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Definition 1 (Contact Manifolds). Let Y be a manifold of odd dimension
2n+ 1. A contact structure is a maximally non-integrable hyperplane field
ξ = kerα ⊂ TY . That is, the 1-form is required to satisfy

α ∧ (dα)n 6= 0

Such a 1-form is called a contact form, and the pair (Y, ξ) is called a
contact manifold.

Remark 1. ξ is a field of hyperplanes on Y - that is, a sub-bundle of the
tangent bundle TY with co-dimension 1.

Remark 2. In dimension 3, we have n = 1, and so the above condition
simplifies to

α ∧ dα 6= 0

Theorem 1 (Martinet). Every 3-manifold admits a contact structure.

Proof. Makes use of many concepts we don’t really have access too, but it
is developed in section 5.23 of [3].

Definition 2 (Important example of a Contact Structure). On the 3-
manifold R3, equipped with cylindrical coordinates (r, ϕ, z), we define the
1-form:

αvrille = cos(r)dz + r sin(r)dϕ

We have:

αvrille ∧ dαvrille =

(
1 +

sin(r)

r
cos(r)

)
rdr ∧ dϕ ∧ dz 6= 0 (1)

so its kernel defines a contact structure on R3.

We will come back to this example later on in the seminar.

Figure 1: Standard Overtwisted Contact Structure [5]

Proof of (1). First, we compute dαvrille:

dαvrille =
∂ cos(r)

∂r
dr ∧ dz +

∂r sin(r)

∂r
dr ∧ dϕ

= sin(r)dr ∧ dz + (sin(r)− r cos(r))dr ∧ dϕ
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So we have:

αvrille ∧ dαvrille = [cos(r)dz + r sin(r)dϕ] ∧ [sin(r)dr ∧ dz + (sin(r)− r cos(r))dr ∧ dϕ]

= cos(r)(sin(r)− r cos(r))dz ∧ dr ∧ dϕ+ r sin(r)2dϕ ∧ dr ∧ dz

=

(
1 +

sin(r)

r
cos(r)

)
rdr ∧ dϕ ∧ dz

Which is the result we wanted.

Remark 3. Note that ∀p ∈ R3, we have

αvrille,p

(
∂

∂r
∣∣p
)

= 0

since

dzp

(
∂

∂r
∣∣p
)

= dϕp

(
∂

∂r
∣∣p
)

= 0

So at every point in R3, the associated hyperfield - a plane since we are
working in dimension 3 - contains the basis vector ∂r,p. This corresponds
to what we observe on the picture.

We can verify that this vector together with cos(r)∂ϕ,p − r sin(r)∂z,p
spans the entire hyperfield. This gives us contact planes that make infinitely
many turns as one moves out in the radial direction.

Definition 3 (Overtwisted Disc). An embedded disc ∆ in a contact man-
ifold (Y, ξ) is an overtwisted disc if its boundary ∂∆ is such that ∀p ∈ ∂∆,
we have:

ξp = TpD

In other words, the interior of the disc must be transversal to ξ everywhere,
and its boundary must be tangent to ξ.

Remark 4. The fact that these definitions are indeed equivalent is not triv-
ial... In particular the re-wording includes a condition on transversality
inside the disc which does not appear anywhere above.
In the same manner, some definitions of overtwisted disc also include that 1
point in the interior of the disc need not fulfill the transversality condition.
As it turns out, all of these definitions end up being equivalent, and we
won’t delve any deeper into why for the purpose of this talk.
If you are interested in further analysis of this concept, you can take a look
at section 4.5 of [1].

This is what our overtwisted disc will standardly look like:

Figure 2: The curves represent the foliation obtained by intersection of the
hyperplane field with the disc. The dot is the point where the disc fails to
be transversal. Image Source [1]

Definition 4 (Tight, Overtwisted contact structure). A contact structure
ξ on a 3-manifold is called overtwisted if it contains an overtwisted disc.
Otherwise, it is called tight.
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Proposition 1. The contact structure αvrille on R3 is overtwisted. In fact,
it is called the standard overtwisted contact structure on R3.
An overtwisted disc for this structure is for instance ∆ = {z = 0, r ≤ π}.

Figure 3: The embedded disk ∆ in the standard overtwisted contact struc-
ture [6]

We observe, as per the definition, that at r = π the hyperplane field is
horizontal and thus corresponds with the tangent planes to the disc.

