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Causality
“Felix, qui potuit rerum cognoscere causas”

Fortunate who was able to know the causes of things
(Georgics, Virgil, 29 BC)

already people in ancient times (Egyptians, Greeks, Romans, Chinese) have
debated on causality



the word “causal” is very ambitious...

perhaps too ambitious...
but we aim at least at doing something “more suitable” than standard regression or
classification



Recap last week: confounding is also (mostly) a causal concept

Does smoking cause lung cancer?

X
smoking

Y
lung cancer

H “genetic factors”
(unobserved)

?

systematic
intervention



as a warm-up exercise...

correlation 6= causation



number of Nobel prizes vs. chocolate consumption

F. H. Messerli: Chocolate Consumption, Cognitive Function, and Nobel Laureates, N Engl J Med 2012







Possible interpretations

X: chocolate consumption; Y: obtaining Nobel prize

X Y
?

chocolate produces Nobel prize

X Y
?

geniuses eat more chocolate

X Y

H

?
hidden confounder H = “wealth”



well... you might have your own theories...

it would be most helpful to do:

I an experiment
I a randomized controlled trial (RCT)

(often considered as) the gold-standard

forcing some people to eat lots and lots of chocolate!
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gold-standard: a randomized controlled trial (RCT)

I two groups at random
(at random: to break dependencies to hidden variables)

I force one group to eat lots of chocolate
I ban the other group from eating chocolate at all
I wait a lifetime to see what happens; and compare!



Why randomization

the hidden confounder is the problematic case

X

chocloate cons.

Y

Nobel prize

H “wealth”
(unobserved)

?

systematic
intervention
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Why randomization

the hidden confounder is the problematic case

X

chocolate cons.

Y

Nobel prize

H “wealth”
(unobserved)

?

randomization
& intervention



Aspects of the history

C. Peirce (1896), Fisher (1918), Neyman (1923), Fisher (1925), Holland, Rubin,
Pearl, Spirtes–Glymour–Scheines, Dawid, Robins, Bollen, ...

developed in different fields including economics, psychometrics, social sciences,
statistics, computer science, ...



Problems with randomized control trials (RCTs)

I randomization can be unethical
I long time horizon & reliability of participants (“non-compliance”)
I high costs
I ...



What can we say without RCTs?

it will never be fully confirmatory
Fisher’s argument on “smoking and lung cancer”



What can we say without RCTs?

in some sense, this is the main topic of the lectures!



Graphical models: a fraction of the basics
consider a directed acyclic graph (DAG) D:

X5

Y

X11

X10

X3

X8X7

X2

Y = Xp

I nodes or vertices v ∈ V = {1, . . . ,p}
I edges e ∈ E ⊆ V × V

we identify the nodes with random variables Xv , v = 1, . . . ,p (often using the
index “j” instead of “v ”)

the edges encode “some sort of conditional dependence”



Recursive factorization and Markov properties

consider a DAG D

a distribution P of X1, . . . ,Xp allows a recursive factorization w.r.t. D if:
I P has a density p(.) w.r.t. µ;
I p(x) = ∏p

j=1 p(xj |xpa(j)),
where pa(j) denotes the parental nodes of j

this factorization is intrinsically related to Markov properties:
if P admits a recursive factorization according to D:
the local Markov property holds:

p(xj |x\j) = p(xj | x∂j︸︷︷︸
the “boundary values”

)

and often one simplifies and says that “P is Markovian w.r.t. D”
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if P has a positive density p(.) with respect to a product measure µ on

X1 ×X2 ×Xp, Xj ∈ Xj (j = 1, . . . ,p)

all the global, local and pairwise Markov properties (in the corresponding
undirected graphs) coincide (Lauritzen, 1996)



