
Chapter 10

The de-sparsified or de-biased Lasso for
confidence regions and testing

Abstract Error control based on p-values and confidence statements is a most im-
portant task in many areas of sciences. In the high-dimensional setting, assigning
significance and quantifying uncertainties is challenging. While the Lasso and other
sparse estimators are not tailored for this: de-sparsification is crucial and results in
the so-called de-sparsified or de-biased Lasso. The low-dimensional components
of the estimated parameters have asymptotic Gaussian distributions and this itself
leads to the construction of tests and confidence regions which are, under additional
conditions, asymptotically optimal in the established framework of semiparamet-
ric inference. A bootstrap method can be used in conjunction with the de-biased
Lasso which is especially useful in presence of heteroscedastic and non-Gaussian
errors and for multiple testing adjustemtn in presence of strong dependence. The
de-sparsified or de-biased Lasso provides a powerful andimpotrant tool for high-
dimensional statistical inference: other more generic procedures are described in
Chapters 11 and 12.

10.1 Organization of the chapter

We introduce in Section 10.3 the de-sparsified or de-biased Lasso for linear mod-
els, an estimator which has been proposed by Zhang and Zhang (2014). Due to its
non-sparsity, it is a regular estimator which is not exposed to the super-efficiency
phenomenon. We show in Section 10.3.1 that the de-sparsified or de-biased Lasso
has asymptotically a Gaussian distribution and we disucss its optimality in Section
10.3.3. The notion of optimality is here according to the framework of semiparamet-
ric inference: the estimator achieves asymptotically the Crame-Rao lower bound for
the asymptotic variance. Implications and practical aspects are discussed in Section
10.3.2. We describe in Section 10.4.2 a bootstrap procedure for the de-sparsified or
de-biased Lasso: it is especially useful in presence of non-Gaussian or heteroscedas-
tic errors and for more efficient multiple testing adjustment among strongly depen-
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340 10 The de-sparsified or de-biased Lasso for confidence regions and testing

dent tests. Finally, Section 10.5 delineates the extension to generalized linear models
and alternative methods are briefly mentioned in Section 10.6.

10.2 Introduction

We consider first a high-dimensional linear model as in (2.1) while extensions are
discussed in Section 10.5:

Y = Xβ 0 + ε (10.1)

with n× p fixed or random design matrix X, n× 1 response and error vectors Y
and ε , respectively. The errors are ε1, . . . ,εn are assumed to be independent with
E[εi] = 0, and independent of X (for random design). As in the previous chapters,
We allow for high-dimensional settings where p � n and we denote the active set
of relevant variables as

S0 = { j; β 0
j �= 0, j = 1, . . . , p},

with cardinality s0 = |S0|. The main goals in this chapter are the construction of
confidence intervals and statistical hypothesis tests for the regression parameters
β 0

j ( j = 1, . . . , p) and corresponding multiple testing adjustment. The former is a
highly non-standard problem in high-dimensional settings while for the latter we can
use standard well-known techniques: when considering both goals simultaneously,
though, one can develop more powerful multiple testing adjustments.

For assigning uncertainties in terms of confidence intervals or hypothesis testing, the
standard Lasso in (2.2) seems inappropriate. It is very difficult to characterize the
distribution of the estimator in the high-dimensional setting: Knight and Fu (2000)
derive asymptotic results for fixed dimension as sample size n → ∞ and already for
such simple situations, the asymptotic distribution of the Lasso has point mass at
zero. This implies, because of non-continuity of the distribution, that standard boot-
strapping and subsampling schemes are delicate to apply and uniform convergence
to the limit seems hard to achieve. The latter means that the estimator is exposed to
undesirable super-efficiency problems. All the problems mentioned above apply not
only for the Lasso but also for other sparse estimators.



10.3 Regularized projection: de-biasing or de-sparsifying the Lasso 341

10.3 Regularized projection: de-biasing or de-sparsifying the
Lasso

We describe here a method, first introduced by Zhang and Zhang (2014). It is in-
structive to give a motivation starting with the low-dimensional setting where p < n
and rank(X) = p. The jth component of the ordinary least squares estimator β̂OLS; j

can be obtained as follows. Do an OLS regression of X( j) versus all other variables
X(− j) and denote the corresponding residuals by Z( j). Then:

β̂OLS; j = YT Z( j)/(X( j))T Z( j) (10.2)

can be obtained by a linear projection (Problem 10.1). In a high-dimensional setting
with rank(X) = n, the residuals Z( j) would be equal to zero and the projection is
ill-posed.

