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Abstract

We develop a version of immersed Lagrangian quantum cohomology for closed, graded, exact,
generic Lagrangian immersions satisfying a positivity assumption, which slightly generalizes and

this shows that such Lagrangian immersions may be as objects in the Fukaya category

)

derived (?)

completes the work done in [AB19], and endow it with a ianonical o-structure. In particular,

of the ambient symplectic manifold.
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Introduction

The present work is a report of the author’s journey into Floer theory for Lagrangian immersions as
part of his Master thesis at ETH during the fall semester of 2021, and it is in some way the contin-
uation of previous work on Floer theory initiated during the autumn semester of 2020 [Amb20|. In
the cited work, the author started the theory of Morse functions and Mikahil Gromov’s revolutionary
work on pseudoholomorphic curves in symplectic manifolds to then develop the machinery of Hamil-
tonian and Lagrangian Floer cohomology, to in the end move onto Biran and Cornea’s Lagrangian
quantum cohomology. M“l’.’\.h%,

We give a brief overview of the situation. Hamiltonian Floer cohomology is a geferalization of Morse
cohomology to an infinite dimensional setting in the presence of a symplecticfform. Andreas Floer’s
work was motivated by a conjecture by Arnold introduced during the sixties, stajfhg that the number
of fixed points of a symplectic diffeomorphism arising from a Hamiltonian function is bounded below
by the sum of the Betti numbers of the manifold. One constructs the cohomology by trying to do
Morse theory with an “action functional” on the space of free loops of the symplectic manifold. By
changing a bit our point of view, we may see Hamiltonian Floer cohomology as generated by the
intesection points of the diagonal submanifold of our symplectic manifold with the graph of a Hamil-
tonian diffeomorphism, two compact Lagrangian submanifolds of our symplectic manifold. Indeed,
the idea behind Lagrangian Floer theory is to consider the intersection of two compact Lagrangian
submanifolds meeting transversally and build a/¥ cohomology starting from the intersection points.
Using Hamiltonian perturbation, one can then define Lagrangian Floer cohomology for any pair of La-
grangian submanifold, in particular for a single Lagrangian submanifold, of our symplectic manifold.
It is well-known, that one can endow Lagrangian Floer homology with an associative product, the
so-called Donladson product. It is also well-known that such structure gives us far more informations
at the chain level, where the product is not associative, bu‘% is subject to As-relations, giving rise

to the so-called Fukaya category. Another pproach to Lagrangian Floer theory is
known: Lagrangian quantum cohomology, which has been\studied intensively by Biran and Cornea
at the end of the 00’s. Lagrangian quantum cohomology is\a deformation of the Morse cohomology
of a compact Lagrangian (subject to a @ of assumptions),  which we let “blow &p” finitely many
points on Morse trajectories to pseudoljolomorphic disks witf boundary on sucMagrangian. By

considering similar but three-ended trajectories, one endows Lagrangian quantum cohomology with

a product which is associative in cohgmology. One can see the\so-called “pear]” complex generat-

ing this cohomology as the limit of the standard Floer complex §f a single Lagrangian (hence with
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2 CONTENTS

Hamiltonian perturbation), when the Hamiltonian tends to the identity. This was the ending point
of the previous work of the author and will be the starting point of this thesis.

In this thesis, we first introduce the basics of symplectic and almost complex geometry and give a
quick look at the structure of the proof of Gromov’s non-squeezing theorem, for which one already
needs some arguments about transversality and compactness of certain moduli spaces of spheres.
Then, we go over some results about the decomposition of pseudoholomorphic curves into simple (i.e.
with a dense set of injective points) pieces: it is very well-known that in the closed case there is a
dichotomy between simple and multiply-covered curves (i.e. up to finitely many points, all the points
of a curve have the same covering multiplicity), while the case with boundary is a bit more hard, and
has been worked out in the early 00’s by Lazzarini in the embedded case and recently by Perrier in
the generic immersed one. We then outline rather quickly some steps of the proof of the theorems
of Lazzarini and Perrier. After giving a quick remainder of Lagrangian quantum cohomology in the
embedded case we move to the main topic of this thesis: the immersed case. This is the content of
Chapter [I] of this thesis.

Floer theory for immersed Lagrangians has become of interest in recent times, and is an important
part of Biran and Cornea’s program in symplectic topology, where for instance immersed Lagrangian
cobordism is taken into consideration when building a new way of looking at Fukaya categories via
an equivalence relation modeled on a cobordism which is always immersed by definition (and surpis-
ingly, at least to the author, this construction does not use holomorphic curves). First, we construct
the graded vector space structure of Lagrangian quantum homology for certain exact Lagrangian
immersions with only transverse double points and no other singularities, mainly following previous
work of Alston and Bao, while refining it and relaxing the starting assumptions. As we are in the
exact case, our configurations will include no smooth pseudoholomorphic disks, and there will be
no bubbling of smooth disks and spheres, but may include disks with a singular point (a so-called
“teardrop”) eventually connected via Morse flowlines. Aside from that, the main difference from the
embedded case is that our “pear]” complex is also generated by ordered double points, which implies
that we have to take care of configurations starting or/and ending at double points. We show that
our cohomology is well-defined, independent of the parameters we use (a Morse-Smale pair together
with an autonomous almost complex structure) and chain isomorphic to the standard definition of
Lagrangian Floer cohomology via Hamiltonian perturbations. This is the content of Chapter [2| of this
thesis.

We then move to defining the ring and A, structures of immersed Lagrangian quantum cohomology
and providing an example of computation. We first define a ring structure on the chain level, counting
eight different types of configurations for each combination of critical point/ douﬁpoin‘c allowed in

ot the parameters. (————

configurations with three ends and show that it is well defined and independw
Then, we show that this product admits a unit which is canonical in cohomology. After that, we c.:koh-

show that this product is associative in cohomology and sketch the definition of the higher structures ‘°e‘7ﬂ
endowing the pearl complex with an A,-structure. In the end, we compute the A..-structure of the
pearl complex for a class of immersed Lagrangians of smoothings of Apy-surfaces (for which Alston
earlier computed the seetar space-structure of the quantum cohomology). Unfortunately, this ex-

a.oloa'tl e



PB

PB

PB

PB

PB

PB


CONTENTS 3

ample does not give us a proof that the product we defined is non-commutative in general, but we
expect to be so because of the rigidity of the definition of the “core” of configurations contributing to
the product. This is the content of Chapter [3] of this thesis and is, as far as the author knows, new,
altough very similar to (and inspired by) previous work of Biran and Cornea and of Fukaya (in the

Morse case).
This thesis was written during the summer of 2021 and is the result of a work lasted s /e»rf months,
which was mainly focused on Lagrangian quantum homology for immersions but also included some
weeks of thinking about other topics such as: decomposition of pseudoholomorphic disks with bound-
ary on Lagrangian immersions (following Lazzarini and Perrier), Lagrangian cobordism, the shadow
metric and the cobordism category (following more recent work of Biran and Cornea) and persistence
homology applied to symplectic topology (following a new book by Leonid Polterovich, Daniel Rosen,
Karina Samvelyan and Jun Zhang), mainly in view of the PhD the author will start at ETH under

the supervision of Prof. Paul Biran. )
V

NoY
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1 Preliminaries

1.1 A very quick introduction to symplectic geometry and almost

complex structures

In this section we will introduce the very basics of symplectic and almost complex geometry and fix
some notation.

Let M be a smooth manifold. A symplectic form on M is a non-degenerate and closed differential
2-form w € Q3(M) :=T(T*M ANT*M). We call a tuple (M,w), with M and w as above, a symplectic
manifold. It’s quite easy to see that a symplectic manifold has to be even dimensional and orientable.
It is well known that symplectic manifolds have no local invariants other than the dimension of the
manifold itself, so that symplectic geometry is quite different from Riemannian geometry: indeed, we
could interpret closedness of the sympelctic form as some kind of flatness. If L is a smooth manifold
of half the dimension of M such that there is an immersion ¢ : L — M such that i*w = 0 we say
that ¢ is a Lagrangian immersion of L in M if moreover ¢ has transverse double points and no triple
points we say that it is generic. We define the set of ordered self-intersections of a generic Lagrangian
immersion ¢ as R := {(p,q) € L x L : 1(p) = 2(q), p # q}. A diffeomorphism between symplectic
manifolds is said to be a symplectomorphism if it pullbacks the symplectic form of the target manifold
to the symplectic form of the domain. Moreover, a vector field X € I'(T'M) is said to be symplectic if
ixw € QY(M) is a closed 1-form; note that flows of symplectic vector fields are symplectomorphisms.
We mimic the construction of the Riemannian gradient. Consider a smooth function H € C*(M)
with compact support, which, in this context, symplectic geometers like to call Hamiltonian, then we
can define the Hamiltonian vector field X € T'(TM) associated to H trough

ixnw = dH “.Q. Jh.a, pub ~dH ow He RHS).
e

(notice that a lot of people useXthe minus sign convention M%—epemﬁcn—i&-of-ee&mse—bg&l— The Jﬁf

as the form w is assumed to bé non-degenerate. We generally denote by ¢! the flow of the vector 0':: g(oul

field X*; note that such flows are made of symplectomorphisms as Hamiltonian vector fields are
symplectic by construction. It is quite easy to see that trajectories of Hamiltonian vector fields are
contained in level sets of the associated Hamiltonian functions.

We define almost complex structures on smooth manifolds. An almost complex structure on a
smooth manifold M is a smooth (1,1)-tensor field J € T(TM ® T*M) such that J?> = —id when

>~ \OM’BLoL\?s a ’?Juj/ wordd on

MW — aubonomn . Houwu‘&f. fmd@m: and
tte #lows {-Laa, a.au.e/ra.{'e,
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6 1.2. INTRODUCTION PSEUDOHOLOMORPHIC CURVES AND FLOER THEORY

seen as an isomorphism of the tarlgent bundle T'M. We call a tuple (M, J), with M and J as above,
an almost complex manifold. uite easy to see that an almost complex manifold has to be even
dimensional and orientable. A smooth map f : (M, J) — (M’,J’) between almost complex manifolds
is said to be (J, J')-holomorphic if

Lu 48
DfoJ=1J'oDf (feify M7= €, via
Qg one
on TM. On R?" there is a standard almost complex structure: Qultiplication with the imaginary uni )4-—';

1; we call such an almost complex structure the standard almost complex structure and denote it by Jy.
An almost complex structure J on M is integrable if there is an atlas of M with (.J, Jp)-holomorphic
charts. It’s not hard to see that integrable almost complex manifolds are complex manifolds (in
the sense of having an atlas with biholomorphic transition functions) and viceversa (see for instance
[Can0g]).

One can show that oriented surfaces admit almost complex structures, and that almost complex
structures on surfaces are always integrable. We define a Riemann surface to be a surface with an
(integrable) almost complex structure.

Consider a symplectic manifold (M, w). An almost complex structure J on M is said to be tamed
by w if for any x € M and v € T, M, w,(v, Jv) > 0; we denote the space of almost complex structure
tamed by w by J;(M,w). An almost complex structure J € J;(M,w) tamed by w is compatible with
w if for any x € M and v,u € T, M, w,(Jv, Ju) = w,(v,u). We define the Riemannian metric induced
by wand J € J.(M,w) by (9jw)z(v,w) = waév,.]w), for x € M and v,u € T,M; it is not hard to
see that this indeed defines a Riemannian metric on M. Reasoning at the level of symplectic linear
algebra, one can show that for a symplectic manifold (M,w), the spaces J;(M,w) and J.(M,w) are
always non-empty and contractible.

For the details of these constructions, see [Can08; MS17; MS12]).

1.2 Introduction to pseudoholomorphic curves and Floer theory

c eM‘:me

After Gromov’s revolutionary paper [Gro85], the study of pseudoholomorphic curves became a gaj'or
topcetrerd in symplectic topology. Given an almost complex manifold (A, J) and a Riemann surface
(%,4), a pseudoholomorphic or J-holomorphic curve is a (7, J)-holomorphic map ¥ — M. \One of the

foundational results Gromov proved using pseudoholomorphic curves is the following non-squeezing

theoren\ /
Theorem 1.1. Let~g: B**(R) — B%(r) x R 2 be a symplecWing. Then R <.

Gromov’s idea for the proof was

ically as follows. PArst, we have to compactify B2(r) x R?"~2

in a nice way in order for the new embed to be/Symplectic again. We endow the image of the

embedding, a ball in the new space, with an al mplex structure which is basically the standard
one on the standard ball (but pushed forwafd by the e ing), and then show that there always

exists a pseudoholomorphic curve in i ing trough the center of such ball.

?mfa.fs s teaof
07{ /fe_ mm—&7a€€25% Pn"L A%Z

Criomev's Thuw. on wou- exish oF exact
(closed) Logr. sbmani’ of R 2

RKw,Q ‘\)

(3\*;% Y
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1.2. INTRODUCTION TO PSEUDOHOLOMORPHIC CURVES AND FLOER THEORY 7

The problem is that, as we don’t know much about the embedding and about the way which the

aforementioned almost_complex structure gets extended to the wholeamanifold, there is absolutely

second one: this wild stgpAS achieved by viewing families of pseudoholomqrphic curves as zero sections
of infinite dimepst6nal vector bundles. In this process, one major point is tItat pseudoholomorphic
curves in #0r fixed homology class generically come in a family which is finite diménsjonal smooth

manifold. From this point on, we use some standard machinery from algebraic geometry called Lelong

inequality (see [GH11]) to conclude. [

Heneethe praof goes tronght two major steps: the—studs—ef—regutarity—wirch IS TSTally called

transversality) and compactness of moduli spaces-ef-pserdotrotomerphic-curves- In Morse theory (see
[AD14]), one goes trought similar steps to define Morse cohomology, where instead of pseudoholomor-
phic curves one looks at negative gradient flowlines of some nice function (in this case, transversality
reduces to triviality, as one can see moduli spaces as transverse intersections of balls). It was Floer’s
idea (see [Flo87; [F1o88; F1o89]) to in fact combine the theory of pseudoholomorphic curves developed
by Gromov with the well known ideas coming from Morse theory to build an infinite dimensional
version of the latter in order to solve a famous conjecture proposed by Arnold on the number of
periodic orbits of a Hamiltonian diffeomorphism. In this section we briefly review the basics of Floer
cohomology for Lagrangian intersections in the embedded monotone case, first following the original
idea by Floer, i.e. using Hamiltonian perturbations (for that, we will follow [AD14; Poz94]), and then
following the method developed more recently by Biran and Cornea (see [BC07; BC08; BC09]) using
so-called pearly trajectories.

Pseudoholomorphic curves

Let (M,w) be a compact symplectic manifold and fix a compatible almost complex structure J €
Je(M,w), let (3, 7) be a compact connected Riemann surface. For smooth maps u : ¥ — M, we define
the operator 0 u := %(du + Joduoj). Of course, u is J-holomorphic if and only if 9;u = 0; picking
complex coordinates (s,t) on X, u is J-holomorphic if and only if dsu + J,0;u = 0. J-holomorphic
curves present many rigidity properties which are analogous to those of holomorphic curves (altough
proofs are generally much harder), one can find these results in [MS12, Chapter 2].

To deal with transversality of moduli space of curves, we need the following two definitions.

Definition 1.2. Let u : X — M be J-holomorphic. u is said to be multiply covered if there is another
compact Riemann surface Y/, a J-holomorphic curve v’ : X' — M and a holomorphic branched

covering o : X — X' of degree greater than one such that u = u' o o. w is said to be somewhere
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8 1.2. INTRODUCTION TO PSEUDOHOLOMORPHIC CURVES AND FLOER THEORY

injective if there is z € 3 such that
Du(z) # 0 and u ™ (u(z)) = {2}

Such points are called injective points of u. A curve with a dense set of injective points is called

simple.

Standard theory (see [MS12, Chapter 3]) basically tells us that for a generic choice of the compat-
ible almost complex structure, moduli spaces of pseudoholomorphic curves w : ¥ — M which have a
dense set of injective points are finite dimensional smooth manifolds. In practice, when dealing with
a problem requiring some kind of transversality, one has to find suitable decomposition criteria for
interesting pseudoholomorphic curves and then use some additional assumptions to conclude that all
the interesting curves are regular. The decomposition results depends on the kind of Riemann surface
and boundary conditions we are working with. The following results take care of this in the closed,
compact and compact immersed case respetively.

Proposition 1.3 ([MS12]). Assume that ¥ is closed and consider a J-holomorphic curve u : ¥ — M.
Then u is simple if and only if it is not multiply covered. Moreover, any J-holomorphic sphere
u: CPY — M is covered by a simple J-holomorphic sphere.

This means that in the closed case there is a simple-multiply covered dichotomy. This is not the
case when there are boundary conditions. Indeed, this is easily illustrated by the “Lantern” example
in [Laz00]: the map u(z) = 2> from the disk, seen as one-point compactification of the complex
upper halfplane, to the sphere, seen as one-point compactification of the complex plane, amounts to
“wrapping plastic wrap around a watermelon” for an angle of 3w, so that it is clearly non simple.
However, it may be decomposed into simple pieces (wrapping of 7 each) which cover the whole image.

Proposition 1.4 ([Laz00; Lazll|). Let L be a Lagrangian submanifold of M. Assume that ¥ is
compact with boundary and consider a non-constant J-holomorphic curve u : (3,0%) — (M, L) with

finite_enerqy.. Then there are finitely many simple J-holomorphic curves vy, ..., v @ (3;,0%;) —
/ (M, L), and finitely many integers my, ...,my € Z such that in Hy(M, L) we have

k
[u] = Z mi[v;]

Cowmpa k.. Moreover, if ¥ = D, any %; is isomorphic to D and we have

k
Jvi(D) = u(D)
=1

Before stating the next proposition, we need to define pseudoholomorphic curves with corners.