Global Markov property:
if C separates︸ ︷︷ ︸

d-separation for DAGs

A and B, then

XA independent XB |XC

d-separation:
d-SEPARATION WITHOUT TEARS
(At the request of many readers)
http://bayes.cs.ucla.edu/BOOK-2K/d-sep.html
“d-separation is a criterion for deciding, from a given DAG, whether a set X of variables is independent of another

set Y, given a third set Z. The idea is to associate ”dependence” with ”connectedness” (i.e., the existence of a

connecting path) and ”independence” with ”unconnectedness” or ”separation”. The only twist on this simple idea

is to define what we mean by ”connecting path”, given that we are dealing with a system of directed arrows...”

http://bayes.cs.ucla.edu/BOOK-2K/d-sep.html


Consequences

Assume that P factorizes according to D and fulfills the global Markov property (“P
is Markov w.r.t. D”)

Then: if A and B are d-separated in the graph D by a set C =⇒ XA ⊥ XB |XC

we can read off some conditional dependencies from the graph D

but typically not all conditional dependencies are encoded in the graph



Faithfulness

all conditional dependencies are encoded in the graph

A distribution P is faithful w.r.t. DAG D if:
1. P is global Markov w.r.t. D
2. all conditional dependencies are encoded (by some rules which are

consistent with the Markov property) from the graph D
example of a non-faithful distribution P w.r.t. a DAG D

X1 X2

X3

α

β γ

X1 ← ε1,

X2 ← αX1 + ε2,

X3 ← βX1 + γX2 + ε3,

ε1, ε2, ε3 i.i.d. N (0,1)

; X1,X2,X3 jointly Gaussian



X1 X2

X3

α

β γ

for β + αγ = 0: Corr(X1,X3) = 0; that is: X1 ⊥ X3

but this independence cannot be read-off from the graph by some separation rule

non-faithfulness “typically” happens by cancellation of coefficients (in linear
systems)
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fact: if edge weights are sampled i.i.d. from an absolutely continuous distribution
; non-faithful distributions have Lebesgue measure zero

(i.e. they are “unlikely”)

but this reasoning is “statistically not valid”: with finite samples, we cannot
distinguish between zero correlations and correlations of order of magnitude 1/

√
n

(and analogous for “near cancellation being of order 1/
√

n”)

; the volume (the probability) of near cancellation when edge weights are
sampled i.i.d. from an absolutely continuous distribution is large! Uhler, Raskutti, PB
and Yu (2013)



strong faithfulness:
for ρ(i , j |S) = Parcorr(Xi ,Xj |XS), require:

A(τ,d) : min
{
|ρ(i , j |S)|; ρ(i , j |S) 6= 0, i 6= j , |S| ≤ d

}
≥ τ

(typically: τ �
√

log(p)/n)



strong faithfulness can be rather severe
(Uhler, Raskutti, PB & Yu, 2013)

3 nodes, full graph

unfaithful distributions
due to exact cancellation

8 nodes, varying sparsity
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Consequences:
we later want to learn graphs or equivalence classes of graphs from data

when doing so via estimated conditional dependencies one needs some sort of
faithfulness assumption...



Structural learning/estimation of directed graphs

motivation: directed graphs encode some “causal structure”

in a DAG:
a directed arrow X → Y says that “X is a direct cause of Y ”
and we will discuss more later

goal: estimate “the true underlying DAG” from data
; impossible (in general) with observational data



more precisely:
I “true” DAG D
I data-generating distribution P which allows recursive factorization w.r.t. D
I n i.i.d. data/copies of X1, . . . ,Xp ∼ P: X (1), . . . ,X (n)

the data is called “observational data”: it is sampled from P and there are no
interventions/perturbations involved (see later)

severe issue of identifiability: given P (or an infinite amount of data), there are
several DAGs, say D 6= D′ such that P allows recursive factorization w.r.t. D and D′

; cannot learn the true DAG D from observational data

but we can learn the “true” equivalence class of DAGs
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Minimal I-MAP
the statistical view:
data generating distribution P

consider the class of DAGs

DI−MAP(P) = {DAG D; P allows rec. factor. w.r.t. D︸ ︷︷ ︸
P ”is Markovian w.r.t. D”

