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Motivation

Can we predict the spectral properties of
aperiodic block disordered systems from
their building blocks?

Governing Equation (Helmholtz)

▶Time-harmonic wave resonance in a 1D
system of N resonators D =

⊔N
i=1(x

L
i , x

R
i )

is described by:
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▶ρin,out denote the density inside and outside
the resonators, respectively.

▶Resonator array is described by the res-
onator lengths ℓi = xRi − xLi and resonator
spacings si = xLi+1 − xRi .

Subwavelength Asymptotics

▶High-contrast regime, where the density
ratio δ = ρin/ρout → 0.

▶Look for subwavelength resonant frequen-
cies, which ω(δ) → 0 as δ → 0.

Theorem 1 (Capacitance Matrix Approxi-
mation [3]). Eigenpairs of tridiagonal capac-
itance matrix V C ∈ RN×N give subwave-
length resonant modes to leading order:

ωi(δ) ≈
√
δλi, u(x) ≈

N∑
i=1

uiVi(x).
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Schematic of a block disordered system built from B1 (single resonator) and B2

(dimer) blocks, arranged according to the sequence χ = (1, 2, 1).

Block Disordered Systems

▶Construct resonator arrays by concatenat-
ing M building blocks Bχ(j) selected from a
finite set of D distinct blocks {B1, . . . , BD}.

▶Sequence χ = (χ(1), . . . , χ(M)) ∈
{1, . . . , D}M dictates the block arrange-
ment along the line.

▶Each block Bd contains ≥ 1 resonators de-
scribed by lengths ℓk(Bd), spacings sk(Bd).

▶χ is sampled independently and identically
(IID) with block probabilities p1, . . . , pD.

Propagation Matrix

▶For a single resonator, its subwavelength
propagation matrix at frequency λ is:

Pℓi,si(λ) =

(
1− siℓiλ si
−ℓiλ 1

)
∈ SL(2,R).

▶Pℓi,si(λ) propagates (u, u′)⊤ from the left of
xLi to the left of xLi+1.

▶Block Propagation: For a block Bd,
PBd

(λ) =
∏

k Pℓk(Bd),sk(Bd)(λ).

▶Block Bandgap: λ is in the bandgap of Bd

if |trPBd
(λ)| > 2 (exponential decay, DoS

vanishes).

Saxon-Hutner Type Result

Theorem 2. If |trPBd
(λ)| > 2 for every block

Bd, then the array of blocks Bχ(j) has a
bandgap at frequency λ.
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(Left) Maximal propagation matrix eigenvalue |ξ2(λ)| for single resonator (B1) and
dimer (B2) blocks. Vertical lines are eigenvalues of a random system made from
these blocks with color indicating localisation. (Right) Cumulative Density of States
(CDF) for the random system, showing distinct spectral regions.

Spectral Regions

Spectrum of a block disordered system can
be divided into three distinct regions:

▶Shared Pass Band: Intersection of the
pass bands of all block types. Modes here
are weakly localised.

▶Bandgap: Intersection of the bandgaps of
all block types. The DoS here is zero.

▶Hybridisation Region: In the pass band
of some blocks but in the gap of others.
Supports highly localised hybridised bound
states. Self-similar DoS.
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DoS in the hybridisation region (2, 3) for random systems of single resonator (B1)
and dimer (B2) blocks. Peaks correspond to modes of local dimer “meta-atom”
arrangements like (2), (2, 2), (2, 1, 2). Self-similarity is especially clear for low dimer
density p2 (Right)

Self-similar DoS

▶Hybridisation regions: In the pass band of
some blocks but the gap of others.

▶Local arrangements of pass band blocks
(Meta-atoms) act as isolated defects and
contribute resonant modes in the hybridis-
ation region, leading to a self-similar DoS.

▶DoS slightly smoothed by weak interac-
tions between these modes (hybridisation)

Meta-atom DoS Estimate

▶Goal: Estimate the DoS in hybridisation
regions.

▶Approach: Leverage the fractal-like con-
centration of DoS around meta-atom
modes.

▶Key Steps:
1. Pre-compute meta-atom spectra when

embedded in bandgap blocks.
2. Scan the long disordered sequence χ: it-

eratively match the largest possible meta-
atom, add its pre-computed spectrum to
the total, and advance.

=⇒ Amortised O(N) complexity.

Non-IID Sampling

The meta-atom estimate is robust beyond
IID block sampling. It effectively handles:

▶Bounded-length Sampling: Limits con-
secutive identical blocks.

▶Hyperuniform Sampling: Suppresses
large-scale density fluctuations (e.g., via
chunking or softmax sampling).

▶Quasiperiodic Sampling: Deterministic,
non-periodic sequences (e.g., Fibonacci).

Conclusion and Outlook

▶Constituent block band properties predict
spectral regions.

▶Meta-atom approach enables rapid DoS
estimation in hybridisation regions.

▶Outlook: Higher dimensions (2D/3D), non-
Hermitian block disordered systems
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