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Recap from yesterday

I equivalence classes of DAGs
I estimation of equivalence classes of DAGs based on

observational data
that is: data are i.i.d. realizations from a single
data-generating distribution which is faithful/Markovian
w.r.t. a true underlying DAG

• PC-algorithm assuming strong faithfulness conditions
• `0-penalized Gaussian MLE assuming a

weaker permutation beta min condition



Route via structural equation models: interesting conceptual extensions

full identifiability (card(Markov equivalence class) = 1): if

I same error variances:
Xj ←

∑
k∈pa(j) BjkXk + εj , Var(εj) ≡ ω2 (Peters & PB, 2014)

I nonlinear structural equation models with additive noise:
Xj ← non-linear function f (Xpa(j)) + εj
Mooij, Peters, Janzing & Schölkopf (2009-2012)









I nonlinear structural equation models with additive noise:
Xj ← non-linear function f (Xpa(j)) + εj
Mooij, Peters, Janzing & Schölkopf (2009-2012)

Xj ←
∑

k∈pa(j) fk (Xk ) + εj (CAM) (PB, Ernest & Peters, 2014)

I linear structural eqns. with non-Gaussian errors (LINGAM):
linear SEM but all ε1, . . . , εp non-Gaussian (Shimizu et al.,
2006)

X = BX + ε

X = (I − B)−1ε ; ICA !



the real issue with causality:
interventional distributions



What is Causality? ... and its relation to interventions
Causality is giving a prediction (quantitative answer) to a

“What if I do/manipulate/intervene question”

many modern applications are faced with such prediction tasks:

I genomics: what would be the effect of knocking down (the
activity of) a gene on the growth rate of a plant?

we want to predict this without any data on such a gene
knock-out (e.g. no data for this particular perturbation)

I E-commerce: what would be the effect of showing
person “XYZ ” an advertisement on social media?
no data on such an advertisement campaign for “XYZ ” or
persons being similar to “XYZ ”

I etc.



Regression – the “statistical workhorse”: the wrong approach

example:
Y = growth rate of Arabidopsis Thaliana
X = gene expressions
What would happen if we knock out a gene (expression) Xj?

we could use linear model (fitted from n observational data)

Y =

p∑
j=1

βjXj + ε, Var(Xj) ≡ 1 for all j

|βj | measures the effect of variable Xj in terms of “association”

i.e. change of Y as a function of Xj when keeping all other
variables Xk fixed

; not very realistic for intervention problem
if we change e.g. one gene, some others will also change
and these others are not (cannot be) kept fixed
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and indeed:
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; can do much better than (penalized) regression!
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Effects of single gene knock-downs on all other genes (yeast)
(Maathuis, Colombo, Kalisch & PB, 2010)

• p = 5360 genes (expression of genes)
• 231 gene knock downs ; 1.2 · 106 intervention effects
• the truth is “known in good approximation”

(thanks to intervention experiments)

goal: prediction of the true large intervention effects
based on observational data with no knock-downs

n = 63
observational data
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A bit more specifically

I univariate response Y
I p-dimensional covariate X

question:
what is the effect of setting the j th component of X to a certain
value x :

do(Xj = x)

; this is a question of intervention type

not the effect of Xj on Y when keeping all other variables fixed
(regression effect)
Reichenbach, 1956; Suppes, 1970; Rubin, 1978; Dawid, 1979;
Holland, Pearl, Glymour, Scheines, Spirtes,...



we need a “dynamic notion of importance”:

if we intervene at Xj , its effect propagates through other
variables Xk (k 6= j) to Y

X5

Y

X11

X10

X3

X8X7

X2



Graphs, structural equation models and causality
intuitively:
the concept of causality in terms of graphs is plausible

X5

Y

X11

X10

X3

X8X7

X2

in a DAG:
a directed arrow X → Y says that “X is a direct cause of Y ”

I What about indirect causes? (when propagating through
many variables)
How do we link “causality” to graphs?

I What is a quantitative model for a graph structure?