Let us now take a look at a standard example of a tight contact struc-
ture.

Definition 5 (Standard Contact Structure on R3). The standard contact
structure on R3, which we already met in some other seminars, is the kernel
of the 1-form

α0 = dz − ydx

From the definition, it is clear that at any point ∂
∂y is in the kernel.

Furthermore, we can easily check that at p = (x, y, z), the vector ∂
∂x + y ∂

∂z
is also in the kernel. Thus, these 2 vectors form a base of the hyperplane
at p.

The hyperplane field associated to this contact structure consists of planes
twisting about the y-axis.
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Figure 4: The slopes go to ∞ but the planes never become vertical. [7]

Proposition 2. The standard contact structure on R3 is tight.

We can intuitively understand why looking at Figure 4. For a detailed
proof, see [4] (in French).

Definition 6 (A Final Contact Structure). Consider the 3 dimensional
torus T3 = R3/Z3 and n ∈ Z+. Then

αn = sin(2πnz)dx+ cos(2πnz)dy

is such that
αn ∧ dαn = 2πndx ∧ dy ∧ dz 6= 0

and so it is a well defined contact structure on T3.
As before, it is clear that ∂z is in the kernel, and we can verify that
cos(2πnz)∂x − sin(2πnz)∂y is another vector in the kernel, thus giving
us a basis. The hyperplanes propel along the z direction, completing n full
twists.
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Figure 5: Image Source: Alessandro Imparato [8]. Both the cases n = 1, 2
are drawn.

Proposition 3. This is an overtwisted contact structure for ∆ = {p, py =
0, ||p|| ≤ 1/n}.

Remark 5 (Why care about this classification?). Though tight vs. over-
twisted is obviously a dichotomy, it is not clear that it is a useful one.
It turns out, overtwisted contact structures are somewhat “easy” to deal
with, whereas tight contact structures are quite a bit more difficult to un-
derstand. Moreover, a tight contact structure is capable of detecting subtle
global properties of the manifold supporting it.

By ”easy to deal with”, we mean that on 3-manifolds, overtwisted con-
tact structures actually have a classification theorem!

Definition 7 (Weak Homotopy Equivalence). A weak homotopy equiva-
lence f : X → Y is a continuous map for which

f∗ : πn(X,x)→ πn(Y, f(x))

is an isomorphism for all n.

Theorem 2 (Eliashberg’s overtwisted classification). Define ContOT (Y ) ⊂
Cont(Y ) the set of overtwisted contact structures. Let (∆, ζ) be an over-
twisted disk together with a contact structure whose characteristic foliation
is the standard one.
Then let ContOT (Y ) be the set of overtwisted contact structures which agree
with ζ on ∆, and let Dist(Y,∆) be the set of 2-plane fields which agree with
ζ at the center of ∆. Then we have a weak homotopy equivalence:

ContOT (Y,∆) ↪→ Dist(Y,∆)

We now present some applications of the concepts introduced in this
seminar.
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Theorem 3 (Etnyre-Honda). There exists a closed-compact 3-manifold
that does not support any tight contact structure.

This means that no matter what 1-form we pick to obtain a contact
structure, we will always be able to find an overtwisted disc for it!

Definition 8 (Filling a Manifold). A compact symplectic 4-manifold (X,ω)
is said to fill a contact 3-manifold (Y, ξ) if ∂X = Y and ω∣∣ξ is an area form

on ξ.

Theorem 4. If a contact structure can be filled by a compact symplectic
manifold then it is tight.

Notably, Theorem 4 implies that the standard contact structure on S3

is tight. Proofs of these theorems are discussed in [3], section 4, page 9.

References

[1] Hansjörg Geiges, 2009, An Introduction to Contact Topology.

[2] Ko Honda, Notes for Contact Geometry.

[3] John B. Etnyre, Introductory Lectures on Contact Geometry.

[4] Douady, Adrien, volume 1982/83, exposes 597-614, Asterisque, no. 105-
106 (1983), Expose no. 604, 20 p.

[5] Image Credit: S. Schönenberger

[6] Image: Wikimedia Commons, https//commons.wikimedia.orgwiki/F ileOvertwistedcontactstructure.png

[7] Image Credit: Wikipedia, URL: https//en.wikipedia.org/wiki/Contactgeometry

[8] URL: https//people.math.ethz.ch/ bacubulut/assets/week4alessandrofull.pdf

7


