
Consistency of traded option prices and absence of arbitrage
in the presence of stochastic interest rates

Beatrice Acciaio∗ and Zorana Grbac†

Abstract

We consider a model-independent setting where finitely many call options on a
bond, with possibly different maturities, are liquidly traded. We individuate necessary
and sufficient conditions for the market prices to be consistent with the existence of
a pricing measure, and relate these conditions to the concepts of weak and strong
arbitrage. In particular, a new condition arises, with respect to those obtained by
Davis and Hobson [6] for the case of call options on a stock in a deterministic-rate
framework.

1 Introduction
Starting with the seminal paper [4], substantial research has been done on the rela-
tionship between the option prices quoted in the market and the price distributions
of the underlying asset, and on the consistency of the option prices with absence of
arbitrage opportunities. A widely used assumption is the availability in the market
of call options with a given maturity and for all strikes, which, by [4], determines
the distribution of the underlying asset at that maturity. This observation is cru-
cial for the use of techniques from Optimal Transport and Skorokhod embedding, see
[9, 2, 8, 10, 7, 1, 3, 5], among many others. On the other hand, Davis and Hobson [6]
assume finitely many call options with possibly different maturities being traded in
the market, and investigate consistency with absence of arbitrage.

In all these papers, the standing assumption is that there is no interest rate volatil-
ity, i.e. the interest rate is assumed to be deterministic or even constant (zero). Obvi-
ously the interest rates are never deterministic in real-world financial markets, how-
ever, to the best of our knowledge, so far there has been no paper taking this feature
into account. It turns out that the presence of a stochastic interest rate has an impor-
tant implication on the results that can be obtained.

In this paper we aim at addressing this issue by studying the relationship between
quoted option prices and arbitrage opportunities in a fixed-income market. More pre-
cisely, we shall consider a market consisting of a zero-coupon bond with a given ma-
turity as an underlying, and a set of call options with various maturities and various
strikes written on it. In this framework we individuate necessary and sufficient condi-
tions for the market prices to be consistent with the existence of a pricing measure, and
relate these conditions to the concepts of weak and strong arbitrage. In contrast to the
market studied in [6], that considers the case of a stock and call options written on it,
our underlying asset is intrinsically related to interest rates. Assuming deterministic
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2rates in our setup would thus imply that the underlying asset is also deterministic and
the call options on it become trivial. Therefore, for any non-trivial set of call options
there cannot exist a model with deterministic interest rate which is consistent with it.
On the other hand, as we shall see in the rest of the paper, having stochastic interest
rates allows for more freedom in constructing a model which is consistent with the
given market prices for call options, and no inter-temporal conditions are needed.

Importantly, the bond price is a strictly positive process. Below we show that
the positivity of the price of the underlying asset is closely related to an additional
condition on the option prices in order to ensure no-arbitrage (see Condition (C3) and
Remark 5). This condition is not present in [6] because the authors there allow for the
underlying asset to have zero price with non-zero probability.

2 Notation and preliminary considerations
In a discrete-time setting t = 0, 1, · · · , T , we consider a fixed-income market consisting
of zero-coupon bonds and European call options written on the bond with maturity
T . We do not assume an underlying probability space, but we rather take the model-
independent approach and will draw conclusions only based on the observed market
prices. As usual under this approach, we consider semi-static trading strategies: bonds
are traded dynamically at any time before their maturity, while the call options are
only traded at time zero and then kept till their maturity. The market is assumed to
be perfectly liquid such that both bonds and calls can be traded in arbitrary amounts
and without transaction costs. No assumption is made on the stochastic interest rate.
Specifically, throughout the paper we work in the following setting.
Setting: On the bond with maturity T , a finite number of European call options is
traded in the market, with maturities T1 < · · · < Tm−1, with Ti ∈ {1, · · · , T − 1} for
i = 1, · · ·m − 1. We set Tm = T . For each i = 1, · · · ,m, we assume that the bond
with maturity Ti is traded in the market. We shall refer to it in the sequel as Ti-bond,
and denote by (Bt(Ti))t≤Ti

its (positive) price process. In particular, at time zero we
observe the prices B0(Ti) > 0 for all i = 1, · · · ,m. For a fixed maturity Ti, ni call
options are traded, with strikes 0 < Ki

