Introduction 0000		Behaviour O		Proofs 0000	Conclusion 00
Tu	nable Localisatio	n in Parity-Tir	ne-Svmr	netric Resonator Array	S
	wit	h Imaginarv G	auge Po	tentials	
	Habib Ammari	Silvio Barandun	Ping Liu	Alexander Uhlmann	
				<u> </u>	
		ETH Z	ürich		
		Waves 2024,	July 2024		

Introduction		
0000		

High-contrast resonators with balanced non-hermiticity

• Array of 2N resonators in 1D, symmetric about the origin

 δ

- Introduce two types of non-Hermiticity: gain and loss and non-reciprocal gauge potential¹
- Modal decomposition yields modified Helmholtz equation for resonant modes

$$\begin{cases} \frac{d^2}{dx^2}u + \frac{\omega^2}{v^2}u = 0, & \text{in } \mathbb{R} \setminus \bigcup D_i \\ \frac{d^2}{dx^2}u + \gamma(x)\frac{d}{dx}u + \frac{\omega^2}{v_b(x)^2}u = 0, & \text{in } D_i \\ u|_+ - u|_- = 0, & \text{on } \partial D_i \\ \frac{d^2}{dx}|_+ - \frac{du}{dx}|_- = 0, & \text{on } \partial D_i \\ u \text{ satisfies Sommerfeld radiation condition} \end{cases}$$
(1)

 1 Jana and Sirota, "Emerging Exceptional Point with Breakdown of Skin Effect in Non-Hermitian Systems".

Introduction		
0000		

High-contrast resonators with balanced non-hermiticity

- Array of 2N resonators in 1D, symmetric about the origin
- Introduce two types of non-Hermiticity: gain and loss and non-reciprocal gauge potential¹
- Modal decomposition yields modified Helmholtz equation for resonant modes

$$\delta := \rho_b/\rho \ll 1,$$

$$\begin{cases}
\frac{d^2}{dx^2}u + \frac{\omega^2}{v^2}u = 0, & \text{in } \mathbb{R} \setminus \bigcup D_i \\
\frac{d^2}{dx^2}u + \gamma(x)\frac{d}{dx}u + \frac{\omega^2}{v_b(x)^2}u = 0, & \text{in } D_i \\
u|_+ - u|_- = 0, & \text{on } \partial D_i \\
\frac{d^2}{dx}|_+ - \frac{du}{dx}|_- = 0, & \text{on } \partial D_i \\
u \text{ satisfies Sommerfeld radiation condition}
\end{cases}$$
(1)
$$\begin{cases}
\text{Goal: Understand} \\
\text{system as we tune } \theta \\
\text{from 0 to } \pi/2
\end{cases}$$

¹Jana and Sirota, "Emerging Exceptional Point with Breakdown of Skin Effect in Non-Hermitian Systems".

Introduction	Behaviour	Proofs	Conclusion
OOO	O	0000	00

Subwavelength high-contrast regime

• We are looking for Subwavelength resonant frequencies in the high-contrast regime, i.e. resonant frequencies ω with

 $\omega
ightarrow \mathbf{0}$ as $\delta
ightarrow \mathbf{0}$

for which there exist non-trivial solutions to the Helmholtz equation.

• Subwavelength because the size of the resonators stays fixed while the wavelength $\rightarrow \infty$.

²Habib Ammari et al., "Mathematical Foundations of the Non-Hermitian Skin Effect".

Introduction	Behaviour	Proofs	Conclusion
0000	O	0000	00

Subwavelength high-contrast regime

• We are looking for Subwavelength resonant frequencies in the high-contrast regime, i.e. resonant frequencies ω with

$$\omega
ightarrow 0$$
 as $\delta
ightarrow 0$

for which there exist non-trivial solutions to the Helmholtz equation.

• Subwavelength because the size of the resonators stays fixed while the wavelength $\rightarrow \infty$.