Structural equation models (SEMs)

consider a DAG D (“acyclicity” for simplicity)
encoding the “causal influence diagram”:
the direct causes are encoded by directed arrows

; D is called the causal graph (because it is assumed to
encode the direct causal relationships)

a quantitative model on the causal graph describing the
quantitative behavior of the system:

structural equation model (with structure D):

Xj ← fj(Xpa(j), εj), j = 1, . . . ,p
ε1, . . . , εp independent

where pa(j) = paD(j) are the parents of node j



Linear SEM

linear structral equation model (with structure D):

Xj ←
∑

k∈pa(j)

BjkXk + εj , j = 1, . . . ,p

ε1, . . . , εp independent

if we knew the parental sets it is simply linear regression on the
appropriate covariates



so far: no hidden “confounding” variables

X Y

H

; see Lecture III



Local Markov property

Given P with density p from a SEM
because of independence of εY , ε1, . . . , εp
; the local Markov property holds!

and if P has continuous density: global Markov property holds!
(correspondence between conditional independence and
separation in graphs)



Causality and SEM

the SEM is a model for describing the “true” underlying
mechanistic behavior of the system with the random variables
Y ,X1, . . . ,Xp

having access to such a mechanistic model, one can make
predictions of interventions, manipulations, perturbations

and this is the core task of causality



Modeling interventions: do-interventions

Pearl’s do-interventions

Judea Pearl

X1 Y

X2X3

do(X2 = x) ;
X1 Y

xX3

X1 ← f 0
1 (X2 = x , ε1),

X2 ← x ,
X3 ← ε3

Y ← f 0
Y (X1,X2 = x , εY )



Pearl’s do-interventions

Judea Pearl

X1 Y

X2X3
do(X2 = x) ;

X1 Y

xX3

X1 ← f1(X2 = x , ε1),

X2 ← x ,
X3 ← ε3

Y ← fY (X1,X2 = x , εY )



assume Markov property (rec. factorization) for causal DAG:

non-intervention

X(1)

X(2)

X(3)X(4)

Y

intervention do(X2 = x)

X(1)

X(2) = x

X(3)X(4)

Y

p(Y ,X1,X2,X3,X4) =
p(Y |X1,X3)×
p(X1|X2)×
p(X2|X3,X4)×
p(X3)×
p(X4)

p(Y ,X1,X3,X4|do(X2 = x)) =
p(Y |X1,X3)×
p(X1|X2 = x)×
p(X3)×
p(X4)

truncated factorization



truncated factorization for do(X2 = x):

p(Y ,X1,X3,X4|do(X2 = x)

= p(Y |X1,X3)p(X1|X2 = x)p(X3)p(X4)

p(Y |do(X2 = x))

=

∫
p(Y ,X1,X3,X4|do(X2 = x))dX1dX3dX4



note that do(X2 = x) does not change the factors

p(xj |xpa(j))

this is an assumption!
and is called structural autonomous assumption



the intervention distribution P(Y |do(X2 = x)) can be calculated
from
I observational data distribution

; need to estimate conditional distributions
I an influence diagram (causal DAG)

; need to estimate structure of a graph/influence diagram



with a SEM and (for example) do-interventions:

with do(Xj = x), for every j and x , we obtain a different
distribution of Y ,X1, . . . ,Xp

can generate many interventional distributions!



Potential outcome model

Neyman (1923), Rubin (1974)

Yi(t) = response for unit/individual i under treatment
Yi(c) = response for unit/individual i under control

observed is (usually) only under control (or under treatment)
but not both
; missing data problem



“fact”: the approach with do-interventions and the one with the
potential outcome model are equivalent (under “natural”
assumptions): 148 pages!

the approach with graphs is perhaps easier when many
variables are present



Total causal effects

often one is interested in the distribution of P(Y |do(Xj = x)) or

p(y |do(Xj = x)) density

E[Y |do(Xj = x)] =

∫
yp(y |do(Xj = x))dy

the total causal effect is defined as

∂

∂x
E[Y |do(Xj = x)]

measuring the “total causal importance” of variable Xj on Y

if we know the entire SEM, we can easily simulate the
distribution P(Y |do(Xj = x))
this approach requires global knowledge of the graph structure,
edge functions/weights and error distributions
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Example: linear SEM

directed path pj from Xj to Y
causal effect on pj by product of corresponding edge weights
total causal effect =

∑
pj
γj

X1 X2

Y

α

β γ

total causal effect from X1 to Y : αγ + β

needs the entire structure and edge weights of the graph



alternatively, we can use the backdoor adjustment formula:
consider a set S of variables which block the “backdoor paths”
of Xj to Y : one easy way to block these paths is S = pa(j)