Definition 1.5. Consider an immersion v : P — N of a manifold P into a manifold M. Let ~ :
(—e€,€) = 2(P) be a path such that v(0) is a double point of v, and consider a lift 5 : (—e,e) — {0} — P
of v not defined on 0. Let p = lim,_,o- Y(t) and q := lim;_,g+ ¥(t). If p # q we say that v has a
branch jump of type (p,q) at t = 0.
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1.2. INTRODUCTION TO PSEUDOHOLOMORPHIC CURVES AND FLOER THEORY 9

Definition 1.6. Consider a generic Lagrangian immersion v : L — M with set of ordered double
points R. A J-holomorphic a-marked disk with corners and boundary on v is a tuple u := (u, A, «, 1)

where:
1. w is a continuous map (D,0D) — (M,(L)) which is smooth and J-holomorphic on int(D);

2. A= {z1,..., 2} COD is a finite ordered subset of the circle with z; # z; for i # j, coming with
a decomposition A == AT LA™ of A into so-called outgoing and incoming points;

3. ais amap {1,....k} = R;

4. lis a continuous lift 9D — A — L of u, i.e. we have u =101 on D — A, such that if z; € AT,
then

<1im 1(e?2), lim l(e%)> = afi)

6—0— 6—0+
and if z; € A7, then
(Hm 1(e?2), lim l(ewzi)> = (i)

0—0+ 6—0—

i.e. 1 has a branch jump of type a(i) at z; € AT when moving counterclockwise, and a branch

Jgump of type a(i) at z; € A~ when moving clockwise;
5. the energy E(u) == [ps_ A u*w is finite.

We will call the points of A corners of branch jumps of u. We denote the clockwise limit on 0D as
limits from left and counterclockwise ones as limits from right.

The map [ is the big new structure which is not present when one concentrates on embedded
Lagrangians: it keeps track of the type of branch jumps a specific disk has and it ensures that we
have only a finite number of jumps.

Proposition 1.7 ([Perl9]). Let 1 : L — M be a generic Lagrangian immersion. Let u : (D,0D) —
(M, 7)@) be a J-holomorphic disk with corners and boundary on v with finite energy. Then, there are
finitely many simple J-holomorphic disks v1,...,v : (D,0D) — (M,z(?with corners and boundary
on v with finite energy and finitely many positive integers my, ...,my € Zsqo such that in Ha(M, (L))

we have
k
[u] = > mifvi]
i=1
and moreover

k
Jvi(D) = u(D)
=1

These results are proved analyzing the set of accumulation points of the set of multiple points
of a pseudoholomorphic curve. In the closed case the proof is not that hard, as this set defines an

equivalence relation, while the case with boindary is much more difficult. The idea in [Laz00; |Laz11]

\
wld o Yhe stadewmad
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1.3. A SKETCH OF THE CONSTRUCTION OF EMBEDDED LAGRANGIAN QUANTUM
10 COHOMOLOGY

is to analyze the so called frame of a pseudoholomorphic curve with Lagrangian boundary condition.
Consider a pseudoholomorphic curve u : (%,0%) — (M, L) and let C(u) := u~!(u(Crit(n))); for
2,72 € ¥ — C(u) define the relation 2R, 2" if and only if for any neighbourhoods V, V' C 3 of z and
2’ respectively there are neighbourhoods U C V and U’ C V' such that u(U) = u(U’). Let R, be
the closure of R in 3, which may not be an equivalence relation if ¥ has indeed boundary. However,

the frame W(u) := R,(0X) has very interesting properties, and is in fact a graph. This is proved
using a relative version of Carleman similarity principle (see[MS17, Chapter 3] and [Laz00, Section
3])¥and the fact that locally the projection R, is open. The point is then %ssociating a Riemann
surface to any connected component of ¥ — W (u) such that it embeds nicely;i_n~§i then, one gets a
pseudoholomorphic curve v on this “smaller” Riemann surface, which is easily seen to be simple. In
the case of disks, showing that the domain is biholomorphic to a disk is easy if the frame is connected
but requires some more work (which is the purpose of [Lazl1]) in the case where it is not connected.
Basically, the work in [Per19| directly extends Lazzarini ideas to immersions.

1.3 A sketch of the construction of embedded Lagrangian

quantum cohomology

In this section we will briefly described Lagrangian quantum homology in the embedded case, skip-
ping a lot of details, and provide an intuition for its construction.

Originally, Floer introduced what is nowadays called Hamiltonian Floer homology (see |[F1o87] for
the original paper, and |[AD14] for a complete and detailed overview of the theory in the symplec-
tically aspherical manifolds), also called Floer homology for Hamiltonian diffeomorphisms, in order
to attempt a solution for a celebrated conjecture of Arnold, relating the topology of a symplectic
manifold to the number of periodic orbits of a generic Hamiltonian function. Given a closed symplec-
tic manifold (M,w) satisfying some additional assumptions, a generic time-dependent Hamiltonian
H: M xR — R and a generic compatible almost complex structure J € J.(M,w), we consider the
complex freely generated by periodic Hamiltonian orbits of H and the differential idefined by counting
cylinders which connect two Hamiltonian orbits and satisfy a perturbed Cauchy-Riemann equation,
the so-called Floer equation (q.v. Section . The perturbation comes from the gradient of the
chosen Hamiltonian H. Starting from the ideas of Gromov on pseudoholomorphic curves |Gro85|,
Floer showed that in this way one can define a well-defined homology as well as a canonical ring
structure on it, via the so called pair of pants product (see for instance [Sei08]). This idea and its
Lagrangian counterpart (see [Poz94] for a nice and brief overview) revolutionized the world of sym-
plectic topology dgrai'h.% the beginning of the nineties. The downsides of this approach are that, other
than being quite difficult to compute in practice, it appeals to a quite heavy machinery, especially
when dealing with regularity of spaces of interesting configurations.

It is well-known that Hamiltonian Floer homology is isomorphic to the Morse homology of M as
vector space, while it is in general not as a ring. Starting from this observation, the idea is to find
another way to compute Hamiltonian Floer homology by deforming singular homology (which in this

setting is best represented by its Morse counterpart). In particular, the heuristic idea is to look at
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1.3. A SKETCH OF THE CONSTRUCTION OF EMBEDDED LAGRANGIAN QUANTUM
COHOMOLOGY

11

the Floer equation not as a perturbed Cauchy-Riemann equation but as a J-perturbed gradient flow

equation, that is to take into account Morse flowlines of an autonomous Morse functions on M which

ay be interrupted by pseudoholomorphic spheres (and no disks, as there is no boundary condition to

discuss). The result is the so called quantum homology of M: the quantum complex is generated by
critical points of a Morse function on M, the quantum differential counts Morse flowilines (as sphere
contributions cancel out) between critical points and the quantum product counts Y-shaped config-

urations interrupted by a pseudoholomorphic sphere in the middle. In this case proving regularity

is very easy due to Proposition [1.3| combined with a dimension count. Showing that the complex is

well-defined is quite easy, as bubbling of pseudoholomorphic spheres is a codimension 2 phenomenon.
It has been shown |[PSS96] that the Hamiltonian quantum homology and the quantum homology of
M are in fact isomorphic as rings (via a similar isomorphism to the one we will see in Section [2.8]).

One may also view quantum homology as Hamiltonian Floer homology for an Hamiltonian tending

to the identity.

setting as developed in [BCO7; [BCO8] starting from a direct application of the idea above to the “° *
Lagrangian setting. Assume that (M,w) is a closed symplectic manifold and assume that L C M is
a monotone embedded Lagrangian, meaning that there is positive proportionality on HY (M, L)

Clacl, & VISIBLY

define “HPm,u , oHherwise #e reader om:’;\t
We will now outline the idea behind the generalization of quantum homology in the Lagrangian amess

ty

(the

image of the Hurewitch map on mo(M, L)) between the Maslov map g on L (which may be roughly
identified as a winding number) and integration by w (see |Oh93|) and that the minimal Maslov
number of L is at least 2.

Say 2n := dim M. We will now explain which sort of problems one encounters when trying to

build a quantum cohomology theory for Lagrangians. We want to again deform Morse cohomology

by counting trajectories on a Lagrangian with a possible bubble on them, which in this case will be a

disk bubble, as we have boundary conditions: however, as we will see, bubbling of pseudoholomorphic

disks is a codimension one phenomenon, and that is a big obstruction to the definition of a proper

differential.

We will try first to define a cohomology and then introduce the actual Lagrangian

quantum homology.

vector
More formally, pick a Morse function f : L — R on L, a pseudogradient{field X

on L

adapted to f, a compatible almost complex structure J € J(M,w), a class A € HY (M, L) and two

critical points z,y € Crit(f) of f. Consider the following moduli space:

L'(Az,y,J)={u: (D?8) = (M,L): u(-1) € W%=x), u(l) € Wi(y), [u] = A} Nut(D?)

which is the moduli space of unparametrized configurations of the following form:

We will assume that £'(A, x,y, J) is, for a generic choice of compatible almost commm €3
a smooth manifold (this may in fact be
It’s easy to comput

ev_ u € Lo(A,J) — u(—1) € L,

roved via Proposition as we're in a monotone setting).

M oSSeu

e dimension of such moduli spaces using the following evaluation maps. Define

evy tu € Lo(AJ) —u(l) € L

> whatio L (4,3)2

K.> I'mMo‘{SMZ [,,_Wt)'We
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12 COHOMOLOGY

Figure 1.1: A quantum trajectory of the Morse function f.

Then
LA z,y,J) = (ev_ x evy) LW (x) x W*(y))

has dimension

dim £'(A, z,y, J) = dim L5(A, J) — codim(W*"(z)) — codim(W?*(y)) =
= (n+p(A) =3+2) = (n—[zf) =yl = p(A) + |2| = [y[ - 1

Consider the complex C* made of critical points of f graded by Morse index. We define a map
d:C* — C*[-1] by

dy = > 1C'(A, 2y, J) |2y
z€Crit(f), AeHP (M,L): |z|—|y|+un(A)-1 = o '2

We investigate if d is a differential for the complex C*. As usual in Floer theory, and as we will do tons
of times in the remaining of this thesis we have to look at the compactness properties of our moduli
space in dimension 0 and 1. One proves that the moduli spaces £ are compact in dimension 0. We look
in di sion 1: our dream is that to compactify the moduli spaces L'’s we have to add configurations
differeringMonly from the fact of containing broken Morse flowlines, as a computation of d? shows.

However, this is not the case in general. Indeed, by Gromov compactness for disks (see
[Fra08]), we have the following four classes of configurations in the compactification £'(A, z,y, J): 222

1. breaking of Morse trajectories; 4

[ o Logpon alar

2. bubbling of a pseudoholomorphic sphere }i{ an interior point of the disk;<c— ! b
at — >
3. bubbling of a pseudoholomorphic disk with boundary on L jA a boundary point of the original P“:[;

(2)

4. bubbling of a pseudoholomorphic disk with boundary on L /{ an incidence point of the Morse

disk which is not an incidence point of the Morse trajectories;

trajectories.
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B

Figure 1.2: Cases 3] and [4]

We will denote by £’ the compactification of a moduli space £. Let z,y € Crit(f) and A € HP (M, L)
such that p(A) + |z| — |y| = 2. Consider a sequence u,, € L'(A,z,y,J) which does not have a
convergent subsequence. Case [l|is what we want to happen. We analyze the possibilities of the other
three configuration to happen. Cases[2] and [3|can’t happen, and altough the argument is very similar,
we will treat them separately.

Case A pseudoholomorphic sphere v : S — M in the class B € HP (M) may bubble off from
a subsequence of u, in an interior point. We look at the image, always denote by B € HY (M, L),
of B with respect to the homomorphism mo(M) — mo(M, L) (appearing in the long exact sequence
in homotopy of the couple (M, L)). Then, in the limit (u,v) € £/(A,x,y,J), the disk u from which
v bubbles off lies in the class A’ = A — B. As L is monotone, u(B) > 2, so that u(A") < u(A) — 2.
Then the moduli space L' (A, z,y, J) has dimension

dim £/ (A", x,y,J) < dim L' (A, x,y,J) —2 = —1

Hence (as we assumed every moduli space is smooth), configurations in case [2 can’t exist.

Case A pseudoholomorpi]%ic disk u' : (D?,S') — (M, L) in the class B € HY (M, L) may bubble
of from a subsequence of u,, i a boundary point which is not 1 € D? or —1 € D?. Then, in the limit
(u,u') € L'(A,x,y,J), the disk u from which v bubbles off lies in the class A’ = A — B. As L is
monotone, u(B) > 2, so that u(A") < u(A) — 2. Then the moduli space £'(A’, x,y, J) has dimension

dim £'(A' x,y,J) <dim L' (A, z,y,J) — 2= —1

Hence (as we assumed every moduli space is smooth), configurations in case |3| can’t exist.

Case A pseudoholomorphic disk ' : (D?,8') — (M, L) in the class B € HY (M, L) may bubble
'
of from a subsequence of u, j either the point —1 or the point (+1). Then, in the limit (u,u') €
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L'(A,x,y,J), the disk u from which v bubbles off lies in the class A’ = A — B. However, of course
we can’t go on as with cases [2] and [3| here. We work with evaluation maps. Define the moduli space
of such configurations as

L'(A,B,z,y,J) = {(u,u) € La(A, J)xLo(B,J) : u(—1) € W(z), u(+1) = u'(=1), u(l) € W*(y)}/Aut(D?)

and assume it is smooth. Denote by ev{ and ev? the evaluations map introduced before for L£o(A,.J)
and Lo(B, J) respectively. Then

L'(A,B,z,y,J) = (ev x ev x ev? x evB) L (W¥(z) x AL x W(y))
and so

dim £'(A, B, z,y,J) = dim L5(A, J) + dim Lo(B, J) — codim(W*"(z)) — codim(Ar) — codim(W?*(y)) =
=n+uAd)—1)+n+uB)—1)—(n—|z])—n—|y=0

Hence (as we assumed every moduli space is smooth), configurations in case [4] can a priori exist, and
in fact do by a gluing argument (see [BC07, Chapter 4]).

This problem is solved by introducing time parameters associated to a piece of Morse flowline
joining two different pseudoholomorphic disks with boundary on L, and hence counting configurations
such as the one in Figure 1.3 in the differential.

%

Figure 1.3: A pearly trajectory contributing to the differential of y.

By what above, it is then very easy to see that (assuming that everything is smooth) d? = 0 in
this case, as configurations from Case 4 may happen in the limit both because of linear bubbling
and because of shrinking of the finite-time Morse flowlines bewteen two different disks, so that they
cancel out in the computation of d?, and only Morse breaking become relevant. In fact, one uses
the results of Lazzarini [Lazll]| (see Proposition combined with a count of dimension to show

(see [BCOT7]) that the moduli spaces of such pearly configurations are generically smooth manifolds,
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whose dimension depends on the Morse index of = and y and the sum of the areas of the disks. The
resulting cohomology may be shown not to depend on the choice of the parameters (f,g,J) and to

be ismomorphic to the Lagrangian Floer cohomology of L.







2 Immersed Lagrangian quantum co-
homology: vector space structure

In this chapter, we aim to generalize Lagrangian quantum cohomology to nice Lagrangian immer-
sions. We will work in the exact setting: in this case, it is easy to see that there are no smooth
psuedoholomorphic disks with positive area, so that Floer homology for embedded Lagrangians is
isomorphic to singular homology; this will not be true in general for immersions. Indeed, we have to
be careful when dealing with immersions: for instance, considering the standard definition of Floer
cohomology (JOh93; |AJ10; |/AB18]), trickier phenomena may happen obstructing d? = 0; indeed, a
portion of a sequence of Floer strips may degenerate in the limit at a self-intersection point of the
immersion to a disk with a singularity, a so-called teardrop (see Flgur Onithe other hand, in
the Morse-Bott case we are going to focus on, one has to take teardrops into account, so that the
resulting pearly cohomology may indeed not be isomorphic to Morse cohomology even in the exact
case. We will mainly follow |[AB18; AB19] with a few refinements. A more general approach to Floer
homology for immersed Lagrangians was developed in [AJ10] using A.o-perturbations and Kuranishi
spaces, in the vein of [Fuk+09] for the embedded case. Here we will use an assumption that does the
same job of monotonicity in the embedded case (see |[Oh93]).

Our setup will be that of [Sei08]. Let (M,w) be a compact exact symplectic 2n-manifold with
boundary and with vanishing first Chern class ¢;(M) = 0. Fix a primitive A € Q'(M) of w such that
the Liouville vector field X € T'(T'M) associated to A points outward dM, and an almost complex
structure Jy; € J.(M,w) compatible with the symplectic form w such that any Jjs-holomorphic curve
touching the boundary M is completely contained in it.

2.1 Gradings

The assumption on the first Chern class of our symplectic manifold M allows us to grade Lagrangians

in order to grade Floer cohomology; indeed, grading is usually problematic in Lagrangian Floer theory,

whereas it is not in the Hamiltonian case. We follow the construction in [Sei00, Example 2.9]. It

is easy to see that the map det® : U(n) — S' descends to a map det? : % — S inducing an

isomorphism on the 7y level. Moreover, it is also easy to show that the Lagrangian Grassmannian

Gr(R*") = {L C V : L is Lagrangian} is tsemerphic to %, implying that there is a (non-canonical)
CMCC&"L} 17

kMO.MML'c
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18 2.1. GRADINGS

Figure 2.1: The formation of a teardrop in the limit of a sequence of pseudoholomorphic curves with
some boundary condition on an immersed Lagrangian L.

m Gr(T,M) = % for any point p € M. Indeed, lagrangians in R?" determine a splitting
of the vector space with respect to J, so that U(n) acts transitively on Gr(R?"); moreover, for the
same reason, g-orthogonal linear maps on L extends uniquely to h-unitary linear maps on (R?", .J),
which, as wg vanishes on lagrangians by definition, leaves L invariant: therefore we conclude by the
orbit-stabilzer theorem that the map associating h-unitary maps f € U(n) to f(L) € Gr(R?") induces
an isomorphism as claimed. The idea now is to globalize det? to a map Gr(TM) — S', but due to
the non-canonical situation, we need extra structure. This is provided by the fact that ¢;(M) = 0:
pick a nowhere vanishing top holomorphic form o € Q*(M, Jys) and define det? : Gr(TM) — S as

follows: for any p € M, L € Gr(T,M) pick a bais vy, ..., v, of L and define

Q1 (v A A ) B2
’ lap (v A oo Ao |2

Let now ¢+ : L — M be a Lagrangian immersion. We lift « to 7 : L — Gr(T'M) and define
det? := det? 07 : L — S'. We define the Maslov class of L as uy, := (det?)*([S']) € H'(L), where
[S'] € H(S) is the standard positive generator.

