Causality — in a wide sense
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Recap from yesterday

» equivalence classes of DAGs

» estimation of equivalence classes of DAGs based on
observational data
that is: data are i.i.d. realizations from a single
data-generating distribution which is faithful/Markovian
w.r.t. a true underlying DAG

e PC-algorithm assuming strong faithfulness conditions
e /p-penalized Gaussian MLE assuming a
weaker permutation beta min condition



Route via structural equation models: interesting conceptual extensions

full identifiability (card(Markov equivalence class) = 1): if

» same error variances:
Xi 4= Dkepa(j) BiXk +¢j, Var(ej) = w? (Peters & PB, 2014)
» nonlinear structural equation models with additive noise:
X; <= non-linear function f( X)) + ¢;
Mooij, Peters, Janzing & Schélkopf (2009-2012)
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» nonlinear structural equation models with additive noise:
X; <— non-linear function f( X)) + ¢;
Mooij, Peters, Janzing & Schélkopf (2009-2012)

Xj Zkepa(j) fk(Xx) + ¢ (CAM) (PB, Ernest & Peters, 2014)

» linear structural egns. with non-Gaussian errors (LINGAM):
linear SEM but all &4, . .., ¢p non-Gaussian (Shimizu et al.,
2006)

X=BX+¢
X=(-B)'e ~ ICA!



the real issue with causality:
interventional distributions



What is Causality? ... and its relation to interventions

Causality is giving a prediction (quantitative answer) to a
“What if | do/manipulate/intervene question”

many modern applications are faced with such prediction tasks:

» genomics: what would be the effect of knocking down (the
activity of) a gene on the growth rate of a plant?
?

we want to predict this without any data on such a gene
knock-out (e.g. no data for this particular perturbation)

» E-commerce: what would be the effect of showing
person “XYZ” an advertisement on social media?
no data on such an advertisement campaign for “XYZ” or
persons being similar to “XYZ”

> etc.



Regression — the “statistical workhorse”: the wrong approach

example:

Y = growth rate of Arabidopsis Thaliana

X = gene expressions

What would happen if we knock out a gene (expression) X;?

we could use linear model (fitted from n observational data)

p
Y=Y BiXj+e, Var(X;)=1forall
j=1

|3j| measures the effect of variable X; in terms of “association’

i.e. change of Y as a function of X; when keeping all other
variables X fixed



Regression — the “statistical workhorse”: the wrong approach

example:

Y = growth rate of Arabidopsis Thaliana

X = gene expressions

What would happen if we knock out a gene (expression) X;?

we could use linear model (fitted from n observational data)

p
Y=Y BiXj+e, Var(X;)=1forall
j=1

|3j| measures the effect of variable X; in terms of “association’

i.e. change of Y as a function of X; when keeping all other
variables X fixed

~» not very realistic for intervention problem
if we change e.g. one gene, some others will also change
and these others are not (cannot be) kept fixed



and indeed:
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and indeed:
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~» can do much better than (penalized) regression!



Effects of single gene knock-downs on all other genes (yeast)
(Maathuis, Colombo, Kalisch & PB, 2010)

e p = 5360 genes (expression of genes)
e 231 gene knock downs ~+ 1.2 - 108 intervention effects
e the truth is “known in good approximation”

(thanks to intervention experiments)

goal: prediction of the true large intervention effects
based on observational data with no knock-downs
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A bit more specifically

» univariate response Y
» p-dimensional covariate X

question:

what is the effect of setting the jth component of X to a certain
value x:

~ this is a question of intervention type

not the effect of X; on Y when keeping all other variables fixed
(regression effect)

Reichenbach, 1956; Suppes, 1970; Rubin, 1978; Dawid, 1979;
Holland, Pearl, Glymour, Scheines, Spirtes,...



we need a “dynamic notion of importance”:

if we intervene at Xj, its effect propagates through other
variables Xy (k #j)to Y
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Graphs, structural equation models and causality

intuitively:
the concept of causality in terms of graphs is plausible
(%) @\
o T
‘ AN
H—
in a DAG:

a directed arrow X — Y says that “X is a direct cause of Y”

» What about indirect causes? (when propagating through
many variables)
How do we link “causality” to graphs?

