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Abstract

We develop a version of immersed Lagrangian quantum cohomology for closed, graded, exact,

generic Lagrangian immersions satisfying a positivity assumption, which slightly generalizes and

completes the work done in [AB19], and endow it with a canonical A∞-structure. In particular,

this shows that such Lagrangian immersions may be admittet as objects in the Fukaya category

of the ambient symplectic manifold.
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Introduction

The present work is a report of the author’s journey into Floer theory for Lagrangian immersions as

part of his Master thesis at ETH during the fall semester of 2021, and it is in some way the contin-

uation of previous work on Floer theory initiated during the autumn semester of 2020 [Amb20]. In

the cited work, the author started the theory of Morse functions and Mikahil Gromov’s revolutionary

work on pseudoholomorphic curves in symplectic manifolds to then develop the machinery of Hamil-

tonian and Lagrangian Floer cohomology, to in the end move onto Biran and Cornea’s Lagrangian

quantum cohomology.

We give a brief overview of the situation. Hamiltonian Floer cohomology is a generalization of Morse

cohomology to an infinite dimensional setting in the presence of a symplectic form. Andreas Floer’s

work was motivated by a conjecture by Arnold introduced during the sixties, stating that the number

of fixed points of a symplectic diffeomorphism arising from a Hamiltonian function is bounded below

by the sum of the Betti numbers of the manifold. One constructs the cohomology by trying to do

Morse theory with an “action functional” on the space of free loops of the symplectic manifold. By

changing a bit our point of view, we may see Hamiltonian Floer cohomology as generated by the

intesection points of the diagonal submanifold of our symplectic manifold with the graph of a Hamil-

tonian diffeomorphism, two compact Lagrangian submanifolds of our symplectic manifold. Indeed,

the idea behind Lagrangian Floer theory is to consider the intersection of two compact Lagrangian

submanifolds meeting transversally and build an cohomology starting from the intersection points.

Using Hamiltonian perturbation, one can then define Lagrangian Floer cohomology for any pair of La-

grangian submanifold, in particular for a single Lagrangian submanifold, of our symplectic manifold.

It is well-known, that one can endow Lagrangian Floer homology with an associative product, the

so-called Donladson product. It is also well-known that such structure gives us far more informations

at the chain level, where the product is not associative, but is subject to A∞-relations, giving rise

to the so-called Fukaya category. Another chain-isomorphic approach to Lagrangian Floer theory is

known: Lagrangian quantum cohomology, which has been studied intensively by Biran and Cornea

at the end of the 00’s. Lagrangian quantum cohomology is a deformation of the Morse cohomology

of a compact Lagrangian (subject to a serie of assumptions), in which we let “blow up” finitely many

points on Morse trajectories to pseudoholomorphic disks with boundary on such Lagrangian. By

considering similar but three-ended trajectories, one endows Lagrangian quantum cohomology with

a product which is associative in cohomology. One can see the so-called “pearl” complex generat-

ing this cohomology as the limit of the standard Floer complex of a single Lagrangian (hence with
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2 CONTENTS

Hamiltonian perturbation), when the Hamiltonian tends to the identity. This was the ending point

of the previous work of the author and will be the starting point of this thesis.

In this thesis, we first introduce the basics of symplectic and almost complex geometry and give a

quick look at the structure of the proof of Gromov’s non-squeezing theorem, for which one already

needs some arguments about transversality and compactness of certain moduli spaces of spheres.

Then, we go over some results about the decomposition of pseudoholomorphic curves into simple (i.e.

with a dense set of injective points) pieces: it is very well-known that in the closed case there is a

dichotomy between simple and multiply-covered curves (i.e. up to finitely many points, all the points

of a curve have the same covering multiplicity), while the case with boundary is a bit more hard, and

has been worked out in the early 00’s by Lazzarini in the embedded case and recently by Perrier in

the generic immersed one. We then outline rather quickly some steps of the proof of the theorems

of Lazzarini and Perrier. After giving a quick remainder of Lagrangian quantum cohomology in the

embedded case we move to the main topic of this thesis: the immersed case. This is the content of

Chapter 1 of this thesis.

Floer theory for immersed Lagrangians has become of interest in recent times, and is an important

part of Biran and Cornea’s program in symplectic topology, where for instance immersed Lagrangian

cobordism is taken into consideration when building a new way of looking at Fukaya categories via

an equivalence relation modeled on a cobordism which is always immersed by definition (and surpis-

ingly, at least to the author, this construction does not use holomorphic curves). First, we construct

the graded vector space structure of Lagrangian quantum homology for certain exact Lagrangian

immersions with only transverse double points and no other singularities, mainly following previous

work of Alston and Bao, while refining it and relaxing the starting assumptions. As we are in the

exact case, our configurations will include no smooth pseudoholomorphic disks, and there will be

no bubbling of smooth disks and spheres, but may include disks with a singular point (a so-called

“teardrop”) eventually connected via Morse flowlines. Aside from that, the main difference from the

embedded case is that our “pearl” complex is also generated by ordered double points, which implies

that we have to take care of configurations starting or/and ending at double points. We show that

our cohomology is well-defined, independent of the parameters we use (a Morse-Smale pair together

with an autonomous almost complex structure) and chain isomorphic to the standard definition of

Lagrangian Floer cohomology via Hamiltonian perturbations. This is the content of Chapter 2 of this

thesis.

We then move to defining the ring and A∞ structures of immersed Lagrangian quantum cohomology

and providing an example of computation. We first define a ring structure on the chain level, counting

eight different types of configurations for each combination of critical point/double point allowed in

configurations with three ends and show that it is well defined and independent from the parameters.

Then, we show that this product admits a unit which is canonical in cohomology. After that, we

show that this product is associative in cohomology and sketch the definition of the higher structures

endowing the pearl complex with an A∞-structure. In the end, we compute the A∞-structure of the

pearl complex for a class of immersed Lagrangians of smoothings of AN -surfaces (for which Alston

earlier computed the vector space structure of the quantum cohomology). Unfortunately, this ex-
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CONTENTS 3

ample does not give us a proof that the product we defined is non-commutative in general, but we

expect to be so because of the rigidity of the definition of the “core” of configurations contributing to

the product. This is the content of Chapter 3 of this thesis and is, as far as the author knows, new,

altough very similar to (and inspired by) previous work of Biran and Cornea and of Fukaya (in the

Morse case).

This thesis was written during the summer of 2021 and is the result of a work lasted seven months,

which was mainly focused on Lagrangian quantum homology for immersions but also included some

weeks of thinking about other topics such as: decomposition of pseudoholomorphic disks with bound-

ary on Lagrangian immersions (following Lazzarini and Perrier), Lagrangian cobordism, the shadow

metric and the cobordism category (following more recent work of Biran and Cornea) and persistence

homology applied to symplectic topology (following a new book by Leonid Polterovich, Daniel Rosen,

Karina Samvelyan and Jun Zhang), mainly in view of the PhD the author will start at ETH under

the supervision of Prof. Paul Biran.
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4 CONTENTS
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1 — Preliminaries

1.1 A very quick introduction to symplectic geometry and almost

complex structures

In this section we will introduce the very basics of symplectic and almost complex geometry and fix

some notation.

Let M be a smooth manifold. A symplectic form on M is a non-degenerate and closed differential

2-form ω ∈ Ω2(M) := Γ(T ∗M ∧ T ∗M). We call a tuple (M,ω), with M and ω as above, a symplectic

manifold. It’s quite easy to see that a symplectic manifold has to be even dimensional and orientable.

It is well known that symplectic manifolds have no local invariants other than the dimension of the

manifold itself, so that symplectic geometry is quite different from Riemannian geometry: indeed, we

could interpret closedness of the sympelctic form as some kind of flatness. If L is a smooth manifold

of half the dimension of M such that there is an immersion ı : L → M such that i∗ω = 0 we say

that ı is a Lagrangian immersion of L in M ; if moreover ı has transverse double points and no triple

points we say that it is generic. We define the set of ordered self-intersections of a generic Lagrangian

immersion ı as R := {(p, q) ∈ L × L : ı(p) = ı(q), p 6= q}. A diffeomorphism between symplectic

manifolds is said to be a symplectomorphism if it pullbacks the symplectic form of the target manifold

to the symplectic form of the domain. Moreover, a vector field X ∈ Γ(TM) is said to be symplectic if

iXω ∈ Ω1(M) is a closed 1-form; note that flows of symplectic vector fields are symplectomorphisms.

We mimic the construction of the Riemannian gradient. Consider a smooth function H ∈ C∞(M)

with compact support, which, in this context, symplectic geometers like to call Hamiltonian, then we

can define the Hamiltonian vector field XH ∈ Γ(TM) associated to H trough

iXHω = dH

(notice that a lot of people uses the minus sign convention here). This operation is of course legal

as the form ω is assumed to be non-degenerate. We generally denote by ϕHt the flow of the vector

field XH ; note that such flows are made of symplectomorphisms as Hamiltonian vector fields are

symplectic by construction. It is quite easy to see that trajectories of Hamiltonian vector fields are

contained in level sets of the associated Hamiltonian functions.

We define almost complex structures on smooth manifolds. An almost complex structure on a

smooth manifold M is a smooth (1, 1)-tensor field J ∈ Γ(TM ⊗ T ∗M) such that J2 = −id when
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6 1.2. INTRODUCTION TO PSEUDOHOLOMORPHIC CURVES AND FLOER THEORY

seen as an isomorphism of the tangent bundle TM . We call a tuple (M,J), with M and J as above,

an almost complex manifold. It’s quite easy to see that an almost complex manifold has to be even

dimensional and orientable. A smooth map f : (M,J)→ (M ′, J ′) between almost complex manifolds

is said to be (J, J ′)-holomorphic if

Df ◦ J = J ′ ◦Df

on TM . On R2n there is a standard almost complex structure: multiplication with the imaginary unit

i; we call such an almost complex structure the standard almost complex structure and denote it by J0.

An almost complex structure J on M is integrable if there is an atlas of M with (J, J0)-holomorphic

charts. It’s not hard to see that integrable almost complex manifolds are complex manifolds (in

the sense of having an atlas with biholomorphic transition functions) and viceversa (see for instance

[Can08]).

One can show that oriented surfaces admit almost complex structures, and that almost complex

structures on surfaces are always integrable. We define a Riemann surface to be a surface with an

(integrable) almost complex structure.

Consider a symplectic manifold (M,ω). An almost complex structure J on M is said to be tamed

by ω if for any x ∈M and v ∈ TxM , ωx(v, Jv) > 0; we denote the space of almost complex structure

tamed by ω by Jt(M,ω). An almost complex structure J ∈ Jt(M,ω) tamed by ω is compatible with

ω if for any x ∈M and v, u ∈ TxM , ωx(Jv, Ju) = ωx(v, u). We define the Riemannian metric induced

by ω and J ∈ Jc(M,ω) by (gJ,ω)x(v, w) := ω(v, Jw), for x ∈ M and v, u ∈ TxM ; it is not hard to

see that this indeed defines a Riemannian metric on M . Reasoning at the level of symplectic linear

algebra, one can show that for a symplectic manifold (M,ω), the spaces Jt(M,ω) and Jc(M,ω) are

always non-empty and contractible.

For the details of these constructions, see [Can08; MS17; MS12]).

1.2 Introduction to pseudoholomorphic curves and Floer theory

After Gromov’s revolutionary paper [Gro85], the study of pseudoholomorphic curves became a major

trend in symplectic topology. Given an almost complex manifold (M,J) and a Riemann surface

(Σ, j), a pseudoholomorphic or J-holomorphic curve is a (j, J)-holomorphic map Σ→M . One of the

foundational results Gromov proved using pseudoholomorphic curves is the following non-squeezing

theorem.

Theorem 1.1. Let ϕ : B2n(R)→ B2(r)× R2n−2 be a symplectic embedding. Then R ≤ r.

Gromov’s idea for the proof was basically as follows. First, we have to compactify B2(r)×R2n−2

in a nice way in order for the new embedding to be symplectic again. We endow the image of the

embedding, a ball in the new space, with an almost complex structure which is basically the standard

one on the standard ball (but pushed forward by the embedding), and then show that there always

exists a pseudoholomorphic curve in a nice homology class passing trough the center of such ball.
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1.2. INTRODUCTION TO PSEUDOHOLOMORPHIC CURVES AND FLOER THEORY 7

The problem is that, as we don’t know much about the embedding and about the way which the

aforementioned almost complex structure gets extended to the whole manifold, there is absolutely

no way to construct such a pseudoholomorphic curve explicitly. To show existence, we will deform

the almost complex structure by a path in the space of compatible ones, to a nice looking one, for

which we easily get any information about its pseudoholomorphic curves, and then introduce a strong

compactness theorem, involving a cobordism between the two moduli spaces, that allows us to deduce

some information about pseudoholomorphic curves of the first complex structure by looking at the

second one: this wild step is achieved by viewing families of pseudoholomorphic curves as zero sections

of infinite dimensional vector bundles. In this process, one major point is that pseudoholomorphic

curves in our fixed homology class generically come in a family which is finite dimensional smooth

manifold. From this point on, we use some standard machinery from algebraic geometry called Lelong

inequality (see [GH11]) to conclude.

Hence, the proof goes trought two major steps: the study of regularity (which is usually called

transversality) and compactness of moduli spaces of pseudoholomorphic curves. In Morse theory (see

[AD14]), one goes trought similar steps to define Morse cohomology, where instead of pseudoholomor-

phic curves one looks at negative gradient flowlines of some nice function (in this case, transversality

reduces to triviality, as one can see moduli spaces as transverse intersections of balls). It was Floer’s

idea (see [Flo87; Flo88; Flo89]) to in fact combine the theory of pseudoholomorphic curves developed

by Gromov with the well known ideas coming from Morse theory to build an infinite dimensional

version of the latter in order to solve a famous conjecture proposed by Arnold on the number of

periodic orbits of a Hamiltonian diffeomorphism. In this section we briefly review the basics of Floer

cohomology for Lagrangian intersections in the embedded monotone case, first following the original

idea by Floer, i.e. using Hamiltonian perturbations (for that, we will follow [AD14; Poz94]), and then

following the method developed more recently by Biran and Cornea (see [BC07; BC08; BC09]) using

so-called pearly trajectories.

Pseudoholomorphic curves

Let (M,ω) be a compact symplectic manifold and fix a compatible almost complex structure J ∈
Jc(M,ω), let (Σ, j) be a compact connected Riemann surface. For smooth maps u : Σ→M , we define

the operator ∂Ju := 1
2(du+ J ◦ du ◦ j). Of course, u is J-holomorphic if and only if ∂Ju = 0; picking

complex coordinates (s, t) on Σ, u is J-holomorphic if and only if ∂su + Ju∂tu = 0. J-holomorphic

curves present many rigidity properties which are analogous to those of holomorphic curves (altough

proofs are generally much harder), one can find these results in [MS12, Chapter 2].

To deal with transversality of moduli space of curves, we need the following two definitions.

Definition 1.2. Let u : Σ→M be J-holomorphic. u is said to be multiply covered if there is another

compact Riemann surface Σ′, a J-holomorphic curve u′ : Σ′ → M and a holomorphic branched

covering σ : Σ → Σ′ of degree greater than one such that u = u′ ◦ σ. u is said to be somewhere

PB



8 1.2. INTRODUCTION TO PSEUDOHOLOMORPHIC CURVES AND FLOER THEORY

injective if there is z ∈ Σ such that

Du(z) 6= 0 and u−1(u(z)) = {z}

Such points are called injective points of u. A curve with a dense set of injective points is called

simple.

Standard theory (see [MS12, Chapter 3]) basically tells us that for a generic choice of the compat-

ible almost complex structure, moduli spaces of pseudoholomorphic curves u : Σ→ M which have a

dense set of injective points are finite dimensional smooth manifolds. In practice, when dealing with

a problem requiring some kind of transversality, one has to find suitable decomposition criteria for

interesting pseudoholomorphic curves and then use some additional assumptions to conclude that all

the interesting curves are regular. The decomposition results depends on the kind of Riemann surface

and boundary conditions we are working with. The following results take care of this in the closed,

compact and compact immersed case respetively.

Proposition 1.3 ([MS12]). Assume that Σ is closed and consider a J-holomorphic curve u : Σ→M .

Then u is simple if and only if it is not multiply covered. Moreover, any J-holomorphic sphere

u : CP 1 →M is covered by a simple J-holomorphic sphere.

This means that in the closed case there is a simple-multiply covered dichotomy. This is not the

case when there are boundary conditions. Indeed, this is easily illustrated by the “Lantern” example

in [Laz00]: the map u(z) = z3 from the disk, seen as one-point compactification of the complex

upper halfplane, to the sphere, seen as one-point compactification of the complex plane, amounts to

“wrapping plastic wrap around a watermelon” for an angle of 3π, so that it is clearly non simple.

However, it may be decomposed into simple pieces (wrapping of π each) which cover the whole image.

Proposition 1.4 ([Laz00; Laz11]). Let L be a Lagrangian submanifold of M . Assume that Σ is

compact with boundary and consider a non-constant J-holomorphic curve u : (Σ, ∂Σ)→ (M,L) with

finite energy. Then there are finitely many simple J-holomorphic curves v1, ..., vk : (Σi, ∂Σi) →
(M,L), and finitely many integers m1, ...,mk ∈ Z such that in H2(M,L) we have

[u] =
k∑
i=1

mi[vi]

Moreover, if Σ = D, any Σi is isomorphic to D and we have

k⋃
i=1

vi(D) = u(D)

Before stating the next proposition, we need to define pseudoholomorphic curves with corners.

Definition 1.5. Consider an immersion ı : P → N of a manifold P into a manifold M . Let γ :

(−ε, ε)→ ı(P ) be a path such that γ(0) is a double point of ı, and consider a lift γ̃ : (−ε, ε)−{0} → P

of γ not defined on 0. Let p = limt→0− γ̃(t) and q := limt→0+ γ̃(t). If p 6= q we say that γ has a

branch jump of type (p, q) at t = 0.
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1.2. INTRODUCTION TO PSEUDOHOLOMORPHIC CURVES AND FLOER THEORY 9

Definition 1.6. Consider a generic Lagrangian immersion ı : L → M with set of ordered double

points R. A J-holomorphic α-marked disk with corners and boundary on ı is a tuple u := (u,∆, α, l)

where:

1. u is a continuous map (D, ∂D)→ (M, ı(L)) which is smooth and J-holomorphic on int(D);

2. ∆ := {z1, ..., zk} ⊂ ∂D is a finite ordered subset of the circle with zi 6= zj for i 6= j, coming with

a decomposition ∆ := ∆+ t∆− of ∆ into so-called outgoing and incoming points;

3. α is a map {1, ..., k} → R;

4. l is a continuous lift ∂D−∆→ L of u, i.e. we have u = ı ◦ l on ∂D−∆, such that if zi ∈ ∆+,

then (
lim
θ→0−

l(eiθzi), lim
θ→0+

l(eiθzi)

)
= α(i)

and if zi ∈ ∆−, then (
lim
θ→0+

l(eiθzi), lim
θ→0−

l(eiθzi)

)
= α(i)

i.e. l has a branch jump of type α(i) at zi ∈ ∆+ when moving counterclockwise, and a branch

jump of type α(i) at zi ∈ ∆− when moving clockwise;

5. the energy E(u) :=
∫
D2−∆ u

∗ω is finite.

We will call the points of ∆ corners of branch jumps of u. We denote the clockwise limit on ∂D as

limits from left and counterclockwise ones as limits from right.

The map l is the big new structure which is not present when one concentrates on embedded

Lagrangians: it keeps track of the type of branch jumps a specific disk has and it ensures that we

have only a finite number of jumps.

Proposition 1.7 ([Per19]). Let ı : L → M be a generic Lagrangian immersion. Let u : (D, ∂D) →
(M, ıL) be a J-holomorphic disk with corners and boundary on ı with finite energy. Then, there are

finitely many simple J-holomorphic disks v1, ..., vk : (D, ∂D) → (M, ı(L) with corners and boundary

on ı with finite energy and finitely many positive integers m1, ...,mk ∈ Z>0 such that in H2(M, ı(L))

we have

[u] =

k∑
i=1

mi[vi]

and moreover
k⋃
i=1

vi(D) = u(D)

These results are proved analyzing the set of accumulation points of the set of multiple points

of a pseudoholomorphic curve. In the closed case the proof is not that hard, as this set defines an

equivalence relation, while the case with boundary is much more difficult. The idea in [Laz00; Laz11]
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10
1.3. A SKETCH OF THE CONSTRUCTION OF EMBEDDED LAGRANGIAN QUANTUM

COHOMOLOGY
is to analyze the so called frame of a pseudoholomorphic curve with Lagrangian boundary condition.