For the high-dimensional case with p > n, the idea is to pursue a regularized projec-
tion. Instead of ordinary least squares regression, we use a Lasso regression of X( j)

versus X(− j) with corresponding residual vector Z( j):

γ̂( j) = argmin
γ∈Rp−1

�X( j)−X(− j)γ�2
2/n+λ j|γ�1,

Z( j) = X( j)−X(− j)γ̂( j).

This involves a regularization parameter λ j for the Lasso, and hence Z( j) = Z( j)(λ j).
We immediately obtain for any vector Z( j):

Y T Z( j)

(X( j))T Z( j)
= β 0

j + ∑
k �= j

Pjkβ 0
k +

εT Z( j)

(X( j))T Z( j)
,

Pjk = (X(k))T Z( j)/(X( j))T Z( j). (10.3)

We note that in the low-dimensional case with Z( j) being the residuals from ordinary
least squares, due to orthogonality, Pjk = 0 for all k �= j.

When using the Lasso-residuals for Z( j), we do not have exact orthogonality and a
bias term arises. Thus, we make a bias correction in (10.3) by plugging in the Lasso
estimator β̂ (of the regression Y versus X): the bias-corrected estimator is

b̂ j =
Y T Z( j)

(X( j))T Z( j)
− ∑

k �= j
Pjkβ̂k. (10.4)

The estimator b̂ = {b̂ j; j = 1, . . . , p} is not sparse with all components being differ-
ent from zero. This non-sparseness happens because the first term on the right-hand
side of (10.4) is non-zeroi and the second term does not cancel the first one (ex-
cept for a constellation which has probability zero). Thus, the estimator in (10.4) is
sometimes called the de-sparsified Lasso (van de Geer et al., 2014). We can write
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(10.4) also in the following form:

b̂ j = β̂ j +
(Z( j))T (Y−Xβ̂ )

(Z( j))T X( j)
. (10.5)

Since β̂ is the Lasso estimator, we see that b̂ j equals the Lasso estimator with an ad-
ditional estimated bias correction term: therefore the name de-biased Lasso (Zhang
and Zhang, 2014).

10.3.1 Limiting Gaussian distribution

We show here that the de-sparsified or de-biased Lasso has an asymptotic Gaussian
distribution. Using (10.3) we obtain:

√
n(b̂ j −β 0

j ) =
n−1/2εT Z( j)

n−1(X( j))T Z( j)
+ ∑

k �= j

√
nPjk(β̂k −β 0

k ).

The first term on the right-hand side of the equal sign has an exact Gaussian distri-
bution, when assuming Gaussian errors; for non-Gaussian error, one can establish
an asymptotic Gaussian distribution when assuming that E|εi|2+κ < ∞ for κ > 0.
We will argue below in Lemma 10.1 and Theorem 10.1 that the second term is
asymptotically negligible.

Assuming such an asymptotic negligibility, we have for the variance of the leading
term

Var(
n−1/2εT Z( j)

n−1(X( j))T Z( j)
) = σ2

ε
�Z( j)�2

2/n
|n−1(X( j))T Z( j)|2 .

Thus, when standardizing to unit variance we approximately obtain

σ−1
ε

√
n

n−1(X( j))T Z( j)

n−1/2�Z( j)�2
(b̂ j −β 0

j )≈ N (0,1).

We will make this rigorous next.

Lemma 10.1. Consider a linear model as in (10.1) with fixed design and Gaussian
errors ε ∼ Nn(0,σ2I). Then:

σ−1
ε

√
ndiag

�
n−1(X(1))T Z(1)

n−1/2�Z(1)�2
, . . . ,

n−1(X(p))T Z(p)

n−1/2�Z(p)�2

�
(b̂−β 0) =W +Δ

where
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W ∼ Np(0,Ω), Ω jk =
n−1(Z( j))T Z(k)

n−1/2�Z( j)�2n−1/2�Z(k)�2
,

|Δ j|≤ σ−1√nλ j/2
1

�Z( j)�2/
√

n
�β̂ −β 0�1.

Proof. We write for a single component j:

b̂ j =
(Z( j))TY

(Z( j))T X( j)
− ∑

k �= j

(Z( j))T X(k)

(Z( j))T X( j)
β̂k +

(Z( j))T ε
(Z( j))T X( j)

= β 0
j − ∑

k �= j

(Z( j))T X(k)

(Z( j))T X( j)
(̂βk −β 0

k )+
(Z( j))T ε

(Z( j))T X( j)
.

