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1. Introduction

The measurement and management of risk is a central issue in finance, and huge
effort is made in order to analyze it and to understand all the related problems.
Risk measures as introduced by Artzner, Delbaen, Eber, and Heath [1, 2] - and then
extended by Föllmer and Schied [17] and Frittelli and Rosazza Gianin [19] to the
general convex case - serve to quantify the riskiness of financial positions and to give
a criterion for their acceptability. These seminal papers consider the space L∞ of
essentially bounded random variables, used to model essentially bounded financial
positions. Since then the literature on convex risk measures rapidly developed also
beyond such space, in order to include important risk models as those involving
normal or log-normal distributions. Delbaen in [8] defines risk measures on the
space L0 of all random variables. In this case the failing of local convexity limits
the use of convex analysis, hence the theory is not as rich as in the L∞ case.
One should notice, however, that most of the applications one usually has in mind
are recovered by the Lp spaces of random variables with finite p-th moment, with
p ∈ [1,∞). Since these spaces carry a natural local convex topology, classical convex
analysis provides many powerful tools, see e.g. [15, 21].

Another generalization of the original concept of convex risk measure comes from
the need of taking into account the additional information becoming available in
time. The concept of conditional convex risk measures is the natural extension to
this setting; see Detlefsen and Scandolo [9]. With the exception of very few works,
the financial literature in conditional setting is so far mostly devoted to the study of
the essentially bounded case. In this paper, instead, we consider conditional convex
risk measures defined on the model space Lp, for p ∈ [1,∞). Filipović, Kupper and
Vogelpoth in [13, 14] investigate conditional convex risk measures defined on the
space Lp or in a random module generated by it, performing a careful analysis.
In Section 2 we make clear the connection between our setting and the settings
considered in those papers.

The authors gratefully acknowledge the financial support by the Vienna Science and Technology
Fund WWTF.
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One should notice that, while the axiomatic characterization of convex risk mea-
sures contributes to the immediateness of their economic interpretation, an ‘explicit’
representation is desirable in order to use such tools in practical decision making,
that is, for the actual evaluation of financial positions. This explains the popular-
ity of the robust representations of convex risk measures, which come as a natural
result from convex duality. Also, being our setting not recovered by the previous
literature, this is a motivation for us to establish a robust representation, simple
generalization of the analogous result in the unconditional case. This applies in
particular to the two risk measures we are especially interested in: the conditional
versions of the Average Value at Risk and of the entropic risk measure.

Such measures are used to investigate the portfolio selection problem in the clas-
sical continuous-time framework pioneered by Merton [22] and nowadays mostly
referred to as Black&Scholes-type market, in which the stocks dynamics are log-
normal. We restrict ourselves to the case of constant proportion portfolios, where
the proportion of wealth invested in each asset is constant in time. Theses policies
result to be optimal for many interesting objective functions. For example, in the
problem of maximizing the expected utility of terminal wealth for a logarithmic
utility or a power utility. The optimality of constant policies in a utility theory set-
ting is considered since Merton [22]. For a discussion on several cases of optimality
we refer to Browne [6]. Dhaene et al. in [10] also investigate the portfolio selection
problem in a Black&Scholes-type market, considering the Average Value at Risk
and other quantile-based risk measures in the unconditional case. Moreover, in
[10] as well the attention is restricted to the class of constant mix portfolios. Here
we formulate the optimal selection problem for law-invariant conditional convex
risk measures, focusing on the conditional versions of the Average Value at Risk
and of the entropic risk measure. We show the existence of solutions to the opti-
mal selection problem in these two cases, then compare their behavior in relation
to the parameters that describe the stocks’ dynamics and to the parameters that
characterize such measures.

The rest of the paper is organized as follows. In Section 2 we introduce condi-
tional convex risk measures on Lp-spaces and prove a robust representation result.
Section 3 deals with the portfolio selection problem when choices are performed
according to conditional convex risk measures. We present and compare the cases
of the conditional Average Value at Risk and the conditional entropic risk measure,
for which we show the existence of solutions to the optimal selection problem. Some
numerical examples show the impact of risk-preferences on investment decisions and
conclude the paper.

2. Conditional risk measures for unbounded risks

Throughout the paper, we fix a filtered probability space (Ω,F , (Ft)t≥0,P) as
stochastic basis. With Lp = Lp(Ω,F ,P), resp. Lpt = Lp(Ω,Ft,P), we mean the
space of real-valued F-measurable, resp. Ft-measurable, random variables with
finite p-th moment, for p ∈ [1,∞). We use the notation R̄ = (−∞,+∞] and
R+ = [0,∞) and, for any set A ⊆ [−∞,+∞], we denote by L0

t (A) the spaces of
Ft-measurable random variables taking values in A. Equalities and inequalities
between random variables are understood in the almost sure sense.

We denote by M1 the sets of all probability measures on (Ω,F) which are ab-
solutely continuous with respect to P. Moreover, for q ∈ [1,∞), we define the set
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of probability measures

Qqt :=

{
Q ∈M1 :

dQ
dP
∈ Lq, Q = P on Ft

}
, t ≥ 0.

Definition 2.1. For p ∈ [1,∞) and t ≥ 0, a map ρt : Lp(Ω,F ,P) → L0
t (R̄) is

called a conditional convex risk measure if it satisfies the following properties for
all X,Y ∈ Lp(Ω,F ,P):

• Conditional cash invariance: ρt(X +mt) = ρt(X)−mt, mt ∈ Lp(Ω,Ft,P);
• Monotonicity: ρt(X) ≥ ρt(Y ) whenever X ≤ Y ;
• Conditional convexity: for all λ ∈ L0

t ([0, 1]),

ρt
(
λX + (1− λ)Y

)
≤ λρt(X) + (1− λ)ρt(Y );

• Normalization: ρt(0) = 0.