Consider a pseudoholomorphic curve u : (Σ, ∂Σ) → (M,L) and let C(u) := u−1(u(Crit(u))); for

z, z′ ∈ Σ − C(u) define the relation zRuz′ if and only if for any neighbourhoods V, V ′ ⊂ Σ of z and

z′ respectively there are neighbourhoods U ⊂ V and U ′ ⊂ V ′ such that u(U) = u(U ′). Let Ru be

the closure of R in Σ, which may not be an equivalence relation if Σ has indeed boundary. However,

the frame W(u) := Ru(∂Σ) has very interesting properties, and is in fact a graph. This is proved

using a relative version of Carleman similarity principle (see[MS17, Chapter 3] and [Laz00, Section

3])) and the fact that locally the projection Ru is open. The point is then associating a Riemann

surface to any connected component of Σ −W(u) such that it embeds nicely in Σ; then, one gets a

pseudoholomorphic curve v on this “smaller” Riemann surface, which is easily seen to be simple. In

the case of disks, showing that the domain is biholomorphic to a disk is easy if the frame is connected

but requires some more work (which is the purpose of [Laz11]) in the case where it is not connected.

Basically, the work in [Per19] directly extends Lazzarini ideas to immersions.

1.3 A sketch of the construction of embedded Lagrangian

quantum cohomology

In this section we will briefly described Lagrangian quantum homology in the embedded case, skip-

ping a lot of details, and provide an intuition for its construction.

Originally, Floer introduced what is nowadays called Hamiltonian Floer homology (see [Flo87] for

the original paper, and [AD14] for a complete and detailed overview of the theory in the symplec-

tically aspherical manifolds), also called Floer homology for Hamiltonian diffeomorphisms, in order

to attempt a solution for a celebrated conjecture of Arnold, relating the topology of a symplectic

manifold to the number of periodic orbits of a generic Hamiltonian function. Given a closed symplec-

tic manifold (M,ω) satisfying some additional assumptions, a generic time-dependent Hamiltonian

H : M × R → R and a generic compatible almost complex structure J ∈ Jc(M,ω), we consider the

complex freely generated by periodic Hamiltonian orbits of H and the differential idefined by counting

cylinders which connect two Hamiltonian orbits and satisfy a perturbed Cauchy-Riemann equation,

the so-called Floer equation (q.v. Section 2.8). The perturbation comes from the gradient of the

chosen Hamiltonian H. Starting from the ideas of Gromov on pseudoholomorphic curves [Gro85],

Floer showed that in this way one can define a well-defined homology and as well as a canonical ring

structure on it, via the so called pair of pants product (see for instance [Sei08]). This idea and its

Lagrangian counterpart (see [Poz94] for a nice and brief overview) revolutionized the world of sym-

plectic topology during the beginning of the nineties. The downsides of this approach are that, other

than being quite difficult to compute in practice, it appeals to a quite heavy machinery, especially

when dealing with regularity of spaces of interesting configurations.

It is well-known that Hamiltonian Floer homology is isomorphic to the Morse homology of M as

vector space, while it is in general not as a ring. Starting from this observation, the idea is to find

another way to compute Hamiltonian Floer homology by deforming singular homology (which in this

setting is best represented by its Morse counterpart). In particular, the heuristic idea is to look at
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1.3. A SKETCH OF THE CONSTRUCTION OF EMBEDDED LAGRANGIAN QUANTUM
COHOMOLOGY 11

the Floer equation not as a perturbed Cauchy-Riemann equation but as a J-perturbed gradient flow

equation, that is to take into account Morse flowlines of an autonomous Morse functions on M which

may be interrupted by pseudoholomorphic spheres (and no disks, as there is no boundary condition to

discuss). The result is the so called quantum homology of M : the quantum complex is generated by

critical points of a Morse function on M , the quantum differential counts Morse flowilines (as sphere

contributions cancel out) between critical points and the quantum product counts Y -shaped config-

urations interrupted by a pseudoholomorphic sphere in the middle. In this case proving regularity

is very easy due to Proposition 1.3 combined with a dimension count. Showing that the complex is

well-defined is quite easy, as bubbling of pseudoholomorphic spheres is a codimension 2 phenomenon.

It has been shown [PSS96] that the Hamiltonian quantum homology and the quantum homology of

M are in fact isomorphic as rings (via a similar isomorphism to the one we will see in Section 2.8).

One may also view quantum homology as Hamiltonian Floer homology for an Hamiltonian tending

to the identity.

We will now outline the idea behind the generalization of quantum homology in the Lagrangian

setting as developed in [BC07; BC08] starting from a direct application of the idea above to the

Lagrangian setting. Assume that (M,ω) is a closed symplectic manifold and assume that L ⊂ M is

a monotone embedded Lagrangian, meaning that there is positive proportionality on HD
2 (M,L) (the

image of the Hurewitch map on π2(M,L)) between the Maslov map µ on L (which may be roughly

identified as a winding number) and integration by ω (see [Oh93]) and that the minimal Maslov

number of L is at least 2.

Say 2n := dimM . We will now explain which sort of problems one encounters when trying to

build a quantum cohomology theory for Lagrangians. We want to again deform Morse cohomology

by counting trajectories on a Lagrangian with a possible bubble on them, which in this case will be a

disk bubble, as we have boundary conditions: however, as we will see, bubbling of pseudoholomorphic

disks is a codimension one phenomenon, and that is a big obstruction to the definition of a proper

differential. We will try first to define a cohomology and then introduce the actual Lagrangian

quantum homology.

More formally, pick a Morse function f : L → R on L, a pseudogradient field X ∈ Γ(TL) on L

adapted to f , a compatible almost complex structure J ∈ J (M,ω), a class A ∈ HD
2 (M,L) and two

critical points x, y ∈ Crit(f) of f . Consider the following moduli space:

L′(A, x, y, J) = {u : (D2, S1)→ (M,L) : u(−1) ∈W u(x), u(1) ∈W s(y), [u] = A}/Aut(D2)

which is the moduli space of unparametrized configurations of the following form:

We will assume that L′(A, x, y, J) is, for a generic choice of compatible almost complex structure,

a smooth manifold (this may in fact be proved via Proposition 1.4 as we’re in a monotone setting).

It’s easy to compute the dimension of such moduli spaces using the following evaluation maps. Define

ev− : u ∈ L2(A, J) 7−→ u(−1) ∈ L, ev+ : u ∈ L2(A, J) 7−→ u(1) ∈ L
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COHOMOLOGY

Figure 1.1: A quantum trajectory of the Morse function f .

Then

L′(A, x, y, J) = (ev− × ev+)−1(W u(x)×W s(y))

has dimension

dimL′(A, x, y, J) = dimL2(A, J)− codim(W u(x))− codim(W s(y)) =

= (n+ µ(A)− 3 + 2)− (n− |x|)− |y| = µ(A) + |x| − |y| − 1

Consider the complex C∗ made of critical points of f graded by Morse index. We define a map

d : C∗ → C∗[−1] by

dy :=
∑

x∈Crit(f), A∈HD
2 (M,L): |x|−|y|+µ(A)−1

|L′(A, x, y, J)|2y

We investigate if d is a differential for the complex C∗. As usual in Floer theory, and as we will do tons

of times in the remaining of this thesis we have to look at the compactness properties of our moduli

space in dimension 0 and 1. One proves that the moduli spaces L′ are compact in dimension 0. We look

in dimension 1: our dream is that to compactify the moduli spaces L′’s we have to add configurations

differering only from the fact of containing broken Morse flowlines, as a computation of d2 shows.

However, this is not the case in general. Indeed, by Gromov compactness for embedded disks (see

[Fra08]), we have the following four classes of configurations in the compactification L′(A, x, y, J):

1. breaking of Morse trajectories;

2. bubbling of a pseudoholomorphic sphere in an interior point of the disk;

3. bubbling of a pseudoholomorphic disk with boundary on L in a boundary point of the original

disk which is not an incidence point of the Morse trajectories;

4. bubbling of a pseudoholomorphic disk with boundary on L in an incidence point of the Morse

trajectories.
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Figure 1.2: Cases 3 and 4.

We will denote by L′ the compactification of a moduli space L. Let x, y ∈ Crit(f) and A ∈ HD
2 (M,L)

such that µ(A) + |x| − |y| = 2. Consider a sequence un ∈ L′(A, x, y, J) which does not have a

convergent subsequence. Case 1 is what we want to happen. We analyze the possibilities of the other

three configuration to happen. Cases 2 and 3 can’t happen, and altough the argument is very similar,

we will treat them separately.

Case 2. A pseudoholomorphic sphere v : S2 → M in the class B ∈ HD
2 (M) may bubble off from

a subsequence of un in an interior point. We look at the image, always denote by B ∈ HD
2 (M,L),

of B with respect to the homomorphism π2(M) → π2(M,L) (appearing in the long exact sequence

in homotopy of the couple (M,L)). Then, in the limit (u, v) ∈ L′(A, x, y, J), the disk u from which

v bubbles off lies in the class A′ = A − B. As L is monotone, µ(B) ≥ 2, so that µ(A′) ≤ µ(A) − 2.

Then the moduli space L′(A′, x, y, J) has dimension

dimL′(A′, x, y, J) ≤ dimL′(A, x, y, J)− 2 = −1

Hence (as we assumed every moduli space is smooth), configurations in case 2 can’t exist.

Case 3. A pseudoholomorphic disk u′ : (D2, S1)→ (M,L) in the class B ∈ HD
2 (M,L) may bubble

of from a subsequence of un in a boundary point which is not 1 ∈ D2 or −1 ∈ D2. Then, in the limit

(u, u′) ∈ L′(A, x, y, J), the disk u from which v bubbles off lies in the class A′ = A − B. As L is

monotone, µ(B) ≥ 2, so that µ(A′) ≤ µ(A)− 2. Then the moduli space L′(A′, x, y, J) has dimension

dimL′(A′, x, y, J) ≤ dimL′(A, x, y, J)− 2 = −1

Hence (as we assumed every moduli space is smooth), configurations in case 3 can’t exist.

Case 4. A pseudoholomorphic disk u′ : (D2, S1)→ (M,L) in the class B ∈ HD
2 (M,L) may bubble

of from a subsequence of un in either the point −1 or the point (+1). Then, in the limit (u, u′) ∈
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L′(A, x, y, J), the disk u from which v bubbles off lies in the class A′ = A − B. However, of course

we can’t go on as with cases 2 and 3 here. We work with evaluation maps. Define the moduli space

of such configurations as

L′(A,B, x, y, J) := {(u, u′) ∈ L2(A, J)×L2(B, J) : u(−1) ∈W u(x), u(+1) = u′(−1), u(1) ∈W s(y)}/Aut(D2)

and assume it is smooth. Denote by evA± and evB± the evaluations map introduced before for L2(A, J)

and L2(B, J) respectively. Then

L′(A,B, x, y, J) = (evA− × evA+ × evB− × evB+)−1(W u(x)×∆L ×W s(y))

and so

dimL′(A,B, x, y, J) = dimL2(A, J) + dimL2(B, J)− codim(W u(x))− codim(∆L)− codim(W s(y)) =

= (n+ µ(A)− 1) + (n+ µ(B)− 1)− (n− |x|)− n− |y| = 0

Hence (as we assumed every moduli space is smooth), configurations in case 4 can a priori exist, and

in fact do by a gluing argument (see [BC07, Chapter 4]).

This problem is solved by introducing time parameters associated to a piece of Morse flowline

joining two different pseudoholomorphic disks with boundary on L, and hence counting configurations

such as the one in Figure 1.3 in the differential.

Figure 1.3: A pearly trajectory contributing to the differential of y.

By what above, it is then very easy to see that (assuming that everything is smooth) d2 = 0 in

this case, as configurations from Case 4 may happen in the limit both because of linear bubbling

and because of shrinking of the finite-time Morse flowlines bewteen two different disks, so that they

cancel out in the computation of d2, and only Morse breaking become relevant. In fact, one uses

the results of Lazzarini [Laz11] (see Proposition 1.4) combined with a count of dimension to show

(see [BC07]) that the moduli spaces of such pearly configurations are generically smooth manifolds,
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whose dimension depends on the Morse index of x and y and the sum of the areas of the disks. The

resulting cohomology may be shown not to depend on the choice of the parameters (f, g, J) and to

be ismomorphic to the Lagrangian Floer cohomology of L.





2 — Immersed Lagrangian quantum co-

homology: vector space structure

In this chapter, we aim to generalize Lagrangian quantum cohomology to nice Lagrangian immer-

sions. We will work in the exact setting: in this case, it is easy to see that there are no smooth

psuedoholomorphic disks with positive area, so that Floer homology for embedded Lagrangians is

isomorphic to singular homology; this will not be true in general for immersions. Indeed, we have to

be careful when dealing with immersions: for instance, considering the standard definition of Floer

cohomology ([Oh93; AJ10; AB18]), trickier phenomena may happen obstructing d2 = 0; indeed, a

portion of a sequence of Floer strips may degenerate in the limit at a self-intersection point of the

immersion to a disk with a singularity, a so-called teardrop (see Figure 2). On the other hand, in

the Morse-Bott case we are going to focus on, one has to take teardrops into account, so that the

resulting pearly cohomology may indeed not be isomorphic to Morse cohomology even in the exact

case. We will mainly follow [AB18; AB19] with a few refinements. A more general approach to Floer

homology for immersed Lagrangians was developed in [AJ10] using A∞-perturbations and Kuranishi

spaces, in the vein of [Fuk+09] for the embedded case. Here we will use an assumption that does the

same job of monotonicity in the embedded case (see [Oh93]).

Our setup will be that of [Sei08]. Let (M,ω) be a compact exact symplectic 2n-manifold with

boundary and with vanishing first Chern class c1(M) = 0. Fix a primitive λ ∈ Ω1(M) of ω such that

the Liouville vector field Xλ ∈ Γ(TM) associated to λ points outward ∂M , and an almost complex

structure JM ∈ Jc(M,ω) compatible with the symplectic form ω such that any JM -holomorphic curve

touching the boundary ∂M is completely contained in it.

2.1 Gradings

The assumption on the first Chern class of our symplectic manifold M allows us to grade Lagrangians

in order to grade Floer cohomology; indeed, grading is usually problematic in Lagrangian Floer theory,

whereas it is not in the Hamiltonian case. We follow the construction in [Sei00, Example 2.9]. It

is easy to see that the map det2 : U(n) → S1 descends to a map det2 : U(n)
O(n) → S1 inducing an

isomorphism on the π1 level. Moreover, it is also easy to show that the Lagrangian Grassmannian

Gr(R2n) = {L ⊂ V : L is Lagrangian} is isomorphic to U(n)
O(n) , implying that there is a (non-canonical)
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Figure 2.1: The formation of a teardrop in the limit of a sequence of pseudoholomorphic curves with
some boundary condition on an immersed Lagrangian L.

isomorphism Gr(TpM) ∼= U(n)
O(n) for any point p ∈M . Indeed, lagrangians in R2n determine a splitting

of the vector space with respect to J , so that U(n) acts transitively on Gr(R2n); moreover, for the

same reason, g-orthogonal linear maps on L extends uniquely to h-unitary linear maps on (R2n, J),

which, as ω0 vanishes on lagrangians by definition, leaves L invariant: therefore we conclude by the

orbit-stabilzer theorem that the map associating h-unitary maps f ∈ U(n) to f(L) ∈ Gr(R2n) induces

an isomorphism as claimed. The idea now is to globalize det2 to a map Gr(TM) → S1, but due to

the non-canonical situation, we need extra structure. This is provided by the fact that c1(M) = 0:

pick a nowhere vanishing top holomorphic form α ∈ Ωn(M,JM ) and define det2
α : Gr(TM) → S1 as

follows: for any p ∈M , L ∈ Gr(TpM) pick a bais v1, ..., vn of L and define

2
det
α

(L) =
αp(v1 ∧ ... ∧ vn)⊗2

|αp(v1 ∧ ... ∧ vn)|2

Let now ı : L → M be a Lagrangian immersion. We lift ı to ı : L → Gr(TM) and define

det2
L := det2

α ◦ı : L → S1. We define the Maslov class of L as µL := (det2
L)∗([S1]) ∈ H1(L), where

[S1] ∈ H1(S1) is the standard positive generator.

Definition 2.1. A grading of ı is a lift θL : L → R of det2
L. A graded Lagrangian immersion is a

couple (ı, θL).

We will often omit the grading from the notation. Notice that there exists a grading for the

Lagrangian immersion L if and only if µL = 0, as H1(R) is trivial.

Assume now that the Lagrangian immersion ı is generic. The purpose of grading is that is allows

one to assign an integer to Hamiltonian orbits connecting to Lagrangians or to intersection points of

two Lagrangians, which means that the Floer complex is graded. In the immersed (and transverse),

single Lagrangian case, we grade self-intersection points as follows. Let (p, q) ∈ R with image x ∈M
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and consider the transversely intersecting Lagrangian subspaces Dı(p)[TpL] and Dı(q)[TqL] of TxM .

We know there is a unique unitary matrix relating the two subspaces, and we pick a unitary basis

(u1, ..., un) of Dı(p)[TpL] such that there are α1, ..., αn ∈ (0, 1
2) such that (e2πiα1u1, ..., e

2πiαnun) is a

unitary basis of Dı(q)[TqL]. We call α1, ..., αn the Kähler angles between Dı(p)[TpL] and Dı(q)[TqL].

We define the index |p, q| ∈ Z of the ordered self-intersection point (p, q) ∈ R as

|p, q| := n+ θL(q)− θL(p)− 2
n∑
i=1

αi

The easiest way to see that the index is an integer is to define it trought a Maslov index of a bundle

pair (see [AB18; Oh15]) or via Fredholm operators (see [AJ10]).

Assume that ı is exact, and fix a primitive hL : L → R, i.e. a smooth map such that ı∗λ = dhL. In

this case, we define the energy of an ordered double point (p, q) ∈ R as

A (p, q) = hL(q)− hL(p)

We will often drop the primitive from the notation of an exact Lagrangian. Our main assumption

troughout this work will be the following positivity assumption.

Assumption 2.2 (positivity). Let (p, q) ∈ R be an ordered double point of a Lagrangian im-

mersion ı. We assume that if A (p, q) > 0, then |p, q| ≥ 3.

2.2 Moduli spaces of pearly trajectories

Consider the setup described above and fix for the rest of the chapter an exact, compact, connected,

generic and graded Lagrangian immersion ı : L→M satisfying Assumption 2.2.

As we are now working in the exact case, the only configurations that appeared in [BC07] and that

are relevant in this case are Morse flowlines joining critical points of a Morse function on L. However,

to fully compute a cohomology which is isomorphic to standard Floer cohomology [AB18], we have to

include double points and teardrops in some possible configuration. The purpose of this section is to

introduce the relevant moduli spaces in order to improve the pearly construction to our immersed case.

Fix now two non-negative integers k−, k+ ∈ Z≥0, a finite subset ∆ := ∆− t ∆+ ⊂ ∂D such

that |∆−| = k− and |∆+| = k+ and a map α : {1, ..., k− + k+} → R. Define the moduli space

M̃k−,k+(∆, α, J) of parametrized α-marked pseudoholomorphic disks with boundary and corners on

ı with corners at ∆ as the set of curves as in Definition 1.6. Define also

M̃k−,k+(α, J) :=
⊔

|∆−|=k−, |∆+|=k+
M̃k−,k+(∆− t∆+, α, J)× {∆− t∆+}

There is an action of the 3-dimensional group Aut(D) ∼= PSL(2,R) on M̃k−,k+(α, J) and we define

the moduli space of unparametrized α-marked pseudoholomorphic disks with corners on ı as

Mk−,k+(α, J) :=
M̃k−,k+(α, J)

Aut(D)
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It is known (see [Fuk+09; AJ10]) that

virdim(Mk−,k+(α, J)) = n−
∑
−

(n− α(j))−
∑
+

α(j) + |∆| − 3

1where we denote by
∑
− the sum over the indices of incoming branch jumps and by

∑
+ the sum

over the indices of ougoing ones. For our purposes, we also define, for d ≥ 1, the moduli space

Md
k−,k+(α, J) :=

⊔
|∆−|=k−, |∆+|=k+

(
M̃k+,k−(∆− t∆+, α, J)× (∂D −∆)d

)
× {∆− ∪∆+}

Aut(D)

of virtual dimensiom

virdim(Md
k−,k+(α, J)) = n+ d−

∑
−

(n− α(j))−
∑
+

α(j) + |∆| − 3

In our setting, we consider constant disks if and only if ∆ 6= 0, due to stability conditions. If the

domain of α is a single point and α(1) = γ = (p, q) we will often write γ or (p, q) in the notation of

the moduli spaces. The almost complex structure will often be removed from the notation.