Definition 2.1. A grading of ¢ is a lift 0, : L — R of det%. A graded Lagrangian immersion is a

couple (1,0r). —(:w 1o) ’2

We will often omit the grading from the notation. Notice thpgThere exists a grading for the

Lagrangian immersion L if and only if u7, = 0, as H'(R) is trivi

Assume now that the Lagrangian immersion ¢ is generic. e purpose of grading is that is allows
one to assign an integer to Hamiltonian orbits connecting agrangians or to intersection points of
two Lagrangians, which means that the Floer complex is graded. In the immersed (and transverse),

single Lagrangian case, we grade self-intersection points as follows. Let (p,q) € R with image x € M

/

where i s
R ée#ind?
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and consider the transversely intersecting Lagrangian subspaces Du(p)[T,L] and Du(q)[TyL] of T, M.
We know there is a unique unitary matrix relating the two subspaces, and we pick a unitary basis
(1, ..., un) of Du(p)[T,L] such that there are o, ..., € (0, 3) such that (e>™@luy, ..., 2™ y,,) is a
unitary basis of Du(q)[TyL]. We call au, ..., o, the Kéhler angles between Di(p)[T), L] and Du(q)[T,L].
We define the index |p, q| € Z of the ordered self-intersection point (p,q) € R as

p.ql :=n+0L(q) — On(p) —2)
=1

The easiest way to see that the index is an integer is to define it trought a Maslov index of a bundle
pair (see [AB18;/Oh15]) or via Fredholm operators (see |[AJ10]). Lund.

Assume that 1 is exact, and fix a primitive hy, : L — R, i.e. a smooth nyfrf) such that +*\ = dhy. In
this case, we define the energy of an ordered double point (p,q) € R as

ko2
octigw o (p,q) = hr(q) —hr(p)

We will often drop the primitive from the notation of an exact Lagrangian. Our main assumption

troughout this work will be the following positivity assumption.

Assumption 2.2 (positivity). Let (p,q) € R be an ordered double point of a Lagrangian im-
mersion 1. We assume that if </ (p,q) > 0, then |p,q| > 3.

2.2 Moduli spaces of pearly trajectories

Consider the setup described above and fix for the rest of the chapter an exact, compact, connected,
generic and graded Lagrangian immersion ¢ : L — M satisfying Assumption

As we are now working in the exact case, the only configurations that appeared in [BC07] and that
are relevant in this case are Morse flowlines joining critical points of a Morse function on L. However,
to fully compute a cohomology which is isomorphic to standard Floer cohomology [AB1§], we have to
include double points and teardrops in some possible configuration. The purpose of this section is to
introduce the relevant moduli spaces in order to improve the pearly construction to our immersed case.

Fix now two non-negative integers k—, k% € Z>¢, a finite subset A := A~ U AT C 9D such
that |[A~| = k= and |A*| = k" and a map « : {1,....k~ + kT} — R. Define the moduli space
Mk—7k+(A, a, J) of parametrized a-marked pseudoholomorphic disks with boundary and corners on

1 with corners at A as the set of curves as in Definition [[L6l Define also
_’___—-Wv"
My g, (a, J) = | | My 1 (ATUAT o, J) x {A"UATY
|A~|=k=, |AT]|=kT
There is an action of the 3-dimensional group Aut(D) = PSL(2,R) on /\;l;LJer (o, J) and we define
the moduli space of unparametrized a-marked pseudoholomorphic disks with corners on 2 as
Mi_ e (o, J)

My (@) = Aut(D)
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|atp| 2

It is known (see [Fuk+09; AJ10]) that

Velheal
virdim(My,_, (@, ) = n— 3 (n - aj) = 3 a(j) + A - 3

- +

Iyrhere we denote by ) the sum over the indices of incoming branch jumps and by >, the sum
over the indices of ougoing ones. For our purposes, we also define, for d > 1, the moduli space
Llia- ok (ot ot (Mt - (AT U AT, a, ) x (9D — A)?) x {A~ UAT}

Aut(D)

d
Mk77k+(a, J) =
of virtual dimensiom

virdim(M{_ (o, J)) =n+d =Y (n—a()))— N+ 1A -3

In our setting, we consider constant disks if and only if A # 0, due to stability conditions. If the
domain of « is a single point and a(1) = v = (p,q) we will often write v or (p,q) in the notation of
the moduli spaces. The almost complex structure will often be removed from the notation.

Remark 2.3. In our setting, the virtual dimensions of moduli spaces of marked disks with corner do

not depend on the homology class of the disks, as graded Lagrangian are Maslov zero.

Moreover, we need some moduli spaces with a priori fixed corner points, in order to define pearly
trajectories correctly while avoiding to introduce strips. Given an ordered set A = A~ LUAT C 0D,
we define for 21, ..., 2k, 1k, € A the ordered sets Azh.--zh = {21, ey 2 U A, APRtToZkitke = AL
{Zky+1, s 2y +k, } and Ai’f}fég;’zkﬁ@ = {21, .2k, JUAU{ 2k, 41, -y 2y +ky |, Where we put 21, ...25, €
A7, 2k 41y e 2k 4k € AT in all three definitions. For a associated to A, zo, ..., 2k, +k, € 0D — A as

above and 71, ..V, +k,, We define

Loy gy 2 AL [A+ B} = R oas oy Ik, a4k} = @ and ay, oy (0) = 7 for
1€ {1,...,k1};

2. aMrteTkatky o {10 A + k) = R oas @ktteoThatka gy = o and o7t (i) = v; for
ie{A+1,. . A+ k};

B QT (0 Akt k) o R 8 (o, ) R,

Fix k_,ky € Z>o, A = A"UAT C 9D finite subset of 9D such that —1,+1 ¢ A, o : {1,....,k_+ki} —
R and v_, vy € R. With this is hand, we define the following three classes of moduli spaces.

1. The moduli space of unparametrized a-marked J-holomorphic disks with corners on 2, and a
corner v_ fixed at —1 € 9D as

My 1 (Aot ay, J) x {A}
Aut(D, =1, +1)

Mgy (7=, 0,0, ) = |_|
A

which has virtual dimension

viedim(My_ g, (-, 0,0, ) = ly-| =Y (n—a(f)) = > o)) + k- +ky —1
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. The moduli space of unparametrized a-marked J-holomorphic disks with corners on 2, and a

corner 4 fixed at +1 € 9D as

My g1 (AT a0+ ) x {AT1)
Aut(D, —1,+1)

Mk_,k+ (@7’)/-1—7 a, J) = |_|
A

which has virtual dimension

virdim(My_ g, (0,74, 0,J)) = n— |y | =Y (n—a(d) =Y a() + k- +ky —1
- +

. The moduli space of unparametrized a-marked J-holomorphic disks with corners on 2, and

corners v_,v4 fixed at —1,+1 € 0D respectively, as

|_| My g1k, 11 (AT, 025, T) x {AT]}

Mk,7k+(77,’y+,057<]) = Aut(D 1 +1)

A

which has virtual dimension
virdim(Mp_ g, (=, 74,0 J)) = |v=| = |v+| = Z (n—a(j Za +Ek_ +k—1
- -

For coherence with what will follow, we will refer as configuration in this class of moduli spaces
as a-marked RR-pearls of first kind (or RR;-pearls) with corners on ¢ joining y_ to ;.

8 Ay ‘*'(53) . -\
C&{Q T e
x,
RR. w 20
¢Av\c} o the 2
mex t Pag e z

ce e e )

Figure 2.2: A sketch of an a-marked pseudoholomorphic disk with corners.

Let now f : L — R be a Morse function on L and g € I'(T'L) be a Riemannian pseudogradient

field such that the pair (f,g) is Morse-Smale (for a brief review of the basics of Morse theory, see
[AD14]). We denote Crit(f) the set of critical points of f, ¢9 the flow of the negative gradient of
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f, and for any critical point x € Crit(f) of f we denote by W"(z) and W*(z) its unstable and stable

manifolds and by
W (y) N W*(x)
R
the moduli space of unparametrized Morse trajectories joining the critical point y to the critical point

M(y,z) =

x of f; for coherence with what will follow, we will also call them CC-flowlines. We will denote
|x| € Z the Morse index of a critical point = € Crit(f) of f.

Let x,y € Crit(f) be critical points of f, y—,74+ € R be ordered double points of ¢, k_,k; € Z>q be
non-negative integers and « : {1,....,k_ + k4+} — R a map indexing ordered double points of 2. We
define the evaluation maps

Vi T M, (7=, 0,0, 0) = L, T I(+1)

and
evar' Mi_ e, (Byy, 00 0) = L, W 1(=1)

to define the following moduli spaces of pearls:
1. the moduli space of a-marked RC-pearls with corners on : joining v_ to x as
My k. (v- w0, frg,J) o= evipg T (WP (2)

of virtual dimension

virdim(My_ g, (v, @, 0, f,9, ) = - = [2] = D _(n—a(j) = D> a(@) + k- +ky —1

2. the moduli space of a-marked CR-pearls with corners on : joining y to v, as

Mi_ gy W v, 00, £,9,7) = evEg" W (y))

of virtual dimension

virdim(My_ g, (1,75, 0, £,9,7) = [yl = [yel = Y (n—a(i) = > _a(i) + k- +ky —1

Given a couple ag : {1,....kL + k1} — R and as : {1,...,k% + k%} — R of maps indexing ordered
double points we also define the moduli space of a-marked RR-pearls of second kind (or RRa-pearls)
joining v_ to 4 as

Mki,ki;k%,ki (’Y—a V4, 1, (2, fa g, J) = (ev,]?:/{éal S ev’é+]§7{a2)_1 (Qf’g)
where Q9 is the image of the embedding

(2,t) € (L — Crit(f)) x Rzq —> (z,¢(x)) € L x L
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This last moduli space has virtual dimension

Virdim(-”‘%ﬁi;ﬁﬁi (V=74 01,00, f,9,J)) =
(\7_|—Zn—a1 Zal + kL + kL — 1)+

+(n =yl = > (n— aa(j)) ZaQ R4 -1)-(n-1)=
= =] = Iyl = Y (= () Zaz S S AR N A

as expected. In Figure we sketched curves in the five classes of moduli spaces we just defined.

%
D.-—

%- (ao S
(>

Figure 2.3: Sketches of curves in the five classes of moduli spaces we just defined, for « =#. From
above we have curves of type CC, RC, CR, RR! and RR?.

We have the following definition which will be crucial for transversality of RRo-pearls.

Definition 2.4. Consider a finite sequence of pseudoholomorphic disks vy, ...,vx : (D,0D) — (M,(L))

with corners on 1. We say that vi,...,v; are absolutely distinct if v;(D) ¢ U#j vi(D) for any
j=1,..k
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Given a moduli space M of some types of pearls, we denote by M* the subspace of simple curves,
M#2Ps the subspace of absolutely distinct curves and M*2PS their intersection.

Remark 2.5. Notice that the energy, or symplectic area, of an a-marked disk strongly depends on «

E(u):/D_Au*w:/Sl_A(zol)*)\:/Sl_Ad(hLol)

is the sum of differences of hy ol on "smooth arcs” of 0D, that is if u € My_ g, (7—, V4,0, J), then

E(u) = o/ (=) =/ (y1) + Y o (a(i)) = ) /(ali))
- +

mn our exact case:

i.e. energy is computed by summing action clockwise. In particular, if u is teardrop Mo o(0, (¢,p), J)

E(u) =9
the. (u) = (p,q)
Note that W above directly implies that the finite-energy condition in Definition 1s redundant.

we have

Remark 2.6. A pseudoholomorphic disk with only one branch jump can not be constant, as “its” |
has to be a continous map connecting the two points of L corresponding to the two branches and 1 is
chosen to be generic. In particular, luckily, no constant teardrop may bubble off from a sequence of
configurations contributing to the differential we are going to define in Section[2.6

In the remaining of this chapter, we will sometimes use the following corollaries to Proposition
which are analogue of some results in [BC07, Section 3] for the generic immersed case. The following
statement is Proposition 1.3.1 in [Per19], is his proof right?. 7

T —— N ey .

Lemma 2.7. Assume n > 3. Then for a generic choice of almost complex structure J € J.(M,w)

and absolutely distinct and simple disks w1 € Mja ki(a’ J) and uz € MZB N (8,J), the set
-’ -y

{(21722) S 8D2 : ul(zl) = ’U,Q(ZQ)}

s finite.

Proof. Letn > 3 and consider Mja ke (o, Ay, J) and MZB Y (8,23, J). Define M*’abs(a,ﬁ, Ay, Ag,J) C
-’ -

Zi,ki (o, Ay, J) XMZE,/{ (B, Ag, J) to be the space of absolutely distinct elements OfMZa_Jci (o, Ay, J) X

:ﬂkﬁ (B,AB,J). Fix k > 1 and consider the map
¥ |_|M*7abs(a7/67AO¢7AlB7J) X (8D — Aa)k X (8_D _ Aﬁ)k N LQk
(UL, U2y X1y ey They Y1,y - Ye) — (Li(21), l2(y1), oy L ()5 D2 (k)
Then, according to standard theory [MS12|, for a generic choice of J € J.(M,w), ¢ h A¥. Note that

ke K?

kS K
dim(p~H(AL)) =20+ Y (n—|a(@d)]) = Y _(n = 8@ = D la@)] = D 1BG)] + k(2 —n)
i=1 i=1

i=1 =1
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and, as n > 3, we have p~1(Ak) = ) for k big enough. Hence fixed (u1,uz) € M*3*(a, B, Ay, Ag, J)
the set {(z1,22) € (0D — Ay) x (0D — Ag) : l1(21) = la(22)} is finite. Then, as R, A, and Ag are
finite sets and fibers of pseudoholomorphic curves are finite, we conclude the proof. O

We will often use this Corollary of Proposition and Lemma

Corollary 2.8 (Corollary 1.1.4 in [Perl9]). Assume that n > 3 and let » : L — M be a generic
Lagrangian immersion. Then there is a generic family Jreg C J(M,w) of compatible almost com-
plex structures on (M,w) such that for any J € Jweg and any non-constant J-holomorphic disk
u: (D,0D) — (M,2L) with corners and boundary on v with finite energy we have the factorization

U=voTm

where : D — D is a branched covering with branch points in int(D) and v : (D,0D) — (M,(L)) is
a simple J-holomorphic disk with corners and boundary on v with finite energy such that

Lemma 2.9. Assume n > 3. Then for a gemeric choice of compatible almost complex structure J €
Je(M,w) we have that for any simple elements u € My,_ i, (a, J) the intersection w='(2(L)) Nint(D)
is finite.

Proof. Consider the embedded submanifold L := «(L — m1(R)) of M, where m; : L x L — L is the
first projection on L. Define the map

¢:| |M* (e, A, ) x int(D) — M*

(W, z1, ..., T, ) —> (u(z1), .oy u(k)

Then, according to standard theory [MS12|, for a generic choice of J € J.(M,w), we have that ¢ is
transverse to L¥. Note that

ke ky

dim(¢~ (L") =n = (n— |a(i)]) = > |a(i)| + k- + k1 + k(2 —n)

i=1 i=1
and, as n > 3, we have (b*l(ik) for k big enough. As R is a finite set, we conclude the proof. O

Corollary 2.10. Assumen > 3. Then, for a generic choice of almost complex structure J € J.(M,w)
and for any couple of simple disks u,v : (D,0D) — (M,1(L)) with corners and boundary on v such that
that v(D) Nu(D) is infinite, we have that either v(D) C u(D) and v(0D) C w(9D) or u(D) C v(D)
and u(0D) C v(0D).

Proof. We consider a compatible almost complex structure satisfying Lemma and Lemma[2.9] Ac-
cording to Lemma u and v are not absolutely distinct. Assume without loss of generality that
u(D) C v(D). According to Lemma[2.9] u(9D) Nv(int(D)) is a finite set, so that u(dD — finite set) C
v(0D). We conclude by continuity of u. O
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2.3 Transversality of pearls

From now on we will only consider maps « of the type {1, ..., k+} — R indexing only outgoing corners
which satisfy o7 («(i)) > 0. The reason for that is that when proving that our pearly differential is
well defined, we are confronted with bubbling of trees of pseudoholomorphic disks (with, of course,
at least one branch jump) with positive area. When k. = 0 we write a = () and we drop « from the
notation of the moduli spaces.

Casel: n>3

Lemma 2.11. Assume n > 3. Let kx > 0 and o« : {1,....k+} — R a map indexing ordered
double points of 1, (p,q) € R be an ordered double point of v such that <7 (p,q) > 0. Then for a
generic choice of compatible almost complex structure J € J.(M,w), any non-constant element of

Mo, ((p,q),0,a,J) and Moy, (0, (q,p), o, J) is simple.

Proof. Pick J € Jieg from Corollary and consider © = (u,l,A,a) € Mo, ((p,q),0,a,J) non-
constant. Notice that as </ (p,q) > 0 and (p,q) is seen as incoming, we have that «(i) # (¢, p) for
any 4. v is multicovered by Corollary i.e. there is a branched covering 7 : D — D of degree d > 1
and a simple disk v := (v, l,,, A, @) with corners and boundary on ¢ such that v = vom. Then v has a
corner at m(—1). As 7 is a cover when restricted to 9D, we have m(d) = z¢ for z € dD; then, as +1
is a smooth point for u, it directly follows that d is odd. We show that A N7 ~1(7(—1)) = ), which
implies that 7=!(7(—1)) = {1} and d = 1. Write (i) = (g;, p;). We have:

= lim 1, (?(=1)) = lim [,(e??(—1)) = lim 1, ("7(%)) =
p= Jim 1,(e"(-1)) = lim I,(e™(-1)) = lim b (e"n(z)) = p1

a contradiction. The case of My, (0, (q,p), v, J) is similar. O

Corollary 2.12. Assume n > 3. Let ky >0 and a: {1,...,k+} — R a map indexing ordered double
points of v, (p,q) € R be an ordered double point of v such that <7 (p,q) > 0 and let xz,y € Crit(f) be
critical points of f. Then, for a generic choice of compatible almost complex structure J € J.(M,w),
if We(y) N {p,q} = 0, any element of Mo, (y,(q,p), o, J) is simple, while, if {p,q} N W?(y) = 0,
then any element of Mo, ((p,q),z,a,J) is simple.

