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Plasmas

Definition (Plasma)
Plasma is a state of matter, characterized by an important ionization of
particles.

• Term ”plasma” first used by Irving Langmuir 1 to describe an
ionized gas.

• Plasma represents more than 99% of ordinary matter in the universe.

1I. Langmuir, Oscillations in Ionized Gases, Proceedings of the National Academy
of Science, 14:627–637, 1928.
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Nuclear fusion

Definition (Nuclear fusion)
Combination of two atomic nuclei to form one atomic nuclei.

• Fusion of light nuclei releases enormous amounts of energy.

• This reaction takes place in plasmas under certain conditions: very
high temperature and high enough particle density.

• One approach to harness nuclear fusion of light nuclei is via
magnetic confinement.
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Magnetic confinement fusion
• Use an intense external (not self-induced) magnetic field B to

confine the hot plasma.
• Feasibility of controlled nuclear fusion: ITER tokamak under

construction in Cadarache (south of France).
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Kinetic formalism and the Vlasov equation

Trajectory (X (t),V (t)) of one particle of mass m subject to a force F (t)
given by: {

Ẋ (t) = V (t),

V̇ (t) = 1
mF (t).

(1)

Large number of identical particles allows for a kinetic description of the
system. f (t, x , v) is the number density of particles which are located at
the position x and have velocity v at time t and satisfies:

∂t f (t, x , v) + v · ∇x f (t, x , v) +
1

m
F (t) · ∇v f (t, x , v) = 0 (2)

with (t, x , v) ∈ R+ × X 3 × R3, X = R or X = T.
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The magnetized Vlasov–Poisson system for electrons

• At the time scale of electrons: ions are static =⇒ fion is constant.

• At the time scale of ions: electrons are at thermal equilibrium
=⇒ felectron = Maxwell–Boltzmann type distribution.

At the time scale of electrons, we have:{
∂t f + v · ∇x f + qe

me
(E + v ∧ B) · ∇v f = 0,

divxE (t, x) = qion
ε0

∫
R3 fion(x , v)dxdv + qe

ε0

∫
R3 f (t, x , v)dxdv ,

(3)

with f ≡ f (t, x , v) the distribution function of electrons, fion(x , v) the
constant ion distribution, E ≡ E (t, x) the self-consistent electric field and
B ≡ B(t, x) the given external magnetic field.
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Landau damping

Exponential decrease in time of longitudinal waves in plasma.

• First predicted by Landau with the linearized Vlasov-Poisson system
where he showed damping of the electric field E .2{

∂t f + v · ∇x f + q
mE · ∇v f0 = 0,

∂xE = q
ε0

∫
fdv1dv2,

(4)

with f = f (t, x , v), (t, x , v) ∈ R+ × T3 × R3 the distribution of

electrons and f0 = e−
|v|2

2 the equilibrium Maxwellian distribution.

• Using the Fourier–Laplace transform, Landau showed the damping
of the electric field

|Ek(t)| ≤ Ce−αk t . (5)

• Irreversible behavior observed in a reversible in time system.

• Recently extended to the nonlinear setting by Mouhot and Villani 3.

2L. Landau, On the vibration of the electronic plasma, J. Phys. USSR, 1946.
3C. Mouhot and C. Villani, On Landau damping, Acta Math., 2011.
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The paradox

The Bernstein-Landau paradox
”In unmagnetized plasmas, waves exhibit Landau Damping, while in
magnetized plasmas, waves perpendicular to the magnetic field are
exactly undamped, independently of the strength of the magnetic field”.

• Magnetized plasmas first studied by Bernstein 4.

• Other physical works 5 have highlighted a discontinuity between the
theory of unmagnetized plasmas and the theory of magnetized
plasmas, thus speaking of a paradox.

• Very few mathematical papers, recently studied in 6 using
Fourier–Laplace in a 3d-3v setting.