Theorem

There exist exactly 2 * 2N subwavelength resonant frequencies which are approximated by eigenvalues and eigenvectors of a capacitance matrix² $C^{\theta,\gamma} \in \mathbb{C}^{2N \times 2N}$, i.e. for an eigenpair $(\lambda_i, \mathbf{a}_i)$ of $C^{\theta,\gamma}$ we have

$$\omega_i = \pm \sqrt{\delta \lambda_i} + \mathcal{O}(\delta)$$
 and $u_i(x) = \boldsymbol{a}_i^{(j)} + \mathcal{O}(\delta)$ $x \in D_j$

²Habib Ammari et al., "Mathematical Foundations of the Non-Hermitian Skin Effect".

Introduction	Behaviour	Proofs	Conclusion
00●0	O	0000	OO

Capaticance matrix

Goal: Solve eigenproblem for capacitance matrix

$$C^{\theta,\gamma} = V^{\theta}C^{\gamma} = \left(\begin{array}{c|c} e^{i\theta}I_{N} & \mathbf{0} \\ \hline \mathbf{0} & e^{-i\theta}I_{N} \end{array}\right) \left(\begin{array}{c|c} \alpha + \beta & \eta & & \\ \beta & \alpha & \ddots & \\ & \ddots & \ddots & \eta & & \\ \hline & & \beta & \alpha & \eta & \\ \hline & & \beta & \alpha & \eta & \\ \hline & & & \beta & \alpha & \\ \hline & & & \eta & \alpha & \beta & \\ & & & & \eta & \alpha + \beta \end{array}\right) \in \mathbb{R}^{2N \times 2N}$$

with $\alpha = \frac{\gamma}{1-e^{-\gamma}} - \frac{\gamma}{1-e^{\gamma}} = \gamma \operatorname{coth}(\gamma/2), \eta = \frac{-\gamma}{1-e^{-\gamma}}, \beta = \frac{\gamma}{1-e^{\gamma}}.$ Here we assumed $s = \ell = 1$ for the sake of simplicity. The general case functions analogously.

Introduction	Behaviour	Proofs	Conclusion
⊙⊙●⊙	O	0000	OO

Capaticance matrix

Goal: Solve eigenproblem for capacitance matrix

$$\mathcal{C}^{\theta,\gamma} = \mathbf{V}^{\theta} C^{\gamma} = \left(\begin{array}{c|c} \mathbf{e}^{\mathbf{i}\theta} I_{N} & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{e}^{-\mathbf{i}\theta} I_{N} \end{array} \right) \left(\begin{array}{c|c} \alpha + \beta & \eta \\ \beta & \alpha & \ddots \\ \hline \beta & \alpha & \eta \\ \hline \gamma & \alpha & \beta \\ \hline \eta & \ddots & \ddots \\ \hline \gamma & \alpha & \beta \\ \hline \eta & \alpha + \beta \end{array} \right) \in \mathbb{R}^{2N \times 2N}$$

with $\alpha = \frac{\gamma}{1 - \mathbf{e}^{-\gamma}} - \frac{\gamma}{1 - \mathbf{e}^{\gamma}} = \gamma \operatorname{coth}(\gamma/2), \eta = \frac{-\gamma}{1 - \mathbf{e}^{-\gamma}}, \beta = \frac{\gamma}{1 - \mathbf{e}^{\gamma}}.$
Here we assumed $\mathbf{s} = \ell = 1$ for the sake of simplicity. The general case functions analogously.

Introduction		
0000	0000	00

PT-symmetry and Exceptional Points

- $PC^{\theta,\gamma}P = \overline{C^{\theta,\gamma}}$ is a PT-symmetry
- Thus, the eigenvalues of $C^{\theta,\gamma}$ are real or come in complex conjugate pairs, i.e. $\sigma(C^{\theta,\gamma}) = \overline{\sigma(C^{\theta,\gamma})}$
- Because $C^{\theta,\gamma}$ is tridiagonal: Eigenspaces are always one-dimensional
- Because $C^{\theta,\gamma}$ is PT-Symmetric: Real eigenvalues must meet pairwise to become complex
- $C^{\theta,\gamma}$ has real spectrum for $\theta = 0$

