

Wave localisation and density of states in aperiodic block disordered systems

H. Ammari¹, S. Barandun¹, B. Davies², E.O. Hiltunen³, A. Uhlmann¹ ¹ETH Zurich, CH, ²University of Warwick, UK, ³University of Oslo, NO

Motivation

Can we predict the spectral properties of aperiodic block disordered systems from their building blocks?

Propagation Matrix

► For a single resonator, its *subwavelength propagation matrix* at frequency λ is:

Self-similar DoS

- ► *Hybridisation regions*: In the pass band of some blocks but the gap of others.
- ► Local arrangements of *pass band* blocks (*Meta-atoms*) act as *isolated defects* and contribute resonant modes in the hybridisation region, leading to a *self-similar* DoS.

Governing Equation (Helmholtz)

► Time-harmonic wave resonance in a 1D system of N resonators $\mathcal{D} = \bigsqcup_{i=1}^{N} (x_i^{\mathsf{L}}, x_i^{\mathsf{R}})$ is described by:

> $\begin{cases} \frac{\mathrm{d}^2}{\mathrm{d}x^2} u + \omega^2 u = 0, & \text{in } \mathbb{R} \setminus \{x_i^{\mathsf{L},\mathsf{R}}\}, \\ u|_{\mathsf{R}}(x_i^{\mathsf{L},\mathsf{R}}) - u|_{\mathsf{L}}(x_i^{\mathsf{L},\mathsf{R}}) = 0, \end{cases}$ $\left\| \frac{\mathrm{d}u}{\mathrm{d}x} \right\|_{\mathrm{in}} (x_i^{\mathrm{L},\mathrm{R}}) - \frac{\rho_{\mathrm{in}}}{\rho_{\mathrm{out}}} \frac{\mathrm{d}u}{\mathrm{d}x} \right\|_{\mathrm{out}} (x_i^{\mathrm{L},\mathrm{R}}) = 0$

- $\blacktriangleright \rho_{in,out}$ denote the density inside and outside the resonators, respectively.
- ► Resonator array is described by the *res*onator lengths $\ell_i = x_i^{\mathsf{R}} - x_i^{\mathsf{L}}$ and resonator spacings $s_i = x_{i+1}^{\mathsf{L}} - x_i^{\mathsf{R}}$.

Subwavelength Asymptotics

 $P_{\ell_i,s_i}(\lambda) = \begin{pmatrix} 1 - s_i \ell_i \lambda \ s_i \\ -\ell_i \lambda \ 1 \end{pmatrix} \in \mathrm{SL}(2,\mathbb{R}).$

- $\blacktriangleright P_{\ell_i,s_i}(\lambda)$ propagates $(u, u')^{\top}$ from the left of x_i^{L} to the left of x_{i+1}^{L} .
- **Block Propagation:** For a block B_d , $P_{B_d}(\lambda) = \prod_k P_{\ell_k(B_d), s_k(B_d)}(\lambda).$
- **Block Bandgap:** λ is in the **bandgap** of B_d if $|\operatorname{tr} P_{B_d}(\lambda)| > 2$ (exponential decay, DoS) vanishes).

Saxon-Hutner Type Result

Theorem 2. If $|\operatorname{tr} P_{B_d}(\lambda)| > 2$ for every block B_d , then the array of blocks $B_{\chi^{(j)}}$ has a **bandgap** at frequency λ .

► DoS slightly smoothed by weak interactions between these modes (*hybridisation*)

Meta-atom DoS Estimate

- ► **Goal:** Estimate the DoS in hybridisation regions.
- ► Approach: Leverage the fractal-like concentration of DoS around meta-atom modes.
- ► Key Steps:
- 1. Pre-compute meta-atom spectra when embedded in bandgap blocks.
- 2. Scan the long disordered sequence χ : *it*eratively match the largest possible meta*atom*, add its pre-computed spectrum to the total, and advance.

- ► *High-contrast regime*, where the density ratio $\delta = \rho_{\rm in}/\rho_{\rm out} \to 0$.
- Look for subwavelength resonant frequen*cies*, which $\omega(\delta) \to 0$ as $\delta \to 0$.

Theorem 1 (Capacitance Matrix Approximation [3]). Eigenpairs of tridiagonal capacitance matrix $VC \in \mathbb{R}^{N \times N}$ give subwavelength resonant modes to leading order:

 $\omega_i(\delta) \approx \sqrt{\delta \lambda_i}, \quad u(x) \approx \sum u_i V_i(x).$

Schematic of a block disordered system built from B_1 (single resonator) and B_2 (dimer) blocks, arranged according to the sequence $\chi = (1, 2, 1)$.

Block Disordered Systems

(Left) Maximal propagation matrix eigenvalue $|\xi_2(\lambda)|$ for single resonator (B_1) and dimer (B_2) blocks. Vertical lines are eigenvalues of a random system made from these blocks with color indicating localisation. (Right) Cumulative Density of States (CDF) for the random system, showing distinct spectral regions.

Spectral Regions

Spectrum of a block disordered system can be divided into *three distinct regions*:

- ► Shared Pass Band: Intersection of the pass bands of *all* block types. Modes here are weakly localised.
- **Bandgap:** Intersection of the bandgaps of *all* block types. The DoS here is zero.
- ► Hybridisation Region: In the pass band of *some* blocks but in the gap of *others*. Supports highly localised *hybridised bound*

 \implies Amortised $\mathcal{O}(N)$ complexity.

Non-IID Sampling

The meta-atom estimate is *robust beyond IID block sampling*. It effectively handles:

- **Bounded-length Sampling:** Limits consecutive identical blocks.
- ► Hyperuniform Sampling: Suppresses large-scale density fluctuations (e.g., via chunking or softmax sampling).
- ► Quasiperiodic Sampling: Deterministic, non-periodic sequences (e.g., Fibonacci).

Conclusion and Outlook

Constituent block band properties predict

- Construct resonator arrays by concatenating M building blocks $B_{\chi^{(j)}}$ selected from a finite set of D distinct blocks $\{B_1, \ldots, B_D\}$. Sequence $\chi = (\chi^{(1)}, \dots, \chi^{(M)}) \in$ $\{1,\ldots,D\}^M$ dictates the block arrangement along the line.
- \blacktriangleright Each block B_d contains ≥ 1 resonators described by lengths $\ell_k(B_d)$, spacings $s_k(B_d)$. $\blacktriangleright \chi$ is sampled *independently and identically* (IID) with block probabilities p_1, \ldots, p_D .

states. Self-similar DoS.

DoS in the hybridisation region (2,3) for random systems of single resonator (B_1) and dimer (B_2) blocks. Peaks correspond to modes of local dimer "meta-atom" arrangements like (2), (2, 2), (2, 1, 2). Self-similarity is especially clear for low dimer density p_2 (**Right**)

spectral regions.

- ► Meta-atom approach enables rapid DoS estimation in hybridisation regions.
- ► Outlook: Higher dimensions (2D/3D), non-Hermitian block disordered systems

References

- [1] Habib Ammari, Silvio Barandun, Bryn Davies, Erik Orvehed Hiltunen, and Alexander Uhlmann. Universal estimates for the density of states for aperiodic block subwavelength resonator systems, May 2025.
- [2] Habib Ammari, Silvio Barandun, and Alexander Uhlmann. Subwavelength Localisation in Disordered Systems, May 2025.
- [3] Florian Feppon, Zijian Cheng, and Habib Ammari. Subwavelength Resonances in One-Dimensional High-Contrast Acoustic Media. SIAM Journal on Applied Mathematics, 83(2):625-665, April 2023.