
Causality – in a wide sense
Lecture III

Peter Bühlmann
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Recap from yesterday

I causality is giving a prediction to an
intervention/manipulation



Predicting a potential outcome

manipulate x = −8
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It’s an ambitious problem

manipulate x = −8
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I observational data plus interventional data is much more
informative than observational data alone

I do-intervention model is simple, easy to understand but
often too specific: we often cannot intervene precisely at
single variables



Invariant Causal Prediction

Invariance Assumption (w.r.t. E)

there exists S∗ ⊆ {1, . . . ,d} such that:

L(Y e|X e
S∗) is invariant across e ∈ E

for linear model setting:
there exists a vector γ∗ with supp(γ∗) = S∗ = {j ; γ∗j 6= 0}
such that:

∀e ∈ E : Y e = X eγ∗ + εe, εe ⊥ X e
S∗

εe ∼ Fε the same for all e
X e has an arbitrary distribution, different across e
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if e ∈ F
I does not directly affect Y
I does not change the relation between X and Y

then:
Scausal = pa(Y ) satisfy Invariance Assumption w.r.t. F

causal structure/variables =⇒ invariance



The search for invariance and causality (Peters, PB & Meinshausen, 2016)

causal structure/variables ⇐= invariance
X5

Y

X11

X10

X3

X8X7

X2

severe issues of identifiability !

can perform statistical test whether a subset S of covariates
satisfies the invariance assumption

H0−InvA(E) : L(Y e|X e
S) is invariant across e ∈ E︸︷︷︸

observed environments
in a linear model ; Chow (1960)

; sets S1, . . . ,Sk which are statistically compatible with
invariance assumption H0−InvA(E)



making it identifiable:

Ŝ(E) =
⋂
{S; S statistically compatible with H0−InvA(E)︸ ︷︷ ︸

no rejection at significance level α

}

Theorem: (Peters, PB and Meinshausen, 2016)
assume structural equation model
I linear model for Y versus X , Gaussian errors
I e ∈ E does not act directly on Y and

does not change the relation between X and Y
Then:

P[Ŝ(E) ⊆ Scausal︸ ︷︷ ︸
pa(Y )

] ≥ 1− α

confidence guarantee against false positive causal selection

ICP = Invariant Causal Prediction
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Proof:
note that the causal set Scausal leads to invariance

P[Ŝ(E) ⊆ Scausal] = P[
⋂
{S; H0,S not rejected} ⊆ Scausal]

≥ P[H0,Scausal not rejected] ≥ 1− α

2



Single gene deletion experiments in yeast

d = 6170 genes
response of interest: Y = expression of first gene
“covariates” X = gene expressions from all other genes

and then
response of interest: Y = expression of second gene
“covariates” X = gene expressions from all other genes

and so on

infer/predict the effects of unseen/new single gene deletions on
all other genes



Kemmeren et al. (2014):
genome-wide mRNA expressions in yeast: d = 6170 genes
I nobs = 160 “observational” samples of wild-types
I nint = 1479 “interventional” samples

each of them corresponds to a single gene deletion strain

for our method: we use |E| = 2
(observational and interventional data)

training-test data splitting:
• training set: all observational and 2/3 of interventional data
• test set: other 1/3 of gene deletion interventions

; can validate predicted effects of these interventions
• repeat this for the three blocks of interventional test data

multiplicity adjustment:
since ICP is used 6170 times (once for every response var.) we use coverage
1− α/6170 with α = 0.05



Results for inferring causal variables on a single training-test split

8 genes are “significant” (α = 0.05 level) causal variables
(each of the 8 genes “causes” one other gene)

not many findings...
1 2

6170

but we use a stringent criterion with Bonferroni corrected
α/6170 = 0.05/6170 to control the familywise error rate
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8 genes are “significant” (α = 0.05 level) causal variables

validation:
thanks to the intervention experiments (in the test data) we can
validate the method(s)

we only consider true Strong Intervention Effects (SIEs)

6 out of the 8 “significant” genes are true SIEs!