Thus, we obtain

σ−1√n
(Z( j))T X( j)/n
�Z( j)�2/

√
n
(b̂ j −β 0

j ) =Wj +Δ j,

Wj = σ−1 (Z
( j))T X( j)/n

�Z( j)�2/
√

n
(Z( j))T ε/

√
n ∼ N (0,1),

Δ j = σ−1√n
1

�Z( j)�2/
√

n ∑
k �= j

(Z( j))T X(k)/n(β 0
k − β̂k).

Clearly the vector W = (W1, . . . ,Wp) has a Gaussian distribution Np(0,Ω) with Ω
as in the lemma.

For the error (or bias) term we exploit the KKT conditions of the Lasso, see Lemma
2.1, saying that

|Z( j))T X(k)/n|≤ λ j/2 for all k �= j. (10.6)

Then, by Hölder’s inequality,

|Δ j|≤ 2σ−1√n
λ j

�Z( j)�2/
√

n
�β̂ −β 0�1.

✷

We see that the bias term Δ j is small if λ j

�Z( j)�2/
√

n
is small. Obviously, choosing

λ j very small leads to residuals with small �Z( j)�2 and there is a trade-off. Under
some conditions, one can choose λ j �

�
log(p)/n such that �Z( j)�2/

√
n is bounded

away from zero: invoking the usual bound for �β̂ −β 0�1 = OP(s0
�

log(p)/n), see
for example (2.22), this then leads to the bound

|Δ j|≤ OP(
√

n
�

log(p)/ns0
�

log(p)/n) = OP(s0 log(p)/
√

n),
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and the right-hand side is negligible if s0 = o(
√

n/ log(p)). We will make this rig-
orous next.

Assume the following:

(B1) The design matrix X has compatibility constant φ 2
0 ≥ C > 0 bounded away

from zero, and the sparsity of the regression vector is s0 = �β 0�0
0 = o(

√
n/ log(p)).

(B2,j) For λ j = Cj
�

log(p)/n with 0 < L1 ≤ Cj ≤ L2 < ∞ the residuals satisfy
�Z( j)�2

2/n ≥ L > 0 (where L might depend on L1).

Theorem 10.1. Consider a linear model as in (10.1) with fixed design and Gaussian
errors ε ∼ Nn(0,σ2I). Assume (B1) and (B2,j), and choose λ = C

�
log(p)/n for

0 < M1 ≤C ≤ M2 < ∞ with M1 sufficiently large. We then have that

σ−1√n
n−1(X( j))T Z( j)

n−1/2�Z( j)�2
(b̂ j −β 0

j ) =⇒ N (0,1).

If in addition (B2,j) holds for all j = 1, . . . , p:

σ−1√ndiag

�
n−1(X(1))T Z(1)

n−1/2�Z(1)�2
, . . . ,

n−1(X(p))T Z(p)

n−1/2�Z(p)�2

�
(b̂−β 0) =W +Δ

where

W ∼ Np(0,Ω), Ω jk =
n−1(Z( j))T Z(k)

n−1/2�Z( j)�2n−1/2�Z(k)�2
,

max
j=1,...,p

|Δ j|= oP(1).

Proof. Assumption (B1) guarantees that when choosing λ = C
�

log(p)/n with C
sufficiently large that

�β̂ −β 0�1 = OP(s0
�

log(p)/n),

see for example (2.22) and Chapter 6. The result then follows from Lemma 10.1 by
invoking assumption (B2,j). ✷

The lower bound of the compatibility constant in assumption (B1) is justified in
Section 6.12. Assumption (B2,j) can be justified as follows. Assume that the rows
of X are i.i.d. from a distribution with mean zero and covariance matrix Σ (and one
then conditions on X for a fixed design linear model). Assume that for the inverse
Θ = Σ−1, Θ j j ≥ 2L > 0. It then holds that

X( j) = X(− j)γ( j) +η( j),

with η( j) ∼ Nn(0,τ2
j I), τ2

j = 1/Θ j j and η( j) uncorrelated from X(− j). If the Lasso
is consistent for the prediction error, saying that
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�X(− j)(γ̂( j)− γ( j)�2
2/n = oP(1), (10.7)

we have that (B2,j) holds with probability tending to 1. Consistency of the prediction
error in (10.7) holds if the sparsity is s j = �γ( j)�0

0 = o(log(p)/n) and a restricted
eigenvalue condition holds for X(− j), see for example (2.22).

From a theoretical perspective, it is more elegant to use the square root Lasso (Bel-
loni et al., 2011), described in Section 2.13, for the construction of Z( j): then, one
can establish an analogue of the statements in the Theorem 10.1 without requiring
(B2,j), see Problem 10.2. In fact, the bound for the bias term Δ j in Lemma 10.1
becomes:

|Δ j|≤ σ−1√nλ j�β̂ −β 0�1.

