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Introduction Behaviour Proofs Conclusion

High-contrast resonators with balanced non-hermiticity
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• Array of 2N resonators in 1D, symmetric about the origin
• Introduce two types of non-Hermiticity: gain and loss and non-reciprocal gauge potential1

• Modal decomposition yields modified Helmholtz equation for resonant modes
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u satisfies Sommerfeld radiation condition

(1)

δ := ρb/ρ ≪ 1,
contrast ratio

Goal: Understand
system as we tune θ
from 0 to π/2

1Jana and Sirota, “Emerging Exceptional Point with Breakdown of Skin Effect in Non-Hermitian Systems”.
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Subwavelength high-contrast regime

• We are looking for Subwavelength resonant frequencies in the high-contrast regime, i.e.
resonant frequencies ω with

ω → 0 as δ → 0

for which there exist non-trivial solutions to the Helmholtz equation.

• Subwavelength because the size of the resonators stays fixed while the wavelength → ∞.

Theorem

There exist exactly 2 ∗ 2N subwavelength resonant frequencies which are approximated by
eigenvalues and eigenvectors of a capacitance matrix2 Cθ,γ ∈ C2N×2N , i.e. for an eigenpair
(λi , ai ) of Cθ,γ we have

ωi = ±
√

δλi +O(δ) and ui (x) = a(j)
i +O(δ) x ∈ Dj .

2Habib Ammari et al., “Mathematical Foundations of the Non-Hermitian Skin Effect”.
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Capaticance matrix

Goal: Solve eigenproblem for capacitance matrix

Cθ,γ = V θCγ =

(
e iθIN 0
0 e−iθIN

)
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∈ R2N×2N

with α = γ
1−e−γ − γ

1−eγ = γ coth(γ/2), η = −γ
1−e−γ , β = γ

1−eγ .
Here we assumed s = ℓ = 1 for the sake of simplicity. The general case functions analogously.

· Cθ,γ is tridiagonal and almost
Toeplitz in upper / lower part

· PCθ,γP = Cθ,γ
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PT-symmetry and Exceptional Points

• PCθ,γP = Cθ,γ is a PT-symmetry

• Thus, the eigenvalues of Cθ,γ are real or come in complex conjugate pairs, i.e.
σ(Cθ,γ) = σ(Cθ,γ)

• Because Cθ,γ is tridiagonal: Eigenspaces are always one-dimensional

• Because Cθ,γ is PT-Symmetric: Real eigenvalues must meet pairwise to become complex

• Cθ,γ has real spectrum for θ = 0

Definition

We call θ ∈ [0, π/2] an exceptional point if Cθ,γ is not diagonalisable.
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Decoupling (θ = 0)
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Decoupling (θ = 0.04)
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Decoupling (θ = 0.05)
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Decoupling (θ = 0.1)
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Decoupling (θ = 0.2)
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Chebyshev formalism

Exploit the tridiagonal Toeplitz structure of Cθ,γ to recursively determine its eigenvectors:

Theorem

For λ ∈ C an eigenvalue of Cθ,γ , the corresponding eigenvector is given by u = (x , y)⊤ where

x =

(
P0(µ

θ(λ)),
(
e−

γ
2

)
P1(µ

θ(λ)), · · · ,
(
e−

γ
2

)N−1

PN−1(µ
θ(λ))

)
,

y = C

((
e−

γ
2

)N−1

PN−1(µ
−θ(λ)), · · · ,

(
e−

γ
2

)
P1(µ

−θ(λ)),P0(µ
−θ(λ))

)
.

(2)

With affine transformation µθ(λ) := e−iθλ 1
γ sinh γ

2 − cosh γ
2 and

Pn(x) := Un(x) + e−
γ
2 Un−1(x), the sum of two Chebyshev polynomials of the second kind.

Continuity across the interface:

C = e−
γ
2

PN(µ
θ(λ))

PN−1(µ−θ(λ))
= e

γ
2
PN−1(µ

θ(λ))

PN(µ−θ(λ))

Characteristic equation:
PN(µ

θ(λ))PN(µ
−θ(λ))

PN−1(µθ(λ))PN−1(µ−θ(λ)) = eγ
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Understanding the characteristic equation asymptotically

Goal: Understand
PN(µ

θ(λ))PN(µ
−θ(λ))

PN−1(µθ(λ))PN−1(µ−θ(λ)) = eγ as N → ∞.

Idea: Write Chebyshev polynomials of second kind as

Un(µ) =
a(µ)n+1 − a(µ)−(n+1)

2
√
µ+ 1

√
µ− 1

,

where a(µ) = µ+
√
µ+ 1

√
µ− 1 for µ ∈ C and find

Pn(µ)

Pn−1(µ)
=

Un(µ) + e−
γ
2 Un−1(µ)

Un−1(µ) + e−
γ
2 Un−2(µ)

unif .−→ a(µ) as n → ∞

outside of any ε-neighbourhood of [−1, 1].