Xj X2 Y

X3

X4

pa(j) = {3}



backdoor adjustment formula (cf. Pearl, 2000): if Y /∈ pa(j),

p(y |do(Xj = x)) =

∫
p(y |Xj = x ,XS)dP(XS)

E[Y |do(Xj) = x)] =

∫
yp(y |do(Xj = x))dy

=

∫
yp(y |Xj = x ,XS)dP(XS)dy =

∫
E[Y |Xj ,XS]dP(XS)

for linear SEM: run regression of Y versus Xj ,XS
; total causal effect of Xj on Y is regression coefficient βj

only local structural information is required, namely e.g.
S = pa(j)
often much easier to obtain/estimate than the entire graph



consequences: for total causal effect do(Xj = x), it is sufficient
to know
I pa(j) local graphical structure search
I E[Y |Xj = x ,Xpa(j)] nonparametic regression

Henckel, Perkovic & Maathuis (2019) discuss efficiency for total
causal effect estimation
with or without backdoor adjustment, possibly with a set
S 6= pa(j), when the graph is known/given



Marginal integration (with S = pa(j))

recall that (for Y /∈ pa(j))

E[Y |do(Xj = x)] =

∫
E[Y |Xj = x ,Xpa(j)]dP(Xpa(j))

estimation of the right-hand side has been developed for
additive models!
cf. Fan, Härdle & Mammen (1998)
additive regression model:

Y = µ+
d∑

j=1

fj(Xj) + ε,

E[fj(Xj)] = 0 (for identifiability)

;
∫
E[Y |Xj = x ,X\j ]dP(X\j) = µ+ fj(x)



asymp. result (Fan, Härdle & Mammen, 1998; Ernest & PB, 2015):
I regression function E[Y |Xj = x ,Xpa(j) = xpa(j)] exists and

has bounded partial derivatives up to order 2 with respect
to x and up to order d > |pa(j)| w.r.t. xpa(j)

I other regularity conditions
then, for kernel estimators with appropriate bandwidth choice:

Ê[Y |do(Xj = x)]− E[Y |do(Xj = x)] = OP(n−2/5)

only one-dimensional variable x for the intervention

quite “nice” since the SEM is allowed to be very nonlinear with
non-additive errors etc... (but smooth regression functions)

Ernest & PB (2015):

Y ← exp(X1)× cos(X2X3 + εY )

would be hard to model nonparametrically
; instead, we rely on smoothnes of conditional expectations
only



the approach by plugging-in a kernel estimator is a bit subtle in
terms of choosing bandwidths (in “direction” x and xpa(j))
one actual implementation is with boosting kernel estimation

(Ernest & PB, 2015)



Gene expressions in Arabidposis Thaliana (Wille et al., 2004)

p = 38, n = 118
graph estimated by CAM: causal additive model
Marginal integration with parental sets as in Ernest & PB (2015)

none of the found strong total effects are against the metabolic
order



one pathway: parental sets are the three closest ancestors
according to metabolic order (Ernest & PB, 2015)

from simulations: for marginal integration, the sensitivity on the
correctness of the parental set is (fortunately) not so big



Lower bounds of total causal effects

due to identifiability issues:
we cannot estimate causal/intervention effects from
observational distribution

but we will be able to estimate lower bounds of causal effects
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IDA (Maathuis, Kalisch & PB, 2009)

IDA (oracle version)

17

oracle CPDAG

PC-algorithm

DAG 1

DAG 2

...

...

DAG m

do-calculus

effect 1

effect 2

...

...

effect m

multi-set Θ



If you want a single number for every variable ...

instead of the multi-set

Θ = {θr ,j ; r = 1, . . . ,m; j = 1, . . . ,p}

minimal absolute value

e.g. for var. j : |θ2,j |︸︷︷︸
minimum

≤ |θ5,j | ≤ |θ1,j | ≤ |θ4,j |︸︷︷︸
true

≤ . . . ≤ |θ8,j |

αj = min
r
|θr ,j | (j = 1, . . . ,p),

|θtrue,j | ≥ αj

minimal absolute effect αj is a lower bound for true absolute
intervention effect



Computationally tractable algorithm

searching all DAGs is computationally infeasible if p is large
(we actually can do this up to p ≈ 15− 20)

instead of finding all m DAGs within an equivalence class ;

compute all intervention effects without finding all DAGs
(Maathuis, Kalisch & PB, 2009)

key idea: exploring local aspects of the graph is sufficient



IDA (local sample version)

33

data CPDAG

PC-algorithm do-calculus

effect 1

effect 2

...