Introduction		
0000		

PT-symmetry and Exceptional Points

- $PC^{\theta,\gamma}P = \overline{C^{\theta,\gamma}}$ is a PT-symmetry
- Thus, the eigenvalues of $C^{\theta,\gamma}$ are real or come in complex conjugate pairs, i.e. $\sigma(C^{\theta,\gamma}) = \overline{\sigma(C^{\theta,\gamma})}$
- Because $C^{\theta,\gamma}$ is tridiagonal: Eigenspaces are always one-dimensional
- Because $C^{\theta,\gamma}$ is PT-Symmetric: Real eigenvalues must meet pairwise to become complex
- $C^{\theta,\gamma}$ has real spectrum for $\theta = 0$

Definition

We call $\theta \in [0, \pi/2]$ an exceptional point if $\mathcal{C}^{\theta, \gamma}$ is not diagonalisable.

Introduction	Behaviour	Proofs	Conclusion
0000	●	0000	00
Decoupling $(heta=0)$			

Introduction 0000		Behaviour •	Proofs 0000	Conclusion 00

Decoupling ($\theta = 0.04$)

Introduction	Behaviour	Proofs	Conclusion
0000	•	0000	OO

Decoupling ($\theta = 0.05$)

Introduction 0000			Behaviour •	Proofs 0000	Conclusion 00
	 (0	0 1)			

Decoupling $(\theta = 0.1)$

Introduction 0000		Behaviour ●	Proofs 0000	Conclusion 00
_	 10			

Decoupling ($\theta = 0.2$)

Introduction	Behaviour	Proofs	Conclusion
0000	O	●000	OO

Chebyshev formalism

Exploit the tridiagonal Toeplitz structure of $\mathcal{C}^{\theta,\gamma}$ to recursively determine its eigenvectors:

Theorem

For $\lambda \in \mathbb{C}$ an eigenvalue of $\mathcal{C}^{\theta,\gamma}$, the corresponding eigenvector is given by $\mathbf{u} = (\mathbf{x}, \mathbf{y})^{\top}$ where

$$\mathbf{x} = \left(P_0(\mu^{\theta}(\lambda)), \left(e^{-\frac{\gamma}{2}}\right) P_1(\mu^{\theta}(\lambda)), \cdots, \left(e^{-\frac{\gamma}{2}}\right)^{N-1} P_{N-1}(\mu^{\theta}(\lambda))\right),$$

$$\mathbf{y} = C\left(\left(e^{-\frac{\gamma}{2}}\right)^{N-1} P_{N-1}(\mu^{-\theta}(\lambda)), \cdots, \left(e^{-\frac{\gamma}{2}}\right) P_1(\mu^{-\theta}(\lambda)), P_0(\mu^{-\theta}(\lambda))\right).$$

(2)

With affine transformation $\mu^{\theta}(\lambda) := e^{-i\theta} \lambda \frac{1}{\gamma} \sinh \frac{\gamma}{2} - \cosh \frac{\gamma}{2}$ and $P_n(x) := U_n(x) + e^{-\frac{\gamma}{2}} U_{n-1}(x)$, the sum of two Chebyshev polynomials of the second kind.

Introduction	Behaviour	Proofs	Conclusion
0000	O	●000	OO

Chebyshev formalism

Exploit the tridiagonal Toeplitz structure of $C^{\theta,\gamma}$ to recursively determine its eigenvectors:

Theorem

For $\lambda \in \mathbb{C}$ an eigenvalue of $\mathcal{C}^{\theta,\gamma}$, the corresponding eigenvector is given by $\boldsymbol{u} = (\boldsymbol{x}, \boldsymbol{y})^{\top}$ where

$$\mathbf{x} = \left(P_0(\mu^{\theta}(\lambda)), \left(e^{-\frac{\gamma}{2}}\right) P_1(\mu^{\theta}(\lambda)), \cdots, \left(e^{-\frac{\gamma}{2}}\right)^{N-1} P_{N-1}(\mu^{\theta}(\lambda))\right),$$

$$\mathbf{y} = C\left(\left(e^{-\frac{\gamma}{2}}\right)^{N-1} P_{N-1}(\mu^{-\theta}(\lambda)), \cdots, \left(e^{-\frac{\gamma}{2}}\right) P_1(\mu^{-\theta}(\lambda)), P_0(\mu^{-\theta}(\lambda))\right).$$

