∂Xg(δ) are invariant under the action of Mod(Sg);
(b) Xg(δ)/Mod(Sg) is compact;
(c) Xg(δ) is contractible;
(d) ∂Xg(δ) is homotopically equivalent to |C(Sg)|.

The rest of this chapter is dedicated to the proofs of parts (b), (c) and (d) of
this theorem.

5.4.1 Proof of statement (b) of Theorem 5.4.6

The part (b) of the theorem is know as Mumford’s compactness Theorem.
In order to prove it, we will need the following Theorem of Bers.

Theorem 5.4.7 (Bers’ constant). Let S = Sg with g ≥ 2. There exists a constant
L = L(g) > 0 such that for any X ∈ TS there is a pants decomposition ∆ = ∆(X )
of S such that lX ([C]) ≤ L for all C ∈ ∆.

Before proving Bers’theorem, we prove a lemma.

Lemma 5.4.8. Let S = Sg where g ≥ 2 and let h be a fixed hyperbolic metric on S.
There is a geodesic circle in S of length ≤ 2log(4g − 2).

Proof. Let C be the shortest geodesic circle in S. We want to prove that l(C) ≤
2log(4g − 2). Let x ∈ C. Then, by Lemma 2.3.27

D = {y ∈ S : d(y, x) < r}

is a hyperbolic disk in S for all r < l(C)
2
. To conclude observe that

4π(g − 1) = Area(S) ≥ Area(D) = 2π

∫ r

0

sinh(ρ)dρ = 2π(cosh(r)− 1)

where in the first equality we used the Gauss-Bonnet Formula and in the second
equality Lemma 2.2.6. Hence

r ≤ cosh−1(2g − 1) ≤ log(4g − 2)

and thus l(C) ≤ 2log(4g − 2).
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Proof of Bers’s Theorem. Let X = [h] ∈ TS and consider S endowed with the hy-
perbolic metric h. We will prove by induction on k = 1, ..., 3g − 3 that there are
circles C1, ..., Ck on S with the following two properties:

1. the Cj are non-trivial and pairwise non-isotopic circles;

2. l(Cj) ≤ 4jlog(8π
j

(g − 1)) for all j = 1, ..., k;

3. call S0 = S. For k ≥ 1 the circle Ck is required to be a circle of Sk−1 and,
if we call Sk = Sk−1

Ck
r (Y1 ∪ ... ∪ Ym) where Y1, ..., Ym are the components of

Sk−1
Ck

homeomorphic to S3
0 , we require that l(∂Sk) ≤ 4klog(8π

k
(g − 1)).

For k = 1 it is enough to choose C1 to be the shortest geodesic circle in S. Suppose
2 ≤ k ≤ 3(g−1) and suppose that C1, .., Ck−1 are already constructed. Call ∂1, ..., ∂n
the boundary components of Sk−1. Consider

Z(r) = {x ∈ Sk−1 : dist(x, ∂Sk−1) ≤ r}

for r such that the geodesic arcs of length r and emanating perpendicularly from
∂Sk−1 are pairwise disjoint. Let (ρi, ti) ∈ [0, r] × R/[ti 7→ ti + l(∂i)] be the Fermi
coordinates on {x ∈ Sk−1 : dist(x, ∂i) ≤ r}. By Lemma 2.2.4 we have

Area(Z(r)) = l(∂Sk−1)

∫ r

0

cosh(ρ)dρ = l(∂Sk−1)sinh(r).

Define rk to be the supremum of the r for which Z(r) is defined. When r = rk we
have at least two geodesic arcs of Sk−1 of length r and emanating perpendicularly
from ∂Sk−1 that meet each other. Since the distance between any lift of ∂i and any
lift ∂j (possibly i = j) in the universal covering space S̃k−1 ⊆ H2 have distance at
least 2rk, by the First Variational Formula, these two geodesic arcs meet in such a
way to form a unique (simple) geodesic arc (in particular a smooth arc) δ of length
2rk and meeting ∂Sk−1 perpendicularly at both endpoints. We distinguish two cases.

Case 1: the arc δ joins two different boundary components ∂1 and ∂2 of Sk−1.

Let N be a closed neighborhood of δ ∪ ∂1 ∪ ∂2 in the component of Sk−1 con-
taining ∂1 and ∂2. Call C ′ = ∂N r (∂1 ∪ ∂2) and C the unique geodesic circle in
the isotopy class of C ′. Clearly C, ∂1 and ∂2 bound a pair of pants Y . We define
Ck = C. Since no component of Sk−1 is a pair of pants, Ck is not isotopic to any of
the Cj for j < k. Call Sk∗ the result of cutting Sk−1 along Ck and giving away the
component Y . Then we have ∂Sk ⊆ ∂Sk∗ and Ck ⊆ ∂Sk∗ , thus to check properties 2
and 3 for Ck and Sk, it is enough to prove that

l(∂Sk∗ ) ≤ 4klog(
8π

k
(g − 1)).
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To do this, consider ζ(r) = ∂Z(r) r ∂Sk−1 for r ≤ rk. By Lemma 2.2.4, we have

l(ζ(r)) = l(∂Sk−1)cosh(r).

As long as r < rk, the set ζ(r) consists of n circles homotopic to the boundary
components of Sk−1, when r = rk two components of ζ(r) meet each other and form
a circle homotopic to C. Thus

l(∂Sk∗ ) < l(ζ(rk))

and our claim is obvious if l(ζ(rk)) ≤ 4(k−1)log( 8π
k−1

(g−1)) (note that {1, ..., 3(g−
1)} → R defined by k 7→ 4klog(8π

k
(g − 1)) is increasing). Suppose instead that

l(ζ(rk)) > 4(k−1)log( 8π
k−1

(g−1)). Then there exists r′k ∈ (0, rk) such that l(ζ(r′k)) =

4(k − 1)log( 8π
k−1

(g − 1)). Let d = rk − r′k. Clearly we have

l(∂Sk∗ ) ≤ l(ζ(r′k)) + 4d.

Moreover
Area(Z(rk))− Area(Z(r′k)) ≤ Area(S) = 4π(g − 1)

and

Area(Z(rk))− Area(Z(r′k)) =l(∂Sk−1)

∫ r′k+d

r′k

cosh(ρ)dρ =

=l(∂Sk−1){sinh(r′k)cosh(d) + cosh(r′k)sinh(d)− sinh(r′k)} ≥
≥l(∂Sk−1)cosh(r′k)sinh(d) =

=l(ζ(r′k))sinh(d).

From these two inequalities we get

d ≤sinh−1(
4π(g − 1)

l(ζ(r′k))
) ≤ sinh−1(

π(g − 1)

(k − 1)log( 8π
k−1

(g − 1))
) ≤

≤log(
2π(g − 1)

(k − 1)log( 8π
k−1

(g − 1))
+ 1) ≤ log(

3(g − 1)

k − 1
+ 1)

where we used the inequalities sinh−1(x) ≤ log(2x + 1) for x > 0, k − 1 < 3(g − 1)

and 2π/3
log(8π/3)

< 1. To conclude observe that

l(∂Sk∗ ) ≤l(ζ(r′k)) + 4d ≤

≤4{(k − 1)log(
8π

k − 1
(g − 1)) + log(

3(g − 1)

k − 1
+ 1)} ≤

≤4klog(
8π

k
(g − 1))
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where the last inequality is equivalent to say that

klog(
k

k − 1
) + log(

3(g − 1)

k − 1
+ 1) ≤ log(

8π

k − 1
(g − 1))

and this inequality follows from the fact that

k log(
k

k − 1
) ≤ log(4)

and
log(

8π(g − 1)

3(g − 1) + k − 1
) ≥ log(

4π

3
) ≥ log(4)

for k − 1 < 3(g − 1).

Case 2: the arc δ has its endpoints on one boundary component ∂ of Sk−1.

Define η1 and η2 as explained in the picture.

∂

η1
y1 y2

δ

η2

Figure 5.5: Definition of η1 and η2.

Then η1 ∪ δ and η2 ∪ δ are both homotopically non-trivial, otherwise they could
be lift to a geodisic loops in H2. Call δ1 and δ2 the geodesic circles in the homotopy
class of η1 ∪ δ and η2 ∪ δ respectively. Clearly ∂, δ1 and δ2 bound a pair of pants Y .
In particular δ1 and δ2 cannot be both peripheral, otherwise the component X of
Sk−1 containing ∂ would have been a pair of pants and thus at least one between δ1

and δ2 is essential. Note that the possibility δ1 = δ2 is not excluded: if δ1 = δ2 then
X is homeomorphic to S1

1 . In every case we set Ck = δi where δi is any essential
circle in X chosen between δ1 and δ2. Now if δ1 6= δ2 we set Sk∗ to be Sk−1

Ck
r Y and

proceed as in Case 1. If instead δ1 = δ2, then we only need to control l(Ck). But
clearly

l(Ck) ≤ l(ζ(rk))

where ζ(r) is defined as above, thus we can proceed as above also in this case.

84



Theorem 5.4.9 (Mumford’s compactness Theorem). Let g ≥ 2. Then Xg(δ)/Mod(Sg)
is compact.

Proof. Since Xg(δ) has a countable basis, also the quotient Xg(δ)/Mod(Sg) has a
countable basis. Therefore, it is enough to check that it is sequentially compact. Let
{[Xn]}n∈N be any sequence in Xg(δ)/Mod(Sg). To prove that it has a convergent
subsequence, we will show that, for some Fenchel-Nielsen coordinates, there is a
compact K of TSg = R3g−3

+ ×R3g−3 containing infinitely many representatives of the
[Xn]. Let Xn be lifts in Xg(δ) of the [Xn]. From the previous theorem, for all n there
is a pants decomposition ∆n of Sg such that lXn([C]) ∈ [δ, L] for all C ∈ ∆n. Since
there are only a finite number of types of pants decomposition, we can find infinitely
many n and fn = [φn] ∈ Mod(Sg) so that φn(∆n) = ∆ is always the same. Now,
using some Fenchel-Nielsen coordinates adapted to ∆, the corresponding Yn = fn·Xn
have length parameters in [δ, L]. Moreover, there are elements hn ∈ Mod(Sg) that
are compositions of Dehn twists about the circles in ∆ such that the parameters θi
of hn · Yn lie in [0, 2π]. The proof is thus complete.

5.4.2 Proof of statement (c) in Theorem 5.4.6

In this subsection we prove the following

Theorem 5.4.10. Xg(δ) is contractible.

Proof. We will contruct a continuous map F : TSg× [0, 1]→ TSg such that F (X , 1) ∈
Xg(δ) for all X ∈ TSg ; F (−, 0) is the identity of TSg and F (x, t) ∈ Xg(δ) for all
x ∈ Xg(δ) and t ∈ [0, 1]. In particular, we will have that the inclusion Xg(δ) ↪→ TSg
is a homotopy equivalence and thus Xg(δ) is contractible.

The strategy for the construction of F .

Let Γ = Mod(Sg)[m], with m ≥ 3. We know that TSg/Γ has a structure of smooth
manifold and that whenever a simplex σ of C(Sg) is fixed by some f ∈ Γ then f
fixes all the vertices of σ. Note also that, since X(δ)/Γ is a covering space with
finite sheets of the compact space Xg(η)/Mod(Sg), it is compact.
We will construct a smooth Γ-invariant vector field v on TSg such that dX l[C](v(X )) =
1 whenever lX ([C]) ≤ δ (here l[C] is the function l[C] : TSg → R defined by l[C](X ) =
lX ([C])). Such a vector field will descend to a vector field w on TSg/Γ. Moreover, for
any η ≤ δ, on the points in ∂Xg(η)/Γ, w is directed inside Xg(η) and, since Xg(η)/Γ
is compact, any trajectory of w starting in Xg(η)/Γ is well-definite for all t ∈ [0,∞)
and remains in Xg(η)/Γ for positive times. Now note that TSg =

⋃
0<η<δXg(η)

and thus any trajectory of w is defined for all t ≥ 0 and the corresponding half-
flow leaves Xg(δ)/Γ invariant. Clearly, the corresponding statements hold for v and
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Xg(δ). Finally, since dX l[C](v(X )) = 1 whenever lX ([C]) ≤ δ, any trajectory of v
starting outside Xg(δ) arrives in Xg(δ) in time most δ and remains inside it forever.
This gives us our F .

Construction of the vector field v.

Fix δ < η < ε and a smooth and monotone function ϕ : R→ [0, 1] such that ϕ(t) = 1
for t ≤ δ and ϕ(t) = 0 for t ≥ η. For any vertex [C] of C(Sg) let ϕ[C] = ϕ ◦ l[C] and
for any simplex σ let ϕσ =

∏
[C]∈σ ϕ[C] and ψσ = ϕσ

∏
[C]/∈σ(1 − ϕ[C]). Note that,

from Remark 5.4.1, for any X there are a finite number of ϕ[C] that are different
from 0 in X and thus, using Lemma 5.4.4 , on a neighborhood of every X almost
all factors in the product defining ψσ are 1, so it is well-defined and is smooth.
Observe that for every f ∈ Mod(Sg) the following equalities hold: lf ·[C] = l[C] ◦ f−1,
ϕf ·[C] = ϕ[C] ◦ f−1, ϕf ·σ = ϕσ ◦ f−1 and ψf ·σ = ψ ◦ f−1.
We claim that for any simplex σ of C(Sg) there is a vector field vσ such that
dl[C](vσ) = 1 for all [C] ∈ σ and vf ·σ = f∗(vσ) for any f ∈ Γ.
Indeed, for any simplex σ = {[C1], ..., [Ck]} of C(Sg) let Γσ be the stabilizer of σ
under the action of Γ. By the properties of the action of Γ, the elements of Γσ
stabilize each vertex of σ and thus the submersion

Lσ : TSg → R|σ|+ X 7→ (lX ([C1]), ..., lX ([Ck]))

is Γσ-invariant and thus defines a smooth submersion L′σ : TSg/Γσ → R|σ|+ by passing
to the quotient. Let v′σ be an arbitary lift of the constant vector field (1, ..., 1).
Such a lift can first be constructed locally and then the various pieces can be glued
together with a partition of unity technique. Similarly, let vσ be a lift of v′σ to
TSg . By construction, for all f ∈ Γσ we have vσ = f∗(vσ) and dl[C](vσ) = 1 for all
[C] ∈ σ. Therefore, we can first define the vσ only for some representatives of the
orbits in C(Sg) under the action of Γ and then extend the definition to the remaining
simplices by the formula vf ·σ = f∗(vσ) for all f ∈ Γ. This proves the claim.
Now define the vector field v as

v =
∑
σ 6=∅

ψσvσ.

By Remark 5.4.1 and Lemma 5.4.4, this sum is locally finite and thus v is smooth.
The proof that it is Γ-invariant is straightforward using the equalities we have listed
above.
It remains to prove that dX l[C](v(X )) = 1 if l[C](X ) ≤ δ. Suppose that l[C](X ) ≤ δ.
Observe that

dX l[C](v(X )) =
∑
σ 6=∅

ψσ(X )dX l[C](vσ(X ))
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and that if ψσ(X ) 6= 0 then [C] ∈ σ and thus dX l[C](vσ(X )) = 1.
Therefore, to conclude the proof, we will show that if lX ([C]) ≤ δ for some [C] then∑

σ 6=∅

ψσ(X ) = 1.

First, observe that if σ is any finite sets of vertices (not necessarily a simplex) of
C(Sg), we can define ϕσ and ψσ with the same formulas as before. However, if σ is
not a simplex, ψσ = ϕσ = 0 identically. Hence, we may assume that the summation∑

σ 6=∅ ψσ is over all non empty finite set of vertices of C(Sg). Now, note that

ψσ = ϕσ
∏

[C]/∈σ

(1− ϕ[C]) =
∑

τ :τ∩σ=∅

(−1)|τ |ϕσϕτ

and thus ∑
σ 6=∅

ψσ =
∑

τ,σ:σ 6=∅ and τ∩σ=∅

(−1)|τ |ϕσϕτ =
∑
τ(ρ

(−1)|τ |ϕρ =

=
∑
ρ 6=∅

ϕρ
∑
τ(ρ

(−1)|τ | =
∑
ρ6=∅

(−1)|ρ|+1ϕρ

where in the last equality we have used the fact that
∑

τ(ρ(−1)|τ | =
∑|ρ|−1

k=0

(|ρ|
k

)
(−1)k =

(1− 1)|ρ| − (−1)|ρ| = (−1)|ρ|+1.
Call σ the simplex of C(Sg) defined as σ = {[V ] : l[V ](X ) < η} = {[C1], ..., [Ck]}.
Note that [C] ∈ σ. Then ϕρ(X ) 6= 0 if and only if ρ ⊆ σ and thus

∑
σ 6=∅

ψσ(X ) =
∑
∅6=ρ⊆σ

(−1)|ρ|+1ϕρ(X ) =
k∑
i=1

ϕ[Ci](X )−
∑

1≤i1<i2≤k

ϕ[Ci1 ](X )ϕ[Ci2 ](X ) + ...