4I. Bernstein, Waves in a Plasma in a Magnetic Field, Phy. Review, 1958.
5A. I. Sukhorukov and P. Stubbe, On the Bernstein-Landau paradox, Phy. of

Plasmas, 1997.
6J. Bedrossian and F. Wang, The linearized Vlasov and Vlasov-Fokker-Planck

equations in a uniform magnetic field, J. Stat. Phys., 2020.
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Numerical illustration of the influence of B : magnetic
recurrence

Figure: Damped and undamped electric field

This is a magnetic recurrence 7.
7Not a numerical recurrence Recurrence phenomenon for Vlasov-Poisson

simulations on regular finite element mesh, M. Mehrenberger, L. Navoret, N. Pham,
Commun. Comput. Phys., 2020.
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The 1d-2v framework

The 1d-2v magnetized Vlasov-Poisson system
∂t f + v1∂x f − E∂v1 f + ω (−v2∂v1 + v1∂v2 ) f︸ ︷︷ ︸

=−v∧B

= 0,

∂xE = 2π −
∫
fdv1dv2.

(6)

• The unknowns are the density of electrons f (t, x , v1, v2) ≥ 0 and the
electric field E (t, x).

• The domain is Ω = T× R2, T = [0 , 2π]per is the 1D-torus.

• Here ω > 0 is the constant cyclotron frequency for electrons
(B = (0, 0, ω)).

• qe
me

normalized to −1.

• Ions are considered as a motionless background of neutralizing
positive charge.
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Linearized system

We linearize (6) by writing

f = f0 + ε
√
f0u + O(ε2) and E = εF + O(ε2).

where (f0,E0) = (exp (− v2
1 +v2

2

2 ), 0) is a stationary solution of (6).

Linearized Vlasov–Poisson with magnetic field ∂tu + v1∂xu + Fv1e
− v2

1 +v2
2

4 + ω (−v2∂v1 + v1∂v2 ) u = 0,

∂xF = −
∫
ue−

v2
1 +v2

2
4 dv1dv2.

(7)

• ∫ ue−
v2
1 +v2

2
4 dxdv1dv2 = 0. (total mass equal zero)

• ∫ Fdx = 0. (F is derived from a potential)
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Reformulation with the Ampère equation

We can rewrite the system with the Ampère equation because both
systems are equivalent.

The linear 1d-2v Vlasov–Ampère system ∂tu + v1∂xu + Fv1e
− v2

1 +v2
2

4 + ω(−v2∂v1 + v1∂v2 )u = 0,

∂tF = 1∗
∫
ue−

v21+v22
4 v1dv1dv2.

(8)

with 1∗g(x) = g(x)− 1

2π

∫
T
g(x)dx .
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A self-adjoint Vlasov–Ampère operator

Final formulation

∂t

(
u
F

)
= iH

(
u
F

)
,H = i

 v1∂x + ω(v2∂v1 − v1∂v2 )︸ ︷︷ ︸
:=H0

v1e
− v2

1 +v2
2

4

−1∗
∫
v1e
− v2

1 +v2
2

4 · dv1dv2 0

 .

H = (L2(T× R2) ∩
{∫

u
√

f0dxdv1dv2 = 0

}
)︸ ︷︷ ︸

=L2
0(T×R2)

×(L2(T) ∩
{∫

Fdx = 0

}
)︸ ︷︷ ︸

=L2
0(T)

and H a self-adjoint operator with domain D(H) := D(H0)× L2
0(T).
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Spectral properties of Vlasov equations

• For a general self-adjoint operator H with an ambient Hilbert space
H: then we have the following decomposition of H in terms of the
spectrum of H: H = Hac

H ⊕Hsc
H ⊕H

pp
H . 8 9

• Spectrum of the Vlasov–Ampère operator with ω = 0 studied in 10

11: the operator has only absolutely continuous spectrum and a
kernel (as expected) H = kerH ⊕Hac

H .

8T. Kato, Perturbation theory for linear operators, 1966.
9D.R. Yafaev, Scattering theory: Some old and new problems, 2000.

10B. Després, Symmetrization of Vlasov–Poisson Equations, SIAM J. Math. Anal.,
2014.