» What is a quantitative model for a graph structure?



Structural equation models (SEMs)

consider a DAG D (“acyclicity” for simplicity)
encoding the “causal influence diagram”:
the direct causes are encoded by directed arrows

~» D is called the causal graph (because it is assumed to
encode the direct causal relationships)

a quantitative model on the causal graph describing the
quantitative behavior of the system:

structural equation model (with structure D):

X §(Xugyrg)s S =1,-.P
£1,...,Ep independent

where pa(j) = pap(j) are the parents of node j



Linear SEM

linear structral equation model (with structure D):

Xj<— Z Bijk-i-Ej, j=1,...,p
kepa(j)
£1,...,Ep independent

if we knew the parental sets it is simply linear regression on the
appropriate covariates



so far: no hidden “confounding” variables

(H)

X ®

~» see Lecture lll



Local Markov property

Given P with density p from a SEM
because of independence of ey, eq,...,¢p
~» the local Markov property holds!

and if P has continuous density: global Markov property holds!
(correspondence between conditional independence and
separation in graphs)



Causality and SEM

the SEM is a model for describing the “true” underlying
mechanistic behavior of the system with the random variables
Y. X1,..., Xp

having access to such a mechanistic model, one can make
predictions of interventions, manipulations, perturbations

and this is the core task of causality



Modeling interventions: do-interventions

Pearl’s do-interventions

Judea Pearl
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Pearl’s do-interventions

Co—0e)
)—

Judea Pearl
dO(Xg = X) ~> @

X1 — f1(X2 = X,E1),
Xo + X,

&

X3%€3
Y — fy(Xq, Xo = x,ey)



assume Markov property (rec. factorization) for causal DAG:

non-intervention intervention do(Xz = x)

X

N\ N
NS
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p(Y, X1, Xo, X3, Xa) = p(Y, X1, X3, Xy|do(Xz = X)) =
p(Y‘X1,X3)X p(Y|X1,X3)><
p(X1|X2)x p(X1| Xz = x)x
P(X2| X3, Xa)x p(X3)x
p(Xs)x p(Xs)
P(Xa) truncated factorization



truncated factorization for do(X> = x):

p(Y, X1, X3, X4|do(Xz = x)
= p(Y|X1, X3)p(X1| X2 = x)p(X3)p(Xs)

p(¥[do(Xe = x))
= [ PLY Xt X Xeldo( e = X)) dXs0XaXs



note that do(X> = x) does not change the factors

p(Xj|Xpa(j))

this is an assumption!
and is called structural autonomous assumption



the intervention distribution P(Y|do(X> = x)) can be calculated
from
» observational data distribution
~» need to estimate conditional distributions

» an influence diagram (causal DAG)
~» need to estimate structure of a graph/influence diagram



with a SEM and (for example) do-interventions:

with do(X; = x), for every j and x, we obtain a different
distribution of Y, Xj,..., Xp

can generate many interventional distributions!



Potential outcome model

Neyman (1923), Rubin (1974)

Yi(t) = response for unit/individual / under treatment
Yi(c) = response for unit/individual / under control

observed is (usually) only under control (or under treatment)
but not both
~» missing data problem



“fact”: the approach with do-interventions and the one with the
potential outcome model are equivalent (under “natural”
assumptions): 148 pages!