+ ...+ (−1)k+1

k∏
i=1

ϕ[Ci](X ) = 1−
k∏
i=1

(1− ϕ[Ci](X )) = 1.

where the last equality holds because [C] ∈ σ.

5.4.3 Proof of statement (d) of Theorem 5.4.6

We finally prove the following

Theorem 5.4.11. Let χ(S) < 0. The boundary ∂XS(δ) is homotopically equivalent
to the geometric realization of C(S).
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To this porpose consider, for each vertex [C] of C(S) the closed sets B[C] = {X ∈
XS(δ) : lX ([C]) = δ}. By Proposition 5.4.3, ∂XS(δ) =

⋃
[C] B[C].

Here is the main observation.

Remark 5.4.12. For any finite set σ of vertices of C(S), set Bσ =
⋂

[C]∈σ B[C] and
note that Bσ 6= ∅ if and only if σ is a simplex of C(S). In particular, C(S) is the
nerve of the covering of ∂XS(δ) by the closed sets B[C].
The ’only if’ part is an immediate consequence of Remark 5.4.1 while the ’if’ part
can be seen in the following way. Given a simplex σ of C(S) we can find a pants
decomposition ∆ of S containing some disjoint representatives of the classes of circles
in σ and thus a hyperbolic metric h on S with respect to which each circle in ∆
and boundary component of S has length exactly δ. Again, Remark 5.4.1 gives that
[h] = X ∈ XS(δ) and, thus, clearly belongs to Bσ.

Thus, the theorem will follow from the Nerve Theorem (see Theorem 10.6 in [2])
once we will have proved that:

1. whenever Bσ 6= ∅, it is contractible;

2. ∂XS(δ) admits a tringulation and for every triangulation each B[C] is neces-
sarily a subcomplex of ∂XS(δ).

Lemma 5.4.13. Let σ be a simplex of C(S) and suppose Bσ 6= ∅. Then, Bσ is
contractible.

Proof. First, consider a maximal simplex ∆ of C(S) containing σ and let h be any
hyperbolic metric on S with respect to which each boundary component of S has
length δ and such that the geodesics circles in each isotopy class contained in σ have
length < ε. Call C1, ..., Ck (k = 3g− 3 + b) the geodesic circles of S (with respect to
h) such that ∆ = {[C1], ..., [Ck]} and say σ = {[C1], ...., [Cj]} where j ≤ k. Consider
the action Θ of Rk on TS associated to ∆. Using the inclusion Rj = Rj ×{0} ⊆ Rk,
we get an induced action Θ|σ of Rj on TS.
Observe that Bσ is invariant with respect to Θ|σ.
Indeed, suppose that, for some θ ∈ Rj and X ∈ Bσ, Y = (Θ|σ)θ(X ) /∈ Bσ. This
means that there is an essential circle C in S such that l[C](Y) < δ. Since Θ|σ
preserves the lengths l[Ci] for i = 1, ..., j, our choice of h and ε implies that the
geodesic circle (with respect to h) in [C] must be disjoint from Ci for i = 1, ..., j.
But then Θ|σ preserves l[C] and thus X was not in XS(δ). This is a contradiction.
Now, let Aσ = {X ∈ TS(δ) : l[C](X ) = δ for all [C] ∈ σ}. Clearly, Bσ = Aσ ∩XS(δ)
and Aσ is also invariant under the action of Θ|σ. The main observation here is that
the quotient Aσ/Rj by the action of Θ|σ coincides with TR(δ) = TR1(δ)× ...×TRl(δ)
where R1 t ...tRl = Sσ is the decomposition in components of the result of cutting
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S along C1, ..., Cj. Here, it is important the fact that we are only considering
hyperbolic metrics having boundary lengths forced to be equal to δ. Call π the
projection π : Aσ → TR(δ). We claim that π(Bσ) = XR(δ) = XR1(δ)× ...×XRl(δ).
The inclusion ⊆ is obvious. We will show that π−1(XR(δ)) ⊆ Bσ. The argument is
similar to that used to check that Bσ is invariant under the action of Θ|σ. We repeat
it for completeness. Suppose X ∈ Aσ and l[C](X ) < δ for some essential circle C in
S. Then [C] /∈ σ and σ ∪ {[C]} is still a simplex. But this means that the geodesic
representative (with respect to h) of [C] does not intersect any Ci for i = 1, ..., j and
thus the length of C considered as an essential circle in some TRi with respect to
π(X ) is the same as its length in S with respect to X and thus is < δ. This means
that π(X ) /∈ XR(δ).
As a corollary of our claim, we obtain that π(Bσ) = Bσ/Rj is contractible. To
conclude the proof, observe that Bσ/Rj is homeomorphic to the deformation retract
of Bσ that under any Fenchel-Nielsen coordinates Ψ associated to ∆ is given by
Ψ(Bσ) ∩ {θi = 0 for all i ≤ j}.

Lemma 5.4.14. ∂XS(δ) admits a triangulation and for any triangulation of ∂XS(δ)
each B[C] happens to be a subcomplex.

In the proof of this lemma we will repeatedly uses the following standard result:

Lemma 5.4.15. Let |K| be a the realization of a simplicial complex and x, y two
points in the same face of |K|. Then, there is an homeomorphism |K| → |K| sending
x to y.

Proof of Lemma 5.4.14. Note that ∂XS(δ) is the boundary of the manifold with
corners XS. Triangulate XS(δ) ∼= |K|. Then if a point of an open face of |K| belongs
to ∂XS(δ), from the previous lemma, the entire open face must be in ∂XS(δ) and,
since ∂XS(δ) is closed in XS(δ), the entire closed face is in ∂XS(δ). It follows that
∂XS(δ) is a subcomplex of |K| and in particular it admits a tringulation.
Now fix a triangulation ∂XS(δ) ∼= |L|. Observe that ∂XS(δ) =

⋃
[C] B[C] where

each B[C] is a manifold with corners ∂B[C] =
⋃

[C′]6=[C]B[C′] ∩ B[C] (see the proof of
Proposition 5.4.3). Call M = ∂XS(δ) and ∂M =

⋃
[C] ∂B[C].

From the previous lemma, if the interior of a face |τ | of |L| intersects B[C] r ∂B[C],
then the entire open face |̊τ | must be inMr∂M . Moreover if there is Y ∈ B[C′]∩|̊τ |
for some [C ′] 6= [C], then there is a X in ∂M ∩ |̊τ | and this is impossible. Therefore
|̊τ | ⊆ B[C] and, since each B[C] is closed in ∂XS(δ), we have |τ | ⊆ B[C].
Finally suppose that the open face |̊τ | intersects ∂B[C]. We want to show that
|τ | ⊆ B[C]. But there is a simplex of maximal dimesion containing |τ | and whose
interior intersects B[C] r ∂B[C], thus this follows from the previous argument.

This completes the proof of part (d).
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Chapter 6

Computation of the virtual cohomo-
logical dimension of the Mapping Class
Group

In this last chapter, we finally compute the virtual cohomological dimension of
the Mapping Class Group, Mod(S). We will start with the case of closed surfaces
and then obtain the general case using a completely topological argument.

For this last chapter the space Diff(S) will always be topologized with the C∞-
topology and the space Homeo(S) with the compact-open topology.

6.1 TheK(Mod(S), 1)-spaces BHomeo+(S) and BDiff+(S).

One of the main tool in computing vcd(Mod(S)) is the following theorem.

Theorem 6.1.1. Let χ(S) < 0. The classifying spaces BHomeo+(S) and BDiff+(S)
are K(Mod(S), 1)-spaces.

In order to prove this result, observe that the long exact sequence of the universal
bundles EHomeo+(S)→ BHomeo+(S) and EDiff+(S)→ BDiff+(S) show that

πi(BHomeo+(S)) ∼= πi−1(Homeo+(S))

and
πi(BDiff+(S)) ∼= πi−1(Diff+(S))

for all i ≥ 1. In particular, π1(BHomeo+(S)) ∼= π1(BDiff+(S)) ∼= Mod(S). What
remains to prove is the following theorem.

Theorem 6.1.2. If χ(S) < 0, then Homeo0(S) and Diff0(S) are weakly contractible.
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We will not prove this theorem. We refer the reader to the article [10] for the
case of Diff0(Sg) with g ≥ 2, and to the article [13] for the general case of Diff0(S)
with χ(S) < 0. Instead, as for homeomorphisms, in the series of articles [15], [16]
and [17], Hamstrom has proved that the subspace Homeo0(S, ∂S) of those homeo-
morphisms that restrict to the identity on ∂S is contractible. We will now prove
that the spaces Homeo0(S, ∂S) and Homeo0(S) are weakly homotopy equivalent.

Let S be any surface with ∂S = ∂1 t ... t ∂b 6= ∅ and call Homeo+(S, {∂S}) the
space of orientation-preserving homeomorphisms of S fixing setwise each boundary
component of S. Note that Homeo0(S) ⊆ Homeo+(S, {∂S}) is the connected com-
ponent of 1S in Homeo+(S, {∂S}).

Here is the main observation.

Proposition 6.1.3. The restriction to ∂S gives a map

Homeo+(S, {∂S}) E−→
b×
i=1

Homeo+(∂i)

that is a fiber bundle map, with fiber Homeo+(S, ∂S).

Proof. Endow S with an auxiliary complete and totally geodesic riemannnian metric
with respect to which each boundary component of S has length 1. In particular,
the compact open topology on Homeo0(X) for X = S or X = ∂S is induced by
the distance d(h, g) = max{d(h(x), g(x)) : x ∈ X} (where d is the distance on S
induced by the riemannian metric).
Given h = (h1, ..., hb) ∈×b

i=1
Homeo+(∂i), let U be the open neighborhood of h

defined by U = {g = (g1, ..., gb) ∈×b

i=1
Homeo+(∂i) : d(hi, gi) < 1/2 for all i =

1, ..., b} and consider the continuous map

Ψ :U → Homeo+(R)×b

g 7→ (g̃1, ..., g̃b)

defined as follows. For i = 1, ..., b, let pi : R → ∂i be the universal covering map,
chosen in such a way that pi is 1-periodic and orientation-preserving and fix a lift
h̃i : R→ R of hi ◦ pi. Then, set g̃i : R→ R to be the unique lift of gi ◦ pi such that
g̃i(0) ∈ p−1

i (gi(pi(0)) ∩ (h̃i(0)− 1/2, h̃i(0) + 1/2). This defines Ψ.
Now, for g ∈ U , consider the straight-line homotopies G̃i between g̃i and 1R. Actu-
ally, they are isotopies since for all fixed t ∈ [0, 1] the function G̃i(−, t) is monotonic
strictly increasing. Moreover, since g̃i(θ + n) = g̃i(θ) + n for all n ∈ Z and θ ∈ R,
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these isotopies induce isotopies Gi between Gi(−, 0) = 1∂i and Gi(−, 1) = gi. Using
these isotopies, we obtain a continuous map

Φ : Homeo+(S,∂S)× U → E−1(U)

(φ, g) 7→ H(φ, g)

where H(φ, g) is defined as follows. For all i = 1, ..., b, let (Ni, ∂i) ∼= (∂i× [0, 1], ∂i×
{1}) be disjoint closed neighborhoods of the ∂i. Then, we define H(φ, g) = H ′(g)◦φ
where

H ′(g)(x) =

{
x if x /∈ Ni

(Gi(x
′, t), t) if x = (x′, t) ∈ Ni = ∂i × [0, 1].

The map Φ is clearly continuous and bijective. The inverse map is the map that
sends H ∈ E−1(U) to (φ, g) where g = H|∂S and φ = H ′(g)−1 ◦ H. Clearly this is
continuous, too.

Lemma 6.1.4. Homeo0(S1) contains S1 as a deformation retract.

Proof. Note that S1 is naturally contained in Homeo+(S1) as the group of rotations.
Let Homeo+([0, 1], {0, 1}) be the space of those homeomorphisms of [0, 1] that fix
both 0 and 1. By Lemma 2.4.8, this space is contractible. Moreover, we have a
homeomorphism

Φ : S1 × Homeo+([0, 1], {0, 1})→ Homeo0(S1)

defined by sending (eiθ, φ) to Rθ ◦ φ̄, where Rθ is the counterclockwise rotation of
angle θ and φ̄ : S1 → S1 is the map induced by φ in the following way. Let p : R→ S1

be the universal covering map, chosen in such a way that p(0) = (1, 0), p is 1-periodic
and orientation-preserving. Then, φ̄ is defined by the condition φ̄◦p = p◦φ. Observe
that Rθ ◦ φ̄ is an orientation-preseving map and, since Homeo0(S1) = Homeo+(S1),
it belongs to Homeo0(S1). The inverse of Φ is the map that sends ψ ∈ Homeo0(S1)
to (θ, φ) where θ = ψ((0, 1)) and φ : [0, 1] → [0, 1] is the restriction to [0, 1] of the
unique lift of R−θ ◦ ψ ◦ p that sends 0 to 0.

From these two results, considering the long exact sequence of the homotopy
groups associated to the fiber bundle Homeo+(S, {∂S}) E−→×b

i=1
Homeo+(∂i), we

immediately obtain that πi(Homeo0(S, ∂S)) = πi(Homeo+(S, {∂S})) = 0 for all
i > 1. In addiction, this sequence ends with

0→ π1(Homeo+(S, {∂S}))→ π1(
b×
i=1

Homeo+(∂i))
α−→

α−→ π0(Homeo+(S, ∂S))
η−→ π0(Homeo+(S, {∂S}))→ π0(

b×
i=1

Homeo+(∂i)) = 0
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We will prove that α is injective and thus π1(Homeo0(S)) = π1(Homeo+(S, {∂S})) =
0. Note that the map π0(Homeo+(S, {∂S})) → π0(Homeo+(S)) induced by the
inclusion is injective and thus π0(Homeo+(S, {∂S})) is naturally a subgroup of
Mod(S). By the proof of Lemma 6.1.4, the injectivity of α is equivalent to the
following proposition, in which the hypothesis χ(S) < 0 is necessary. Observe that
asking χ(S) < 0 is the same as asking that S in not a disk or an annulus (since
under our hypothesis b ≥ 1).

Proposition 6.1.5. Suppose that χ(S) < 0. Let C1, ..., Cb be b circles in S with Ci
isotopic to ∂i for all i = 1, ..., b. Call Ti the Dehn twist about Ci. Then Ker(η) =
ZT1 ⊕ ...⊕ ZTb.

Proof. By the proof of Lemma 6.1.4, we have that Ker(η) = Im(α) = 〈T1, ..., Tb〉 is
the subgroup generated by T1, ..., Tb. Since S is neither a disk nor an annulus the
C1, ..., Cb are non-trivial and non-isotopic circles in S, thus, by Proposition 3.2.8, we
have Ker(η) = ZT1 ⊕ ...⊕ ZTb.

In conclusion, Ker(α) = 0 and thus π1(Homeo0(S)) = π1(Homeo+(S, {∂S})) = 0.

Observe that we have proved the following fact.

Proposition 6.1.6. Let χ(S) < 0. Then there is an exact sequence of groups

0→ Zb → Mod(S, ∂S)→ π0(Homeo+(S, {∂S})→ 0

where π0(Homeo+(S, {∂S}) is naturally is subgroup of Mod(S) of index b! < ∞,
where b is the number of boundary components of S.

6.2 Mess Subgroups Bg

In this section we introduce some subgroups of the Mapping Class Group Mod(Sg)
called Mess subgroups, denoted by Bg, in name of G. Mess who first constructed
them.

6.2.1 The definition of Bg

Let g ≥ 2. The definition of Bg is recursive.

Definition 6.2.1. Define B2 ⊆ Mod(S2) to be the subgroup generated by the Dehn
twists about the circles C0, C1 and C2 shown in figure:
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C

C0

C1

C2

Figure 6.1: Definition of B2.

Remark 6.2.2. By Proposition 3.2.8, B2 is free and abelian with generators TC0 , TC1

and TC2 . In particular B2
∼= Z3.

In order to define Bg+1 for g ≥ 2, suppose that Bg is defined. Consider the surface
S1
g obtained from Sg by removing an open disk. The extension of diffeomorphisms

of S1
g that are the identity on ∂S1

g to diffeomorphisms of Sg that are the identity on
Sg r S1

g induces an homomorphism of groups

Mod(S1
g , ∂S

1
g )→ Mod(Sg)

Definition 6.2.3. Define B1
g to be the preimage of Bg under this homomorphism.

Next, consider an embedding S1
g → Sg+1. The extension of diffeomorphisms that

are the identity on ∂S1
g to diffeomorphisms of Sg+1 that are the identity on Sg+1rS1

g

gives another homomorphism

i : Mod(S1
g , ∂S

1
g )→ Mod(Sg+1).

Observe that the closure in Sg+1 of Sg+1 r S1
g is a torus with one hole. Let Cg+1 be

any essential circle in it and TCg+1 the correspondent Dehn twist in Mod(Sg+1).

Definition 6.2.4. Define Bg+1 as the subgroup of Mod(Sg+1) generated by i(B1
g)

and TCg+1 .