11B. Després, Trace class properties of the linear Vlasov-Poisson equation, J. of
Spectral Theory, 2021.
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Discrete spectrum for the Vlasov–Ampère operator

Theorem (Charles, Després, R., Weder 12)
We have completeness of the eigenspaces:

H = Hpp
H ,

and the eigenvalues of H are 0, mω and λm, m 6= 0.

Two different proofs:

• Direct computations.

• Weyl theorem on the invariance of the essential spectrum.

Explanation for the Bernstein–Landau paradox
The magnetic term (v ∧ B) · ∇v f can be seen as a perturbation that
modifies the domain of the Vlasov–Ampère operator.

12F. Charles, B. Després, A. Rege and R. Weder, The magnetized Vlasov–Ampère
system and the Bernstein–Landau paradox, J. Stat. Phys., 2021.
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Numerical illustration: initialization

Objective: compare the numerical and theoretical solutions of
Vlasov-Ampère when initializing with an eigenvector.

• We consider an eigenvector (wn,m ,Fn) associated to the Fourier
mode n 6= 0 and the eigenvalue λm, so the solution (u ,F ) is given by

(u ,F )(t) = e iλmt (wn,m ,Fn) .

• wn,m and Fn are given by

wn,m = e in(x− v2
ω )e−

r2

4

∑
p∈Z∗

pω

pω + λm
epiϕJp

(nr
ω

)
and Fn = −ine inx .

• λm is one of the roots of a secular equation given by:

α(λ) = −1− 2π

n2

∑
m∈Z∗

mω

mω + λ

∫ ∞
0

e−
r2

2 Jm
(nr
ω

)2

rdr = 0.
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Numerical illustration: secular equation
α has a unique root in

• ]mω , (m + 1)ω[ for m ≥ 1,

• ](m − 1)ω ,mω[ for m ≤ −1.

For (n,m) = (1, 2), we compute λ2 ≈ 1.19928.
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Numerical illustration: results
Simulations with a classical ”backward” semi-lagrangian scheme,
Nx = 33, Nv1 = Nv2 = 63, Lx = 2π, Lv1 = Lv2 = 10, ω = 0.5, n = 1, and
Tf = π

2λm
.

Figure: Real and imaginary parts of u in V1-V2 plane for x = 0.
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Back to the nonlinear system in R3 × R3

{
∂t f + v · ∇x f + (E + v ∧ B) · ∇v f = 0,
E (t, x) =

∫
R3

∫
R3

x−y
|x−y | f (t, y , v)dvdy .

(VPwB)

Energy of the system and macroscopic density ρ

E(t) :=
1

2

∫∫
R3×R3

|v |2f (t, x , v)dxdv +
1

2

∫
R3

|E (t, x)|2dx ,

ρ(t, x) :=

∫
R3

f (t, x , v)dv .

Results on existence of solutions in the unmagnetized case:
• Existence of weak solutions [Arsenev, 1975]
• Small initial data [Bardos, Degond, 1985]
• Existence of smooth solutions [Pfaffelmoser, 1992]
• Propagation of velocity moments [Lions, Perthame, 1991]

We will first consider a constant B

B =

0
0
ω

 .
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Differential inequality on Mk
Let k ≥ 0, the velocity moment of order k is defined by

Mk(t) :=

∫∫
R3×R3

|v |k f (t, x , v)dvdx .

Propagation of velocity moments:∫∫
R3×R3

|v |k f in(x , v)dvdx <∞ =⇒
∫∫

R3×R3

|v |k f (t, x , v)dvdx <∞

| d
dt

Mk(t)| = |
∫∫
|v |k(−v · ∇x f − (E + v ∧ B) · ∇v f )dvdx |,

= |
∫∫
|v |k divv ((E + v ∧ B)f ) dvdx |,

= |
∫∫

k |v |k−2v · (E + v ∧ B)fdvdx |,

≤ C ‖E (t)‖k+3 Mk(t)
k+2
k+3 .