...

effect q

multi-set ΘL

the local ΘL = Θ up to multiplicities
(Maathuis, Kalisch & PB, 2009)



Effects of single gene knock-downs on all other genes (yeast)

(Maathuis, Colombo, Kalisch & PB, 2010)

• p = 5360 genes (expression of genes)
• 231 gene knock downs ; 1.2 · 106 intervention effects
• the truth is “known in good approximation”

(thanks to intervention experiments)

goal: prediction of the true large intervention effects
based on observational data with no knock-downs

n = 63
observational data
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Interventions and active learning

often we have observational and interventional data

example:
yeast data with nobs = 63, nint = 231

False positives

Tr
ue

 p
os

iti
ve

s

0 1,000 2,000 3,000 4,000

0

200

400

600

800

1,000 IDA
Lasso
Elastic−net
Random

interventional data are very informative!
can tell the direction of certain arrows
; Markov equivalence class under interventions is (much)
smaller, i.e., (much) improved identifiability!



Toy problem: two (Gaussian) variables X ,Y

when doing an intervention at one of them, can infer the
direction

scenario I:
DAG : X → Y ; intervention at Y ; interv. DAG : X Y
; X ,Y independent

scenario II:
DAG : X ← Y ; intervention at Y ; interv.. DAG : X ← Y
; X ,Y dependent

generalizes to: can infer all directions when doing an
intervention at every node (which is not very clever...)



Gain in identifiability (with one intervention)

DAG G observ. CPDAG

E(G,I={2,O}) E(G,I={4,0})

1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7

3 5 7

2 4 6 8

1 1 3 5 7

2 4 6 8

DAG observ. CPDAG

1 3 5 7

2 4 6 8

1 53 7

2 4 6 8

E(G,I={1,O}) E(G,I={2,O})

G



have just informally introduced interventional Markov
equivalence class and its corresponding essential graph

E(D, I︸︷︷︸
set of intervention variables

)

(needs new definitions: Hauser & PB, 2012)

there is a minimal set of intervention variables Imin such that
E(D, Imin) = D
in previous example: Imin = {2,O}

the size of Imin has to do with “degree” of so-called
protectedness

very roughly speaking:
the “sparser (few edges) the DAG D, the better identifiable from
observational/intervention data”
in the sense that |Imin| is small



inferring Imin from available data?

methods for efficient sequential design of intervention
experiments

“active learning”

a lot of very recent work in 2019...



randomly chosen intervention variables
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active learning: cleverly chosen intervention variables
(Eberhardt conjecture, 2008; Hauser & PB, 2012, 2014)

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Oracle estimates, p = 40
S

H
D

/e
dg

es

0 1 2 3 4 5 6 7 8 9
# targets

Oracle−Rdummy/1
Oracle−Radv/1
Oracle−opt/1
Oracle−opt/40



The model and the (penalized) MLE

consider data

X1,obs, . . . ,Xn1,obs, X1,I1=x1 , . . . ,Xn2,In2 =xn2

n1 observational data
n2 interventional data (single variable interventions)

model:

X1,obs, . . . ,Xn1,obs i.i.d. ∼ Pobs = Np(0,Σ) faithful to a DAG D,
X1,I1 , . . . ,Xn2,In2

independent, non-identically distributed
independent of X1,obs, . . . ,Xn1,obs

Xi,Ii =xi ∼ Pint;Ii ,xi linked to the above Pobs via do-calculus



Pint;Ii =2,x given by Pobs and the DAG D

non-intervention

X(1)

X(2)

X(3)X(4)

Y

intervention do(X2 = x)

X(1)

X(2) = x

X(3)X(4)

Y

P(Y ,X1,X2,X3,X4) =
P(Y |X1,X3)×
P(X1|X2)×
P(X2|X3,X4)×
P(X3)×
P(X4)

P(Y ,X1,X3,X4|do(X2 = x))
P(Y |X1,X3)×
P(X1|X2 = x)×
P(X3)×
P(X4)



can write down the likelihood:

B̂, Ω̂ = argminB,Ω − log-likelihood(B,Ω; data) + λ‖B‖0

with “argmin” under the constraint that B does not lead to
directed cycles
I greedy algorithm: GIES (Greedy Interventional