A remark about Bg

We want to prove that Bg+1
∼= Z ⊕ B1

g . This will be an easy consequence of
Proposition 6.2.6.

Lemma 6.2.5. Let S be a surface and let C1, ..., Ck be a collection of homotopically
distinct circles in S, each one not homotopic to a point. Let V1 and V2 be two other
circles of S that are disjoint from ∪ki=1Ci, homotopically distinct from each Ci and
not homotopic to a point. If V1 and V2 are isotopic in S then the isotopy can be
chosen to takes values in S r ∪ki=1Ci.
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Proof. First we perturb V1 by isotopy in S r ∪ki=1Ci to be transverse to V2. If
V1 ∩ V2 = ∅, then V1 and V2 bound an annulus in S and, by the hypothesis, none
of the Ci can intersect this annulus. Thus we are done. Suppose, instead, that
V1 ∩ V2 6= ∅. Then they form a bigon in S and, by the hypothesis, none of the
Ci intersect this bigon. Thus we can push V1 across this bigon by an isotopy in
S r ∪ki=1Ci. Repeating this process we reduce ourself to the case V1 ∩ V2 = ∅.

Proposition 6.2.6. The homomorphism

i : Mod(S1
g , ∂S

1
g )→ Mod(Sg+1)

induced by the inclusion S1
g ↪→ Sg+1, is injective.

Proof. Let f ∈ Mod(S1
g , ∂S

1
g ) be in the kernel of i and φ ∈ Diff+(S1

g , ∂S
1
g ) be a

representative of f . Call φ̂ ∈ Diff+(Sg+1) the extension of φ to a diffeomorphism of
Sg+1 that is the identity on Sg+1 r S1

g . Then φ̂ is a representative of i(f) and thus
is isotopic to the identity of Sg+1. Here, the key observation is the following: if C
is an arbitrary essential circle in S1

g , then φ(C) = φ̂(C) is isotopic to C in Sg+1 and
thus, by the previous lemma, in S1

g . Note that ∂S1
g is not homotopic to a point in

Sg+1. Now consider the circles C1, ..., Ck of S1
g in the figure below.

Figure 6.2 Subdivision of S1
g in disks and an annulus.

(This picture is the same as the one used to prove Lemma 2.4.12). By Proposition
2.3.38, we may assume that φ fixes setwise every Ci. In particular, φ fixes each point
of the form Ci ∩ Cj with i 6= j. Note that |Ci ∩ Cj| ≤ 1 if i 6= j. Since for every i
the set Ci r ∪j 6=iCj is a collection of intervals whose extreme points are fixed by φ
and any two of such interval have at least one different extreme point, φ must fix
each of these intervals setwise and acts as an orientation-preserving diffeomorphism
on each of them. Since the space of orientation-preserving diffeomorphism of [0, 1]
that fix pointwise {0, 1} is contractible, up to an isotopy of S, we may assume that
φ|Ci = 1Ci for all i. Cutting S1

g along these circles we obtain a collection of disks and
an annulus N corresponding to a closed neighborhood of ∂S1

g . Thus, by Example
3.1.7, f has a representative that is supported in N and, by Example 3.1.9, f is a
power of a Dehn twist about a circle that is isotopic to ∂S1

g . Since ∂S1
g is not a
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trivial circle in Sg+1 and φ̂ is isotopic to 1Sg+1 , the power must be 0 and thus φ is
isotopic to 1S1

g
.

Corollary 6.2.7. We have Bg+1
∼= i(B1

g)⊕ Z ∼= B1
g ⊕ Z.

Proof. The twist TCg+1 obviously commutes with the elements of i(B1
g) thus we only

need to prove that the sum of i(B1
g) and ZTCg+1 inside Mod(Sg+1) is direct. This

follows from Proposition 3.2.6 and the fact that there exists a non-trivial circle C of
Sg+1 such that [g(C)] = [C] for all g ∈ i(B1

g) and i(C,Cg+1) > 0.

6.2.2 Computation of cd(Bg)

We now compute the cohomological dimension of Bg for g ≥ 2. This is done by
constructing a K(Bg, 1)-space that satisfy the properties of Theorem 1.2.8.

Lemmas about UT (Sg) and Emb+(D2, Sg)

Let g ≥ 2 and fix a Riemannian metric on Sg.

In order to compute cd(Bg) we will exploit some properties, that we now explain, of
the unit tangent bundle UT (Sg) of Sg and of the space of the orientation-preserving
smooth embeddings in Sg of a fixed closed disk D2 ⊆ Sg contained in Sg, denoted
by Emb+(D2, Sg). We will endow Emb+(D2, Sg) with the C∞-topology.

The group Diff+(Sg) acts in a continuous way on Emb+(D2, Sg) by f · i = f ◦ i
for all f ∈ Diff+(Sg) and i ∈ Emb+(D2, Sg). In particular, we can consider the fiber
bundle

EEmb+(D2, Sg) = (EDiff+(Sg)× Emb+(D2, Sg))/Diff+(Sg)→ BDiff+(Sg)

See the Appendix B for the notation.
Similarly Diff+(Sg) acts continuously on the unit tangent bundle UT (Sg) of Sg by
f · vx = dxf(v)

|dxf(v)| for all v ∈ TxSg (where x ∈ Sg is a point in the surface) and
f ∈ Diff+(Sg). Thus we can also consider the fiber bundle

EUT (Sg) = (EDiff+(Sg)× UT (Sg))/Diff+(Sg)→ BDiff+(Sg)

We start with observing that UT (Sg) is a K(π1(UT (Sg)), 1)-space.

Lemma 6.2.8. UT (Sg) is a K(π1(UT (Sg)), 1)-space.

Proof. There is a fiber bundle map

UT (Sg)→ Sg
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with fiber S1. Now use the associated exact sequence of homotopy groups recalling
that Sg and S1 are respectivelyK(π1(Sg), 1) andK(Z, 1)-spaces being their universal
cover respectively R2 and R.

Next, we relate UT (Sg) with Emb+(D2, Sg).

Lemma 6.2.9. Fix a unitary vector v ∈ UTp0D2. Then the Diff+(Sg)-map

Emb+(D2,Sg)→ UT (Sg)

i 7→ dp0i(v)

|dp0i(v)|

is a weak homotopy equivalence.

Proof. This is proved in the Appendix C. See Corollary C.2.5

Now let i0 ∈ Emb+(D2, Sg) be the inclusion map.

Lemma 6.2.10. The Diff+(Sg)-map

Diff+(Sg)→ Emb+(D2, Sg)

f 7→ f ◦ i0 = f |D2

is a fiber bundle map.

Proof. This is proved in the Appendix C. See Theorem C.2.1.

Call H the stabilizer of i0 under the action of Diff+(Sg). Then, H consists of
those those diffeomorphisms that restrict to the identity on i0(D2) = D2.

Corollary 6.2.11. There are exact sequences of groups

0→ π1(UT (Sg))→ Mod(S1
g , ∂S

1
g )→ Mod(Sg)→ 0

and
0→ π1(UT (Sg))→ B1

g → Bg → 1.

Proof. The second exact sequence follows from the first. The first exact sequence
comes from the long exact sequence of homotopy groups associated to the fiber bun-
dle Diff+(Sg)→ Emb+(D2, Sg) recalling that Emb+(D2, Sg) is homotopy equivalent
to UT (Sg).

Applying Lemma B.2.16 and Lemma B.2.18, we also obtain
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Corollary 6.2.12. There exist a commutative diagram

π1(UT (Sg)) //

��

π1(EUT (Sg)) //

��

π1(BDiff+(Sg))

��
π1(Emb+(D2, Sg)) // π1(EEmb+(D2, Sg)) //

��

π1(BDiff+(Sg))

��
π1(Emb+(D2, Sg)) // π0(H) // π0(Diff+(Sg))

where the vertical arrows are isomorphisms, the first horizontal sequence is part of
the exact sequence of homotopy groups associated to the fiber bundle EUT (Sg) →
BDiff+(Sg), the second is part of the exact sequence associated to fiber bundle EEmb+(D2, Sg)→
BDiff+(Sg) and the last one is part of the exact sequence of the fiber bundle Diff+(Sg)→
Emb+(D2, Sg).

Construction of a nice K(Bg, 1)-space

The main in step in computing cd(Bg) is the proof of the following result:

Theorem 6.2.13. There exists a closed topological manifold Kg of dimensions 4g−5
that is a K(Bg, 1)-complex. Similarly, there exists a closed manifold K1

g of dimension
4g − 2 which is a K(B1

g , 1)-complex.

Proof. We start with the 3-dimensional torus (S1)×3 which is a K(B2, 1)-space
and has dimension 3, and given Kg we costruct K1

g . After that we can take
Kg+1 = K1

g × S1.
SupposeKg has already been constructed. Consider the topological group Diff+(Sg).
Since BDiff+(Sg) is a K(Mod(Sg), 1)-space, using Propostion B.2.8, the inclusion
Bg ↪→ Mod(Sg) induces a continuous map h : Kg → BDiff+(Sg) with the property

that π1(Kg)
π1(h)−−−→ π1(BDiff+(Sg)) is injective and the image of the composition

π1(Kg)
π1(h)−−−→ π1(BDiff+(Sg))→ π0(Diff+(Sg)) (where the second map is the bound-

ary map in the long exact sequence of homotopy groups associated to the bundle
EDiff+(Sg)→ BDiff+(Sg)) is exactly Bg.
Consider the action of Diff+(Sg) on the unit tangent bundle UT (Sg) of Sg described
in the previous subsection. Define K1

g to be the pullback under the map h of the
fiber bundle EUT (Sg)→ BDiff+(Sg). Thus we have a fiber bundle K1

g → Kg with
fiber UT (Sg). We claim that this definition of K1

g works.

Properties of K1
g .
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ClearlyK1
g is a topological manifold of dimension dimK1

g = dimKg+3 = 4g−5+3 =
4g − 2. It is compact because we have a closed map p : K1

g → Kg with compact
fibers. The fact that p is a closed map is standard. The proof goes as follows.
Cover Kg with open sets U trivializing K1

g , then p : K1
g |U ∼= U × UT (Sg)

prU−−→ U is
closed being UT (Sg) compact. It follows that for ever closed C ⊆ K1

g , the image
p(C)∩U = prU(C ∩K1

g |U) is closed in U and thus that p(C) is closed in Kg. More-
over, according to a general result of Kirby and Siebanmann, every closed manifold
of dimension greater than 4 admits a CW-structure (see [28]). In particular, K1

g

admits a CW-complex structure. What remains to prove is that K1
g is a K(B1

g , 1)-
space. First of all, we prove that it is a K(π1(K1

g ), 1)-space. Indeed, the long exact
sequence of the fiber bundle K1

g → Kg

...→ πn(UT (Sg))→ πn(K1
g )→ πn(Kg)→ ...

shows that πn(K1
g ) = 0 for n ≥ 2 and thus K1

g is a K(π1(K1
g ), 1)-space. In addition,

this sequence ends with the short exact sequence of groups

0→ π1(UT (Sg))→ π1(K1
g )→ π1(Kg)→ 0.

From the commutativity of the diagram

K1
g

��

// EUT (Sg)

��
Kg

// BDiff+(Sg)

we obtain a commutative diagram

0 // π1(UT (Sg)) // π1(K1
g ) //

��

π1(Kg)� _

��

// 0

0 // π1(UT (Sg)) // π1(EUT (Sg)) // π1(BDiff+(Sg)) // 0

where the horizontal sequences are exact and π1(Kg)→ π1(BDiff+(Sg)) is injective.
It follows that also the map π1(K1

g ) → π1(EUT (Sg)) is injective. As explained
in Corollary 6.2.12, the lower horizontal sequence can be identified with the exact
sequence of homotopy groups associated to the fibration Diff+(Sg)→ Emb+(D2, Sg)

0→ π1(Emb+(D2, Sg))→ π0(H)→ π0(Diff+(Sg))→ 0

where H ⊆ Diff+(Sg) is the the stabilizer of the inclusion map i0 ∈ Emb+(D2, Sg)
and thus consists of those orientation-preserving diffeomorphisms of Sg that fix

99



pointwise i0(D2) = D2. In particular π0(H) ∼= Mod(S1
g , ∂S

1
g ) and π1(K1

g ) is isomor-
phic to the preimage of Bg ⊆ π0(Diff+(Sg)) under the map π0(H)→ π0(Diff+(Sg))
that is the surjective map Mod(S1

g , ∂S
1
g )→ Mod(Sg) used to define B1

g . In conclusion
π1(K1

g ) ∼= B1
g and the proof is complete.

Corollary 6.2.14. We have cd(Bg) = 4g − 5 and cd(B1
g) = 4g − 2.

Proof. Apply Theorem 1.2.8 to the spaces Kg and K1
g .

6.3 The virtual cohomological dimension of Mod(S)

We can finally compute vcd(Mod(S)). We start with closed surfaces.

Theorem 6.3.1. Let S = Sg be a closed surface. Then the virtual cohomological
dimension of Mod(Sg) is

vcd(Mod(Sg)) =


0 if g = 0;

1 if g = 1;

4g − 5 if g ≥ 2.

Proof. If g = 0, we have seen that Mod(S2)=0 and thus vcd(Mod(S2))=0. If g = 1
we have seen that Mod(T 2)∼= SL(2,Z) and that vcd(SL(2,Z)) = 1. Thus we may
assume that g ≥ 2. Consider a torsion free and finite index subgroup Mod(Sg)[m]
of Mod(Sg) where m ≥ 3. It is enough to prove that cd(Mod(Sg)[m]) = 4g − 5.
Consider the smooth manifold with corners Xg(δ) of Definition 5.4.2, where δ <
2 sinh−1(1/2). The action of Mod(Sg)[m] on TSg is free and proper discontinuous,
and preserves both Xg(δ) and ∂Xg(δ); thus the quotient Yg = Xg(δ)/Mod(Sg)[m] is
a smooth manifold with corners. Note that π1(Yg) ∼= Mod(Sg)[m]. There is a finite
sheet covering Yg → Xg(δ)/Mod(Sg) and Xg(δ)/Mod(Sg) is compact, hence Yg is
compact, too. It follows that Yg is a compact and connected smooth manifold with
corners and in particular it has a finite CW-complex structure. Furthermore, Xg(δ)
is contractible and it is the universal covering of Yg, thus Yg is a K(Mod(Sg)[m], 1)-
space. Applying Theorem 1.2.8, we obtain cd(Mod(Sg)[m]) = dimYg − t− 1 where
dimYg = dimXg(δ) = 6g− 6 and t = min{k : H̃k(∂Xg(δ)) 6= 0} ≥ −χ(Sg) = 2g− 2.
Here we are using the fact that ∂Xg(δ) is homotopically equivalent to C(Sg), that
C(Sg) is χ(Sg) − 1 = 2g − 3 connected and Hurewicz Theorem. This proves that
cd(Mod(Sg)[m]) ≤ 6g − 6 − (2g − 2) − 1 = 4g − 5. Next we prove the reverse
inequality. Consider the intersection Γ = Mod(Sg)[m]∩Bg. Then, Γ has finite index
in Bg and, since cd(Bg) < ∞, we have cd(Γ) = cd(Bg) = 4g − 5. But now Γ is a
subgroup of Mod(Sg)[m] and thus cd(Mod(Sg)[m]) ≥ cd(Γ) = 4g − 5.
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Theorem 6.3.2. Let S = Sbg with g ≥ 2 and b ≥ 1. Then vcd(Mod(S)) = 4g−4+b.

In the proof of this result, we will need the following lemma.

Lemma 6.3.3. Let x ∈ Sbg r ∂Sbg. The map p : Homeo+(Sbg) → Sbg r ∂Sbg given by
φ 7→ φ · x = φ(x) is a fiber bundle map, with fiber Homeo+(Sg, {x}) the subspace of
those orientation-preserving homeomorphisms that fix x.

Proof. For a standard result of Differential Topology, there are an open disk U
around x in Sbg r ∂Sbg and a continuous map Φ : U → Homeo+(Sbg) such that
p ◦ Φ = 1U (i.e. Φ(u)(x) = u for all u ∈ U). Thus we have a homeomorphism
U × Homeo+(Sg, {x})→ p−1(U) defined by (u, φ) 7→ Φ(u) ◦ φ. For any other point
y ∈ Sbg r ∂Sbg, we can choose a homeomorphism ξ of Sbg taking x to y. Then there is
a homeomorphism

ξ(U)× Homeo+(Sbg, {x})→ U × Homeo+(Sg, {x})→ p−1(U)→ p−1(ξ(U))

given by (ξ(u), φ) 7→ ξ◦Φ(u)◦φ and so we have verified the fiber bundle property.

Proof of Theorem 6.3.2. We first explain the strategy of the proof. We will con-
struct a finite-index subgroup Γg,b of Mod(Sbg) and a K(Γg,b, 1)-space Yg,b that is
also a compact topological manifold with boundary and that has a structure of finite
CW-complex. Then, using Theorem 1.2.8, we will compute cd(Γg,b), that will neces-
sarily be finite. In particular, Γg,b must be torsion-free and vcd(Mod(Sbg))=cd(Γg,b).