Next step: we need to control of ‖E (t)‖k+3 with Mk(t)α with α ≤ 1
k+3 .
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A representation formula for ρ

∂t f + v · ∇x f + (v ∧ B) · ∇v f = −E · ∇v f
d

ds
(X (s),V (s)) = (V (s),V (s) ∧ B) = (V (s), (ωV2(s),−ωV1(s), 0)) ,

(X (t),V (t)) = (x , v),


V (s) =

 v1 cos(ω(s − t)) + v2 sin(ω(s − t))
−v1 sin(ω(s − t)) + v2 cos(ω(s − t))

v3

 ,

X (s) =

x1 + v1

ω sin(ω(s − t)) + v2

ω (1− cos(ω(s − t)))
x2 + v1

ω (cos(ω(s − t))− 1) + v2

ω sin(ω(s − t))
x3 + v3(s − t))

 ,

(9)

ρ(t, x) =

∫
v

f in(X (0),V (0))dv︸ ︷︷ ︸
=:ρ0(t,x)

+ divx

∫ t

0

∫
v

(fHt) (s,X (s),V (s)) dv︸ ︷︷ ︸
=:σ(s,t,x)

ds.
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Singularities at multiples of the cyclotron period

E (t, x) = −
(
∇ 1

|·|
? ρ

)
(t, x) = E 0(t, x) + Ẽ (t, x),

‖E (t)‖k+3 ≤
∥∥E 0(t)

∥∥
k+3

+

∫ t

0

‖σ(s, t, x)‖k+3 ds,

‖σ(s, t, ·)‖k+3 ≤ C

√
2

s

(
ω2s2

2(1− cos(ωs))

) 2
3

Mk(t − s)
1

k+3 . (10)

Proposition (Propagation of moments on a finite interval)
For all 0 ≤ t ≤ Tω := π

ω we have∫∫
R3×R3

|v |k f (t, x , v)dxdv ≤ C < +∞,

with C = C (k , ω,
∥∥f in∥∥

1
,
∥∥f in∥∥∞ , Ein,Mk(f in)).



Introduction The Bernstein–Landau paradox Velocity moments

Propagation of moments for all time

We have that

•
∥∥f in∥∥

1
= ‖f (Tω)‖1 and

∥∥f in∥∥∞ = ‖f (Tω)‖∞,

• E(Tω) ≤ Ein,

• Mk(f (Tω)) ≤ C (k , ω,
∥∥f in∥∥

1
,
∥∥f in∥∥∞ , Ein,Mk(f in)).

This means f (Tω) verifies the same assumptions as f in =⇒ we can show
propagation of moments for all time by induction.

Additional results

• Propagation of the regularity of f in.

• Uniqueness if ρ ∈ L∞([0 ,T ]× R3) 13.

13G. Loeper, Uniqueness of the solution to the Vlasov–Poisson system with bounded
density, 2006.
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Propagation of velocity moments for (VPwB)

Theorem (R. 14)
Let k0 > 3,T > 0, f in = f in(x , v) ≥ 0 a.e. with f in ∈ L1 ∩ L∞(R3 × R3)
and assume that ∫∫

R3×R3

|v |k0 f indxdv <∞. (11)

Then there exists C > 0 and a weak solution f to (VPwB) with
B = (0, 0, ω) such that∫∫

R3×R3

|v |k0 f (t, x , v)dxdv ≤ C < +∞, 0 ≤ t ≤ T (12)

with C that depends on

T , k0, ω, Ein,
∥∥f in∥∥

1
,
∥∥f in∥∥∞ , Ein,Mk(f in). (13)

14A. Rege, The Vlasov–Poisson system with a uniform magnetic field: propagation
of moments and regularity, SIAM J. Math. Anal., 2021.
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Uniqueness in the unmagnetized case

Theorem (Miot 15)
Let T > 0. Then there exists at most one solution
f ∈ L∞([0 ,T ], L1 ∩ L∞(R3 × R3)) to Vlasov–Poisson such that

sup
[0 ,T ]

sup
p≥1

‖ρ(t)‖p
p

< +∞. (14)

New uniqueness criterion which allows for solutions with unbounded ρ.