Proof. As W"(y)N{p,q} = 0, then any element of Mg . (y,(q,p),a,J) is non-constant. We conclude
using Lemma [2.11] O

Lemma 2.13. Assume n > 3. Let ky > 0 and o : {1,...,k+} — R a map indexing ordered double
points of v, (p,q), (r,s) € R be ordered double points of v such that p,q,r,s € L are pairwise distinct.
Then, for a generic choice of compatible almost complex structure J € J.(M,w), any element of
Mok, ((p,q), (r,5), 0, J) is simple.

Proof. Pick J € Jreg from Corollary and consider @ = (u,l,A,a) € Moy, ((p,q),(r,5),,J).
Then u is non-constant as p,q,r, s € L are pairwise distinct, and is hence multicovered by Corollary
that it, there is a branched covering 7 : D — D of degree d > 1 and a simple disk v with corners
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and boundary on ¢ such that u = v o 7. In particular, 7(z) = 2¢ for d € D. We show that d = 1.
Assume d > 2. We have

ky
0< E(u) = (p.q) — o (r;s) — Y o (ali))
=1

so that either </(p,q) > 0 or &/ (r,s) < 0. The first case implies that a(i) # (¢q,p) for any ¢ by our
assumptions on «, while the second one implies that «(i) # (r,s) for any . Assume without loss of
generality that <7(p,q) > 0. First, we show that +1 ¢ 7—1(m(—1)): if that were the case, we would
have d even and
1 00 1)) — T 2i0 T if _
p= Jim 1, (~1)) = lim 1,(70(+1) = lim 1,(c7(+1)) =5

a contradiction. Similarly, one shows A N 7~ Y(w(=1)) = 0, as a(i) # (g,p) for any i. It follows
|7~ 1(7(—=1))] = 1 and hence d = 1. O

Case 2: n <2

In the case n < 2 we are not a priori able to count corners to conclude the arguments about simplicity,
as disks are not usually multicovered. To show simplicity of the disks we are interested to in this case,
the idea is to consider only the dimensions one is interested to in order to define our cohomology, that
is, 0 and 1, and then show that if a curve is not simple, new curves arise, which will lie in manifolds
of either negative or too high dimension. To do that, we will analyze the possible shapes of connected
components of the complement of the frame of a disk. There are two kinds of problematic behaviours
of non-simple curves that we want to avoid:

Remark 2.14. In general, a corner point of a disk may be a singular point for the frame. Indeed,
consider the map u(z) = 25 from the disk D = H U {oc} to the sphere CP! = C U {co} and the
immersed Lagrangian on the sphere given by the compactification of R UiR. Then, u is a disk with
corners in z = 0 and z = Ooco, which are singular points of the frame W (u), see Figure . In this
case, Proposition gives us a decomposition of u into three simple disks with corners. Two are
ur2(z) = z%, which have the same type of corner as u, while the other, us(z) = iz has the inverse
corners than u.

Remark 2.15. In the decomposition into simple pieces of a pseudoholomorphic disk with corners, new
(types of ) corners may arise. Consider the teardrop u € Moo((p,q),0,a,J) in Figure which is of
course not simple. Then we can decompose u via Proposition|1.7 into three simple pieces uy, uo and us.
uy is a disk with the original incoming (p,q) corner plus the incoming corners (a,b), (d, c), (d, c), (a,b),
while ug = ug is a disk with outgoing corners of type (a,b), (d,c).

We now show that in our setup, the phenomena listed in Remark and can’t happen (in the

second case, we have to bound some Morse trajectory to the teardrop).




28 2.3. TRANSVERSALITY OF PEARLS

D= Ho[\wt\ ° ECFU&GD(I

I

— ’ 5
[
|

Figure 2.4: A schematic representation of what goes on with the curve u(z) = 23 from the unit disk
to the unit sphere. Note that the image is of courfie not simple nor multiply covered and that the
non-trivial frame passes trough the corner point 0 € D.

u (D)

Figure 2.5: A teardrop u € My o(7,,J) which is non simple and whose simple decomposition will
contain new types of corners. On the disk D we see W(u) — 0D in gray.

Lemma 2.16. Assume n < 2. Let ky >0 and o : {1,...,k+} — R a map indexing ordered double
points of 1, (p,q),(r,s) € R be ordered double points of v such that p,q,r,s € L are pairwise distinct
and |p,q| — |r,s] =1 <1 and @ = (u,l,A,a) € Moy, ((p,q), (r,8),0,J). Then the elements of Aﬂ
are smooth points of the frame W(u) of u.

Proof. As p,q,r,s € L are pairwise distinct, u is a non-constant disk, so that

ko
E(u) = (p,q) — /(r,s) = Y _ (ali)) >0
=1

Notice that if <7 (p,q) > 0 and &/(r,s) < 0 we have |p,q| > 3 and —|r,s| = |s,7| —n >3 —-2=1, so
that |p, g|—|r, s|—1 > 3 which contradicts the assumption of the Lemma. We assume that <7 (p,q) > 0
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(and hence &/ (r,s) > 0).

Assume that —1 is a singular point of the frame W(u): then, by Section 1.2.2 in [Perl9|, there is
an open neighbourhood © C D of —1 such that W(u) N is a union of (counteclockwise ordered)
arcs 11, ..., 'm (whose number and slope depend on the order of u near —1 and on the Kéhler angles
between the two branches of L meeting at u(—1)). In particular, r; and r,, correspond to 0D C W(u).
Always following [Perl9], as —1 corresponds to an incoming corner of type (p,q), we have that the
r9;’s are arcs with image on the g-branch of +(L), while the 7;41’s are arcs with image on the p-branch
of L. We label by D; the connected component of D — W (u) which near —1 is bounded by the arcs
r; and 7;41. In the decomposition of u into simple pieces, D; induces a simple (and in particular non-
constant) disk v; : (D,0D) — (M,+(L)) with incoming corner of type (p,q) if ¢ is odd and incoming
corner of type (q,p) is ¢ is even. Consider v; with ¢ even. We analyze all the possible structures of v;

case by case.

1. Of course, v; is not a teardrop, as in this case we would have F(v;) = 47 (q,p) < 0 by assumption,
a contradiction.

2. v; might have outgoing corners of type a(i), for some i € {1, ..., k; }, and of type (r, s); anyway, in
all possible combinations of this type we would have E(v;) < 0 as «/(r,s) > 0 and o7 (a(i)) > 0
by assumption, a contradiction.

3. v; might have an outgoing corner of type (s,r) (this may e.g. be possible if +1 is also a singular
point of W(u)) (which implies it would have no outgoing corners of type (r, s)). In this case we
would have

E(vi) = (q,p) — (s,r) = —E(u) <0

a contradiction. Similarly, writing «(i) = (¢, pi), v; might have corners of type (p;,q;) (this
might e.g. be possible if z; is also a singular point of W(u)); however, this also leads to a

contradiction, as we would have
E(v;) = o (q,p) + < (a(i)) <0
as from E(u) > 0 it follows 7 (p,q) > </ (a(3)).

4. v; might have corners which do not involve p, g, r, s or components of the «(i)’s as a result of
the presence of a connected component of D — W (u) of the same kind as the one presented
in Remark However, also in this case we would end up with E(v;) < 0, as those “new”
corners bound a non-constant disk.

5. v; might look like combinations of the cases above, still implying E(v;) < 0.

We conclude that E(v;) < 0, contradicting the fact that —1 is a singular point of W(u) if &7 (p,q) > 0.
The case 27 (r,s) < 0 is very similar and is hence omitted. We also omit the proofs that +1 and

z; € A are smooth point of W(u), as they proceed in the exact same manner. O
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Lemma 2.17. Assume n < 2. Let ky >0 and o : {1,...,k+} — R a map indexing ordered double
points of v, (p,q) € R be an ordered double point of v such that </ (p,q) > 0 and let z,y € Crit(f)
be critical points of f such that {p,q} "W?(y) = 0 and {p,¢} N W*(y) = 0. Letu = (u,l,A,a) €
Mok, ((p,q),z,a,J) and @ = (a, LA o) e Mo, (y, (q,p), 0, J). Then the elements of A_y are
smooth points of the frame W(u) of u, while the elements of ATY are smooth points of the frame

W(a) of a.
Proof. The proof is essentially a “sub-proof” of the proof of Lemma [2.16 O

Before handling the second pathological behaviour of the frame in full generality, we consider
the example from Remark with a Morse condition. Let (p,q) € R and = € Crit(f) such that
Ip,q| — |z| —1 < 2 and pick u € Moo((p,q),z,J) with the frame as in Remark Then, u
decomposes into simple pieces u; € Mo 4((p,q),z, o, J) and ug = uz € Moo((c,d), (a,b),J), with «
as described in Remark This implies that

poal — |2 — 2|b.a| = 2le,d| + 4 — 1> 0 and |e,d| — |a,b| — 1] > 0

The last estimate tells us that |c, d|+|b, a| > n+1 = 3. It follows from |p, | —|z|—2|b, a| —2|c, d|+4—1 >
0 that |p,q| — |z| — 1| > 2|b,a| + 2|c,d| — 4 > 2, a contradiction. Notice that the key point for this

observation is that the “new” corners are counted twice in one of the resulting curves.

Lemma 2.18. Assume n = 2. Let ky >0 and o : {1,...,k+} — R a map indexing ordered double
points of 1, (p,q),(r,s) € R be ordered double points of v such that p,q,r,s € L are pairwise distinct
and |p,q| —|r,s| =1 <1 and @ = (u,l, A, o) € Moy, ((p,q),(r,s),a,J). Consider the decomposition
Viyeery Uy ¢ (D, 0D) — (M,2(L)) of u into simple disks from Proposition . Then the corners of
V1, ..., U are induced by corners of u.

Proof. For simplicity we assume a = (), as the proof differs only in notation. The possibilities of
anomaly fall into two cases and combinations of them up to reordering of corners and singular points
of the frame: the terminal part of a disk may be in the image of the interior (much like in the example
in Remark or not, see Figure 2.6 and 2.7. We show that both of these cases can not occour by
sticking to the orderings displayed in Figure 2.6 and 2.7, but the computations for the other cases are
very similar.

Consider u € Mo o((p,q), (1, s),J) with an image of the form sketched in Figure 2.6. Then, u factors
via Propositioninto simple disks u1 € Mo 4((p, q), (1, 5), v, J) and ug = uz € Myo((d,c), (b,a),J),
where (1) = (a,b), a(2) = (d,c), a(3) = (d,c) and «(4) = (a,b). It follows that

Ip,q| — |, s| —2|a,b] —2|d,c|]+4—1>0and |d,c|—|ba]| —1>0

From the last estimate it follows that |d, ¢| + |a,b| > 1 + n = 3. Combining it with the first estimate
we get
Ip,q| —|r,s| —1>2]a,b| +2|d,c| —4>6—-4=2
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Figure 2.6: In this configuration, we see
the terminal part of the disk being part
of the image of the interior. The double
points in gray are corners for the disks in
the decomposition of this configuration
into simple pieces.

Figure 2.7: In this configuration, we see
the terminal part of the disk not being
part of the image of the interior. The
double points in gray are corners for the
disks in the decomposition of this config-
uration into simple pieces.

contradicting our assumption.

Consider u € Mo o((p,q), (r,s),J) with an image of the form sketched in Figure 2.7. Then, u factors
via Proposition into simple disks u; € Miz(ai,J), us € Moa(az,J), us € Mopa(ag,J) and
ug € M0,5(Oé4, J), where

L ai(1) = (p,q), 01(2) = (f,¢) and a1 (3) = (a, b);

2. as(1) = (e, f), a2(2) = (h,g), a2(3) = (¢,d) and as(4) = b, a);

3. as(l) =(g,h) and a3(2) = (f,e);

4. ay(1) = (r,5), aa(2) = (a,b), as(3) = (d, c), as(4) = (d,c) and a4(5) = (g, h).
This implies that

p,al — [f,el —la, 0] >0, n—le f| = |h,g| —|c,d| = |b,a| +1 >0
n—\g,h!—|f,e[—120, n—‘T,S’—|CL,b‘—2|d,C‘—‘g,h’+220

implying |h,g| + le, f| > 1+ n and |d,c| + |a,b] > n — 1+ e, f| + |h,g|. Moreover, summing the
first and the fourth inequalities we get |p,q| — |r,s| — 1 > 2|a,b| + 2|d,c| + |g,h| + |f,e] —4 —1 >
2n —24+2n+14n—>5=>5n —6 > 4, contradicting our assumption. ]

Remark 2.19. Notice that the proof of Lemma[2.18 does not work for n = 1.

In the same way as Lemma [2.18] one proves that:
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Lemma 2.20. Assume n = 2. Let ky >0 and o : {1,...,k+} — R a map indexing ordered double
points of 1, (p,q) € R be an ordered double point of v such that <7/ (p,q) > 0 and let x € Crit(f) be
a critical point of f such that {p,q} NW?*(y) = 0. Letu = (u,l,A,a) € Mo, ((p,q),z,a,J) and
consider the decomposition vy, ..., vy, : (D,0D) — (M,1(L)) of u into simple disks from Proposition
[I.7. Then the corners of vy, ...,vx are induced by corners of .

Lemma 2.21. Assume n = 2. Let ky >0 and o : {1,...,k+} — R a map indexing ordered double
points of 1, (p,q),(r,s) € R be ordered double points of v such that p,q,r,s € L are pairwise distinct
and |p,q| — |r,s| =1 < 1. Then any element of Mo, ((p,q), (r,5),, J) is simple.

Proof. Let u = (u,l,A,a) € Mop, ((p,q),(r,s),,J), then u is non-constant. We consider the
connected components Dy, ..., Dy, of D — W (u). If there is j € {1,...,m} such that Aﬂ ND; =

then D; induces a smooth non-constant pseudoholomorphic disk by Proposition and Lemma m
and Assume without loss of generality that <7 (p, q) > 0, so that <7(r,s) > 0. Then, —1 € D;
for any i € {1,...,m}, as otherwise we would have disks with corners with negative energy. Then, by
Lemma [2.16), m = 1 and w is multicovered. Exactly as in the case n > 3, we immediately get that u
is simple. O

In the same way as Lemma [2.21] one proves that:

Lemma 2.22. Assume n = 2. Let ky > 0 and o : {1,...,ky} — R a map indexing ordered double
points of v, (p,q) € R be an ordered double point of v such that <7 (p,q) > 0 and let xz,y € Crit(f) be
critical points of f such that |p,q| — |z| =1 <1 and ly| — |¢,p| =1 < 1. Then if W*(y) N {p,q} =0,
any element of Mo, (y,(q,p),c, J) is simple, while, if {p,q} N W?*(y) = 0, then any element of
Mok, ((p,q),x, a, J) is simple.

RR;-pearls are made of absolutely distinct elements for any n

According to standard theory of transversality of moduli spaces of pseudoholomorphic curves curves
(see [MS12]), tuples of curves have to be absolutely distinct in order to prove transversality of their
moduli spaces (see also [BC07]). We now prove that generically RRa-pearls are absolutely distinct

for anyW;y n=4.
Lemma 2.23. Let k! k% > 0 and aq : {1,...,k}} = R, as : {1,...k%} — R maps indexing
double point of 1, (p,q), (s,r) € R double points of v such that p,q,s,r € L are pairwise distinct and

|, q| —|s, 7| =1 < 2. Then, for a generic choice of compatible almost complex structure J € J.(M,w),
M i O’ki((p, q),(r,s),a, f,g,J) is made of absolutely distinct pearls.

KL
Proof. Let (u1,us3) € Moka;o,k;((p, q),(r,s),a, f,g,J). If n > 3 we use Corollary assume that
u; and ug are not absolutely distinct, then without loss of generality u;(0D) C ug(9D) which directly
leads to a contradiction in any dimension, as this would mean that uo has an incoming corner of type
(p, q), which can not happen as <7 (p,q) > 0 and p, ¢, s,r are pairwise distinct. Assume now n < 2.
The existence of u; and uy implies that <7 (p,q) > 0 and </(r,s) > 0. Then,

|p,q|—|s,r|—1:|p,q|+|r,s]—n—126—2—1:3
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contradicting the assumptions and hence proving the claim. O

The case of (p,q) to (¢,p) pearls

We still have to deal with RR (both of type 1 and 2) pearls from a double point (p,q) € R to itself
or to (q,p) € R. As </(p,q) = —</(q,p) it is immediate that there are no non-constant RR-pearls
from a double point to itself. Moreover, as the next lemma points out, there are no RR-pearls in
interesting virtual dimensions (that is, 0 and 1 as usual) whenever n < 3, which makes our task a bit
easier as it allows us to use the dichotomy simple-multiply covered from Corollary 2.8l We will only
work with pearls with no a-markings, as those are the ones we need to define the differential.

Lemma 2.24. Assume n < 3. Then, if (p,q) € R satisfies |p,q| — |q,p| — 1 < 1, the moduli spaces
Moo((p,9), (a:p), J) and Moo0,0((p,q),(q,p), f,9,J) are empty.

Proof. Assume that Mg o((p, q), (¢,p),J) # 0 and pick @ = (u,l) € Moo((p,q),(¢,p),J). Then wu is
non-constant by definition of the moduli space, hence <7 (p,q) > 0, so that 1 > |p,q| — |¢,p| — 1 =
2|p,q| —n — 1> 5 —n, which directly implies n > 4. The same for Mg 0.00((p,q), (¢,p), f,9,J). O

Remark 2.25. A very similar proof shows that under the same conditions of the last lemma the moduli
spaces Mo,kj;o,kz;((p? q9),(q,p), 01, 2, f, g, J) are empty while the moduli spaces Mo i, ((p,q), (¢,p), , J)
only contain constant disks.