Single World Intervention Graphs (SWIGs):
A Unification of the Counterfactual and Graphical
Approaches to Causality

Thomas S. Richardson James M. Robins
University of Washington ~ Harvard University

Working Paper Number 128
Center for Statistics and the Social Sciences
University of Washington

30 April 2013

the approach with graphs is perhaps easier when many
variables are present



Total causal effects

often one is interested in the distribution of P(Y|do(X; = x)) or
p(y|do(X; = x)) density

B[Y|do(X; = )] = [ yp(yldo(X; = x))al

the total causal effect is defined as
2IE[Y|do(X- = X)]
Ox ;T

measuring the “total causal importance” of variable X; on Y



Total causal effects

often one is interested in the distribution of P(Y|do(X; = x)) or
p(y|do(X; = x)) density
B[Y|do(X; = )] = [ yp(yldo(X; = x))al

the total causal effect is defined as

0

5 ELYldo(X) = x)]
measuring the “total causal importance” of variable X; on Y
if we know the entire SEM, we can easily simulate the
distribution P(Y|do(X; = x))

this approach requires global knowledge of the graph structure,
edge functions/weights and error distributions



Example: linear SEM

directed path p; from X; to Y
causal effect on p; by product of corresponding edge weights

total causal effect = ij v

¥

total causal effect from Xj to Y: ay +

needs the entire structure and edge weights of the graph



alternatively, we can use the backdoor adjustment formula:
consider a set S of variables which block the “backdoor paths”
of X; to Y: one easy way to block these paths is S = pa())




backdoor adjustment formula (cf. Pearl, 2000): if Y ¢ pa(j),
pyido(X; = x) = [ pyIX; = x. Xs)dP(Xs)
B[Y[do(X)) = )] = [ yp(yldo(X; = X))ol
— [ oy, = x, Xs)dP(Xs)oly = [ ELY1X, XsloP(Xs)

for linear SEM: run regression of Y versus X;, Xs
~ total causal effect of X; on Y is regression coefficient ;

only local structural information is required, namely e.g.

S = pa(j)
often much easier to obtain/estimate than the entire graph



consequences: for total causal effect do(X; = x), it is sufficient
to know
> pa(j) local graphical structure search
> E[Y]X; = X, Xoua(j)] nonparametic regression

Henckel, Perkovic & Maathuis (2019) discuss efficiency for total
causal effect estimation

with or without backdoor adjustment, possibly with a set

S # pa(j), when the graph is known/given



Marginal integration (with S = pa(j))
recall that (for Y ¢ pa(j))
E[Y|do(X; = x)] = /IE[Y\X = X, Xoa() | AP (Xpa(j))
estimation of the right-hand side has been developed for
additive models!

cf. Fan, Hardle & Mammen (1998)
additive regression model:

d
Y=p+) fi(X)+e
j=1
E[f(X;)] = 0 (for identifiability)

~> IE[Y‘X/ = X, X\j]dP(X\j) =u+ O(X)



asymp. result (Fan, Hardle & Mammen, 1998; Ernest & PB, 2015):
> regression function E[Y|X; = X, X,(j) = Xpa(j)] €Xists and
has bounded partial derivatives up to order 2 with respect
to x and up to order d > |pa(j)| W.r.t. X))

» other regularity conditions
then, for kernel estimators with appropriate bandwidth choice:
E[Y|do(X; = x)] — E[Y|do(X; = x)] = Op(n~?/%)

only one-dimensional variable x for the intervention

quite “nice” since the SEM is allowed to be very nonlinear with
non-additive errors etc... (but smooth regression functions)

Ernest & PB (2015):
Y < exp(X1) x cos(XoX3 +cy)

would be hard to model nonparametrically
~» instead, we rely on smoothnes of conditional expectations
only



the approach by plugging-in a kernel estimator is a bit subtle in

terms of choosing bandwidths (in “direction” x and X))

one actual implementation is with boosting kernel estimation
(Ernest & PB, 2015)



Gene expressions in Arabidposis Thaliana (Wille et al., 2004)

p=388,n=118
graph estimated by CAM: causal additive model
Marginal integration with parental sets as in Ernest & PB (2015)
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none of the found strong total effects are against the metabolic
order



one pathway: parental sets are the three closest ancestors
according to metabolic order (Ernest & PB, 2015)

Chioroplast (VEP pathway)
-
[ oxps1 |  pxpsz | [ pxess

DXR | 4
v

MeT e

dataset. T}

th adjustment sets ch

fects found
tructure by cons 11 ancestors up to thres levels Tk,

the metabolic netu

from simulations: for marginal integration, the sensitivity on the
correctness of the parental set is (fortunately) not so big