Construction of Γg,b and Yg,b.

Fix g ≥ 2. We construct Γg,b and Yg,b by induction on b. Start with Γg,0 =
Mod(Sg)[m] where m ≥ 3 and Yg,0 = Xg(δ)/Mod(Sg)[m] where δ < 2 sinh−1(1/2).
Now suppose that Γg,b and Yg,b are already constructed. Consider the action of
Homeo+(Sbg) on Sbg r ∂Sbg given by φ · y = φ(y) for all φ ∈ Homeo+(Sbg) and
y ∈ Sbg r ∂Sbg. Fix a point x ∈ Sbg r ∂Sbg. Then, the map Homeo+(Sbg) → Sbg r ∂Sbg
given by φ 7→ φ·x = φ(x) is a fiber bundle map, with fiber Homeo+(Sg, {x}) the sub-
space of those orientation-preserving homeomorphisms that fix x. Since χ(Sbg) < 0,
the connected components of Homeo+(Sbg) are contractible and thus the homotopy
sequence of this fiber bundle ends with

0→ π1(Sbg r ∂Sbg)→ π0(Homeo+(Sg, {x}))→ π0(Homeo+(Sbg))→ 0.

Observe that, according to Remark 3.1.6, π0(Homeo+(Sbg, {x})) = Mod(Sbg, {x}) and
thus the previous sequence is equal to the exact sequence of groups

0→ π1(Sbg r ∂Sbg)→ Mod(Sbg, {x})→ Mod(Sbg)→ 0.
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Using Lemma B.2.18, this short exact sequence can also be identified with the
short exact sequence of groups in the sequence of the fiber bundle E(Sbg r ∂Sbg) =
(EHomeo+(Sbg)× (Sbg r ∂Sbg))/Homeo+(Sbg)→ BHomeo+(Sbg) that follows

0→ π1(Sbg r ∂Sbg)→ π1(E(Sbg r ∂Sbg))→ π1(BHomeo+(Sbg))→ 0.

Next, we replace Sbgr∂Sbg with Sbg in the following way. The inclusion Sbgr∂Sbg → Sbg
is clearly an homotopy equivalence and, if Sbg is regarded as a Homeo+(Sbg)-space by
φ ·y = φ(y) for all φ ∈ Homeo+(Sbg) and y ∈ Sbg, it is also a Homeo+(Sbg)-map. Thus,
by Lemma B.2.16, the last exact sequence can be identified with the exact sequence

0→ π1(Sbg)→ π1(ESbg)→ π1(BHomeo+(Sbg))→ 0

where ESbg = (EHomeo+(Sbg)× Sbg)/Homeo+(Sbg)→ BHomeo+(Sbg) is a Serre fibra-
tion with fiber Sbg.
Now, since χ(Sbg) < 0, the space BHomeo+(Sbg) is a K(Mod(Sbg), 1)-space and hence
the inclusion Γg,b ↪→ Mod(Sbg) induces a continuous map h : Yg,b → BHomeo+(Sbg)

such that π1(Yg,b)
π1(h)−−−→ π1(BHomeo+(Sbg)) is injective and the image of the compo-

sition π1(Yg,b)
π1(h)−−−→ π1(BHomeo+(Sbg)) → π0(Homeo+(Sbg)) (where the second map

is the boundary map in the long exact sequence of homotopy groups associated to
the bundle EHomeo+(Sbg)→ BHomeo+(Sbg)) in exactly Γg,b. Define Yg,b+1 to be the
pullback under the map h of the fiber bundle ESbg → BHomeo+(Sbg). Thus we have
a fiber bundle Yg,b+1 → Yg,b with fiber Sbg. Since Sbg is a K(π1(Sbg), 1)-space and Yg,b
is a K(Γg,b, 1)-space, the long exact sequence of the fiber bundle Yg,b+1 → Yg,b shows
that Yg,b+1 is a K(π1(Yg,b+1), 1)-space. Moreover, from the commutative diagram

Yg,b+1

��

// ESbg

��
Yg,b // BHomeo+(Sbg)

we obtain a commutative diagram

0 // π1(Sbg) // π1(Yg,b+1) //

��

π1(Yg,b)� _

��

// 0

0 // π1(Sbg) // π1(ESbg) // π1(BHomeo+(Sbg)) // 0

where the lower horizontal short exact sequence is exactly that contained in the ho-
motopy sequence of the fiber bundleESbg → BHomeo+(Sbg) and π1(Yg)→ π1(BHomeo+(Sg))

102



is injective. It follows that the map π1(Yg,b+1) → π1(ESbg) is also injective and
π1(Yg,b+1) is isomorphic to the preimage of Γg,b under the map π1(ESbg)→ π1(BHomeo+(Sbg))

∼=
π0(Homeo+(Sbg)), that, as before explained, can be identified with the surjective
homomorphism Mod(Sbg, {x}) → Mod(Sbg). In particular, Γg,b+1 is a finite-index
subgroup of Mod(Sbg, {x}). Now observe that Mod(Sbg, {x}) is isomorphic to a
subgroup of index b + 1 < ∞ of Mod(Sb+1

g ), namely to the subgroup consist-
ing of those homeomorphisms of Sb+1

g preserving setwise one boundary component.
This follows as in the proof of Lemma 3.1.10. Hence, Γg,b+1 is a finite-index sub-
group of Mod(Sb+1

g ) and Yg,b+1 is a K(Γg,b+1, 1)-space. Now, since our Yg,b are
constructed by consecutively taking the total spaces of fiber bundles with fiber a
surface, we have that Yg,b is a topological manifold with boundary of dimension
dimYg,b = dimYg,0 + 2b = 6g − 6 + 2b. Moreover, Yg,0 is compact and for all b ≥ 1
the projection Yg,b+1 → Yg,b is a closed map with compact fibers, thus, by induction
on b, Yg,b is always compact. Finally, since dimYg,b ≥ 5, it always has a structure of
finite CW-complex.

Study of the universal covering space Ỹg,b of Yg,b.

In order to apply Theorem 1.2.8, we need to study the universal covering space Ỹg,b
of Yg,b. We already know that Ỹg,0 = Xg(δ). Note that it is contractible. Suppose
Ỹg,b has already been constructed and is contractible, then Ỹg,b+1 can be constructed
as follows. First, consider the pullback Mg,b+1 → Yg,b+1 (as a fiber bundle) of the
covering map Ỹg,b → Yg,b under the projection map Yg,b+1 → Yg,b. Thus we have a
commutative square

Mg,b+1

��

// Ỹg,b

��
Yg,b+1

// Yg,b.

Note that Mg,b+1 → Yg,b+1 is a covering map and Mg,b+1 → Ỹg,b is a fiber bundle
map with fiber Sbg. Since Ỹg,b is contractible and paracompact, by Corollary B.1.8,
the fiber bundle Mg,b+1 → Ỹg,b is trivial and thus Mg,b+1 is homeomorphic to Sbg ×
Ỹg,b. It follows that Ỹg,b+1 = S̃bg × Ỹg,b and thus it is contractible. Its boundary is
∂S̃bg × Ỹg,b ∪ S̃bg × ∂Ỹg,b. We distinguish two cases.
First consider the case b = 0. Then, ∂Ỹg,1 = H2×∂Xg(δ) is homotopically equivalent
to ∂Xg(δ). In particular H̃0(∂Ỹg,1) = H̃1(∂Ỹg,1) = 0.
Now consider the case b ≥ 1. In this case ∂S̃bg 6= ∅ and consists of countably (infinite)
many components each homeomorphic to R. What is more the pair (S̃bg, ∂S̃

b
g) is
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homotopically equivalent to (CZ,Z), where CZ is the cone of Z. In turn, (CZ,Z)

is homotopically equivalent to the pair (R,Z), thus ∂Ỹg,b+1 is homotopy equivalent
to Z × Ỹg,b ∪ R × ∂Ỹg,b. Clearly, H̃0(Z × Ỹg,b ∪ R × ∂Ỹg,b) = 0. To investigate
H̃m(Z×Ỹg,b∪R×∂Ỹg,b) form ≥ 1, consider the good pair (Z×Ỹg,b∪R×∂Ỹg,b,Z×Ỹg,b).
The associated long exact sequence of the reduced homology groups shows that for
all m > 1 we have

H̃m(Z× Ỹg,b ∪ R× ∂Ỹg,b) ∼= H̃m((Z× Ỹg,b ∪ R× ∂Ỹg,b)/(Z× Ỹg,b))

and for m = 1 the natural map

H̃1(Z× Ỹg,b ∪ R× ∂Ỹg,b) ↪→ H̃1((Z× Ỹg,b ∪ R× ∂Ỹg,b)/(Z× Ỹg,b))

is injective. Moreover the quotient (Z× Ỹg,b∪R×∂Ỹg,b)/(Z× Ỹg,b) is homeomorphic
to (R× ∂Ỹg,b)/(Z× ∂Ỹg,b).
Let m = 1. We have already observed that H̃0(∂Ỹg,b) = 0 and now we prove, by
induction on b, that H̃1(∂Ỹg,b) = 0. If b = 1, 0 there is nothing to prove. For b ≥ 2,
it is enough to consider the commutative diagram

H̃1(R× ∂Ỹg,b) = 0

��

H̃1(Z× Ỹg,b ∪ R× ∂Ỹg,b) �
� // H̃1(Z× Ỹg,b ∪ R× ∂Ỹg,b)/(Z× Ỹg,b)) //

� _

��

H̃0(Z× Ỹg,b)

H̃0(Z× ∂Ỹg,b)

∼=
44

where the horizontal arrows come from the exact sequence of the pair (Z × Ỹg,b ∪
R × ∂Ỹg,b,Z × Ỹg,b), the vertical arrows come from the exact sequence of the pair
(R× ∂Ỹg,b,Z× ∂Ỹg,b) and the map H̃0(Z× ∂Ỹg,b)→ H̃0(Z× Ỹg,b) is induced by the
inclusion map. It follows that H̃1(∂Ỹg,b+1) = H̃1(Z× Ỹg,b ∪ R× ∂Ỹg,b) = 0.
Now define mg,b = min{j ∈ N0 : H̃j(∂Ỹg,b) 6= 0}. We know that mg,b ≥ 2. The
long exact sequence of the reduced homology groups associated to the good pair
(R× ∂Ỹg,b,Z× ∂Ỹg,b) gives for 1 ≤ m < mg,b injections

H̃m((R× ∂Ỹg,b)/(Z× ∂Ỹg,b)) ↪→ H̃m−1(Z× ∂Ỹg,b).

Thus, if 1 ≤ m ≤ mg,b then H̃m−1(∂Ỹg,b) = 0 and we have H̃m(∂Ỹg,b+1) = 0.
What is more, the long exact sequence of the reduced homology groups associated
to the pair (R× ∂Ỹg,b,Z× ∂Ỹg,b) shows that if, for m > 1, we have H̃m−1(∂Ỹg,b) 6= 0,
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then also H̃m(∂Ỹg,b+1) ∼= H̃m((R× ∂Ỹg,b)/(Z× ∂Ỹg,b)) 6= 0.
In other words, we have proved that mg,1 = mg,0 and mg,b+1 = mg,b + 1 for all b ≥ 1.
In conclusion, since dimYg,b+1 = dimYg,b + 2 for all b ≥ 0, applying Theorem
1.2.8, we obtain that cd(Γg,1) = cd(Γg,0) + 2 and cd(Γg,b+1) = cd(Γg,b) + 1. Since
cd(Γg,0) = vcd(Mod(Sg)) = 4g−5, we have vcd(Mod(Sbg)) = cd(Γg,b) = 4g−4+b.

Remark 6.3.4. Note that the group Γg,b constructed in the proof of Theorem 6.3.2
belongs to the subgroup π0(Homeo+(Sbg, {∂Sbg})) of Mod(Sbg).

Finally we compute the virtual cohomological dimension of the remaining Map-
ping Class Groups.

Theorem 6.3.5. vcd(Mod(Sb0)) = min{0, b− 3} and vcd(Mod(Sb1)) = min{1, b}.

Proof. For g = 0 and b ≤ 3 the results follows from Examples 3.1.7, 3.1.8, 3.1.11 and
3.1.12. Note that χ(S3

0) = −1 < 0. Now the desired result is obtained proceeding as
in the proof of the previous theorem starting with Y0,3 equal to a point. Similarly,
if g = 1 and b ≤ 1, the result follows from Examples 3.1.13 and 3.1.14. Since
χ(S1

1) = −1 < 0, we can proceed as above to complete the proof of the theorem. In
this case start with Y1,1 equal to a thickened figure 8.

Remark 6.3.6. Also the group Γg,b that one constructs in the proof of Theorem
6.3.5 belongs to the subgroup π0(Homeo+(Sbg, {∂Sbg})) of Mod(Sbg).

6.4 The virtual cohomological dimension of Mod(S, ∂S)

Using the computation of the previous section and the exact sequence of groups

0→ Zb → Mod(Sbg, ∂S
b
g)→ π0(Homeo+(Sbg, {∂Sbg}))→ 0

(see Proposition 6.1.6) we can also compute vcd (Mod(Sbg, ∂Sbg)). The computa-
tion uses the same techniques used to compute cd Bg and vcd(Mod(Sbg)).

Let S = Sbg be a surface with b ≥ 1 boundary components ∂1, ..., ∂b.

Lemma 6.4.1. Let (S1)×b ⊆×b

i=1
Homeo+(∂i) be the subgroup generated by the

rotations around each boundary component and let E be the map of Proposition
6.1.3. We have a fiber bundle map

E−1((S1)×b)
E−→ (S1)×b

with fiber Homeo+(S, ∂S).
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Proof. This follows from Proposition 6.1.3.

Notation 6.4.1. We will call Gg,b = E−1((S1)×b).

Corollary 6.4.2. The inclusion

Gg,b ↪→ Homeo+(Sbg, {∂Sbg})

is a weak homotopy equivalence.

Proof. The commutative square

Gg,b

��

// Homeo+(Sbg, {∂Sbg})

��

(S1)×b //×b

i=1
Homeo+(∂i)

induces, for all i ≥ 0, commutative diagrams

πi+1((S1)×b) // πi(F ) //

∼=

��

πi(Gg,b) //

��

πi((S
1)×b)

∼=
��

// πi−1(F )

πi+1(×b

i=1
Homeo+(∂i)) // πi(F ) // πi(Homeo+(Sb

g, {∂Sb
g})) // πi(×b

i=1
Homeo+(∂i)) // πi−1(F )

where F = Homeo+(Sbg, ∂S
b
g). The corollary follows from the Five Lemma.

Corollary 6.4.3. If χ(Sbg) < 0, the space Gg,b is weakly contractible.

Proof. By the previous corollary, for i ≥ 1, we have πi(Gg,b) = πi(Homeo+(Sbg, {∂Sbg}) =
πi(Homeo0(Sbg)) and, by Theorem 6.1.2, πi(Homeo0(Sbg)) = 0 for i ≥ 1.

Observe that Gg,b is a topological group. Clearly Gg,b acts continuously on
×b

i=1
Homeo+(∂i) by composition and E|Gg,b is equal to f 7→ f ◦ 1∂S = f |∂S.

Note that the stabilizer is Homeo+(Sbg, ∂S
b
g). Moreover, the subspace (S1)×b ⊆

×b

i=1
Homeo+(∂i) is preserved under the action of Gg,b. It follows that the inclu-

sion (S1)×b ↪→×b

i=1
Homeo+(∂i) is a Gg,b-map and, by Lemma 6.1.4, an homotopy

equivalence.

Applying Lemma B.2.16 and Lemma B.2.18, we obtain
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Corollary 6.4.4. There exist a commutative diagram

Zb = π1((S1)×b) //

��

π1(E((S1)×b)) //

��

π1(BGg,b)

π1(×b

i=1
Homeo+(∂i)) // π1(E(×b

i=1
Homeo+(∂i))) //

��

π1(BGg,b)

��
π1(×b

i=1
Homeo+(∂i)) // π0(Homeo+(Sbg, ∂S

b
g)) // π0(Gg,b)

where the vertical arrows are isomorphisms, the first horizontal sequence is part of
the exact sequence of homotopy groups associated to the fiber bundle E((S1)×b) =
(EGg,b × (S1)×b)/Gg,b → BGg,b, the second is part of the exact sequence associ-
ated to fiber bundle E(×b

i=1
Homeo+(∂i)) = (EGg,b ××b

i=1
Homeo+(∂i))/Gg,b →

BGg,b and the last one is part of the exact sequence of the Serre fibration Gg,b →
×b

i=1
Homeo+(∂i).

Theorem 6.4.5. Let S = Sbg be a surface with b ≥ 1. Then
(a) for χ(S) ≥ 0, we have vcd(Mod(S, ∂S)) = b− 1;
(b) for χ(S) < 0, we have vcd(Mod(S, ∂S)) = vcd(Mod(S)) + b.

Proof. (a) follows from Examples 3.1.7 and 3.1.9. We prove (b).