Equivalence Search) Hauser & PB (2012, 2015)
Wang, Solus, Yang & Uhler (2017)

I consistency of BIC (Hauser & PB, 2015) for fixed p and e.g.:
I one data point for each intervention with do-value different

from observational expectation of the intervention variable
I no. of observational data points nobs →∞



Sachs et al. (2005): flow cytometry data
p = 11 proteins and lipids, n = 5846 interventional data points
a rough assignment of interventions to single variables is
“possible” (but perhaps not very good)

GIES:© (with stability selection) and• (plain GIES)
the ground-truth is according to Sachs et al. (2005)



conclusion for Sachs et al data: it is hard to see good
performance with GIES and a couple of other methods

possible reasons: the interventions are not so specific, there
are latent confounders, the linear SEM is heavily misspecified,
the data is very noisy, the assumed ground-truth is incorrect



Open problems and conclusions
open problems:

autonomy assumption with do-interventions:
do(Xk = x) does not change the factors

p(xj |xpa(j)) (j 6= k)

probably a bit unrealistic in biology applications!

other interventions which are targeted to specific X -variables
(nodes in the graph), for example for j th variable:

Xj =
∑

k∈pa(j)

BjkXk + ajεj

noise intervention with factor aj > 0
also here: autonomy assumption that all other structural
equations remain the same



environment intervention, for example

Y (e) =
∑

j∈pa(Y )

BYjX
(e)
j + εY for different discrete e

X (e) changing arbitrary over e

see Lecture III
also here: the Y -structural equation has the same parameter
BY and the same noise distribution εY over all e:

an autonomy assumption



I active learning
a trade-off between statistical estimation accuracy and
identifiability

I in general: statistics for perturbation (e.g.
interventional-observational) data
see Lecture III



conclusions:
I graph-based methods are perhaps not so great for

interventional data
need specific information about interventions – not really
the case in biology with “off-target effetcs”

I intervention modeling is still in its infancies
it is over-shadowed by Pearls excellent and simple
do-intervention model

I active learning is interesting and not very well developed
poor
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I Ernest, J. and Bühlmann, P. (2015). Marginal integration for nonparametric

causal inference. Electronic Journal of Statistics 9, 3155–3194.
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I Hauser, A. and Bühlmann, P. (2012). Characterization and greedy learning of

interventional Markov equivalence classes of directed acyclic graphs. Journal of
Machine Learning Research 13, 2409-2464.
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Methodological “thinking”

I inferring causal effects from observation data is very
ambitious
(perhaps “feasible in a stable manner” in applications with very large
sample size)

I using interventional data is beneficial
this is what scientists have been doing all the time

; the agenda:
I exploit (observational-) interventional/perturbation data
I for unspecific interventions
I in the context of hidden confounding variables (Lecture III)



“my vision”: do it without graph estimation
(but use graphs as a language to describe the aims)



Adversarial Robustness
machine learning, Generative Networks

e.g. Ian Goodfellow

Causality

e.g. Judea Pearl

Do they have something “in common”?



Heterogeneous (potentially large-scale) data

we will take advantage of heterogeneity
often arising with large-scale data where

i.i.d./homogeneity assumption is not appropriate



It’s quite a common setting...
data from different known observed

environments or experimental conditions or

perturbations or sub-populations e ∈ E :

(X e,Y e) ∼ F e, e ∈ E
with response variables Y e and predictor variables X e

examples:
• data from 10 different countries
• data from different econ. scenarios (from diff. “time blocks”)

immigration in the UK



consider “many possible” but mostly non-observed
environments/perturbations F ⊃ E︸︷︷︸

observed

examples for F :
• 10 countries and many other than the 10 countries
• scenarios until today and new unseen scenarios in the future

immigration in the UK

the unseen future
problem:
predict Y given X such that the prediction works well
(is “robust”) for “many possible” environments e ∈ F
based on data from much fewer environments from E



trained on designed, known scenarios from E

new scenario from F !



trained on designed, known scenarios from E

new scenario from F !



