
Width Drives Layers Apart
Exploring the role of critical layers in the self-regularization of neural

networks

Bachelor’s Thesis

Alexander Uhlmann

June 1, 2021

Advisors: Prof. Dr. Nicolai Meinshausen,
Prof. Dr. Fanny Yang, MSc Nicolò Ruggeri

Department of Mathematics, ETH Zürich

Abstract

Modern neural networks are routinely overparameterized and can easily
interpolate on the training set. Yet they seem to do so in a way that
generalizes well, suggesting some kind of self-regularization. In light
of this, we follow up on a recent discovery that some layers of neural
networks are ambient and can be reinitialized without incurring any
significant performance drop, while others are critical and reduce a
networks performance to guessing if reinitialized, as a possible type of
self-regularization. We find evidence that width drives the separation
into critical and ambient layers, which coincides with a second drop
in generalization error. Furthermore, we use generative adversarial
networks to create image datasets of bounded intrinsic dimension. By
varying intrinsic dimension we can control training difficulty in a nat-
ural way and find that increasing training difficulty causes previously
ambient layers to turn critical.

i

Contents

Contents iii

1 Introduction 1
1.1 Related Work . 2

2 Critical Layers 3
2.1 Definitions . 3

2.1.1 Setting . 3
2.1.2 Reset Error and Criticality 4

2.2 Examples . 5

3 Connection to Double Descent 9
3.1 Setting . 9
3.2 Double Descent in Width . 11

3.2.1 Results . 12
3.3 Double Descent in Training Epochs 16

3.3.1 Results . 17

4 Intrinsic Dimension 21
4.1 Generative Adversarial Networks 21
4.2 Intrinsic Dimension . 22

4.2.1 Image Generation . 23
4.3 Results . 24

4.3.1 Dataset . 24
4.3.2 Training Difficulty and Criticality 25

5 Conclusion 29
5.1 Conjecture . 29
5.2 Discussion . 30
5.3 Further Directions . 31
5.4 Acknowledgments . 31

iii

Contents

A Training and Model Parameters 33
A.1 Model Architectures . 33
A.2 Training Parameters . 33

B GANs and Dataset Generation 35
B.1 GANs In-depth . 35
B.2 Dataset Generation . 36

C Additional Plots 39
C.1 Correlation of Test Error and Mean Reset Error 39
C.2 Layer-wise criticality for varying training epochs 41

Bibliography 43

iv

Chapter 1

Introduction

Deep neural networks have significantly improved the state of the art across
almost all problems in machine learning. Yet in many situations large mod-
ern networks behave in a way which cannot be explained by the classical
understanding of learning and achieve significantly better generalization
performances than the classical bias-variance tradeoff would suggest. Zhang
et al. [2017] have shown that neural networks are often heavily overparame-
terized and are able to easily interpolate the entire training data. This renders
many traditional generalization bounds based on Rademacher complexity or
VC-dimension, which both essentially measure the ability of a network to
interpolate arbitrary data, vacuous [Nagarajan and Kolter, 2019].

Instead of exhibiting the U-curve predicted by the classical bias-variance
tradeoff as they begin to overfit on the training data, modern overparameter-
ized models appear to behave according to a double descent phenomenon
[Nakkiran et al., 2019]: When network width is increased past the interpola-
tion threshold – the point where the network is able to interpolate the entire
training data – generalization error descends even further.

This suggests that as we increase width past the interpolation threshold
width begins to exert some kind of regularizing force on the network which
pushes it to fit the training data in a "natural" way that generalizes well.
[Belkin et al., 2019, Mei and Montanari, 2019]

Although it is still unclear by what mechanism width exerts this regularizing
pressure, one phenomenon which might help provide insight was discovered
by Zhang et al. [2019]: In their paper the authors show that for a variety of
network configurations the layers seem to differentiate into so called critical
and ambient layers. When a critical layer is reset to its initial state before
training it reduces network performance to random guessing, whereas an
ambient layer getting reset barely impacts performance.

In this thesis, we aim to gain a better understanding of how and when these

1

1. Introduction

layers develop and their possible connection to double descent. We do this
by analyzing critical and ambient layers under a variety of training regimes
such as varying width, training epochs and datasets.

We will also make use of a novel approach for generating image datasets of
bounded intrinsic dimension developed by Pope et al. [2021]. This allows us
to study how critical and ambient layers adjust to varying training difficulty.

Using these methodologies, we are able to refine our understanding of layer
criticality and discover some previously unknown behavior:

• Increasing width leads to a sharper separation into critical and ambient
layers, but – to our surprise – does not influence which turn critical or
ambient (see figure 3.6).

• Increasing training difficulty leads to previously ambient layers turning
critical. (see figure 4.4)

• The separation into critical and ambient layer with increasing width
coincides with the second descent in generalization error.(see figure
3.5)

Those results will lead us to conjecture that width drives the separation into
critical and ambient layer while training difficulty determines which layers
turn critical or ambient.

This thesis is structured as follows: In chapter 2, we will make formal the
notions needed to talk about critical and ambient layers and then observe
their behavior in a number of examples. In chapter 3, we will describe the
phenomenon of double descent and see how critical layers relate to it by
varying both network width and then the number of training epochs. In
chapter 4, we will generate images with bounded intrinsic dimension and
explore how this affects training difficulty and critical layers. And finally in
chapter 5, we will tie together the results from the previous chapter into a
conjecture and discuss possible explanations and ramifications.

1.1 Related Work

Chatterji et al. [2020] refine the notion of critical and ambient layers: By not
only measuring the accuracy drop if a layer is reset but observing network
performance if a layer is linearly moved from its final state back to initial-
ization they develop a measure called module criticality. The authors then
show that this measure is able to predict generalization performance more
accurately than previously proposed measures.

The fact that many neural networks are overparameterized has also been
exploited by Han et al. [2016] to compress models after training – achieving
significant speedup without incurring a drop in performance.

2

Chapter 2

Critical Layers

In this chapter we will first define some key concepts to make the notions
of critical and ambient layers clear. We will then give examples of criticality
in a real-world setting and see that simple explanations are insufficient to
describe this phenomenon.

2.1 Definitions

2.1.1 Setting

We will begin by outlining the setting and notation used for the training of
models in this thesis. As we will only be training models for classification
the procedure will always be:

• Our data consists of train set R and a test set S drawn from an under-
lying distribution Ddata:

R = {(x(i), y(i)) ∼ Ddata| i in 1, . . . , n} ⊂ Rk ×R

T = {(x(i), y(i)) ∼ Ddata| i in 1, . . . , m} ⊂ Rk ×R

Note that n and m denote the number of train and test samples respec-
tively while k is the dimension of the input the network will receive.
For our purposes we will represent images as flattened to a vector.

• A network fθ(0) : Rk → R is then created and initialized with θ(0) =

(θ
(0)
0 , . . . , θ

(0)
D) containing the parameters of each layer at initialization.