}

Dminimal I−MAP(P) = {D ∈ DI−MAP(P); |D| = min
D′∈DI−MAP(P)

|D′|︸ ︷︷ ︸
D has minimal no. of edges

}

in my opinion: this is the most natural definition for statistical purposes... (van de
Geer & PB, 2013)
... since we start with the data generating distribution



Markov equivalence class
the much more common (and more complicated?) definition
consider

M = {positive densities on X︸︷︷︸
support of X1, . . . ,Xp

}

for a DAG D:

M(D) = {p ∈ M; p allows rec. fact. w.r.t. D}

DAGs D and D′ are Markov equivalent ifM(D) =M(D′) :
write D ∼ D′

equivalence relation leads to
Markov equivalence class DMarkov(D) for a DAG D

note that Markov equivalence involves consideration of many distributions; not just
the data generating distribution
(“usual language in graphical modeling”)
Markov equiv. “starts” from a DAG D (e.g. the “true causal DAG”)



consider true underlying DAG D0 (for causality, this will be important – see later)
and data generating distribution P which is faithful w.r.t. D0

then:

Dminimal I−MAP(P) = DMarkov(D0)

Theorem (Verma & Pearl, 1990)
Two DAGs D and D′ are Markov equivalent if and only if
I they have the same skeleton (undirected graph removing edge directions)
I they have the same v-structures

a graphical criterion only!



v-structure

X1 X3

X2

Markov equivalence class:



Structural learning algorithms (in high dimensions)

for Markov equivalence class or class of minimal I-MAPs

most popular:
I constraint-based

relying on inferring conditional dependencies
; requires strong faithfulness assumption

PC-algorithm (Peter Spirtes & Clark Glymour, 1991)
I score-based methods

in particular penalized Gaussian likelihood
no faithfulness assumption for class of minimal I-MAPs

GES-algorithm: Greedy Equivalence Search (Chickering, 2002)



The PC-algorithm (Spirtes & Glymour, 1991)

I crucial assumption:
distribution P (strongly) faithful to the true underlying DAG

I less crucial but convenient:
Gaussian assumption for X1, . . . ,Xp ; can work with partial correlations for
inferring conditional dependencies

I input: Σ̂MLE
but we only need to consider many small sub-matrices of it (assuming
sparsity of the graph)

I output: based on a clever data-dependent (random)
sequence of multiple tests

estimated CPDAG (i.e., Markov equivalence class)



PC-algorithm: a rough outline
for estimating the skeleton of underlying DAG

1. start with full graph
2. remove edge i − j if Ĉor(Xi ,Xj) is

small
(Fisher’s Z-transform and
null-distribution of zero correlation)

3. partial correlations of order 1:
remove edge i − j if
P̂arcor(Xi ,Xj |Xk ) is small for some
k in the current neighborhood of i
or j (thanks to faithfulness)

   stopped

full graph

partial correlation order 1

correlation screening



4. move-up to partial correlations of
order 2:
remove edge i − j if partial
correlation P̂arcor(Xi ,Xj |Xk ,X`) is
small for some k , ` in the current
neighborhood of i or j (thanks to
faithfulness)

5. until removal of edges is not
possible anymore,
i.e. stop at minimal order of partial
correlation where edge-removal
becomes impossible

   stopped

full graph

partial correlation order 1

correlation screening

additional step of the algorithm needed for estimating directions yields an estimate
of the CPDAG (equivalence class of DAGs)
R-package: pcalg (Kalisch et al., 2012)



Statistical theory (Kalisch & PB, 2007)

n i.i.d. observational data points; p variables
high-dimensional setting where p � n

assumptions:
I X1, . . . ,Xp ∼ Np(0,Σ) Markov and faithful to true DAG
I high-dimensionality: log(p)� n
I sparsity: maximal degree d = maxj |ne(j)| satisfies d log(p)/n→ 0
I “coherence”: maximal (partial) correlations ≤ C < 1

max{|ρi,j |S |; i 6= j , |S| ≤ d} ≤ C < 1

I signal strength/strong faithfulness:
min{|ρi,j |S |; ρi,j |S 6= 0, i 6= j , |S| ≤ d} �

√
d log(p)/n

Then, for some suitable tuning param. (level of the tests) and 0 < δ < 1:

P[ĈPDAG = true CPDAG] = 1−O(exp(−Cn1−δ))



Sketch of proof

I low-order partial correlations are equivalent to low-dimensional regression
parameters
Gaussian assumption ; exponential inequality for concentration

I maximal degree of the graph ; maximal order of partial correlations
(maximal dimension of regressions)

I at most O((p
d)) different partial correlations ; Bonferroni/union bound with

factor O(d log(p))

; can show that estimated version of the algorithm “is close” to population
version... (some subtle details need to be taken care of)

note that the sample version of the PC-algorithm is order-dependent
; “Order-Independent Constraint-Based Causal Structure Learning” (Colombo &
Matthuis, 2014)
https://www.jmlr.org/papers/volume15/colombo14a/colombo14a.pdf

https://www.jmlr.org/papers/volume15/colombo14a/colombo14a.pdf


The role of “sparsity”

as usual: sparsity is necessary for accurate estimation in presence of noise

but here: “sparsity” (so-called protectedness) is crucial for identifiability as well

X XY Y

X causes Y Y causes X

cannot tell from observational data the direction of the arrow

the same situation arises with a full graph with more than 2 nodes
;

identifiability improves with “sparsity”



Maximum likelihood estimation
without requiring strong faithfulness!

consider Gaussian model ; Gaussian likelihood

Gaussian P which is Markov w.r.t. DAG D is Gaussian linear structural equation
model (see more details later):

1

2 3

X1 ← ε1

X2 ← β21X1 + ε2

X3 ← β31X1 + β32X2 + ε3

Xj ←
p

∑
k=1

βjkXk + ε j (j = 1, . . . ,p), βjk 6= 0⇔ edge k → j

X = BX + ε, ε ∼ Np(0, diag(σ2
1 , . . . , σ2

p )) in matrix notation



X = BX + ε

non-zeroes of B ⇒ knowledge of the corresponding DAG

if we would know the order of the variables
; (high-dimensional) multivariate regression

but we don’t know the order of the variables:
I can only identify equivalence class of B’s → “obvious”
I neg. log-likelihood is non-convex fct.(B) → next slides

I learning of ordering has large complexity (in general of order p!)



`0-penalized MLE
proposed and analyzed for fixed p < ∞ by Chickering (2002)

B̂, {σ̂2
j } = argminB; {σ2

j }
− `(B, {σ2

j }; data) + λ ‖B‖0︸ ︷︷ ︸
∑jk I(Bjk 6=0)

under the non-convex constraint that B corresponds to “no directed cycles”



Toy-example X1 ← β1X2 + ε1

X2 ← β2X1 + ε2

X1 X2

(0,0)

beta1

beta2

non-convex parameter space!
(convex relaxation?)



Chickering’s (2002) main and important contribution:
algorithm which proceeds greedily on Markov equivalence classes (which is the
natural parameter space)

; GES (Greedy Equivalent Search)
which in general would not find a global optimum
but Chickering (2002) proves consistency with BIC in low-dimensional problems



Why `0-penalty?

I ensures the same score for Markov-equivalent structures
(this would not be true when using `1-norm penalty)

I `0-penalty leads to decomposable score

score(D,X) =
p

∑
j=1

gj(Xj ,XpaD(j))

; dynamic programming for computation if p ≈ 20− 30
(not easily possible with `1-norm penalization)
recall that the estimation problem is non-convex...



