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High-contrast resonators with balanced non-hermiticity
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® Array of 2N resonators in 1D, symmetric about the origin

!

e Introduce two types of non-Hermiticity: gain and loss and non-reciprocal gauge potential®
® Modal decomposition yields modified Helmholtz equation for resonant modes

6= pp/p < 1,
contrast ratio
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deu_F?u,o’ in R\ UD;
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2 w .
Lu+y(x)Lu+ Vb(X)Qu:O, in D;
ul+ —ul- =0, on 0D;
), —d|_ =0, on 9D;

u satisfies Sommerfeld radiation condition

(1)

1Jana and Sirota, “Emerging Exceptional Point with Breakdown of Skin Effect in Non-Hermitian Systems”.
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® Array of 2N resonators in 1D, symmetric about the origin
e Introduce two types of non-Hermiticity: gain and loss and non-reciprocal gauge potential®
® Modal decomposition yields modified Helmholtz equation for resonant modes
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Sau+y(x)Lu+ u=0, in D;

dx? d: vb(x)2 (1)
= ; “|d+ - “|; =0, on dD; Goal: Understand

= pb/p <L f9u| — ¢|_ =0, on dD; | system as we tune 6

contrast ratio u satisfies Sommerfeld radiation condition from 0 to 7/2

1Jana and Sirota, “Emerging Exceptional Point with Breakdown of Skin Effect in Non-Hermitian Systems”.
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Subwavelength high-contrast regime

® We are looking for Subwavelength resonant frequencies in the high-contrast regime, i.e.
resonant frequencies w with
w—0 as J§—0
for which there exist non-trivial solutions to the Helmholtz equation.

® Subwavelength because the size of the resonators stays fixed while the wavelength — oo.

2Habib Ammari et al., “Mathematical Foundations of the Non-Hermitian Skin Effect”.
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Subwavelength high-contrast regime

® We are looking for Subwavelength resonant frequencies in the high-contrast regime, i.e.
resonant frequencies w with
w—0 as J§—0

for which there exist non-trivial solutions to the Helmholtz equation.

® Subwavelength because the size of the resonators stays fixed while the wavelength — oo.

Theorem

There exist exactly 2 x 2N subwavelength resonant frequencies which are approximated by
eigenvalues and eigenvectors of a capacitance matrix® C%7 € C?N*2N e for an eigenpair
(i, a;) of C?7 we have

wi = +£/6XN +O(8) and ui(x)=a? +0(5) xe D

2Habib Ammari et al., “Mathematical Foundations of the Non-Hermitian Skin Effect” .
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Capaticance matrix

Goal: Solve eigenproblem for capacitance matrix
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with o = 1= — 75 =vycoth(v/2),n = /5.8 = ==

Here we assumed s = £ = 1 for the sake of simplicity. The general case functions analogously.
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Capaticance matrix

Goal: Solve eigenproblem for capacitance matrix

a+pB 7
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0 _ oy — (€ n 0 B_aln 2NX2N
C 7VC7< 0 ‘67IQIN> 7o B e R
PR n
- C%7 is tridiagonal and almost
Toeplitz in upper / lower part a b
n o at+p

. PCOYP = CO
with o= == — =5 = ycoth(v/2),n = = 5.8 = =~

Here we assumed s = £ = 1 for the sake of simplicity. The general case functions analogously.
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PT-symmetry and Exceptional Points

PCOYP = (%7 is a PT-symmetry

Thus, the eigenvalues of C%" are real or come in complex conjugate pairs, i.e.
a(CP7) = o (CP)

® Because C?7 is tridiagonal: Eigenspaces are always one-dimensional

Because C?7 is PT-Symmetric: Real eigenvalues must meet pairwise to become complex

C?7 has real spectrum for = 0
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PT-symmetry and Exceptional Points

PCOYP = (%7 is a PT-symmetry

Thus, the eigenvalues of C%" are real or come in complex conjugate pairs, i.e.
a(CP7) = o (CP)

® Because C?7 is tridiagonal: Eigenspaces are always one-dimensional

® Because C?7 is PT-Symmetric: Real eigenvalues must meet pairwise to become complex

e (%7 has real spectrum for # =0

We call 6 € [0,7/2] an exceptional point if C?7 is not diagonalisable.
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Decoupling (# = 0)
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Behaviour

Decoupling (6 = 0.1)
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Chebyshev formalism