The parameters of each layer are initialized by sampling from some
initial distribution θ

(0)
d ∼ Dinit, d which depends on the type of layer as

well as the shape of inputs and outputs.

• We then train the network for a total of T epochs with θ(t) representing
the network parameters after the t-th Epoch. The final network is then
represented as fθ(T) .

3

2. Critical Layers

We can evaluate the performance of a model by calculating the classification
error on a given set of samples:

Definition 2.1 (Classification Error) Let fθ be a model andM a set of samples.
The error of fθ onM is then defined to be:

ErrorM(fθ) :=
|{(x, y) ∈ M| fθ(x) 6= y}|

|M| ∈ [0, 1]

In particular we will call ErrorR(fθ) the train error of fθ and ErrorS (fθ) the
test error or generalization error of fθ .

2.1.2 Reset Error and Criticality

Each layer applies some nonlinear transformation to the output of the previ-
ous layer. As a result neural networks are able to iteratively build up more
and more abstract representation of the input data. The recursive nature
of this process makes it difficult to determine which calculations each layer
performs, but one way to assess the importance of a particular layer to the
networks functioning is to look at the performance drop one incurs when
resetting a layer to its original state:

Definition 2.2 (Reset Error) Let fθ(T) be a network trained for T epochs. We now
reset the parameters of layer d to their state at initialization: θ

(T)
d ← θ

(0)
d . The

resulting network fθ′ then has parameters

θ′ = (θ
(T)
1 , . . . , θ

(T)
d−1, θ

(0)
d , θ

(T)
d+1, . . . , θ

(T)
D)

The reset error is now obtained by evaluating the test error of the modified network:

ResetError(fθ(T) , d) := ErrorS (fθ′)

As the test error itself is bounded inside [0, 1] so is the reset error of any layer.
In reality we can say even more:

Remark 2.3 (Heuristic Reset Error Bounds) Since it is unlikely that resetting
a layer will improve test performance we get that

ResetError(fθ(T) , d) . ErrorS(fθ(T)) for d = 1, . . . , D

Conversely it is also unlikely – especially if the dataset classes are uniformly dis-
tributed – that resetting a layer will make the test performance drop below just
randomly guessing:

ResetError(fθ(T) , d) & 1− 1
c

for d = 1, . . . , D

where c denotes the number of classes in the dataset.

4

2.2. Examples

We will now define critical and ambient layers to be layers that have a reset
error close one of these extremes:

Definition 2.4 (Critical and Ambient Layers) Let ε > 0 be some small parame-
ter. The d-th layer of a network is called ambient if resetting it does not significantly
decrease performance:

ResetError(fθ(T) , d) > ErrorS(fθ(T))− ε

Conversely a layer is called critical if resetting it reduces the networks performance
to random guessing:

ResetError(fθ(T) , d) < (1− 1
c
) + ε

Note that this still doesn’t rigorously define critical and ambient layers since
ε has to be chosen qualitatively. In practice choosing ε = 1

10 is appropriate
unless the test error of the model is very high which reduces the range of the
reset error too far.

In line with these definitions we will call layers with a higher reset error
more critical.

To qualitatively analyze the distribution of critical and ambient layers we will
often look at the mean and variance of the reset error across layers:

• The mean reset error decreases as layers become more ambient overall.
We will see that it correlates with test error.

• The variance of the reset error is often more interesting since a higher
variance signifies a sharper separation into critical and ambient layers.
It is maximized if half of the layers are fully critical while the other half
are fully ambient.

2.2 Examples

Equipped with these definitions we can now examine how they hold up
in a real-world setting. A priori one would maybe guess that all layers are
fully critical since the representations a network develops during training
are so highly dependent on each other that resetting just one layer would
completely ruin the network performance. Another reasonable expectation
would be that resetting a layer would just decrease the network performance
by some fixed amount. As we will see this indeed seems to be the case in the
early stages of training.

However, as we can see in figure 2.1 a VGG11 network [Simonyan and Zisser-
man, 2015] fully trained on CIFAR10 [Krizhevsky et al., 2009] splits almost

5

2. Critical Layers

ConvS1B1

ConvS2B1

ConvS3B1

ConvS3B2

ConvS4B1

ConvS4B2

ConvS5B1

ConvS5B2

FCN1
FCN2

Final Linear
Layer

0.0

0.2

0.4

0.6

0.8

R
es

et
 E

rro
r

(a) Layer-wise reset error

ConvS1B1

ConvS2B1

ConvS3B1

ConvS3B2

ConvS4B1

ConvS4B2

ConvS5B1

ConvS5B2

FCN1
FCN2

Final Linear
Layer

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

L 2
 D

is
ta

nc
e

(b) Layer-wise euclidean distance from initial-
ization

Figure 2.1: Reset error and distance from initialization for VGG11 trained
on CIFAR10.

completely into critical and ambient layers: The first four convolutional layers
are almost fully critical while resetting the last four layers barely impacts
performance.

Another reasonable explanation for the existence of critical and ambient
layers might be that the parameters of critical layers might simply have moved
further away from their value at initialization. To inspect this explanation we
will look at the normalized euclidean distance of a fully trained layer from
its state at initialization:

1
√

p
‖θ(T)d − θ

(0)
d ‖2 for θ

(T)
d , θ

(0)
d ∈ Rp

where p is the number of parameters of the layer.

But as we can see in figure 2.1 euclidean distance from initialization doesn’t
seem to correlate with the reset error. Especially the first and last layer have
moved disproportionately large distances from initialization compared to
their respective reset error.

If we now compare these results to those of a network trained on the signifi-
cantly easier MNIST dataset [LeCun and Cortes, 2010], the lack of correlation
between euclidean distance from initialization and reset error becomes even
clearer. In figure 2.2 we can see that in contrast to the network trained on
CIFAR10, all layers are almost completely ambient, reflecting the significantly

6

2.2. Examples

ConvS1B1

ConvS2B1

ConvS3B1

ConvS3B2

ConvS4B1

ConvS4B2

FCN1
FCN2

Final Linear
Layer

0.0

0.2

0.4

0.6

0.8

R
es

et
 E

rro
r

(a) Layer-wise reset error

ConvS1B1

ConvS2B1

ConvS3B1

ConvS3B2

ConvS4B1

ConvS4B2

FCN1
FCN2

Final Linear
Layer

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

L 2
 D

is
ta

nc
e

(b) Layer-wise euclidean distance from initial-
ization

Figure 2.2: Reset error and distance from initialization for a reduced
VGG11 trained on MNIST. See appendix A for details regarding the re-
duced VGG11 architecture.

easier training task. However, even though all layers are ambient, some have
still moved a significant amount from initialization.

7

Chapter 3

Connection to Double Descent

We will begin this chapter by taking a more in-depth look at double descent
and introduce the notions required to describe it more precisely. We will
then turn our attention to the connection between double descent and layer
criticality by first observing double descent in varying width and then in
varying training epochs.