Under assumption (B1), this converges to zero in probability. In practice, it seems
to make essentially no difference whether one takes the square root or plain Lasso
for the construction of the Z( j)’s (and in fact, the square root Lasso has the same
solution path as the Lasso, see Peter: Reference????).

Finally, the convergence in Theorem 10.1 is uniform over the subset of the parameter
space where the number of non-zero coefficients is small, e.g. over {β ; �β�0

0 ≤ s0},
where s0 = o(

√
n/ log(p)) occurs in condition (B1). Therefore, we obtain honest

confidence regions and tests, as discussed in the next subsection.

10.3.2 Confidence regions, group inference, multiple statistical
testing and practical issues

Theorem 10.1 justifies the construction of confidence regions and statistical hypoth-
esis tests. When considering a single regression parameter, we can construct a two-
sided confidence interval as follows:

b̂ j ± σ̂n−1/2 n−1/2�Z( j)�2

n−1(X( j))T Z( j)
Φ−1(1−α/2),

where Φ(·) is the cumulative distribution function of N (0,1). Here, σ̂2 is an es-
timate of the error variance, as discussed below. Two-sided statistical testing for a
single parameter concerns the null-hypothesis

H0, j : β 0
j = 0

versus the alternative

HA, j : β 0
j �= 0.

Of course, one could also test other parameter values than zero.
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When doing inference for a few components G ⊆ {1, . . . , p} of β 0, with |G| of
fixed cardinality (from an asymptotic perspective as n → ∞), we can rely on the
distribution of WG from the second statement in Theorem 10.1. If |G| is arbitrarily
large, we restrict the focus to the sup-norm: in this norm, the approximation error
�Δ�∞ in Theorem 10.1 converges to zero. Thus, for a group G ⊆ {1, . . . , p}, we can
test a group null-hypothesis

H0,G : β 0
j = 0 for all j ∈ G,

versus the logical complement HA,G : β 0
j �= 0 from some j ∈ G, by considering the

test-statistic

max
j∈G

σ̂−1√n
n−1(X( j))T Z( j)

n−1/2�Z( j)�2
|b̂ j|⇒ max

j∈G
|Wj|, (10.8)

where the limit on the right hand side occurs if the null-hypothesis H0,G holds true.
The distribution of max j∈G |Wj| can be easily simulated from dependent Gaussian
random variables from Np(0,Ω) where Ω is known. We also remark that sum-type
statistics for large groups cannot be easily treated because ∑ j∈G |Δ j| might not be
reasonably upper-bounded.

We can also use the limiting distribution in (10.8) for multipe testing correction.
Denote by FG(c) = IP[max j∈G |Wj|≤ c]. Then, the corrected p-values for testing all
single hypotheses H0, j : β 0

j = 0 versus HA, j : β 0
j �= 0, for j = 1, . . . , p, is given by

Pcorr, j = F{1,...,p}(σ̂−1√n
n−1(X( j))T Z( j)

n−1/2�Z( j)�2
|b̂ j|), (10.9)

which controls the familywise error rate (FWER), see Problem 10.3. The FWER is
defined as follows. Denote the number of false positives by V =V (α)=∑p

j=1 I(Pcorr, j ≤
α) · I(H0, j holds true). Then, the familywise error rate is

IP[V > 0].

The correction of p-values for testing many group hypothesis H0,Gr (r = 1, . . . ,m)
can be done similarly as in (10.9). See Problem 10.3.

Estimation of the error variance can be done by using the residual sum of squqres
from Lasso fit:

σ̂2 = n−1�Y−Xβ̂ (λCV)�2
2, (10.10)

where λCV is the regularization parameter optimizing a cross-validated squared error
loss. Often, 10-fold cross-validation is employed. Insteaad of (10.10) one can use
a more conservative estimate with the scaling factor (n−�β̂ (λCV�0

0)
−1. The use of

cross-validation seems to work quite well empirically (Reid et al., 2016). . As an
alternative, the so-called scaled Lasso (Sun and Zhang, 2012) can be used which
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leads to a consistent estimate of the error variance: it is a fully automatic method
which does not require any specification of a tuning parameter.

From a practical perspective, we need to choose the regularization parameters λ (for
the Lasso regression of Y versus X) and λ j (for the nodewise Lasso regressions of
X( j) versus all other variables X(− j)). Regarding the former, we advocate a choice
using (typically a 10-fold cross-validation; for the latter, we favor a proposal for a
smaller λ j than the one from cross-validation.