Assume n > 4. Recall that by the results of Section[2.3] teardrops are simple in this case. Consider

a non absolutely distinct element

(Tl, u72) S MO,O;O,O((pa Q)v (q’p)a f’g? J) - M(%F()S;O,O((p’ Q)ﬂ (Qap)v faga J)

Then, as wui(D) N ua(D) is infinite, we have either u;(0D) C u2(9D) and ui(D) C wua(D) or
uz(0D) C u1(0D) and ug(D) C wi(D). In any of either cases we have uj(D) = wuz(D) and
u1(0D) = u9(0D) as u; and ug have the same symplectic area. In particular, Theorem 4.13 in
[Laz11], which according to [Perl9| translates without modification to the immersed case, tells us
that wy and wue are reparametrisation of each other, that is, w7 and uz can be seen as the same
element in Mo o(0, (¢,p),J). In particular, an element uz € Mgo(0,(g,p),J) determines a unique
element (1, %3) € Mo0,0,0((p,9): (¢:p), .9, J) — M3%0.0((p, @), (4,p), f+ g, J). We then conclude that
the map

1/}1 : MO,O;O,O((pa Q)7 (q7p)a f’ g, J) - M%FOS;O,O((}% Q)ﬂ (Qap)v fvga J) — MO,O((D’ (Q7p)7 J)
(ur, W) — Wy

is a bijection.
Consider a non simple element

u € Moo((p:q),(a,p),J) — Mg o((p,q), (¢, D), J)
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By assumption u is non-constant, so that <7 (p,q) > 0 and u is multicovered by a branched covering
of degree 2. Hence we write any element w € M o((p,q), (¢,p),J) as u = v, o m,, where m; : D — D
is a branched covering of degree 2 and v, is a simple teardrop. Notice that, as v(D) = u(D) and
v(0D) = u(dD), the class v, € Moo(0,(q,p),J) does not depend on the choice of v, again by
Theorem 4.13 in [Laz11]. We then conclude that the map

Y2 2 Moo((p,q), (¢:p), J) — MG o((p, ), (¢,p), ) — Moo(D, (¢, p), J)

U > Uy
is a bijection. In particular it follows that

Pyt othr Moo — MESoo((p.a), (a,p), f,9.T) — Moo — M5 o((p,q), (a.p), )

L ?i' is a bijection. This tells us that bad pearls joining (p,q) to (¢,p) come in pairs in dimension 0.
b here I realized too late that my proof to show that Mg (0, (q,p),J) is finite (altough it it n — 1/2-
cufy ) dimensional), and hence that everything with the differential is well-defined, is wrong. One possibility
M is to assume that <7(p,q) > 0 implies |p,q| > "TH, but this is quite strong and a priori eliminates
f%“ RR; configurations here and other configurations in the following structures (PSS, product).

Summary of transversality

In summary, combining the result of this section and standard theory on transversality of moduli
spaces of simple curves in [MS12], we get the following.

Proposition 2.26. Let ki, ki k2 > 0 and o« : {1,....ky} — R, oy : {1,..,k}} = R and ay :
{1,...,k%} — R maps indexing double point of 1, (p,q), (r,s) € R double points of 1 such that p,q,r,s €
L are pairwise distinct and z,y € Crit(f) critical points of f. Then there is a generic family Jy C
Je(M,w) such that for any J € Jiy the following points hold:

e Assume |p,q| — |r,s| =1 < 1. Then the moduli space Moy ((p,q),(r,s),a, J) is either empty

or a smooth finite dimensional manifold whose dimension agrees with its virtual dimension.

o Assume |p,q|—|xz|—1 < 1 and W*(z)N{p, q} = 0. Then the moduli space Mo, ((p,q),x,, f,g,J)
is either empty or a smooth finite dimensional manifold whose dimension agrees with its virtual

dimension.

o Assume |y|—|r,s|=1 < 1 and W*(y)N{r,s} = 0. Then the moduli space Mg (y, (r,s),a, f,9,J)
is either empty or a smooth finite dimensional manifold whose dimension agrees with its virtual

dimension.

e Assume |p,q| — |r,s| — 1 < 1. Then the moduli space MO,ki;O,ki((p’ q),(r,s),a1,as, f,g,J) is
either empty of a smooth finite dimensional manifold whose dimension agrees with its virtual

dimension.
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e Assume |p,q| —|q,p| =1 < 1. Then the moduli space Mg o((p,q),(q;p),J) is either empty of a
smooth finite dimensional manifold whose dimension agrees with its virtual dimension.

e Assume |p,q|—|q,p|—1 < 1. Then the moduli space MS}’OS;QO((p, q),(q,p), f,g,J) is either empty

of a smooth finite dimensional manifold whose dimension agrees with its virtual dimension.

2.4 Compactness of moduli spaces of pearls in dimension 0

In this section we prove that the moduli spaces of pearly trajectories which will play a role in the
definition of quantum homology are compact when the virtual dimension is zero.

Lemma 2.27. Let x € Crit(f) be a critical point of f and (p,q) € R be a double point of v such that
|z| — |p,q| = 1. Then, for a generic choice of compatible almost complex structure J € J.(M,w), the
moduli space Mo o(z, (p,q), f,g,J) is compact.

Proof. By Gromov compactness for pseudoholomorphic curves with boundary and corners on totally
real immersions (see [[S02|) and the fact that we are working in the exact setting, a sequence in
Moo(z,(p,q), f,g,J) converges to a broken pearly trajectory of the form

(Ul, vy Ud—1, ([Td]) Ud)> ([ud-i-l]a Ud+1)7 ceey ([Ud+m], Ud+m))
for d > 1,m > 0, where

1. for 1 <i<d-—1, u; € M(zi, 241, f,g) is a Morse trajectory between critical points x;, z;11 €

Crit(f); moreover, x; = x;

2. [ug] € Mo,ki (XdyYd+1, ds [, 9,J) is a CR-pearl and vy is a family of pseudoholomorphic trees
attached to ug along the associated Ag;

3. for d+ 1 < i < d+ m, either [g;] € Mo,ki(%,’nﬂ,ai,t]) or [4;] = ([Wi1), [Wiz2]), where [u;1] €
MO,kil (i, 0, 1, J) and [W,Q] € Mo,kff (@, Yit+1, %2, J) such that ui,1(+1) = ui,g(—l), both with
trees of pseudoholomorphic disks attached along the associated A;. Moreover, Yg1m+1 = (P, q)-

Remark 2.28. It may seem like the third case above does not follow the geometric picture of the
degeneracy in the limit: the point is that once a sequence of disks degenerate at a double point of v to
get two disks, one has the original counterclockwise orientation on the boundary, while the other is

oriented clockwise (see Figure 2.8).

First of all, we show that non of the [w;] is a constant disk. Pick d +1 < i < d + m and assume
Yi = Yi+1 = (pi,qi) and [u; € M07ki+((p¢,qi), (pir qi), v, J) is constant. It directly follows av # () as
otherwise u; would not be stable. Consider the “upper” part of the disk u;. In order for u; to be
constant, we must have that l<:3r is even, and half of the branch jumps indexed by « are of type (p;, ¢;),
while the other half of type (q;,p;). As remarked above, the trees v; are non-constant, as they have
a unique branch jump, hence <7 (q;, p;) and <7 (p;, q;) have to be both positive, a contradiction. Pick
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Figure 2.8: A possible degeneration of a disk in Mg o((p, q), (1, s),J) at the double point (p1,q1): in
the limit, the disk on the left is an element of Mg o((p, q), (p1,41),J), while the one on the right is
oriented clockwise and can hence be seen as an element of Mg o((p1,q1), (7, 5), J).

now d +1 <4 < d+m and assume v; = (pi, Gi), Vi+1 = (¢,pi) and [u; € Mo,ki((piv%)a (@i, i), o, J)
is constant. For w; to be constant, a must index k branch jumps of type (p;,¢;) and k + 2 branch
jumps of type (g;, p;) for some k > 0. The argument just above implies k = 0 and <7 (g;, p;) > 0. This
contradicts conservation of energy from Gromov compactness in [IS02].

By standard Morse theory, we have |z;| — |zi41] > 1 for any 1 <i < d —1, as (f, g) is Morse-Smale.
From now on write v; = (pi, ¢)-

[@a]. If {pas1, qar1} N WY (xq) = 0, then ug is non constant and by Proposition we have

|zal = 1] > 1+ 2k
If {pa+1,qa+1} N W¥(zq) # 0 we can assume without loss of generality that |z4] = n so that:

1. if &/ (yg4+1) < 0, then n — |y44+1| > 3 annd hence |zg| — |vg+1] > 3;

2. if &/ (v441) = 0, then
0< Bu) = - o (cali)

so that if o = (), uy, is constant, a contradiction, as moduli space do not contain constant disks
for a =0, and if @ # 0, 0 < E(u) < 0, another contradiction;

3. if @ (ya+1) > 0, then
0< B(u) = o (yas1) — »_ #(aq(i)) <0

again a contradiction
Consider now [u;] for d+1 <i < d+m.

® Yit1 # (g, pi) and [@] cannot be an element of M it (vi, 0, i1, J) x M, kiz(@,’}/i_;,_l,aig, J).
Indeed, suppose [@;] is the first one of the elements [ugy1], ..., [Ugtm]| to be such that ;11 =
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(gi, pi) or of the second kind listed above. Then we have that 7(;) > 0, but then .o/ (v;) > 0
for all j > 4, implying in particular that </(p,q) > 0: a contradiction, since the energy of the
original sequence was 27 (q,p) = —</(p,q) > 0.

® p; # piy1 and ¢; # Git1, as if p; = pip1 and ¢; = ¢4 and o; # 0, E(u;) < 0 and if p; = pipq
and ¢; = ¢;+1 and o; = (), u; is constant but not stable (q.v. the discussion above).

e If pi, ¢i, Pit+1, Gi41 are pairwise distinct then |y;| — [vi4+1| > 1 by Proposition [2.26]

In the end, from

k—1 d+1
1= l|z[—|p,q| = Z || = |zis1] + (lzal — [va+1) + Z il = 1vital
i=1 i=d+1
it follows that d = 1, ki = 0 and hence that Mo o(z,7, f,g,J) is compact. O

Similarly we have the following three results.

Lemma 2.29. Let x € Crit(f) be a critical point of f and (p,q) € R be a double point of v such that
|p, q| — |x| = 1. Then, for a generic choice of compatible almost complex structure J € J.(M,w), the
moduli space Mo o((p,q),z, f,g,J) is compact.

Lemma 2.30. Let (p,q),(r,s) € R be double points of v such that p,q,r,s € L are pairwise distinct
and |p,q|—|r,s| = 1. Then, for a generic choice of compatible almost complex structure J € J.(M,w),
the moduli space Mo 0.0.0((p,q), (r,5), f,9,J) is compact.

Lemma 2.31. Let (p,q) € R be a double point of v such that |p,q| — |q,p| —1 < 1. Then the moduli
space M350 o((p, ), (¢, p), £, 9, J) is compact

Lemma 2.32. Let (p,q),(r,s) € R be ordered double points of v+ such that p,q,r,s € L are pairwise
distinct and |p,q| — |r,s| = 1. Then, for a generic choice of compatible almost complex structure
J € J(M,w), the moduli space Mg o((p,q), (r,s),,J) is compact.

Proof. By Gromov compactness for pseudoholomorphic curves with boundary and corners on totally
real immersions (see [[S02|) and the fact that we are working in the exact setting, a sequence in
Moo((p,q), (r,s),a, J) converges to a broken pearly trajectory of the form

u= (([@Tl],vl), ([72]77)2% Sx) ([W]/Um))

for m > 1, where there are 71,...,Ym+1 with 1 = (p,q) and ym+1 = (7,s) such that either
[@] € Moy (v, virr, i J) or [w] = ([widl, [wizl), where [wi1] € My o1 (7,0, i, J) and [wig] €
MO,ki’z
attached along the associated marked points in A;. Write v; = (p;, ¢;) for any ¢ € {1,...,m + 1}.

(0,7it1, 2, J) such that u; 1 (+1) = u;2(—1), both with trees of pseudoholomorphic disks v;

First, we have that none of the [%;]’s can be constant, and the argument is exactly as in the proof of

Lemma 2271
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If [w;] = ([wiq], [wiz]), where [u;1] € M07ki1 (74,0, 51, J) and [w;2] € M07k12(@,’yi+1,ai72,J) such
that u; 1(+1) = w;2(—1), then if |v| — [vit1] < 2, [w] lies in a moduli space which is (up to re-
ducing the generic set of almost complex structures we are dealing with) a manifold of dimension
il = [Yit1] = D2 lein(9)] — D0 lei2(d)| + kiig + kizg —2 > 0, as it could be easily computed via
evaluation maps plus the results from Section which implies |v;| — [yi+1] > 2.

Hence, if |v;| —|vit1| —1 < 1 we have |y;| — [yi1] > 1+2k;" in any case (writing k% := k:il —Hﬁ? for
[u1] € Mo’kil (7,0, .1, J) % M07ki2(®,’w+1, @;2,J)) by the results in Section This observation
plus the fact that

m
L=Ip.q|—|rs| = Z il = 1vita
i=1
leads to |v;| — |yi41 < 1 for any i € {1,...,m}, so that m = 1 and k% = 0, proving the lemma. O

Similarly, we have the following result.

Lemma 2.33. Let (p,q) € R be a double point of v such that |p,q| — |q,p| — 1 < 1. Then the moduli
space MG o((p;q), (¢, p),J) is compact.

2.5 Compactifications of moduli space of pearls in dimension 1

At this stage of a construction of a Morse-like cohomology, gluing of relevant configurations usually
enters the game. What happens in dimension 1 is that we can not rule out broken configurations
which arises from Gromov compactness from the Gromov compactification of moduli spaces by count-
ing dimension. Instead, we want to prove that compactifications are smooth manifolds of dimension 2
whose boundary is made of exactly those broken configurations. Gromov compactness basically tells
us that the boundary is contained in the space of broken configurations, but does not provide equality
nor charts. Gluing is a technique introduced by Floer which goes to study what happens near those
broken configurations by building an open embedding that geometrically corresponds to the literal
gluing of two configurations via a real parameter, which coupled with the so-called surjectivity of
the gluing map (which can be interpreted as uniqueness of those embeddings), directly give charts
for the compactification in the expected way. A brief summary about gluing of Floer strips in the
Hamiltonian case may be found in [Amb19|, while [AD14] provides a complete exposition with a lot
of details. Here, we will skip most of the details.
Gluing of smooth pseudoholomorphic disks with boundary on embedded Lagrangian is studied in
detail in, [BC07, Section 4], while gluing of Morse trajectories is nowadays a standard fact (see for
c instance |[AD14, Chapter 1]). To handle the immersed case, we also have to study gluing of pseudo-
holomorphic disks at corners: however, it turns out that, in the correct framework, this is just a special

case of what is described in [BCO7], see Figure 2.9. From considerations, Gromov compactness

and the same tricks we used in Section we get the following statements about compactifications

of our preferred moduli space in dimension 1.
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CO ()

Figure 2.9: The gluing process of a teardrop u; € Moo(0,(p,q),J) and a teardrop us €
Moo((p,q),0,J) at the corners.

Lemma 2.34. Let x € Crit(f) be a critical point of f and (p,q) € R be a double point of v such
that |x| — |p, q| = 2. Then, for a generic choice of compatible almost complex structure J € J.(M,w),
the moduli space Mo o(x,(p,q), f,g,J) admits a Gromov-type compactification into a 1-dimensional
manifold with boundary Mo o(z, (p,q), f,g,J) such that

am0,0($a (paQ)vagaJ) = U M(xvy) XMO,U(y> (p7q)afag7‘])u

v |zl=|y|=1

U M070(‘T7 (r,s), f.g9,J) % M07o((7’,3)7(p7q),J)
(r,8)#(q,p): |z|—|r,s|=1

Lemma 2.35. Let x € Crit(f) be a critical point of f and (p,q) € R be a double point of v such
that |p, q| — |x| = 2. Then, for a generic choice of compatible almost complex structure J € J.(M,w),
the moduli space Mo o((p,q),, f,g,J) admits a Gromov-type compactification into a 1-dimensional
manifold with boundary Moo((p,q),z, f,g,J) such that

aﬂ0,0((p’ q)ax,fagv‘]) = U MO,O((pa Q)aya fag’ J) X M(y,m)U

y: lyl—|z[=1

U MO,O((p7Q)7(r7S)7J) XMO,O((rﬂ S),:IZ,f,g,J)

(r,8)#(a,p): |p,gl—|r,s|=1

Lemma 2.36. Let (p,q), (r,s) € R be double points of v such that p,q,r,s € L are pairwise distinct and
|p, q| —|r, s| = 2. Then, for a generic choice of compatible almost complex structure J € J.(M,w), the
moduli space Mo 0.0,0((p,q), (1, 5), f,9,J) admits a Gromov-type compactification into a 1-dimensional
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manifold with boundary Mo 0.00((p, q), (1, ), f,g,J) such that

OMoooo((p ), (r,s), frg. )= | Moo(.a)u, f,9,7) x Mooy, (r,s), J)U
y: |p,gl=ly|=1
U Moo(p,q). (ab), J) x Mogoo((a,b), (r,5), f.9.)
(a,)#(g:p): |p,gl—la,bl=1
U Mogoo((p.a). (a,b), f, 9, 7) x Mog((a,b), (r,s), )

(a,0)#(q,p): Ip,ql—la,bl=1

U {(71,172) € MO,O((pa Q)a®>J) X MO,O(@v (Ta 3)7J) : ll(l) = 12(_1)}

Lemma 2.37. Let (p,q) € R be a double point of v such that |p,q| — |q,p| = 2. Then, for a generic
choice of compatible almost complex structure J € J.(M,w), the moduli space M%Pos;o,o((p’ q),(q,p), f,g9,J)

admits a Gromov-type compactification into a 1-dimensional manifold with boundary MS%S;O’O((;D, q),(q,p), f,g,J
such that

——-abs

OMoooo((: ), (@p). fr0.) = | Mooy f,9.T) x Mooy, (¢,p), J)U

y: Ipgl—lyl=1

U Mo,o((p, q)a (a’ b)v J) X M070;070((a7 b)v (Q7p)7 fa g, '])
(a,b): |p.gl—la,bl=1

U M0,0;070((p7 Q)’ (CL, b)v fvga J) X MO,O((CL’ b)? (q’p)a J)

(avb): |p7q‘_|a7b|:1

U {5 7) € Moo((p.),0.7) x Moo(®,(g,p), J) ¢ 1a(1) = lo(~1)}

Lemma 2.38. Let (p,q),(r,s) € R be ordered double points of v such that p,q,r,s € L are pairwise
distinct and |p,q| — |r,s| = 2. Then, for a generic choice of compatible almost complex structure
J € J.(M,w), the moduli space Mo o((p,q),(r,s),c,J) admits a Gromov-type compactification into
a 1-dimensional manifold with boundary Mo o((p,q), (r,s),J) such that

8ﬂ070((p, Q)v(rv S)aJ) = U MU,O((p> q)v(aa b)aj) X MU,O((avb)a(T7 ‘9)’J)

(avb): |p7Q|_‘a7b|:1

U {1 7) € Moo((p.),0,7) x Moo(®, (ry5), J) : L(1) = lao(~1)}

Lemma 2.39. Let (p,q) € R be a double point of v such that |p,q| — |q,p| = 2. Then, for a generic
choice of compatible almost complex structure J € J.(M,w), the moduli space Mg o((p, 9), (¢,p), J) ad-
mits a Gromov-type compactification into a 1-dimensional manifold with boundary Mg,o((p, q),(q,p),J)
such that

OMoo((p,9), (¢,p),T) = U Moo((p,q), (a,b), J) x Moo((a,b), (q,p),J)

(avb): |p7Q|_‘a7b|:l

U {@1,m) € Moo((p,9),0,7) x Moo(®, (q,p),J) = h(1) =la(=1)}
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2.6 The pearl complex

Recall that we have fixed an exact, compact, connected, generic and graded Lagrangian immersion
1: L — M satisfying Assumption a compatible almost complex structure J € J.(M,w), a Morse
function f : L — R on L and a pseudogradient field g € T'(T'L) on L such that the couple (f,g) is
Morse-Smale.