3.1 Setting

As previously mentioned, neural networks seem to defy the classical un-
derstanding of the bias-variance tradeoff. Large models easily capable of
interpolating the entire training data do so in a way which generalizes well.
This by itself is a non trivial observation. As the function class represented by
highly overparameterized neural networks is intuitively large, other interpo-
lating but non generalizing, solutions exist. Convergence to good solutions
is therefore not to be given for granted. In settings with noisy data (which
pushes models to overfit), a double descent of test error can be observed
[Nakkiran et al., 2019]: As model capacity increases we first observe the
classical bias-variance tradeoff with test error reaching a peak at the inter-
polation threshold – the point where the network is able to interpolate the
entire training data. But if we keep increasing the model capacity, the test
error begins to decrease again – hence double descent (see figure 3.1 for a
schematic representation).

While it is unclear what causes the second descent, a common intuition is
that if model capacity is increased past the point where the model is able
to just barely fit the training data, then the model is able to fit the training
data in a more "natural" way [Belkin et al., 2019]. Of course the notion of
a "natural" way to fit data is fuzzy and the question remains what pushes
networks to fit in such a "natural" way as capacity increases.

9

3. Connection to Double Descent

Network Capacity

Er
ro

r

Train Error
Test Error
Interpolation Threshold

Underparameterized Regime
Critically parameterized Regime
Overparameterized Regime

Figure 3.1: Schematic representation of the double descent train and test
error curves. It incorporates the classical bias-variance U-shaped test error
curve in the first half and the modern "larger models are better"-test error
curve in the second half. Note that the test error reaches its second peak at
the interpolation threshold

As previously mentioned we will now look at the notions required to describe
this phenomenon precisely. First of all let us make formal notion of network
capacity following the definitions developed by Nakkiran et al. [2019]:

We define a training procedure T to be any procedure which takes a training
dataset R ∼ Dn and returns a trained classifier T (R). For any given training
procedure T and data distribution D and we define the Effective Model
Capacity (EMC) to be the maximal number of training samples on which T is
able to achieve near zero error:

Definition 3.1 The Effective Model Capacity (EMC) of a training procedure T
with respect to distribution D and parameter ε > 0 is defined as:

EMCD, ε(S) := max{n|ER∼Dn [ErrorR(T (S))] < ε}

10

3.2. Double Descent in Width

Note that while our notion of capacity is related to classical measures of
capacity such as Rademacher complexity and VC-dimension [Bartlett and
Mendelson, 2002, Vapnik, 2013], it differs in some significant ways: Instead
of being determined model architecture alone, EMC also depends on the
sample distribution and the training procedure – making it impossible to
determine a priori. These dependencies are however necessary to accurately
describe the dynamics of double descent [Nakkiran et al., 2019].

We can now more precisely specify double descent, again following Nakkiran
et al. [2019]:

Conjecture 1 For any natural data distribution D, neural net based training
procedure T , training set R ∼ Dn and small ε > 0, the relationship between test
error and EMCD, ε(S) can be split into three regimes:

Underparameterized regime: If EMCD, ε(S) is sufficiently smaller than the num-
ber of training samples n, any perturbation of T that increases its effective capacity
will decrease the test error.

Overparameterized regime: If EMCD, ε(S) is sufficiently larger than the number
of training samples n, any perturbation of T that increases its effective capacity will
decrease the test error.

Critically parameterized regime: If EMCD, ε(S) ≈ n, a perturbation of T that
increases its effective capacity might increase or decrease test error.

These regimes are illustrated in figure 3.1 and we can see that the under-
parameterized regime corresponds to the first descent in test error, the
critically-parameterized regime contains the region where the model begins to
overfit and the test error reaches its second peak and the over-parameterized
regime contains the second descent in test error.

Two ways of controlling EMC are varying the network width and varying
the number of training epochs. In the next sections we will see that in both
cases the separation of layers into critical and ambient seems to sharpen with
increasing model capacity.

3.2 Double Descent in Width

To study the effects of width on layer criticality we will vary the width of
our models by introducing a width parameter s ∈ R>0. The scaled model is
then obtained by scaling the width of every layer in the base model (in our
case VGG11 – see appendix A for more details) by the width parameter and
rounding to the closest integer width.

To heighten the effects of double descent we introduce 15% label noise since
double descent is a product of temporary overfitting and label noise leads a

11

3. Connection to Double Descent

2 6 2 5 2 4 2 3 2 2 2 1 20

Width Parameter

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Er

ro
r

Train Error
Test Error
Interpolation
 Threshold

(a) Train and test error on CIFAR10

2 6 2 5 2 4 2 3 2 2 2 1 20

Width Parameter

0

1

2

3

4

5

6

7

Lo
ss

Train Loss
Test Loss
Interpolation
 Threshold

(b) Train and test loss on CIFAR10

2 6 2 5 2 4 2 3 2 2 2 1 20

Width Parameter

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

Train Error
Test Error
Interpolation
 Threshold

(c) Train and test error on CIFAR100

2 6 2 5 2 4 2 3 2 2 2 1 20 21

Width Parameter

0

2

4

6

8

10

12

14

16

Lo
ss

Train Loss
Test Loss
Interpolation
 Threshold

(d) Train and test loss on CIFAR100

Figure 3.2: Training metrics as a function of model width. Models are of
VGG11 architecture and are trained on CIFAR10 and CIFAR100 with 15% la-
bel noise added. The interpolation thresholds were determined qualitatively.

model to overfit more extremely. This is in line with the results of Nakkiran
et al. [2019], who observed that more label noise leads to more extreme
double descent peaks. To compare the effects of scaling network width on
datasets with varying difficulty we will compare models trained on CIFAR10
and CIFAR100.

12

3.2. Double Descent in Width

Test Error

0.016
0.019
0.022
0.026
0.031
0.037
0.044
0.053
0.062
0.074
0.088
0.105
0.125
0.149
0.177
0.210
0.250
0.297
0.354
0.420
0.500
0.595
0.707
0.841
1.000

W
id

th
 P

ar
am

et
er

ConvS1B1

ConvS2B1

ConvS3B1

ConvS3B2

ConvS4B1

ConvS4B2

ConvS5B1

ConvS5B2

FCN1
FCN2

Final Linear
Layer

0.4

0.5

0.6

0.7

0.8

0.9

Er
ro

r

Figure 3.3: Layer-wise reset error for varying width on CIFAR10. The
leftmost column contains the test errors and every other column corresponds
to the reset errors of a given layer for varying model width. Each row
corresponds to a specific width parameter. Critical layers turn black and
ambient layers turn white.

3.2.1 Results

As we can see in figure 3.2, a double descent in width does indeed occur
with models trained on CIFAR10. The effect is even more extreme if we
look at test loss instead of test error. We can observe the same for CIFAR100
(see figure 3.2), although it takes a slightly higher width for the model to
reach the interpolation threshold. While the training sets of CIFAR10 and
CIFAR100 both contain 60′000 of samples, it makes intuitively sense that
interpolating samples belonging to 100 classes would require more capacity
than doing the same for 10 classes.