1 < · · · < Ki
ni

. Thus the pay-off of the (i, u)th
call is given by (BTi

(T )−Ki
u)

+, and we denote its quoted market price at time 0 by
biu.
Remark 1. In fixed-income markets, the most liquid options are actually not options
on zero-coupon bonds, but rather options on the underlying interest rates such as caps
(floors) and swaptions. An interest rate cap (floor) is an option providing protection
against the discretely compounded interest rate exceeding (falling below) a certain
fixed strike level K and it consists of a sequence of caplets (floorlets), which are in fact
put (call) options on the discretely compounded interest rate. By standard arguments
in interest rate theory, it can be shown that the payoff of a caplet (floorlet) can be
transformed into a payoff of a put (call) option on a zero-coupon bond, see e.g. [11],
pages 439-440.

3 Definitions and statements of the main results
Definition 1 (Strong arbitrage). A strong (or model-independent) arbitrage oppor-
tunity is a self-financing semi-static portfolio in the bonds and available options, which
has zero initial value, while all subsequent cash-flows are non-negative and at least at
one date (strictly) positive.



3Definition 2 (Weak arbitrage). We say that there is a weak arbitrage opportunity if,
given the null sets of the model, there is a self-financing semi-static portfolio, which has
zero initial value, while all subsequent cash-flows are non-negative and the probability
of a positive cash-flow is non-zero.
Remark 2. Our definition of weak arbitrage differs from that used in [6]. Indeed, the
existence of weak arbitrage in [6, Definition 2.3] in our terms translates as existence
of weak but not strong arbitrage.

Remember that we work in the Setting described in Section 2.
Definition 3. We say that the market prices admit a compatible pricing model if
there is a probability space (Ω,F , Q) supporting adapted processes D = (Dt)

T
t=0 and

B(Ti) = (Bt(Ti))
Ti
t=0, i = 1, · · · ,m, such that:

i) D is positive, with D0 = 1;
ii) for i = 1, · · · ,m, the initial value of the process B(Ti) is the Ti-bond price observed
in the market, B0(Ti);
iii) DB(Ti) is a Q-martingale for all i = 1, · · · ,m;
iv) for every i = 1, · · · ,m and u = 1, . . . , ni, we have

EQ[DTi
(BTi

(T )−Ki
u)

+] = biu. (1)

We denote by Mmk the collection of all such pricing models (Ω,F , Q,D,B), and with
an abuse of notation we will often write Q ∈ Mmk.
Remark 3. Note that, if Mmk ̸= ∅ then there is no strong arbitrage. Indeed, let
Q ∈ Mmk, then, by the classical arguments used to prove the easy implication in the
first FTAP, there is no self-financing semi-static portfolio which has zero initial value,
and such that all subsequent cash-flows are Q-a.s. non-negative and the probability Q
of a positive cash-flow is positive.

The aim of the paper is to provide necessary and sufficient conditions for the market
prices to admit a compatible pricing model, and to relate it to absence of arbitrage (i.e.
giving a version of the fundamental theorem of asset pricing in the present context).
For this we need to introduce some notations.

Let us fix an i ∈ {1, . . . ,m}. Consider the following points consisting of pairs of
strikes (scaled by a discount factor) and prices at time zero of the call options with
maturity Ti written on the T -bond:{

(0, B0(T )), (B0(Ti)K
i
u, b

i
u)u=1,...,ni

}
. (2)

Note that the first point actually represents the call with strike 0, i.e. the bond itself,
and its price at time zero B0(T ). We connect these points by linear interpolation and
consider the slopes between each two points, which are given as follows:

αi
1 :=

bi1 −B0(T )

B0(Ti)Ki
1

,

αi
l :=

bil − bil−1

B0(Ti)(Ki
l −Ki

l−1)
, for l = 2, . . . , ni. (3)

We will show that the existence of a compatible pricing model is related to several
conditions on the slopes αi

l . The first condition requires that the curve obtained by
linear interpolation of the points in (2) is non-increasing and convex, and that moreover
the first slope is greater than or equal to −1.
Condition (C1). For all i ∈ {1, . . . ,m} , the slopes αi

l , l = 1, . . . , ni, satisfy

−1 ≤ αi
1 ≤ αi

2 ≤ αi
3 · · · ≤ αi

ni
≤ 0.