(2)

With affine transformation $\mu^{\theta}(\lambda) := e^{-i\theta} \lambda \frac{1}{\gamma} \sinh \frac{\gamma}{2} - \cosh \frac{\gamma}{2}$ and $P_n(x) := U_n(x) + e^{-\frac{\gamma}{2}} U_{n-1}(x)$, the sum of two Chebyshev polynomials of the second kind.

Continuity across the interface: $C = e^{-\frac{\gamma}{2}} \frac{P_N(\mu^{\theta}(\lambda))}{P_{N-1}(\mu^{-\theta}(\lambda))} = e^{\frac{\gamma}{2}} \frac{P_{N-1}(\mu^{\theta}(\lambda))}{P_N(\mu^{-\theta}(\lambda))}$

Introduction	Behaviour	Proofs	Conclusion
0000	O	●000	OO

Chebyshev formalism

Exploit the tridiagonal Toeplitz structure of $\mathcal{C}^{\theta,\gamma}$ to recursively determine its eigenvectors:

Theorem

For $\lambda \in \mathbb{C}$ an eigenvalue of $\mathcal{C}^{\theta,\gamma}$, the corresponding eigenvector is given by $\boldsymbol{u} = (\boldsymbol{x}, \boldsymbol{y})^{\top}$ where

$$\mathbf{x} = \left(P_0(\mu^{\theta}(\lambda)), \left(e^{-\frac{\gamma}{2}}\right) P_1(\mu^{\theta}(\lambda)), \cdots, \left(e^{-\frac{\gamma}{2}}\right)^{N-1} P_{N-1}(\mu^{\theta}(\lambda))\right),$$

$$\mathbf{y} = C\left(\left(e^{-\frac{\gamma}{2}}\right)^{N-1} P_{N-1}(\mu^{-\theta}(\lambda)), \cdots, \left(e^{-\frac{\gamma}{2}}\right) P_1(\mu^{-\theta}(\lambda)), P_0(\mu^{-\theta}(\lambda))\right).$$

(2)

With affine transformation $\mu^{\theta}(\lambda) := e^{-i\theta} \lambda \frac{1}{\gamma} \sinh \frac{\gamma}{2} - \cosh \frac{\gamma}{2}$ and $P_n(x) := U_n(x) + e^{-\frac{\gamma}{2}} U_{n-1}(x)$, the sum of two Chebyshev polynomials of the second kind.

Continuity across the interface: $C = e^{-\frac{\gamma}{2}} \frac{P_N(\mu^{\theta}(\lambda))}{P_{N-1}(\mu^{-\theta}(\lambda))} = e^{\frac{\gamma}{2}} \frac{P_{N-1}(\mu^{\theta}(\lambda))}{P_N(\mu^{-\theta}(\lambda))}$ $\frac{P_{N}(\mu^{\theta}(\lambda))P_{N}(\mu^{-\theta}(\lambda))}{P_{N-1}(\mu^{\theta}(\lambda))P_{N-1}(\mu^{-\theta}(\lambda))} = e^{\gamma}$

	Proofs	Conclusion
	0000	

Understanding the characteristic equation asymptotically

Goal: Understand $\frac{P_N(\mu^{\theta}(\lambda))P_N(\mu^{-\theta}(\lambda))}{P_{N-1}(\mu^{\theta}(\lambda))P_{N-1}(\mu^{-\theta}(\lambda))} = e^{\gamma}$ as $N \to \infty$. Idea: Write Chebyshev polynomials of second kind as

$$U_n(\mu) = rac{a(\mu)^{n+1} - a(\mu)^{-(n+1)}}{2\sqrt{\mu+1}\sqrt{\mu-1}},$$

where $a(\mu) = \mu + \sqrt{\mu + 1}\sqrt{\mu - 1}$ for $\mu \in \mathbb{C}$ and find

$$\frac{P_n(\mu)}{P_{n-1}(\mu)} = \frac{U_n(\mu) + e^{-\frac{\gamma}{2}}U_{n-1}(\mu)}{U_{n-1}(\mu) + e^{-\frac{\gamma}{2}}U_{n-2}(\mu)} \xrightarrow{\text{unif}} a(\mu) \quad \text{as } n \to \infty$$

outside of any $\varepsilon\text{-neighbourhood}$ of [-1,1].