Personalized health

want to be robust across
environmental factors



Personalized health

want to be robust across unseen
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a pragmatic prediction problem:
predict Y given X such that the prediction works well
(is “robust”) for “many possible” environments e ∈ F
based on data from much fewer environments from E
for example with linear models: find

argminβ max
e∈F

E|Y e − (X e)Tβ|2

it is “robustness”

and remember:
causality is predicting an answer to a

“what if I do/perturb question”!
that is: prediction for new unseen scenarios/environments
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a pragmatic prediction problem:
predict Y given X such that the prediction works well
(is “robust”) for “many possible” environments e ∈ F
based on data from much fewer environments from E
for example with linear models: find

argminβ max
e∈F

E|Y e − (X e)Tβ|2

it is “robustness” and also about causality

and remember:
causality is predicting an answer to a

“what if I do/perturb question”!
that is: prediction for new unseen scenarios/environments



Prediction and causality

indeed, for linear models: in a nutshell

for F = {all perturbations not acting on Y directly},
argminβ max

e∈F
E|Y e − (X e)Tβ|2 = causal parameter

that is:
causal parameter optimizes
worst case loss w.r.t. “very many” unseen (“future”) scenarios

later:
we will discuss models for F and E which make these relations
more precise
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How to exploit heterogeneity? for causality or “robust” prediction

Invariant causal prediction (Peters, PB and Meinshausen, 2016)

a main simplifying message:

causal structure/components remain the same
for different environments/perturbations

while non-causal components can change across environments

thus:
; look for “stability” of structures among

different environments
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Invariance: a key conceptual assumption

Invariance Assumption (w.r.t. E)

there exists S∗ ⊆ {1, . . . ,d} such that:

L(Y e|X e
S∗) is invariant across e ∈ E

for linear model setting:
there exists a vector γ∗ with supp(γ∗) = S∗ = {j ; γ∗j 6= 0}
such that:

∀e ∈ E : Y e = X eγ∗ + εe, εe ⊥ X e
S∗

εe ∼ Fε the same for all e
X e has an arbitrary distribution, different across e

γ∗, S∗ is interesting in its own right!

namely the parameter and structure which remain invariant across experimental settings, or heterogeneous groups
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Invariance Assumption: plausible to hold with real data

two-dimensional conditional distributions of observational (blue)
and interventional (orange) data
(no intervention at displayed variables X ,Y )

seemingly
no invariance
of conditional d.

plausible
invariance
of conditional d.



Invariance Assumption w.r.t. F

where F ⊃︸︷︷︸
much larger

E

now: the set S∗ and corresponding regression parameter γ∗ are
for a much larger class of environments than what we observe!
;

γ∗, S∗ is even more interesting in its own right!

since it says something about unseen new environments!



Link to causality

mathematical formulation with structural equation models:

Y ← f (Xpa(Y ), ε),

Xj ← fj(Xpa(j), εj) (j = 1, . . . ,p)

ε, ε1, . . . , εp independent

X5

Y

X11

X10

X3

X8X7

X2

direct causal variables for Y : the parental variables of Y
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Link to causality

problem:
under what model for the environments/perturbations e can we
have an interesting description of the invariant sets S∗?

loosely speaking: assume that the perturbations e
I do not act directly on Y
I do not change the relation between X and Y

but may act arbitrarily on X (arbitrary shifts, scalings, etc.)

graphical description: E is random with realizations e

X Y

E

not depending on E
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problem:
under what model for the environments/perturbations e can we
have an interesting description of the invariant sets S∗?

loosely speaking: assume that the perturbations e
I do not act directly on Y
I do not change the relation between X and Y

but may act arbitrarily on X (arbitrary shifts, scalings, etc.)

graphical description: E is random with realizations e

X Y

E

not depending on E
X Y

E H

IV model: see Lecture III



Link to causality

easy to derive the following:

Proposition
• structural equation model for (Y ,X );
• model for F of perturbations: every e ∈ F
I does not act directly on Y
I does not change the relation between X and Y

but may act arbitrarily on X (arbitrary shifts, scalings, etc.)
Then: the causal variables pa(Y ) satisfy the invariance
assumption with respect to F

causal variables lead to invariance under arbitrarily strong
perturbations from F as described above
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respect to F

as a consequence: for linear structural equation models

for F as above,
argminβ max

e∈F
E|Y e − (X e)Tβ|2 = β0

pa(Y )︸ ︷︷ ︸
causal parameter

if the perturbations in F would not be arbitrarily strong
; the worst-case optimizer is different! (see later)
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A real-world example and the assumptions