4Note that Condition (C1) implies that, if αi
l+1 = 0 for some l, then αi

u = 0 and
biu = bil ∀u ≥ l + 1. In the next condition we ask for something more.
Condition (C2). For all i ∈ {1, . . . ,m}, the following holds: if αi

l+1 = 0 for some l,
then bil = 0.
Condition (C3). For all i ∈ {1, . . . ,m}, the following holds: if αi

2 = αi
1, then αi

2 =
αi
1 = −1.

We are now ready to state our main theorem, which we prove in Section 4.

Theorem 1. We have the following implications:
(I) Conditions (C1), (C2), (C3) hold if and only if the market prices admit a com-

patible pricing model, i.e. Mmk ̸= ∅;
(II) if there is no strong arbitrage, then Condition (C1) is satisfied;

(III) if there is no weak arbitrage, then Conditions (C2) and (C3) are satisfied.

Remark 4. Let us compare our results in Theorem 1 with those in [6] (remember that in
the cited paper the authors consider a deterministic interest rate framework and calls
are written on a non-negative financial asset S). The first thing to notice is that we do
not need to consider inter-temporal relations between market prices. Our conditions
(Ci) involve prices of options at every maturity separately. Indeed, our conditions for
every maturity are comparable to the conditions in [6, Theorem 3.1] (single exercise
time) rather than to those in [6, Theorem 4.2] (general multi-maturity case). The
results of Davis and Hobson in the case of single exercise time then corresponds to
our results in Theorem 1 where conditions (C3) is suppressed.

Corollary 1. The following implications hold:
no weak arbitrage ⇒ Mmk ̸= ∅ ⇒ no strong arbitrage.

Proof. Since clearly no weak arbitrage implies no strong arbitrage, then by Theorem 1
we have the first implication. That the second implication holds has been already
observed in Remark 3.

4 Auxiliary results and proof of Theorem 1
We first prove statement (II) of Theorem 1.

Lemma 1. If there is no strong arbitrage, then Condition (C1) is satisfied.

Proof. We are going to show that if Condition (C1) is not satisfied, there is model-
independent arbitrage which we build explicitly in each case. Fix an i such that i ∈
{1, . . . ,m}. This means that we are considering call prices on the T -bond with maturity
Ti.

We begin by assuming that αi
1 < −1. Then at time 0 we buy the call option for

bi1, sell the T -bond and buy Ki
1 units of the Ti-bond. This yields the initial profit

of −bi1 + B0(T ) − Ki
1B0(Ti), which is strictly positive by the above assumption. At

exercise time Ti the value of the strategy is given by (BTi
(T )−Ki

1)
+−BTi

(T )+Ki
1 ≥ 0,

and therefore there is an arbitrage opportunity (we can invest the initial profit of the
above strategy in the Ti-bond).

Next we assume that αi
1 > αi

2 and construct an arbitrage opportunity stemming
from it. We have

B0(T )− bi1
Ki

1

<
bi1 − bi2
Ki

2 −Ki
1



5and thus at time 0 we buy 1
Ki

1
units of the T -bond, we sell 1

Ki
1
+ 1

Ki
2−Ki

1
units of

the call with strike Ki
1 and buy 1

Ki
2−Ki

1
units of the call with strike Ki

2. This strat-
egy is of a butterfly spread type, where buying the T -bond can be thought of as
buying a call option on the T -bond with zero strike. The initial profit is given by
− 1

Ki
1
B0(T ) +

(
1
Ki

1
+ 1

Ki
2−Ki

1

)
bi1 − 1

Ki
2−Ki

1
bi2, which is strictly positive by assumption

above. At exercise time Ti the value of the strategy is given by

1

Ki
1

BTi
(T )−

(
1

Ki
1

+
1

Ki
2 −Ki

1

)
(BTi

(T )−Ki
1)

+ +
1

Ki
2 −Ki

1

(BTi
(T )−Ki

2)
+ ≥ 0,

(4)

hence there is an arbitrage opportunity. Fix now an arbitrary l ∈ {2, . . . , ni − 1} and
assume that αi

l > αi
l+1, which means

bil−1 − bil
Ki

l −Ki
l−1

<
bil − bil+1

Ki
l+1 −Ki

l

.