Stretegy for the proof of (b)

We will construct construct a finite-index subgroup Γ∂g,b of Mod(Sbg, ∂S
b
g) and a

K(Γ∂g,b, 1)-space Y ∂
g,b that is also a compact topological manifold with boundary

and that has a structure of finite CW-complex. Then, using Theorem 1.2.8, we will
compute cd(Γ∂g,b), that will necessarily be finite. In particular, Γ∂g,b must be torsion-
free and vcd(Mod(Sbg, ∂Sbg))=cd(Γ∂g,b).

Construction of Γ∂g,b and Y ∂
g,b.

The definition of Γ∂g,b is easy. Consider the exact sequence of groups obtained in
Proposition 6.1.6

0→ Zb → Mod(Sbg, ∂S
b
g)

η−→ π0(Homeo+(Sbg, {∂Sbg}))→ 0.

By Remark 6.3.4 or 6.3.6, the group Γg,b constructed in Theorem 6.3.2 and in Theo-
rem 6.3.5 is contained in π0(Homeo+(S, {∂S})) and we define Γ∂g,b to be the preimage
of Γg,b under the homomorphism η. Since Γg,b has finite index in π0(Homeo+(Sbg, {∂Sbg})),
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also Γ∂g,b has finite index in Mod(Sbg, ∂S
b
g).

Next, we construct Y ∂
g,b. Since χ(Sbg) < 0, the group Gg,b is weakly contractible

and thus the classifying space BGg,b is a K(Gg,b, 1)-space. Let h : Yg,b → BGg,b

be a continuous map such that π1(h) : π1(Yg,b) ↪→ π1(BGg,b) is injective and the

image of the composition π1(Yg,b)
π1(h)−−−→ π1(BGg,b) ∼= π0(Homeo+(Sbg, {∂Sbg})) is ex-

actly Γg,b. Here the second map is the isomorphism obtained by compositions as
π1(BGg,b) ∼= π0(Gg,b) ∼= π0(Homeo+(Sbg, {∂Sbg})) where the first isomorphism is the
boundary map in the long exact sequence of homotopy groups associated to the
bundle EGg,b → BGg,b and the second map is induced by the inclusion.
We define Y ∂

g,b to be the pullback under the map h of the fiber bundle E((S1)×b)→
BGg,b. Then Y ∂

g,b is a compact topological manifold with boundary of dimension
dimY ∂

g,b = dimYg,b + b. Since dimYg,b ≥ 5, the manifold Y ∂
g,b also admits a CW-

complex structure. Moreover, since Yg,b and (S1)×b are respectively a K(π1(Yg,b), 1)-
space and a K(Zb, 1)-space, also Yg,b+1 is a K(π1(Yg,b+1), 1)-space. Finally π1(Y ∂

g,b)
∼=

Γ∂g,b. Indeed, the exact sequence of homotopy groups associated to the fiber bundle
Y ∂
g,b → Yg,b contains the exact sequence of groups

0→ π1((S1)×b)→ π1(Y ∂
g,b)→ π1(Yg,b)→ 0

and using the commutative diagram

Y ∂
g,b

��

// E((S1)×b)

��
Yg,b

h // BGg,b

we obtain a commutative diagram

0 // π1((S1)×b) // π1(Y ∂
g,b)

//

��

π1(Yg,b)� _
π1(h)

��

// 0

0 // π1((S1)×b) // π1(E(S1)×b) // π1(BGg,b) // 0

where the lower horizontal short exact sequence is that contained in the homo-
topy sequence of the fiber bundle E((S1)×b) → BGg,b. It follows that the map
π1(Y ∂

g,b)→ π1(E((S1)×b)) is also injective and π1(Y ∂
g,b) is isomorphic to the preimage

of Im(π1(h)) under the map π1(E(S1)×b) → π1(BGg,b). Moreover, using Corollary
6.4.4, the last exact sequence can be identified with the exact sequence

0→ π1(
b×
i=1

Homeo+(∂i))→ π0(Homeo+(Sbg, ∂S
b
g))→ π0(Gg,b)→ 0
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and we can also identify π0(Gg,b) ∼= π0(Homeo+(Sbg, {∂Sbg})). Under these identifi-
cations, Im(π1(h)) correspond to Γg,b and thus we have π1(Y ∂

g,b)
∼= Γ∂g,b.

Study of the universal cover Ỹ ∂
g,b of Y

∂
g,b.

Let p : Ỹg,b → Yg,b be the universal covering map of Yg,b and let M∂
g,b be the pullback

under p of the fiber bundle Y ∂
g,b → Yg,b. Thus we have a commutative diagram

M∂
g,b

��

// Y ∂
g,b

��
Ỹg,b

p // Yg,b

where the map M∂
g,b → Y ∂

g,b is a covering map and M∂
g,b → Ỹg,b is a fiber bundle map

with fiber (S1)×b. Since Ỹg,b is contractible and paracompact, by Corollary B.1.8, the
spaceM∂

g,b is homeomorphic to the product Ỹg,b×(S1)×b and hence the universal cover
of Y ∂

g,b is Ỹg,b × Rb. In particular it is homotopy equivalent to Ỹg,b. Using Theorem
1.2.8, we obtain the desired equality vcd(Mod(S, ∂S)) = vcd(Mod(S)) + b.
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Appendix A

Families of maps

We start with some notations.

Notation A.0.1. We will denote by C∞W and by C∞S the space of smooth maps from
two manifolds endowed with the weak and the strong C∞-topology respectively.

Notation A.0.2. When M and N are smooth manifolds, we will denote the mani-
fold of n-jets of functions M → N with the symbol Jn(M,N).

A.1 The Jet Transversality Theorem for families of
maps

Let k be an integer and n = (n1, ..., nk) a k-upla of positive natural numbers.
Let M be a manifold of dimension m without boundary.

Notation A.1.1. Denote by M (k) the open subset of M×k consisting of the k-uple
of points (x1, ..., xk) such that xi 6= xj for all i 6= j and consider the map

σ :Jn(M,R) =
k×
i=1

Jni−1(M,R)→M

(jn1−1
x1

f1, ..., J
nk−1
xk

fk) 7→ (x1, ..., xk)

We will denote σ−1(M (k)) by Jn(M,R)(k). Given a smooth function f : Rd×M → R
we will also denote by Ψf the map

Ψf :Rd ×M (k) → Jn(M,R)(k)

(t, x1, ..., xk) 7→ (Jn1−1
x1

ft, ..., J
nk−1
xk

ft)
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Theorem A.1.1. Suppose Y ⊆ Jn(M,R)(k) is a submanifold (possibly ∂Y 6= ∅).
Then {f ∈ C∞(Rd×M,R) : Ψf t Y } is residual in C∞S (Rd×M,R). If Y is closed,
it is also open.

Note that the case k = 1 is not excluded and that when k = 1 and d = 0
we obtain the statement of the Jet Transversality Theorem. Note also that, since
C∞S (Rd ×M,R) is a Baire space, residual implies dense.

The proof of this result relies on the so called Globalization Theorem. We will
recall it in a moment.

Definition A.1.2. A mapping class on (M,R) is a function Υ. The domain of
Υ is the set of triples (L,U, V ) where U ⊆ M and V ⊆ R are open subsets and
L ⊆ M is a closed subset contained in U . To each triple Υ associates a subset
ΥL(U, V ) ⊆ C∞(U, V ). Moreover, Υ is required to satisfy the following property: if
f ∈ C∞(U, V ) and there exist triples (Li, Ui, Vi) and maps fi ∈ C∞(Ui, Vi) such that
L ⊆ ∪iLi and f = fi in a neghborhood of Li ∩ U in U for all i, then f ∈ ΥL(U, V ).

The example to keep in mind for our purposes is

ΥL(U, V ) = {f ∈ C∞(U, V ) : Ψf tL′ (Y ∩ Jn(U,R)(k))}

where U ⊆ Rd ×M is an open subset, L ⊂ U is a closed subset of Rd ×M and L′
is defined by

L′ = {(t, x1, ..., xk) ∈ Rd ×M (k) : (t, xi) ∈ L for all i = 1, ..., k}.

Definition A.1.3. The mapping class Υ on (M,R) is said rich if there are open
covers U and V of M and R such that whenever open sets U ⊆ M and V ⊆ R are
respectively elements of U and V and L ⊆ U is compact ΥL(U, V ) is dense and open
in C∞W (U, V ).

Theorem A.1.4. If Υ is a rich mapping class on (M,R) then ΥL(M,R) is open
and dense in C∞S (M,R) for every closed set L ⊆M .

Proof. See Theorem 2.2 in chapter 3 of [23].

Thus to prove Theorem A.1.1, it is enough to prove that ΥL(U, V ) = {f ∈
C∞(U, V ) : Ψf tL′ (Y ∩ (Jn(U,R)(k))} is a rich mapping class when Y is closed.
The case in which Y is not closed is then easily obtained as follows. Write Y =

⋃
k Yk

where each Yk is a compact coordinate disk in Y . Then each {f ∈ C∞(Rd×M,R) :
Ψf t Yk} is open and dense in C∞S (Rd×M,R) and thus their intersection is residual.
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proof of the fact that Υ is a rich mapping class (for Y closed). The fact that it is a
mapping class is trivial. We now check that it is rich, following the proof the Jet
Transversality Theorem given in [23]. For U choose any atlas of Rd×M with charts
of the type (Rd × U, 1Rd × ϕ) with (U,ϕ) a chart for M ; for V consider the trivial
atlas of R.
Fix a chart (U,ϕ) on M . Our claim is that

{f ∈ C∞(Rd × U,R) : Ψf tL′ (Y ∩ Jn(U,R))(k)} ⊆ C∞W (Rd × U,R)

is open and dense for every compact subset L of Rd × U . Being L compact and
Y closed, openess is clear. For density, we will prove that for max{nh − 1 : h =
1, ..., k} << s <∞ big enough

{f ∈ Cs(Rd × U,R) : Ψf t (Y ∩ Jn(U,R)(k))} ⊆ Cs
W (Rd × U,R)

is dense. Then the case s = ∞ will follow from the definition of the strong C∞-
topology, the fact

{f ∈ Cs(Rd × U,R) : Ψf tL′ (Y ∩ Jn(U,R)(k))} ⊆ Cs
W (Rd × U,R)

is open for L ⊆ Rd×U compact and the density of C∞(Rd×M,R) ⊆ Cs
W (Rd×M,R).

Note that we are intentionally discarding L from now on.
First we explain the strategy. Fix f ∈ Cs(Rd × M,R). We will find a smooth
manifold Z and a continuous map α : Z → Cs

W (Rd×U,R) such that f ∈ Im(α) and
the evaluation map associated to the composition

Z
α−→ Cs

W (Rd × U,R)
Ψ−→ Cs−h(Rd × U×k, Jn(U,R)(k))

where h = max{ni} − 1, is a smooth submersion. The evaluation map is just the
map

ev :Z × Rd × U (k) → Jn(U,R)(k)

(z, t, x1, ..., xk) 7→ Ψα(z)(t, x1, ..., xk)

We will have that Ψα(z) t (Y ∩ Jn(U,R)(k)) for almost all z ∈ Z and the claim will
follow from the continuity of α.
Put Z = Js0(Rm,R). Every element of Z is thus an s-jet at 0 of a unique polynomial
G in m variables of degree ≤ s. We will identify the elements of Z with such
polynomials. Define

α : Z → Cs
W (Rd × U,R) α(G) = f +G

To compute the differential of ev make the natural identification

Jn(U,R)(k) ⊆ U × Jn1−1
0 (U,R)× ...× U × Jnk−1

0 (U,R) (open subset)
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and

ev : Z × Rd × U (k) → U × Jn1−1
0 (U,R)× ...× U × Jnk−1

0 (U,R)

(G, t, x1, ..., xk) 7→ (x1, J
n1−1
x1

(ft +G), ..., xk, J
nk−1
xk

(ft +G))

Thus ev is clearly smooth and, with our choice of s, for every fixed (t, x1, ..., xk) ∈
Rd × U (k), the restriction

β = ev|Z×{(t,x1,...,xk)} : Z×{(t, x1, ..., xk)} → {x1}×Jn1−1
0 (U,R)×...×{xk}×Jnk−1

0 (U,R)

is a submersion; in particular ev is a submersion as claimed. To see that β is a
submersion, observe that the derivative of β is just

Z → Jn1−1
0 (U,R)× ...× Jnk−1

0 (U,R)

G 7→ (Jn1−1
x1

G, ..., Jnk−1
xk

G)

(Z and Jn1−1
0 (U,R)× ...×Jnk−1

0 (U,R) are naturally vector spaces) and that for every
x1, ..., xk ∈ (Rm)(k) and collection of real numbers {aji1...im}1≤j≤k, 0≤i1+...+im≤nj−1 such
that for every permutation σ of {1, ...,m} the equality aji1,...,im = ajiσ(1),...,iσ(m)

holds,
there exists a polynomial G in m variables y1, ..., ym and degree ≤ s such that

∂i1+...+imG

∂yi11 ...∂y
im
m

(xj) = aji1,...,im for all 1 ≤ j ≤ k and 0 ≤ i1 + ...+ im ≤ nj − 1. (A.1)

The existence of G can be proved by induction on k. When k = 1 the existence
of G is obvious. Suppose k > 1 and write xi = (x1

i , ..., x
m
i ) for i = 1, ..., k. By the

inductive step, there exists a polynomial G′ that satisfies the equations in A.1 for
1 ≤ j ≤ k − 1. Consider the polynomial

G = G′ +
k−1∏
i=1

(yi − xe(i)i )niQ

where xe(i)i is chosen in such a way that xe(i)i 6= xki for all i = 1, ..., k − 1 and Q is a
polynomial in y1, ..., ym to be determined. Note that G still satisfies the equations
in A.1 for 1 ≤ j ≤ k − 1. Imposing

ak0,...,0 = G(xk) = G′(xk) +
k−1∏
i=1

(xki − x
e(i)
i )niQ(xk)

we obtain

Q(xk) =
ak0,...,0 −G′(xk)∏k−1
i=1 (xki − x

e(i)
i )ni

.
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Now assume we know what the value of ∂i1+...+im

∂y
i1
1 ...∂y

im
m

Q(xk) must be for all i1 ≤ j1,...,im ≤
jm, then, as above, imposing for h = 1, ...,m

akj1,...,jh+1,...,jm =
∂j1+....+jm+1

∂yj11 ...∂y
jh+1
h ...∂yjmm

G(xk)

we obtain an equation of the form

akj1,...,jh+1,...,jm = bkj1,...,jh+1,...,jm +
k−1∏
i=1

(xki − x
e(i)
i )ni

∂j1+...+jm+1

∂yj11 ...∂y
jh+1
h ...∂yjmm

Q(xk)

for some real number bkj1,...,jh+1,...,jm that depends also on the derivatives ∂i1+...+im

∂y
i1
1 ...∂y

im
m

Q(xk)

for i1 ≤ j1,...,im ≤ jm. From here we get the value of ∂j1+...+jm+1

∂y
j1
1 ...∂y

jh+1

h ...∂yjmm
Q(xk). In this

way we obtain that for G to satisfy the equations in A.1 is the same as the deriva-
tives of Q in xk of order ≤ nk−1 to be equal to some real numbers and we can easily
construct such a polynomial Q of degree ≤ nk− 1. In conlusion, this proves that we
can find a polynomial G satisfying the equations in A.1 of degree ≤ n1 + ...+nk

A.2 Families of maps of finite type

This section closely follows the book [5].

Notation A.2.1. Denote by E(m, p) the ring of the germs at 0 of smooth functions
from Rm to Rp. If p = 1, we will write E(m, 1) = E(m).

Lemma A.2.1. E(m) is a local ring, with unique maximal ideal m = (x1, ..., xm)E(m).

Proof. It is clear that E(m) is a local ring with unique maximal ideal {f ∈ E(m) :
f(0) = 0}. So we only need to prove that m = {f ∈ E(m) : f(0) = 0}. The inclusion
⊆ is obvious. For the other inclusion, given f ∈ E(m) with f(0) = 0, write

f(x) = f(0) +

∫ 1

0

d

dt
f(tx)dt =

∫ 1

0

m∑
i=1

xi
∂f

∂xi
(tx)dt =

m∑
i=1

xi

∫ 1

0

∂f

∂xi
(tx)dt.

Thus f ∈ m.

Let B(m) be the set of germs h in E(m,m) such that the differential d0h is invert-
ible and h(0) = 0. Observe that B(m) is a group with respect to the composition.
Moreover, B(m) acts on E(m) by precomposition.
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Definition A.2.2. Two germs will be said equivalent if they are in the same orbit
under the action of B(m). A germ f will be said k-determined if every germ with
the same k-jet at 0 as f is equivalent to f . In particular, f must be equivalent to
its Taylor expansion by k-th order at 0.

Another point of view is provided by the following result.

Theorem A.2.3. f is finitely determinated if and only if E(m)/(∂x1f, ..., ∂xmf)E(m)

is a finite dimensional R-vector space.