Choice of λ j for de-sparsified Lasso. We see from the KKT conditions, see Lemma
2.1, that the numerator of the error in the bias correction term (i.e. the Pjk’s) is
decreasing as λ j/2 � 0; for controlling the denominator, λ j shouldn’t be too small
to ensure that the denominator (i.e. n−1(X( j))T Z( j)) behaves reasonable (staying
away from zero) for a fairly large range of λ j.

Therefore, the strategy is as follows.

1. Compute a Lasso regression of X( j) versus all other variables X(− j) using (typi-
cally a 10-fold) cross-validation, and the corresponding residual vector is denoted
by Z( j).

2. Compute �Z( j)�2
2/((X

( j))T Z( j))2 which is the asymptotic variance of b̂ j/σε , as-
suming that the error in the bias correction is negligible.

3. Increase the variance by 25%, i.e., Vj = 1.25�Z( j)�2
2/((X

( j))T Z( j))2.

4. Search for the smallest λ j such that the corresponding residual vector Z( j)(λ j)
satisfies:

�Z( j)(λ j)�2
2/((X

( j))T Z( j)(λ j))
2 ≤Vj.

This procedure is similar to the choice of λ j advocated in Zhang and Zhang (2014).

For a description about computational implementation of the de-biased or de-
sparsified Lasso and its comparison to other methods, see also Section 10.4, we
refer to Dezeure et al. (2015).

10.3.3 Asymptotic efficiency

We look at the question whether the de-sparsified estimator b̂ j for a single compo-
nent is asymptotically efficient, reaching the smallest possible asymptotic variance,
that is, the semiparametric efficiency bound (Bickel et al., 1998, cf.). To do so, we
assume that X is random with rows being i.i.d. from a distribution with mean zero
and covariance matrix Σ . Assume that

(C,j) Θ = Σ−1 exists and 0 < L ≤Θ j j ≤U∞ for some constants 0 < L <U < ∞.
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In the low-dimensional classical case with p < n and rank(X) = p, the semipara-
metric efficiency bound describing the smallest asymptotic variance with the class
of regular estimators is Θ j j = (Σ−1) j j. This is also known as the Cramér-Rao bound.

Denote the �0 and the scaled �2 sparsity of the jth row of Θ by

s j = ∑
k �= j

I(Θ jk �= 0),

t2
j = ∑

k �= j
Θ 2

jk/Θ 2
j j.

The following then holds.

Theorem 10.2. Consider j ∈ {1, . . . , p}. Assume (B1), (C,j), s j = o(n/ log(p)),
t2

j ≤ C < ∞ for some constant C < ∞ and that the restricted minimal eigenvalue
for (X(− j))T X(− j)/n is bounded away from zero. Furthermore, assume that the dis-
tribution of the rows of X (each being the same) is sub-Gaussian. Then,

√
n(b̂ j −β 0

j ) =Uj +Γj,

Uj ∼ N (0,σ2Θ j j), Γj = oP(1) (n → ∞).

Proof. When conditioning on X, we can invoke Theorem 10.1. The asymptotic vari-
ance equals

σ2 lim
n→∞

�Z( j)�2
2/n

|(Z( j))T X( j)/n|2 .

The following holds:

(Z( j))T X( j)/n = �Z( j)�2
2/n+n−1(Z( j))T X(− j)γ( j) +n−1(Z( j))T X(− j)(γ̂( j)− γ( j)).

Using the KKT conditions as in (10.6) and �γ( j)�1 ≤√s j�γ( j)�2, we have that

|n−1(Z( j))T X(− j)γ( j)|≤ 2λ j
√

s j�γ( j)�2,

and

|n−1(Z( j))T X(− j)(γ̂( j)− γ( j))|≤ 2λ j�γ̂( j)− γ( j)�1.

Since t j = �γ( j)�2
2, see (15.5), by assumption we have �gamma( j)�2 ≤

√
C < ∞

and that the compatibility constant for X(− j) is bounded away from zero: due to
sub-Gaussianity of X we then obtain �γ̂( j)−γ( j)�1 ≤ OP(s j

�
log(p)/n). Therefore,

since s j = o(n/ log(p)), we have that the asymptotic variance is behaving like

σ2/(n−1�Z( j)�2
2). (10.11)
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Now, again invoking the compatibility condition for X(− j), the sparsity assumption
for s j and sub-Gaussianity of X we have that �Z( j)�2

2/n = 1/Θ j j +oP(1) and due to
boundedness of Θ j j from (C,j), this completes the proof. ✷

The conclusion �Z( j)�2
2/n = 1/Θ j j + oP(1) is satisfied whenever the Lasso is con-

sistent for the prediction error: as discussed in the proof above, this holds assum-
ing a restricted eigenvalue condition for X(− j) and that the regression of X( j) =
X(− j)γ( j) + error is sparse with s j = �γ( j)�0

0 = o(n/ log(p)).