If we now turn our attention to the layer criticalities in figures 3.3 and 3.4,
we can see that as model width increases we can observe an interesting
phenomenon: We can see a separation in the layers of the models into critical
layers which turn fully critical with increasing width and ambient layers
which turn fully ambient with increasing width. As width increases we see
the separation between these critical and ambient layers get more sharp.

13

3. Connection to Double Descent

Test Error

0.016
0.018
0.021
0.025
0.029
0.034
0.039
0.046
0.054
0.062
0.073
0.085
0.099
0.116
0.135
0.157
0.184
0.214
0.250
0.292
0.340
0.397
0.463
0.540
0.630
0.735
0.857
1.000
1.260
1.587
2.000

W
id

th
 P

ar
am

et
er

ConvS1B1

ConvS2B1

ConvS3B1

ConvS3B2

ConvS4B1

ConvS4B2

ConvS5B1

ConvS5B2

FCN1
FCN2

Final Linear
Layer

0.70

0.75

0.80

0.85

0.90

0.95

Er
ro

r

Figure 3.4: Layer-wise reset error for varying width on CIFAR100. Same
layout as figure 3.3

We can also observe that although almost all layers develop into either a fully
critical or fully ambient layer, for some it takes significantly higher model
width than for others. Furthermore, we can observe that many critical layers
first go through a phase of decreasing reset error before it begins to increase
again and the layer turns fully critical.

The separation into critical and ambient layer is even clearer if we look at
the increase in reset error variance across layers in figure 3.5. Note that
the separation only seems to occur after the interpolation threshold has
been passed. Moreover we can see that, while the variance behaves in an
interesting way, the mean reset error seems to roughly correlate with test
error. This is not surprising since, as discussed in chapter 2, the reset error
is often bounded from by the test error. So as the test error decreases, the
range of possible reset errors expands further down and the mean reset error
decreases as well. This correlation is further explored in appendix C.

Figures 3.3 and 3.4 allow us to qualitatively separate the layers of our models
based on whether they turn more critical or more ambient with increasing
width. We see that for the model trained on CIFAR10 the first five layers
turn critical and the following six turn ambient, for CIFAR100 all but the last

14

3.2. Double Descent in Width

2 6 2 5 2 4 2 3 2 2 2 1 20

Width Parameter

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
ea

n
R

es
et

 E
rro

r

CIFAR10

2 6 2 5 2 4 2 3 2 2 2 1 20 21

Width Parameter

0.75

0.80

0.85

0.90

0.95

1.00

CIFAR100

Figure 3.5: Mean and variance of the reset error across layers as a function
of model width.

three layers turn critical.

In figure 3.6 the separation into fully critical and fully ambient layers is
highlighted by coloring layers which turn critical and layers which turn
ambient differently. We can see that for CIFAR10, at a width parameter
of 1 the layers are almost completely split into fully critical and ambient
layers. For CIFAR100 this separation takes significantly longer: Even at a
width parameter of 2 the separation is still not complete with some layers
just starting to turn fully critical.

The behavior of layer criticality, as observed in figures 3.3, 3.4, 3.5 and 3.6,
can thus be summarized as follows:

• For widths leaving model capacity below the interpolation threshold,
the reset error of all layers seems to roughly correlate with the test error
– while resetting some layers results in a bigger absolute drop in model
performance, the shape remains similar.

• But as the width increases past the interpolation threshold we see a
separation of layer criticality, with layers either turning fully critical or
fully ambient.

• In particular: For some layers the reset error which initially decreased
as it moved in tandem with the improving test error, begins to increase
again as the layer turns fully critical.

Especially the last observation is really surprising: We initially expected that
increasing width would lead to previously critical layers turning ambient
one by one as the network "turns off" layers which are no longer needed.

15

3. Connection to Double Descent

2 6 2 5 2 4 2 3 2 2 2 1 20

Width Parameter

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Er

ro
r

CIFAR10

2 6 2 5 2 4 2 3 2 2 2 1 20 21

Width Parameter

0.70

0.75

0.80

0.85

0.90

0.95

1.00
CIFAR100

Test Error Critical Layers Ambient Layers Interpolation
 Threshold

Figure 3.6: Layer-wise criticality and test error as a function of model
width. The test error is drawn in black and every other line represents
the reset error of a specific layer. Layers are colored qualitatively based on
whether they are critical and turn more critical as width increases or are
ambient and turn more ambient as width increases.

However, as we can see in figure 3.6 this is not the case and it seems that
width drives the separation into fully critical and fully ambient layers, but has
no influence over which layer become critical or ambient. Instead, if we look
at the key differences between the models trained CIFAR10 and CIFAR100,
which layers turn critical seems to be determined by training difficulty:

• While we can see a differentiation into critical and ambient layers in
both cases, it takes significantly longer for this to happen in the case of
the more difficult CIFAR100, even after we scale model width up to a
factor of 2.

• Training difficulty also seems to not only impact the width required for
layers to fully separate into critical and ambient, but also which layers
turn critical or ambient in the first place: In the case of CIFAR10 6
layers turn ambient, while for the harder CIFAR100 only 3 layers turn
ambient.

In chapter 4 we will examine the effects of training difficulty more closely
which will lead us to hypothesize that while width drives the separation into
critical and ambient layers, it is training difficulty which determines which
layers turn critical or ambient. We will then unify these findings in chapter 5.

16

3.3. Double Descent in Training Epochs

10
0

10
1

10
2

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

CIFAR10

10
0

10
1

10
2

Epoch

CIFAR100

Train Error Test Error Interpolation Threshold

Figure 3.7: Train and test error of models trained on CIFAR10 and CI-
FAR100 respectively as a function of training epochs. Models are again
VGG11 and 15% label noise was added.

3.3 Double Descent in Training Epochs

We now turn our attention to the other main hyperparameter related to
double descent identified by Nakkiran et al. [2019]: The number of training
epochs.

We will measure the effect the number of training epochs has on layer
criticality by evaluating the reset error after every epoch. To highlight double
descent we again introduced 15% label noise. We then trained models on
CIFAR10 and CIFAR100 for 100 epochs. Furthermore we also trained a model
on the much easier MNIST dataset, this will allow us to investigate layer
criticality for the case of all layers turning ambient.

3.3.1 Results

CIFAR10 and CIFAR100

In figure 3.7 we can see that for both datasets a double descent of test error
in training epochs occurs, although for CIFAR100 the effect is rather weak.

If we now look at layer criticality by measuring mean and variance of reset
error we can see that a similar pattern as in the case of varying width emerges:
In 3.8 we can see that the average reset error again correlates with the test
error and that the variance in reset error increases with the number of training
epochs.

17

3. Connection to Double Descent

10
0

10
1

10
2

Epoch

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85
Av

er
ag

e
R

es
et

 E
rro

r
CIFAR10

10
0

10
1

10
2

Epoch

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

CIFAR100

Average Reset Error Interpolation Threshold

Figure 3.8: Mean and variance of the reset error across layers as a function
of training epochs.