Statistical properties for `0-penalized MLE (van de Geer & PB, 2013)

the estimator:
`0-penalized MLE for the class of minimal I-MAPs
idealized and cannot be computed; it is not the greedy search algorithm (GES)

I no strong faithfulness required for consistency
I under faithfulness: class of minimal I-MAPs = Markov equivalence class
I another “somewhat weaker” permutation beta-min condition is required
I essentially: can only have consistency for the regime p = o(

√
n/ log(n))

with same error variances (see later): p = o(n/ log(n)) suffices

the theory is much harder to develop than for the PC-algorithm... in practice, GES
is “perhaps a bit better than the PC-algorithm”; see also Nandy, Hauser & Maathuis
(2018)



Asymptotic properties: a summary

I PC-algorithm is consistent in high-dimensional regime
requires a strong faithfulness assumption (necessary)

I GES: greedy equivalent search with `0-penalized likelihood score function
consistent for fixed dimension p with BIC penalty

remarkable since the algorithm does not compute the BIC regularized MLE;
the consistency is for the greedy search algorithm
in terms of asymptotics: very rough result

I `0-penalized MLE:
consistent in growing-dimensional but restrictive regime p � n requiring a
permutation beta-min condition (which is weaker than strong faithfulness)



for a long time the `0-penalized MLE has been computed heuristically
but this has changed in 2024!

both on arxiv since April and August 2024, respectively



What has been found empirically

I estimating the undirected skeleton of the Markov equivalence class is OK
the difficulty is the estimation of directionality: and GES (old version) seems
empirically a bit better for directionality than PC

I the above point above suggests hybrid algorithms:
ARGES = Adaptive Restricted Greedy Equivalent Search

Nandy, Hauser & Maathuis (2018)

the idea is to restrict GES to a space which is compatible with an initial
undirected skeleton of the Markov equivalence class or an undirected
conditional independence class (the latter can be estimated by e.g. the
nodewise Lasso)

good empirical performance (like GES)
consistency in the high-dimensional regime p � n under a strong faithfulness
assumption



Route via structural equation models: interesting conceptual extensions
full identifiability (card(Markov equivalence class) = 1): if

I same error variances:
Xj ← ∑k∈pa(j) BjkXk + ε j , Var(ε j) ≡ ω2 (Peters & PB, 2014)

I nonlinear structural equation models with additive noise:
Xj ← non-linear function f (Xpa(j)) + ε j
Mooij, Peters, Janzing & Schölkopf (2009-2012)



additive noise model: a “more practical” example
Causal Additive Model (CAM)
Xj ← ∑k∈pa(j) fk (Xk ) + ε j (PB, Ernest & Peters, 2014)

I linear structural eqns. with non-Gaussian errors (LINGAM):
linear SEM but all ε1, . . . , εp non-Gaussian (Shimizu et al., 2006)

X = BX + ε ⇐⇒ (I − B)X = ε

; AX = ε, ε independent entries =⇒ ICA !



What about hidden variables?

I deconfounding with trim transform is not directly applicable
because the framework assumes that all X are ancestors of Y

(upstream of Y )
I work on assuming low-rank structure:

Frot, Nandy & Maathuis (2019) consider PC with input-covariance matix
estimated by low-rank constraint (Chandrasekaran et al., 2012)

direct approach in likelihood scoring by assuming interventional data
(Taeb, Gamella, Heinze-Deml & PB, 2021)

I various approaches when having interventional data – see later



Open problems and conclusions

open problems:
I elegant and insightful theory for graph recovery and consequences for causal

effect estimation
I validation of graph accuracy:

Hamming distance is too simple-minded
structural intervention distance (Peters & PB, 2015) is perhaps too complicated

I linear-nonlinear (partially linear) SEMs are complicated in terms of
identifiability, and poorly understood(Rothenhäusler, Ernest & PB, 2018)

with using nonlinear/non-Gaussian SEMs: we bet on additional identifiability –
but we should have methods which automatically “adapt” to whether
structures are identifiable or not
(; see also later)



conclusions:
I fitting graph equivalence classes from data is hard
I empirically poor performance in comparison to undirected Gaussian graphical

models (aka linear model regression)

insightful theoretical reasons are still missing
perhaps issues with non-faithfulness or “permutation beta-min condition”

I identifiability is subtle and might has implications on finite sample
performance (“near non-identifiability”)

I fully nonlinear and non-Gaussian SEMs lead to perfect identifiability
interesting trade-off between identifiability and more difficult non-linear
estimation
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