In the static case t = 0 this definition coincides with that of a convex risk measure
given in [21].

For ρt as in Definition 2.1, the Fenchel-Moreau theorem from classical convex
analysis (see e.g. [23, 12]) does not apply, being ρt valued in L0

t (R̄), and neither do
the methods used by Filipović et al. in [13] to establish dual representation results
for risk measures defined on Lp and taking values in Lrt . In [14], on the other hand,
risk measures are defined on the random module LpFt(F) := L0(Ft) · Lp(F) =

{XY |X ∈ L0(Ft), Y ∈ Lp(F)}. There a dual representation result à la Fenchel-
Moreau is established and a rich theory is developed (see also Guo [20]). In the
present paper, for the easiness of tractability, we choose to work on Lp and not
in random modules as in [14], but still we do not impose regularity conditions as
in [13], in order to include in our analysis one of the most known and used risk
measures: the entropic one.

With Theorem 2.2 we establish a robust representation result in our framework.
It is obtained as an easy generalization of the analogous result proved by Kaina and
Rüschendorf [21] in the unconditional case (see Lemma A.1 for another equivalent
characterization). We use the notation Y − = (−Y ) ∨ 0 for the negative part of a
random variable Y .

Theorem 2.2. Let ρt : Lp(Ω,F ,P)→ L0
t (R̄) be a conditional convex risk measure.

Assume ρ−t (X) ∈ L1(Ω,Ft,P) for all X ∈ Lp. Then the following are equivalent:

(i) ρt is continuous from above: For any sequence (Xn)n∈N ⊂ Lp and X ∈ Lp
with Xn ↘ X P-a. s., it follows that ρt(Xn)↗ ρt(X) P-a. s.

(ii) ρt has the robust representation

ρt(X) = ess sup
Q∈Qqt

{
− EQ[X |Ft ]− αt(Q)

}
, X ∈ Lp,

where q is the conjugate index of p ( 1
p + 1

q = 1) and the minimal penalty

function αt of ρt is given by

αt(Q) = ess sup
X∈Lp

{−EQ[X |Ft ]− ρt(X)}, Q ∈ Qqt .

Note that our integrability condition on the negative part of risk measures is
much weaker than the integrability condition imposed in [13], and it has the natural
economical interpretation that there is no financial position that gives on average
an infinite ‘utility’.



4 B. ACCIAIO AND V. GOLDAMMER

To prove Theorem 2.2 we use the same arguments as in [9]. There a robust
representation is proved for conditional convex risk measures on L∞, reducing to
the case of static convex risk measures on L∞. Here we also reduce to the static
case, and then use the results of Kaina and Rüschendorf [21] for static convex risk
measures on Lp.

Proof. (ii)⇒ (i) follows in the same way as in [9, Theorem 1].
(i)⇒ (ii). The inequality

ρt(X) ≥ ess sup
Q∈Qqt

{
− EQ[X |Ft ]− αt(Q)

}
, X ∈ Lp, (2.3)

easily follows from the definition of αt.
To prove the reverse inequality we proceed as in [9, Theorem 1] and reduce to

the static setting, obtaining, for all X ∈ Lp,

EP[ρt(X)] ≤ EP

[
ess sup
Q∈Qqt

{
− EQ[X |Ft]− αt(Q)

}]
, (2.4)

where the expectation on the left hand side is well-defined because of the integrabil-
ity of ρ−t (X). At this stage in [9] the robust representation of a conditional convex
risk measure on L∞ could be stated, while here we need to take care of integrability
conditions. Suppose X ∈ Lp is bounded from below. Then there exists n ∈ N with
X ≥ −n, and so ρt(X) ≤ n by monotonicity and cash invariance of ρt. Therefore
the positive part of ρt(X) is bounded and ρt(X) is integrable. Together with (2.3),
this implies

EP

[
ess sup
Q∈Qqt

{
− EQ[X |Ft ]− αt(Q)

}]
<∞.

Then

ρt(X) = ess sup
Q∈Qqt

{
− EQ[X |Ft ]− αt(Q)

}
follows by (2.3) and (2.4), which proves the representation in (ii) for all X ∈ Lp
bounded from below.

Now consider an arbitrary X ∈ Lp and define a sequence (Xn)n∈N ⊂ Lp by
Xn := X ∨ (−n). Then Xn ↘ X and ρt(Xn) ↗ ρt(X) follows by continuity from
above. For each n ∈ N, the random variable Xn is bounded from below, and by
the previous step we obtain

ρt(X) = lim
n→∞

ρt(Xn) = lim
n→∞

ess sup
Q∈Qqt

{
− EQ[Xn |Ft ]− αt(Q)

}
= ess sup

Q∈Qqt
lim
n→∞

{
− EQ[Xn |Ft ]− αt(Q)

}
= ess sup

Q∈Qqt

{
− EQ[X |Ft ]− αt(Q)

}
,

where the exchange of limit and essential supremum follows since (−EQ[Xn |Ft ]−
αt(Q)) is increasing with n, and so is ess supQ∈Qqt

{
− EQ[Xn |Ft ] − αt(Q)

}
. This

concludes the proof. �

Example 2.5 (Conditional entropic risk measure). For p ∈ [1,∞) and t ≥ 0, the
conditional entropic risk measure Entrγtt : Lp(Ω,F ,P) → L0

t (R̄) with risk aversion
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parameter γt ∈ L0
t ([0,∞]) is defined by

Entrγtt (X) =
1

γ t
logE

[
e−γtX

∣∣Ft], X ∈ Lp. (2.6)

In the limiting cases A := {γt = 0} and B := {γt =∞}, this is meant as

Entrγtt (X1A) = E[−X|Ft]1A and Entrγtt (X1B) = ess sup
Q∈Qqt

EQ[−X |Ft ] 1B .