Remark 2.3. In our setting, the virtual dimensions of moduli spaces of marked disks with corner do

not depend on the homology class of the disks, as graded Lagrangian are Maslov zero.

Moreover, we need some moduli spaces with a priori fixed corner points, in order to define pearly

trajectories correctly while avoiding to introduce strips. Given an ordered set ∆ = ∆− t∆+ ⊂ ∂D,

we define for z1, ..., zk1+k2 /∈ ∆ the ordered sets ∆z1,...zk1
:= {z1, ..., zk1} t∆, ∆zk1+1,...,zk1+k2 := ∆ t

{zk1+1, ..., zk1+k2} and ∆
zk1+1,...,zk1+k2
z1,...zk1

:= {z1, ...zk1}t∆t{zk1+1, ..., zk1+k2}, where we put z1, ...zk1 ∈
∆−, zk1+1, ..., zk1+k2 ∈ ∆+ in all three definitions. For α associated to ∆, z0, ..., zk1+k2 ∈ ∂D −∆ as

above and γ1, ..γk1+k2 , we define

1. αγ1,...,γk1 : {1, ..., |∆| + k1} → R as αγ1,...,γk1 |{k1+1,...,|∆|+k1} = α and αγ1,...,γk1 (i) = γi for

i ∈ {1, ..., k1};

2. αγk1+1,...,γk1+k2 : {1, ..., |∆| + k2} → R as αγk1+1,...,γk1+k2 |{1,...,|∆|} = α and αγ1(i) = γi for

i ∈ {∆ + 1, ...,∆ + k2};

3. α
γk1+1,...,γk1+k2
γ1,...,γk1

: {0, ..., |∆|+ k1 + k2} → R as (αγ1,...,γk1 )γk1+1,...,γk1+k2 .

Fix k−, k+ ∈ Z≥0, ∆ = ∆−t∆+ ⊂ ∂D finite subset of ∂D such that −1,+1 /∈ ∆, α : {1, ..., k−+k+} →
R and γ−, γ+ ∈ R. With this is hand, we define the following three classes of moduli spaces.

1. The moduli space of unparametrized α-marked J-holomorphic disks with corners on ı, and a

corner γ− fixed at −1 ∈ ∂D as

Mk−,k+(γ−, ∅, α, J) :=
⊔
∆

M̃k−+1,k+(∆−1, αγ− , J)× {∆−1}
Aut(D,−1,+1)

which has virtual dimension

virdim(Mk−,k+(γ−, ∅, α, J)) = |γ−| −
∑
−

(n− α(j))−
∑

α(i) + k− + k+ − 1
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2. The moduli space of unparametrized α-marked J-holomorphic disks with corners on ı, and a

corner γ+ fixed at +1 ∈ ∂D as

Mk−,k+(∅, γ+, α, J) :=
⊔
∆

M̃k−,k+1(∆+1, αγ+ , J)× {∆+1}
Aut(D,−1,+1)

which has virtual dimension

virdim(Mk−,k+(∅, γ+, α, J)) = n− |γ+| −
∑
−

(n− α(j))−
∑
+

α(j) + k− + k+ − 1

3. The moduli space of unparametrized α-marked J-holomorphic disks with corners on ı, and

corners γ−, γ+ fixed at −1,+1 ∈ ∂D respectively, as

Mk−,k+(γ−, γ+, α, J) :=
⊔
∆

M̃k−+1,k++1(∆+1
−1, α

γ+
γ− , J)× {∆+1

−1}
Aut(D,−1,+1)

which has virtual dimension

virdim(Mk−,k+(γ−, γ+, α, J)) = |γ−| − |γ+| −
∑
−

(n− α(j))−
∑
+

α(j) + k− + k+ − 1

For coherence with what will follow, we will refer as configuration in this class of moduli spaces

as α-marked RR-pearls of first kind (or RR1-pearls) with corners on ı joining γ− to γ+.

Figure 2.2: A sketch of an α-marked pseudoholomorphic disk with corners.

Let now f : L → R be a Morse function on L and g ∈ Γ(TL) be a Riemannian pseudogradient

field such that the pair (f, g) is Morse-Smale (for a brief review of the basics of Morse theory, see

[AD14]). We denote Crit(f) the set of critical points of f , ϕf,g the flow of the negative gradient of
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f , and for any critical point x ∈ Crit(f) of f we denote by W u(x) and W s(x) its unstable and stable

manifolds and by

M(y, x) :=
W u(y) ∩W s(x)

R
the moduli space of unparametrized Morse trajectories joining the critical point y to the critical point

x of f ; for coherence with what will follow, we will also call them CC-flowlines. We will denote

|x| ∈ Z the Morse index of a critical point x ∈ Crit(f) of f .

Let x, y ∈ Crit(f) be critical points of f , γ−, γ+ ∈ R be ordered double points of ı, k−, k+ ∈ Z≥0 be

non-negative integers and α : {1, ..., k− + k+} → R a map indexing ordered double points of ı. We

define the evaluation maps

ev
γ−,α
RC :Mk−,k+(γ−, ∅, α, J)→ L, u 7−→ l(+1)

and

ev
γ+,α
CR :Mk−,k+(∅, γ+, α, J)→ L, u 7−→ l(−1)

to define the following moduli spaces of pearls:

1. the moduli space of α-marked RC-pearls with corners on ı joining γ− to x as

Mk−,k+(γ−, x, α, f, g, J) := ev
γ−,α
RC

−1(W s(x))

of virtual dimension

virdim(Mk−,k+(γ−, x, α, f, g, J)) = |γ−| − |x| −
∑
−

(n− α(j))−
∑

α(i) + k− + k+ − 1

2. the moduli space of α-marked CR-pearls with corners on ı joining y to γ+ as

Mk−,k+(y, γ+, α, f, g, J) := ev
γ+,α
CR

−1(W u(y))

of virtual dimension

virdim(Mk−,k+(y, γ+, α, f, g, J)) = |y| − |γ+| −
∑
−

(n− α(j))−
∑

α(i) + k− + k+ − 1

Given a couple α1 : {1, ..., k1
− + k1

+} → R and α2 : {1, ..., k2
− + k2

+} → R of maps indexing ordered

double points we also define the moduli space of α-marked RR-pearls of second kind (or RR2-pearls)

joining γ− to γ+ as

Mk1−,k
1
+;k2−,k

2
+

(γ−, γ+, α1, α2, f, g, J) := (ev
γ−,α1

RC × ev
γ+,α2

CR )−1(Qf,g)

where Qf,g is the image of the embedding

(x, t) ∈ (L− Crit(f))× R≥0 7−→ (x, ϕf,gt (x)) ∈ L× L
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This last moduli space has virtual dimension

virdim(Mk1−,k
1
+;k2−,k

2
+

(γ−, γ+, α1, α2, f, g, J)) =

(|γ−| −
∑
−

(n− α1(j))−
∑

α1(i) + k1
− + k1

+ − 1)+

+ (n− |γ+| −
∑
−

(n− α2(j))−
∑
+

α2(j) + k2
− + k2

+ − 1)− (n− 1) =

= |γ−| − |γ+| −
∑
−

(n− αi(j))−
∑
+

αi(j) + k1
− + k1

+ + k2
− + k2

+ − 1

as expected. In Figure 2.2 we sketched curves in the five classes of moduli spaces we just defined.

Figure 2.3: Sketches of curves in the five classes of moduli spaces we just defined, for α =6=. From
above we have curves of type CC, RC, CR, RR1 and RR2.

We have the following definition which will be crucial for transversality of RR2-pearls.

Definition 2.4. Consider a finite sequence of pseudoholomorphic disks v1, ..., vk : (D, ∂D)→ (M, ı(L))

with corners on ı. We say that v1, ..., vk are absolutely distinct if vj(D) 6⊂
⋃
i 6=j vi(D) for any

j = 1, ..., k.
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Given a moduli spaceM of some types of pearls, we denote byM∗ the subspace of simple curves,

Mabs the subspace of absolutely distinct curves and M∗,abs their intersection.

Remark 2.5. Notice that the energy, or symplectic area, of an α-marked disk strongly depends on α

in our exact case:

E(u) =

∫
D−∆

u∗ω =

∫
S1−∆

(ı ◦ l)∗λ =

∫
S1−∆

d(hL ◦ l)

is the sum of differences of hL ◦ l on ”smooth arcs” of ∂D, that is if u ∈Mk−,k+(γ−, γ+, α, J), then

E(u) = A (γ−)−A (γ+) +
∑
−

A (α(i))−
∑
+

A (α(i))

i.e. energy is computed by summing action clockwise. In particular, if u is teardrop M0,0(∅, (q, p), J)

we have

E(u) = A (p, q)

Note that what above directly implies that the finite-energy condition in Definition 1.6 is redundant.

Remark 2.6. A pseudoholomorphic disk with only one branch jump can not be constant, as “its” l

has to be a continous map connecting the two points of L corresponding to the two branches and ı is

chosen to be generic. In particular, luckily, no constant teardrop may bubble off from a sequence of

configurations contributing to the differential we are going to define in Section 2.6.

In the remaining of this chapter, we will sometimes use the following corollaries to Proposition 1.7,

which are analogue of some results in [BC07, Section 3] for the generic immersed case. The following

statement is Proposition 1.3.1 in [Per19], is his proof right?.

Lemma 2.7. Assume n ≥ 3. Then for a generic choice of almost complex structure J ∈ Jc(M,ω)

and absolutely distinct and simple disks u1 ∈M∗kα−,kα+(α, J) and u2 ∈M∗
kβ−,k

β
+

(β, J), the set

{(z1, z2) ∈ ∂D2 : u1(z1) = u2(z2)}

is finite.

Proof. Let n ≥ 3 and considerM∗kα−,kα+(α,∆α, J) andM∗
kβ−,k

β
+

(β,∆β, J). DefineM∗,abs(α, β,∆α,∆β, J) ⊂
M∗kα−,kα+(α,∆α, J)×M∗

kβ−,k
β
+

(β,∆β, J) to be the space of absolutely distinct elements ofM∗kα−,kα+(α,∆α, J)×
M∗

kβ−,k
β
+

(β,∆β, J). Fix k ≥ 1 and consider the map

ϕ :
⊔
M∗,abs(α, β,∆α,∆β, J)× (∂D −∆α)k × (∂D −∆β)k −→ L2k

(u1, u2, x1, ..., xk, y1, ..., yk) 7−→ (l1(x1), l2(y1), ..., l1(xk), l2(yk))

Then, according to standard theory [MS12], for a generic choice of J ∈ Jc(M,ω), ϕ t ∆k
L. Note that

dim(ϕ−1(∆k
L)) = 2n+

kα−∑
i=1

(n− |α(i)|)−
kβ−∑
i=1

(n− |β(i)|)−
kα+∑
i=1

|α(i)| −
kβ+∑
i=1

|β(i)|+ k(2− n)

PB

PB
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and, as n ≥ 3, we have ϕ−1(∆k
L) = ∅ for k big enough. Hence fixed (u1, u2) ∈M∗,abs(α, β,∆α,∆β, J)

the set {(z1, z2) ∈ (∂D −∆α) × (∂D −∆β) : l1(z1) = l2(z2)} is finite. Then, as R, ∆α and ∆β are

finite sets and fibers of pseudoholomorphic curves are finite, we conclude the proof.

We will often use this Corollary of Proposition 1.7 and Lemma 2.7.

Corollary 2.8 (Corollary 1.1.4 in [Per19]). Assume that n ≥ 3 and let ı : L → M be a generic

Lagrangian immersion. Then there is a generic family Jreg ⊂ J (M,ω) of compatible almost com-

plex structures on (M,ω) such that for any J ∈ Jreg and any non-constant J-holomorphic disk

u : (D, ∂D)→ (M, ıL) with corners and boundary on ı with finite energy we have the factorization

u = v ◦ π

where π : D → D is a branched covering with branch points in int(D) and v : (D, ∂D)→ (M, ı(L)) is

a simple J-holomorphic disk with corners and boundary on ı with finite energy such that

Lemma 2.9. Assume n ≥ 3. Then for a generic choice of compatible almost complex structure J ∈
Jc(M,ω) we have that for any simple elements u ∈Mk−,k+(α, J) the intersection u−1(ı(L))∩ int(D)

is finite.

Proof. Consider the embedded submanifold L̃ := ı(L − π1(R)) of M , where π1 : L × L → L is the

first projection on L. Define the map

φ :
⊔
M∗(α,∆, J)× int(D)k −→Mk

(u, x1, ..., xk, ) 7−→ (u(x1), ..., u(xk)

Then, according to standard theory [MS12], for a generic choice of J ∈ Jc(M,ω), we have that φ is

transverse to L̃k. Note that

dim(φ−1(L̃k)) = n−
k−∑
i=1

(n− |α(i)|)−
k+∑
i=1

|α(i)|+ k− + k+1 + k(2− n)

and, as n ≥ 3, we have φ−1(L̃k) for k big enough. As R is a finite set, we conclude the proof.

Corollary 2.10. Assume n ≥ 3. Then, for a generic choice of almost complex structure J ∈ Jc(M,ω)

and for any couple of simple disks u, v : (D, ∂D)→ (M, ı(L)) with corners and boundary on ı such that

that v(D) ∩ u(D) is infinite, we have that either v(D) ⊂ u(D) and v(∂D) ⊂ u(∂D) or u(D) ⊂ v(D)

and u(∂D) ⊂ v(∂D).

Proof. We consider a compatible almost complex structure satisfying Lemma 2.7 and Lemma 2.9.Ac-

cording to Lemma 2.7, u and v are not absolutely distinct. Assume without loss of generality that

u(D) ⊂ v(D). According to Lemma 2.9, u(∂D)∩v(int(D)) is a finite set, so that u(∂D−finite set) ⊂
v(∂D). We conclude by continuity of u.
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2.3 Transversality of pearls

From now on we will only consider maps α of the type {1, ..., k+} → R indexing only outgoing corners

which satisfy A (α(i)) > 0. The reason for that is that when proving that our pearly differential is

well defined, we are confronted with bubbling of trees of pseudoholomorphic disks (with, of course,

at least one branch jump) with positive area. When k+ = 0 we write α = ∅ and we drop α from the

notation of the moduli spaces.

Case 1: n ≥ 3

Lemma 2.11. Assume n ≥ 3. Let k+ ≥ 0 and α : {1, ..., k+} → R a map indexing ordered

double points of ı, (p, q) ∈ R be an ordered double point of ı such that A (p, q) > 0. Then for a

generic choice of compatible almost complex structure J ∈ Jc(M,ω), any non-constant element of

M0,k+((p, q), ∅, α, J) and M0,k+(∅, (q, p), α, J) is simple.

Proof. Pick J ∈ Jreg from Corollary 2.8 and consider u = (u, l,∆, α) ∈ M0,k+((p, q), ∅, α, J) non-

constant. Notice that as A (p, q) > 0 and (p, q) is seen as incoming, we have that α(i) 6= (q, p) for

any i. u is multicovered by Corollary 2.8, i.e. there is a branched covering π : D → D of degree d ≥ 1

and a simple disk v := (v, lv,∆, α) with corners and boundary on ı such that u = v ◦ π. Then v has a

corner at π(−1). As π is a cover when restricted to ∂D, we have π(d) = zd for z ∈ ∂D; then, as +1

is a smooth point for u, it directly follows that d is odd. We show that ∆ ∩ π−1(π(−1)) = ∅, which

implies that π−1(π(−1)) = {1} and d = 1. Write α(i) = (qi, pi). We have:

p = lim
θ→0+

lu(eiθ(−1)) = lim
θ→0+

lv(e
2iθ(−1)) = lim

θ→0+
lu(eiθπ(zi)) = p1

a contradiction. The case of M0,k+(∅, (q, p), α, J) is similar.

Corollary 2.12. Assume n ≥ 3. Let k+ ≥ 0 and α : {1, ..., k+} → R a map indexing ordered double

points of ı, (p, q) ∈ R be an ordered double point of ı such that A (p, q) > 0 and let x, y ∈ Crit(f) be

critical points of f . Then, for a generic choice of compatible almost complex structure J ∈ Jc(M,ω),

if W u(y) ∩ {p, q} = ∅, any element of M0,k+(y, (q, p), α, J) is simple, while, if {p, q} ∩W s(y) = ∅,
then any element of M0,k+((p, q), x, α, J) is simple.

Proof. As W u(y)∩{p, q} = ∅, then any element ofM0,k+(y, (q, p), α, J) is non-constant. We conclude

using Lemma 2.11.

Lemma 2.13. Assume n ≥ 3. Let k+ ≥ 0 and α : {1, ..., k+} → R a map indexing ordered double

points of ı, (p, q), (r, s) ∈ R be ordered double points of ı such that p, q, r, s ∈ L are pairwise distinct.

Then, for a generic choice of compatible almost complex structure J ∈ Jc(M,ω), any element of

M0,k+((p, q), (r, s), α, J) is simple.

Proof. Pick J ∈ Jreg from Corollary 2.8 and consider u = (u, l,∆, α) ∈ M0,k+((p, q), (r, s), α, J).

Then u is non-constant as p, q, r, s ∈ L are pairwise distinct, and is hence multicovered by Corollary

2.8, that it, there is a branched covering π : D → D of degree d ≥ 1 and a simple disk v with corners
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and boundary on ı such that u = v ◦ π. In particular, π(z) = zd for d ∈ ∂D. We show that d = 1.

Assume d ≥ 2. We have

0 < E(u) = A (p, q)−A (r, s)−
k+∑
i=1

A (α(i))

so that either A (p, q) > 0 or A (r, s) < 0. The first case implies that α(i) 6= (q, p) for any i by our

assumptions on α, while the second one implies that α(i) 6= (r, s) for any i. Assume without loss of

generality that A (p, q) > 0. First, we show that +1 /∈ π−1(π(−1)): if that were the case, we would

have d even and

p = lim
θ→0+

lu(eiθ(−1)) = lim
θ→0+

lv(e
2iθ(+1)) = lim

θ→0+
lv(e

iθ(+1)) = s

a contradiction. Similarly, one shows ∆ ∩ π−1(π(−1)) = ∅, as α(i) 6= (q, p) for any i. It follows

|π−1(π(−1))| = 1 and hence d = 1.

Case 2: n ≤ 2

In the case n ≤ 2 we are not a priori able to count corners to conclude the arguments about simplicity,

as disks are not usually multicovered. To show simplicity of the disks we are interested to in this case,

the idea is to consider only the dimensions one is interested to in order to define our cohomology, that

is, 0 and 1, and then show that if a curve is not simple, new curves arise, which will lie in manifolds

of either negative or too high dimension. To do that, we will analyze the possible shapes of connected

components of the complement of the frame of a disk. There are two kinds of problematic behaviours

of non-simple curves that we want to avoid:

Remark 2.14. In general, a corner point of a disk may be a singular point for the frame. Indeed,

consider the map u(z) = z
5
2 from the disk D = H ∪ {∞} to the sphere CP 1 = C ∪ {∞} and the

immersed Lagrangian on the sphere given by the compactification of R ∪ iR. Then, u is a disk with

corners in z = 0 and z = 0∞, which are singular points of the frame W (u), see Figure 2.3. In this

case, Proposition 1.7 gives us a decomposition of u into three simple disks with corners. Two are

u1,2(z) = z
1
2 , which have the same type of corner as u, while the other, u3(z) = iz

3
2 has the inverse

corners than u.

Remark 2.15. In the decomposition into simple pieces of a pseudoholomorphic disk with corners, new

(types of) corners may arise. Consider the teardrop u ∈M0,0((p, q), ∅, α, J) in Figure 2.3, which is of

course not simple. Then we can decompose u via Proposition 1.7 into three simple pieces u1, u2 and u3.

u1 is a disk with the original incoming (p, q) corner plus the incoming corners (a, b), (d, c), (d, c), (a, b),

while u2 = u3 is a disk with outgoing corners of type (a, b), (d, c).

We now show that in our setup, the phenomena listed in Remark 2.14 and 2.15 can’t happen (in the

second case, we have to bound some Morse trajectory to the teardrop).
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Figure 2.4: A schematic representation of what goes on with the curve u(z) = z
5
2 from the unit disk

to the unit sphere. Note that the image is of courne not simple nor multiply covered and that the
non-trivial frame passes trough the corner point 0 ∈ D.

Figure 2.5: A teardrop u ∈ M0,0(γ, ∅, J) which is non simple and whose simple decomposition will
contain new types of corners. On the disk D we see W (u)− ∂D in gray.