Lower bounds of total causal effects

due to identifiability issues:
we cannot estimate causal/intervention effects from
observational distribution



Lower bounds of total causal effects

due to identifiability issues:
we cannot estimate causal/intervention effects from
observational distribution

but we will be able to estimate lower bounds of causal effects



IDA (Maathuis, Kalisch & PB, 2009)

IDA (oracle version)

PC-algorithm do-calculus

~ | DAG 1| — [effect 1| —

> | DAG 2| — | effect 2| —

[ oracle| — | CPDAG | — : : -~

> | DAG m | = | effect m | —




If you want a single number for every variable ...

instead of the multi-set

©O={0,;; r=1,....m j=1,...,p}

minimal absolute value

e.g. forvar. ji [0z < |05, <01 < |0a)] < ... < |0g]
~—~—~ ~—~—~

minimum true

aj = mrinwr,j] J=1,...,p),
|9true,j‘ > Q;

minimal absolute effect «; is a lower bound for true absolute
intervention effect



Computationally tractable algorithm

searching all DAGs is computationally infeasible if p is large
(we actually can do this up to p ~ 15 — 20)

instead of finding all m DAGs within an equivalence class ~»
compute all intervention effects without finding all DAGs
(Maathuis, Kalisch & PB, 2009)

key idea: exploring local aspects of the graph is sufficient



PC-algorithm do-calculus

[eezt] —

%—
\

(6] — [cPon]

> | multi-set ©F

eiects] —

the local ©X = © up to multiplicities
(Maathuis, Kalisch & PB, 2009)
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Effects of single gene knock-downs on all other genes (yeast)
(Maathuis, Colombo, Kalisch & PB, 2010)

e p = 5360 genes (expression of genes)
e 231 gene knock downs ~» 1.2 - 10% intervention effects
e the truth is “known in good approximation”

(thanks to intervention experiments)

goal: prediction of the true large intervention effects
based on observational data with no knock-downs
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Interventions and active learning

often we have observational and interventional data

example:
yeast data with ny,s = 63, ny, = 231

interventional data are very informative!

can tell the direction of certain arrows

~» Markov equivalence class under interventions is (much)
smaller, i.e., (much) improved identifiability!



Toy problem: two (Gaussian) variables X, Y

when doing an intervention at one of them, can infer the
direction

scenario I:
DAG: X = Y; interventionat Y ~sinterv. DAG: X Y

~ X, Y independent

scenario Il:
DAG: X <« Y; interventionat Y ~sinterv.. DAG: X « Y

~ X, Y dependent

generalizes to: can infer all directions when doing an
intervention at every node (which is not very clever...)



Gain in identifiability (with one intervention)

DAG G observ. CPDAG
1 2 3 4 5 6 7 1 2 3 4 5 6 7
————

E(G,I={2,0}) E(G,I={4,0})
1 2 3 4 5 6 7 1 2 3 4 5 6 7
-—Q— P ——>—>
DAG G observ. CPDAG
1 3 5 7 1 3 5 7
2 4 6 3 2 4 6 8
E(G,I={1,0}) E(G,I={2,0})

1 3 5 7 1 3 5 7
2 4 6 8 2 4 6 8



have just informally introduced interventional Markov
equivalence class and its corresponding essential graph

(D, Z )

set of intervention variables

(needs new definitions: Hauser & PB, 2012)

there is a minimal set of intervention variables Z,,;, such that
E(D,Zinin) =D
in previous example: Znin, = {2, O}

the size of Z,,;, has to do with “degree” of so-called
protectedness

very roughly speaking:

the “sparser (few edges) the DAG D, the better identifiable from
observational/intervention data”

in the sense that |Z,| is small



inferring Z,,;, from available data?

methods for efficient sequential design of intervention
experiments

“active learning”

a lot of very recent work in 2019...