	Proofs	Conclusion
	0000	

Understanding the characteristic equation asymptotically

Goal: Understand $\frac{P_N(\mu^{\theta}(\lambda))P_N(\mu^{-\theta}(\lambda))}{P_{N-1}(\mu^{\theta}(\lambda))P_{N-1}(\mu^{-\theta}(\lambda))} = e^{\gamma}$ as $N \to \infty$. Idea: Write Chebyshev polynomials of second kind as

$$U_n(\mu) = rac{a(\mu)^{n+1} - a(\mu)^{-(n+1)}}{2\sqrt{\mu+1}\sqrt{\mu-1}},$$

where $a(\mu) = \mu + \sqrt{\mu + 1}\sqrt{\mu - 1}$ for $\mu \in \mathbb{C}$ and find

$$\frac{P_n(\mu)}{P_{n-1}(\mu)} = \frac{U_n(\mu) + e^{-\frac{\gamma}{2}} U_{n-1}(\mu)}{U_{n-1}(\mu) + e^{-\frac{\gamma}{2}} U_{n-2}(\mu)} \xrightarrow{\text{unif.}} a(\mu) \quad \text{as } n \to \infty$$

outside of any ε -neighbourhood of [-1, 1].

 \implies $|a(\mu)|$ controls the asymptotic growth behaviour of $P_n(\mu)$ as $n \to \infty$

	Proofs	
	0000	

Understanding the characteristic equation asymptotically

Goal: Understand $\frac{P_N(\mu^{\theta}(\lambda))P_N(\mu^{-\theta}(\lambda))}{P_{N-1}(\mu^{\theta}(\lambda))P_{N-1}(\mu^{-\theta}(\lambda))} = e^{\gamma}$ as $N \to \infty$. Idea: Write Chebyshev polynomials of second kind as

$$U_n(\mu) = rac{a(\mu)^{n+1} - a(\mu)^{-(n+1)}}{2\sqrt{\mu+1}\sqrt{\mu-1}},$$

where $a(\mu) = \mu + \sqrt{\mu + 1}\sqrt{\mu - 1}$ for $\mu \in \mathbb{C}$ and find

$$\frac{P_n(\mu)}{P_{n-1}(\mu)} = \frac{U_n(\mu) + e^{-\frac{\gamma}{2}}U_{n-1}(\mu)}{U_{n-1}(\mu) + e^{-\frac{\gamma}{2}}U_{n-2}(\mu)} \xrightarrow{\text{unif}} a(\mu) \quad \text{as } n \to \infty$$

outside of any ε -neighbourhood of [-1, 1].

 \implies $|a(\mu)|$ controls the asymptotic growth behaviour of $P_n(\mu)$ as $n \rightarrow \infty$ We can understand *a*:

- |a|>1 and level sets of |a|=c are ellipses for c>1 and [-1,1] for c=1
- For any $\gamma > 0, \theta \in [0, \pi/2]$, $a(\mu^{\theta}(\lambda))a(\mu^{-\theta}(\lambda)) = e^{\gamma}$ has exactly two solutions, both on the real line

	Proofs	Conclusion
0000	0000	00

Location of eigenvalues

Lemma

For any $\varepsilon > 0$ there exists a $N \in \mathbb{N}$ such that all but two eigenvalues of $\mathcal{C}^{\theta,\gamma}$ lie in ε -neighbourhood of red/blue lines.