Lemma 2.16. Assume n ≤ 2. Let k+ ≥ 0 and α : {1, ..., k+} → R a map indexing ordered double

points of ı, (p, q), (r, s) ∈ R be ordered double points of ı such that p, q, r, s ∈ L are pairwise distinct

and |p, q| − |r, s| − 1 ≤ 1 and u = (u, l,∆, α) ∈ M0,k+((p, q), (r, s), α, J). Then the elements of ∆+1
−1

are smooth points of the frame W(u) of u.

Proof. As p, q, r, s ∈ L are pairwise distinct, u is a non-constant disk, so that

E(u) = A (p, q)−A (r, s)−
k+∑
i=1

A (α(i)) > 0

Notice that if A (p, q) > 0 and A (r, s) < 0 we have |p, q| ≥ 3 and −|r, s| = |s, r| − n ≥ 3− 2 = 1, so

that |p, q|−|r, s|−1 ≥ 3 which contradicts the assumption of the Lemma. We assume that A (p, q) > 0

PB
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(and hence A (r, s) ≥ 0).

Assume that −1 is a singular point of the frame W(u): then, by Section 1.2.2 in [Per19], there is

an open neighbourhood Ω ⊂ D of −1 such that W(u) ∩ Ω is a union of (counteclockwise ordered)

arcs r1, ..., rm (whose number and slope depend on the order of u near −1 and on the Kähler angles

between the two branches of L meeting at u(−1)). In particular, r1 and rm correspond to ∂D ⊂ W(u).

Always following [Per19], as −1 corresponds to an incoming corner of type (p, q), we have that the

r2j ’s are arcs with image on the q-branch of ı(L), while the r2j+1’s are arcs with image on the p-branch

of L. We label by Di the connected component of D −W (u) which near −1 is bounded by the arcs

ri and ri+1. In the decomposition of u into simple pieces, Di induces a simple (and in particular non-

constant) disk vi : (D, ∂D) → (M, ı(L)) with incoming corner of type (p, q) if i is odd and incoming

corner of type (q, p) is i is even. Consider vi with i even. We analyze all the possible structures of vi

case by case.

1. Of course, vi is not a teardrop, as in this case we would have E(vi) = A (q, p) < 0 by assumption,

a contradiction.

2. vi might have outgoing corners of type α(i), for some i ∈ {1, ..., k+}, and of type (r, s); anyway, in

all possible combinations of this type we would have E(vi) < 0 as A (r, s) ≥ 0 and A (α(i)) > 0

by assumption, a contradiction.

3. vi might have an outgoing corner of type (s, r) (this may e.g. be possible if +1 is also a singular

point of W(u)) (which implies it would have no outgoing corners of type (r, s)). In this case we

would have

E(vi) = A (q, p)−A (s, r) = −E(u) < 0

a contradiction. Similarly, writing α(i) = (qi, pi), vi might have corners of type (pi, qi) (this

might e.g. be possible if zi is also a singular point of W(u)); however, this also leads to a

contradiction, as we would have

E(vi) = A (q, p) + A (α(i)) < 0

as from E(u) > 0 it follows A (p, q) > A (α(i)).

4. vi might have corners which do not involve p, q, r, s or components of the α(i)’s as a result of

the presence of a connected component of D − W(u) of the same kind as the one presented

in Remark 2.15. However, also in this case we would end up with E(vi) < 0, as those “new”

corners bound a non-constant disk.

5. vi might look like combinations of the cases above, still implying E(vi) < 0.

We conclude that E(vi) < 0, contradicting the fact that −1 is a singular point ofW(u) if A (p, q) > 0.

The case A (r, s) < 0 is very similar and is hence omitted. We also omit the proofs that +1 and

zi ∈ ∆ are smooth point of W(u), as they proceed in the exact same manner.
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Lemma 2.17. Assume n ≤ 2. Let k+ ≥ 0 and α : {1, ..., k+} → R a map indexing ordered double

points of ı, (p, q) ∈ R be an ordered double point of ı such that A (p, q) > 0 and let x, y ∈ Crit(f)

be critical points of f such that {p, q} ∩W s(y) = ∅ and {p, q} ∩W s(y) = ∅. Let u = (u, l,∆, α) ∈
M0,k+((p, q), x, α, J) and ũ = (ũ, l̃, ∆̃, α) ∈ M0,k+(y, (q, p), α, J). Then the elements of ∆−1 are

smooth points of the frame W(u) of u, while the elements of ∆̃+1 are smooth points of the frame

W(ũ) of ũ.

Proof. The proof is essentially a “sub-proof” of the proof of Lemma 2.16.

Before handling the second pathological behaviour of the frame in full generality, we consider

the example from Remark 2.15 with a Morse condition. Let (p, q) ∈ R and x ∈ Crit(f) such that

|p, q| − |x| − 1 ≤ 2 and pick u ∈ M0,0((p, q), x, J) with the frame as in Remark 2.15. Then, u

decomposes into simple pieces u1 ∈ M0,4((p, q), x, α, J) and u2 = u3 ∈ M0,0((c, d), (a, b), J), with α

as described in Remark 2.15. This implies that

|p, q| − |x| − 2|b, a| − 2|c, d|+ 4− 1 ≥ 0 and |c, d| − |a, b| − 1| ≥ 0

The last estimate tells us that |c, d|+|b, a| ≥ n+1 = 3. It follows from |p, q|−|x|−2|b, a|−2|c, d|+4−1 ≥
0 that |p, q| − |x| − 1| ≥ 2|b, a| + 2|c, d| − 4 ≥ 2, a contradiction. Notice that the key point for this

observation is that the “new” corners are counted twice in one of the resulting curves.

Lemma 2.18. Assume n = 2. Let k+ ≥ 0 and α : {1, ..., k+} → R a map indexing ordered double

points of ı, (p, q), (r, s) ∈ R be ordered double points of ı such that p, q, r, s ∈ L are pairwise distinct

and |p, q| − |r, s| − 1 ≤ 1 and u = (u, l,∆, α) ∈ M0,k+((p, q), (r, s), α, J). Consider the decomposition

v1, ..., vm : (D, ∂D) → (M, ı(L)) of u into simple disks from Proposition 1.7. Then the corners of

v1, ..., vk are induced by corners of u.

Proof. For simplicity we assume α = ∅, as the proof differs only in notation. The possibilities of

anomaly fall into two cases and combinations of them up to reordering of corners and singular points

of the frame: the terminal part of a disk may be in the image of the interior (much like in the example

in Remark 2.15) or not, see Figure 2.6 and 2.7. We show that both of these cases can not occour by

sticking to the orderings displayed in Figure 2.6 and 2.7, but the computations for the other cases are

very similar.

Consider u ∈M0,0((p, q), (r, s), J) with an image of the form sketched in Figure 2.6. Then, u factors

via Proposition 1.7 into simple disks u1 ∈M0,4((p, q), (r, s), α, J) and u2 = u3 ∈M0,0((d, c), (b, a), J),

where α(1) = (a, b), α(2) = (d, c), α(3) = (d, c) and α(4) = (a, b). It follows that

|p, q| − |r, s| − 2|a, b| − 2|d, c|+ 4− 1 ≥ 0 and |d, c| − |b, a| − 1 ≥ 0

From the last estimate it follows that |d, c|+ |a, b| ≥ 1 + n = 3. Combining it with the first estimate

we get

|p, q| − |r, s| − 1 ≥ 2|a, b|+ 2|d, c| − 4 ≥ 6− 4 = 2
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Figure 2.6: In this configuration, we see
the terminal part of the disk being part
of the image of the interior. The double
points in gray are corners for the disks in
the decomposition of this configuration
into simple pieces.

Figure 2.7: In this configuration, we see
the terminal part of the disk not being
part of the image of the interior. The
double points in gray are corners for the
disks in the decomposition of this config-
uration into simple pieces.

contradicting our assumption.

Consider u ∈M0,0((p, q), (r, s), J) with an image of the form sketched in Figure 2.7. Then, u factors

via Proposition 1.7 into simple disks u1 ∈ M1,2(α1, J), u2 ∈ M0,4(α2, J), u3 ∈ M0,2(α3, J) and

u4 ∈M0,5(α4, J), where

1. α1(1) = (p, q), α1(2) = (f, e) and α1(3) = (a, b);

2. α2(1) = (e, f), α2(2) = (h, g), α2(3) = (c, d) and α2(4) = b, a);

3. α3(1) = (g, h) and α3(2) = (f, e);

4. α4(1) = (r, s), α4(2) = (a, b), α4(3) = (d, c), α4(4) = (d, c) and α4(5) = (g, h).

This implies that

|p, q| − |f, e| − |a, b| ≥ 0, n− |e, f | − |h, g| − |c, d| − |b, a|+ 1 ≥ 0

n− |g, h| − |f, e| − 1 ≥ 0, n− |r, s| − |a, b| − 2|d, c| − |g, h|+ 2 ≥ 0

implying |h, g| + |e, f | ≥ 1 + n and |d, c| + |a, b| ≥ n − 1 + |e, f | + |h, g|. Moreover, summing the

first and the fourth inequalities we get |p, q| − |r, s| − 1 ≥ 2|a, b| + 2|d, c| + |g, h| + |f, e| − 4 − 1 ≥
2n− 2 + 2n+ 1 + n− 5 = 5n− 6 ≥ 4, contradicting our assumption.

Remark 2.19. Notice that the proof of Lemma 2.18 does not work for n = 1.

In the same way as Lemma 2.18, one proves that:
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Lemma 2.20. Assume n = 2. Let k+ ≥ 0 and α : {1, ..., k+} → R a map indexing ordered double

points of ı, (p, q) ∈ R be an ordered double point of ı such that A (p, q) > 0 and let x ∈ Crit(f) be

a critical point of f such that {p, q} ∩W s(y) = ∅. Let u = (u, l,∆, α) ∈ M0,k+((p, q), x, α, J) and

consider the decomposition v1, ..., vm : (D, ∂D) → (M, ı(L)) of u into simple disks from Proposition

1.7. Then the corners of v1, ..., vk are induced by corners of u.

Lemma 2.21. Assume n = 2. Let k+ ≥ 0 and α : {1, ..., k+} → R a map indexing ordered double

points of ı, (p, q), (r, s) ∈ R be ordered double points of ı such that p, q, r, s ∈ L are pairwise distinct

and |p, q| − |r, s| − 1 ≤ 1. Then any element of M0,k+((p, q), (r, s), α, J) is simple.

Proof. Let u = (u, l,∆, α) ∈ M0,k+((p, q), (r, s), α, J), then u is non-constant. We consider the

connected components D1, ..., Dm of D −W (u). If there is j ∈ {1, ...,m} such that ∆+1
−1 ∩ Dj = ∅

then Dj induces a smooth non-constant pseudoholomorphic disk by Proposition 1.7 and Lemma 2.16

and 2.18. Assume without loss of generality that A (p, q) > 0, so that A (r, s) ≥ 0. Then, −1 ∈ Di

for any i ∈ {1, ...,m}, as otherwise we would have disks with corners with negative energy. Then, by

Lemma 2.16, m = 1 and u is multicovered. Exactly as in the case n ≥ 3, we immediately get that u

is simple.

In the same way as Lemma 2.21, one proves that:

Lemma 2.22. Assume n = 2. Let k+ ≥ 0 and α : {1, ..., k+} → R a map indexing ordered double

points of ı, (p, q) ∈ R be an ordered double point of ı such that A (p, q) > 0 and let x, y ∈ Crit(f) be

critical points of f such that |p, q| − |x| − 1 ≤ 1 and |y| − |q, p| − 1 ≤ 1. Then if W u(y) ∩ {p, q} = ∅,
any element of M0,k+(y, (q, p), α, J) is simple, while, if {p, q} ∩ W s(y) = ∅, then any element of

M0,k+((p, q), x, α, J) is simple.

RR2-pearls are made of absolutely distinct elements for any n

According to standard theory of transversality of moduli spaces of pseudoholomorphic curves curves

(see [MS12]), tuples of curves have to be absolutely distinct in order to prove transversality of their

moduli spaces (see also [BC07]). We now prove that generically RR2-pearls are absolutely distinct

for any n ∈ Z≥1.

Lemma 2.23. Let k1
+, k

2
+ ≥ 0 and α1 : {1, ..., k1

+} → R, α2 : {1, ..., k2
+} → R maps indexing

double point of ı, (p, q), (s, r) ∈ R double points of ı such that p, q, s, r ∈ L are pairwise distinct and

|p, q|− |s, r|−1 ≤ 2. Then, for a generic choice of compatible almost complex structure J ∈ Jc(M,ω),

M0,k1+;0,k2+
((p, q), (r, s), α, f, g, J) is made of absolutely distinct pearls.

Proof. Let (u1, u2) ∈ M0,k+1 ;0,k+2
((p, q), (r, s), α, f, g, J). If n ≥ 3 we use Corollary 2.10: assume that

u1 and u2 are not absolutely distinct, then without loss of generality u1(∂D) ⊂ u2(∂D) which directly

leads to a contradiction in any dimension, as this would mean that u2 has an incoming corner of type

(p, q), which can not happen as A (p, q) > 0 and p, q, s, r are pairwise distinct. Assume now n ≤ 2.

The existence of u1 and u2 implies that A (p, q) > 0 and A (r, s) > 0. Then,

|p, q| − |s, r| − 1 = |p, q|+ |r, s| − n− 1 ≥ 6− 2− 1 = 3
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contradicting the assumptions and hence proving the claim.

The case of (p, q) to (q, p) pearls

We still have to deal with RR (both of type 1 and 2) pearls from a double point (p, q) ∈ R to itself

or to (q, p) ∈ R. As A (p, q) = −A (q, p) it is immediate that there are no non-constant RR-pearls

from a double point to itself. Moreover, as the next lemma points out, there are no RR-pearls in

interesting virtual dimensions (that is, 0 and 1 as usual) whenever n ≤ 3, which makes our task a bit

easier as it allows us to use the dichotomy simple-multiply covered from Corollary 2.8. We will only

work with pearls with no α-markings, as those are the ones we need to define the differential.

Lemma 2.24. Assume n ≤ 3. Then, if (p, q) ∈ R satisfies |p, q| − |q, p| − 1 ≤ 1, the moduli spaces

M0,0((p, q), (q, p), J) and M0,0;0,0((p, q), (q, p), f, g, J) are empty.

Proof. Assume that M0,0((p, q), (q, p), J) 6= ∅ and pick u = (u, l) ∈ M0,0((p, q), (q, p), J). Then u is

non-constant by definition of the moduli space, hence A (p, q) > 0, so that 1 ≥ |p, q| − |q, p| − 1 =

2|p, q| − n− 1 ≥ 5− n, which directly implies n ≥ 4. The same for M0,0;0,0((p, q), (q, p), f, g, J).

Remark 2.25. A very similar proof shows that under the same conditions of the last lemma the moduli

spacesM0,k+1 ;0,k+2
((p, q), (q, p), α1, α2, f, g, J) are empty while the moduli spacesM0,k+((p, q), (q, p), α, J)

only contain constant disks.

Assume n ≥ 4. Recall that by the results of Section 2.3, teardrops are simple in this case. Consider

a non absolutely distinct element

(u1, u2) ∈M0,0;0,0((p, q), (q, p), f, g, J)−Mabs
0,0;0,0((p, q), (q, p), f, g, J)

Then, as u1(D) ∩ u2(D) is infinite, we have either u1(∂D) ⊂ u2(∂D) and u1(D) ⊂ u2(D) or

u2(∂D) ⊂ u1(∂D) and u2(D) ⊂ u1(D). In any of either cases we have u1(D) = u2(D) and

u1(∂D) = u2(∂D) as u1 and u2 have the same symplectic area. In particular, Theorem 4.13 in

[Laz11], which according to [Per19] translates without modification to the immersed case, tells us

that u1 and u2 are reparametrisation of each other, that is, u1 and u2 can be seen as the same

element in M0,0(∅, (q, p), J). In particular, an element u2 ∈ M0,0(∅, (q, p), J) determines a unique

element (u1, u2) ∈M0,0;0,0((p, q), (q, p), f, g, J)−Mabs
0,0;0,0((p, q), (q, p), f, g, J). We then conclude that

the map

ψ1 :M0,0;0,0((p, q), (q, p), f, g, J)−Mabs
0,0;0,0((p, q), (q, p), f, g, J) −→M0,0(∅, (q, p), J)

(u1, u2) 7−→ u2

is a bijection.

Consider a non simple element

u ∈M0,0((p, q), (q, p), J)−M∗0,0((p, q), (q, p), J)
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By assumption u is non-constant, so that A (p, q) > 0 and u is multicovered by a branched covering

of degree 2. Hence we write any element u ∈ M0,0((p, q), (q, p), J) as u = vu ◦ πu, where πi : D → D

is a branched covering of degree 2 and vu is a simple teardrop. Notice that, as v(D) = u(D) and

v(∂D) = u(∂D), the class vu ∈ M0,0(∅, (q, p), J) does not depend on the choice of vu again by

Theorem 4.13 in [Laz11]. We then conclude that the map

ψ2 :M0,0((p, q), (q, p), J)−M∗0,0((p, q), (q, p), J) −→M0,0(∅, (q, p), J)

u 7−→ vu

is a bijection. In particular it follows that

ψ−1
2 ◦ ψ1 :M0,0;0,0 −Mabs

0,0;0,0((p, q), (q, p), f, g, J) −→M0,0 −M∗0,0((p, q), (q, p), J)

is a bijection. This tells us that bad pearls joining (p, q) to (q, p) come in pairs in dimension 0.

here I realized too late that my proof to show that M0,0(∅, (q, p), J) is finite (altough it it n − 1/2-

dimensional), and hence that everything with the differential is well-defined, is wrong. One possibility

is to assume that A (p, q) > 0 implies |p, q| ≥ n+2
2 , but this is quite strong and a priori eliminates

RR2 configurations here and other configurations in the following structures (PSS, product).

Summary of transversality

In summary, combining the result of this section and standard theory on transversality of moduli

spaces of simple curves in [MS12], we get the following.

Proposition 2.26. Let k+, k
1
+, k

2
+ ≥ 0 and α : {1, ..., k+} → R, α1 : {1, ..., k1

+} → R and α2 :

{1, ..., k2
+} → R maps indexing double point of ı, (p, q), (r, s) ∈ R double points of ı such that p, q, r, s ∈

L are pairwise distinct and x, y ∈ Crit(f) critical points of f . Then there is a generic family Jtr ⊂
Jc(M,ω) such that for any J ∈ Jtr the following points hold:

• Assume |p, q| − |r, s| − 1 ≤ 1. Then the moduli space M0,k+((p, q), (r, s), α, J) is either empty

or a smooth finite dimensional manifold whose dimension agrees with its virtual dimension.

• Assume |p, q|−|x|−1 ≤ 1 and W s(x)∩{p, q} = ∅. Then the moduli spaceM0,k+((p, q), x, α, f, g, J)

is either empty or a smooth finite dimensional manifold whose dimension agrees with its virtual

dimension.

• Assume |y|−|r, s|−1 ≤ 1 and W u(y)∩{r, s} = ∅. Then the moduli spaceM0,k+(y, (r, s), α, f, g, J)

is either empty or a smooth finite dimensional manifold whose dimension agrees with its virtual

dimension.

• Assume |p, q| − |r, s| − 1 ≤ 1. Then the moduli space M0,k1+;0,k2+
((p, q), (r, s), α1, α2, f, g, J) is

either empty of a smooth finite dimensional manifold whose dimension agrees with its virtual

dimension.
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• Assume |p, q| − |q, p| − 1 ≤ 1. Then the moduli space M∗0,0((p, q), (q, p), J) is either empty of a

smooth finite dimensional manifold whose dimension agrees with its virtual dimension.

• Assume |p, q|−|q, p|−1 ≤ 1. Then the moduli spaceMabs
0,0;0,0((p, q), (q, p), f, g, J) is either empty

of a smooth finite dimensional manifold whose dimension agrees with its virtual dimension.

2.4 Compactness of moduli spaces of pearls in dimension 0

In this section we prove that the moduli spaces of pearly trajectories which will play a role in the

definition of quantum homology are compact when the virtual dimension is zero.

Lemma 2.27. Let x ∈ Crit(f) be a critical point of f and (p, q) ∈ R be a double point of ı such that

|x| − |p, q| = 1. Then, for a generic choice of compatible almost complex structure J ∈ Jc(M,ω), the

moduli space M0,0(x, (p, q), f, g, J) is compact.