The arbitrage strategy relies on a butterfly spread consisting of three calls with strikes
Ki

l−1, Ki
l and Ki

l+1. More precisely, we buy 1
Ki

l−Ki
l−1

units of the call with strike
Ki

l−1, sell 1
Ki

l−Ki
l−1

+ 1
Ki

l+1−Ki
l

units of the call with strike Ki
l and buy 1

Ki
l+1−Ki

l

units of the call with strike Ki
l+1. The initial profit is given by − 1

Ki
l−Ki

l−1

bil−1 +(
1

Ki
l−Ki

l−1

+ 1
Ki

l+1−Ki
l

)
bil − 1

Ki
l+1−Ki

l

bil+1, which is strictly positive by assumption. At
exercise time Ti the value of this strategy is

1

Ki
l −Ki

l−1

(BTi
(T )−Ki

l−1)
+ −

(
1

Ki
l −Ki

l−1

+
1

Ki
l+1 −Ki

l

)
(BTi

(T )−Ki
l )

+

+
1

Ki
l+1 −Ki

l

(BTi
(T )−Ki

l+1)
+ ≥ 0

and therefore there is an arbitrage opportunity. The value is strictly positive on the
set {Ki

l−1 < BTi(T ) < Ki
l+1} and zero on its complement.

Finally, if αi
l > 0 for any l ∈ {1, . . . , ni}, this means that bil−1 < bil. In other words,

the price of the call option with strike Ki
l−1 is strictly smaller that the price of the

call option with a bigger strike Ki
l , which creates an obvious arbitrage opportunity by

buying at time 0 one call with strike Ki
l−1 and selling one call with strike Ki

l .

We now prove statement (III) of Theorem 1.

Lemma 2. If there is no weak arbitrage, then Conditions (C2) and (C3) are satisfied.

Proof. First we show that no weak arbitrage implies Condition (C2). We do this by
assuming that αi

l+1 = 0 but bil > 0, and show that in this case there is weak arbitrage.
In this case we have bil = bil+1 > 0. Then, in a model where BTi

(T ) > Ki
l with

positive probability, the strategy as in Definition 2 is obtained by buying at time zero
a call option with strike Ki

l and selling a call option with strike Ki
l+1, which has value

−bil + bil+1 = 0. At Ti the value of the strategy is always positive and it is strictly
positive on the set {BTi

(T ) > Ki
l } On the other hand, in a model where BTi

(T ) ≤ Ki
l

a.s., a strategy as in Definition 2 is obtained by selling at time zero a call option with
strike Ki

l , and buying bil/B0(T ) T -bonds. This strategy has zero initial value, and is
worth bil/B0(T ) at time T , since the call option expires worthless.



6Now we show that no weak arbitrage implies Condition (C3). We consider the
strategy described in the proof of Lemma 1, that consists in buying 1

Ki
1

units of the
T -bond, selling 1

Ki
1
+ 1

Ki
2−Ki

1
units of the call with strike Ki

1 and buying 1
Ki

2−Ki
1

units
of the call with strike Ki

2. In case αi
1 = αi

2, the initial value of such strategy is zero.
On the other hand, its outcome at time Ti, given by (4), is strictly positive on the
set {BTi(T ) < Ki

2} and zero on {BTi(T ) ≥ Ki
2}, because BTi(T ) > 0. Therefore, if

BTi
(T ) < Ki

2 with positive probability, then there is a self-financing strategy as in
Definition 2. On the other hand, if BTi

(T ) ≥ Ki
2 a.s., then BTi

(T ) ≥ Ki
1 a.s., and

if α1 > −1, there is a self-financing strategy as in Definition 2. Indeed, we can sell
the call option for bi1, buy the T -bond and sell Ki

1 units of the Ti-bond. This results
in an initial value p := bi1 − B0(T ) + Ki

1B0(Ti), which is strictly positive because
α1 > −1, and is used to buy Ti-bonds. At time Ti, the value of such strategy is
−(BTi

(T )−Ki
1)

+ +BTi
(T )−Ki

1 + p/B0(Ti) = p/B0(Ti) > 0 a.s.

The next lemma shows one implication of statement (I) in Theorem 1.