Proof. It is Corollary 11.10 in chapter 11 of [5].

Definition A.2.4. A germ f is called a singularity if d0f = 0. The singularity f
is said isolated if the set-germ {x ∈ Rm : dxf = 0} is equal to {0}. The singularity
f is called algebraically isolated if f is k-determined for some k.

Corollary A.2.5. An algebraically isolated singularity is isolated.

Proof. By hypothesis A = E(m)/(∂x1f, ..., ∂xmf)E(m) is finite dimensional. Thus, by
Nakayama’s Lemma, there exists an intenger k such that mkA = 0, equivalently
such that mk ⊆ (∂x1f, ..., ∂xmf)E(m). In particular, xmi ∈ (∂x1f, ..., ∂xmf)E(m) for all
i = 1, ...,m and thus if ∂x1f(x) = ... = ∂xmf(x) = 0 it must be x = 0.

There is also a third description of finitely determined germs. First some nota-
tion.

Notation A.2.2. The space of k-jets of function at 0, Jk0 (Rm,R) can be identified
with the quotient ring R[x1, ..., xm]/(x1, ..., xm)k+1. We will denote this ring by
Êk(m) and think to a k-jet jk0f as a polynomial of degree ≤ k.

Note that Êk(m) has both a structure of smooth manifold and a structure of
R-algebra.

Lemma A.2.6. For every (f1, ..., fp) ∈ E(m)×p and k ≥ 0, the composition

Êk(m) ↪→ E(m)→ E(m)/((f1, ..., fp)E(m) + mk+1)

induces, by passing to the quotient, an isomorphism

Êk(m)/(jk0f1, ..., j
k
0fp)Êk(m)

∼= E(m)/((f1, ..., fp)E(m) + mk+1).

Proof. Applying repeatedly the argument in the proof of Lemma A.2.1, we im-
mediately get that for all f ∈ E(m), f − jk0f ∈ mk+1. Thus the composition
Êk(m) ↪→ E(m) → E(m)/((f1, ..., fp) + mk+1) is surjective and ((f1, ..., fp)E(m) +

mk+1)) ∩ Êk(m) = (jk0f1, ..., j
k
0fp)Êk(m).
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We can now easily prove the following

Theorem A.2.7. Let f1, ...fp ∈ E(m) and k ≥ 0. Then

dimR(E(m)/(f1, ..., fp)E(m)) ≤ k

if and only if
dimR(Êk(m)/(jk0f1, ..., j

k
0fp)Ê(m)) ≤ k.

Proof. Suppose dimR(E(m)/(f1, ..., fp)E(m)) ≤ k <∞. Then

dimR(Êk(m)/(jk0f1, ..., j
k
0fp)Êk(m)) = dimR(E(m)/((f1, ..., fp)E(m) + mk+1)) ≤ k.

Vice versa, suppose the previous inequality holds. By Nakayama’s Lemma, mk ⊆
(f1, ..., fp)E(m) +mk+1 and, applying again Nakayama’s Lemma (here we use that k >
0), we obtain mk+1 ⊆ mk ⊆ (f1, ..., fp)E(m) and thus dimR(E(m)/(f1, ..., fp)E(m)) ≤
k.

Corollary A.2.8. A singularity f is finitely determined if and only if

dimR(Êk(m)/(jk0 (∂x1f), ..., jk0 (∂xmf)Ê(m)) ≤ k

for some k ≥ 1.

Our problem is: how many are the non-algebraic singularities? This problem
can be formulated in mathematical terms as follows.

For k ≥ 2, consider the subsets Ak ⊆ Êk(m),

Ak =

{
jk0f

∣∣∣∣ f ∈ E(m), Df(0) = 0

and dimR(Êk−1(m)/(jk−1
0 (∂x1f), ..., jk−1

0 (∂xmf))Êk−1(m)) > k − 1

}
and set A1 = {j1

0f : f ∈ E(m) and Df(0) = 0}.
Then f is a non-algebraic singularity iff jk0f ∈ Ak for all k ≥ 1 and the set of
non-algebraic singularities is small in the sense specified by the following theorem:

Theorem A.2.9. Ak is the union of finitely many submanifolds Aik (i = 1, ..., n(k))
of Êk(m). Moreover, if C(k) = min{codim(Aik, Êk(m)) : i = 1, ..., n(k)} , then C(k)
diverges for k →∞.

In order to prove this theorem we will use some real algebraic geometry. First
we introduce some notation.
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Notation A.2.3. For l > k denote by πlk : Êl(m) → Êk(m) the natural projection.
It is both a smooth map and a morphism of R-algebras. Define Ê(m) to be the
inverse limit of

...
πk+2
k+1−−−→ Êk+1(m)

πk+1
k−−−→ Êk(m)

πkk−1−−−→ ...

Thus Ê(m) is both a smooth manifold, diffeomorphic to the space of ∞-jets at
0, and an R-algebra, isomorphic to R[x1, ..., xm]. Moreover the natural projection
πk : Ê(m)→ Êk(m) is a smooth map and a morphism of R-algebras.

Definition A.2.10. A subset Y ⊆ Ê(m) will be said proalgebraic if there are
algebraic sets Yk ⊆ Êk(m) such that Y =

⋂∞
k=1 π

−1
k (Yk).

The reason why we have introduced this notion is that the Ak are algebraic
subsets of Ê(m) and thus A =

⋂∞
k=1 π

−1
k (Ak) is proalgebraic.

Lemma A.2.11. The Ak are algebraic subsets of Ê(m).

Proof. For k = 1 the lemma is clear. Suppose k ≥ 2. The condition

dimR(Êk−1(m)/(jk−1
0 (∂x1f), ..., jk−1

0 (∂xmf))Êk−1(m)) > k − 1

can be expressed by asking that, if {φj} are all the monomial of degree ≤ k− 1, the
linear map

Φf : Rm⊗ < φj >R → Êk−1(m)

ei ⊗ φj 7→ jk−1
0 (jk−1

0 (∂xif) · φj) = jk−1
0 (∂xi(j

k
0f) · φj)

has rank < dimR Êk(m) − k + 1 and this condition is the same as imposing that
some determinants, which are polynomials in the coefficients of jk0f , are zero.

Remark A.2.12. It is clear that the definition of a proalgebraic set remains invari-
ant if we require that πk+1

k (Yk+1) ⊆ Yk for all k.

Definition A.2.13. If the algebraic sets Yk are such that πk+1
k (Yk+1) ⊆ Yk for

all k, the codimension of Y =
⋂∞
k=1 π

−1
k (Yk) in Ê(m) is the supremum of the

codimensions (as algebraic varieties) of Yk in Êk(m).

Lemma A.2.14. Suppose Yk are algebraic subsets of Êk(m) such that πk+1
k (Yk+1) ⊆

Yk. If for all k ≥ 1 and polynomial p in Êk(m) there is l > k and a polynomial
q ∈ Êl(m) r Yl such that πlk(q) = p , then the codimension of Y in Ê(m) is infinite.
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Proof. Call di the codimension of Yi in Êi(m). Fix k ≥ 1. Since Yk+1 ⊆ (πk+1
k )−1(Yk)

and (πk+1
k )−1(Yk) has codimension dk in Êk+1(m), we have dk ≤ dk+1. Suppose that

from a certain k we have dk = dk+1 = dk+2 = .... We will prove that in this case⋃
l>k′ π

l
k′(Êl(m) r Yl) ( Êk′(m) for some k′ > k. Consider an irreducible component

Xk of Yk with highest dimension. Then (πlk)
−1(Xk) is irreducible for all l > k

and thus either Yl ∩ (πlk)
−1(Xk) = (πlk)

−1(Xk) or Yl ∩ (πlk)
−1(Xk) has codimension

> dk = dl in Êl(m).
We claim that, up to increasing k and l, the second possibility cannot hold. To see
this, call bk the number of irreducible components of Yk with highest dimension.
Since Yk+1 ⊆ (πk+1

k )−1(Yk) and the lift of every component of Yk is irreducible, any
irreducible component of Yk+1 is contained in the lift of some irreducible component
of Yk. Moreover, since dk = dk+1, every irreducible component of Yk+1 of highest
dimension is equal to some lift of a component and thus bk ≥ bk+1. This proves
that bk ≥ bk+1 ≥ .... Now the bk are finite numbers and thus this sequence must
stabilize. Say that bk′ = bk′+1 = .... But then, Yl ∩ (πlk′)

−1(Xk′) = (πlk′)
−1(Xk′) for

all l > k′ and Xk′ ⊆ Yk′ irreducible component of maximal dimension. This implies
that

⋃
l>k′ π

l
k′(Êl(m) r Yl) ( Êk′(m) and the proof is complete.

Theorem A.2.15. For all k ≥ 1 we have πk+1
k (Ak+1) ⊆ Ak and A =

⋂∞
k=1 π

−1
k (Ak)

has infinite codimension in Ê(m).

Proof. The fact that πk+1
k (Ak+1) ⊆ Ak for all k ≥ 1 follows from Theorem A.2.7.

Now we prove that A has infinite codimension in E(m). By the previous lemma, it
is sufficient to show that if p ∈ Êk(m) there exist l > k and q ∈ Êl(m) r Al such
that πlk(q) = p. Let h = 1

k+2
(xk+2

1 + ...+ xk+2
m ) and ht = (1− t)p+ th for t ∈ R. For

l > k + 2, call Il = {t ∈ R : ht ∈ Al}. Then Il is an algebraic subset of R. This
is because Il is the preimage of Al under the algebraic map R → Êl(m) defined by
t 7→ (1 − t)p + th. Moreover 1 6∈ Il for large l and thus Il is finite for large l. Pick
t 6∈ Il, t 6= 1. Then q = ht

1−t 6∈ Al and π
l
k(q) = p.

We can finally prove the Theorem A.2.9.

Proof of Theorem A.2.9. We have shown that the Ak are algebraic varieties in Êk(m)
and that codim(Ak, Êk(m)) → ∞ for k → ∞. It follows that Ak is the union of
finitely many smooth submanifold of Êk(m) each having codimension ≥ codim(Ak,
Êk(m)). Namely Ak =

⋃
iA

i
k (finite union) where Aik can be defined recursively as

follows. Call B1
k = Ak and, for i > 1, let Bi

k = Sing(Bi−1
k ) be the singular locus of

Bi−1
k , then Aik = Bi

k rBi+1
k . This complete the proof.

Our last step consists of formulating the global counterpart of this local theory.

Definition A.2.16. Let M be a manifold of dimension m and without boundary.
A smooth map f : M → R is said to be of finite type if the induced germ at every
singular point of f is an algebraic singularity.
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Theorem A.2.17. {f ∈ C∞(Rd ×M,R) : ft is of finite type for all t ∈ Rd} is
residual (thus dense) in C∞S (Rd ×M,R).

Proof. The submanifold Aik determines a submanifold Y i
k of Jk(M,R) with

C(k) ≤ codim(Aik, Êk(m)) = codim(Y i
k , J

k(M,R))

and such that f : M → R is not of finite type if and only if Im(jkf) ∩ (∪iY i
k ) 6= ∅

for all k ≥ 1.
But if k is such that C(k) > dimM + d then for

Ψf :Rd ×M → Jk(M,R)

(t, x) 7→ Jkxft

to be transverse to Aik means not to meet it for all i. Thus the theorem follows from
Theorem A.1.1.

119



Appendix B

Fiber bundles and classifying spaces

In this Appendix we collect some results about fiber bundles and classifying
spaces that are used throughtout the thesis. For a concise, but complete enough for
our purposes exposition of this subject we recommend [32] and [33].

B.1 Fiber bundles

We stat recalling the definition of fiber bundles.

Definition B.1.1. A fiber bundle structure on a topological space E, with fiber
F , consists of a continuous projection p : E → B such that each point of B has
a neighborhood U for which there is a homeomorphism h : p−1(U) → U × F such
that prU ◦ h = p. Given two fiber bundles p1 : E1 → B and p2 : E2 → B over the
same space B, a morphism of fiber bundles from E1 to E2 is a continuous map
f : E1 → E2 such that p2 ◦ f = p1.

This defines the category of fiber bundles over a fixed space B.

Definition B.1.2. A fiber bundle E with fiber F over B will be said trivial if it is
isomorphic to the fiber bundle prB : B × F → B.

One of the main characteristics of fiber bundles is that they are Serre fibrations.
This is because being a Serre fibartion is a local property.

Proposition B.1.3. Let p : E → B be a continuous map. If for all b ∈ B there
exists an open neighborhood U of b such that the map p|p−1(U) : p−1(U) → U is a
Serre fibration, then p is a Serre fibration.

Proof. This is Theorem 6.11 in chapter 7 of [4].

Corollary B.1.4. A fiber bundle is a Serre fibration.
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We recall that any Serre fibration induces a long exact sequence as below ex-
plained.

Proposition B.1.5. Let p : E → B be a Serre fibration with fiber F over b0 ∈ B.
Let e0 ∈ E such that p(e0) = b0. Then there is a long exact sequence of pointed sets

...
∂n−→πn(F, e0)

πn(i)−−−→ πn(E, e0)
πn(p)−−−→ πn(B, b0)

∂n−1−−−→ πn−1(F, e0)
πn−1(i)−−−−→ ...

...
π1(i)−−→ π1(E, e0)

π1(p)−−−→ π1(B, b0)
∂0−→ π0(F, e0)

π0(i)−−→ π0(E, e0)
π0(p)−−−→ π0(B, b0).

where the distinguished point of πn(E, e0) is the identity element for n ≥ 1 and the
path component of e0 for n = 0. Similarly for πn(F, e0) and πn(B, b0).

Proof. See Theorem 4.1 in [32].

Note that this means that this is an exact sequence of groups as far as π1(E, e0).

Another important fact about fiber bundles is that they behave well under pull-
backs.

Definition B.1.6. Given a fiber bundle p : E → B and a continuous map f : B′ →
B, the pullback of E under f is the fiber bundle f ∗E = E ×B B′ → B′ defined by
(e, b′) 7→ b′.

Proposition B.1.7. Let E → B be a fiber bundle and let f, g : B′ → B be two maps
from a paracompact space. If f and g are homotopic, then the two fiber bundles f ∗E
and g∗E over B′ are isomorphic.

Proof. See [14].

Corollary B.1.8. If B is a contractible paracompact space then every fiber bundle
over B is trivial.

B.2 Principal and universal bundles

Let G be a topological group.

Definition B.2.1. A G-space is a topological space X with a continuous action
G × X → X. Given two G-spaces X and Y , a G-map between X and Y is a
continuous map φ : X → Y such that for all g ∈ G and x ∈ X, φ(g · x) = g · φ(x).

This defines the category of G-spaces.
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Definition B.2.2. A principal G-bundle is the data of a G-map π : P → B
where the action of G on B is trivial and such that there is a open covering {Ui} of
B and G-isomorphisms φi : π−1(Ui)→ Ui ×G such that prUi ◦ φi = π|π−1(Ui). Here
the action of G on Ui×G is given by g · (u, g′) = (u, gg′) for all g, g′ ∈ G and u ∈ U .
Let πP : P → B and πQ : Q → B be two principal G-bundles. A morphism of
principal G-bundles is a G-map φ : P → Q such that πQ ◦ φ = πP .

This defines a category.

Remark B.2.3. It is easy to see that any morphism of principalG-bundle is actually
an isomorphism.

Definition B.2.4. A principal G-bundle P → B is said a universal G-bundle if
P is weakly contractible. In this case B is said to be a classifying G-space.

The case in which G has the discrete topology is not excluded.

Definition B.2.5. LetG be a group endowed with the discrete topology and P → B
a universal G-bundle. Then B is called a K(G, 1)-space.

The following important theorem is due to Milnor.

Theorem B.2.6. Let G be a topological group. Then there exists a classifying G-
space.

Proof. Recall that a point of the infinite join A = A1 ∗ A2 ∗ ... is specified by

1. n ≥ 0 real numbers ti1 , ..., tin ∈ [0, 1] satisfying ti1 + ...+ tin = 1;

2. for every i such that ti 6= 0, a point ai ∈ Ai.

Such a point is denoted by ti1ai1 ⊕ ti2ai2 ⊕ ...⊕ tinain . The topology on A1 ◦A2 ◦ ...
is the weakest topology that makes the coordinate functions ti : A → [0, 1] and
ai : t−1

i (0, 1]→ Ai continuous.
In [30], Milnor has proved that the infinite join A = A1 ∗ A2 ∗ A3 ∗ ... of infinitely
many non-empty spaces is always weakly contractible. Assuming this result the
construction of a universal G-bundle is easy.

Construction of a universal G-bundle.