The entropic risk measure was introduced in [18] in L∞ in the static setting, and
its conditional version appeared, among others, in [4, 5, 9, 7, 16].

Clearly (2.6) defines a conditional convex risk measure continuous from above,
by monotone convergence. Moreover, (Entrγtt (X))− is integrable for all X ∈ Lp by
Jensen’s inequality. Therefore, by Theorem 2.2, Entrγtt admits a robust represen-
tation. As in [9, Proposition 4], one can show that the minimal penalty function
corresponding to Entrγtt is given by

αt(Q) =
1

γ t
Ht(Q|P), for Q ∈ Qqt ,

where Ht(Q|P) is the conditional relative entropy

Ht(Q|P) = EP

[
dQ

dP
log

dQ

dP

∣∣∣Ft] , for Q ∈ Qqt ,

Therefore, the functional in (2.6) has representation

Entrγtt (X) = ess sup
Q∈Qqt

{
−EQ[X |Ft ]−

1

γ t
Ht(Q|P)

}
, X ∈ Lp. (2.7)

Example 2.8 (Conditional Average Value at Risk). For p ∈ [1,∞) and t ≥ 0,

the conditional Average Value at Risk AVaRλt
t : Lp(Ω,F ,P) → L0

t (R̄) at level
λt ∈ L0

t ([0, 1]) is defined by

AVaRλt
t (X) = ess sup

{
−EQ[X |Ft ]

∣∣∣ Q ∈ Qqt , dQ/dP ≤ λ−1
t

}
, X ∈ Lp. (2.9)

In the limiting case A := {λt = 0}, this is meant as

AVaRλt
t (X1A) = ess sup

Q∈Qqt
EQ[−X |Ft ] 1A.

The static Average Value at Risk in L∞ was introduced in [2], and its conditional
version appeared in [3] and was also studied in [11, 25].

Note that (2.9) defines a conditional convex risk measure through its robust
representation. An alternative formulation is given in [25] under the name of con-
ditional Expected Shortfall. In order to obtain it, let us fix X ∈ Lp(Ω,F ,P). Let
κX,t : Ω × B(R) → [0, 1] be the regular conditional distribution of X with respect
to Ft, so that for all B ∈ B(R)

κX,t(ω,B) = P [X ∈ B|Ft] (ω) for all ω P-a.s.,

and let FX,t : Ω× R → [0, 1] be the regular conditional distribution function of X
given Ft, so that for all x ∈ R

FX,t(ω, x) = κX,t
(
ω, (−∞, x]

)
= P [X ≤ x |Ft ] (ω) for all ω P-a.s.

As reference on conditional distributions, see [24, Chapter II.7].
As in [25] we introduce the concept of conditional quantile, which will provide

the desired equivalent characterization of the conditional AVaR.
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Definition 2.10. For X ∈ Lp(Ω,F ,P) and λt ∈ L0
t ((0, 1]), we call a random

variable qX,t : Ω→ R a conditional quantile of X given Ft at level λt, if it satisfies

κX,t(ω, (−∞, qX,t(ω))) ≤ λt(ω) ≤ κX,t(ω, (−∞, qX,t(ω)]) for all ω P-a.s.

Define the random variable IλtX,t : Ω→ R by

IλtX,t =
1

λt

(
1{X<qX,t} + ηX,t1{X=qX,t}

)
,

where

ηX,t(ω) =

{
0 if P [X = qX,t|Ft] (ω) = 0,
λt(ω)−P[X<qX,t|Ft](ω)

P[X=qX,t|Ft](ω) if P [X = qX,t|Ft] (ω) > 0.

With this notation, we have the following equivalent formulation of (2.9):

AVaRλt
t (X) = E

[
−XIλtX,t |Ft

]
, X ∈ Lp. (2.11)

In [25, Theorem 4.4.10] it is proven that the definitions in (2.9) and (2.11) coincide
almost surely in case X is essentially bounded. The proof extends easily to all
random variables in Lp.

3. Optimal portfolio selection problem

In this section we investigate the portfolio selection problem in a Black&Scholes-
type market, where a riskless asset (S0(t))t≥0 and n risky assets (Si(t))t≥0, i =
1, . . . , n, are traded continuously. The price of the riskless asset is assumed to
evolve according to the following ordinary differential equation:

dS0(t)

S0(t)
= rdt, S0(0) = s0 > 0,

where r > 0 is the constant interest rate. The price of each risky asset Si evolves
according to a geometric Brownian motion, represented by the following stochastic
differential equation:

dSi(t)

Si(t)
= bidt+

d∑
j=1

σijdWj(t), Si(0) = si > 0,

where b = (b1, . . . , bn)′ ∈ Rn is the vector of the assets’ rates of return, Σ =
(σij)1≤i≤n,1≤j≤d ∈ Rn×d is the matrix of the assets’ price volatilities and W =
(W1, . . . ,Wd) is a d-dimensional standard Brownian motion, with d ≥ n. We make
the usual assumptions of ΣΣ′ positive definite and b 6= r1, where 1 is the n-
dimensional vector of ones.

Suppose that at some time t ≥ 0 we are endowed with a wealth V (t) > 0 which
we can invest in such market, and that we can continuously trade in a self-financing
way (i.e., no money is added to or withdrawn from our portfolio). We consider the
problem of how to optimally invest in the market in order to minimize the risk at
some future fixed time T > t, when the financial positions are evaluated through
conditional convex risk measures. If one does not impose any restriction on the
admissible strategies, however, there is in general no hope to find a solution to such
problem.