If this condition does not hold, for example if the the regression of X( j) versus X(− j)

is not sparse, one can actually obtain a smaller variance of the de-sparsified Lasso.
The following holds unders some conditions:

√
n(b̂ j −β 0

j ) =⇒ N

�
0,σ2 Θ j j

1+Θ j j(E[|X (− j)(γ( j)− γ∗,( j))|2])

�
,

where γ∗, j is a specific sparse approximation of γ( j); and thus, if γ( j) is sparse,
γ∗,( j) = γ( j) and the asymptotic variance equals σ2Θ j j as in Theorem 10.1. For
further details we refer to van de Geer (2017). More general results for efficiency in
high-dimensional model are discussed in Janková and van de Geer (2016).

10.4 Heteroscedastic errors, the bootstrap and some empirical
results

We discuss here some extensions and conclude with a small empirical study.

10.4.1 Heteroscedastic errors

Theorem 10.1 does not hold for heteroscedastic errors, whereε1, . . . ,εn independent
with Var(εi) = σ2

i . In such a situation, the variance of the de-sparsified or de-biased
Lasso in (10.4) asymptotically behaves as

Var(
√

n
(Z( j))T X( j)

n
b̂ j)� Var(n−1/2

n

∑
i=1

Z( j)
i εi) = n−1

n

∑
i=1

(Z( j)
i )2σ2

i .

The quantity can be consistently estimated by

ω̂2
j := n−1

n

∑
i=1

(Z( j)
i ε̂i −n−1

n

∑
r=1

Z( j)
r ε̂r)

2
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assuming e.g. that maxi |Z( j)
i | ≤ C < ∞ and �X(β̂ − β 0)�2

2/n = oP(1), see also
Bühlmann and van de Geer (2015). This is a version of the robust sandwich formula
in presence of heterogeneous errors Huber (1967); White (1980). Similarly, we can

estimate the covariance between
√

n (Z( j))T X( j)

n b̂ j and
√

n (Z(k))T X( j)

n b̂ j by the empiri-
cal covariance of Z( j) ◦ ε̂ and Z(k) ◦ ε̂ , where “◦” denotes the Hadamard product, i.e.,
(a◦b)i = aibi for two vectors a,b of the same dimension.

Theorem 10.1 can then be extended in a straightforward way for the case where
the errors are independent Gaussian ε ∼ N (0,diag(σ2

1 , . . . ,σ
2
n )). We still invoke

assumption (B1) and (B2,j) but assume in addition that the heteroscedasticity is such
that �β̂ −β 0�1 = OP(s0

�
log(p)/n). The latter is a small extension of Corollary by

simply assuming that σ2
i ≤C < ∞. One then obtains that

ω̂−1
j
√

n
(Z( j))T X( j)

n
(b̂ j −β 0

j ) =⇒ N (0,1).

Analogously, for the multivariate case, the asymptotic covariance can estimated as
indicated above.

10.4.2 The residual bootstrap

As described in Section 10.2, bootstrapping the Lasso does not lead to a consis-
tent estimate of the underlying sampling distribution which in turn could be used
for constructing confidence statements. The reason is, here discussed from another
view point, that the bootstrap essentially only works for estimators having an asymp-
totic Gaussian distribution (Giné and Zinn, 1989, 1990), but the Lasso as a sparse
estimaytor has also asymptoticaly point mass at zero (Knight and Fu, 2000). The de-
sparsified or de-biased Lasso, however, has an asymptotic Gaussian distribution as
discussed in Theorem 10.1. Therefore, the bootstrap is expected to consistently esti-
mate its normalized sampling distribution. And indeed, this is the case as described
next.

We consider a residual bootstrap. We use the Lasso for computing residuals ε̂ =
Y−Xβ̂ and centered residuals ε̂cent,i = ε̂i − ε̂ (i = 1, . . . ,n), where ε̂ = n−1 ∑n

i=1 ε̂i.
The bootstrapped errors are then constructed as

ε∗1 , . . . ,ε
∗
n i.i.d. (re-)sampled from the centered residuals ε̂cent,i (i = 1, . . . ,n).