We define the graded vector space QC*(v; f, g, J) := Z2Crit(f) ® Za R, where Crit(f) is graded by
the Morse index, and R is graded as in Section We denote C := ZyCrit(f) and R := ZaR.

Remark 2.40. In the embedded counterpart of our construction (see [BCO7]), the vector space QC
is defined only using critical points of the chosen Morse function. A nice way to see that we have
to add ordered double points in the definition of the vector space is to analyze what happens to the
generator of the standard Floer complex (see [AB18]), when we let the Hamiltonian diffeomorphism
tend to the identity.

We define a map d : QC*(v; f,9,J) — QC*(v; f,g,J)[—1] by counting elements in the moduli
spaces of pearls we constructed in Section Let x € Crit(f) and v € R. We define

1. doc : C — C by linearly extending

dcor = Z My, z)|2 -y

yeCrit(f): yl—|z|=1
2. dcor : R — C by linearly extending

dcry = > (Moo(y, 7, f9. )2y
yeCrit(f): [o[—|v|=1

3. drc : C — R by linearly extending

dRCx = Z |M0,O(’)/axvfaga‘])‘2 'ry/

Y'ER: |y|—|z|=1
4. drr : R — R by linearly extending

dgrivi= Y, Mooy, v ) UMopoo(v 7 fr9: )2 -
YER: [ |=lv=1

We then pack those four maps matrixwise as
g dcc dcr
drc  drr

drR, (V) = > MG (Y, T2 -
VER: [ |=lv=1

We will write
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and

dRR2 = Z ‘M(%E%)S;O,O(7/7 7> f7 g, J)|2 . 7/
Y ER: |y'|=|v[=1

so that dgrr, + drR, = dRR-
We have to prove that d is well defined and that d? = 0.

Proposition 2.41. For a generic choice of the almost complex structure J € J.(M,w), the map d is
a well-defined differential.

Proof. First of all, d is well defined by the results in Section We have that

2o d2CC + dcrdRrC docder + dCRdRR1 + dCRdRR2
drcdcc + dRR1 drc + dRRz drc drcdcr + d%{Rl + dRRl dRR2 + dRR2 dRRl + d%{RQ

Note that dcrdrc, dcrRAgR2 d%{RQ vanish by area reasons. For instance, if thereisw € Mo o((p, q), z, J)
contributing to dgcz for x € Crit(f), then w is non-constant by assumption and hence <7(p, q) > 0,
implying that for any y € Crit(f), the moduli space Mg o(y, (p,q),J) is empty so that

dcrdror = Y D Moo (p:0), )2l Moo((p,g), )2 -y = 0
lyl—1z|=2 |p,q|—|z|=1
The other cases are similar. Hence we remain with
32— déc dccder + dcrdgg!
drcdcc + dgridrc  drcdcr + d%{Rl + drr1drR2 + dRR2IRR!

The fact that the Morse differential squares to zero is well known. We work out the details for the
other entries. Consider (p,q) € R, then

docdor + dordgrr (p:0) = Y [0Moo(, (p,q), f,9: )22 =10
|z|—Ip,q|=2

by classification of 1-dimensional manifolds with boundary (see for instance [AD14]). Similarly, for
x € Crit(f) we have

drodoc + dgridrer = Y [0Moo((p,q), @, f,9, )2 -2 =0
|p,ql—|z|=2

and

drcdcr + d%{Rl +dRR1 dRRz + dRR2 dRR1 (p, q) =
Z (’aMO,O;O,O((rv 8)7 (p7 Q)a f7ga J)’Q + ’8ﬂ070((7', 8)7 (p7 q))b) ’ (7’, 5) =0

|r,s|—Ip,q|=2

concluding the proof. O

We will call the complex (QC™*(z; f, g, J),d) the pearl complex of + defined via the parameters f, g
and J.
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2.7 Invariance from parameters

In this section we will prove the following proposition via a geometric argument.

Proposition 2.42. Two generic choices of parameters ( fo, go, Jo) and (f1, 91, J1) define quasi-isomorphic

pearl complezes.

The situation that arises in the proof of Proposition is very similar to the one one encoun-
ters when showing independence of Morse homology from the chosen Morse-Smale pair. The main
differences are two: we have to take care of the almost complex structures, and the fact that the map
relating two complexes is a chain map is a little more subtle to prove, as the configurations may break
at double points.

We want to build a chain map

Y QC* (1 f1, 91, J1) — QC™(3; fo, go, Jo)

Which we express matrixwise as

Yrc, YRR

W= <¢COCI wCOR>

We will start from the ideas behind the construction in Morse theory, that is, the definition of
Yoyc, ¢ Crit(fi1) — Crit(fy). Recall that in the case of Morse cohomology, it sufficies to show that
it is isomorphic to singular cohomology in order to show independence from the chosen Morse-Smale
pair; however, there is not much geometry behind that construction.

Pick a smooth function F': M x [0,1] — R, (x,s) — Fs(z) such that Fs; = fy on [0,¢] and Fs = f;
on [1 — €, 1] for some € > 0. Extend F to M x (—e, 1+ €) by asking to be fj respectively f; near the
on (—e¢,0) and (1,1 +¢).

Pick a Morse function h : (—€,1 + €) — R which has a maximum at 0, a minimum at 1 and no
other critical points. Assume further that h is increasing on (—e¢,0) and (1,1 + €) and sufficiently
decreasing on (0,1) such that for any s € (0,1):

OF
— +h <0
s th<

Note that
oF

0s
for s = 0 and s = 1. Tt follows that F:= F 4 (0,h) : M x (—¢,1+ ¢) — R has critical points

(s)+ H(s) =0

Crit(F) = Crit(fo) x {0} U Crit(f) x {1}

and is hence a Morse function.
Via a partition of unit argument, one constructs a pseudogradient field g € I'(L x [0,1]) on
M x (—€,1+€) such that it is gg — Vh on M x (—¢,¢) and g1 — Vh on M x (1 —¢€,1+¢€). We perturb

g such that (1:" ,§) is Morse-Smale and the perturbation is small enough in Cl-sense (for details, see
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[AD14] Proposition 3.4.3]). We call such a pair a Morse cobordism between the Morse-Smale pairs
(fo,90) and (f1,91). Then, as 0 is a maximum of g and 1 is a minimum, i.e. they have respectively 1
and 0 as Morse indexes, it follows that

Critk(F) = Critk,l(fo) X {0} U Critk(fl) X {1}
for any k > 0. Then, the Morse complex (over M x [0, 1]) of the Morse-Smale pair (F, §) is then given

by
CMy(F, §) = Crity_1(fo) ® Crity(f1)

for any k > 0 with differential d written in matrix form as

d~ = dfo (leNeh
F\o 4
f1

where Yc,c, : CM.(f1) = CM,(fo) counts trajectories of § in M x [0, 1] connecting critical points
of fo (seen in Crit(fp) x {0}) to critical points of fi (seen in Crit(f1) x {1}), that is, elements of
M((z,0), (y,1)) for x € Crit(fy) and y € Crit(f;) when |z| — |y| = 0.

We define the other entries of 9 by also considering some configurations in the cobordism M x [0, 1].
We define the following moduli spaces for z € Crit(fy), y € Crit(f1) and (p, q), (1,s) € R:

1. Moo((2,0), (9, q), F,§,J1) := {T@ € Moo(®,(p,q),J1) : 1(=1) € W2(2,0)} whose virtual di-

mension is |z| — |p, ql;

2. Moo((r,8), (y, 1), F,§,Jo) := {u € Moo((r,s),0,Jo) : 1(+1) € Wi(y, 1)} whose virtual dimen-
sion is |r, s| — |y;

3. MO,O((Tv 8)7 (p7 q)7p7g7J07J1> = {(ﬂhﬂ%t) € MO,O((T7 3>7®7J0) X MO,O(@v (pvq)u‘]1> X IR>0 :
@%(ll(l)) = l3(—1)} whose virtual dimension is |r, s| — |p, q|.

We prove that the virtual dimension of Mg o((x,0), (p,q)), F,g, J1) is indeed |x| — |p, g|. First, notice
that dim(Wx(z,0)) = |z[+1, as 0 is a maximum of h, and Wi(z,0) — L x {0} C L x {1}. Define the

evaluation map
evPD - Moo(0, (p,q), J1) x (0,1] — L x [0,1], @+ (I(—1),t)
then

dim(Moo((2,0), (p, ), F', g, J1)) = dim(ev®D) " (W*(2,0)) =
n—|p,g—1+1—(n+1—|z|-1)=[z[—|p,q|
The computations of the remaining virtual dimensions follows very similarly.

We are now ready to construct the map ¥ := o . QC*(v; f1,91, 1) — QC*(v; fo, g0, Jo). Let
x € Crit(f1) and v € R. We define:
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1. ¥c,c, : Crit(f1) — Crit(fo) as above, that is, by linearly extending

Ycoc, T = Z ]./\/l((y,()),(x, 1))|2 Y

y€eCrit(fo): |y|=|z]
2. Ug,r : R — Crit(fo) by linearly extending

¢CoR’7 = Z |M0,0((y> O)a’%ﬁ‘ag’ Jl)|2 Y

y€Crit(fo): |p,a|=|y

3. URc, : Crit(fi1) — R by linearly extending

\IIRcl‘T = Z |M0,0(7,7 (Ial)vﬁvgaJO)b "y/

Y ER: |Y|=lx]
4. Yggr! : R — R as the identity map on R;

5. YrRr2 : R — R by linearly extending

\IIRRT.Y = Z |M0,0(’7/,’7,F,§,J0,J1)|2"’)’/
YeR: Y=l

6. YRR = wRRl + wRR2‘

The fact that Uc,c, is well-defined follows from the fact that (1*:' ,g) is Morse-Smale, while to show
that the remaining three entries are well defined one can proceed as in Section and Section [2.4] to
show that the moduli spaces above are generically either empty or finite dimensional smooth manifolds
whose dimension agrees with virtual dimension, whenever the latter is smaller or equal to 1, and are
compact when it is 0.

We compute (df, o9+ ody )(x,7) as

dcoc, door ) [Ycoc: Yoor ) [ . Ycoci Yoor ) (dcic, dor) () _
drc, drr YrRC, YRR 0 YrRC, YRR drc, drr Y
_ ( dcyco¥coc: + Yeycideycg dcycoVcoR + Yoo do R ) (33)

drcyVcoc: + dgrri¥re; +YRrRedo,c; dRCyYVCoR + dRRr1YRR2 T YRC1ACiR + YRR2ARRY ) \Y

By Gromov-compactifying the relevant moduli spaces in dimension 1, similarly to what we did in
Section we directly get that U is a chain map. When looking at the Gromov-compactifications,
one has to notice that Morse flowlines of F' can not break in L x (0,1) by definition of F' and that
Morse flowlines of F' joining critical points of the form (x, i), (y,4) lie on L x {i} as F equals f; near
L x {i}.

Remark 2.43. In the above computation we silently canceled out various terms: a lot of terms got
canceled because of area reasons, exactly as in the proof of d*> = 0, while the other because the identity 2
————

Yt (of course) commutes with the other maps.
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(G, F R R o), E51)
Q= | =
: - O : —O

K
€= t= € =o t=a

£ = [ k== [

Figure 2.10: A sketch of the relevant configurations for the definition of .

It remains to show that ¢ = wﬁ 9 is a chain isomorphism. First of all, we show that if fo = fi,
go = g1 Jo = Ji, F = (0,h) and § is constantly go — Vh = g1 — Vh, then ¢ is the identity map.
This is rather easy since if |z| = |y| for two critical points z,y € Crit(f), then M(x,y) is a single
point (the constant flowline at z) if z = y and is empty if  # y, while on the other hand in this
case YRR = Yrp! = !d as a configuration contributing to 1gg2 induces (by projecting on L) a

configuration in a moduli space of negative dimension.

Now, it remains to show two things: first, that concatenation of two Morse-Smale pairs on L x [0, 1]
induce a map ¥ which is chain homotopic to the composition of the ¢’s induces by the two Morse-
Smale pairs separately; second, that two Morse-Smale pairs on L x [0, 1] interpolating the same two
Morse-Smale pairs on L induce chain homotopic v¥’s (this is all quite standard, one finds proofs
for Morse theory and Hamiltonian Floer homology in [Amb20; AD14] and for Lagrangian quantum
homology for embedded Lagrangians in [BC07]). maybe add something.. This proves Proposition
2.42]

We are now ready to define the main object of this thesis.

Definition 2.44. Consider a Morse-Smale pair (f,g) € C°(L) x I'(TL) on the manifold L and
a compatible almost complex structure J € J.(M,w) on M such that any object we have studied
until now is reqular. Then we define the Lagrangian quantum cohomology QH*(1) associated to the
immersion v with coefficients in Zg as the homology of the complex (QC*(v; f,g,J),d).
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2.8 Lagrangian quantum cohomology is Floer cohomology

In this section, we exhibit an equivalence between the pearly definiton of Floer homology and the
more standard one using Hamiltonian perturbations. This equivalence is based on a so called “PSS”
construction, which was originally introduced by Piunikhin-Salamon-Schwarz [PSS96| in the context
of quantum homology. We will follow [AB19], while adding the relevant configurations they do not
consider in their paper, but first we quickly introduce Floer homology via Hamiltonian perturbations

for Lagrangian immersions following [AB1§].

The basic setup is the same which we described at the beginning of this chapter. We fix a
compatible almost complex structure Jy; € J.(M,w) and a smooth time-dependent compatible almost
complex structure J : [0,1] — J.(M,w) which is equal to Jj; in an open neighbourhood of the
boundary OM. Consider a Hamiltonian H : M x [0, 1] — R which vanishes in an open neighbourhood
of the boundary OM: we call H an admissible Hamiltonian if ¢ (2(L)) U (¢ )~1(2(L) is disjoint from
1(R) and ! (1(L)) is transverse to 2(L). We define I'y as the set of Hamiltonian orbits ¢ : [0,1] — M
of H such that v(0),v(1) € «(L). We will call (H, J) as above an admissible couple.

Definition 2.45. While the second hypotesis in the definition of admissible Hamiltonian is very
standard (and necessary) in any flavour of Floer theory, as it implies that Ty is a finite set, the first
hypothesis ensures that Hamiltonian orbits of H do mot start and stop at double points of v, making
our life easier as thing will look much more “embedded”.

We index Hamiltonian orbits in a very similar way to double points. Consider v € I'; and the
Lagrangian subspaces D1[T,-1(y(1)L] and D(pll 01) [T,-1(y(0)) L] of TM. Then we define the index of

v as

= n+ 00 (1(0) = 0.7 (v(1) =2 B;
=1

where 1, ..., B, € (0, %) are the Kéhler angles between D1[T,-1(,(1)L] and D(pl 04) [T-1(y(0)) L)-
As always in Floer theory, this is the moment to define the objects we will be counting to define the
cohomology.

Definition 2.46. Fiz an admissible couple (H,J), two orbits vy € Iy, an integer k € Z>o and
a map o : {1,...,k} — R indexing double points of 1. An a-marked Floer strip with boundary and

corners on 1 joining y— to vy is a tuple u = (u, A, a, 1) where:

1. uw:Rx][0,1] = M is a continous map which is smooth on R x (0, 1), satisfies u(Rx{0,1}) C +(L)
and
i u(s, t) = y=(t)

uniformly with all derivatives;
2. on R x (0,1) u solves the so-called Floer equation

Osu + Ji(u)Opu + grad,, Hi(u) =0 (2.1)
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where g¢ is the time-dependent Riemannian metric induced by w and J and grad is the usual
Riemannian gradient;

3. Ai={z1,...,zp} CRx{0,1} is an ordered subset of R x {0,1};
4. 1:Rx{0,1} = A — L is a countinous map lifting u to L, that is
1ol=wu

on R x{0,1} — A and such that for any i € {1,...,k} we have

( lim I(z), lim l(z)) = af(i)

2=z, z2—2;
that is, u has ougoing branch jumps of type a(i) at z;;
5. The energy E(u) := fo[O 1-A |0sul? dsdt is finite.

We write the moduli space of parametrized a-marked Floer strip with boundary and corners on 1
joining y— to v+ as Mk(77,7+,oz,H, J) and the moduli space of unparametrized ones as the orbit

space

Mk(7—7 T+ &, H7 J)
R
where the R-action is given by horizontal translation. Moreover, if v— = v4+ we define Mo(y—,~,a, H, J)

Mk(Wﬂ%raa, H, J) =

to be empty if a = (); note that in this case if o # (), the moduli space does not contain any constant
strips, as H is admissible. If « = () we often omit it from the notation.

Remark 2.47. The Floer equation[2.1] describes the solutions to the negative gradient of the so called
action functional, which is defined for ~ : [0,1] — M such that (0),~v(1) € L as

1
() = hr(v(1)) = hr(7(0)) —/O (Y A+ Hi(y(1))) di

which has I'y as set of critical points. In practice, Floer theory via Hamiltonian perturbation is an
analogue of Morse theory in an infinite dimensional setting. Whereas people believed that there was
no link between topological informations on M and L and the analysis of critical points of the action
functional, it was Floer’s breaktrough to use the ideas of Gromov to build one. Notice that the action
functional as we defined is well-defined as we are working in an exact symplectic manifold: when
working in other settings one has to be careful on how to define it (e.g. via covering spaces [Poz94]

or via a fized choice of capping for orbits [BCO7]).