15E. Miot., A uniqueness criterion for unbounded solutions to the Vlasov–Poisson
system, Comm. Math. Phys., 2016.
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Characteristics

Now we have B := B(t, x) such that

B ∈W 1,∞(R+ × R3). (15)
d

ds
X (s; t, x , v) = V (s; t, x , v),

d

ds
V (s; t, x , v) = E (s,X (s; t, x , v)) + V (s; t, x , v) ∧ B(s,X (s; t, x , v)).

Consider two solutions f1, f2 with (X1,V1), (X2,V2) the corresponding
characteristics. We study the distance

D(t) =

∫∫
R3×R3

|X1(t, x , v)− X2(t, x , v)|f in(x , v)dxdv . (16)
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Additional terms in the magnetized case

D(t) ≤
∫ t

0

∫ s

0

∫
R6

|E1(τ,X1(τ))− E2(τ,X2(τ))|

+ |V1(τ) ∧ B(τ,X1(τ))− V2(τ) ∧ B(τ,X2(τ))|f in(x , v)dxdvdτds,

≤
∫ t

0

∫ s

0

∫
R6

|E1(τ,X1(τ))− E2(τ,X2(τ))|f in(x , v)dxdvdτds

+ ‖B‖∞
∫ t

0

∫ s

0

∫
R6

|V1(τ)− V2(τ)|f in(x , v)dxdvdτds

+

∫ t

0

∫ s

0

∫
R6

|V2(τ)||B(τ,X1(τ))− B(τ,X2(τ))|f in(x , v)dxdvdτds,

= I (t) + J(t) + K (t).

The additional terms J(t),K (t) are controlled with ‖ρ1‖p , ‖ρ2‖p and

velocity moments of f in.
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Uniqueness criterion with a general magnetic field

Theorem (R.)
Let T > 0 and B := B(t, x) such that B ∈W 1,∞(R+ × R3).
If f in satisfies

∀k ≥ 1,

∫∫
R3×R3

|v |k f in(x , v)dxdv ≤ (C0k)
k
3 , 16 (17)

with C0 a constant independent of k, then there exists at most one
solution f ∈ L∞([0 ,T ], L1 ∩ L∞(R3 × R3)) to the Cauchy problem for
the magnetized Vlasov–Poisson system. If such a solution exists then it
will verify

sup
[0 ,T ]

sup
p≥1

‖ρ(t)‖p
p

< +∞. (18)

16E. Miot, A uniqueness criterion for unbounded solutions to the Vlasov–Poisson
system, Comm. Math. Phys., 2016.
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Propagation of moments with a general magnetic field

Q(t) := sup

{∫ t

0

|E (s,X (s; 0, x , v))|ds, (x , v) ∈ R3 × R3

}
, (19)

NT := sup
0≤t≤T

Q(t) ≤ C , (20)

Mk(t) =

∫∫
R3×R3

|V (t; 0, x , v)|k f in(x , v)dvdx ,

≤
∫∫

R3×R3

(|v |+ NT )k exp(kt ‖B‖∞)f in(x , v)dvdx .

In the unmagnetized case we have:

Theorem (Pallard 17)
Let T > 0, then for all 0 ≤ t ≤ T,

Q(t) ≤ C (T
1
2 + T

7
5 ). (21)

17C. Pallard, Moment propagation for weak solutions to the Vlasov-Poisson system,
Comm. Partial Differential Equations, 2012.
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Estimates on the characteristics

Conjecture
For all time t such that 0 ≤ t ≤ TB ,

Q(t) ≤ C exp(TB ‖B‖∞)
2
5 (T

1
2

B + T
7
5

B ). (22)

• The conjecture is true if we assume B := B(t) independent of x .

• Difficulty when B := B(t, x): control of the difference between
velocity characteristics |V (s)− V∗(s)| in terms of Q(t) and
|V (s)− V∗(s)|:

|V (s)− V∗(s)| ≤ |v − v∗|+ 2Q(t)

+

∫ t

s

|V (s) ∧ B(s,X (s))− V∗(s) ∧ B(s,X∗(s))|ds.
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Thank you for your attention!
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