For that reason, as done in [10] for quantile-based risk measures in the uncon-
ditional case, here we restrict ourselves to a special class of investment strategies,
known as constant proportion portfolio strategies or constant mix strategies. This
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means that we rebalance the portfolio continuously in time so that the proportions
πi’s of wealth invested in the risky assets Si’s remain constant over time. The
remaining proportion π0 = 1 −

∑n
i=1 πi is clearly constant too, and is invested in

the riskless asset S0. Therefore, in t we decide the fraction of wealth to invest in
each asset, and keep it constant until the time horizon T . On the other hand, we
do not impose any condition on the signs of the πi’s, thus allowing for short selling.
In this way the strategies that we consider are described by n-dimensional random
variables in the set

Π = {π = {π1, . . . , πn} : πi Ft-measurable, i = 1, . . . , n} .
These policies result to be optimal for many interesting objective functions, as
recalled in the Introduction.

The wealth process (V π(s))s≥t, obtained starting in t with an amount V (t) and
then following the policy π ∈ Π, satisfies the stochastic differential equation

dV π(s)

V π(s)
=

n∑
i=0

πi
dSi(s)

Si(s)
= µ(π)ds+ σ(π)dB(s), s ≥ t (3.1)

V π(t) = V (t),

where
µ(π) = π0r + π′b, σ(π)2 = π′ΣΣ′π

and the process B = (B(s))s≥t is defined by

B(s) =
1√

π′ΣΣ′π
π′ΣW (s), s ≥ t.

The stochastic differential equation in (3.1) was first derived in Merton [22]. It
implies that

V π(T ) = V (t)eX
π(t,T ), (3.2)

with

Xπ(t, T ) =

(
µ(π)− 1

2
σ(π)2

)
(T − t) + σ(π)(B(T )−B(t)). (3.3)

In what follows we will use the fact that Xπ(t, T ) is normally distributed with mean

µ = (T − t)(µ(π)− 1

2
σ(π)2) (3.4)

and variance
ϑ2 = (T − t)σ(π)2. (3.5)

Our aim is to study the problem of minimizing the risk of the discounted wealth
in T , when the positions are evaluated via conditional convex risk measures. The
problem therefore reads as

ess inf
π∈Π

ρt(V
π(T )e−r(T−t)). (3.6)

In the next proposition we show that this problem can be formulated in a much
simpler way.

Proposition 3.7. Let ρt be a conditional convex risk measure conditionally law-
invariant, i.e. ρt(X) = ρt(Y ) whenever X and Y in Lp have the same conditional
distribution given Ft. Then problem (3.6) is equivalent to the following minimiza-
tion problem:

ess inf
σ∈L0

t (R+)
ρt(V

πσ (T )e−r(T−t)), (3.8)
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where

πσ = σ
(ΣΣ′)−1(b− r1)√

(b− r1)′(ΣΣ′)−1(b− r1)
. (3.9)

Proof. For σ ∈ L0
t (R+), denote by Πσ the set of portfolios π such that σ(π)2 = σ2,

i.e.

Πσ = {π ∈ Π : π′ΣΣ′π = σ2}.

Note that these sets are upward directed, that is,

forπ1, π2 ∈ Πσ there exists π̄ ∈ Πσ s.t. µ(π̄) ≥ max{µ(π1), µ(π2)}. (3.10)

To see this, it is sufficient to consider A = {µ(π1) ≥ µ(π2)} ∈ Ft and π̄ = π11A +
π21Ac . Moreover, for σ ∈ L0

t (R+) fixed and π running through Πσ, the conditional
distribution function of V π(T ) given Ft is non-increasing in µ(π) by (3.2) and (3.3),
that is, for π1, π2 ∈ Πσ with µ(π1) ≥ µ(π2),

FV π1 (T ),t ≤ FV π2 (T ),t.

By conditional law-invariance and monotonicity, ρt preserves the first order sto-
chastic dominance in the conditional sense, so that

ρt(V
π1(T )) ≤ ρt(V π2(T )).

This implies that if problem (3.6) admits some solution π∗, then by (3.10) π∗ solves

max
π∈Π

µ(π) subject to σ(π) = σ, (3.11)

where σ = σ(π∗), and the maximum holds ω-wise. Note that (3.11) is a conditional
version of the well-known Markovitz mean-variance problem, which admits a unique
solution since ΣΣ′ is positive definite, b 6= r1 and short selling is allowed. By
Lagrange optimization we then get that the unique optimizer of problem (3.11) is πσ

given in (3.9). Therefore problem (3.6) is reduced to problem (3.8), as claimed. �

In what follows we will consider the optimization problem (3.6) (equiv. (3.8))
both for the conditional AVaR given in (2.9) and for the conditional entropic risk
measure given in (2.6).

3.1. Optimal portfolio selection minimizing the conditional AVaR. Here
we consider problem (3.6) for ρt = AVaRλt

t defined in (2.9), with parameter λt ∈
L0
t ((0, 1]). One version of the conditional distribution function FV π(T ),t of V π(T )

given Ft is given by

FV π(T ),t(ω, x) = P
[
V π(T ) ≤ x

∣∣Ft](ω) = P
[
Xπ(t, T ) ≤ log

x

V (t)

∣∣∣Ft](ω)

= Φ

(
log x

V (t)(ω) − µ(ω)

ϑ(ω)

)
, ω ∈ Ω, x ∈ (0,∞),

where Φ is the standard normal cumulative distribution function and Xπ(t, T ) is
given in (3.3). Therefore the conditional quantile qV π(T ),t of V π(T ) at level λt is
given by

qV π(T ),t = V (t) exp
(
ϑΦ−1(λt) + µ

)
.
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By (2.11), this implies that the conditional AVaR of the discounted wealth in T ,
obtained following the strategy π ∈ Π from t to T , is given by

AVaRλt
t

(
V π(T )e−r(T−t)

)
=

1

λt
E
[
−V π(T )e−r(T−t)1{V π(T )<qV π(T ),t}

∣∣Ft]
= − 1

λt
V (t)e−r(T−t) E

[
eX

π(t,T )
1{Xπ(t,T )<ϑΦ−1(λt)+µ}

∣∣∣Ft]
= − 1

λt
V (t)e−r(T−t)+µ+ϑ2

2 Φ
(
Φ−1(λt)− ϑ

)
= − 1

λt
V (t)e(T−t)π′(b−r1) Φ

(
Φ−1(λt)−

√
(T − t)π′ΣΣ′π

)
.