The bootstrapped response variables are constructed as

Y ∗ = Xβ̂ + ε∗. (10.12)

and the bootstrap sample is {(Xi,Y ∗
i )}n

i=1, reflecting the fact of fixed (non-random)
design. Here and in the sequel Xi denotes the p×1 row vectors of X (i = 1, . . . ,n).
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The bootstrapped estimator of the de-sparsified Lasso b̂ j and its corresponding (after
appropriate scaling) robustly estimated standard deviation ω̂ , or it s non-robust ana-
logue σ̂ are defined by the plug-in rule, where the estimators are computed from the
bootstrap sample. We denote them by b̂∗j , ω̂∗ or σ̂∗, respectively. We aim to estimate
the distribution of the asymptotic pivot

Tj =
b̂ j −β 0

j

�s.e. j
,

where

�s.e. j = n−1/2ω̂
1

|(Z( j))T X( j)/n| for the robust version, (10.13)

�s.e. j = n−1/2σ̂
�Z( j)�2/

√
n

|(Z( j))T X( j)/n| for the standard version. (10.14)

The bootstrap approximation is

T ∗
j = (b̂∗j − β̂ j)/�s.e.∗j ,

and the quantiles of T ∗
j will converge to the quantiles of Tj. Denote by q∗j;ν the ν-

quantile of the bootstrap distribution of T ∗
j . We then construct two-sided 100(1−

α)% confidence intervals for the jth coefficient β 0
j as

CI j = [b̂ j −q∗j;1−α/2 �s.e. j, b̂ j −q∗j;α/2 �s.e. j]. (10.15)

Bootstrapping pivots in classical low-dimensional settings is known to improve the
level of accuracy of confidence intervals and hypothesis tests (Hall, 1992). For
the high-dimensional case as discussed here, higher-order accuracy have not been
worked out. Nevertheless, empirical results suggest that the bootstrap approach has
an advantage over the normal approximation in Theorem 10.1, especially in pres-
ence of non-Gaussian errors ε . In addition, the bootstrap can also be used for ap-
proximating the distribution of max j∈G Tj/�s.e. j which is useful for inference over
large groups G ⊆ {1, . . . , p} and multiple testing adjustment. We refer to Dezeure
et al. (2017) for further details.

Figure 10.1 displays some finite sample results from a simulation study with n= 100
and p = 500. The design matrix is generated as i.i.d. rows from a Np(0,Σ) distribu-
tion with a Toeplitz covariance matrix where Σ j,k = 0.9| j−k|. The sparsity is chosen
as s0 = 3 and the active set is randomly sampled from {1, . . . , p}. The non-zero
regression coefficients are i.i.d. sampled from a Uniform([−2,2]) distribution. Fi-
nally, the errors are i.i.d. non-Gaussian from a scaled and centere χ2

1 dsitribution,
that is, εi =

ζi−1√
2

with ζ1, . . . ,ζn i.i.d. ∼ χ2
1 . The bootstrap improves over the cases

with the worst under-coverage. In addition, because the errors are i.i.d. and thus ho-
moscedastic, there is not much by using the robust standard error. On the other hand
(not shown here), for heteroscedastic errors, the robust version performs much better
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Fig. 10.1 Two-sided 95% confidence intervals for the de-sparsified Lasso estimator. From left
to right 18 coefficients are shown with a black horizontal bar of a certain height illustrating the
value of the coefficient. Only the first three coefficients differ from zero. The other 15 coefficients
presented are those with the lowest confidence interval coverage for that particular method (in
increasing order from left to right). 100 response vectors were generated for different realizations
of the errors but with fixed design matrix X. Each of these realizations leads to a confidence interval
for each coefficient in the model. The 100 confidence intervals are drawn as vertical lines and
ordered from left to right in the column corresponding to the particular underlying coefficient
whose value is indicated by the horizontal bar. The line segments are colored black if they cover
the true coefficient and colored red otherwise. The number above each coefficient corresponds
to the number of confidence intervals, out of 100, which end up covering the truth. The average
coverage probability over all coefficients is provided in a column to the right of all coefficients.
The first two rows correspond to the case with the standard error as in (10.14, and the thrid and
fourth row to the case with the robust standard error (10.13). The figure is taken from Dezeure et al.
(2017).

in comparison to the one with the wrong (non-robust) standard error. In view of this,
one should always use the robust standard error as it also works for heteroscedastic
errors. One could also use the wild bootstrap to deal with heteroscedastic errors.
Details can be found in Dezeure et al. (2017).
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10.5 Extensions for generalized linear models

For generalized linear models, introduced in Chapter 3, one can de-sparsify or de-
bias the Lasso estimator by considering the KKT conditions and using a regularized
inversion of these: this approach has been described in van de Geer et al. (2014).