Lemma 3. If Mmk ̸= ∅, then Conditions (C1), (C2) and (C3) hold.

Proof. We assume Mmk ̸= ∅. Then Condition (C1) holds by Remark 3 and Lemma 1.
To show that Conditions (C2) (resp. (C3)) hold, we work by way of contradiction

and assume this is not true. Then, we fix Q ∈ Mmk and use the same strategies built
in the proof of Lemma 2 to obtain arbitrage strategies under Q, which is the desired
contradiction.

To complete the proof of our main theorem, we need to show sufficiency of Condi-
tions (C1), (C2), (C3) for the existence of a compatible pricing model. We first show
this in a simplified case, which will serve as building block in the proof of the general
case.

Lemma 4. Assume that the traded options on the T -bond all have the same maturity.
If Conditions (C1), (C2) and (C3) hold, then Mmk ̸= ∅.

Since we are in the simplified case of options with the same maturity, sat T1, we
can drop the indicator i on strikes, option prices, and slopes. This is what we do in
the proof.

Proof. We begin by adding to the set of strikes a strike Kn+1 > Kn such that the
points {(0, B0(T )), (B0(T1)Ku, bu)u=1,...,n, (B0(T1)Kn+1, 0)}, with the last slope given
by αn+1 := − bn

B0(T1)(Kn+1−Kn)
, still satisfy Condition (C1). More precisely, thanks to

(str) the point Kn+1 can be chosen in such a way that αn ≤ αn+1 ≤ 0. Indeed, if
αn < 0, then Kn+1 can always be chosen large enough such that αn+1 satisfies the
desired inequality. If αn = 0, this implies by (C2) that bn = 0. Hence, αn+1 = 0 and
the inequality is trivially satisfied. In this case adding the point Kn+1 is not even
needed and the martingale construction in the sequel can be done already with the
last point being (B0(T1)Kn, 0).

The construction below depends on whether α1 < α2 or α1 = α2. Let us first
assume that α1 < α2. First we add one more point K0 ∈ (0,K1) between the points
0 and K1. Later on we are going to choose K0 in a suitable way. Next define Ω :=
{ω0, . . . , ωn+1}, F := P(Ω) and Q such that Q(ωi) = qi, i = 0, . . . , n+ 1, with qi’s to
be determined. For Q to be a well-defined probability measure, they have to satisfy∑n+1

i=0 qi = 1 and qi ∈ [0, 1], for every i. Set DT1(ωi) = B0(T1) and define ki :=
B0(T1)Ki, for i = 0, . . . , n+ 1. Now set for every i, BT1(T )(ωi) := Ki and DT (ωi) :=
DT1

(ωi)BT1
(T )(ωi) = B0(T1)Ki. The martingale condition on the discounted bond



7price process (B0(T ), DT1
BT1

(T ), DT ) thus translates then into the following equality
that has to be satisfied by qi’s

n+1∑
i=0

qiki = B0(T ). (5)

Obviously, EQ[DT |FT1 ] = DT1BT1(T ). Moreover, matching the call prices in (1) we
get the following n equations

qn+1(kn+1 − kn) = bn (6)
qn+1(kn+1 − kn−1) + qn(kn − kn−1) = bn−1 (7)

............ (8)
n+1∑
i=2

qi(ki − k1) = b1 (9)

Thus, we have a system of n+ 2 equations with n+ 2 unknowns qi, i = 0, . . . , n+ 1.
From the first of n equations for call prices we immediately get

qn+1 =
bn

kn+1 − kn
= −αn+1.

Furthermore, subtracting the first from the second equation and then the second from
the third equation we get

qn =
bn−1 − bn
kn − kn−1

− qn+1 = αn+1 − αn

qn−1 =
bn−2 − bn−1

kn−1 − kn−2
− (qn+1 + qn) = αn − αn−1.