By Proposition 3.7, problem (3.6) reduces to problem (3.8), which in this case
reads as

ess inf
σ∈L0

t (R+)
− 1

λt
V (t)e(T−t)πσ ′(b−r1)Φ

(
Φ−1(λt)−

√
(T − t)σ

)
.

From (3.9), this means that we want to find σ∗ ∈ L0
t (R+) such that

f(σ∗) = ess sup
σ∈L0

t (R+)

f(σ), (3.12)

where

f(σ) = e(T−t)σ
√

(b−r1)′(ΣΣ′)−1(b−r1) Φ
(

Φ−1(λt)−
√

(T − t)σ
)
.

Here, besides σ, the only dependence on ω is through λt, so we start assuming
λt ∈ (0, 1] deterministic and looking for σ ≥ 0 that maximizes f in [0,∞) (with
abuse of notation we still write f for f

∣∣
[0,∞)

). Moreover, we will use the notation

C1 =
√

(b− r1)′(ΣΣ′)−1(b− r1) and C2(σ) = Φ−1(λt)−
√

(T − t)σ.

In what follows we prove the existence of a unique maximizer for f in [0,∞). For
σ ≥ 0, the derivative of f with respect to σ is continuous and given by

f ′(σ) = e(T−t)C1σ
[
(T − t)C1Φ (C2(σ))−

√
T − t√

2π
e−C2(σ)2/2

]
= exp

(
(T − t)C1σ

)√T − t√
2π

∫ C2(σ)

−∞
e−x

2/2(
√
T − t C1 + x) dx,

where by f ′(0) we mean the right derivative at zero, and where we use the fact that

e−C2(σ)2/2 = −
∫ C2(σ)

−∞
xe−x

2/2 dx.

In particular, for σ ≥ C1 + Φ−1(λt)/
√
T − t we have that C2(σ) ≤ −C1

√
T − t,

which implies f ′(σ) < 0, that is, f is monotone decreasing in the interval
[
C1 + Φ−1(λt)/

√
T − t,∞

)
.

Therefore, being f continuous with f(0) <∞, f attains its maximum in the interval
I =

[
0, C1 + Φ−1(λt)/

√
T − t

)
. Here f ′(σ) = 0 if and only if

−
∫ −C1

√
T−t

−∞
e−x

2/2(
√
T − t C1 + x) dx =

∫ C2(σ)

−C1

√
T−t

e−x
2/2(
√
T − t C1 + x) dx.

The left-hand side is greater than zero and independent of σ, while the right-hand
side is strictly monotone decreasing in σ. Therefore, there is at most one root of f ′
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in I. In particular, if f ′(0) ≤ 0, then f reaches its maximum in 0. Else f reaches
is maximum at some interior point of I. In other words, if

√
T − t

√
(b− r1)′(ΣΣ′)−1(b− r1)λt >

1√
2π

exp
(
− (Φ−1(λt))

2

2

)
,

then it is optimal to invest also in the risky assets, otherwise it is optimal to invest
only in the riskless asset. From the previous arguments it follows that, for a generic
λt ∈ L0

t ((0, 1]), there is still a unique σ∗ ∈ L0
t (R+) satisfying (3.12), which is given

by

σ∗ =
Φ−1(λt)− c∗√

T − t
1{√

T−t
√

(b−r1)′(ΣΣ′)−1(b−r1)λt>
1√
2π

exp
(
− (Φ−1(λt))

2

2

)}, (3.13)

where c∗ ∈ (−C1

√
T − t,∞) is the unique constant such that

−
∫ −C1

√
T−t

−∞
e−x

2/2(
√
T − t C1 + x) dx =

∫ c∗

−C1

√
T−t

e−x
2/2(
√
T − t C1 + x) dx.

Note that (3.13) implies that the higher the λt, the greater is the optimizer σ∗, and
the bigger are the amounts traded in the risky assets, by (3.9).

3.2. Optimal portfolio selection minimizing the conditional entropic risk
measure. Here we consider the optimization problem (3.6) for ρt = Entrγtt defined
in (2.6), with risk aversion parameter γt ∈ L0

t ((0,∞)). The conditional entropic
risk of the discounted wealth obtained in T , following the strategy π ∈ Π from t to
T , is given by

Entrγtt (V π(T )e−r(T−t)) =
1

γ t
logE

[
e−γtV (t) exp(Xπ(t,T )−r(T−t)) ∣∣Ft].

Being Xπ(t, T ) normally distributed with parameters µ and ϑ given in (3.4) and
(3.5), we obtain

Entrγtt (V π(T )e−r(T−t)) =
1

γ t
logE

[
e−γtV (t) exp(−r(T−t)+µ+ϑZ)

∣∣Ft]
=

1

γ t
logE

[
e−γtV (t) exp((T−t)(π′(b−r1)− 1

2π
′ΣΣ′π)+

√
T−t
√
π′ΣΣ′πZ)

∣∣Ft],
where Z is standard-normal distributed and independent on Ft.

Again by Proposition 3.7, problem (3.6) reduces to problem (3.8), that is, to find
σ∗ ∈ L0

t (R+) such that

g(σ∗) = ess inf
σ∈L0

t (R+)
g(σ), (3.14)

where

g(σ) = E
[
e−γtV (t) exp((T−t)(σC1− 1

2σ
2)+
√
T−tσZ) ∣∣Ft].