Let E = G ∗ G ∗ .... = G∗∞. The group G acts continuously on E by g · (ti1gi1 ⊕
... ⊕ tingin) = ti1ggi1 ⊕ .... ⊕ tinggin for all g ∈ G and ti1gi1 ⊕ ... ⊕ tingin ∈ E. Let
p : E → E/G = B be the quotient map. We want to show that it is a universal
G-bundle. We already know that E is weakly contractible, thus we only need to
find local trivializations. Since ti(g · e) = ti(e) for all i ∈ N, g ∈ G and e ∈ E,
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we have induced continuous maps ui : B → [0, 1] such that ui ◦ p = ti. Call
Ui = u−1

i ((0, 1]) = p(t−1
i ((0, 1])). The maps s′i : t−1

i ((0, 1]) → t−1
i ((0, 1]) defined by

s′i(e) = ai(e)
−1 · e have the property that

s′i(g · e) = ai(g · e)−1 · (g · e) = ai(e)
−1 · e = s′i(e)

for all g ∈ G and e ∈ t−1
i ((0, 1]); thus we have induced continuous maps si : Ui →

p−1(Ui) = t−1
i ((0, 1]) such that p◦si = 1Ui , i.e. si are local section of p. Using si, it is

immediate to find local trivializations. Indeed, the G-map Ui×G→ p−1(Ui) defined
by (b, g) 7→ g · si(b) is a homeomorphism with inverse the map sending e ∈ p−1(Ui)
to (p(e), ai(e)) ∈ Ui ×G.

Remark B.2.7. SupposeG has the discrete topology. Then the space E constructed
in the previous proposition has a natural simplicial structure with 0-simplices the
elements of the form 1i · g where g ∈ G and, more generally, k-simplices the subsets
of the form {ti1gi1 ⊕ .... ⊕ tik+1

gik+1
: ti1 , ..., tik+1

≥ 0 and ti1 + ... + tik+1
= 1}

where gi1 , ..., gik+1
are fixed elements of G. What is more, the action of G on E takes

simplices to simplices and if g ∈ G fixes any simplex, then g = 1. Thus, the quotient
B comes endowed with a natural simplicial structure.

Proposition B.2.8. Let X be a connected CW-complex and B a K(G, 1)-space.
Then every homomorphism of groups ϕ : π1(X, x0) → π1(B, b0) is induced by a
continuous map f : (X, x0)→ (B, b0).

Proof. We may assume that x0 ∈ X(0). Let T ⊆ X(1) be a maximal tree. This means
that T is a contractible subcomplex of X(1) maximal with respect to the inclusion.
Note thatX(0) ⊆ T . Set f(T ) = {b0}. Consider the quotient map p : X(1) → X(1)/T
and let x0 be equal to p(x0). Note that π1(p) is an isomorphism of groups and thus
we have a homomorphism of groups

ϕ : π1(X(1)/T, x0)
π1(p)−1

−−−−→ π1(X(1), x0)
π1(i)−−→ π1(X, x0)

ϕ−→ π1(B, b0)

where i : X(1) ↪→ X is just the inclusion map.
The image under p of the closure in X of each edge e1

α in X(1) r T is a closed path
throught the point x0 and thus determines an element [e1

α] ∈ π1(X(1)/T, x0). Define
f on e1

α in such a way that f(e1
α) represents ϕ([e1

α]). In this way, since π1(X(1)/T, x0)
is generated by the elements [e1

α], we have ϕ = π1(f) where f̄ is the mapX(1)/T → B
induced by f . Equivalently, we have ϕ ◦ π1(i) = π1(f). Next, consider a 2-cell e2

β

with attaching map ψβ : S1 → X(1). To extend f over e2
β, all we need to check is

that f ◦ ψβ is nullhomotopic. Choosing a basepoint s0 ∈ S1 and a path γβ in X(1)

from ψβ(s0) to x0, we have an element [ψβ] ∈ π1(X(1), x0) represented by γ−1
β ψβγβ.

To check that f ◦ ψβ is nullhomotopic is equivalent to check that π1(f)([ψβ]) is 0
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in π1(B, b0). But π1(i)([ψβ]) = 0, because e2
β provide a homotopy between γ−1

β ψβγβ
and a constant in X and thus π1(f)([ψβ]) = ϕ ◦ π1(i)([ψβ]) = 0. We proceed by
defining f inductively on cells enγ with n > 2. This is possible since the attaching
maps ψγ : Sn−1 → X(n−1) have nullhomotopic compositions f ◦ψγ : Sn−1 → Y . This
is because f ◦ ψγ lifts to the universal cover of Y for n > 2 and this cover is weakly
contractible by hypothesis. The conclusion of the proposition follows by observing
that the inclusion X(2) ↪→ X gives an isomorphism π1(X(2), x0) → π1(X, x0) and
the inclusion X(1) ↪→ X(2) gives a surjection π1(X(1), x0)→ π1(X(2), x0).

Next we explain the reason why classifying spaces are important.

Remark B.2.9. Given a principal G-bundle π : P → B and a continuous map
f : B′ → B, the pullback of P under f is still a principal G-bundle.

Lemma B.2.10. Let f, g : B′ → B be homotopic maps from a paracompact space
and P → B be a principal G-bundle. Then f ∗P and g∗P are isomorphic principal
G-bundles.

Proof. This is essentially a restatement of Lemma B.1.7 for principal bundles. One
can check that the same proof works in this setting, too. For a different proof in
the case in which B′ admits a structure of CW-complex see Proposition 7.1 of [33].
Note that a CW-complex is a paracompact space (See Proposition 1.20 in [21]).

Notation B.2.1. When B and B′ are two topological spaces, we will denote by
[B′, B] the set of the homotopy classes of continuous map B′ → B.

Notation B.2.2. We will denote by PG(B) the set of all isomorphism classes of
principal G-bundles over B.

Theorem B.2.11. Let P → B be a universal G-bundle. For every CW-complex
B′, the map

[B′,B]→ PG(B′)

f 7→ f ∗P

is a bijection.

Proof. See Theorem 7.4 of [33].

A classifying G-space is essentially unique:

Proposition B.2.12. There exists a universal G-bundle P → B where B is CW-
complex. Moreover, if P ′ → B′ is another of such universal G-bundle, then B′ is
homotopically equivalent to B and the same is true for P ′ and P .
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The proof of this proposition uses the following extension result.

Proposition B.2.13. Let (A,B) be a CW-pair and assume that the inclusion A ↪→
B is a weak homotopy equivalence. Let P and Q be two principal G-bundles. Then
any morphism of principal G-bundles P |A → Q|A can be extended to a morphism
P → B.

Proof. This is Corollary 6.4 of [33].

Proof of Proposition B.2.12. By Proposition 4.13 in chapter 4 of [20], the space B
has a CW approximation f : B′ → B. This means that B′ is a CW complex and f
is a weak homotopy equivalence. Let P ′ = f ∗P be the pullback of P under f . The
P ′ is weakly contractible. To see this it is enough to apply the Five Lemma to the
commutative diagram

πi+1(B′) //

∼=
��

πi(G) //

∼=
��

πi(P
′) //

��

πi(B
′)

∼=
��

// πi−1(G)

∼=
��

πi+1(B) // πi(G) // πi(P ) // πi(B) // πi−1(G)

where the upper horizontal sequence is part of the long exact sequence of the ho-
motopy groups associated to P ′ → B′, the lower horizontal sequence is part of the
long exact sequence of the homotopy groups associated to P → B and the vertical
maps are induced by the commutuative square

P ′

��

// P

��
B′ // B.

This proves the first part of the proposition. Now suppose that P → B and P ′ →
B′ are two universal G-bundles. By Theorem B.2.11, there are continuous maps
f : B′ → B and g : B → B′ such that f ∗P ∼= P ′ and g∗P ′ ∼= P . Then, (f ◦ g)∗P =
g∗f ∗P ∼= P and (g ◦ f)∗P ′ ∼= P ′. By uniqueness in Theorem B.2.11, we have
that f ◦ g is homotopic to 1B and g ◦ f is homotopic to 1B′ . Thus B and B′ are
homotopically equivalent. Now, as above, we immediately get that P and P ′ are
weakly homotopically equivalent. To prove that they are actually homotopically
equivalent we proceed as follows. The maps g : B → B′ and f : B′ → B induce
maps α : P ∼= g∗P ′ → P ′ and β : P ′ ∼= f ∗P → P respectively. We will prove that
α ◦ β is homotopic to 1P ′ . Similarly β ◦ α is homotopic to 1P and this will conclude
the proof. Let F be a homotopy between F0 = 1B′ and F1 = g ◦ f . Then we have a
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commutative diagram of pullbacks

P ′ × {0, 1}

��

// F ∗P ′

��

// P ′

��
B′ × {0, 1} � �

i0ti1
// B′ × [0, 1]

F
// B′.

where it : B′ × {t} → B′ × [0, 1] is the inclusion for t = 0, 1 and P ′ × {0, 1} =
i∗0(F ∗P ′)t i∗1(F ∗P ′). Now extend the map P ′×{0, 1} → F ∗P ′ to a map P ′× [0, 1]→
F ∗P ′ using the previous proposition. The composition P ′×[0, 1]→ F ∗P ′ → P ′ gives
the required homotopy.

Notation B.2.3. Usually the (unique) CW-complex B of the proposition is denoted
by BG, while the (unique) space P is denoted by EG.

Remark B.2.14. Observe that if B is a K(G, 1)-complex, then also P is a CW-
complex and, being weakly contractible, by Whitehead’s Theorem, it must be con-
tractible.

Finally, the property in Theorem B.2.11 characterizes the universal G-bundles,
as the following proposition specifies.

Proposition B.2.15. Let P → B be a principal G-bundle with B is a CW-complex.
Suppose that for every CW-complex B′ the map

[B′,B]→ PG(B′)

f 7→ f ∗P

is a bijection. Then P is weakly contractible.

Proof. Let P ′ → B′ be a universal G-bundle with B′ a CW complex. Then, by
Theorem B.2.11, there is a continuous map g : B → B′ such that P ∼= g∗P ′.
Moreover, by hypothesis, there is a continuous map f : B′ → B such that P ′ ∼=
f ∗P . Now, by Proposition B.2.12, we have that f ◦ g is homotopic to 1B and
g ◦ f is homotopic to 1B′ . Therefore P and P ′ are weakly homotopic (actually by
Proposition B.2.12 they are homotopic).

Construction of fiber bundles and Serre fibrations from universal bundles

Given two G-spaces X and Y , the product X × Y has a natural structure of
G-space given by g · (x, y) = (g · x, g · y) for all g ∈ G, x ∈ X and y ∈ Y .
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Now suppose are given a principal G-bundle π : E → B and a G-space F . We have
an induced map

(P × F )/G→ B

that is easily seen to be a fiber bundle over B with fiber F . In the case π : EG→ BG
is the universal G-bundle, we will denote by EF the space (E × F )/G. Thus
EF → BG is a fiber bundle with fiber F .

Suppose F ′ is another G-space and φ : F → F ′ is a G-map. Then, we have a
continuous map EF → EF ′ that sends [(e, x)] to [(e, φ(x))]. Note that the triangle

EF //

""

EF ′

{{
BG

commutes.

Lemma B.2.16. If the G-map F → F ′ is a weak homotopy equivalence, then EF →
EF ′ is a weak homotopy equivalence and there is a commutative diagram

... // πi+1(BG) // πi(F ) //

∼=
��

πi(EF ) //

∼=
��

πi(BG)

∼=
��

// πi−1(F ) // ...

... // πi+1(BG) // πi(F
′) // πi(EF

′) // πi(BG) // πi−1(F ′) // ...

Proof. The existence of the commutative diagram is obvious: the upper horizontal
sequence is the exact sequence associated to the fiber bundle EF → BG, the lower
horizonatal sequence is the exact sequence associated to the fiber bundle EF ′ → BG
and the vertical arrows are induced by the map EF → EF ′. Except for the maps
πi(EF ) → πi(EF

′), all the vertical arrows are isomorphisms and thus, by the Five
Lemma, also the maps πi(EF ) → πi(EF

′) are isomorphisms. This means that
EF → EF ′ is a weak equivalence.

Fix now a basepoint x ∈ F . We have a G-map G→ F defined by g 7→ g · x and
thus a continuous map EG→ EF defined by e 7→ [(e, x)].

Lemma B.2.17. If G→ F is a Serre fibration, then EG→ EF is a Serre fibration.

Proof. BG is covered by open sets U such that p : EG|U = p−1(U) ∼= U ×G prU−−→ U .
For each of such U , we have a commutative diagram

EG|U

��

∼= // U ×G

��
EF |U

∼= // U × F
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where U × G → U × F is given by (b, g) 7→ (b, g · x). This last map is a Serre
fibration, thus the lemma follows from Proposition B.1.3.

Lemma B.2.18. Let H = StabG(x) be the stabilizer of the base point x in G.
Suppose that G→ F is a Serre fibration. Then there is a commutative diagram

π1(F ) // π1(EF ) //

��

π1(BG)

��
π1(F ) // π0(H) // π0(G)

where the vertical arrows are isomorphisms, the upper horizontal sequence is the
exact sequence of the fiber bundle EF → BG and the lower horizontal sequence is
the exact sequence associated to the Serre fibration G→ F .

Proof. By the previous Lemma, the map EG→ EF is a Serre fibration. Clearly, its
fiber is H. Moreover, since EG is weakly contractible, the boundary map π1(EF )→
π0(H) associated to this Serre fibration is an isomorphism. Similarly, since EG is
weakly contractile, the boundary map π1(BG) → π0(G) associated to the Serre
fibration EG → BG is an isomorphism. A direct check shows that the above
diagram commutes with these choices for the vertical arrows.
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Appendix C

Orientation-preserving embeddings of
disks

C.1 The Disk Theorem

We start with proving a useful result, sometimes called the Disk Theorem that
states that, except for orientation, there is essentially one only way to embed a disk
in a connected manifold.

Notation C.1.1. As done in previous occasions, in this Appendix, we will use the
symbol C∞S to denote the space of smooth maps between two manifolds endowed
with the strong C∞-topology.

Lemma C.1.1. Let f : Dm → R be a smooth map with f(0) = 0. Then there are
smooth maps g1, ..., gm : Dm → R such that f(x) =

∑m
i=1 xigi(x) for all x ∈ Dm. In

particular, gi(0) = ∂f
∂xi

(0) for all i = 1, ...,m.

Proof. Write

f(x) = f(x)− f(0) =

∫ 1

0

d

dt
f(tx)dt =

∫ 1

0

m∑
i=1

xi
∂f(tx)

∂xi
dt =

m∑
i=1

xi

∫ 1

0

∂f(tx)

∂xi
dt

and take gi(x) =
∫ 1

0
∂f(tx)
∂xi

dt.

Remark C.1.2. The map defined by

C∞S (Dm,R)→ C∞S (Dm,R)×m

f 7→ (g1, ..., gm)

is continuous.
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Theorem C.1.3 (Disk theorem). Let M be a smooth, connected and orientable
manifold of dimension m possibly with boundary. Let f0, f1 : Dm → M r ∂M be
two orientation-preserving embeddings of the m-disk. Then f0 and f1 are smoothly
isotopic.

Proof. Using a first smooth diffeotopy of M , we reduce ourself to consider the case
in which f0(0) = f1(0). Let (ϕ,U) be a chart on M such that ϕ(U) = Rm and
ϕ(f0(0)) = 0. We can isotope f0 and f1 in U using the isotopies

(x, t) 7→ fi((1− t+ tε)x)

for x ∈ Dm, t ∈ [0, 1], i = 0, 1 and ε > 0 sufficiently small. Now the theorem
follows from the following observation. Given any orientation-preserving embedding
f : Dm → Rm such that f(0) = 0, we can first isotope it to become the restriction
of a linear and invertible map using the isotopy

(x, t) 7→

{
f(tx)
t

if t 6= 0;

Df(0)x if t = 0

and then isotopeDf(0) to become the inclusion map via a smooth path in GL+(n,R)
between Df(0) and the identity. To see that the first isotopy is smooth observe
that, thanks to the previous lemma, for i = 1, ...,m, we can write t−1fi(tx) =∑m

j=1 xjgij(tx) for some gi1, ..., gim ∈ C∞(Dm,R) such that gij(0) = ∂fi
∂xj

(0).

C.2 A homotopy equivalence

For this section, let M be a connected and oriented manifold of dimension m
and assume ∂M = ∅. Fix an subset X ⊆ M diffeomorphic to the closed disk Dm.
We will identify X = Dm.

Notation C.2.1. Denote by Emb(Dm,M) and by Emb+(Dm,M) respectively the
space of the smooth embeddings of Dm in M and the subspace of the orientation-
preserving embeddings. Endow both of them with the C∞S -topology.