It is now easy to show by induction that for every i = 2, . . . , n we have

qi =
bi−1 − bi
ki − ki−1

−
n+1∑

j=i+1

qi = αi+1 − αi. (10)

From equation (5) and using q0 = 1−
∑n+1

i=1 qi and equation (9), we deduce that

q1 = −
(
α1 +

k0
k1

)
k1

k1 − k0
+ α2. (11)

Finally, we find easily

q0 = 1−
n+1∑
i=1

qi = 1 +

(
α1 +

k0
k1

)
k1

k1 − k0
. (12)

Recalling Condition (C1) and the assumption α1 < α2 above, we have −1 ≤ α1 <
α2 ≤ α3 · · · ≤ αn+1 ≤ 0, which immediately implies qi ≥ 0 for i = 2, . . . , n + 1.
Moreover, it implies that α1 < 0. To show now that q1 ≥ 0, we note that q1 is a
continuous function of k0 and for k0 = 0, q1 = α2 − α1 > 0. Hence, we can choose
k0 > 0 small enough such that q1 ≥ 0. Similarly, for k0 > 0 small enough, we have
that q0 ≥ 0. Moreover, positivity of q’s together with condition

∑n+1
i=0 qi = 1 implies

also qi ≤ 1, for all i and the proof for the case α1 < α2 is completed.



8Now consider the case α1 = α2. By Condition (C3) we have α1 = α2 = −1.
We shall proceed by constructing a model in a similar fashion as above, but such
that BT1

(T ) takes only the values K2, . . . ,Kn+1 which ensures BT1
(T ) ≥ K2. Define

Ω̃ := {ω̃1, . . . , ω̃n} and the probability measure Q̃ such that Q̃(ω̃i) = q̃i, i = 1, . . . , n,
with q̃i’s to be determined. For Q̃ to be well-defined, they have to satisfy

∑n
i=1 q̃i = 1

and q̃i ∈ [0, 1], for every i. Set DT1(ω̃i) = B0(T1) and define ki := B0(T1)Ki, for
i = 1, . . . , n + 1. Now set for every i, BT1

(T )(ω̃i) := Ki+1 ≥ K2 and DT (ωi) :=
DT1

(ωi)BT1
(T )(ωi) = B0(T1)Ki. The martingale condition on the discounted bond

price process (B0(T ), DT1
BT1

(T ), DT ) translates then into the following equality that
has to be satisfied by q̃i’s

n∑
i=1

q̃iki+1 = B0(T ). (13)

and we obviously have EQ[DT |FT1
] = DT1

BT1
(T ). Moreover, matching the call prices

in (1) we get the following n equations

q̃n(kn+1 − kn) = bn (14)
q̃n(kn+1 − kn−1) + q̃n−1(kn − kn−1) = bn−1 (15)

............ (16)
n∑

i=1

q̃i(ki+1 − k1) = b1 (17)

As above we have a system of n + 2 equations, but with only n unknowns q̃i, i =
1, . . . , n. From (14) we immediately get

q̃n =
bn

kn+1 − kn
= −αn+1.

Furthermore, subtracting the first from the second equation and then the second from
the third equation we get

q̃n−1 =
bn−1 − bn
kn − kn−1

− q̃n = αn+1 − αn

q̃n−2 =
bn−2 − bn−1

kn−1 − kn−2
− (q̃n + q̃n−1) = αn − αn−1.

It is now easy to show by induction that for every i = 1, . . . , n− 3 we have

q̃i =
bi−1 − bi
ki − ki−1

−
n∑

j=i+1

q̃i = αi+2 − αi+1. (18)

Moreover, we have
n∑

i=1

q̃i =

n∑
i=2

(αi+1 − αi)− αn+1 = −α2 = 1.

Finally, using equation (17) and the fact that α1 = −1 we get
n∑

i=1

q̃iki+1 =

n∑
i=1

q̃ik1 + b1 = k1 + b1 = −B0(T )− b1
α1

+ b1 = B0(T )− b1 + b1 = B0(T ).

We complete the proof by noting that as above all q̃’s are positive by Condition
(C1).



9Remark 5. We point out that the martingale construction in the proof above ensures
BT1

(T )(ω) > 0, for all ω. This is one crucial difference with the construction proposed
in [6], where the price of the underlying asset can be equal to zero with non-zero
probability. In that paper, the cases α1 < α2 and α1 = α2 need not be treated
separately. This distinction and the related Condition (C3) are linked precisely to the
issue of strict positivity of the price of the underlying asset, as one can see from the
above construction and from the proof of (1) in Lemma 2.

With the same reasoning we can deal with the case of deterministic interest rates
and call options written on any strictly positive underlying.