Here the conditioning on Ft simply means “given γt and V (t)”, being Z independent
on Ft. So we consider γt and V (t) as given values, reducing to the problem of
minimizing g on [0,∞) (with abuse of notation we still write g for g

∣∣
[0,∞)

). For

σ ≥ 0, the derivative of g with respect to σ is continuous and given by

g′(σ) = γtV (t)
√
T − tE

[
(
√
T − t(σ−C1)− Z)e(T−t)(σC1− 1

2σ
2)+
√
T−tσZ

e−γtV (t) exp((T−t)(σC1− 1
2σ

2)+
√
T−tσZ)

]
,
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where by g′(0) we mean the right derivative at zero. Note that g′(0) < 0 and that,
for σ →∞, g′(σ)→ 0 with g(σ)→ 1 = supσ≥0 g(σ). This implies that there exists

a minimizer for g in [0,∞), and therefore there exists σ∗ ∈ L0
t (R+), function of γt

and V (t), which satisfies (3.14).

3.3. Comparison of AVaR and entropic risk measure. Before showing some
numerical results, we briefly comment on the two choice functionals (2.9) and (2.6).
In both cases we showed the existence of an optimizer for the portfolio selection
problem (3.6), thought without obtaining an explicit expression for it. In the com-
parison of the optimal choice made according to one rather than the other risk
measure, the parameters λt and γt play an important role. From (2.9), indeed, it is

clear that the greater the parameter λt, the smaller the risk measured by AVaRλt
t ,

i.e., the less prudent is the agent that chooses according to AVaRλt
t . In particular,

for the discounted terminal value of a portfolio π ∈ Π, (3.2) gives

AVaRλt
t (V π(T )e−r(T−t)) ∈

[
−V (t)e(T−t)π′(b−r1), 0

]
, λt ∈ L0

t ([0, 1]),

where the lowest value is obtained for λt ≡ 1 and the highest one for λt ≡ 0.
On the other hand, (2.7) implies that the greater the risk aversion parameter γt,
the greater the risk measured by Entrγtt , i.e., the more prudent is the agent that
chooses according to Entrγtt . Therefore, for the discounted terminal value of a
portfolio π ∈ Π, (3.2) gives

Entrγtt (V π(T )e−r(T−t)) ∈
[
−V (t)e(T−t)π′(b−r1), 0

]
, γt ∈ L0

t ([0,∞]),

where the lowest value is obtained for γt ≡ 0 and the highest one for γt ≡ ∞.
This means that, for any fixed portfolio π ∈ Π, by varying the parameters γt and

λt, the Average Value at Risk measures and the entropic risk measures span the
same set of values. Therefore the choice of λt and γt is crucial when we compare
such risk measures, and for that reason in our examples we will calibrate those
parameters to some benchmarks in the market.

As for the optimal portfolios and the value functions, besides the respective pa-
rameters γt and λt, the results also depend on the parameters characterizing the
dynamics of the stocks: rates of return and volatilities. In Section 3.4 we illus-
trate the different behavior of the two risk measures by some numerical examples,
where we consider different sets of parameters. From those results it is clear how
the optimal strategies obtained under these risk measures highly depend on such
parameters.

The impact of the value V (t) available at time t on the risk evaluation is also
different. Being the AVaR a coherent risk measure, that is, proportional on linear
payoffs:

AVaRλt
t (hX) = hAVaRλt

t (X), h ∈ L0
t (R+),

it is clear that the optimizer π∗ does not depend on the value V (t), and that the
value function is proportional to V (t). A completely different situation occurs for
the entropic risk measure where, for h ∈ L0

t (R+), one has

Entrγtt (hX) ≤ hEntrγtt (X), on {h ∈ [0, 1)},
Entrγtt (hX) ≥ hEntrγtt (X), on {h ≥ 1}.

In this case the value V (t) plays a different role, since the optimizer π∗ depends on
it and the value function is no more proportional to it.
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3.4. Numerical examples. In this section we illustrate the different behavior
of the functionals (2.9) and (2.6) in the optimal portfolio selection problem, by
presenting some numerical examples in a market with a riskless asset with interest
rate r = 0 and two risky assets. To consider dependence between the risky assets,
we assume that we have three driving Brownian motions and that the matrix of
the assets price volatility is

Σ =

(
σ1

√
ζ σ1

√
1− ζ 0

σ2

√
ζ 0 σ2

√
1− ζ

)
, with ζ ∈ [0, 1], σ1, σ2 > 0.

The parameter ζ clearly measures the dependence between the price of risky assets.
If ζ = 0 they evolve independently of each other, if ζ = 1 they are driven by the
same Brownian motion and basically represent the same asset. For simplification
we assume that we are in the unconditional case, i.e. t = 0, and our initial portfolio
value is V (0) = 1.

To compare the optimal portfolio selection when using the risk measures (2.9)
and (2.6) respectively, we fix the parameter λ = λ0 = 0.05 for the Average Value at
Risk and calibrate the risk aversion parameter γ = γ0 of the entropic risk measure
with respect to it. To this end, we consider three benchmark portfolios. In the
first one π1 = 1, i. e. we only invest in the first risky asset. In the second portfolio
π2 = 1, i. e. we only invest in the second risky asset. In the third one π1 = 1/2 = π2,
i. e. we invest half of the wealth in the first risky asset and the other half in the
second risky asset. For each different choice of drift and volatility parameters, we
minimize with respect to γ the quadratic difference of the AVaR and the entropic
risk of these three portfolios for the independent case ζ = 0. The optimal value γ̂
so found, is then used in the simulations for different values of ζ.

In our example the Average Value at Risk simplifies to

AVaRλ
0

(
V π,ζ(T )

)
= − 1

λ
eTπ

′bΦ
(

Φ−1(λ)−
√
T (π2

1σ
2
1 + 2π1π2σ1σ2ζ + π2

2σ
2
2)
)
.