Proof. By Gromov compactness for pseudoholomorphic curves with boundary and corners on totally

real immersions (see [IS02]) and the fact that we are working in the exact setting, a sequence in

M0,0(x, (p, q), f, g, J) converges to a broken pearly trajectory of the form(
u1, ..., ud−1, ([ud], vd), ([ud+1], vd+1), ..., ([ud+m], vd+m)

)
for d ≥ 1,m ≥ 0, where

1. for 1 ≤ i ≤ d− 1, ui ∈ M(xi, xi+1, f, g) is a Morse trajectory between critical points xi, xi+1 ∈
Crit(f); moreover, x1 = x;

2. [ud] ∈ M0,kd+
(xd, γd+1, αd, f, g, J) is a CR-pearl and vd is a family of pseudoholomorphic trees

attached to ud along the associated ∆d;

3. for d + 1 ≤ i ≤ d + m, either [ui] ∈ M0,ki+
(γi, γi+1, αi, J) or [ui] = ([ui,1], [ui,2]), where [ui,1] ∈

M
0,ki,1+

(γi, ∅, αi,1, J) and [ui,2] ∈M
0,ki,2+

(∅, γi+1, αi,2, J) such that ui,1(+1) = ui,2(−1), both with

trees of pseudoholomorphic disks attached along the associated ∆i. Moreover, γd+m+1 = (p, q).

Remark 2.28. It may seem like the third case above does not follow the geometric picture of the

degeneracy in the limit: the point is that once a sequence of disks degenerate at a double point of ı to

get two disks, one has the original counterclockwise orientation on the boundary, while the other is

oriented clockwise (see Figure 2.8).

First of all, we show that non of the [ui] is a constant disk. Pick d + 1 ≤ i ≤ d + m and assume

γi = γi+1 = (pi, qi) and [ui ∈ M0,ki+
((pi, qi), (pi, qi), α, J) is constant. It directly follows α 6= ∅ as

otherwise ui would not be stable. Consider the “upper” part of the disk ui. In order for ui to be

constant, we must have that ki+ is even, and half of the branch jumps indexed by α are of type (pi, qi),

while the other half of type (qi, pi). As remarked above, the trees vi are non-constant, as they have

a unique branch jump, hence A (qi, pi) and A (pi, qi) have to be both positive, a contradiction. Pick
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Figure 2.8: A possible degeneration of a disk in M0,0((p, q), (r, s), J) at the double point (p1, q1): in
the limit, the disk on the left is an element of M0,0((p, q), (p1, q1), J), while the one on the right is
oriented clockwise and can hence be seen as an element of M0,0((p1, q1), (r, s), J).

now d+ 1 ≤ i ≤ d+m and assume γi = (pi, qi), γi+1 = (qi, pi) and [ui ∈ M0,ki+
((pi, qi), (qi, pi), α, J)

is constant. For ui to be constant, α must index k branch jumps of type (pi, qi) and k + 2 branch

jumps of type (qi, pi) for some k ≥ 0. The argument just above implies k = 0 and A (qi, pi) > 0. This

contradicts conservation of energy from Gromov compactness in [IS02].

By standard Morse theory, we have |xi| − |xi+1| ≥ 1 for any 1 ≤ i ≤ d− 1, as (f, g) is Morse-Smale.

From now on write γi = (pi, qi).

[ud]. If {pd+1, qd+1} ∩W u(xd) = ∅, then ud is non constant and by Proposition 2.26 we have

|xd| − |γd+1| ≥ 1 + 2kd+

If {pd+1, qd+1} ∩W u(xd) 6= ∅ we can assume without loss of generality that |xd| = n so that:

1. if A (γd+1) < 0, then n− |γd+1| ≥ 3 annd hence |xk| − |γd+1| ≥ 3;

2. if A (γd+1) = 0, then

0 ≤ E(u) = −
∑

A (αd(i))

so that if α = ∅, uk is constant, a contradiction, as moduli space do not contain constant disks

for α = ∅, and if α 6= ∅, 0 ≤ E(u) < 0, another contradiction;

3. if A (γd+1) > 0, then

0 ≤ E(u) = A (γd+1)−
∑

A (αd(i)) < 0

again a contradiction

Consider now [ui] for d+ 1 ≤ i ≤ d+m.

• γi+1 6= (qi, pi) and [ui] cannot be an element of M
0,ki,1+

(γi, ∅, αi,1, J) ×M
0,ki,2+

(∅, γi+1, αi,2, J).

Indeed, suppose [ui] is the first one of the elements [ud+1], ..., [ud+m] to be such that γi+1 =
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(qi, pi) or of the second kind listed above. Then we have that A (γi) > 0, but then A (γj) > 0

for all j ≥ i, implying in particular that A (p, q) > 0: a contradiction, since the energy of the

original sequence was A (q, p) = −A (p, q) > 0.

• pi 6= pi+1 and qi 6= qi+1, as if pi = pi+1 and qi = qi+1 and αi 6= ∅, E(ui) < 0 and if pi = pi+1

and qi = qi+1 and αi = ∅, ui is constant but not stable (q.v. the discussion above).

• If pi, qi, pi+1, qi+1 are pairwise distinct then |γi| − |γi+1| ≥ 1 by Proposition 2.26.

In the end, from

1 = |x| − |p, q| =
k−1∑
i=1

|xi| − |xi+1|+ (|xd| − |γd+1) +
d+1∑
i=d+1

|γi| − |γi+1|

it follows that d = 1, kd+ = 0 and hence that M0,0(x, γ, f, g, J) is compact.

Similarly we have the following three results.

Lemma 2.29. Let x ∈ Crit(f) be a critical point of f and (p, q) ∈ R be a double point of ı such that

|p, q| − |x| = 1. Then, for a generic choice of compatible almost complex structure J ∈ Jc(M,ω), the

moduli space M0,0((p, q), x, f, g, J) is compact.

Lemma 2.30. Let (p, q), (r, s) ∈ R be double points of ı such that p, q, r, s ∈ L are pairwise distinct

and |p, q|−|r, s| = 1. Then, for a generic choice of compatible almost complex structure J ∈ Jc(M,ω),

the moduli space M0,0;0,0((p, q), (r, s), f, g, J) is compact.

Lemma 2.31. Let (p, q) ∈ R be a double point of ı such that |p, q| − |q, p| − 1 ≤ 1. Then the moduli

space Mabs
0,0;0,0((p, q), (q, p), f, g, J) is compact

Lemma 2.32. Let (p, q), (r, s) ∈ R be ordered double points of ı such that p, q, r, s ∈ L are pairwise

distinct and |p, q| − |r, s| = 1. Then, for a generic choice of compatible almost complex structure

J ∈ Jc(M,ω), the moduli space M0,0((p, q), (r, s), α, J) is compact.

Proof. By Gromov compactness for pseudoholomorphic curves with boundary and corners on totally

real immersions (see [IS02]) and the fact that we are working in the exact setting, a sequence in

M0,0((p, q), (r, s), α, J) converges to a broken pearly trajectory of the form

u =
(
([u1], v1), ([u2], v2), ..., ([um], vm)

)
for m ≥ 1, where there are γ1, ..., γm+1 with γ1 = (p, q) and γm+1 = (r, s) such that either

[ui] ∈ M0,ki+
(γi, γi+1, αi, J) or [ui] = ([ui,1], [ui,2]), where [ui,1] ∈ M

0,ki,1+
(γi, ∅, αi,1, J) and [ui,2] ∈

M
0,ki,2+

(∅, γi+1, αi,2, J) such that ui,1(+1) = ui,2(−1), both with trees of pseudoholomorphic disks vi

attached along the associated marked points in ∆i. Write γi = (pi, qi) for any i ∈ {1, ...,m+ 1}.
First, we have that none of the [ui]’s can be constant, and the argument is exactly as in the proof of

Lemma 2.27.
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If [ui] = ([ui,1], [ui,2]), where [ui,1] ∈ M
0,ki,1+

(γi, ∅, αi,1, J) and [ui,2] ∈ M
0,ki,2+

(∅, γi+1, αi,2, J) such

that ui,1(+1) = ui,2(−1), then if |γi| − |γi+1| ≤ 2, [ui] lies in a moduli space which is (up to re-

ducing the generic set of almost complex structures we are dealing with) a manifold of dimension

|γi| − |γi+1| −
∑
|αi,1(j)| −

∑
|αi,2(j)| + ki,1+ + ki,2+ − 2 ≥ 0, as it could be easily computed via

evaluation maps plus the results from Section 2.3, which implies |γi| − |γi+1| ≥ 2.

Hence, if |γi|−|γi+1|−1 ≤ 1 we have |γi|−|γi+1| ≥ 1+2k+
i in any case (writing ki+ := ki,1+ +ki,2+ for

[u1] ∈ M
0,ki,1+

(γi, ∅, αi,1, J) ×M
0,ki,2+

(∅, γi+1, αi,2, J)) by the results in Section 2.3. This observation

plus the fact that

1 = |p, q| − |r, s| =
m∑
i=1

|γi| − |γi+1|

leads to |γi| − |γi+1 ≤ 1 for any i ∈ {1, ...,m}, so that m = 1 and k1
+ = 0, proving the lemma.

Similarly, we have the following result.

Lemma 2.33. Let (p, q) ∈ R be a double point of ı such that |p, q| − |q, p| − 1 ≤ 1. Then the moduli

space M∗0,0((p, q), (q, p), J) is compact.

2.5 Compactifications of moduli space of pearls in dimension 1

At this stage of a construction of a Morse-like cohomology, gluing of relevant configurations usually

enters the game. What happens in dimension 1 is that we can not rule out broken configurations

which arises from Gromov compactness from the Gromov compactification of moduli spaces by count-

ing dimension. Instead, we want to prove that compactifications are smooth manifolds of dimension 2

whose boundary is made of exactly those broken configurations. Gromov compactness basically tells

us that the boundary is contained in the space of broken configurations, but does not provide equality

nor charts. Gluing is a technique introduced by Floer which goes to study what happens near those

broken configurations by building an open embedding that geometrically corresponds to the literal

gluing of two configurations via a real parameter, which coupled with the so-called surjectivity of

the gluing map (which can be interpreted as uniqueness of those embeddings), directly give charts

for the compactification in the expected way. A brief summary about gluing of Floer strips in the

Hamiltonian case may be found in [Amb19], while [AD14] provides a complete exposition with a lot

of details. Here, we will skip most of the details.

Gluing of smooth pseudoholomorphic disks with boundary on embedded Lagrangian is studied in

detail in [BC07, Section 4], while gluing of Morse trajectories is nowadays a standard fact (see for

instance [AD14, Chapter 1]). To handle the immersed case, we also have to study gluing of pseudo-

holomorphic disks at corners: however, it turns out that, in the correct framework, this is just a special

case of what is described in [BC07], see Figure 2.9. From this considerations, Gromov compactness

and the same tricks we used in Section 2.4 we get the following statements about compactifications

of our preferred moduli space in dimension 1.
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Figure 2.9: The gluing process of a teardrop u1 ∈ M0,0(∅, (p, q), J) and a teardrop u2 ∈
M0,0((p, q), ∅, J) at the corners.

Lemma 2.34. Let x ∈ Crit(f) be a critical point of f and (p, q) ∈ R be a double point of ı such

that |x| − |p, q| = 2. Then, for a generic choice of compatible almost complex structure J ∈ Jc(M,ω),

the moduli space M0,0(x, (p, q), f, g, J) admits a Gromov-type compactification into a 1-dimensional

manifold with boundary M0,0(x, (p, q), f, g, J) such that

∂M0,0(x, (p, q), f, g, J) =
⋃

y: |x|−|y|=1

M(x, y)×M0,0(y, (p, q), f, g, J)∪

⋃
(r,s)6=(q,p): |x|−|r,s|=1

M0,0(x, (r, s), f, g, J)×M0,0((r, s), (p, q), J)

Lemma 2.35. Let x ∈ Crit(f) be a critical point of f and (p, q) ∈ R be a double point of ı such

that |p, q| − |x| = 2. Then, for a generic choice of compatible almost complex structure J ∈ Jc(M,ω),

the moduli space M0,0((p, q), x, f, g, J) admits a Gromov-type compactification into a 1-dimensional

manifold with boundary M0,0((p, q), x, f, g, J) such that

∂M0,0((p, q), x, f, g, J) =
⋃

y: |y|−|x|=1

M0,0((p, q), y, f, g, J)×M(y, x)∪

⋃
(r,s)6=(q,p): |p,q|−|r,s|=1

M0,0((p, q), (r, s), J)×M0,0((r, s), x, f, g, J)

Lemma 2.36. Let (p, q), (r, s) ∈ R be double points of ı such that p, q, r, s ∈ L are pairwise distinct and

|p, q|−|r, s| = 2. Then, for a generic choice of compatible almost complex structure J ∈ Jc(M,ω), the

moduli spaceM0,0;0,0((p, q), (r, s), f, g, J) admits a Gromov-type compactification into a 1-dimensional
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manifold with boundary M0,0;0,0((p, q), (r, s), f, g, J) such that

∂M0,0;0,0((p, q), (r, s), f, g, J) =
⋃

y: |p,q|−|y|=1

M0,0((p, q), y, f, g, J)×M0,0(y, (r, s), J)∪

⋃
(a,b)6=(q,p): |p,q|−|a,b|=1

M0,0((p, q), (a, b), J)×M0,0;0,0((a, b), (r, s), f, g, J)

⋃
(a,b)6=(q,p): |p,q|−|a,b|=1

M0,0;0,0((p, q), (a, b), f, g, J)×M0,0((a, b), (r, s), J)

⋃ {
(u1, u2) ∈M0,0((p, q), ∅, J)×M0,0(∅, (r, s), J) : l1(1) = l2(−1)

}
Lemma 2.37. Let (p, q) ∈ R be a double point of ı such that |p, q| − |q, p| = 2. Then, for a generic

choice of compatible almost complex structure J ∈ Jc(M,ω), the moduli spaceMabs
0,0;0,0((p, q), (q, p), f, g, J)

admits a Gromov-type compactification into a 1-dimensional manifold with boundaryMabs
0,0;0,0((p, q), (q, p), f, g, J)

such that

∂Mabs
0,0;0,0((p, q), (q, p), f, g, J) =

⋃
y: |p,q|−|y|=1

M0,0((p, q), y, f, g, J)×M0,0(y, (q, p), J)∪

⋃
(a,b): |p,q|−|a,b|=1

M0,0((p, q), (a, b), J)×M0,0;0,0((a, b), (q, p), f, g, J)

⋃
(a,b): |p,q|−|a,b|=1

M0,0;0,0((p, q), (a, b), f, g, J)×M0,0((a, b), (q, p), J)

⋃ {
(u1, u2) ∈M0,0((p, q), ∅, J)×M0,0(∅, (q, p), J) : l1(1) = l2(−1)

}
Lemma 2.38. Let (p, q), (r, s) ∈ R be ordered double points of ı such that p, q, r, s ∈ L are pairwise

distinct and |p, q| − |r, s| = 2. Then, for a generic choice of compatible almost complex structure

J ∈ Jc(M,ω), the moduli space M0,0((p, q), (r, s), α, J) admits a Gromov-type compactification into

a 1-dimensional manifold with boundary M0,0((p, q), (r, s), J) such that

∂M0,0((p, q), (r, s), J) =
⋃

(a,b): |p,q|−|a,b|=1

M0,0((p, q), (a, b), J)×M0,0((a, b), (r, s), J)

⋃ {
(u1, u2) ∈M0,0((p, q), ∅, J)×M0,0(∅, (r, s), J) : l1(1) = l2(−1)

}
Lemma 2.39. Let (p, q) ∈ R be a double point of ı such that |p, q| − |q, p| = 2. Then, for a generic

choice of compatible almost complex structure J ∈ Jc(M,ω), the moduli spaceM∗0,0((p, q), (q, p), J) ad-

mits a Gromov-type compactification into a 1-dimensional manifold with boundaryM∗0,0((p, q), (q, p), J)

such that

∂M∗0,0((p, q), (q, p), J) =
⋃

(a,b): |p,q|−|a,b|=1

M0,0((p, q), (a, b), J)×M0,0((a, b), (q, p), J)

⋃ {
(u1, u2) ∈M0,0((p, q), ∅, J)×M0,0(∅, (q, p), J) : l1(1) = l2(−1)

}
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2.6 The pearl complex

Recall that we have fixed an exact, compact, connected, generic and graded Lagrangian immersion

ı : L→M satisfying Assumption 2.2, a compatible almost complex structure J ∈ Jc(M,ω), a Morse

function f : L → R on L and a pseudogradient field g ∈ Γ(TL) on L such that the couple (f, g) is

Morse-Smale.

We define the graded vector space QC∗(ı; f, g, J) := Z2Crit(f)⊕Z2R, where Crit(f) is graded by

the Morse index, and R is graded as in Section 2.1. We denote C := Z2Crit(f) and R := Z2R.

Remark 2.40. In the embedded counterpart of our construction (see [BC07]), the vector space QC

is defined only using critical points of the chosen Morse function. A nice way to see that we have

to add ordered double points in the definition of the vector space is to analyze what happens to the

generator of the standard Floer complex (see [AB18]), when we let the Hamiltonian diffeomorphism

tend to the identity.

We define a map d : QC∗(ı; f, g, J) → QC∗(ı; f, g, J)[−1] by counting elements in the moduli

spaces of pearls we constructed in Section 2.2. Let x ∈ Crit(f) and γ ∈ R. We define

1. dCC : C −→ C by linearly extending

dCCx :=
∑

y∈Crit(f): |y|−|x|=1

|M(y, x)|2 · y

2. dCR : R→ C by linearly extending

dCRγ :=
∑

y∈Crit(f): |x|−|γ|=1

|M0,0(y, γ, f, g, J)|2 · y

3. dRC : C −→ R by linearly extending

dRCx :=
∑

γ′∈R: |γ′|−|x|=1

|M0,0(γ′, x, f, g, J)|2 · γ′

4. dRR : R −→ R by linearly extending

dRR1γ :=
∑

γ′∈R: |γ′|−|γ|=1

|M0,0(γ′, γ, J) tM0,0;0,0(γ′, γ, f, g, J)|2 · γ′

We then pack those four maps matrixwise as

d :=

(
dCC dCR

dRC dRR

)

We will write

dRR1(γ) :=
∑

γ′∈R: |γ′|−|γ|=1

|M∗0,0(γ′, γ, J)|2 · γ′
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and

dRR2 :=
∑

γ′∈R: |γ′|−|γ|=1

|Mabs
0,0;0,0(γ′, γ, f, g, J)|2 · γ′

so that dRR1 + dRR2 = dRR.

We have to prove that d is well defined and that d2 = 0.

Proposition 2.41. For a generic choice of the almost complex structure J ∈ Jc(M,ω), the map d is

a well-defined differential.

Proof. First of all, d is well defined by the results in Section 2.4. We have that

d2 :=

(
d2
CC + dCRdRC dCCdCR + dCRdRR1 + dCRdRR2

dRCdCC + dRR1dRC + dRR2dRC dRCdCR + d2
RR1 + dRR1dRR2 + dRR2dRR1 + d2

RR2

)

Note that dCRdRC, dCRdRR2 , d2
RR2 vanish by area reasons. For instance, if there is u ∈M0,0((p, q), x, J)

contributing to dRCx for x ∈ Crit(f), then u is non-constant by assumption and hence A (p, q) > 0,

implying that for any y ∈ Crit(f), the moduli space M0,0(y, (p, q), J) is empty so that

dCRdRCx =
∑

|y|−|x|=2

∑
|p,q|−|x|=1

|M0,0(y, (p, q), J)|2|M0,0((p, q), x, J)|2 · y = 0

The other cases are similar. Hence we remain with

d2 :=

(
d2
CC dCCdCR + dCRdRR1

dRCdCC + dRR1dRC dRCdCR + d2
RR1 + dRR1dRR2 + dRR2dRR1

)
The fact that the Morse differential squares to zero is well known. We work out the details for the

other entries. Consider (p, q) ∈ R, then

dCCdCR + dCRdRR1(p, q) =
∑

|x|−|p,q|=2

|∂M0,0(x, (p, q), f, g, J)|2 · x = 0

by classification of 1-dimensional manifolds with boundary (see for instance [AD14]). Similarly, for

x ∈ Crit(f) we have

dRCdCC + dRR1dRCx =
∑

|p,q|−|x|=2

|∂M0,0((p, q), x, f, g, J)|2 · x = 0

and

dRCdCR + d2
RR1+dRR1dRR2 + dRR2dRR1(p, q) =∑

|r,s|−|p,q|=2

(
|∂M0,0;0,0((r, s), (p, q), f, g, J)|2 + |∂M0,0((r, s), (p, q))|2

)
· (r, s) = 0

concluding the proof.

We will call the complex (QC∗(ı; f, g, J), d) the pearl complex of ı defined via the parameters f, g

and J .
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2.7 Invariance from parameters

In this section we will prove the following proposition via a geometric argument.

Proposition 2.42. Two generic choices of parameters (f0, g0, J0) and (f1, g1, J1) define quasi-isomorphic

pearl complexes.