randomly chosen intervention variables
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active learning: cleverly chosen intervention variables
(Eberhardt conjecture, 2008; Hauser & PB, 2012, 2014)
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The model and the (penalized) MLE

consider data

X1,Ob87 R ,Xn1,obS7 X1,I1:X17- . .,X

M2, lny=Xn,

nq observational data
no interventional data (single variable interventions)

model:

X1 obss - - - s Xng obs 1-1.d. ~ Pops = Np(0, X) faithful to a DAG D,

S ,X,,Z,,n2 independent, non-identically distributed
independent of Xj gps, - - -, Xn, obs

Xi=x, ~ Pintsx,  linked to the above Py via do-calculus



P —2,x given by Py, and the DAG D

non-intervention

x®
X \ Y
X@ X®)

P(Y, Xy, X2, X3, X4) =

P(Y,
P

P(
P(X.
P(X

intervention do(Xz = x)

xM
X®? =4 \ Y

X@ X®

X1,X3,X4|d0( 2 = X))
Y| X1, X3)x
Xq|Xo = x)x

3)x

4)



can write down the likelihood:
B, = argming , — log-likelihood(B, ; data) + A[| B0

with “argmin” under the constraint that B does not lead to
directed cycles

» greedy algorithm: GIES (Greedy Interventional
Equivalence Search) Hauser & PB (2012, 2015)
Wang, Solus, Yang & Uhler (2017)
» consistency of BIC (Hauser & PB, 2015) for fixed p and e.g.:

> one data point for each intervention with do-value different
from observational expectation of the intervention variable
» no. of observational data points Ny, — oo



Sachs et al. (2005): flow cytometry data
p = 11 proteins and lipids, n = 5846 interventional data points
a rough assignment of interventions to single variables is

“possible” (but perhaps not very good)

GIES: O (with stability selection) and ® (plain GIES)
the ground-truth is according to Sachs et al. (2005)

+

30

40



conclusion for Sachs et al data: it is hard to see good
performance with GIES and a couple of other methods

possible reasons: the interventions are not so specific, there
are latent confounders, the linear SEM is heavily misspecified,
the data is very noisy, the assumed ground-truth is incorrect



Open problems and conclusions

open problems:

autonomy assumption with do-interventions:
do(Xx = x) does not change the factors

p(Xj|Xpa(j)) (/ a k)
probably a bit unrealistic in biology applications!

other interventions which are targeted to specific X-variables
(nodes in the graph), for example for jth variable:

Xj = Z Bijk + gjej
kepa())

noise intervention with factor a; > 0
also here: autonomy assumption that all other structural
equations remain the same



environment intervention, for example

vy = - Byj ®) 1 ¢y for different discrete e
Jjepa(Y)
X(©) changing arbitrary over e

see Lecture I
also here: the Y-structural equation has the same parameter
By and the same noise distribution ¢y over all e:

an autonomy assumption



» active learning
a trade-off between statistical estimation accuracy and
identifiability

> in general: statistics for perturbation (e.g.
interventional-observational) data
see Lecture I



conclusions:

» graph-based methods are perhaps not so great for
interventional data
need specific information about interventions — not really
the case in biology with “off-target effetcs”

» intervention modeling is still in its infancies
it is over-shadowed by Pearls excellent and simple
do-intervention model

» active learning is interesting and not very well developed
poor
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Methodological “thinking”

» inferring causal effects from observation data is very

ambitious
(perhaps “feasible in a stable manner” in applications with very large
sample size)

» using interventional data is beneficial
this is what scientists have been doing all the time
~» the agenda:
» exploit (observational-) interventional/perturbation data
» for unspecific interventions
» in the context of hidden confounding variables (Lecture Il1)



“my vision”: do it without graph estimation
(but use graphs as a language to describe the aims)



Adversarial Robustness Causality

machine learning, Generative Networks

e.g. lan Goodfellow e_é_ Judea Pearl

Do they have something “in common”?