Therefore, for a fixed portfolio π = (π1, π2)′, the Average Value at Risk is monotone
increasing with respect to ζ if π1π2 ≥ 0, and monotone decreasing if π1π2 ≤ 0.
This implies that, if for a ζ ∈ [0, 1] the minimizing portfolio π∗(ζ) = (π∗1(ζ), π∗1(ζ))′

satisfies π∗1(ζ)π∗2(ζ) ≥ 0, then also π∗1(ζ ′)π∗2(ζ ′) ≥ 0 for all ζ ′ ≤ ζ. To see this,
assume that some π = (π1, π2)′ ∈ Π with π1π2 < 0 minimizes the Average Value
of Risk for some ζ ′ ∈ [0, ζ]. Using the uniqueness of the minimum of the Average
Value at Risk, we obtain

AVaRλ
0

(
V π,ζ(T )

)
≤ AVaRλ

0

(
V π,ζ

′
(T )
)

< AVaRλ
0

(
V π
∗(ζ),ζ′(T )

)
≤ AVaRλ

0

(
V π
∗(ζ),ζ(T )

)
,

which is a contradiction. Analogously, if for a ζ ∈ [0, 1] the minimizing portfolio
π∗(ζ) satisfies π∗1(ζ)π∗2(ζ) ≤ 0, then for any ζ ′ ≥ ζ the minimizing portfolio π∗(ζ ′)
also satisfies π∗1(ζ ′)π∗2(ζ ′) ≤ 0. Furthermore, for ζ = 0 the minimizing portfolio
π∗(0) satisfies π∗i (0) ≥ 0 for i = 1, 2. This means that in case of no correlation we
are long in the risky assets (or do not invest in them at all). Then, by increasing the
dependence ζ, the minimal risk increases as well, up to a critical point where in the
optimal portfolio we go short in one of the risky assets, and from that point on the
minimal risk decreases. This analytical result can also be seen in the simulations.
All simulations are performed with the help of the software MATLAB. In the case
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Figure 1. Minimal value of AVaR with λ = 0.05 and Entr with
γ̂ = 54.55 for ζ ∈ [0, 1]. The drift is b = (0.03, 0.04)′, the volatility
parameters are σ1 = 0.03 and σ2 = 0.045, and the time horizon is
T = 5.

of the entropic risk measure the numerical simulation results suggest that the same
argument is true, see Figure 1.

Considering a market with a riskless asset and n risky assets correlated by an
analogous volatility structure, we obtain similar results. With analogous volatility
structure we mean that each asset is driven by an idiosyncratic Brownian motion
and by a Brownian motion common to all assets, and that the correlation to the
common Brownian motion is given by ζ for all risky assets. Also in this case, the
minimal risk initially increases with ζ. Then, for ζ bigger than a critical point, we
go short in one of the risky assets and the risk starts to decrease.

In the first simulation we set the drift parameter b = (0.03, 0.04)′ and the volatil-
ity parameters σ1 = 0.15 and σ2 = 0.2, and measure the risk after T = 5 years, see
Figure 2. This choice of parameters seems reasonable according to empirical stud-
ies. For this set of parameters γ̂ = 30.28 is the optimal value calibrated to λ = 0.05
in the sense described above. In the portfolio selection problem with respect to the
Average Value at Risk, it is never optimal to invest in the risky assets, for any value
of ζ, see Table 1. The amount V (0) is invested in the riskless asset and kept there
until the time horizon T . On the other hand, in the portfolio selection problem
with respect to the entropic risk measure, the optimal strategy always counts a
part invested in the risky assets, hence the minimal risk is lower. In this case, the
agent whose preferences are represented by the entropic risk measure is less prudent
than the agent whose preferences are represented by the Average Value at Risk.

In case of lower volatility, also the optimal portfolio of the AVaR agent includes
a portion invested in the risky assets. For b = (0.03, 0.04)′, σ1 = 0.03 and σ2 =
0.045, the calibrated value of γ is γ̂ = 54.55 and the results of the simulations are
illustrated in Figure 3 and Table 2. Here the size of the optimal investments in the
risky assets is bigger in the AVaR case than in the entropic one, and the AVaR is
more sensible to changes in correlation between the risky stocks, see Figure 1.

With respect to the initial ‘standard’ case, instead of a lower volatility we can
consider a higher drift vector. With b = (0.14, 0.15)′, σ1 = 0.15 and σ2 = 0.2, the
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AVaR0.05
0 (V π

∗
(T )) Entrγ̂0(V π

∗
(T ))

ζ π∗1 π∗2 AVaR∗ π∗1 π∗2 Entr∗

0 0 0 -1 0.0442 0.0331 -1.0066
0.3 0 0 -1 0.0339 0.0254 -1.0051
0.5 0 0 -1 0.0293 0.0220 -1.0044
0.7 0 0 -1 0.0258 0.0193 -1.0039
0.9 0 0 -1 0.0230 0.0173 -1.0035

Table 1. b = (0.03, 0.04)′, σ1 = 0.15, σ2 = 0.2, γ̂ = 30.28, T = 5

AVaR0.05
0 (V π

∗
(T )) Entrγ̂0(V π

∗
(T ))

ζ π∗1 π∗2 AVaR∗ π∗1 π∗2 Entr∗

0 11.5864 6.8660 -1.6292 0.6082 0.3604 -1.0819
0.3 6.5429 3.5028 -1.1998 0.4911 0.2629 -1.0632
0.5 4.4613 2.0819 -1.0903 0.4509 0.2104 -1.0550
0.7 3.0629 1.0210 -1.0367 0.4522 0.1507 -1.0490
0.9 3.1415 -0.1164 -1.0176 0.6406 -0.0237 -1.0458