We can also see that the behaviour for CIFAR10 and CIFAR100 is very
similar. The only notable difference is that models trained on CIFAR100
reach the interpolation threshold about 10 epochs later. This is in line with
the observation in the previous section where a model trained on CIFAR100
required more width to reach the interpolation threshold.

There are however also some key differences in the case of varying training
epochs compared to the case of varying width:

• The separation into critical and ambient layers seems to occur before
model capacity reaches the interpolation threshold.

• Past the point where the models are able to reach the interpolation
threshold, very little change in layer criticality seems to occur.

We will examine these results more closely in appendix C.

The fact that layer criticality changes very little if we continue training past
the interpolation threshold is not surprising considering the following: A
model reaching the interpolation threshold is able to achieve a very low
training error. This means that in most cases the training loss is also going
to be very low. And since training loss is what drives change in layers, we
would expect layers in general – and layer criticality in particular – to change
very little past the interpolation threshold. This is mirrored in the results
of Nakkiran et al. [2019], where double descent in width is stronger than
double descent in learning epochs.

If we accept that very little change in criticality will happen past the interpola-

18

3.3. Double Descent in Training Epochs

10
0

10
1

10
2

Epoch

0.000

0.005

0.010

0.015

0.020

0.025

Er
ro

r

Train Error
Test Error

(a) Train and test error

10
0

10
1

10
2

Epoch

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Av
er

ag
e

R
es

et
 E

rro
r

(b) Mean and variance of the reset error across
layers

Figure 3.9: Training and layer criticality metrics as a function of training
epochs for models trained on MNIST. Models are reduced VGG11 (see
appendix A), no training noise was added.

tion threshold, the first observation becomes less surprising as well: We know
that by the end of training, a model of given width will have developed a
certain separation of critical and ambient layers, and since criticality changes
very little past the interpolation threshold, the separation has to occur before
that.

Based on those findings we can hypothesize that while increasing the number
of training epochs past the interpolation threshold doesn’t cause layers to
further separate into critical and ambient, training the model for too few
epochs can prevent the layers from separating. Training models for an
adequate number of epochs is thus a necessary but not sufficient condition
for the separation of layers to occur.

MNIST

Finally, we will compare the results of models trained on CIFAR10 and
CIFAR100 to those of models trained on the significantly easier MNIST
dataset. Note that since models trained on MNIST are able to interpolate the
training set almost immediately we cannot determine a sensible interpolation
threshold.

As we can see in figure 3.9, average reset error again moves in tandem with
reset error. There is however a significant difference to the earlier cases of
models trained on CIFAR10 and CIFAR100: As training time increases, we

19

3. Connection to Double Descent

see the variance in reset error go down. This is because for models trained
on MNIST, as we saw in figure 2.2, all layers are ambient and the decreasing
variance is therefore the result of all layers turning fully ambient.

20

Chapter 4

Intrinsic Dimension

A common intuition in computer vision is that while natural image data may
be of high ambient dimension, it actually lies on an embedded manifold of
significantly lower dimension, also known as intrinsic dimension. There is
mounting evidence which suggests that not ambient, but intrinsic dimension
of the data is a key determinant of sample complexity and learning difficulty
[Pope et al., 2021, Narayanan and Mitter, 2010].

To investigate how layer criticality behaves under varying training complexity,
we will use a generative adversarial network (GAN) to generate datasets
with a bounded intrinsic dimension, following a novel method developed by
Pope et al. [2021]. This will allow us to compare the development of critical
layers in networks trained on datasets of varying intrinsic dimension. We will
see that dataset of higher intrinsic dimension are indeed more challenging,
which leads networks to develop more critical layers.

4.1 Generative Adversarial Networks

Generative adversarial networks are a class of machine learning frameworks
introduced by Goodfellow et al. [2014]. In recent years they have been
remarkably successful at generating images mimicking those in a given
dataset. In this section we will give an overview of their structure and
introduce the BigGAN models developed by Brock et al. [2019], as we will be
using these models to generate images of bounded intrinsic dimension in the
next section.

GANs consist of two networks: A generator G tasked with generating images
mimicking those in the original dataset and a discriminator D tasked with
distinguishing between generated and real images. These two networks are
then trained simultaneously and as the discriminator gets better at identifying
generated images, the generator begins to produce images which closely

21

4. Intrinsic Dimension

Cheeseburger Blue Heron Station Wagon

Figure 4.1: Sample images of three ImageNet categories generated by a
BigGAN128 model.

resemble those in the original dataset. The generator synthesizes images
by mapping some noise vector z ∈ Rm ∼ Dnoise to an image G(z) ∈ Rk

mimicking the real ones drawn from the data distribution Ddata. A more
in-depth description of this process can be found in appendix B.

For our purposes we will use the BigGAN Models developed by Brock et al.
[2019]. These GANs have been trained to generate samples mimicking the
ImageNet dataset [Deng et al., 2009]. Since the training process of GANs
is notoriously brittle and prone to collapse, a number of regularisation
techniques were introduced. Additionally, scaling up both batch size and
model size led to more stable and effective training. As a result the BigGAN
models are able to generate high quality images of resolutions up to 512x512
pixels (see figure 4.1 for examples).

Another property of the BigGAN architecture which is very useful, is that
BigGANs are able to generate class conditional samples. To that end the
generator G takes an additional vector c ∈ [0, 1]c, where c is the number of
classes, as input. Each component of this vector c encodes the probability of
the desired image belonging to the respective class.

4.2 Intrinsic Dimension

As previously mentioned, the dimensionality of a dataset plays an important
role in determining the difficulty of the training task. To give an example,
Narayanan and Mitter [2010] show that learning a manifold requires a num-
ber of samples which increases exponentially in manifold dimension. An
intuition for this can be gained by considering the hypercube in d dimensions,
for which sampling only the vertices requires 2d measurements.

Fortunately, in practice many datasets with high ambient dimension appear
to lie on a much smaller dimensional embedded manifold. We will now

22

4.2. Intrinsic Dimension

make this notion formal:

Definition 4.1 (Intrinsic Dimension) A set of images C ⊂ Rk is said to have
intrinsic dimension d̄ if there exist a manifoldM with dimension d̄ := dimM
and an embedding ι :M→ Rk such that for every image x ∈ C there exists a point
p ∈ M with ι(p) = x.

As previously mentioned, the dimension which affects training difficulty
is the intrinsic dimension and not the dimension of the dataset space
[Narayanan and Mitter, 2010]. In particular for the case of image data,
Pope et al. [2021] show that intrinsic dimension and not image resolution
determine sample complexity.

4.2.1 Image Generation

We will now introduce the method developed by Pope et al. [2021] to generate
image sets with a bounded intrinsic dimension:

The main idea is that by setting all but d̄ entries in the noise vector z ∼ Dnoise
to zero, we can guarantee that, for a given class c ∈ Rc, the image created by
the generator G(z, c) lies on a manifold of at most dimension d̄ since G is a
Lipschitz continuous function which cannot increase dimensionality.