Y : growth rate of the plant
X : high-dim. covariates of gene expressions

perturbations e: different gene knock-out experiments
; e changes the expressions of some components of X

it’s plausible that perturbations e
I do not directly act on Y

√
I do not change the relation between X and Y ?

may act arbitrarily on X (arbitrary shifts, scalings, etc.)
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Causality⇐⇒ Invariance

we just argued: causal variables =⇒ invariance

known since a long time:
Haavelmo (1943)

Trygve Haavelmo
Nobel Prize in Economics 1989

(...; Goldberger, 1964; Aldrich, 1989;... ; Dawid and Didelez, 2010)

more novel: the reverse relation

causal structure, predictive robustness ⇐= invariance
(Peters, PB & Meinshausen, 2016)
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The search for invariance and causality (Peters, PB & Meinshausen, 2016)

causal structure/variables ⇐= invariance
X5

Y

X11

X10

X3

X8X7

X2

severe issues of identifiability !

can perform statistical test whether a subset S of covariates
satisfies the invariance assumption

H0−InvA(E) : L(Y e|X e
S) is invariant across e ∈ E︸︷︷︸

observed environments
in a linear model ; Chow (1960)

; sets S1, . . . ,Sk which are statistically compatible with
invariance assumption H0−InvA(E)



making it identifiable:

Ŝ(E) =
⋂
{S; S statistically compatible with H0−InvA(E)︸ ︷︷ ︸

no rejection at significance level α

}

Theorem: (Peters, PB and Meinshausen, 2016)
assume structural equation model
I linear model for Y versus X , Gaussian errors
I e ∈ E does not act directly on Y and

does not change the relation between X and Y
Then:

P[Ŝ(E) ⊆ Scausal︸ ︷︷ ︸
pa(Y )

] ≥ 1− α

confidence guarantee against false positive causal selection

ICP = Invariant Causal Prediction
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Proof: the causal set Scausal leads to invariance

P[Ŝ(E) ⊆ Scausal] = P[
⋂
{S; H0,S not rejected} ⊆ Scausal]

≥ P[H0,Scausal not rejected] ≥ 1− α

2



Conclusions

I causality can be framed as worst case risk optimization!
more on that in Lecture IV

I causality can be inferred from invariance and a “stability”
argument

I ICP (Invariant Causal Prediction) is a conceptual approach
and method



make heterogeneity or non-stationarity your friend
(rather than your enemy)!



make heterogeneity or non-stationarity your friend
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Single gene deletion experiments in yeast

d = 6170 genes
response of interest: Y = expression of first gene
“covariates” X = gene expressions from all other genes

and then
response of interest: Y = expression of second gene
“covariates” X = gene expressions from all other genes

and so on

infer/predict the effects of unseen/new single gene deletions on
all other genes



Kemmeren et al. (2014):
genome-wide mRNA expressions in yeast: d = 6170 genes
I nobs = 160 “observational” samples of wild-types
I nint = 1479 “interventional” samples

each of them corresponds to a single gene deletion strain

for our method: we use |E| = 2
(observational and interventional data)

training-test data splitting:
• training set: all observational and 2/3 of interventional data
• test set: other 1/3 of gene deletion interventions

; can validate predicted effects of these interventions
• repeat this for the three blocks of interventional test data

multiplicity adjustment:
since ICP is used 6170 times (once for every response var.) we use coverage
1− α/6170 with α = 0.05



Results for inferring causal variables on a single training-test split

8 genes are “significant” (α = 0.05 level) causal variables
(each of the 8 genes “causes” one other gene)

not many findings...
1 2

6170

but we use a stringent criterion with Bonferroni corrected
α/6170 = 0.05/6170 to control the familywise error rate
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8 genes are “significant” (α = 0.05 level) causal variables

validation:
thanks to the intervention experiments (in the test data) we can
validate the method(s)

we only consider true Strong Intervention Effects (SIEs)

6 out of the 8 “significant” genes are true SIEs!

SIE = the observed response value associated to an intervention is in the 1%- or 99% tail of the observational data
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# INTERVENTION PREDICTIONS

# 
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PERFECT
INVARIANT
HIDDEN−INVARIANT
PC
RFCI
REGRESSION (CV−Lasso)
GES and GIES
RANDOM (99% prediction−
 interval)

I : invariant prediction method
H: invariant prediction with some hidden variables