Consider now the general case, where we take into account options traded on the
T -bond with different maturities Ti, i = 1, . . . ,m − 1. We prove the sufficiency of
Conditions (C1), (C2), (C3) for the existence of a compatible pricing model, which
shows the missing implication of statement (I) in Theorem 1.
Lemma 5. If Conditions (C1), (C2) and (C3) hold, then Mmk ̸= ∅.

Proof. We rely on the construction presented in the proof of Lemma 4 where the case
of options with a common maturity was studied. The stepwise construction starts
from the options with the shortest maturity and proceeds by enlarging the probability
space as needed.

We begin by considering options with maturity T1 and strikes K1
u, u = 1, . . . , n1.

The prices of the options are given by b1u, u = 1, , . . . , n1. Applying Lemma 4 for call
options with maturity T1, we obtain a probability space (Ω1,F , Q) and the random
variables DT1

and BT1
(T ) such that (B0(T ), DT1

BT1
(T )) is a Q-martingale and for

every u = 1, . . . , n1 the call price equation (1) from Definition 3 is satisfied. More
precisely, assuming that α1

1 < α1
2 (the case α1

1 = α1
2 is treated similarly as in Lemma 4

using Condition (C3)), we define Ω1 := {ω1
0 , . . . , ω

1
n1+1} and we set DT1(ω

1
u) = B0(T1)

and define k1u := B0(T1)K
1
u, for u = 0, . . . , n1 + 1, where we add the strikes K1

0

and K1
n1+1 following Lemma 4. For every u, BT1

(T )(ω1
u) = K1

u. The probabilities
q1u = Q(ω1

u) are defined as in Lemma 4. We thus have, again by Lemma 4, that
(B0(T ), DT1

BT1
(T )) is indeed a Q-martingale and the call prices (1) are matched.

Moreover, we define the σ-algebra FT1
by FT1

:= σ(DT1
, BT1

(T )) = σ(BT1
(T )).

In the next step we have to construct the random variables BT2
(T ) and DT2

such
that

EQ[DT2BT2(T )|FT1 ] = DT1BT1(T ) = B0(T1)BT1(T ) (19)
and the call price equation (1) is satisfied for options with maturity T2. We will proceed
again by following Lemma 4 applied to the options with maturity T2 and strikes K2

u,
for u = 1, . . . , n2. We assume again that α2

1 < α2
2 (the case α2

1 = α2
2 is treated similarly

as in Lemma 4 using Condition (C3)) and we again add the strikes K2
0 and K2

n2+1 as
described in this lemma. We define k2v := B0(T2)K

2
v , for v = 0, . . . , n2 + 1.

Now we enlarge the probability space by introducing the product space Ω1×Ω2 =
{(ω1

u, ω
2
v) : u = 0, . . . , n1+1, v = 0, . . . , n2+1}. We define for every (ω1

u, ω
2
v) ∈ Ω1×Ω2

BT2
(T )(ω1

u, ω
2
v) = K2

v

and set
DT2

(ω1
u, ω

2
v) = B0(T2)

B0(T1)

B0(T )
BT1(T )(ω

1
u, ω

2
v).

We now have to determine the probabilities q2v ∈ [0, 1] such that equation (19) is
satisfied and for every v̄ ∈ {1, . . . , n2} the call price equation (1) is satisfied for the
strike K2

v̄ and price b2v̄. More precisely, equation (19) is equivalent to
n2+1∑
v=0

q2vk
2
v = B0(T )



10and the call price equations take the same form as in the proof of Lemma 4. Thus,
Condition (C1) on the slopes α2

v ensures that probabilities q2v ∈ [0, 1] defined as in
Lemma 4 for options with maturity T2 are indeed well-defined.

Proceeding in the same manner, we construct finally a sequence of random variables
BTi(T ) and DTi , for i < m, and set in addition DT = DTm = DTm−1BTm−1(Tm) such
that (B0(T ), DT1BT1(T ), . . . , DT ) is a Q-martingale and all call price equations (1)
are satisfied. The bond prices BTk

(Ti), for Tk < Ti and Ti < T = Tm, are defined via
the relationship

BTk
(Ti) =

1

DTk

EQ[DTi
|FTk

].
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