The situation that arises in the proof of Proposition 2.42 is very similar to the one one encoun-

ters when showing independence of Morse homology from the chosen Morse-Smale pair. The main

differences are two: we have to take care of the almost complex structures, and the fact that the map

relating two complexes is a chain map is a little more subtle to prove, as the configurations may break

at double points.

We want to build a chain map

ψ : QC∗(ı; f1, g1, J1) −→ QC∗(ı; f0, g0, J0)

Which we express matrixwise as

ψ :=

(
ψC0C1 ψC0R

ψRC1 ψRR

)
We will start from the ideas behind the construction in Morse theory, that is, the definition of

ψC0C1 : Crit(f1) → Crit(f0). Recall that in the case of Morse cohomology, it sufficies to show that

it is isomorphic to singular cohomology in order to show independence from the chosen Morse-Smale

pair; however, there is not much geometry behind that construction.

Pick a smooth function F : M × [0, 1]→ R, (x, s) 7−→ Fs(x) such that Fs = f0 on [0, ε] and Fs = f1

on [1− ε, 1] for some ε > 0. Extend F to M × (−ε, 1 + ε) by asking to be f0 respectively f1 near the

on (−ε, 0) and (1, 1 + ε).

Pick a Morse function h : (−ε, 1 + ε) → R which has a maximum at 0, a minimum at 1 and no

other critical points. Assume further that h is increasing on (−ε, 0) and (1, 1 + ε) and sufficiently

decreasing on (0, 1) such that for any s ∈ (0, 1):

∂F

∂s
+ h′ < 0

Note that
∂F

∂s
(s) + h′(s) = 0

for s = 0 and s = 1. It follows that F̃ := F + (0, h) : M × (−ε, 1 + ε)→ R has critical points

Crit(F̃ ) = Crit(f0)× {0} ∪ Crit(f1)× {1}

and is hence a Morse function.

Via a partition of unit argument, one constructs a pseudogradient field g̃ ∈ Γ(L × [0, 1]) on

M × (−ε, 1 + ε) such that it is g0−∇h on M × (−ε, ε) and g1−∇h on M × (1− ε, 1 + ε). We perturb

g̃ such that (F̃ , g̃) is Morse-Smale and the perturbation is small enough in C1-sense (for details, see
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[AD14, Proposition 3.4.3]). We call such a pair a Morse cobordism between the Morse-Smale pairs

(f0, g0) and (f1, g1). Then, as 0 is a maximum of g and 1 is a minimum, i.e. they have respectively 1

and 0 as Morse indexes, it follows that

Critk(F̃ ) = Critk−1(f0)× {0} ∪ Critk(f1)× {1}

for any k ≥ 0. Then, the Morse complex (over M× [0, 1]) of the Morse-Smale pair (F̃ , g̃) is then given

by

CMk(F̃ , g̃) := Critk−1(f0)⊕ Critk(f1)

for any k ≥ 0 with differential dF̃ written in matrix form as

dF̃ :=

(
df0 ψC0C1

0 df1

)

where ψC0C1 : CM∗(f1) → CM∗(f0) counts trajectories of g̃ in M × [0, 1] connecting critical points

of f0 (seen in Crit(f0) × {0}) to critical points of f1 (seen in Crit(f1) × {1}), that is, elements of

M((x, 0), (y, 1)) for x ∈ Crit(f0) and y ∈ Crit(f1) when |x| − |y| = 0.

We define the other entries of ψ by also considering some configurations in the cobordism M×[0, 1].

We define the following moduli spaces for x ∈ Crit(f0), y ∈ Crit(f1) and (p, q), (r, s) ∈ R:

1. M0,0((x, 0), (p, q), F̃ , g̃, J1) := {u ∈ M0,0(∅, (p, q), J1) : l(−1) ∈ W s
F̃

(x, 0)} whose virtual di-

mension is |x| − |p, q|;

2. M0,0((r, s), (y, 1), F̃ , g̃, J0) := {u ∈M0,0((r, s), ∅, J0) : l(+1) ∈W u
F̃

(y, 1)} whose virtual dimen-

sion is |r, s| − |y|;

3. M0,0((r, s), (p, q), F̃ , g̃, J0, J1) := {(u1, u2, t) ∈ M0,0((r, s), ∅, J0) × M0,0(∅, (p, q), J1) × R>0 :

ϕt
F̃

(l1(1)) = l2(−1)} whose virtual dimension is |r, s| − |p, q|.

We prove that the virtual dimension ofM0,0((x, 0), (p, q)), F̃ , g̃, J1) is indeed |x| − |p, q|. First, notice

that dim(W u
F̃

(x, 0)) = |x|+ 1, as 0 is a maximum of h, and W u
F̃

(x, 0)−L×{0} ⊂ L×{1}. Define the

evaluation map

ev(p,q) :M0,0(∅, (p, q), J1)× (0, 1] −→ L× [0, 1], u 7−→ (l(−1), t)

then

dim(M0,0((x, 0), (p, q)), F̃ , g̃, J1)) = dim(ev(p,q))−1(W u(x, 0)) =

n− |p, q| − 1 + 1− (n+ 1− |x| − 1) = |x| − |p, q|

The computations of the remaining virtual dimensions follows very similarly.

We are now ready to construct the map Ψ := ΨF̃ ,g̃ : QC∗(ı; f1, g1, J1) −→ QC∗(ı; f0, g0, J0). Let

x ∈ Crit(f1) and γ ∈ R. We define:
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1. ψC0C1 : Crit(f1) −→ Crit(f0) as above, that is, by linearly extending

ψC0C1x :=
∑

y∈Crit(f0): |y|=|x|

|M((y, 0), (x, 1))|2 · y

2. ΨC0R : R −→ Crit(f0) by linearly extending

ψC0Rγ :=
∑

y∈Crit(f0): |p,q|=|y|

|M0,0((y, 0), γ, F̃ , g̃, J1)|2 · x

3. ΨRC1 : Crit(f1)→ R by linearly extending

ΨRC1x :=
∑

γ′∈R: |γ′|=|x|

|M0,0(γ′, (x, 1), F̃ , g̃, J0)|2 · γ′

4. ψRR1 : R→ R as the identity map on R;

5. ψRR2 : R→ R by linearly extending

ΨRR2γ :=
∑

γ′∈R: |γ′|=|γ|

|M0,0(γ′, γ, F̃ , g̃, J0, J1)|2 · γ′

6. ψRR := ψRR1 + ψRR2 .

The fact that ΨC0C1 is well-defined follows from the fact that (F̃ , g̃) is Morse-Smale, while to show

that the remaining three entries are well defined one can proceed as in Section 2.3 and Section 2.4 to

show that the moduli spaces above are generically either empty or finite dimensional smooth manifolds

whose dimension agrees with virtual dimension, whenever the latter is smaller or equal to 1, and are

compact when it is 0.

We compute (df0 ◦ ψ + ψ ◦ df1)(x, γ) as(
dC0C0 dC0R

dRC0 dRR

)(
ψC0C1 ψC0R

ψRC1 ψRR

)(
x

γ

)
+

(
ψC0C1 ψC0R

ψRC1 ψRR

)(
dC1C1 dC1R

dRC1 dRR

)(
x

γ

)
=

=

(
dC0C0ψC0C1 + ψC0C1dC0C0 dC0C0ψC0R + ψC0C1dC1R

dRC0ψC0C1 + dRR1ψRC1 + ψRC1dC1C1 dRC0ψC0R + dRR1ψRR2 + ψRC1dC1R + ψRR2dRR1

)(
x

γ

)

By Gromov-compactifying the relevant moduli spaces in dimension 1, similarly to what we did in

Section 2.5, we directly get that Ψ is a chain map. When looking at the Gromov-compactifications,

one has to notice that Morse flowlines of F̃ can not break in L × (0, 1) by definition of F̃ and that

Morse flowlines of F̃ joining critical points of the form (x, i), (y, i) lie on L× {i} as F̃ equals fi near

L× {i}.

Remark 2.43. In the above computation we silently canceled out various terms: a lot of terms got

canceled because of area reasons, exactly as in the proof of d2 = 0, while the other because the identity

ψRR1 (of course) commutes with the other maps.

PB
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Figure 2.10: A sketch of the relevant configurations for the definition of ψ.

It remains to show that ψ = ψF̃ ,g̃ is a chain isomorphism. First of all, we show that if f0 = f1,

g0 = g1 J0 = J1, F̃ = (0, h) and g̃ is constantly g0 − ∇h = g1 − ∇h, then ψ is the identity map.

This is rather easy since if |x| = |y| for two critical points x, y ∈ Crit(f), then M(x, y) is a single

point (the constant flowline at x) if x = y and is empty if x 6= y, while on the other hand in this

case ψRR = ψRR1 = id as a configuration contributing to ψRR2 induces (by projecting on L) a

configuration in a moduli space of negative dimension.

Now, it remains to show two things: first, that concatenation of two Morse-Smale pairs on L×[0, 1]

induce a map ψ which is chain homotopic to the composition of the ψ’s induces by the two Morse-

Smale pairs separately; second, that two Morse-Smale pairs on L× [0, 1] interpolating the same two

Morse-Smale pairs on L induce chain homotopic ψ’s (this is all quite standard, one finds proofs

for Morse theory and Hamiltonian Floer homology in [Amb20; AD14] and for Lagrangian quantum

homology for embedded Lagrangians in [BC07]). maybe add something.. This proves Proposition

2.42.

We are now ready to define the main object of this thesis.

Definition 2.44. Consider a Morse-Smale pair (f, g) ∈ C∞(L) × Γ(TL) on the manifold L and

a compatible almost complex structure J ∈ Jc(M,ω) on M such that any object we have studied

until now is regular. Then we define the Lagrangian quantum cohomology QH∗(ı) associated to the

immersion ı with coefficients in Z2 as the homology of the complex (QC∗(ı; f, g, J), d).
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2.8 Lagrangian quantum cohomology is Floer cohomology

In this section, we exhibit an equivalence between the pearly definiton of Floer homology and the

more standard one using Hamiltonian perturbations. This equivalence is based on a so called “PSS”

construction, which was originally introduced by Piunikhin-Salamon-Schwarz [PSS96] in the context

of quantum homology. We will follow [AB19], while adding the relevant configurations they do not

consider in their paper, but first we quickly introduce Floer homology via Hamiltonian perturbations

for Lagrangian immersions following [AB18].

The basic setup is the same which we described at the beginning of this chapter. We fix a

compatible almost complex structure JM ∈ Jc(M,ω) and a smooth time-dependent compatible almost

complex structure J : [0, 1] → Jc(M,ω) which is equal to JM in an open neighbourhood of the

boundary ∂M . Consider a Hamiltonian H : M × [0, 1]→ R which vanishes in an open neighbourhood

of the boundary ∂M : we call H an admissible Hamiltonian if ϕH1 (ı(L))∪ (ϕH1 )−1(ı(L) is disjoint from

ı(R) and ϕH1 (ı(L)) is transverse to ı(L). We define ΓH as the set of Hamiltonian orbits ϕ : [0, 1]→M

of H such that γ(0), γ(1) ∈ ı(L). We will call (H,J) as above an admissible couple.

Definition 2.45. While the second hypotesis in the definition of admissible Hamiltonian is very

standard (and necessary) in any flavour of Floer theory, as it implies that ΓH is a finite set, the first

hypothesis ensures that Hamiltonian orbits of H do not start and stop at double points of ı, making

our life easier as thing will look much more “embedded”.

We index Hamiltonian orbits in a very similar way to double points. Consider γ ∈ ΓH and the

Lagrangian subspaces Dı[Tı−1(γ(1)L] and D(ϕH1 ◦ ı)[Tı−1(γ(0))L] of TM . Then we define the index of

γ as

|γ| := n+ θL(ı−1(γ(0))− θL(ı−1(γ(1))− 2
n∑
i=1

βi

where β1, ..., βn ∈ (0, 1
2) are the Kähler angles between Dı[Tı−1(γ(1)L] and D(ϕH1 ◦ ı)[Tı−1(γ(0))L].

As always in Floer theory, this is the moment to define the objects we will be counting to define the

cohomology.

Definition 2.46. Fix an admissible couple (H,J), two orbits γ,γ+ ∈ ΓH , an integer k ∈ Z≥0 and

a map α : {1, ..., k} → R indexing double points of ı. An α-marked Floer strip with boundary and

corners on ı joining γ− to γ+ is a tuple u = (u,∆, α, l) where:

1. u : R×[0, 1]→M is a continous map which is smooth on R×(0, 1), satisfies u(R×{0, 1}) ⊂ ı(L)

and

lim
s→±∞

u(s, t) = γ±(t)

uniformly with all derivatives;

2. on R× (0, 1) u solves the so-called Floer equation

∂su+ Jt(u)∂tu+ gradgtHt(u) = 0 (2.1)
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where gt is the time-dependent Riemannian metric induced by ω and J and grad is the usual

Riemannian gradient;

3. ∆ := {z1, ..., zn} ⊂ R× {0, 1} is an ordered subset of R× {0, 1};

4. l : R× {0, 1} −∆→ L is a countinous map lifting u to L, that is

ı ◦ l = u

on R× {0, 1} −∆ and such that for any i ∈ {1, ..., k} we have(
lim
z→z−i

l(z), lim
z→z+i

l(z)
)

= α(i)

that is, u has ougoing branch jumps of type α(i) at zi;

5. The energy E(u) :=
∫
R×[0,1]−∆ |∂su|

2 dsdt is finite.

We write the moduli space of parametrized α-marked Floer strip with boundary and corners on ı

joining γ− to γ+ as M̃k(γ−, γ+, α,H, J) and the moduli space of unparametrized ones as the orbit

space

Mk(γ−, γ+, α,H, J) :=
M̃k(γ−, γ+, α,H, J)

R
where the R-action is given by horizontal translation. Moreover, if γ− = γ+ we defineM0(γ−, γ, α,H, J)

to be empty if α = ∅; note that in this case if α 6= ∅, the moduli space does not contain any constant

strips, as H is admissible. If α = ∅ we often omit it from the notation.

Remark 2.47. The Floer equation 2.1 describes the solutions to the negative gradient of the so called

action functional, which is defined for γ : [0, 1]→M such that γ(0), γ(1) ∈ L as

AH(γ) := hL(γ(1))− hL(γ(0))−
∫ 1

0
(γ∗λ+Ht(γ(t))) dt

which has ΓH as set of critical points. In practice, Floer theory via Hamiltonian perturbation is an

analogue of Morse theory in an infinite dimensional setting. Whereas people believed that there was

no link between topological informations on M and L and the analysis of critical points of the action

functional, it was Floer’s breaktrough to use the ideas of Gromov to build one. Notice that the action

functional as we defined is well-defined as we are working in an exact symplectic manifold: when

working in other settings one has to be careful on how to define it (e.g. via covering spaces [Poz94]

or via a fixed choice of capping for orbits [BC07]).

It turns out that for orbits γ,γ+ ∈ ΓH and α : {1, ..., k} → R indexing double points of ı,Mk(γ−, γ+, α,H, J)

has virtual dimension

virdim(Mk(γ−, γ+, α,H, J)) = |γ−| − |γ+| −
k∑
i=1

|α(i)|+ k − 1
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(note that we are working with two different kinds of indexes). This can be seen by calculating the

Maslov index of the bundle pair (see [Oh15]) (u∗TM, l∗TL) when extended to R× [0, 1]∪{−1,+1}×
[0, 1]. This works similarly to the embedded case, with the only difference that one has to choose a

counterclockwise path from Dı(p)[TpL] to Dı(q)[TqL] for any (p, q) = α(i).

At this point, one usually goes on proving transversality and compactness properties of the relevant

moduli space. First, we have the following:

Proposition 2.48 ([AB18]). Let γ−, γ+ ∈ ΓH be Hamiltonian orbits of H and α : {1, ..., k} → R be a

map indexing k double points of ı. Then, for a generic choice of admissible couple (H,J) the moduli

space Mk(γ−, γ+, α,H, J) is a smooth finite dimensional manifold whose dimension agrees with its

virtual dimension.

An admissible couple (H,J) from the statement of 2.48 is said to be regular.

This kind of statement is pretty standard nowadays, and (after some years of troubles) is very well-

known in the case of embedded Lagrangians. The only remarkable difference between the transverse

immersed case and the embedded one is that one has to provide some new arguments to show that

the solutions of the Floer equation decay fast eneough near branch jumps (this is done in [AB18,

Appendix A]), while to model the moduli space on some Sobel space one needs to prove the existence

of a metric which is totally geodesic on ı(L). We will not dive into the details here not to bring more

hard machinery into the game; anyway, to have a grasp of what is going on here, one can find a very

quick summary of how transversality works in the case of Floer cylinders (or double strips) used to

construct Floer cohomology for ambient Hamiltonian diffeomorphisms in [Amb20], which summarizes

the lenghty and detailed theory contained in [AD14].

We now define the Floer complex for a regular couple (H,J) as

CF ∗(ı;H,J) := Z2ΓH

with the index for orbits we defined at the beginning of this section, with differential

d : CF ∗(ı;H,J) −→ CF ∗(ı;H,J)[−1], γ+ 7−→
∑

γ−∈ΓH : |γ−|−|γ+|=1

|M0(γ−, γ+, H, J)|2 · γ−

As usual, one has now to prove some statements about compactness of the moduli spacesM0(γ−, γ+, H, J)

in dimensions 0 and 1 to really conclude that (CF ∗(ı;H,J), d) is a well-defined chain complex. It

is proved in [AB18] that such moduli spaces are generically compact when the dimension is 0, while

they can be compactified by only adding broken strips when the dimension is 1. Again, as in the case

of pseudoholomorphic disks, the keys to the proofs is that we are working in an exact environment

where neither sphere nor disk bubbling may happen and that the index of a strips drops by 3 by

Assumption 2.2 when a teardrop (or a tree of them) bubbles out, see Lemma 6.1 and Lemma 6.2 in

[AB18] for details.
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To define a nice cohomology, one then checks that couples of regular couples of parameters induce

chain isomorphic chain complexes (see [AD14] for the case with Hamiltonian diffeomorphisms, [Oh93]

for the embedded Lagrangian case and [AB18] for the immersed Lagrangian case). This is based on a

standard argument with the so-called continuation data, i.e. homotopies between the different choices

of parameters and the proof of the immersed case does not differ much from the embedded case at

its core, also being quite similar to what we did for pearly homology. The idea is roughly as follows:

using the chosen homotopies between regular datas we build a map counting Floer strips whose Floer

equation also depends on the parameter s of R × [0, 1], which is the identity if we pick the trivial

homotopy between the same couple of regular data; via transversality and compactness argument one

shows that such a map is a chain map. Then one shows that the map induced by concatenation of

homotopies is chain homotopic to the composition of the two maps induced by the two homotopies

separately, still analyzing transversality and compactness of certain moduli spaces of solutions to a

“higher” Floer equation (for a compact treatment with light analysis of the proof of invariance of

Floer homology for Hamiltonian diffeomorphisms see Section 3.4 in [Amb20]). It goes without saying

that, in our case, Assumption 2.2 still plays a central role in exluding configurations with teardrops

attached.

The next definition makes now finally sense.

Definition 2.49. We define the Lagrangian Floer cohomology HF ∗(ı) of the immersion ı as the

homology of the complex CF ∗(ı;H,J) for a regular choice of parameters (H,J).

One can show that HF ∗(ı) is invariant under Hamiltonian diffeomorphisms and, more generally, from

exact deformations of ı.

For simplicity from now on we will appeal to the arguments contained in [FHS94] and consider

regular couples (H,J) such that J ∈ Jc(M,ω), that is, the almost complex structure is chosen to be

autonomous.

Remark 2.50. The question about time-dependence of the parameters (H,J) one has to request in

order to achieve transversality of moduli space of Floer strips has been a subject of discussion in the

years of developments of Floer theory, and the author (of course) is not aware of all the details.

The point about time-dependence (or, said differently, domain-dependence) of the almost complex

structure is that there may be pieces of (quasi-)pseudoholomorphic curves with different covering

multiplicity in different regions of the curve (we have seen that in Proposition 1.4 and Proposition

1.7 for pseudoholomorphic disks), and, as different points of the surface are in particular mapped to

the same point of the symplectic manifold, one (at least a priori) hence needs extra parameters in

order to perturb the almost complex structure correctly to achieve transversality. Quite surprisingly

(at least to the author), it seems like that the results contained in [Per19] (in particular Corollary 2.8)

imply that one can do Floer homology of transversely intersecting embedded and immersed Lagrangians

by considering a generic choice of trivial (in particular autonomous) Hamiltonian and autonomous

almost complex structure in dimension bigger than 3.
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In the remaining of this section we will prove the following proposition.