We can formally state this as follows:

Proposition 4.2 (Intrinsic dimension of generated image manifold) Let di-
mension d̄ and class c ∈ Rc be fixed and let

Zd̄ := {(z1, . . . , zd̄, 0 . . . , 0)|(z1, . . . , zd̄, . . . , zm) ∼ Dnoise} ⊂ Rm

be the space of truncated noise vectors.
Then the set G(Zd̄, c) is almost everywhere locally a manifold with dimension less
or equal to d̄.

Proof Using that Zd̄ is a manifold with dimension d̄ and G(· , c) is the
composition of Lipschitz continuous functions, the proposition follows from
Sard’s theorem [Sard, 1942]. �

We use this approach to generate sets of images with different implicit
dimension and can visually notice a difference: As we can see in figure 4.2,
sets with low implicit dimension have a lot of similarity between samples.
For example samples with d̄ = 8 always have a field as background and
almost no variation in situation or perspective. In contrast samples with
d̄ = 128 contain a large variety of settings and styles.

23

4. Intrinsic Dimension

d
=

8
Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

d
=

32
d

=
12

8

Figure 4.2: Image samples from datasets with varying intrinsic dimension.
Images all belong to the same ImageNet class (irish wolfhound) and were
generated by BigGAN128.

4.3 Results

In this section we will use the method detailed in the previous section to
generate datasets with varying intrinsic dimension. We will then compare
the performance and reset errors of networks trained on these datasets to
investigate the effect of training difficulty on layer criticality.

4.3.1 Dataset

Using a BigGAN128 model we generate datasets of varying intrinsic dimen-
sion resembling the CIFAR10 dataset: First we select 10 ImageNet classes
roughly corresponding to the 10 CIFAR10 classes (see appendix B for more
details). Then for each each d̄ in {32, 48, 64, 96, 128} we generate 6000 images
of each class with the respective intrinsic dimension. Next we combine the
data such that we now have a dataset for each intrinsic dimension with each
containing 60′000 images evenly distributed across classes. And finally, to
bring the datasets more in line with CIFAR10 and increase training speed,
we scale the images down from 128× 128 to 32× 32 by applying MaxPooling

24

4.3. Results

10
0

10
1

10
2

Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

d = 32

10
0

10
1

10
2

Epoch

d = 64

10
0

10
1

10
2

Epoch

d = 128

Train Error Test Error

Figure 4.3: Epoch-wise train and test error for models trained on datasets
of varying intrinsic dimension. Models are VGG11, trained for 100 epochs.

twice. Note that although this decreases dataset space dimension by a factor
of 16 it is still much bigger than the intrinsic dimensions which are at most
128.

4.3.2 Training Difficulty and Criticality

We will now train VGG11 networks on the generated datasets of intrinsic
dimension d̄ in {32, 48, 64, 96, 128}. The results of the experiments turn out
just as intuition might suggest: As intrinsic dimension increases the networks
have more difficulty learning the data and previously ambient layers turn
critical. While intuitively expected, this is a new result previously unknown
in the literature. Moreover, this trend is a clear indication that a structured
and balanced complexity allocation takes place during the training of deep
learning architectures.

Training Difficulty

When we compare training difficulty across datasets with varying intrinsic
dimension our results are in line with those reported by Pope et al. [2021]:
As the intrinsic dimension gets higher the networks take longer to train and
incur higher test error.

As we can see in figure 4.3 it takes roughly ten times the number of training
epochs for a model trained on a dataset with d̄ = 128 to reach the interpo-
lation threshold compared to a model with d̄ = 32. Furthermore, while at
d̄ = 32 the model is able to achieve almost zero test error, a model trained at
d̄ = 128 only reaches around 10%.

This signifies that intrinsic dimension is indeed a key factor in training
difficulty and varying intrinsic dimension is a valid way of studying the
effects of varying training difficulty on layer criticality.

25

4. Intrinsic Dimension

Test Error

32
48

64
96

12
8

D
im

en
si

on
 d

ConvS1B1

ConvS2B1

ConvS3B1

ConvS3B2

ConvS4B1

ConvS4B2

ConvS5B1

ConvS5B2

FCN1
FCN2

Final Linear
Layer

0.2

0.4

0.6

0.8

Er
ro

r

Figure 4.4: Layer-wise reset error for datasets of varying intrinsic dimen-
sion. Same layout as figure 3.3, but each row now corresponds to the test
and reset errors of a model trained on the generated dataset with specified
intrinsic dimension.

Layer Criticality

As we increase intrinsic dimension from 32 to 128 the reset error of layers
does indeed react: While almost all layers are ambient at d̄ = 32, as the
intrinsic dimension increases, we can see layers "activating" and switching
from ambient to critical. But this effect is not distributed uniformly across
the network: The layers close to the input quickly turn critical, while those
further away are barely affected and stay ambient (see figure 4.4). This shows
that the layers turning critical is not simply a byproduct of an overall increase
in test error.

These results are significant as they suggest that the difficulty of the training
task plays an important role in determining which layers turn critical and
which turn ambient. We will elaborate on this further in chapter 5.

If we compare the mean and variance of the reset error across layers to the
train and test error for varying dimensions (see figure 4.5), we can see that as
in chapter 3 the mean reset error is correlated with the test error. Furthermore,
we can see the variance in reset error increase as initially ambient layers turn
critical.

26

4.3. Results

40 60 80 100 120
Dimension d

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Er
ro

r

Train Error
Test Error

(a) Test and train error

40 60 80 100 120
Dimension d

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

R
es

et
 E

rro
r

(b) Mean and variance of the reset error across
layers

Figure 4.5: Training and layer criticality metrics as a function of intrinsic
dimension of the training dataset.

27

Chapter 5

Conclusion

In this chapter we will first discuss the experimental results from the previous
chapters to develop a unifying view. We will then outline possible avenues
for further research into this topic.

5.1 Conjecture

The results described in chapters 3 and 4 allowed us to gain significant insight
into the behavior of critical and ambient layers. We saw that a structured com-
plexity allocation takes place during training which seems driven by width
and reactive to training complexity. This leads us to informally conjecture
the following:

Conjecture 2 (Behavior of Layer Criticality) Training complexity is a key fac-
tor in determining which layers turn critical or ambient. Network width drives the
differentiation into critical and ambient layers but has no influence over which layers
are critical or ambient in the first place.

Note that our conjecture is slightly different than the alternative explanation
As model capacity increases beyond the interpolation threshold, neural networks
begin to self-regularize by reducing the number of critical layers.
In line with this alternative explanation, as noted in chapter 3, we initially
expected that increasing model width past the interpolation threshold would
lead to previously critical layers turning fully ambient one by one. Doing
so would mirror the behavior we observed in chapter 4 where increasing
training difficulty would lead previously ambient layers to turn critical. But
we never saw previously critical layers turn ambient past the interpolation
threshold and many turned even more critical. Width thus seems to have a
fundamentally different effect on layer criticality than training difficulty. This
means layer criticality cannot be described by overcapacitation alone and this
alternative explanation does not adequately capture its behavior.