=⇒ |a(µ)| controls the asymptotic growth behaviour of Pn(µ) as n → ∞
We can understand a:

• |a| > 1 and level sets of |a| = c are ellipses for c > 1 and [−1, 1] for c = 1
• For any γ > 0, θ ∈ [0, π/2], a(µθ(λ))a(µ−θ(λ)) = eγ has exactly two solutions, both on
the real line

|a| = 1|a| = 2 |a| = 1.5
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Location of eigenvalues
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Lemma

For any ε > 0 there exists a N ∈ N such that all but two
eigenvalues of Cθ,γ lie in ε-neighbourhood of red/blue
lines.

Proof Idea:

• a(µθ(λ))a(µ−θ(λ)) = eγ has exactly two solutions,
both real

• PN (µ
θ(λ))PN (µ

−θ(λ))
PN−1(µθ(λ))PN−1(µ−θ(λ))

unif .−→ a(µθ(λ))a(µ−θ(λ))

outside ε-neighbourhood of red / blue lines

• Thus for N large enough charateristic equation has
exactly two solutions outside these neighbourhoods

• But as charateristic equation is equivalent to a
degree 2N polynomial, the 2N − 2 remaining
solutions must lie in the ε-neighbourhoods
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Topological origin of eigenvector decoupling
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• Recall that

x=
(
P0(µ

θ(λ)),
(
e−

γ
2

)
P1(µ

θ(λ)),··· ,
(
e−

γ
2

)N−1
PN−1(µ

θ(λ))

)

• Thus x (j+1)

x (j) = e−
γ
2

Pj (µ
θ(λ))

Pj−1(µθ(λ))
=⇒ x decays iff∣∣a(µθ(λ))

∣∣ < e
γ
2

• y grows iff
∣∣a(µ−θ(λ))

∣∣ < e
γ
2

E θ := {λ ∈ C |
∣∣a(µθ(λ))

∣∣ < e
γ
2 }, location in ellipse determines growth behaviour

E θ turns out to be exactly the interior
of the ellipse drawn out by the Toeplitz
symbol z ∈ T 7→ e iθ(βz + α+ ηz−1)
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Recap

1 Introduced two kinds of non-Hermiticity to 1D resonator array via energy gain/loss and
non-reciprocal gauge potential in a balanced and thus PT-symmetric way

2 Used capacitance matrix approximation to reduce the subwavelength resonance problem to
a finite eigenproblem on tridiagonal Toeplitz matrix with interface

3 Used Chebyshev polynomials to recursively construct eigenvectors and got characteristic
equation for eigenvalues

4 Found limit a(µ) of Chebyshev polynomial ratios and used it to understand characteristic
equation and decoupling asymptotically
=⇒ Eigenvalues go through exceptional points and corresponding eigenmodes begin to
decouple as gain-to-loss ratio θ is increased

5 Found the topological origin of the decoupling by relating it to the winding of Toeplitz
symbols
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Outlook
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(c) θ = 0.3

• Findings could be extended and embedded into larger framework for tridiagonal interfaced
Toeplitz matrices

• Decoupling into delocalized modes for three-part resonator arrays
• Findings are also be applicable to quantum mechanical setting

• Use exceptional points to get sensor arrays with higher order sensistivity

Questions?
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Capaticance matrix approximation

The subwavelength resonant frequencies can be approximated by an eigenvalue problem:

Theorem (From3)

The N subwavelength eigenfrequencies ωi , as δ → 0, are

ωi =
√
δλi +O(δ),

where (λi )1≤i≤N are the eigenvalues of the eigenvalue problem

VL−1 Cγ ai = λiai

with V = v 2
b IN and Lij = ℓiδij . Furthermore, let ui be a subwavelength eigenmode corresponding to ωi

and let ai be the corresponding eigenvector of VL−1 Cγ . Then,

ui (x) = a(j)
i +O(δ) for x ∈ Dj ,

where a(j) denotes the j-th entry of the eigenvector.

Cγ is the capacitance matrix. We
can explicitly find its entries.

3Feppon, Cheng, and Ammari, Subwavelength Resonances in 1D High-Contrast Acoustic Media.
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Chebyshev Corollaries

• For 0 ≤ θ < ε all eigenvalues of Cθ,γ are real. In this regime the eigenvectors are
symmetric about their middle =⇒ use Equation (2) and Cθ,γ diagonalisable for θ = 0.

• For θ = π/2 all eigenvalues of Cθ,γ lie on the imaginary axis. Thus they all must have
passed through an exceptional point =⇒ use charateristic equation and the fact that UN

and UN−1 are fully interlaced.
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Density of exceptional points
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Theorem

For any θ > 0 we can find a N such that all but two
eigenvalues of Cθ,γ are away from the real line and must
thus have passed through an exceptional point.

Proof Idea:

• Red / blue lines are away from the real line

• Pick ε-neighbourhoods of red / blue lines that don’t
touch the real line

• Use uniform convergence from last slide to find N
such that all but two eigenvalues are in these
ε-neighbourhoods
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