Definitions and statement of the theorem

Let FrGL+

(TM) be the principal GL+(m,R)-bundle over M associated to the
tangent bundle TM . Explictly, FrGL+

(TM) is the subbundle of TM⊕m consisting
of those m-uple (v1, ..., vm) ∈ TxM such that v1, ..., vm is a positive basis of TxM .
Endow FrGL+

(TM) with the subspace topology of TM⊕m. The (left) action of
GL+(m,R) on FrGL+

(TM) is given by A · (v1, ..., vn) = (
∑n

j=1 a1jvj, ...,
∑n

j=1 amjvj)
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for all A = (aij)i,j ∈ GL+(m,R) and (v1, ..., vn) ∈ FrGL+

(TM). The local trivial-
izations are obtained from the local trivialization of TM as follows. If (ϕ,U) is an
orientation-preserving chart on M , then we have the trivialization FrGL+

(TM)|U →
U×GL+(m,R) given by associating to the positive basis (v1, ..., vm) of TxM (x ∈ U)
the pair (x,B) where B in the matrix whose rows are the dxϕ(vi) ∈ Rm for
i = 1, ...,m. It is easy to check that this is a GL+(m,R)-map.
There is also a further description of FrGL+

(TM). Consider the vector bundle
Hom(εm, TM), where εm denotes the product bundle M × Rm. Call Iso+(ε, TM)
the subbundle of Hom(εm, TM) for which the fiber Iso+

x (ε, TM) over x ∈ M is the
space of all orientation-preserving isomorphisms Rm → TxM . The group GL+(m,R)
acts on the right on Rm by v · A = ATv and this action induces a left action of
GL+(m,R) on Iso+(εm, TM). Then Iso+(ε, TM) is a GL+(m,R)-bundle with triv-
ialization maps defined as follows. If (ϕ,U) is an orientation-preserving chart on
M , then Iso+(ε, TM)|U → U × GL+(n,R) sending the element f ∈ Iso+

x (ε, TM)
to the pair (x,B) where B is the matrix whose rows are the vectors dxϕ(f(ei))
for i = 1, ..., n. Here e1, ..., en is any fixed positive basis of Rn. It is easy to
check that this is a GL+(m,R)-map. Moreover, we have an isomorphism of princi-
pal GL+(m,R)-bundles Iso+(ε, TM) → FrGL+

(TM) given by Iso+
x (ε, TM) 3 f 7→

(f(e1), ..., f(en)) ∈ FrGL+

x (TM).

The goal of this section is to prove the following result.

Theorem C.2.1. The map

Emb+(Dm,M)→ FrGL
+

(TM)

f 7→ d0f

is a weak homotopy equivalence.

Proof of the theorem

We start with studying the case M = Rm

Lemma C.2.2. The space GL+(m,R) is a deformation retract of Emb+(Dm,Rm).

Proof. Firstly, by translation, we may deformation retract Emb+(Dm,Rm) onto
the subspace Emb+(Dm,Rm; {0}) of embeddings that fix the origin. Note that
GL+(m,R) remains pointwise fixed during this deformation. Then

F (f, t)(x) =

{
1
t
f(tx) if t 6= 0;

Df(0)x if t = 0
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defined for f ∈ Emb+(Dm,Rm; {0}) and t ∈ [0, 1] is a deformation retraction of
Emb+(Dm,Rm; {0}) onto GL+(m,R). To see that F is continuous use Lemma C.1.1
and Remark C.1.2.

Let U be an open subset ofM containing Dm = X and such that the pair (U,X)
is diffeomorphic to the pair (Rm, Dm). We will identify these two pairs.

Notation C.2.2. Define Emb+(Dm,M ; {0}) to be the suspaces of Emb+(Dm,M)
consisting of those embeddings that fix 0 and similarly and Emb+(Dm,Rm; {0}) to
be the subspace of those embedding with image in Rm and fixing 0.

Lemma C.2.3. The space Emb+(Dm,Rm; {0}) is a weak deformation retract of
Emb+(Dm,M ; {0}). In particular the inclusion

Emb+(Dm,Rm; {0}) ↪→ Emb+(Dm,M ; {0})

is a homotopy equivalence.

Proof. First a consideration. Note that, since Dm is compact, the weak and the
strong C∞-topology on Emb+(Dm,M ; {0}) coincide and thus Emb+(Dm,M ; {0})
is a metric space (see Theorem 4.4 in chapter 4 of [23]). In particular it is para-
compact and Hausdorff and hence every open cover of Emb+(Dm,M ; {0}) admits a
subordinated partition of unity.
Now consider a single map f ∈ Emb+(Dm,M ; {0}). Clearly there is an ε > 0
such that f(εx) ∈ Rm for all x ∈ Dm. What is more, this ε works for all g
in a neighborhood of f and thus, using a partition of unity, we can construct a
continuous map ε : Emb+(Dm,M ; {0}) → R+ such that f(ε(f)x) ∈ Rm for all
f ∈ Emb+(Dm,M ; {0}) and x ∈ Dm. Finally [0, 1]×Emb+(Dm,M ; {0}) 3 (t, f) 7→
f((1 − t + tε(f))−) ∈ Emb+(Dm,M ; {0}) is a weak deformation retraction onto
Emb+(Dm,Rm; {0}).

Proof of Theorem C.2.1. We have a commutative square

Emb+(Dm,M)

ev0

��

// FrGL+

(TM)

π

��
M M

where ev0(f) = f(0) for all f ∈ Emb+(Dm,M) and π is the projection map. Then
ev0 is a fiber bundle map with fiber Emb+(Dm,M ; {0}) the subset of Emb+(Dm,M)
consisting of those embeddings that fix 0 (recall that 0 ∈ Dm ⊆ M). This follows
as for Lemma 6.3.3.
To conclude the proof, it suffices to prove that our map on fibers over 0 ∈ M
is a weak equivalence. Using the previous lemma, it is enough to prove that
Emb+(Dm,Rm; {0}) → GL+(m,R) that sends f to Df(0) is a weak homotopy
equivalence, but this is the content of the proof of Lemma C.2.2.
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Application to surfaces

Suppose now M = Sg where g ≥ 0 and fix a Riemannian metric h on Sg, so
that it makes sense to consider the unit tangent bundle UT (Sg). Let D2 ⊆ Sg be
an embedded disk.

Lemma C.2.4. The map

Φ : FrGL
+

(TSg)→ UT (Sg)

(v1, v2) 7→ v1

|v1|

is a homotopy equivalence.

Proof. The inverse map Ψ (up to homotopy) is given by sending to v ∈ UTx(Sg) to
the pair (v, w) where w is the unique h-unitary vector in TxSg that is h-orthogonal to
v and such that (v, w) is a positive basis of TxSg. The homotopy between 1

FrGL
+

(TSg)

and Ψ ◦ Φ is provided by Gram-Schmidt.

Putting all together, we obtain the following result.

Corollary C.2.5. Fix a unitary vector v ∈ UT0D
2. Then the map

Emb+(D2,Sg)→ UT (Sg)

f 7→ d0f(v)

|d0f(v)|

is a weak homotopy equivalence.

C.3 A fiber bundle

For semplicity, in this section we assume that M is also compact. Thus M is a
compact, connected and oriented manifold of dimension m with ∂M = ∅

In this section, we will adapt the content of [36] to our purposes.

Fix any (necessarily complete) Riemannian metric on M .

Notation C.3.1. Call Exp : TM →M the associated exponential map and denote
by X(M) the set of all smooth vector fields on M , topologized as a subspace of
C∞S (M,TM).

133



Lemma C.3.1. The map

E : X(M)→ C∞S (M,M)

defined by sending X ∈ X(M) to E(X) where E(X)(x) = Exp(Xx) is continuous.

Proof. It is sufficient to note that this map is obtained by composing X(M) 3 X 7→
(X,Exp) ∈ X(M)× C∞S (TM,M) with X(M)× C∞S (TM,M) 3 (X,H) 7→ H ◦X ∈
C∞S (M,M). The second map is continuous since M is compact (see Proposition
8.3.4 of [34]).
Alternatively one can apply Exercise 8.7 on page 243 of [34].

We now recal a result from Point-Set Topology.

Lemma C.3.2. Let X and Y be connected topological manifolds and f : X → Y a
local homeomorphism and a proper map. Then f is a finite covering map.

Proof. We prove the results in two steps.

Step 1 First we note that if f : X → Y is a local homeomorphism and there is an
integer n such that f−1(y) has exactly n points for each y ∈ Y , then f is an
n-sheeted covering map. Indeed, fixed y ∈ Y , let f−1(y) = {x1, ..., xn} and
let Wi be disjoint open neighborhoods of xi such that f |Wi

: Wi → f(Wi) is a
homeomorphism onto the open set f(Wi) for each i. Let V be the connected
component of ∩ni=1f(Wi) containing y and Ui the component of f−1(V ) ∩Wi

containing xi. It is clear that f−1(V ) = U1 ∪ ... ∪ Un and f |Ui : Ui → V is a
homeomorphism for all i.

Step 2 Let Yn be the subset of Y such that f−1(y) contains at least n points for all
y ∈ Yn. Note that, since f is a local homeomorphism, the fibers of f are
discrete and, since f is proper, they are also compact. Therefore they are
finite. Moreover, since f is a local homeomorphism, each Yn is open in Y . If
we prove that they are also closed, then each of them is either empty or equal
to Y and thus there exists a unique n such that Ym = Y for all m ≤ n and
Ym = ∅ if m > n. The lemma then follows from Step 1. To conclude the
proof, we now prove that each Yn is closed in Y . Let y ∈ Y and {yk}k ⊆ Yn
a sequence convergent to y. Say {xk,1, ..., xk,n} ⊆ f−1(yk). Up to extracting a
subsequence from {yk}k, we may assume that each sequence {xk,i}k converges
to some xi in X. Indeed the union K = {yk : k ∈ N}∪ {y} is a compact set of
Y and thus f−1(K) is compact, too. Clearly f(xi) = y for all i = 1, ..., n, thus
to conclude the proof we only need to prove that the xi are distinct. Suppose
xi = xj for some i 6= j. Then there would be a neighborhood U of xi on which
f is injective and to which belong two points xk,i and xk,j for large k. This is
a contradiction.
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Proposition C.3.3. There exists an open neighborhood U of 1M in C∞S (M,M) such
that U ⊆ Diff(M).

Proof. We give the proof in Steps.

Step 1 First we find an open neighborhood U ′ of 1M in C∞S (M,M) such that every f ∈
U ′ is a finite covering map. For every x ∈M there exist an open neighborhood
Vx of x in M and an open neighborhood Ux of 1M in C∞S (M,M) such that
for all f ∈ Ux and y ∈ Vx we have that dyf is an isomorphism. Since M is
compact, there are x1, ..., xk ∈ M such that M = ∪ki=1Vxi . Set U ′ = ∩ki=1Uxi .
If f ∈ U ′, then dxf is an isomorphism for all x ∈ M and thus f is a local
diffeomorphism. Since M is compact, f is automatically a proper map and
thus it is a finite covering map.

Step 2 Now we find an open neighborhood U of 1M contained in U ′ such that every f ∈
U is injective and thus is a diffeomorphism of M . Here is the key observation:
if f : M →M is a covering map and x, y ∈M are such that f(x) = f(y) and
for some path γ in M from x to y the image f(γ) is contained in some open
disk of M , then x = y. This suggest to proceed as follows. For every x ∈ M
there exists an εx > 0 such that the exponential map Expx : TxM → M is
a diffeomorphism from the open ball of radius 4εx (with respect to the fixed
Riemannian metric) onto an open set B(x, 4εx) of M containing x. Since
M is compact, there are x1, ..., xk ∈ M such that M = ∪ki=1B(xi, εxi). Call
U = {f ∈ U ′ : d(f(x), x) < ε for all x ∈ M} where 0 < ε < min{εxi : i =
1, ..., k}. Clearly U is open in C∞S (M,M) and contains 1M . Moreover, if f ∈ U
and f(x) = f(y), then d(x, y) ≤ d(x, f(x)) + d(f(y), y) < 2ε and thus there
exists an index i such that x and y belongs to B(xi, 3εxi). Let γ be a path in
B(xi, 3εxi) be a path between x and y, then f(γ) is a path in B(xi, 4εxi). It
follows that x = y and thus f is injective.

The proof is complete.

Corollary C.3.4. There exists an open neighborhood U of the zero vector field in
X(M) such that E(U) ⊆ Diff0(M)

Proof. Call Z the zero vector field on M . From the proposition, there is an open
neighborhood of Z in X(M) mapped in Diff(M) by E. Since X(M) is locally convex
we may assume that U is convex. Therefore if X ∈ U , the map [0, 1] 3 t 7→ E(tX) ∈
Diff(M) is an arc from 1M to E(X). Thus E(X) ∈ Diff0(M).

Recall that Dm is a closed disk in M .
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Notation C.3.2. We use the notation X(TM |Dm) to refer to the space of smooth
sections of TM |Dm → Dm.

Lemma C.3.5. There is a continuous linear map

k : X(TM |Dm)→ X(M)

such that k(X)|Dm = X for all X ∈ X(TM |Dm).

Proof. We may assume that Dm ⊆ Rm ⊆ M is contained in an open subset diffeo-
morphic to Rm. Let ρ : Rm → [0,∞) be a smooth map such that ρ(x) = 1 for all
x ∈ Dm and ρ(x) = 0 if |x| > 2. Then

k(X) =


Xx if x ∈ Dm;

ρ(x)Xx/|x| if x ∈ Rm (the norm is that of Rm);

0 otherwise;

for X ∈ X(TM |Dm) is a possible solution.

Proposition C.3.6. Call iDm : Dm → M the inclusion map. There is an open
neighborhood U of iDm in Emb(Dm,M) and a continuous map X : U → X(TM |Dm)
such that X(iDm) = Z is the zero vector field and Exp(X(f)x) = f(x) for all f ∈ U
and x ∈ Dm.

Proof. Call |Z| = Im(Z) ⊆ TM the image of Z. Consider the map

Φ : TM |Dm → Dm ×M
v 7→ (p(v),Exp(v))

where p : TM → M is the projection. Note that Φ embeds |Z| into Dm × Dm ⊆
Dm × M and the differential of Φ is non-singular at every point of |Z|. Thus Φ
is a diffeomorphism from a neighborhood V of |Z| in TM |Dm to an open set W
of Dm ×M . Let j : W → V be the inverse map and U = {f ∈ Emb(Dm,M) :
(x, f(x)) ∈ W for all x ∈ Dm}. It is clear that U is open in Emb(Dm,M). Finally,
define X : U → X(TM |Dm) by X(f)x = j(x, f(x)) for all f ∈ U and x ∈ Dm. We
need to check that X is continuous, that X(iDm) = Z and that Exp(X(f)x) = f(x)
for f ∈ U and x ∈ Dm. To see that X is continuous note that it is obtained as the
composition of U 3 f 7→ 1Dm × f ∈ C∞S (Dm,W) with C∞S (Dm,W) 3 u 7→ j ◦ u ∈
C∞S (Dm, TM |Dm). The first map is immediately checked to be continuous and the
second is continuous again for Proposition 8.3.4 or, more simply, for Exercise 8.7 in
[34]. We now check that X(iDm) = Z. Indeed, X(iDm)(x) = j(x, x) = Zx for all
x ∈ Dm. Finally, suppose f ∈ U and x ∈ Dm. Writing (x, f(x)) = (p(v),Exp(v)) for
some v ∈ TxM , we have Exp(X(f)x) = Exp(j(x, f(x))) = Exp(j((p(v),Exp(v))) =
Exp(v) = f(x) and we are done.
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Corollary C.3.7. Let f0 ∈ Emb(Dm,M). There exists an open neighborhood U of
f0 in Emb(Dm,M) and a continuous map χ : U → Diff0(M) such that f = χ(f)◦f0

for all f ∈ U .

Proof. If f0 = iDm , then the map χ = E ◦ k ◦ X defined in a sufficiently small
neighborhood of iDm solves the problem. If f0 is not iDm , consider D′ = f0(Dm).
Then there is a neighborhood U ′ of iD′ in Emb(D′,M) and a continuous map χ′ :
U ′ → Diff0(M) such that f = χ′(f) ◦ iD′ for all f ∈ U ′. Let ξ : Emb(Dm,M) →
Emb(D′,M) be the homeomorphism ξ(f) = f ◦ f−1

0 , then we can take U = ξ−1(U ′)
and χ = χ′ ◦ ξ.

We can finally prove the main result of this section.

Theorem C.3.8. The restriction map

π : Diff+(M)→ Emb+(Dm,M)

is a fiber bundle map.

Note that in particular this theorem implies that π is surjective. Actually the
proof we give of Theorem C.3.8, uses this fact.

Theorem C.3.9. The restriction map π : Diff+(M)→ Emb+(Dm,M) is surjective.

Proof. This is Theorem C in [35].

Proof of Theorem C.3.8. Call Diff+(M ;Dm) the subspace of Diff+(M) consisting
of those diffeomorphisms that fix pointwise Dm. Let f0 ∈ Emb+(Dm,M) and let
ξ : Emb+(Dm,M) → Emb+(Dm,M) be the diffeomorphism defined by f 7→ f̃0 ◦ f
where f̃0 is an extension of f0 to a diffeomorphism of M . Note that ξ(iDm) = f0.
Let U be a neighborhood of iDm and let χ : U → Diff0(M) ⊆ Diff+(M) be such
that f = χ(f)|Dm for all f ∈ U . Then

ξ(U)×Diff+(M ;Dm)→ U ×Diff+(M ;Dm)→ π−1(U)→ π−1(ξ(U))

given by (ξ(f), g) 7→ f̃0 ◦ χ(f) ◦ g is a local trivialization of π.
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