A simpler version of obtaining inferential statements is to use weighted regression.
We restrict ourselves to the specific case of logistic regression: a more general treat-
ment is given in Dezeure et al. (2015). Logistic regression is usually fitted by
applying the iteratively reweighted least squares (IRLS) algorithm where at every
iteration one solves a weighted least squares problem (Hastie et al., 2001). The idea
is now to apply the Lasso for the logistic regression model, compute correspond-
ing weights and then use the de-sparsified or de-biased Lasso on the transformed
response and covariates.

Denote by π̂i, i = 1, . . . ,n the estimated conditional probabilities for the binary re-
sponses, and π̂ denotes the vector of these probabilities.

From Hastie et al. (2001), the adjusted response variable becomes

Yadj = Xβ̂ +W−1(Y − π̂),

and the weighted least squares problem is

β̂new = argmin
β

(Yad j −Xβ )TW (Yadj −Xβ ),

with diagonal weight matrix

W = (π̂(1− π̂)).

We rewrite, YW =
√

WYad j and XW =
√

WX. Note that one then obtains the param-
eter estimate

β̂new = argmin
β

�Yw −Xwβ�2
2/n

from regression of YW versus XW . This motivates to use the de-sparsified or de-
biased Lasso for the response YW versus XW and then to obtain p-values and con-
fidence regions as described before (but based on the weighted data YW and XW ).
This approach is detailed in Dezeure et al. (2015).
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10.6 Related and alternative methods

The idea of de-biasing the Lasso in linear models has also been proposed by using
a vector Z( j) in (10.5) which arises from Ridge regression, that is Z( j) is essentially
the jth row vector of (XT X+λX I)−1XT (Bühlmann, 2013). There is no such elegant
theory as for the de-biased Lasso in Theorem 10.1 and 10.2. Empirically, the method
seems rather reliable for type I error control over a variety of design matrices while
it pays a price in terms of efficiency (Dezeure et al., 2015).

Javanmard and Montanari (2014) propose to choose the vector Z( j) in (10.5) from
optimizing the variance of the estimator under a newr orthogonality constraint. We
see from (10.11) that the asymptotic variance of the de-sparsified estimator b̂ j be-
haves as

σ2/(n−1�Z( j)�2
2).

Futhermore, the proof of Lemma 10.1 reveals that the de-sparsified Lasso satisfies
a near-orthogonality constraint, due to the KKT conditions from the Lasso:

|(Z( j))T X(k)/n|≤ 2λX . (10.16)

From this perspective, one can proceed to find a vector Z( j) which maximizes
�Z( j)�2

2/n under the constraint (10.16). This can be done using a convex program,
as advocated by Javanmard and Montanari (2014), and following the argumentaion
above, the estimator should exibit good efficiency. In numerical studies, however,
the procedure seems to be “over-optimized” and does not reliably control the type
I error (Dezeure et al., 2015). In fact, the idea of choosing a reasonable λX for
the de-sparsified Lasso as described at the end of Section 10.3.2 is going against
the idea of optimizing the variance: instead, it takes the view point that a somewhat
larger variance of the estimator leads to more reliable type I error control.

For Gaussian graphical models, the idea and “philosophy” of the de-biased Lasso for
linear models has been adapted and worked out in Ren et al. (2015) and Janková and
van de Geer (2017), thereby relying on nodewise regression as discussed in Section
15.4.2 in Chapter 15.

Alternative methods rely on subsampling with corresponding inferential statements
such as p-values or confidence regions, see Chapter 11, or geared towards stability
with controling the expected number of false positive selections as dicusssed in
Chapter 12). These methods can be used for a broad variety of models: the price for
this generality includes a decrease in efficiency (power) and theoretical justifications
which assume stronger (sufficient) conditions.
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Problems

10.1. Prove that formula (10.2) holds.

10.2. Prove the analogue of the first statement in Theorem 10.1 by using the square
root Lasso (Belloni et al., 2011), described in Section 2.13, for the construction of
Z( j) without assuming condition (B2,j).

10.3. (i) Prove that the correction of p-values in (10.9) asymptotically controls the
familywise error rate, saying that limsupn→∞ IP[V > 0]≤ α .

(ii) Consider the situation of testing H0,G1 , . . .H0,Gm for various groups Gr ⊆ {1, . . . , p} (r =
1, . . . ,m) and denote by G := ∪m

r=1Gr. Assume that the statistical test for H0,Gr is
based on the statistic

max
j∈Gr

σ̂−1√n
n−1(X( j))T Z( j)

n−1/2�Z( j)�2
|b̂ j|,

with resulting p-values PGr . Denote the corrected p-values by

Pcorr,Gr = 1−FG(PGr).

Show that this correction asymptotically controls the familywise error rate.