Heterogeneous (potentially large-scale) data

we will take advantage of heterogeneity
often arising with large-scale data where
i.i.d./homogeneity assumption is not appropriate



It's quite a common setting...
data from different known observed
environments o experimental conditions or
perturbations o sub-populations e € £:

(X, Y®)~F® ec€&
with response variables Y€ and predictor variables X*¢
examples:

e data from 10 different countries
e data from different econ. scenarios (from diff. “time blocks”)

immigration in the UK

Immigration (thousands)

400

0
@ o @ o @ o @ o @2 94a1929304q162039091920304 91929304 41626394 g1
205 2006 2007 2008 | 209 2010 20m 2012 2018 | 20u 2015

Roling years




consider “many possible” but mostly non-observed

environments/perturbations F > £
~—~

observed

examples for F:
¢ 10 countries and many other than the 10 countries
e scenarios until today and new unseen scenarios in the future

immigration in the UK

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

,,,,,,,,,,,,,,, ““the unseen future
problem:

predict Y given X such that the prediction works well
(is “robust”) for “many possible” environments e € F
based on data from much fewer environments from £



trained on designed, known scenarios from &




new scenario from F!



Personalized health

wa_nt to be robust across
environmental factors

Environmental factors

Epigenome “ Syndemics
Hypertension

Patient ai (VD Stress
adiposit; roni
il inflammation Atherogenic
NAFLD Gut dyslipidemia
05A Age and sex hormones
& 2 ()
Cancer ! ype % Rat)
o
Amongothers Neurotransmitters

Genetic background



Personalized health

want to be robust across U nNnseen
environmental factors

Environmental factors

Clinical features of 2 .
Epigenome obesity and comorbidities = Sl
Patient Sy Stress
S Chronic (VD
adiposit;
NARD Gut dyslipidemia
05A Ageand sex hormones
Cancer A
diabetes Liﬁ"&:‘
Amongothers R otransmitters

Genetic background



a pragmatic prediction problem:

predict Y given X such that the prediction works well
(is “robust”) for “many possible” environments e € F

based on data from much fewer environments from £

for example with linear models: find

; e e\T g2
argming r;wea}(E]Y (X' B



a pragmatic prediction problem:

predict Y given X such that the prediction works well
(is “robust”) for “many possible” environments e € F

based on data from much fewer environments from £

for example with linear models: find
; e e\T g2
argming r;wea}(IE] Y® —(X®)' g

it is “robustness”



a pragmatic prediction problem:

predict Y given X such that the prediction works well
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based on data from much fewer environments from £

for example with linear models: find
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a pragmatic prediction problem:

predict Y given X such that the prediction works well
(is “robust”) for “many possible” environments e € F

based on data from much fewer environments from &

for example with linear models: find
; FlY® — (X€ T 12
argming max | (X°) "Bl

it is “robustness” and also about causality

and remember:
causality is predicting an answer to a

“what if | do/perturb question”!
that is: prediction for new unseen scenarios/environments



Prediction and causality

indeed, for linear models: in a nutshell

for F = {all perturbations not acting on Y directly},
argmin; max | Y® — (X®)"B? = causal parameter
e

that is:
causal parameter optimizes
worst case loss w.r.t. “very many” unseen (“future”) scenarios



Prediction and causality

indeed, for linear models: in a nutshell

for F = {all perturbations not acting on Y directly},
argmin; max | Y® — (X®)"B? = causal parameter
ec

that is:
causal parameter optimizes
worst case loss w.r.t. “very many” unseen (“future”) scenarios

later:

we will discuss models for F and £ which make these relations
more precise
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How to exploit heterogeneity? for causality or “robust” prediction
Invariant causal prediction (Peters, PB and Meinshausen, 2016)

a main simplifying message:

causal structure/components remain the same
for different environments/perturbations

while non-causal components can change across environments

thus:
~ look for “stability” of structures among
different environments
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there exists S* C {1,...,d} such that:

L(Y®|XE.) is invariant across e € £
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e® ~ F. the same for all e
X€ has an arbitrary distribution, different across e



Invariance: a key conceptual assumption

Invariance Assumption (w.r.t. &)
there exists S* C {1, ..., d} such that:

L(Y®|XE.) is invariant across e € £

for linear model setting:
there exists a vector v* with supp(y*) = S* = {Jj; v # 0}
such that:
Vee€&: Y = X%y +¢°, e L Xg.
e® ~ F. the same for all e
X€ has an arbitrary distribution, different across e

~*, S* is interesting in its own right!

namely the parameter and structure which remain invariant across experimental settings, or heterogeneous groups



Invariance Assumption: plausible to hold with real data

two-dimensional conditional distributions of observational (blue)
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Invariance Assumption w.r.t. F

where F D £
~~
much larger

now: the set S* and corresponding regression parameter v* are
for a much larger class of environments than what we observe!

N

~*, S* is even more interesting in its own right!

since it says something about unseen new environments!
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Link to causality

mathematical formulation with structural equation models:

Y« f(Xpa(Y)16)7
)(j = G(Xpa(j)agj) (/: 177p)
€,€1,...,€p independent

()—®

(direct) causal variables for Y: the parental variables of Y



Link to causality

problem:
under what model for the environments/perturbations e can we
have an interesting description of the invariant sets S*?
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Link to causality

problem:
under what model for the environments/perturbations e can we
have an interesting description of the invariant sets S*?

loosely speaking: assume that the perturbations e
» do not act directly on Y
» do not change the relation between X and Y

but may act arbitrarily on X (arbitrary shifts, scalings, etc.)

graphical description: E is random with realizations e

? ? /@\
; 5 ® ©
O”Ot depending on EO IV model: see Lecture IlI




Link to causality

easy to derive the following:

Proposition
e structural equation model for (Y, X);
e model for F of perturbations: every e € F

» does not act directly on Y

» does not change the relation between X and Y
but may act arbitrarily on X (arbitrary shifts, scalings, etc.)
Then: the causal variables pa(Y) satisfy the invariance
assumption with respect to F

causal variables lead to invariance under arbitrarily strong
perturbations from F as described above
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Proposition
e structural equation model for (Y, X);
e model for F of perturbations: every e € F

» does not act directly on Y
» does not change the relation between X and Y

but may act arbitrarily on X (arbitrary shifts, scalings, etc.)
Then: the causal variables pa(Y) satisfy the invariance assumption with
respect to F

as a consequence: for linear structural equation models

for F as above,
argmin rgea}_dEl Y — (X®) B2 = Bpa(Y)

causal parameter

if the perturbations in 7 would not be arbitrarily strong
~ the worst-case optimizer is different! (see later)
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X: high-dim. covariates of gene expressions

perturbations e: different gene knock-out experiments
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A real-world example and the assumptions

Y: growth rate of the plant
X: high-dim. covariates of gene expressions

perturbations e: different gene knock-out experiments
~» e changes the expressions of some components of X

it's plausible that perturbations e
> do not directly acton Y /
» do not change the relation between X and Y ?

may act arbitrarily on X (arbitrary shifts, scalings, etc.)
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we just argued: causal variables — invariance
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Causality <= Invariance

we just argued: causal variables — invariance

s

known since a long time:
Haavelmo (1943)

Trygve Haavelmo

Nobel Prize in Economics 1989
(..; Goldberger, 1964; Aldrich, 1989;... ; Dawid and Didelez, 2010)

more novel: the reverse relation

causal structure, predictive robustness < invariance
(Peters, PB & Meinshausen, 2016)



The search for invariance and causality (Peters, PB & Meinshausen, 2016)

causal structure/variables <= invariance

severe issues of identifiability !

can perform statistical test whether a subset S of covariates
satisfies the invariance assumption

Ho—InvA(E) : L(Y®|Xg) is invariant across e € £
) ) observed environments
in a linear model ~» Chow (1960)

~» sets Sy, ..., Sk which are statistically compatible with
invariance assumption Ho—InvA(&)



making it identifiable:

5() = ﬂ{S; S statistically compatible with Hy—InvA(E)}

no rejection at significance level «

Theorem: (Peters, PB and Meinshausen, 2016)
assume structural equation model

» linear model for Y versus X, Gaussian errors

» e < £ does not act directly on Y and
does not change the relation between X and Y

Then:
P[‘AS(E) g Scuusal 2 1—«a
pa(Y)

confidence guarantee against false positive causal selection



making it identifiable:

5() = ﬂ{S; S statistically compatible with Hy—InvA(E)}

no rejection at significance level «

Theorem: (Peters, PB and Meinshausen, 2016)
assume structural equation model

» linear model for Y versus X, Gaussian errors

» e < £ does not act directly on Y and
does not change the relation between X and Y

Then:
P[S(E) C Sausa] > 1 —
pa(Y)
confidence guarantee against false positive causal selection
ICP = Invariant Causal Prediction



Proof: the causal set S.... leads to invariance

P[S(€) C Seausa]l = P[[){S: Ho,s not rejected} € Scausall
P[Ho,s,

causal

\%

not rejected] > 1 — «



Conclusions

» causality can be framed as worst case risk optimization!
more on that in Lecture IV

» causality can be inferred from invariance and a “stability”
argument

» ICP (Invariant Causal Prediction) is a conceptual approach
and method



make heterogeneity or non-stationarity your friend
(rather than your enemy)!




make heterogeneity or non-stationarity your friend
(rather than your enemy)!
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Single gene deletion experiments in yeast

d = 6170 genes
response of interest: Y = expression of first gene
“covariates” X = gene expressions from all other genes

and then
response of interest: Y = expression of second gene
“covariates” X = gene expressions from all other genes

and so on

infer/predict the effects of unseen/new single gene deletions on
all other genes



Kemmeren et al. (2014):
genome-wide mRNA expressions in yeast: d = 6170 genes

» nops = 160 “observational” samples of wild-types

» nipy = 1479 “interventional” samples
each of them corresponds to a single gene deletion strain

for our method: we use |£] =2
(observational and interventional data)

training-test data splitting:
e training set: all observational and 2/3 of interventional data
e test set: other 1/3 of gene deletion interventions
~» can validate predicted effects of these interventions
e repeat this for the three blocks of interventional test data

multiplicity adjustment:
since ICP is used 6170 times (once for every response var.) we use coverage
1 — «/6170 with « = 0.05



Results for inferring causal variables on a single training-test split

8 genes are “significant” (o« = 0.05 level) causal variables
(each of the 8 genes “causes” one other gene)



Results for inferring causal variables on a single training-test split

8 genes are “significant” (o« = 0.05 level) causal variables
(each of the 8 genes “causes” one other gene)

! 2
not many findings... , . " ©
o
7
O
T @)
O
o/»o
Oy O

but we use a stringent criterion with Bonferroni corrected
/6170 = 0.05/6170 to control the familywise error rate



8 genes are “significant” (o« = 0.05 level) causal variables

validation:
thanks to the intervention experiments (in the test data) we can
validate the method(s)

we only consider true Strong Intervention Effects (SIEs)

SIE = the observed response value associated to an intervention is in the 1%- or 99% tail of the observational data

interventional test data}pgmt o interventional test data point
(intervention on gene 5954) (intervention on gene 3672)
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8 genes are “significant” (o« = 0.05 level) causal variables

validation:
thanks to the intervention experiments (in the test data) we can
validate the method(s)
we only consider true Strong Intervention Effects (SIEs)
6 out of the 8 “significant” genes are true SIEs!

SIE = the observed response value associated to an intervention is in the 1%- or 99% tail of the observational data

interventional test data point 4 interventional test data point
(intervention on gene 5954) (intervention on gene 3672)
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PERFECT
E— INVARIANT

—— HIDDEN-INVARIANT
=— PC
B— RFCI

—— REGRESSION (CV-Lasso)

—— GES and GIES

RANDOM (99% prediction—

interval)

# STRONG INTERVENTION EFFECTS

# INTERVENTION PREDICTIONS

| : invariant prediction method
H: invariant prediction with some hidden variables