Proof Idea:

- a(μ^θ(λ))a(μ^{-θ}(λ)) = e^γ has exactly two solutions, both real
- $\frac{P_{N}(\mu^{\theta}(\lambda))P_{N}(\mu^{-\theta}(\lambda))}{P_{N-1}(\mu^{-\theta}(\lambda))P_{N-1}(\mu^{-\theta}(\lambda))} \xrightarrow{unif.} a(\mu^{\theta}(\lambda))a(\mu^{-\theta}(\lambda))$ outside ε -neighbourhood of red / blue lines
- Thus for *N* large enough charateristic equation has exactly two solutions outside these neighbourhoods
- But as charateristic equation is equivalent to a degree 2N polynomial, the 2N − 2 remaining solutions must lie in the ε-neighbourhoods

	Proofs	
	0000	

Topological origin of eigenvector decoupling

Recall that

$$\mathbf{x} = \left(P_0(\mu^{\theta}(\lambda)), \left(e^{-\frac{\gamma}{2}} \right) P_1(\mu^{\theta}(\lambda)), \cdots, \left(e^{-\frac{\gamma}{2}} \right)^{N-1} P_{N-1}(\mu^{\theta}(\lambda)) \right)$$

• Thus
$$\frac{\mathbf{x}^{(j+1)}}{\mathbf{x}^{(j)}} = e^{-\frac{\gamma}{2}} \frac{P_j(\mu^{\theta}(\lambda))}{P_{j-1}(\mu^{\theta}(\lambda))} \implies \mathbf{x}$$
 decays iff
 $|a(\mu^{\theta}(\lambda))| < e^{\frac{\gamma}{2}}$
• \mathbf{y} grows iff $|a(\mu^{-\theta}(\lambda))| < e^{\frac{\gamma}{2}}$

	Proofs	
	0000	

Topological origin of eigenvector decoupling

	Proofs	
	0000	

Topological origin of eigenvector decoupling

 E^{θ} turns out to be exactly the interior of the ellipse drawn out by the Toeplitz symbol $z \in \mathbb{T} \mapsto e^{i\theta}(\beta z + \alpha + \eta z^{-1})$

$$\begin{split} \mathcal{E}^{\theta} &\coloneqq \{\lambda \in \mathbb{C} \mid \left| \mathbf{a}(\mu^{\theta}(\lambda)) \right| < e^{\frac{\gamma}{2}} \}, \text{ location in ellipse determines growth behaviour} \\ \bullet \text{ Recall that} \end{split}$$

$$\mathbf{x} = \left(P_0(\mu^{\theta}(\lambda)), \left(e^{-\frac{\gamma}{2}} \right) P_1(\mu^{\theta}(\lambda)), \cdots, \left(e^{-\frac{\gamma}{2}} \right)^{N-1} P_{N-1}(\mu^{\theta}(\lambda)) \right)$$

• Thus
$$\frac{\mathbf{x}^{(j+1)}}{\mathbf{x}^{(j)}} = e^{-\frac{\gamma}{2}} \frac{P_j(\mu^{\theta}(\lambda))}{P_{j-1}(\mu^{\theta}(\lambda))} \implies \mathbf{x}$$
 decays iff $|\mathbf{a}(\mu^{\theta}(\lambda))| < e^{\frac{\gamma}{2}}$

• $m{y}$ grows iff $\left|a(\mu^{- heta}(\lambda))
ight| < e^{rac{\gamma}{2}}$

Introduction	Behaviour	Proofs	Conclusion
0000	O	0000	●O
Recap			

- Introduced two kinds of non-Hermiticity to 1D resonator array via energy gain/loss and non-reciprocal gauge potential in a balanced and thus PT-symmetric way
- 2 Used capacitance matrix approximation to reduce the subwavelength resonance problem to a finite eigenproblem on tridiagonal Toeplitz matrix with interface
- ③ Used Chebyshev polynomials to recursively construct eigenvectors and got characteristic equation for eigenvalues
- **3** Found limit $a(\mu)$ of Chebyshev polynomial ratios and used it to understand characteristic equation and decoupling asymptotically

 \implies Eigenvalues go through exceptional points and corresponding eigenmodes begin to decouple as gain-to-loss ratio θ is increased