Table 2. b = (0.03, 0.04)′, σ1 = 0.03, σ2 = 0.045, γ̂ = 54.55, T = 5

AVaR0.05
0 (V π

∗
(T )) Entrγ̂0(V π

∗
(T ))

ζ π∗1 π∗2 AVaR∗ π∗1 π∗2 Entr∗

0 1.6149 0.9733 -1.2401 0.3492 0.2104 -1.2033
0.3 0.7480 0.3722 -1.0521 0.2924 0.1455 -1.1582
0.5 0.3845 0.1463 -1.0129 0.2803 0.1067 -1.1390
0.7 0.1351 0.0240 -1.0012 0.3018 0.0536 -1.1265
0.9 0.3663 -0.0957 -1.0032 0.5121 -0.1338 -1.1299

Table 3. b = (0.14, 0.15)′, σ1 = 0.15, σ2 = 0.2, γ̂ = 17.47, T = 5

calibrated value of γ is γ̂ = 17.47. Here qualitatively the results are like in the
previous case, see Table 3.

Appendix A. The Fatou property

In what follows we will use the notions of essential limit inferior and essential
limit superior of a sequence of random variables (Yn)n∈N, which are respectively
given by

ess lim inf
n→∞

Yn = sup
n→∞

(
ess inf
m≥n

Ym

)
and

ess lim sup
n→∞

Yn = inf
n→∞

(
ess sup
m≥n

Ym

)
.

Lemma A.1. Let ρt : Lp(Ω,F ,P) → L0
t (R̄) be a conditional convex risk measure

and consider the following properties:

(1) ρt is continuous from above (see Theorem 2.2)
(2) ρt has the Fatou-property: For any sequence (Xn)n∈N ⊂ Lp with |Xn| ≤ Y
∀n for some Y ∈ Lp, and s. t. Xn converges P-almost surely to some X ∈
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Figure 2. AVaR0.05
0 (V π(T )) and Entr30.28

0 (V π(T )) for ζ = 0, 0.3
and 0.7, drift b = (0.03, 0.04)′, volatility σ1 = 0.15 and σ2 = 0.2,
T = 5.

Lp, then

ρt(X) ≤ ess lim inf
n→∞

ρt(Xn) P-a. s.
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Figure 3. AVaR0.05
0 (V π(T )) and Entr54.55

0 (V π(T )) for ζ = 0, 0.3
and 0.7, drift b = (0.03, 0.04)′, volatility σ1 = 0.03 and σ2 = 0.045,
T = 5.

(3) ρt is ‖·‖p-lower semi continuous: For any sequence (Xn)n∈N in Lp with
Xn → X in Lp, then

ρt(X) ≤ ess lim inf
n→∞

ρt(Xn) P-a. s.

(4) The set {X ∈ Lp : ρt(X) ≤ Y } is ‖ · ‖p-closed for each Y ∈ L0
t .
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Then continuity from above is equivalent to the Fatou-property, i. e. (1) ⇔ (2).
Moreover, (3) ⇒ (4) ⇒ (1). On the other hand, if ρt has the Fatou-property, ρt is
in general not ‖·‖p-lower semi continuous, i. e., (2) 6⇒ (3).

Proof. (1) ⇒ (2): The proof is analogous to the proof of Lemma 4.20 in [18].
(2) ⇒ (1): The proof is analogous to the proof of Lemma 3.2 in [21].
(3) ⇒ (4) is obvious.
(4) ⇒ (1): Let (Xn)n∈N ⊂ Lp and X ∈ Lp such that Xn ↘ X P-a. s. By

monotonicity of ρt, we obtain ρt(Xm) ≤ ρt(Xn) a. s. for all m ≤ n, and ρt(Xn) ≤
ρt(X) a. s. for all n ∈ N. Since

(
ρt(Xn)

)
n∈N is monotone and bounded,

(
ρt(Xn)

)
n∈N

converges almost surely and

lim
n→∞

ρt(Xn) ≤ ρt(X) P-a. s.

Define the set S :=
{
X̃ ∈ Lp : ρt(X̃) ≤ limn→∞ ρt(Xn)

}
. Then Xn ∈ S for all

n ∈ N. By dominated convergence, Xn → X in Lp. Therefore X ∈ S by (4) and

ρt(X) ≤ lim
n→∞

ρt(Xn) P-a. s.

Altogether, ρt(Xn)↗ ρt(X) a. s. for n→∞.
(2) 6⇒ (3): To show the last statement of the lemma, we provide the following

counterexample. Let Ω be the interval [0, 1], let the σ-algebras Ft = F = B([0, 1])
coincide for all t ≥ 0, and let P be the Lebesgue measure λ on [0, 1]. Define the map
ρt : Lp(Ω,F ,P) → Lp(Ω,F ,P) by ρt(X) = −X. Then ρt is a conditional convex
risk measure. Furthermore, for any sequence (Xn)n∈N ∈ Lp with Xn → X λ-a. s.
it follows

ess lim inf
n→∞

ρt(Xn) = − ess lim sup
n→∞

Xn = −X = ρt(X) λ-a. s.

Therefore ρt has the Fatou-property. Now define the sequence (Xn)n∈N by

X2m+k = 1( k
2m , k+1

2m

], for m ∈ N0 and k ∈ {0, . . . , 2m − 1}.

Then for each m ∈ N0 and k ∈ {0, . . . , 2m − 1} we obtain

‖X2m+k‖pp =

∫ 1

0

12m+k(ω)λ(dω) =
1

2m
.

Therefore Xn converges to 0 in Lp. On the other hand,

ess lim inf
n→∞

ρt(Xn) = − ess lim sup
n→∞

Xn = −1 < 0 = ρt(0) λ-a. s.,

hence ρt is not ‖·‖p-lower semi continuous. �
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