29

5. Conclusion

In contrast, conjecture 2 is consistent with our observations and, as we will
see in the next section, also makes sense considering related results.

5.2 Discussion

We can gain an intuition for the idea that width has no influence over which
layers turn critical or ambient by considering the following: While in theory
networks with sufficient width and one hidden layer are universal function
approximators, in practice a certain network depth enables models to develop
higher level input representations and simplifies the training task [Arora et al.,
2018, Lederer, 2021], allowing deep networks to solve problems which would
be infeasible with just one hidden layer. This suggests that a certain amount
of "active" layers is required for a given training task, which increasing width
cannot change.

Additionally, layers which can be reset to their initial state decrease model
complexity, as they can be viewed as just a nonlinear transformation of the
output space which does not change during training. The separation into fully
ambient and fully critical layers is therefore a type of self-regularization in
neural networks. And since width has been observed to be a self-regularizing
force in neural networks [Belkin et al., 2019, Mei and Montanari, 2019], it is
not surprising for width to be a key factor in this phenomenon.

Furthermore, it is interesting that for double descent in width, the second
drop in test error coincides with the separation into fully critical and ambient
layers. As previously mentioned it is a commonly held belief that double
descent is caused by some kind of self-regularization which causes the net-
work to choose an interpolating solution that generalizes well. Considering
the development of critical and ambient layers can be viewed as a kind of
self-regularization, one might suspect a possible connection between layer
criticality and double descent. However, our results are too limited to suggest
such a connection exists with confidence.

Note that although training complexity is a key factor in determining layer
criticality, it is not the only one. Architectural choices such as the number and
type of layers also play a significant role. As an example we can consider the
case of residual networks: Zhang et al. [2019] found that for these network
architectures, instead of the layers closer to the input turning critical and
those further away turning ambient, we see that the first layers of the residual
blocks turn critical, while others are ambient. This makes sense considering
the findings of Veit et al. [2016], which show that residual networks behave
as ensembles of smaller, shallow networks.

In conclusion, we believe that layer criticality plays an important role in
understanding the generalization behavior of deep neural networks and

30

5.3. Further Directions

our results allow us to significantly advance our understanding of this
phenomenon.

5.3 Further Directions

There are many promising directions one could further pursue that were
unfortunately beyond the scope of this thesis:

As mentioned in the previous section, network architecture also plays an
important role in determining layer criticality and one could try to identify
which layers turn critical under what circumstances.

Another interesting direction would be to further investigate the possible link
between double descent and layer criticality to determine if and how layer
criticality impacts generalization: Zhang et al. [2019] used layer criticality
to improve existing generalization bounds and as we saw increasing width
leads to a sharper separation into critical and ambient layers. This could
possibly be combined into generalization bounds capable of explaining the
double descent in width.

And finally, one could try to understand how width causes the separation into
critical and ambient layers. To that end one could consider layer criticality
in the infinite width limit or develop synthetic training tasks to isolate this
behavior.

5.4 Acknowledgments

We thank Professor Fanny Yang for suggesting this interesting topic and
overseeing this thesis. We thank Professor Nicolai Meinshausen for assisting
in the organization of this thesis.

We also thank Nicolò Ruggeri for many useful discussions and suggestions.
Without his guidance this thesis wouldn’t have been possible.

31

Appendix A

Training and Model Parameters

A.1 Model Architectures

All models except those trained on MNIST are of VGG11 architecture devel-
oped by Simonyan and Zisserman [2015]. VGG11 consists of convolutional
layers of increasing width interspersed with MaxPooling layers organized in
blocks, followed by two hidden layers of width 4096. For an input of 32× 32
images this architecture has 28′144′010 parameters.

Models trained on MNIST use a reduced VGG11 architecture with the final
convolutional block removed

A.2 Training Parameters

In line with Zhang et al. [2019] we use SGD with momentum and a base
learning rate of 0.01. We do not use batch normalization or any type of exter-
nal regularization since we want to keep the number of factors influencing
layer criticality as small as possible. Models use a batch size of 128 and were
trained for 100 epochs. All results reported in this thesis are averaged over at
least five trials to reduce noise.

In all experiments, except those concerning double descent in varying training
time (section 3.3), a piecewise constant learning rate decay is used: For the
double descent in width experiments (section 3.2) we use the same learning
rate decay as Zhang et al. [2019]: learning rate is scaled down by a factor
of 0.2 after epochs 30, 60 and 90. In the case of varying intrinsic dimension
(section 4.3.2) we are worried about the learning rate decaying too quickly
and only scale it down once by 0.2 at epoch 70.

33

Appendix B

GANs and Dataset Generation

B.1 GANs In-depth

Here we will give a more in-depth description of the learning process of
GANs:

As previously mentioned GANs consist of two networks: A generator G
tasked with generating images mimicking those in the original dataset and
a discriminator D tasked with distinguishing between generated and real
images.

Formally the training task can be described as follows: Let

Dθ : Rk → [0, 1]

be the discriminator network with parameters θ mapping images in the input
space Rk to [0, 1] representing probability of the input image being real. Note
that for the sake simplicity and uniform notation we will represent images
as vectors in Rk Conversely let

Gϕ : Rm → Rk

be the generator network with parameters ϕ, generating images by mapping
a noise vector in Rm to the image space Rk.

With samples from the data distribution x ∈ Rk ∼ Ddata and samples from the
noise distribution z ∈ Rm ∼ Dnoise we now simultaneously train the discrimi-
nator and the generator networks: Dθ is trained to maximize the probability
of assigning correct labels to training samples and samples generated by G:

max
θ

Ex∼Ddata [log Dθ(x)] + Ez∼Dnoise [log(1− Dθ(Gϕ(z)))]

Conversely Gϕ is trained to minimize the probability of Dθ classifying a
generated image as fake:

min
ϕ

Ez∼Dnoise [log(1− Dθ(Gϕ(z)))]

35

B. GANs and Dataset Generation

The specific procedure for training both objectives simultaneously is outlined
in algorithm 1.

Algorithm 1: Training procedure for generative adversarial nets. The
number of discriminator updates k per training iteration is a hyperparam-
eter.
for number of training iterations do

Update the discriminator:
for k steps do

Sample a batch of m noise samples z(1), . . . , z(m) ∼ Dnoise

Sample a batch of m data samples x(1), . . . , x(m) ∼ Ddata
Perform a stochastic gradient descent update on the discriminator
with loss

− 1
m

m

∑
i=1

[
log Dθ(x(i)) + log(1− Dθ(Gϕ(z(i))))

]
Update the generator:
Sample a batch of m noise samples z(1), . . . , z(m) ∼ Dnoise
Perform a stochastic gradient descent update on the generator with
loss

1
m

m

∑
i=1

log(1− Dθ(Gϕ(z(i))))

B.2 Dataset Generation

As mentioned in chapter 4, the datasets of varying intrinsic dimension were
created by selecting 10 ImageNet classes which roughly correspond to the
10 classes of Cifar10. Figure B.1 shows samples (which have already been
scaled down to 32× 32 resolution) drawn from the generated dataset of
intrinsic dimension 64 labeled with both the CIFAR10 class name and the
corresponding ImageNet class name.