Sound the topological origin of the decoupling by relating it to the winding of Toeplitz symbols

Introduction 0000	Behaviour O	Proofs 0000	Conclusion O●
Outlook			
$\vec{c} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$			

- $\begin{array}{c} -2 \int_{0}^{-2} \int_{\mathbb{R}(\lambda)}^{-2} \int_{\mathbb{R}(\lambda)}^{-2} \int_{0}^{-2} \int_{0}^{-2} \int_{0}^{-2} \int_{0}^{-2} \int_{0}^{-2} \int_{\mathbb{R}(\lambda)}^{-2} \int_{0}^{-2} \int_{0$
- Findings could be extended and embedded into larger framework for tridiagonal interfaced Toeplitz matrices
 - Decoupling into delocalized modes for three-part resonator arrays
 - Findings are also be applicable to quantum mechanical setting
- Use exceptional points to get sensor arrays with higher order sensistivity

Introduction 0000	Behaviour O	Proofs 0000	Conclusion O●
Outlook			
$\begin{array}{c} 2 \\ 1 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 2 \\ 1 \\ 0 \\ \overline{C} \\ 0 \end{array} \begin{array}{c} 2 \\ 0 \\ 0 \\ 0 \end{array} \begin{array}{c} 2 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \begin{array}{c} 2 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \begin{array}{c} 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \begin{array}{c} 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$		

- Findings could be extended and embedded into larger framework for tridiagonal interfaced Toeplitz matrices
 - Decoupling into delocalized modes for three-part resonator arrays
 - Findings are also be applicable to quantum mechanical setting
- Use exceptional points to get sensor arrays with higher order sensistivity

Questions?

Capaticance matrix approximation

The subwavelength resonant frequencies can be approximated by an eigenvalue problem:

Theorem (From³)

The N subwavelength eigenfrequencies ω_i , as $\delta \rightarrow 0$, are

$$\omega_i = \sqrt{\delta \lambda_i} + \mathcal{O}(\delta),$$

where $(\lambda_i)_{1 \le i \le N}$ are the eigenvalues of the eigenvalue problem

$$\mathcal{L}^{-1}\mathcal{C}^{\gamma} \mathbf{a}_{i} = \lambda_{i} \mathbf{a}_{i} \begin{pmatrix} \mathcal{C}^{\gamma} \text{ is the capacitance matrix. We } \\ \text{can explicitly find its entries.} \end{pmatrix}$$

with $V = v_b^2 I_N$ and $L_{ij} = \ell_i \delta_{ij}$. Furthermore, let u_i be a subwavelength eigenmode corresponding to ω_i and let \mathbf{a}_i be the corresponding eigenvector of $VL^{-1}C^{\gamma}$. Then,

$$u_i(x) = oldsymbol{a}_i^{(j)} + \mathcal{O}(\delta) \quad \textit{for } x \in D_j,$$

where $\mathbf{a}^{(j)}$ denotes the j-th entry of the eigenvector.

³Feppon, Cheng, and Ammari, Subwavelength Resonances in 1D High-Contrast Acoustic Media.

Chebyshev Corollaries

- For 0 ≤ θ < ε all eigenvalues of C^{θ,γ} are real. In this regime the eigenvectors are symmetric about their middle ⇒ use Equation (2) and C^{θ,γ} diagonalisable for θ = 0.
- For $\theta = \pi/2$ all eigenvalues of $C^{\theta,\gamma}$ lie on the imaginary axis. Thus they all must have passed through an exceptional point \implies use characteristic equation and the fact that U_N and U_{N-1} are fully interlaced.

Density of exceptional points

Theorem

For any $\theta > 0$ we can find a N such that all but two eigenvalues of $C^{\theta,\gamma}$ are away from the real line and must thus have passed through an exceptional point.

Proof Idea:

- Red / blue lines are away from the real line
- Pick ε-neighbourhoods of red / blue lines that don't touch the real line
- Use uniform convergence from last slide to find N such that all but two eigenvalues are in these ε-neighbourhoods