Proposition 2.51. Consider a regular tuple (f, g, J) in the sense of Proposition 2.41 and a regular

couple (H,J ′) in the sense of Proposition 2.48 such that Crit(f) ∩ Crit(H) = ∅. Then the complexes

QC∗(ı; f, g, J) and CF ∗(ı;H,J ′) are chain isomorphic via a chain isomorphism which is unique up

to chain homotopy.

No surprise here: Proposition 2.51 will be proved by analyzing transversality and compactness of

moduli space of certain configurations.

Consider an smooth homotopy (H,J) connecting (0, J) to (H,J ′), that is smoooth maps H : R →
C∞(M × [0, 1]) and J : R→ Jc(M,ω) such that there is R > 0 such that

J(s) =

J, for s ≤ −R

J ′, for s ≥ R
and H(s) =

0, for s ≤ −R

H, for s ≥ R

We define the moduli space we are going to use. Consider an orbit γ ∈ ΓH , an ordered double point

(p, q) ∈ R, a critical point x ∈ Crit(f) and a map α : {1, ..., k} → R indexing double points. We

define the moduli space Mk(i, j, α,H,J) of α-marked Floer strips connecting i ∈ {γ, (p, q), x} to

j ∈ {γ, (p, q), x} with i 6= j (in the sense that if i = x, strips connect an element in W u(x) with

j, while if j = x, strips connect i with an element in W s(x), much like in Section 2.2). We also

allow i = ∅ or j = ∅ (but not both at the same time) by requiring that α-marked strips in such

moduli spaces have removable singularities in −∞ and +∞ respectively. Notice that this time the

Floer equation depends on the parameter s and that we again for simplicity omitted a priori the

possibility of incoming branch jumps indexed by α. At this point, it is not hard to show that the

virtual dimension of Mk(i, j, α,H,J) for i, j 6= ∅ is

virdim(Mk(i, j, α,H,J)) = |i| − |j| −
k∑
i=1

|α(i)|+ k

Notice that we have no −1 summand as we have not quotiented here by the action of the real numbers

on strips.

Similarly to what we did Section 2.2 and Section 2.42 we need another type of configurations for

index maps α1 : {1, ..., k1} → R and α2 : {1, ..., k2} → R: we define

Mp
k1;k2

((p, q), γ, α1, α2, f, g,H,J) :=
{

(u, v, t) ∈M0,k1((p, q), ∅, α1, J)×Mk2(∅, γ, α2,H,J)× R>0 :

ϕft (u(1)) = lim
s→−∞

v(s, t)
}

and viceversa

Mp
k1;k2

(γ, (p, q), α1, α2, f, g,H,J) :=
{

(v, u, t) ∈Mk2(∅, γ, α2,H,J)×M0,k1((p, q), ∅, α1, J)× R>0 :

lim
s→+∞

v(s, t) = ϕf−t(u(−1))
}

We write again QC∗(ı; f, g, J) = C⊕R and define the following maps:

PB

PB
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1. ψCΓ : CF ∗(ı;H,J ′)→ C by linearly extending

ψCΓ(γ) :=
∑

x∈Crit(f): |x|=|γ|

|M0(x, γ,H,J)|2 · x

2. ψRΓ1 : CF ∗(ı;H,J ′)→ R by linearly extending

ψRΓ(γ) :=
∑

(p,q)∈R: |p,q|=|γ|

|M0((p, q), γ,H,J)|2 · x

3. ψRΓ2 : CF ∗(ı;H,J ′)→ R by linearly extending

ψRΓ(γ) :=
∑

(p,q)∈R: |p,q|=|γ|

|M0;0((p, q), γ, f, g,H,J)|2 · x

4. ψRΓ := ψRΓ1 + ψRΓ2

and put all of this together in a map ψPSS : CF ∗(ı;H,J ′) −→ QC∗(ı; f, g, J) as

ψPSS :=

(
ψCΓ

ψRΓ

)

Similarly we define φPSS :=
(
φΓC φΓR

)
: QC∗(ı; f, g, J) −→ CF ∗(ı;H,J ′) by counting reverse

configurations.

To show that ψPSS and φPSS are well-defined chain maps, one has to show that, as we are now used

to, the relevant moduli spaces are generically regular in dimension 0 and 1 and have nice compactness

properties. First, notice that all the strips we are dealing with in these moduli space can not be

constant. Indeed, notice that as H 6= 0, H can not be independent from s: in particular there is

no Hamiltonian orbit which is an orbit for all H(s)’s for a generic choice of homotopy H. It goes

without saying that the analysis of compactness for the moduli spaces above in dimension 0 and 1

is a combination of the results about compactness of α-marked strips with corners and of α-marked

disks with corners: by counting dimensions it turns out that the moduli spaces above are compact in

dimension 0 (implying that psiPSS and φPSS are well defined) while one has to include configurations

with breakings of Morse flowlines, breakings at double points, breakings of Floer and degenerations

at embedded points (which however get counted twice, exactly as in Section 2.6 and Section 2.7) to

compactify those moduli spaces in dimension 1 into one dimensional manifolds with boundary. With

this in hand, to conclude that ψPSS and φPSS are chain maps one first has to show that certain terms

vanish becuase of area resons, as for instance dCRψRΓ2 , exactly as in Section 2.6 and Section 2.7. We

skip the details of step as we have already proved similar statements several times in this thesis. The

fact that ψPSS and φPSS now follows by an argument which is exactly the same as in [AB19].

PB



3 — Immersed Lagrangian quantum co-

homology: A∞ structure

In this chapter we describe a product structure for immersed Lagrangian quantum homology of generic

Lagrangian immersions as well as higher operations endowing our immersion with the structure of

an A∞-algebra. Alston and Bao described in [AB18] an A∞-structure for the immersed Lagrangian

Floer cohomology we introduced in Section 2.8, which is practically identiacal to the one presented in

detail in [Sei08], if not for some analytical details and the fact that one has to keep track of another

kind of marked points when defining associahedra and in particular one has to work with open covers

to define universal choices of strips like ends, as marked points where branch jumps happen may

overlap. The A∞ operations we introduce are highly inspired by [BC07] and heuristically inspired by

the aforementioned trick of taking the identity as Hamiltonian diffeomorphism for the definition of

Floer cohomology.

3.1 The pearly product

In this section we will prove the most of the following proposition.

Proposition 3.1. The graded vector space QH∗(ı) admits the structure of associative ring with unit.

Consider three Morse functions f, f ′, f ′′ : L −→ R in general position with the same critical

points and such that all three form a Morse-Smale pair with the same pseudogradient field g. Denote

C := Z2Crit(f), C’ := Z2Crit(f ′) and C” := Z2Crit(f ′′). At the chain level, the product will be a

linear map ∗ : (C⊕R)⊗ (C’⊕R) −→ C”⊕R. Note that there is an unique isomorphism

(C⊕R)⊗ (C’⊕R) −→ (C⊗C’)⊕ (C⊗R)⊕ (R⊗C’)⊕ (R⊗R)

We use it to define the product matrixwise as

∗ :=

(
ϕC”
CC’ ϕC”

CR ϕC”
RC’ ϕC”

RR

ϕR
CC’ ϕR

CR ϕR
RC’ ϕR

RR

)

We will now define moduli space of Y -pearls of type abc for a, b, c ∈ {1, 2}. We leave α-markings away

but at this point the reader can very well imagine how such markings would enter into play here.

53
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We define the first some moduli spaces. Denote by a1 := −1 ∈ D, a2 := e− iπ3 ∈ D and a3 := e
iπ
3 ∈

D. We will need disks with a priori 3 marked points. Let x ∈ Crit(f), y ∈ Crit(f ′), z ∈ Crit(f ′′)

and γ, γ′, γ′′ ∈ R. Let α : ∅ → R, we define M0(γ′′, γ, γ′, J) := M3({a1, a2, a3}, αγ,γ
′

γ′′ , J) and

M0(∅, γ, γ′, J) := {u ∈M2({a2, a3}, αγ,γ
′
, J) : l(a1) ∈ L} and so on.

We define moduli spaces of Y -shaped configurations of of type 111 as

1. M111
0 (z, x, y) := W u(z) ∩W s(x) ∩W s(y)

2. M111
0 (z, x, γ′, J) := {(u, t) ∈M0(∅, γ′, J)× R>0 : ϕ−t(u(−1)) ∈W u(z) ∩W s(x)}

3. M111
0 (z, γ, y, J) := {(u, t) ∈M0(∅, γ, J)× R>0 : ϕ−t(u(−1)) ∈W u(z) ∩W s(y)}

4. M111
0 (z, γ, γ′, J) := {(u1, u2, t1, t2) ∈ M0(∅, γ, J) × M0(∅, γ′, J) × R2

>0 : ϕ−t1(u1(−1)) =

ϕ−t2(u2(−1)) ∈W u(z)}

5. M111
0 (γ′′, x, y, J) := {(u, t) ∈M0(γ′′, ∅, J)× R>0 : ϕt(u(1)) ∈W s(x) ∩W s(y)}

6. M111
0 (γ′′, x, γ′, J) := {(u1, u2, t1, t2) ∈M0(γ′′, ∅, J)×M0(∅, γ)×R2

>0 : ϕt1(u1(1)) = ϕ−t2(u2(−1)) ∈
W s(x)}

7. M111
0 (γ′′, γ, y, J) := {(u1, u2, t1, t2) ∈M0(γ′′, ∅, J)×M0(∅, γ, J)×R2

>0 : ϕt1(u1(1)) = ϕ−t2(u2(−1)) ∈
W s(y)}

8. M111
0 (γ′′, γ, γ′, J) := {(u1, u2, u3, t1, t2, t3) ∈ M0(γ′′, ∅, J) ×M0(∅, γ, J) ×M0(∅, γ′, J) × R3

>0 :

ϕt1(u1(1)) = ϕ−t2(u2(−1)) = ϕ−t3(u3(−1))}

we define moduli spaces of Y -shaped configurations of type 112 as

1. M112
0 (z, x, y) := ∅

2. M112
0 (z, x, γ′, J) := {(v, t) ∈M0(∅, ∅, γ′, J) : v(a1) ∈W u(z), v(a2) ∈W s(x)}

3. M112
0 (z, γ, y, J) := ∅

4. M112
0 (z, γ, γ′, J) := {(v, u, t) ∈M0(∅, ∅, γ′, J)×M0(∅, γ, J)×R>0 : v(a1) ∈W u(z), ϕt(v(a2)) =

u(−1)}

5. M112
0 (γ′′, x, y, J) := ∅

6. M112
0 (γ′′, x, γ′, J) := {(u, v, t) ∈ M0(γ′′, ∅, J)×M0(∅, ∅, γ′)× R>0 : ϕt(u(1)) = v(a1), v(a2) ∈

W s(x)}

7. M112
0 (γ′′, γ, y, J) := ∅

8. M112
0 (γ′′, γ, γ′, J) := {(u1, v, u2, t1, t2) ∈ M0(γ′′, ∅, J) ×M0(∅, ∅, γ′, J) ×M0(∅, γ, J) × R2

>0 :

ϕt1(u1(1)) = v(a1), ϕ−t2(u2(−1)) = v(a2)}

we define moduli spaces of Y -shaped configurations of type 121 as
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Figure 3.1: Sketch of Y -configurations of type 111.

1. M121
0 (z, x, y) := ∅

2. M121
0 (z, x, γ′, J) := ∅

3. M121
0 (z, γ, y, J) := {(v, t) ∈M0(∅, γ, ∅, J) : v(a1) ∈W u(z), v(a3) ∈W s(y)}

4. M121
0 (z, γ, γ′, J) := {(v, u, t) ∈M0(∅, γ, ∅, J)×M0(∅, γ′, J)×R>0 : v(a1) ∈W u(z), ϕt(v(a3)) =

u(−1)}

5. M121
0 (γ′′, x, y, J) := ∅

6. M121
0 (γ′′, x, γ′, J) := ∅

7. M121
0 (γ′′, γ, y, J) := {(u, v, t) ∈M0(γ′′, ∅, J)×M0(∅, γ, ∅, J)×R>0 : ϕt(u(1)) = v(a1), v(a3) ∈

W s(y)}

8. M121
0 (γ′′, γ, γ′, J) := {(u1, v, u3, t1, t3) ∈ M0(γ′′, ∅, J) ×M0(∅, γ, ∅, J) ×M0(∅, γ′, J) × R2

>0 :

ϕt1(u1(1)) = v(a1), ϕ−t3(u3(−1)) = v(a3)}

we define moduli spaces of Y -shaped configurations of type 211 as

1. M211
0 (z, x, y) := ∅
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Figure 3.2: Sketch of Y -configurations of type 112.

2. M211
0 (z, x, γ′, J) := ∅

3. M211
0 (z, γ, y, J) := ∅

4. M211
0 (z, γ, γ′, J) := ∅

5. M211
0 (γ′′, x, y, J) := {(v, t) ∈M0(γ′′, ∅, ∅, J) : v(a2) ∈W s(x), v(a3) ∈W s(y)}

6. M211
0 (γ′′, x, γ′, J) := {(v, u, t) ∈M0(′, ∅, ∅, J)×M0(∅, γ′, J)×R>0 : v(a2) ∈W s(x), ϕt(v(a3)) =

u(−1)}

7. M211
0 (γ′′, γ, y, J) := {(v, u, t) ∈M0(γ′′, ∅, ∅, J)×M0(∅, γ, J)×R>0 : ϕt(u(2)) = v(a2), v(a3) ∈

W s(y)}

8. M211
0 (γ′′, γ, γ′, J) := {(v, u2, u3, t2, t3) ∈ M0(γ′′, ∅, ∅, J) ×M0(∅, γ, , J) ×M0(∅, γ′, J) × R2

>0 :

ϕ−t2(u2(−1)) = v(a2), ϕ−t3(u3(−1)) = v(a3)}

we define moduli spaces of Y -shaped configurations of type 122 as

1. M122
0 (z, x, y) := ∅

2. M122
0 (z, x, γ′, J) := ∅
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Figure 3.3: Sketch of Y -configurations of type 121.

3. M122
0 (z, γ, y, J) := ∅

4. M122
0 (z, γ, γ′, J) := {v ∈M0(∅, γ, γ′, J) : v(a1) ∈W u(z)}

5. M122
0 (γ′′, x, y, J) := ∅

6. M122
0 (γ′′, x, γ′, J) := ∅

7. M122
0 (γ′′, γ, y, J) := ∅

8. M122
0 (γ′′, γ, γ′, J) := {(u1, v, t1) ∈M0(γ′′, ∅, J)×M0(∅, γ, γ′, J)× R>0 : ϕt1(u1(1)) = v(a1)}

we define moduli spaces of Y -shaped configurations of type 212 as

1. M212
0 (z, x, y) := ∅

2. M212
0 (z, x, γ′, J) := ∅

3. M212
0 (z, γ, y, J) := ∅

4. M212
0 (z, γ, γ′, J) := ∅

5. M212
0 (γ′′, x, y, J) := ∅
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Figure 3.4: Sketch of Y -configurations of type 211.

Figure 3.5: Sketch of Y -configurations of type 122.
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6. M212
0 (γ′′, x, γ′, J) := {v ∈M0(γ′′, ∅, γ′) : v(a2) ∈W s(x)}

7. M212
0 (γ′′, γ, y, J) := ∅

8. M212
0 (γ′′, γ, γ′, J) := {(v, u2, t2) ∈ M0(γ′′, ∅, γ′, J) × M0(∅, γ, , J) × R>0 : ϕ−t2(u2(−1)) =

v(a2)}

Figure 3.6: Sketch of Y -configurations of type 212.

we define moduli spaces of Y -shaped configurations of type 221 as

1. M221
0 (z, x, y) := ∅

2. M221
0 (z, x, γ′, J) := ∅

3. M221
0 (z, γ, y, J) := ∅

4. M221
0 (z, γ, γ′, J) := ∅

5. M221
0 (γ′′, x, y, J) := ∅

6. M221
0 (γ′′, x, γ′, J) := ∅

7. M221
0 (γ′′, γ, y, J) := {v ∈M0(γ′′, γ, ∅, J) : v(a3) ∈W s(y)}

8. M221
0 (γ′′, γ, γ′, J) := {(v, u3, t3) ∈ M0(γ′′, γ, ∅, J) × M0(∅, γ′, , J) × R>0 : ϕ−t3(u3(−1)) =

v(a3)}

we define moduli spaces of Y -shaped configurations of type 222 as

1. M222
0 (z, x, y) := ∅



60 3.1. THE PEARLY PRODUCT

Figure 3.7: Sketch of Y -configurations of type 221.

2. M222
0 (z, x, γ′, J) := ∅

3. M222
0 (z, γ, y, J) := ∅

4. M222
0 (z, γ, γ′, J) := ∅

5. M222
0 (γ′′, x, y, J) := ∅

6. M222
0 (γ′′, x, γ′, J) := ∅

7. M222
0 (γ′′, γ, y, J) := ∅

8. M222
0 (γ′′, γ, γ′, J) :=M0(γ′′, γ, γ′, J)

Remark 3.2. The author is sorry for such an eyesore.

Remark 3.3. We can view Y -configurations with no core disk in the definition as having a constant

core disk.

Notice that as we assumed f, f ′, f ′′ to be in general position it directly follows that M111
0 (z, x, y)

is a smooth manifold of dimension |z| − |x| − |y|. More generally, it is easy to see that all the other

(non-empty) moduli spaces Mabc
0 (i, j, k, J) have virtual dimension |i| − |j| − |k|, where the type of

index depends on the nature of i, j, k respectively.

The argument for simpleness and absolute transversality of the moduli spaces above are quite

similar to the arguments we provided in Section 2.3 and we get that as long as the virtual dimension

is smaller equal than 1 and γ 6= γ′ 6= σ ◦ γ′′, where σ is the non-trivial permutation of two elements,

the moduli spaces above are finite dimensional smooth manifolds whose dimension agrees with the

virtual dimension for a generic choice (of the same) almost complex structure.
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Figure 3.8: Sketch of Y -configurations of type 222.

The delicate configurations still as in Section 2.3 may arise when there are configurations contain-

ing couples of triples of the same double point. Again, this probem is solved by the fact that such

configuration come in even classes of moduli spaces: consider for instance the eight (111, 112, 121,

211, 122, 212, 221 and 222) classes of moduli spaces connecting (q, p) to (p, q) and (p, q), then it is

easy to see that the first seven only contain simple elements, which may however be not absolutely

distinct, while the 222-class may contain 3-covered disks.

We define ∗ : QC∗(ı; f, g, J) ⊗ QC∗(ı; f ′, g, J) −→ QC∗(ı; f ′′, g, J) matrixwise by counting the

elements of the above moduli spaces in dimension 0. Consider critical points x ∈ Crit(f), y ∈ Crit(f ′)

and double points γ, γ′ ∈ R. We define

1. ϕC”
CC’ : C⊗C’→ C” by linearly extending

ϕC”
CC’(x, y) :=

∑
z∈Crit(f ′′): |z|=|x|+|y|

|M111
0 (z, x, y)|2 · z

2. ϕC”
CR : C⊗R→ C” by linearly extending

ϕC”
CR(x, γ′) :=

∑
z∈Crit(f ′′): |z|=|x|+|γ′|

∑
a,b,c

|Mabc
2 (z, x, γ′)|2 · z

3. ϕC”
RC’ : R⊗C’→ C” by linearly extending

ϕC”
RC’(γ, y) :=

∑
z∈Crit(f ′′): |z|=|γ|+|y|

∑
a,b,c

|Mabc
2 (z, γ, y)|2 · z

4. ϕC”
RR : R⊗R→ C” by linearly extending

ϕC”
RR(γ, γ′) :=

∑
z∈Crit(f ′′): |z|=|γ|+|γ′|

∑
a,b,c

|Mabc
2 (z, γ, γ′)|2 · z
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5. ϕR
CC’ : C⊗C’→ R by linearly extending

ϕR
CC’(x, y) :=

∑
γ′′∈R: |γ′′|=|x|+|y|

∑
a,b,c

|Mabc
0 (γ′′, x, y)|2 · γ′′

6. ϕR
CR : C⊗R→ R by linearly extending

ϕR
CR(x, γ′) :=

∑
γ′′∈R: |γ′′|=|x|+|γ′|

∑
a,b,c

|Mabc
2 (γ′′, x, γ′)|2 · γ′′

7. ϕR
RC’ : R⊗C’→ R by linearly extending

ϕR
RC’(γ, y) :=

∑
γ′′∈R: |γ′′|=|γ|+|y|

∑
a,b,c

|Mabc
2 (γ′′, γ, y)|2 · γ′′

8. ϕR
RR : R⊗R→ R by linearly extending

ϕR
RR(γ, γ′) :=

∑
γ′′∈R: |γ′′|=|γ|+|γ′|

∑
a,b,c

|Mabc
2 (γ′′, γ, γ′)|2 · γ′′

Again, to see that ∗ is a well-defined chain map, we have to look at compactness and compact-

ification of the moduli spaces Ma,b,c
0 (i, j, k, J). This is very similar to what we have already done

in Section 2.4 and 2.5, and we skip the details (and the headaches coming from the analysis of α-

markings). The only main difference with the compactness results which lead to the properties of the

pearly differential, is bubbling off of disks from the core disk: those configuration (which may admit

some a stable ghost disk if a couple of marked points overlap, as we defined the core disk to have three

marked points) will cancel out in the modulo 2 sum with limit configurations coming from shrinkage

of Morse flowlines, much like in the definition of the differential and of the product in [BC07]. In other

words, following the notation above, we can express bubbling at the core disk in two ways by looking

at the two values of abc ∈ {111, 112, 121, 211, 122, 212, 221, 222} we are interested in (see Figure 3.1)

At this point it remains to prove that the product we defined in this section does not depend on

choices of regular parameters (f, , f ′, f ′′, g, J) at the cohomological level. The argument which one

needs to prove this goes along the same lines of what we did in Section 2.7, while taking care of the

bubbling configurations we just described.