It turns out that for orbits v vy € 'y and o : {1, ..., k} — R indexing double points of 1, My (y—, v+, a, H, J)

has virtual dimension

k
virdim(My (y—, v, @, H, J)) = [y | = || = Y (@) + k- 1
=1
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(note that we are working with two different kinds of indexes). This can be seen by calculating the
Maslov index of the bundle pair (see [Oh15]) (u*TM,!*T L) when extended to R x [0,1]U{—1,+1} x
[0,1]. This works similarly to the embedded case, with the only difference that one has to choose a
counterclockwise path from Du(p)[T,L] to Di(q)[TyL] for any (p,q) = (7).

At this point, one usually goes on proving transversality and compactness properties of the relevant
moduli space. First, we have the following:

Proposition 2.48 ([AB1§]). Let v—,v+ € 'y be Hamiltonian orbits of H and o : {1,....,k} — R be a
map indexing k double points of 1. Then, for a generic choice of admissible couple (H,J) the moduli
space My(v—,v4+,a, H,J) is a smooth finite dimensional manifold whose dimension agrees with its

virtual dimension.

An admissible couple (H, J) from the statement of is said to be regular.

This kind of statement is pretty standard nowadays, and (after some years of troubles) is very well-
known in the case of embedded Lagrangians. The only remarkable difference between the transverse
immersed case and the embedded one is that one has to provide some new arguments to show that
the solutions of the Floer equation decay fast eneough near branch jumps (this is done in [AB18|
Appendix A]), while to model the moduli space on some Sobel space one needs to prove the existence
of a metric which is totally geodesic on 2(L). We will not dive into the details here not to bring more
hard machinery into the game; anyway, to have a grasp of what is going on here, one can find a very
quick summary of how transversality works in the case of Floer cylinders (or double strips) used to
construct Floer cohomology for ambient Hamiltonian diffeomorphisms in [Amb20|, which summarizes
the lenghty and detailed theory contained in [AD14].

We now define the Floer complex for a regular couple (H,J) as
CF*(Z; H, J) = ZQFH
with the index for orbits we defined at the beginning of this section, with differential

d:CF*(yH,J) — CF* (1, H,J)[-1], 74 +— > (Mo(v=s 74, H, T)|2 - -

v-€lm: [y—|—=lv+|=1

As usual, one has now to prove some statements about compactness of the moduli spaces Mo(v—, v+, H, J)
in dimensions 0 and 1 to really conclude that (CF*(s; H,J),d) is a well-defined chain complex. It

is proved in [AB18] that such moduli spaces are generically compact when the dimension is 0, while
they can be compactified by only adding broken strips when the dimension is 1. Again, as in the case

of pseudoholomorphic disks, the keys to the proofs is that we are working in an exact environment
where neither sphere nor disk bubbling may happen and that the index of a strips drops by 3 by
Assumption when a teardrop (or a tree of them) bubbles out, see Lemma 6.1 and Lemma 6.2 in
[AB18] for details.
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To define a nice cohomology, one then checks that couples of regular couples of parameters induce
chain isomorphic chain complexes (see [AD14] for the case with Hamiltonian diffeomorphisms, [Oh93]
for the embedded Lagrangian case and |[AB18] for the immersed Lagrangian case). This is based on a
standard argument with the so-called continuation data, i.e. homotopies between the different choices
of parameters and the proof of the immersed case does not differ much from the embedded case at
its core, also being quite similar to what we did for pearly homology. The idea is roughly as follows:
using the chosen homotopies between regular datas we build a map counting Floer strips whose Floer
equation also depends on the parameter s of R x [0, 1], which is the identity if we pick the trivial
homotopy between the same couple of regular data; via transversality and compactness argument one
shows that such a map is a chain map. Then one shows that the map induced by concatenation of
homotopies is chain homotopic to the composition of the two maps induced by the two homotopies
separately, still analyzing transversality and compactness of certain moduli spaces of solutions to a
“higher” Floer equation (for a compact treatment with light analysis of the proof of invariance of
Floer homology for Hamiltonian diffeomorphisms see Section 3.4 in [Amb20]). It goes without saying
that, in our case, Assumption still plays a central role in exluding configurations with teardrops
attached.

The next definition makes now finally sense.

Definition 2.49. We define the Lagrangian Floer cohomology HF™* (1) of the immersion v as the
homology of the complex CF*(1; H,J) for a regular choice of parameters (H,J).

One can show that H F™*(2) is invariant under Hamiltonian diffeomorphisms and, more generally, from

exact deformations of .

For simplicity from now on we will appeal to the arguments contained in [FHS94] and consider
regular couples (H,J) such that J € J.(M,w), that is, the almost complex structure is chosen to be
autonomous.

Remark 2.50. The question about time-dependence of the parameters (H,J) one has to request in
order to achieve transversality of moduli space of Floer strips has been a subject of discussion in the
years of developments of Floer theory, and the author (of course) is not aware of all the details.
The point about time-dependence (or, said differently, domain-dependence) of the almost complex
structure is that there may be pieces of (quasi-)pseudoholomorphic curves with different covering
multiplicity in different regions of the curve (we have seen that in Proposition and Proposition
for pseudoholomorphic disks), and, as different points of the surface are in particular mapped to
the same point of the symplectic manifold, one (at least a priori) hence needs extra parameters in
order to perturb the almost complex structure correctly to achieve transversality. Quite surprisingly
(at least to the author), it seems like that the results contained in [Per19] (in particular Corollary[2.8)
imply that one can do Floer homology of transversely intersecting embedded and immersed Lagrangians
by considering a generic choice of trivial (in particular autonomous) Hamiltonian and autonomous

almost complex structure in dimension bigger than 3.
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cUCunm wmap ?

In the remaining of this section we will prove the following proposition.

Proposition 2.51. Consider a reqular tuple (f,g,J) in the sense of Proposifion and a reqular
couple (H, J') in the sense of Proposition [2.48 such that Crit(f) N Crit(H)

QC*(v; f,9,J) and CF*(1; H,J') areLchain isomorphic,via alchain isomomphism\which is unique up

. ’ -
to chain homotopy. "2 —_— P.Q/d,\_o.,w: c"UL /- . <

No surprise here: Proposition will be proved by analyzing transversality and compactness of

(). Then the complexes

moduli space of certain configurations.
Consider an smooth homotopy (H,J) connecting (0,.J) to (H,J’), that is smoooth maps H : R —
C*®(M x [0,1]) and J : R — J.(M,w) such that there is R > 0 such that

J, fors<-—R 0, fors<-—-R
J(s) = and H(s) =
J', fors>R H, fors>R

We define the moduli space we are going to use. Consider an orbit v € I'y, an ordered double point
(p,q) € R, a critical point x € Crit(f) and a map « : {1,....,k} — R indexing double points. We
define the moduli space My(i,j,a, H,J) of a-marked Floer strips connecting i € {7, (p,q),z} to
Jj €47 (p,q),z} with i # j (in the sense that if ¢ = x, strips connect an element in W*(x) with
j, while if j = x, strips connect ¢ with an element in W#(x), much like in Section . We also
allow i = () or j = () (but not both at the same time) by requiring that a-marked strips in such
moduli spaces have removable singularities in —oco and +oo respectively. Notice that this time the
Floer equation depends on the parameter s and that we again for simplicity omitted a priori the
possibility of incoming branch jumps indexed by «. At this point, it is not hard to show that the
virtual dimension of M4, j,a, H,J) for 4,5 # 0 is

k
virdim(My (i, j, @, H,3)) = [i] = [j] = D |o()| + &

i=1

Notice that we have no —1 summand as we have not quotiented here by the action of the real numbers
on strips.

Similarly to what we did Section and Section [2.42] we need another type of configurations for
index maps a1 : {1,...,k1} = R and ag: {1,...,ke} — R: we define

le;kQ((z% Q)v v, o1, 2, fa g, Ha J) I:{(U, v, t) S MO,k‘l ((pa Q)v (Dv at, J) X ng (®7 v, @2, Ha J) X R>0 :
f L
ol (u(1)) = lim_v(s,0)}

and viceversa

Mi1;k2(’77 (p> Q)7a1>042>fagaHaJ) ::{(U,U,t) S Mk2(®77a OQ,H,J) X M07k1((pa Q),Q,Odl, ‘]) X R>0 :
lim v(s,t) = ¢/, (u(~1))}

s—+400

We write again QC*(z; f,g,J) = C @ R and define the following maps:
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1. ¥cr: CF*(1; H,J') — C by linearly extending

Yer(y) = > (Mo(z,v,H,J)|2 -z

z€Crit(f): ||=|v|
2. Yrr1 : CF*(1; H, J') — R by linearly extending

wRF(’Y) = Z |M0((p7 Q)777H7J)|2 * T

(p.9)€R: |p,gl=1]
3. Ygrr2 : CF*(1; H,J') — R by linearly extending

wRF(’}/) = Z |M0;0((p7Q)777 fag>H>J)|2 - T

(P,@)ER: |p,gl=|7]

4. Yrr = Yrr + YR

and put all of this together in a map ¥pss : CF*(1; H,J') — QC*(1; f,g,J) as

_ [ %er
Ypss : ( ?[)Rr)

Similarly we define ¢psg := (¢FC ngFR) : QC*(1; f,9,J) — CF*(1; H,J') by counting reverse
configurations.

To show that ¢psg and ¢pgs are well-defined chain maps, one has to show that, as we are now used
to, the relevant moduli spaces are generically regular in dimension 0 and 1 and have nice compactness
properties. First, notice that all the strips we are dealing with in these moduli space can not be
constant. Indeed, notice that as H # 0, H can not be independent from s: in particular there is
no Hamiltonian orbit which is an orbit for all H(s)’s for a generic choice of homotopy H. It goes
without saying that the analysis of compactness for the moduli spaces above in dimension 0 and 1
is a combination of the results about compactness of a-marked strips with corners and of a-marked
disks with corners: by counting dimensions it turns out that the moduli spaces above are compact in
dimension 0 (implying that psipgs and ¢pgs are well defined) while one has to include configurations
with breakings of Morse flowlines, breakings at double points, breakings of Floer and degenerations
at embedded points (which however get counted twice, exactly as in Section and Section [2.7)) to
compactify those moduli spaces in dimension 1 into one dimensional manifolds with boundary. With
this in hand, to conclude that ¥pgs and ¢pgg are chain maps one first has to show that certain terms
vanish becuase of area resons, as for instance dcryrrz, exactly as in Section 2.6 and Section 2.7 We
skip the details of step as we have already proved similar statements several times in this thesis. The
fact that ¥pgg and ¢pgg now follows by an argument which is exactly the same as in [AB19)|.

N wlodh o et 2
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3 Immersed Lagrangian quantum co-
homology: A structure

In this chapter we describe a product structure for immersed Lagrangian quantum homology of generic
Lagrangian immersions as well as higher operations endowing our immersion with the structure of
an A.-algebra. Alston and Bao described in [AB18] an @7, -structure for the immersed Lagrangian
Floer cohomology we introduced in Section [2.8] which is practically identiacal to the one presented in
detail in [Sei0§], if not for some analytical details and the fact that one has to keep track of another
kind of marked points when defining associahedra and in particular one has to work with open covers
to define universal choices of strips like ends, as marked points where branch jumps happen may
overlap. The A, operations we introduce are highly inspired by [BCO7| and heuristically inspired by
the aforementioned trick of taking the identity as Hamiltonian diffeomorphism for the definition of
Floer cohomology.

3.1 The pearly product
In this section we will prove the most of the following proposition.
Proposition 3.1. The graded vector space QH*(1) admits the structure of associative ring with unit.

Consider three Morse functions f, f’, f” : L — R in general position with the same critical
points and such that all three form a Morse-Smale pair with the same pseudogradient field g. Denote
C := ZsCrit(f), C’ := ZoCrit(f’) and C” := ZCrit(f”). At the chain level, the product will be a
linear map *: (C®R) ® (C’® R) — C” @ R. Note that there is an unique isomorphism

(CeR)®(CeR) — (CrC)a(CoR)s ( R®C’)a(R®R)
We use it to define the product matrixwise as
.._ [PCC PCr ¥Re PRR
Y8 YR PRC YRR

We will now define moduli space of Y-pearls of type abe for a,b,c € {1,2}. We leave a-markings away

but at this point the reader can very well imagine how such markings would enter into play here.
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We define the first some moduli spaces. Denote by a1 := —1 € D, ag := e_%” € D and a3 := e% €
D. We will need disks with a priori 3 marked points. Let x € Crit(f),y € Crit(f’), z € Crit(f")
and v,7,7” € R. Let a : 0 — R, we define Mo(y",~,v,J) := Ms({al,ag,ag},azﬂl,J) and
Mo(D,~,~,J) :={u e Mg({ag,ag},oﬂ”/, J): l(a1) € L} and so on.
We define moduli spaces of Y-shaped configurations of of type 111 as

1. MM (2,2, y) == W4 (2) N W(z) N WS (y)
2. MM (z, 2,7, J) = {(u,t) € Mo(D,7,J) x Rag : p_i(u(—1)) € W¥(z) N W*(x)}
3. MM (2,7, 9, J) = {(u,t) € Mo(0,7,J) x Rag: p_t(u(=1)) € W4 (z) N W*(y)}

4. M(1)11<27777/a J) = {(u17u27t1at2) € MO(Q?’Y:J) X M()(@,’)/,J) X IR2>O : @—tl(ul(_l)) -
1, (uz(—1)) € W"(2)}

. Mg (", @,y, J) o= {(u, t) € Mo(y",0,J) x Rao + e(u(1)) € W*(z) NW*(y)}

6. MM (Y 2,7, J) := {(u1,ug, t1,t2) € Mo(y", 0, J)x Mo(B,7) xR : o, (ur1(1)) = @, (ua(—1)) €
We(z)}

7. M(l)ll(’y/,ary,yv J) = {(u17u27t17t2) € MO(’YH,@, ‘])XMO(@a'ya J)XR2>O D P4 (ul(l)) = (pftQ(UQ(_l)) €
We(y)}

8 MM v, T) = {(u1, u2, us, t1, ta, t3) € Mo(v",0,J) x Mo(D,7,J) x Mo(D,+,J) x RS, :
ot (1 (1)) = oty (u2(—1)) = ot (us(—1))}

we define moduli spaces of Y-shaped configurations of type 112 as
L. M2 (z,2,y) =10
2. M2 (z 2,7, J) == {(v,t) € Mo(0,0,7',J) : v(a1) € W¥(2), v(az) € W*(z)}
3. M2 (z, vy, J) =10

4. ME2(2,7,9", J) = {(v,u,t) € Mo(0,0,7, J) x Mo(0,7, J)xRsp : v(ar) € W(2), ¢r(v(az)) =
u(—1)}

5. My 2,y J) =0

6. M§2(y" 2,9, ) = {(u,v,t) € Mo(y",0, ) x Mo(0,0,7) x Rso : ¢u(u(1)) = v(a1), v(az) €
W ()}

7. MGE(0 vy, J) =0

8. My2(Y", 7,7, J) == {(u1,v,uz, t1,t2) € Mo(v",0,J) x Mo(0,0,7,J) x Mo(0,7,J) x R, :
o1, (u1(1)) = v(ar), —t,(u2(=1)) = v(az)}

we define moduli spaces of Y-shaped configurations of type 121 as
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Figure 3.1: Sketch of Y-configurations of type 111.

L. Mz, z,y) =10
2. MPY(z, 2,9, J) =10
3. M§P (27,9, J) = {(v,t) € Mo(0,7,0,J) : v(ar) € W*(2), v(az) € W*(y)}

4. MEP (27,9, J) = {(v,u, t) € Mo(D,7,0, J)x Mo (0,7, J)xRsp : v(ar) € W(2), ¢r(v(az)) =
u(—1)}

5 MA@ 2y, J) =10
6. MG ) = 0

7. MY vy, J) = (w0, 1) € Mo(",0, ) x Mo(0,7,0,J) x Rso - @e(u(1)) = v(ar), v(as) €
W2(y)}

8. MEY (Y v,y J) o= {(u1,v,uz,t1,t3) € Mo(y",0,J) x Mo(0,7,0,J) x Mo(0,~,J) x RZ, :
o, (u1(1)) = v(a1), ©—t(uz(—1)) = v(az)}

we define moduli spaces of Y-shaped configurations of type 211 as

1. M3 (z,2,y) =10
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Figure 3.2: Sketch of Y-configurations of type 112.

2. M3 (z, 2.+, J)

0
3. MEY(z,v,y,J) =10

4. Mg (27,7, J) =0

5. MG (" 2.y, J) o= {(v,t) € Mo(7",0,0,7) : v(az) € W3(x), v(az) € W*(y)}

6. M3 (" 2,7, J) = {(v,u,t) € Mo(, 0,0, J)x Mo(B,~', J)xRxp : v(ag) € W(x), ¢t(v(ag)) =
u(—1)}

7. M%H(’y”ary’ya J) = {(U7u?t) € MO(’)”? Q)a 07 J) X M0(®’77 J) X R>0 : th(u(Q)) = ’U(CLQ), U(a3) €
W= (y)}

8. M%H(W”ﬁﬁ/w]) = {(U7u27u37t27t3) € MO(’}//’@a@)J) X M0(®a777‘]) X MU((D?’V/’ ']) X R2>0 :
-ty (u2(—1)) = v(az), p—t;(uz(—1)) = v(as)}

we define moduli spaces of Y-shaped configurations of type 122 as
1. M(l)m(z,x,y) =0

2. M{P2(z, 2,9, J) =10
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a.!

Figure 3.3: Sketch of Y-configurations of type 121.