36

B.2. Dataset Generation

Airliner Airplane Station Wagon Car American Egret Bird Tabby Cat Cat Gazelle Deer

Irish Wolfhound Dog Tailed Frog Frog Ox Horse Speedboat Ship Trailer Truck Truck

Figure B.1: Sample images of each class of the generated datasets. Labeled
by their ImageNet class and the CIFAR10 class they are supposed to cor-
respond to. The dataset has intrinsic dimension d̄ = 64 and the images have
been downscaled from 128× 128 to 32× 32 by applying MaxPooling twice.

37

Appendix C

Additional Plots

C.1 Correlation of Test Error and Mean Reset Error

In figure C.1 we can see that, as previously mentioned, test error does
correlate with mean reset error under some circumstances. We see that
this correlation is strongest when model capacity is small (i.e. EMC < n
which means we are in the underparameterized regime) and starts to break
down as model capacity increases (i.e. EMC > n which means we are in the
overparameterized regime).

39

C. Additional Plots

0.30 0.35 0.40 0.45 0.50 0.55
Test Error

0.55

0.60

0.65

0.70

0.75

M
ea

n
R

es
et

 E
rro

r

Width Parameter
0.2
0.4
0.6
0.8
1.0

(a) CIFAR10 and varying width

0.70 0.75 0.80 0.85 0.90
Test Error

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

M
ea

n
R

es
et

 E
rro

r

Width Parameter
0.4
0.8
1.2
1.6
2.0

(b) CIFAR100 and varying width

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Test Error

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

M
ea

n
R

es
et

 E
rro

r

Epoch
0
20
40
60
80

(c) CIFAR10 and varying training epochs

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Test Error

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

M
ea

n
R

es
et

 E
rro

r

Epoch
0
20
40
60
80

(d) CIFAR100 and varying training epochs

Figure C.1: Scatterplots of test error and mean reset error across datasets
and observed hyperparameter. Each dot denotes the test error and the mean
reset error for a model trained with a specific width parameter / trained for
a specific number of epochs. Dots which are colored brighter correspond
to higher width parameter / more training epochs. Models are of VGG11
architecture and are trained on CIFAR10 and CIFAR100 with 15% label noise
added.

40

C.2. Layer-wise criticality for varying training epochs

C.2 Layer-wise criticality for varying training epochs

Figure C.2 allows us to gain a more in-depth look at the development of
layer criticality in the case of varying training epochs. We can again see the
separation into critical and ambient layers as shown in figure 3.8. We can
also see how most of the change in layer criticality happens before the model
reaches the interpolation threshold. This is especially clear if we compare
this figure to the corresponding figure 3.6 for the case of varying width.

The separation into critical and ambient layers doesn’t continue past the
interpolation threshold, which further solidifies the idea that increasing
training epochs doesn’t cause layer to separate further, but layers can be
prevented from separating if the model is trained for too few epochs.

10
0

10
1

10
2

Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
es

et
 E

rro
r

CIFAR10

10
0

10
1

10
2

Epoch

0.70

0.75

0.80

0.85

0.90

0.95

1.00
CIFAR100

Test Error Critical Layers Ambient Layers Interpolation
 Threshold

Figure C.2: Layer-wise criticality and test error as a function of training
epochs. Layout it the same as in figure 3.6, but instead of model width we
vary the number of training epochs. The layers colored critical and the layers
colored ambient are also the same as in 3.6 to allow a comparison of the two
figures.

41

Bibliography

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep
networks: Implicit acceleration by overparameterization. PMLR, 2018.

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian com-
plexities: Risk bounds and structural results. Journal of Machine Learning
Research, 3(Nov):463–482, 2002.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling
modern machine learning practice and the bias-variance trade-off. PNAS,
2019.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training
for high fidelity natural image synthesis. ICLR, 2019.

Niladri Chatterji, Behnam Neyshabur, and Hanie Sedghi. The intriguing role
of module criticality in the generalization of deep networks. ICLR, 2020.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A
Large-Scale Hierarchical Image Database. CVPR, 2009.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative
adversarial networks. NeurIPS, 2014.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding. ICLR, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features
from tiny images, 2009. URL https://www.cs.toronto.edu/~kriz/cifar.
html.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist/, 2010. URL http://yann.lecun.
com/exdb/mnist/.

43

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Bibliography

Johannes Lederer. Optimization landscapes of wide deep neural networks
are benign. arXiv preprint arXiv:2010.00885, 2021.

Song Mei and Andrea Montanari. The generalization error of random features
regression: Precise asymptotics and double descent curve. arXiv preprint
arXiv:1908.05355, 2019.

Vaishnavh Nagarajan and J. Zico Kolter. Uniform convergence may be unable
to explain generalization in deep learning. NeurIPS, 2019.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak,
and Ilya Sutskever. Deep double descent: Where bigger models and more
data hurt. ICLR, 2019.

Hariharan Narayanan and Sanjoy Mitter. Sample complexity of testing the
manifold hypothesis. NeurIPS, 2010.

Phil Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Gold-
stein. The intrinsic dimension of images and its impact on learning. ICLR,
2021.

Arthur Sard. The measure of the critical values of differentiable maps, volume 48.
American Mathematical Society, 1942.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. ICLR, 2015.

Vladimir Vapnik. The nature of statistical learning theory. Springer science &
business media, 2013.

Andreas Veit, Michael Wilber, and Serge Belongie. Residual networks behave
like ensembles of relatively shallow networks. NeurIPS, 2016.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol
Vinyals. Understanding deep learning requires rethinking generalization.
ICLR, 2017.

Chiyuan Zhang, Samy Bengio, and Yoram Singer. Are all layers created
equal? ICML, 2019.

44

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that
− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information

sheet.
− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

	Contents
	Introduction
	Related Work

	Critical Layers
	Definitions
	Setting
	Reset Error and Criticality

	Examples

	Connection to Double Descent
	Setting
	Double Descent in Width
	Results

	Double Descent in Training Epochs
	Results

	Intrinsic Dimension
	Generative Adversarial Networks
	Intrinsic Dimension
	Image Generation

	Results
	Dataset
	Training Difficulty and Criticality

	Conclusion
	Conjecture
	Discussion
	Further Directions
	Acknowledgments

	Training and Model Parameters
	Model Architectures
	Training Parameters

	GANs and Dataset Generation
	GANs In-depth
	Dataset Generation

	Additional Plots
	Correlation of Test Error and Mean Reset Error
	Layer-wise criticality for varying training epochs

	Bibliography