Exploit the tridiagonal Toeplitz structure of C%7 to recursively determine its eigenvectors:

For \ € C an eigenvalue of C*7, the corresponding eigenvector is given by u = (x,y)" where

x= (Rolu 00 (73 PO+ (e73)" Puea(u()).
. @)
y=¢ <(e¥)” Puca(u™" ), -, (e7F) P(u" (V). Po(ue(A))> :

With affine transformation p®(X) := e~ A1 sinh 3 — cosh 3 and
Po(x) == Un(x) + e~ 2 U,_1(x), the sum of two Chebyshev polynomials of the second kind.
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‘ Continuity across the interface:
Py-1(n=%(\)

Prn(n=?(N))




Chebyshev formalism

Exploit the tridiagonal Toeplitz structure of C?7 to recursively determine its eigenvectors:

For \ € C an eigenvalue of C*7, the corresponding eigenvector is given by u = (x,y)" where

x= (Rolu 00 (73 PO+ (e73)" Puea(u()).
. @)
y=C <(ez)” Puaa(p ).+, (77 ) Pu(u~" (V). Po(ue(A))> -

With affine transformation pu®(\) == e‘ig)\% sinh 2 — cosh Z and
Po(x) == Un(x) + e~ 2 U,_1(x), the sum of two Chebyshev polynomials of the second kind.
‘ Continuity across the interface: Characteristic equation:

7 Puf(N) 7 P’ (V) Pu(p?(A\)Pu(p?(N) v
c=¢- € Pl ) P ()P 7 0)) — ©

Pn-1(n=?(N)




Proofs
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Understanding the characteristic equation asymptotically
Pr(u?(A) P (1 (N))

Goal: Understand Py (17O Py (=7 () = €T as N > .

Idea: Write Chebyshev polynomials of second kind as

a(p)™ — a(p)~ (D)
2V +FI/p—1 7

where a(p) = p+ i+ 1y/p — 1 for p € C and find

’Dn(p‘) _ Un(/")—'_e_fuﬂ*l(:u) ﬂ)a(ﬂ) as N — 0o

Pn—l(:u) Un—l(,uf) + e_% Un—2(H)
outside of any e-neighbourhood of [-1,1].

Un(p) =
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Understanding the characteristic equation asymptotically

Pr(u?(A) P (1 (N))
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Goal: Understand Py (17O Py (=7 () €' as N — co.

Idea: Write Chebyshev polynomials of second kind as

a(p)”“ _ a(u)—(n—kl)
2Vp+1yp—1 7

where a(p) = p+ /u+ 1y/u—1 for u € C and find

P”(/J’) — Un(/J,) + e_7Un,1(,u) ﬂ) B(N) as n — 0o

Pn—l(:u) Un—l(,uf) + e_% Un—2(H)

outside of any e-neighbourhood of [-1,1].
= |a(p)| controls the asymptotic growth behaviour of P,(x) as n — oo

Un(p) =




Proofs
0e00

Understanding the characteristic equation asymptotically
P (i’ (M) Pu(p(N))

— Ay
Goal: Understand P (")) Py (P (V) — €' as N — co.

Idea: Write Chebyshev polynomials of second kind as

( )n+1 Q(M) (n+1)

U =
n(ﬂ) ﬁ\/ﬁ )
where a(p) = p+ i+ 1y/p — 1 for p € C and find lal =2 [af =1 la| =1.5

Pn(ﬂ) _ Un(/")"_e_fun*l(:u) ﬂa(ﬂ) as n — oo

Poo1(n)  Up-a(p) + €2 Upa(p)
outside of any e-neighbourhood of [-1,1].
= |a(u)| controls the asymptotic growth behaviour of P,(u) as n — oo
We can understand a:
® |a] > 1 and level sets of |a| = ¢ are ellipses for ¢ > 1 and [-1,1] for c =1
® Forany v > 0,0 € [0,7/2], a(u?(\))a(p=%()\)) = € has exactly two solutions, both on
the real line




Location of eigenvalues

Lemma

For any € > 0 there exists a N € N such that all but two
eigenvalues of C%7 lie in e-neighbourhood of red/blue
lines.