Alough we did not elaborate any counterexample, it is expected that the product, even at the co-

homological level, is not commutative, principally because the marked points on the core disks are

fixed, so that the it can not be reparametrized.

3.2 Unit

We will now show that immersed Lagrangian quantum cohomology admist a canonical unit with

respect to the product we defined above. What follows is very similar to the embedded case [BC07].
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Figure 3.9: An example of how two sequences of Y -shaped configurations connecting the same double
points but with different values of abc may compensate each other in the Gromov limit.

Lemma 3.4. There is a canonical element e ∈ QH0(ı) which is a unit with respect to the pearly

product defined in Section 3.1.

We will first work at the chain level. Assume that f ′′ = f and that f ′ has a unique minimum

y ∈ Crit(f ′) (these are generic assumptions). We claim that the generator (y, 0) ∈ QC(ı; f ′, g, J) is

a unit for the pearly product defined using the above data. First, we show d(y, 0) = 0. We rewrite

d(y, 0) as (
dC’C’ dC’R

dRC’ dRR

)(
y

0

)

Clearly, dC’R0 = 0 and dRR0 = 0. Consider the Morse differential dC’C’y of y: as HM0(L) ∼= Z2, and

y is the only generator in degree 0, we have ker dC’C’
∼= Z2 in degree 0, so that dC’C’y = 0. Consider

now dRC’y: it counts pearly configurations starting at double points |p, q| with index equal to 1, as

that of y vanishes. In particular, it follows that A (p, q) ≤ 0 and hence a teardrop u contributing to

the differential would have energy E(u) = A (p, q) ≤ 0, a contradiction. This proves that dRC’y = 0

and hence that y is a cycle.
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Let x ∈ Crit(f) and (p, q) ∈ R. We have

(x, γ) ∗ (y, 0) =

(
ϕC
CC’ ϕC

CR ϕC
RC’ ϕC

RR

ϕR
CC’ ϕR

CR ϕR
RC’ ϕR

RR

)
x⊗ y

0

γ ⊗ y
0


1. We claim that ϕC”

CC’(x, y) = y. This is an argument from Morse theory. Indeed, if for z ∈ Crit(f)

there is a Morse Y -configurations joining z to x and y, then |z| = |x|. In particular, the

existence of such an Y -configuration implies the existence of a Morse flowline joining z to x,

which combined with the dimension above directly implies x = z.

2. We claim that ϕCRC’(γ, y) = 0. Assume there is z ∈ Crit(f) such that there exist an Y -

configuration from z to γ and y in the case 111 or 121, then |z| − |γ| = 0. Then, as there is a

reparametrization of D fixing −1 and taking e−iπ/3 to 1, the existence of such a configuration

implies the existence of a CR-pearl joining z to γ, a contradiction to |z| = |γ|.

3. We claim that ϕRCC’(x, y) = 0. This is very similar to the case above.

4. We claim that ϕCRC’(γ, y) = γ. Note that there is no Y -configuration joining γ to γ and y of

type which is not 221, as such a configuration would have a constant teardrop, which is not

allowed. We conclude that the only configuration contributing to ϕCRC’(γ, y) = γ is a constant

disk with branch jumps which lies in the stable manifold of y (that is a configuration of type

221).

This proves that (y, 0) ∈ QC(ı; f ′, g, J) is a unit for the pearly product at the chain level. Morover,

again by simple Morse theoretic arguments, it is immediate to see that comparison morphisms ψ

from Section 2.7 send unique minima to unique minima, so that (y, 0) induces a canonical unit

e := [(y, 0)] ∈ QH(ı). This concludes the proof of Lemma 3.4.

3.3 Associativity and higher operations

3.4 An example of computation

Alston [Als13] calculated Floer cohomology of some immersed Lagrangian submanifold in an affine

symplectic submanifold of C3 using the machinery later developed in [AB19]. We mainly follow [Als13]

while adding some details. Here, we will work with a symplectic manifold which is non-compact: all

the machinery we developed in this thesis may be translated to a non-compact setting by asking that

the convexity condition take place in some compact subset K and that the holomorphic curves having

boundary on our immersion are contained in K; these are requirements that only affect the choice of

the almost complex structure.
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Definition of the immersion.

Let N ∈ Z>0 and consider the polynomial

FN := x1x2 −
N∏
i=1

(x3 − k) ∈ C[x1, x2, x3]

We consider here MN := F−1
N (0) endowed with the exact symplectic form ω and compatible complex

structure JMN
induced by the standard Kähler structure of C3. We moreover endow MN with

a nowhere vanishing holomorphic form ΩMN
∈ Ω0,2(MN ) by taking the Poincaré residue of the

meromorphic volume form 1
FN
dx1 ∧ dx2 ∧ dx3 on C3.

Consider the functionsH,G : MN → R given byH(x1, x2, x3) := 1
2(|x1|−|x2|2) andG(x+, x2, x3) :=

|x3|2 for (x1, x2, x3) ∈ MN . For any r ∈ {1, ..., N} define LN,r := (H,G)−1(0, r). We construct an

explicit immersion of S2 into MN parametrizing LN,r in cylindrical coordinates (a, eib) ∈ (−π, π)×S1:

iN,r : (−π, π)× S1 −→MN , (a, eib) 7−→ (eibξ(a), e−ibξ(a),−reia)

where ξ(a) :=
∏N
k=1

√
−reia − k.

Proposition 3.5. The map iN,r extends smoothly to a map S2 → MN,r is an exact Lagrangian

immersion with one transverse double point and LN,r as image.

Proof. One could use some result from theory of integrable system. We do the explicit computations.

To show that the symplectic form vanishes on LN,r one simply shows that H and G Poisson commute,

and this is straightforward. The fact that iN,r extends smoothly to S2 is proved is also straightforward.

iN,r is then an immersion as iN,r(qS2) = iN,r(pS2), where qS2 and pS2 are the south and north pole of

S2 respectively. Differentiating iN,r is not hard to compute that

DiN,r(p
2
S)[TpS2S

2] = spanR((v, v, 0), (iv,−iv, 0))

and

DiN,r(q
2
S)[TqS2S

2] = spanR((iv, iv, 0), (−v, v, 0))

where v :=
√

2πir
∏N
k=1(r − k). This shows that the only self-intersection is in fact transverse.

We grade iN,r by θN,r := 1
π id. Then

DiN,r(qS2)[TqS2S
2] =

(
ei
π
2 0

0 ei
π
2

)
DiN,r(pS2)[TpS2S

2]

using the calculation in the above proof once modified to have unitary bases, so that |(pS2 , qS2)| = −1

and |(qS2 , pS2)| = 3.

We introduce the fibration

π : MN −→ C, (x, y, z) 7−→ z

One sees that under this fibration the pS2-branch of LN,r is an arc lying in the lower half-plane with

endpoint r, while the qS2-branch of LN,r is an arc lying in the upper half-plane with endpoint r.
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The Floer cohomological of iN,r: vector space structure.

We now classify pseudoholomorphic disks with corners and boundary on LN,1. Consider such a disk

u = (f, g, h) : D → MN with only outgoing branched jumps, that is, of the type (pS2 , qS2). By

definition, it is smooth on the interior int(D) of the disk, so that h|int(D) : int(D)→ C is holomorphic

with boundary on π(LN,r) = {|z| = r}. By the maximum principle, h is then a map D → {|z| ≤ r},
which, by choice of iN,r (see discussion above), is holomorphic on all of D. Well-known complex

analysis (see for instance [Eis71]) tells us that, if r = 1, h is a Blaschke product, of order given by

the number of branched points of u. Then, it is not hard to see that there is θ ∈ [0, 2π) such that

f = eiθ
∏N
i=1

√
h− i and g = e−iθ

∏N
i=1

√
h− i.

For general r ∈ {1, ..., N} the main difference with the case r = 1 is that we have more degrees

of freedom, in the sense that there are some Blaschke products h1, ..., hr−1 contributing to f and

h′1, ..., h
′
r−1 contributing to g such that hjh

′
j = rh−j

jh−r . Note that only such Blaschke products appearing

in f and g determine the connected component in which u lies; in particular, in the case r = 1 the

moduli space associated to fixed α is connected.

Pick a Morse function f : S2 → R with exactly a maximum at pM := (0, 1) and a minimum at

pm := (0,−1) and a pseudogradient field g such that (f, g) is Morse-Smale. Then QC−1(iN,r; f, g, J) =

Z2(pS2 , qS2), QC0(iN,r; f, g, J) = Z2pm, QC2(iN,r; f, g, J) = Z2pM andQC3(iN,r; f, g, J) = Z2(qS2 , pS2),

while in all the other degrees j QCj(iN,r; f, g, J) is trivial. We have the following proposition on the

structure of the Lagrangian quantum cohomology of iN,r.

Proposition 3.6. If r = 1, the Floer cohomology QH(iN,r) of iN,r is trivial, while for r > 1 it is

isomorphic Z2 in degrees −1, 0, 2, 3.

Proof. Fix a regular choice of the almost complex structure J . We claim that

|M0(pm, (pS2 , qS2), J)| = |M0((qS2 , pS2), pM , J)| = 2r−1

Consider the case of M0(pm, (pS2 , qS2), J). Note that as pm is the minimum of f , we have no Morse

trajectories in our pearly trajectories.

Let u ∈ M0(∅, (pS2 , qS2), J) and write u = (f, g, rh). Then, as we have only one branch jump,

h is an automorphism of the disk fixing 1 ∈ D, so that we can reparametrize D via an element of

Aut(D, 1) ∼= R×R∗ in a way such that h is the identity map. By the discussion above, the only other

thing characterizing u is the choice of a phase eiθ ∈ S1. Hence, as in the definition of the moduli

space we quotient by Aut(D, 1,−1), we conclude that the moduli space of interesting configuration

has components diffeomorphic to the cylinder R×S1. Moreover, by the discussion above, it has 2r−1

such components. From this, it follows easily that the map ev−1 :M0(∅, (pS2 , qS2), J)→ S2 sending u

to l(−1) restrict to a diffeomorphism between each component of our moduli space and the coordinate

patch of S2 in cylindrical coordinates. From this, we can conclude that exactly one element of u for

each component of our moduli space of disks satisfies ev−∞(u) = pm, implying that the cardinality

of M0(pm, (pS2 , qS2), J) is 2r−1 concluding the proof of the claim and of the proposition.

PB

PB
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Floer cohomology of iN,r: ring structure.

We use the machinery defined in this chapter to study the product structure on QH(iN,r). Pick

another Morse function f ′ on S2 in general position with f and with the same critical points. Note

that the only products that are a priori non-trivial are

QC0(iN,r, f)⊗QCi(iN,r, f ′) −→ QCi(iN,r, f), for i ∈ {−1, 0, 2, 3}

and

QC−1(iN,r, f)⊗QC3(iN,r, f
′) −→ QC2(iN,r, f)

and the remaining with upper indices swapped. As QC0((iN,r, f) = Z2pm, the first map is just

multiplication with zero and the unit. We investigate calculate (pS2 , qS2) ∗ (qS2 , pS2). Note that as

A (pS2 , qS2) = −A (qS2 , pS2) < 0, the only interesting configurations contributing to the product are

those going from pM to (pS2 , qS2) and (qS2 , pS2) of type 122. Let u ∈M122
0 (pM , (pS2 , qS2), (qS2 , pS2), J),

then u is constant as E(u) = A (pS2 , qS2) + A (qS2 , pS2 = 0. It follows that

|M122
0 (pM , (pS2 , qS2), (qS2 , pS2), J)|2 = 1

and hence

(pS2 , qS2) ∗ (qS2 , pS2) = pM

as conjectured in [Als13]. Similarly, one shows that

(qS2 , pS2) ∗ (pS2 , qS2) = pM

as well.

Floer cohomology of iN,r: A∞-structure.

We investigate on higher operations µk on QH(iN,r). First of all, notice that the only non-trivial

operations, i.e. those involving other generators than the identity element, always involve both

(pS2 , qS2) and (qS2 , pS2) as (pS2 , qS2) has negative action, (qS2 , pS2) has index 3 which is relatively

prime to the index of pM . In particular, the only configurations contributing to µk for k ≥ 3 are those

with pm, (pS2 , qS2) and (qS2 , pS2) as exits and pM as entry. Pick another Morse function f ′′ on S2 in

general position with f and f ′ and with the same critical points as them. We claim that

µ3((q, p), pm, (p, q)) = µ3((p, q), pm, (q, p)) = pM

while

µ3(pm, (p, q), (q, p)) = µ3(pm, (q, p), (p, q)) = µ3((q, p), (p, q), pm) = µ3((p, q), (q, p), pm) = 0

We start from the first line of equalities. µ3((q, p), pm, (p, q)) counts configurations as in Figure

3.10. Note that v has to be constant constant as E(v) = A (pS2 , qS2) + A (qS2 , pS2) = 0, so that

the first claim follows directly. The case of µ3((p, q), pm, (q, p)) is identical. On the other hand,

µ3((p, q), (q, p), pm) counts both configurations as in Figure 3.11 and 3.12, where again the disks in

question are constant, so that the claim also follows directly. The remaining three cases are identical

to the last one.
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Figure 3.10: The only configuration contributing to µ3((q, p), pm, (p, q)).

Figure 3.11: A configuration contribut-
ing to µ3((p, q), (q, p), pm).

Figure 3.12: Another configuration con-
tributing to µ3((p, q), (q, p), pm).



Bibliography

[AB18] Garrett Alston and Erkao Bao. “Exact, graded, immersed Lagrangians and Floer theory”.

In: Journal of Symplectic Geometry 16.2 (2018), pp. 357–438.

[AB19] Garrett Alston and Erkao Bao. Immersed Lagrangian Floer cohomology via pearly trajec-

tories. July 2019. url: http://arxiv.org/abs/1907.03072.

[AD14] Michèle Audin and Mihai Damian. Morse Theory and Floer Homology. Universitext. Lon-

don: Springer London, 2014. isbn: 978-1-4471-5495-2. doi: 10.1007/978-1-4471-5496-9.

url: http://link.springer.com/10.1007/978-1-4471-5496-9.

[AJ10] Manabu Akaho and Dominic Joyce. “Immersed Lagrangian Floer theory”. In: Journal of

Differential Geometry 86 (2010), pp. 381–500.

[Als13] Garrett Alston. Floer cohomology of immersed Lagrangian spheres in smoothings of $A N$
surfaces. Nov. 2013. url: http://arxiv.org/abs/1311.2327.

[Amb19] Giovanni Ambrosioni. Lerman’s construction. Tech. rep. 2019.

[Amb20] Giovanni Ambrosioni. A quick journey from Morse theory to Lagrangian quantum homol-

ogy. Tech. rep. 2020.

[BC07] Paul Biran and Octav Cornea. Quantum Structures for Lagrangian Submanifolds. Aug.

2007. url: http://arxiv.org/abs/0708.4221.

[BC08] Paul Biran and Octav Cornea. “Rigidity and uniruling for Lagrangian submanifolds”. In:

Geometry & Topology 13 (2008), pp. 2881–2989. doi: 10.2140/gt.2009.13.2881. url:

http://arxiv.org/abs/0808.2440.

[BC09] Paul Biran and Octav Cornea. “Lagrangian Quantum Homology”. In: New perspectives

and challenges in symplectic field theory 29 (2009), pp. 1–44. url: http://arxiv.org/

abs/0808.3989.

[Can08] Ana Cannas da Silva. Lectures on Symplectic Geometry. Vol. 1764. Lecture Notes in Math-

ematics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. isbn: 978-3-540-42195-5.

doi: 10.1007/978-3-540-45330-7. url: http://link.springer.com/10.1007/978-

3-540-45330-7.

[Eis71] Donald A Eisenman. “Proper Holomorphic Self-Maps of the Unit Ball”. In: Math. Ann.

190 (1971), pp. 298–305.

69

http://arxiv.org/abs/1907.03072
https://doi.org/10.1007/978-1-4471-5496-9
http://link.springer.com/10.1007/978-1-4471-5496-9
http://arxiv.org/abs/1311.2327
http://arxiv.org/abs/0708.4221
https://doi.org/10.2140/gt.2009.13.2881
http://arxiv.org/abs/0808.2440
http://arxiv.org/abs/0808.3989
http://arxiv.org/abs/0808.3989
https://doi.org/10.1007/978-3-540-45330-7
http://link.springer.com/10.1007/978-3-540-45330-7
http://link.springer.com/10.1007/978-3-540-45330-7


70 BIBLIOGRAPHY

[FHS94] Andreas Floer, Helmut Hofer, and Dietmar Salamon. “Transversality in elliptic Morse

theory for the symplectic action”. In: Duke Mathematical Journal 80.1 (1994).

[Flo87] Andreas Floer. “Morse theory for fixed points of symplectic diffeomorphisms”. In: Bulletin

of the American Mathematical Society 16.2 (1987).

[Flo88] Andreas Floer. “Morse theory for Lagrangian intertcections”. In: Journal of Differential

Geometry 28.3 (1988), pp. 513–547.

[Flo89] Andreas Floer. “Symplectic Fixed Points and Holomorphic Spheres”. In: Commun. Math.

Phys 120 (1989), pp. 575–611.

[Fra08] Urs Frauenfelder. “Gromov convergence of pseudoholomorphic disks”. In: Journal of Fixed

Point Theory and Applications 3.2 (Sept. 2008), pp. 215–271. doi: 10.1007/s11784-008-

0078-1.

[Fuk+09] Kenji Fukaya et al. Lagrangian Intersection Floer Theory: Anomaly and Obstruction, II.

Vol. 46. American Mathematical Society, 2009.

[GH11] Phillip Griffiths and Joseph Harris. Principles of algebraic geometry. wiley, Jan. 2011,

pp. 1–813. isbn: 9781118030776. doi: 10.1002/9781118032527.

[Gro85] Mikhail Leonidovich Gromov. “Pseudo holomorphic curves in symplectic manifolds”. In:

Invent. math 82 (1985), pp. 307–347.

[IS02] Sergey Ivashkovich and Vsevolod Shevchishin. “Reflection principle and J-complex curves

with boundary on totally real immersions”. In: Communications in Contemporary Math-

ematics 4.1 (2002), pp. 65–106. url: www.worldscientific.com.

[Laz00] Laurent Lazzarini. “Existence of a somewhere injective pseudo-holomorphic disc”. In:

GAFA, Geom. funct. anal 10 (2000).

[Laz11] Laurent Lazzarini. “Relative frames on J-holomorphic curves”. In: Journal of Fixed Point

Theory and Applications 9.2 (June 2011), pp. 213–256. doi: 10.1007/s11784-010-0004-

1.

[MS12] Dusa Mcduff and Dietmar Salamon. J-holomorphic Curves and Symplectic Topology. Amer-

ican Mathematical Society, 2012. doi: 10.1090/coll/052.

[MS17] Dusa McDuff and Dietmar Salamon. Introduction to symplectic topology, third edition.

2017. doi: 10.1093/oso/9780198794899.001.0001.

[Oh15] Yong-Geun Oh. Symplectic Topology and Floer Homology. Vol. 2. Cambridge University

Press, 2015.

[Oh93] Yong-Geun Oh. “Floer Cohomology of Lagrangian Intersections and Pseudo-Holomorphic

Disks I”. In: Communications on Pure and Applied Mathematics 46 (1993), pp. 949–993.

doi: 10.1002/cpa.3160460702.

[Per19] Alexandre Perrier. “Groupes de cobordisme lagrangien immerge et structure des polygones

pseudo-holomorphes”. PhD thesis. Université de Montreal, 2019.
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