3. MEP2(z,v,y,J) =10

4. MEP2 (27,9, J) == {v e Mo(0,7v,7',J): v(ar) € W¥(2)}

5. M2 2y, J) =0

6. My2(y" 2,7, J) =0

7. M.y, ) =0

8. MGZ(Y", 7,7 J) = {(ur, v, t1) € Mo(7",0,7) x Mo(@,7,7",J) x Rso + o, (ur(1)) = v(a1)}

we define moduli spaces of Y-shaped configurations of type 212 as
1. M%m(zm,y) =0
2. M32(z, 2,7, J) =0
3. ME2(z,v,y,J) =10
4. M3 (z,7,7,J) =

0
5. M3Z(Y' m,y,J) =0
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Figure 3.4: Sketch of Y-configurations of type 211.
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Figure 3.5: Sketch of Y-configurations of type 122.
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6. M%m(’y”,x,fy’,J) ={ve Mo, 0,7): viag) € W(x)}
7. MAR(Y y,y, J) =0

8. M(2)12(7”5’y’fy,"]) = {(U7u27t2) € MO(’y”a@uryla‘]) X MO(®7’Y77‘]) X R>O : @—tQ(UZ(_l)) =
v(az)}

'E_l t\
'3 ¥

Figure 3.6: Sketch of Y-configurations of type 212.

we define moduli spaces of Y-shaped configurations of type 221 as
1 M3 (2, 2,y) =0
0

3. MEYz,v,y,J) =10

2. M3 (z, 2,9, J) :

4. MEY(z,v,+',J) =10
5. MLy 2y, J) =10
6. MZ2(y", 2,7/, J) i= 0

7. MB(Y g, J) o= v € Mo(Y", 7,0, 7) : vlas) € Wo(y)}

8. M(Q)Ql(’y”a’y’ry,"]) = {(U,U37t3) € MO(’YNa’Y)(Z)N]) X M0(®7’y/77‘]) X R>0 : QO_t3(U3(—1)) -
v(az)}

we define moduli spaces of Y-shaped configurations of type 222 as

1. M3 (z,2,y) =10
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Figure 3.7: Sketch of Y-configurations of type 221.

2. M32(z, 2,7, J) =10
3. M%m(z,'y,y, J):=10
4. M32(2,7,7,J) =0
5. ME2(Y' 2y, J) =10
6. MZ2(y" 2, J) =10
7. M.y, J) =0

8. MEF2(Y", 7.7, ) = Mo(v", 7,7, )

Remark 3.2. The author is sorry for such an eyesore.

Remark 3.3. We can view Y -configurations with no core disk in the definition as having a constant
core disk.

Notice that as we assumed f, f/, f” to be in general position it directly follows that M (z, z,vy)

is a smooth manifold of dimension |z| — |z| — |y|. More generally, it is easy to see that all the other
(non-empty) moduli spaces M@%(i, j, k, J) have virtual dimension |i| — || — |k|, where the type of
index depends on the nature of 4, j, k respectively.

The argument for simpleness and absolute transversality of the moduli spaces above are quite
similar to the arguments we provided in Section and we get that as long as the virtual dimension
is smaller equal than 1 and v # +' # o 07", where ¢ is the non-trivial permutation of two elements,
the moduli spaces above are finite dimensional smooth manifolds whose dimension agrees with the

virtual dimension for a generic choice (of the same) almost complex structure.
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X

Figure 3.8: Sketch of Y-configurations of type 222.

The delicate configurations still as in Section may arise when there are configurations contain-
ing couples of triples of the same double point. Again, this probem is solved by the fact that such
configuration come in even classes of moduli spaces: consider for instance the eight (111, 112, 121,
211, 122, 212, 221 and 222) classes of moduli spaces connecting (g, p) to (p,q) and (p,q), then it is
easy to see that the first seven only contain simple elements, which may however be not absolutely
distinct, while the 222-class may contain 3-covered disks.

We define x : QC*(s; f,9,J) @ QC*(3; f',9,J) — QC*(4; f”, g, J) matrixwise by counting the
elements of the above moduli spaces in dimension 0. Consider critical points = € Crit(f),y € Crit(f’)

and double points 7,7 € R. We define
1. @8’(’3, :C®C’ — C” by linearly extending

90823’(m7y) = Z ’M(l)n(zvmay)b "R
z€Crit(f): |z|=l|z|+]y|
2. @8’1’1 :C®R — C” by linearly extending
C”

ver(@,Y) = > Do IME (2w, )2 - 2

z€Crit(f): |z|=|z|+|¥'| a,b,c

3. gogé, :R® C’ — C” by linearly extending
PRe(1,y) = > > IM (2,7, y)l - 2

2€CHit(f"): |l=l+]y] arbe

4. QOIC;{;—{ :R® R — C” by linearly extending

eSO = > IME (25,72 - 2
2€Crit(f): |z|=|+]7'| @b
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D. gogc, : C® C’ — R by linearly extending

QOIC{:C’(I‘7 y) = Z Z |M850(,y//’ z, y)b : ’Y//

YIER: [y |=lal+ly| abc

6. gpgR :C®R — R by linearly extending

pCr(2.7) = > D IME( 2 )

V'ER: Y |=[x]+|] ab,e
7. go%c, :R® C’ = R by linearly extending

Pre (1Y) = > D> IME (Y vyl A

Y'ER: Y |=[v[+ly| a,b,c

8. gpﬁR :R® R — R by linearly extending

PRR(1,7) = > D MG )l

Y'€R: Y |=IvI+1| ab.e

Again, to see that * is a well-defined chain map, we have to look at compactness and compact-
ification of the moduli spaces Mg’b’c(i, J,k,J). This is very similar to what we have already done
in Section and and we skip the details (and the headaches coming from the analysis of a-
markings). The only main difference with the compactness results which lead to the properties of the
pearly differential, is bubbling off of disks from the core disk: those configuration (which may admit
some a stable ghost disk if a couple of marked points overlap, as we defined the core disk to have three
marked points) will cancel out in the modulo 2 sum with limit configurations coming from shrinkage
of Morse flowlines, much like in the definition of the differential and of the product in [BC07|. In other
words, following the notation above, we can express bubbling at the core disk in two ways by looking
at the two values of abe € {111,112,121,211,122,212,221,222} we are interested in (see Figure

At this point it remains to prove that the product we defined in this section does not depend on
choices of regular parameters (f,, f’, f”,g,J) at the cohomological level. The argument which one
needs to prove this goes along the same lines of what we did in Section while taking care of the
bubbling configurations we just described.

Alough we did not elaborate any counterexample, it is expected that the product, even at the co-
homological level, is not commutative, principally because the marked points on the core disks are
fixed, so that the it can not be reparametrized.

3.2 Unit

We will now show that immersed Lagrangian quantum cohomology admist a canonical unit with
respect to the product we defined above. What follows is very similar to the embedded case [BCO7].
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0

W

Figure 3.9: An example of how two sequences of Y-shaped configurations connecting the same double
points but with different values of abc may compensate each other in the Gromov limit.

Lemma 3.4. There is a canonical element e € QH(1) which is a unit with respect to the pearly
product defined in Section [3.1].

We will first work at the chain level. Assume that f” = f and that f’ has a unique minimum
y € Crit(f’) (these are generic assumptions). We claim that the generator (y,0) € QC(s; f',g,J) is
a unit for the pearly product defined using the above data. First, we show d(y,0) = 0. We rewrite

d(y,0) as
doer dor) (Y
drc®  drR 0

Clearly, dcrr0 = 0 and dgrr0 = 0. Consider the Morse differential dcsc»y of y: as HMC(L) = Zs, and
y is the only generator in degree 0, we have ker dcrc = Zo in degree 0, so that dg'cry = 0. Consider
now drcy: it counts pearly configurations starting at double points |p, ¢| with index equal to 1, as
that of y vanishes. In particular, it follows that 2 (p,q) < 0 and hence a teardrop u contributing to
the differential would have energy F(u) = <7 (p,q) < 0, a contradiction. This proves that dgcry = 0

and hence that y is a cycle.
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Let x € Crit(f) and (p,q) € R. We have

&Y
C C C C
0) = Yccr PCrR PRC’ PRR 0
(‘T’ 7) * (ya ) - R R R R —
Yccr PCrR PRC’ PRR TRy
0

1. We claim that @86,(@“, y) = y. This is an argument from Morse theory. Indeed, if for z € Crit(f)
there is a Morse Y-configurations joining z to x and y, then |z| = |z|. In particular, the
existence of such an Y-configuration implies the existence of a Morse flowline joining z to =z,
which combined with the dimension above directly implies x = z.

2. We claim that ¢§qs(7,y) = 0. Assume there is 2z € Crit(f) such that there exist an Y-
configuration from z to 7 and y in the case 111 or 121, then |z| — |y| = 0. Then, as there is a

—im/3

reparametrization of D fixing —1 and taking e to 1, the existence of such a configuration

implies the existence of a C'R-pearl joining z to v, a contradiction to |z| = |7|.
3. We claim that gpféc,(x, y) = 0. This is very similar to the case above.

4. We claim that gogc,(’y,y) = ~. Note that there is no Y-configuration joining v to v and y of
type which is not 221, as such a configuration would have a constant teardrop, which is not
allowed. We conclude that the only configuration contributing to gogc,('y, y) = 7 is a constant
disk with branch jumps which lies in the stable manifold of y (that is a configuration of type
221).

This proves that (y,0) € QC(s; f’,g,J) is a unit for the pearly product at the chain level. Morover,
again by simple Morse theoretic arguments, it is immediate to see that comparison morphisms
from Section send unique minima to unique minima, so that (y,0) induces a canonical unit
e:=1[(y,0)] € QH(2). This concludes the proof of Lemma

3.3 Associativity and higher operations

3.4 An example of computation

Alston [Als13] calculated Floer cohomology of some immersed Lagrangian submanifold in an affine
symplectic submanifold of C? using the machinery later developed in [AB19]. We mainly follow [Als13]
while adding some details. Here, we will work with a symplectic manifold which is non-compact: all
the machinery we developed in this thesis may be translated to a non-compact setting by asking that
the convexity condition take place in some compact subset K and that the holomorphic curves having
boundary on our immersion are contained in K; these are requirements that only affect the choice of

the almost complex structure.
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Definition of the immersion.

Let N € Z~¢ and consider the polynomial

N
Fy i=x129 — H(:Eg — k) € Clzy, x2, x3]

i=1
We consider here My := F &1(0) endowed with the exact symplectic form w and compatible complex
structure Jys, induced by the standard Kéhler structure of C3. We moreover endow My with
a nowhere vanishing holomorphic form Q7 € Q¥2(My) by taking the Poincaré residue of the
meromorphic volume form ﬁdwl A dxzo A dzg on C3.

Consider the functions H, G : My — R given by H(z1, %2, 23) := 3(|z1|—|z2|?) and G(24, 22, 23) 1=

|z3)? for (z1,72,73) € My. For any r € {1,..., N} define Ly, := (H,G)"(0,r). We construct an
explicit immersion of S? into My parametrizing Ly, in cylindrical coordinates (a, e®) € (—m, ) x S*:

ing: (—mm) x ST — My,  (a,e®) — (e®¢(a), e ®¢(a), —re™®)
where £(a) = Hszl V—rett — k.

Proposition 3.5. The map iy, extends smoothly to a map S? - My, is an exact Lagrangian

immersion with one transverse double point and Ly, as image.

Proof. One could use some result from theory of integrable system. We do the explicit computations.
To show that the symplectic form vanishes on Ly, one simply shows that H and G Poisson commute,
and this is straightforward. The fact that iy, extends smoothly to S? is proved is also straightforward.
in, is then an immersion as in,(¢s2) = inr(pg2), where gg2 and pg2 are the south and north pole of
S? respectively. Differentiating iy, is not hard to compute that

DiN,T(p%)[TPS2 52] = SpanR((”v v, 0)7 (i?), —iU, 0))

and
Dz'J\rm((]gw)[qu2 52] = spang((iv, iv,0), (—v,v,0))

where v := \/ 2mar Hivzl(r — k). This shows that the only self-intersection is in fact transverse. [

We grade iy, by On, := %id. Then

]
2

, e’z 0 :
DZN,T(QSQ)[quz SQ] = ( 0 €Zg> DZN,r(pSQ)[Tpsz‘S’Q]

using the calculation in the above proof once modified to have unitary bases, so that |(pg2,gg2)| = —1
and |(gs2,ps2)| = 3.
We introduce the fibration
m: My —C, (x,y,2)— 2z

One sees that under this fibration the pg2-branch of Ly, is an arc lying in the lower half-plane with
endpoint r, while the gg2-branch of Ly, is an arc lying in the upper half-plane with endpoint r.
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The Floer cohomological of iy ,: vector space structure.

We now classify pseudoholomorphic disks with corners and boundary on Ly ;. Consider such a disk
u = (f,g,h) : D — My with only outgoing branched jumps, that is, of the type (pgz,qg2). By
definition, it is smooth on the interior int(D) of the disk, so that Ay, (p) : int(D) — C is holomorphic
with boundary on 7(Ly,) = {|2| = r}. By the maximum principle, h is then a map D — {|z| < r},
which, by choice of iy, (see discussion above), is holomorphic on all of D. Well-known complex
analysis (see for instance [Eis71]) tells us that, if » = 1, h is a Blaschke product, of order given by
the number of branched points of u. Then, it is not hard to see that there is # € [0,27) such that
f=eTIN, Vh—iand g = e I¥, VA —i.

For general r € {1,..., N} the main difference with the case r = 1 is that we have more degrees
of freedom, in the sense that there are some Blaschke products hi, ..., h._1 contributing to f and
=2
in f and g determine the connected component in which w lies; in particular, in the case r = 1 the

Y, ..., hl._, contributing to g such that h; h;- = Note that only such Blaschke products appearing
moduli space associated to fixed « is connected.

Pick a Morse function f : $? — R with exactly a maximum at py; := (0,1) and a minimum at
pm = (0, —1) and a pseudogradient field g such that (f, g) is Morse-Smale. Then QC ' (in.; f,g,J) =
Zs(psz,qs2), QC°(inys f,9,J) = Lopm, QC*(in; f, 9, J) = Zoprr and QC?(inys f,9,J) = Za(qs2, ps2),
while in all the other degrees j QC(in,; f,g,J) is trivial. We have the following proposition on the
structure of the Lagrangian quantum cohomology of iy ;.

Proposition 3.6. If r = 1, the Floer cohomology QH (in ) of in, is trivial, while for r > 1 it is
isomorphicyZs in degrees —1, 0, 2, 3.

Proof. Fix a regular choice of the almost complex structure J. We claim that

’M()(pmv (pS27q5'2)7 J)‘ - ‘MU((QSQ7PS2)7PM7 J)‘ =21

Consider the case of Mo(pm, (ps2,qg2),J). Note that as p, is the minimum of f, we have no Morse
trajectories in our pearly trajectories.

Let w € Mo(0, (pg2,q52),J) and write u = (f, g,rh). Then, as we have only one branch jump,
h is an automorphism of the disk fixing 1 € D, so that we can reparametrize D via an element of
Aut(D,1) =2 R x R* in a way such that h is the identity map. By the discussion above, the only other
thing characterizing u is the choice of a phase ¢ € S'. Hence, as in the definition of the moduli
space we quotient by Aut(D,1,—1), we conclude that the moduli space of interesting configuration
has components diffeomorphic to the cylinder R x S'. Moreover, by the discussion above, it has 2"~!
such components. From this, it follows easily that the map ev_1 : Mg (0, (ps2, qg2), J) — S? sending u
to [(—1) restrict to a diffeomorphism between each component of our moduli space and the coordinate
patch of S? in cylindrical coordinates. From this, we can conclude that exactly one element of u for
each component of our moduli space of disks satisfies ev_qo(u) = py,, implying that the cardinality
of Mo(pm, (ps2,qg2),J) is 2"~1 concluding the proof of the claim and of the proposition. O
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Floer cohomology of iy,: ring structure.

We use the machinery defined in this chapter to study the product structure on QH(in,). Pick
another Morse function f’ on S? in general position with f and with the same critical points. Note

that the only products that are a priori non-trivial are

QCiny, f) ® QC'(iny, f') — QC'(in, f), forie{-1,0,2,3}
and
QC ing, ) ® QC(iny, f)) — QC(iny, f)
and the remaining with upper indices swapped. As QCO((iN,T, f) = Zapm, the first map is just
multiplication with zero and the unit. We investigate calculate (pg2,qg2) * (¢g2,p52). Note that as
o (ps2,qs2) = — (qg2,pg2) < 0, the only interesting configurations contributing to the product are

those going from pys to (pg2, ¢s2) and (ggz, pg2) of type 122. Let u € M2 (par, (ps2, qs2), (452, Ps2), J),

then u is constant as F(u) = & (pg2,qs2) + < (qs2, pgz = 0. It follows that
IM* (par, (Ps25 4s2)s (452, ps2), )2 = 1
and hence
(ps2, qs2) * (qs2,Ps2) = pm
as conjectured in [Als13]. Similarly, one shows that
(452, ps2) * (Ps2, 4s2) = P

as well.

Floer cohomology of iy,: As-structure.

We investigate on higher operations p; on QH(in,). First of all, notice that the only non-trivial
operations, i.e. those involving other generators than the identity element, always involve both
(ps2,qg2) and (qg2,ps2) as (pg2,qg2) has negative action, (gg2,pg2) has index 3 which is relatively
prime to the index of pys. In particular, the only configurations contributing to pj for k£ > 3 are those
with pr,, (pg2,qg2) and (gg2,pg2) as exits and pys as entry. Pick another Morse function f” on S in
general position with f and f’ and with the same critical points as them. We claim that

13((q; )s Pms (25 @) = 13((P, @), Pm» (¢, D)) = s

while

13(Pms (95 Q)5 (4, 0)) = 13(Pms (¢, 0), (P, @) = p3((¢:p); (P Q)s Pm) = 13((P; @), (¢, ), Pm) = 0

We start from the first line of equalities. u3((g,p), Pm, (p,q)) counts configurations as in Figure
3.10. Note that v has to be constant constant as E(v) = 7 (pg2,qs2) + 9 (qs2,pg2) = 0, so that
the first claim follows directly. The case of us((p,q),pm,(q,p)) is identical. On the other hand,
us((p,q), (q,p), pm) counts both configurations as in Figure 3.11 and 3.12, where again the disks in
question are constant, so that the claim also follows directly. The remaining three cases are identical

to the last one.
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Figure 3.10: The only configuration contributing to us((g,p), Pm, (,q))-

i3
& Ps?
939'

Fsil Psl
# qs&

- $ Pe

n qs‘l
‘fll
P
Pras
Figure 3.11: A configuration contribut- Figure 3.12: Another configuration con-

ing to u3((p,q), (¢, p), Pm)- tributing to p3((p, 9), (¢, p), Pm)-
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