1/24
Proof Idea:
e a(u?(N))a(r=%()\)) = e has exactly two solutions,
both real
0 -9 if. -
* FGra e - 2 O )
outside e-neighbourhood of red / blue lines

—124 ¢ aC)

(W) -1,1]
— )7L ® Thus for N large enough charateristic equation has
0 2 1 exactly two solutions outside these neighbourhoods

® But as charateristic equation is equivalent to a
degree 2N polynomial, the 2N — 2 remaining
solutions must lie in the e-neighbourhoods



Topological origin of eigenvector decoupling
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—> x decays iff



Topological origin of eigenvector decoupling

E’ ={XeC||a(u’(N)| < e?}, location in ellipse determines growth behaviour
/ ® Recall that

x= (Pl O0). (7% ) P ().

A 21 ® Thus ":;)1) = e*%% —> x decays iff
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Topological origin of eigenvector decoupling

E’ ={XeC||a(u’(N)| < e?}, location in ellipse determines growth behaviour
/ ® Recall that

e (e7E) Pt )

21 o -3 Al () 6. N decays iff

S * Thus Zgm = ™2 g won
e e SRR TR |a(u’(N)| < e?
RN Index
* y grows iff |a(u~(N\))| < e?

E? turns out to be exactly the interior
of the ellipse drawn out by the Toeplitz
symbol z € T+ € (Bz + a +nz71)
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@ Introduced two kinds of non-Hermiticity to 1D resonator array via energy gain/loss and
non-reciprocal gauge potential in a balanced and thus PT-symmetric way

® Used capacitance matrix approximation to reduce the subwavelength resonance problem to
a finite eigenproblem on tridiagonal Toeplitz matrix with interface

® Used Chebyshev polynomials to recursively construct eigenvectors and got characteristic
equation for eigenvalues

@ Found limit a(u) of Chebyshev polynomial ratios and used it to understand characteristic
equation and decoupling asymptotically
—> Eigenvalues go through exceptional points and corresponding eigenmodes begin to
decouple as gain-to-loss ratio € is increased

® Found the topological origin of the decoupling by relating it to the winding of Toeplitz
symbols
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Outlook
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® Findings could be extended and embedded into larger framework for tridiagonal interfaced
Toeplitz matrices
® Decoupling into delocalized modes for three-part resonator arrays
® Findings are also be applicable to quantum mechanical setting

® Use exceptional points to get sensor arrays with higher order sensistivity
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® Findings could be extended and embedded into larger framework for tridiagonal interfaced
Toeplitz matrices
® Decoupling into delocalized modes for three-part resonator arrays
® Findings are also be applicable to quantum mechanical setting

® Use exceptional points to get sensor arrays with higher order sensistivity

Questions?



Capaticance matrix approximation

The subwavelength resonant frequencies can be approximated by an eigenvalue problem:

Theorem (From?)

The N subwavelength eigenfrequencies w;, as 6 — 0, are

wi = VoA + 0(5),

where (Ai)i<i<n are the eigenvalues of the eigenvalue problem

C7 is the capacitance matrix. We

=107 5. — \.a;
VL Cha = Aia can explicitly find its entries.

with V. = vZly and L;j = £;5;. Furthermore, let u; be a subwavelength eigenmode corresponding to w;
and let a; be the corresponding eigenvector of VL= CY. Then,

ui(x) = a” + O(8) for x € D;,

where a¥) denotes the j-th entry of the eigenvector.

3Feppon, Cheng, and Ammari, Subwavelength Resonances in 1D High-Contrast Acoustic Media.



Chebyshev Corollaries

® For 0 < f < ¢ all eigenvalues of C%" are real. In this regime the eigenvectors are
symmetric about their middle = use Equation (2) and C?" diagonalisable for § = 0.

® For § = /2 all eigenvalues of C?7 lie on the imaginary axis. Thus they all must have
passed through an exceptional point = use charateristic equation and the fact that Uy
and Up_; are fully interlaced.




Density of exceptional points

Theorem
. . . o o o o e0ccoce For any9 > 0 we can flnd a N such that all but two
0 eigenvalues of C%7 are away from the real line and must
thus have passed through an exceptional point.
= 1077 gy Proof Idea:
fi;i ® Red / blue lines are away from the real line
1072 5 eN! LS ® Pick e-neighbourhoods of red / blue lines that don't
X106 %100 100 2% 101 3 % 10! touch the real line

N ® Use uniform convergence from last slide to find N

such that all but two eigenvalues are in these
e-neighbourhoods
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