SIE = the observed response value associated to an intervention is in the 1%- or 99% tail of the observational data
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# INTERVENTION PREDICTIONS
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REGRESSION (CV−Lasso)
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RANDOM (99% prediction−
 interval)

I : invariant prediction method
H: invariant prediction with some hidden variables



Well... it’s an ambitious problem

manipulate x = −8
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The Causal Dantzig estimator to deal with hidden variables

(Rothenhäusler, PB & Meinshausen, 2019)

ICP (Invariant Causal Prediction)
I requires an all subset selection search
I does not allow for hidden confounding variables
I is rather general in terms of interventions/perturbations

we develop a methodology and algorithm which
I is computationally efficient (convex optimization)
I allows for hidden confounding
I is more restrictive w.r.t. interventions/perturbations

; Causal Dantzig estimator/algorithm



instead of invariance of conditional distributions, require

Assumption: inner product invariance under β∗

E[X e
j (Y e − X eβ∗)] = E[X e′

j (Y e′ − X e′β∗)] ∀ e,e′ ∈ E ,∀ j

Theorem:
Consider X ← BX + ε0

; Y = Xp+1 = X Tβcausal + εY

Inner product invariance holds under the causal coefficient
vector βcausal if
I the interventions/environments do not act directly on Y
I the interventions are additive noise interventions:

εe = ε0 + δe

E[ε0] = 0,Cov(ε0, δe) = 0, δe
Y ≡ 0

and the theorem extends to SEMs with measurement errors



εe = ε0 + δe

E[ε0] = 0,Cov(ε0, δe) = 0, δe
Y ≡ 0

ε0 and δe can have dependent components ; hidden variables
are covered

“reason”:

X Y

H

Y ← Xβ + Hδ + εY = Xβ + ηY

X ← Hγ + εX = ηX

the η error terms are now dependent!



Causal Dantzig without regularization for low-dimensional settings

consider two environments e = 1 and e′ = 2
differences of Gram matrices:

Ẑ = n−1
1 (X1)T Y1 − n−1

2 (X2)T Y2,

Ĝ = n−1
1 (X1)T X1 − n−1

2 (X2)T X2

under inner product invariance with β∗:

E[Ẑ− Ĝβ∗] = 0

; β̂ = argminβ‖Ẑ− Ĝβ‖∞
asymptotic Gaussian distribution with explicit estimable
covariance matrix Γ
if βcausal is non-identifiable:
the covariance matrix Γ is singular in certain directions
; infinite marginal confidence intervals for non-identifiable
coefficients βcausal,k



Regularized Causal Dantzig

β̂ = argminβ‖β‖1
such that ‖Ẑ− Ĝβ‖∞ ≤ λ

in analogy to the classical Dantzig selector (Candes & Tao, 2007)
which uses

Z̃ = n−1XT Y, G̃ = n−1XT X

using the machinery of high-dimensional statistics and
assuming identifiability (e.g. δe′ 6= 0 except for δe′

Y = 0) ...

‖β̂ − βcausal‖q ≤ O(s1/q
√

log(p)/min(n1,n2)) for q ≥ 1



various options to deal with more than two environments:
e.g. all pairs and aggregation



Flow cytometry data (Sachs et al., 2005)

I p = 11 abundances of chemical reagents
I 8 different environments (not “well-defined” interventions)

(one of them observational; 7 different reagents added)
I each environment contains ne ≈ 700− 1′000 samples

goal:
recover network of causal relations (linear SEM)

Raf

Mek

PLCg

PIP2

PIP3

Erk

Akt

PKA

PKC

p38

JNK

approach: “pairwise” invariant causal prediction
(one variable the response Y ; the other 10 the covariates X ;

do this 11 times with every variable once the response)



Raf

Mek

PLCg

PIP2

PIP3

Erk

Akt

PKA

PKC

p38

JNK

blue edges: only invariant causal prediction approach (ICP)
red: only ICP allowing hidden variables and feedback
purple: both ICP with and without hidden variables
solid: all relations that have been reported in literature
broken: new findings not reported in the literature

; reasonable consensus with existing results
but no real ground-truth available

serves as an illustration that we can work with “vaguely defined
interventions”



Causal Regularization

the causal parameter optimizes a worst case risk:

argminβ max
e∈{F

E[(Y e − (X e)Tβ)2] 3 βcausal

if F = {arbitrarily strong perturbations not acting directly on Y}

agenda for today: consider other classes F
... and give up on causality



Anchor regression: as a way to formalize the extrapolation from E to F
(Rothenhäusler, Meinshausen, PB & Peters, 2018)

the environments from before, denoted as e:
they are now outcomes of a variable A︸︷︷︸

anchor

X Y

H hiddenA

β0

?

Y ← Xβ0 + Hδ + εY ,

X ← Aα + Hγ + εX

Instrumental variables regression model
(cf. Angrist, Imbens, Lemieux, Newey, Rosenbaum, Rubin,...)



Anchor regression and causal regularization
(Rothenhäusler, Meinshausen, PB & Peters, 2018)

the environments from before, denoted as e:
they are now outcomes of a variable A︸︷︷︸

anchor

X Y

H hiddenA

β0

Y ← Xβ0 + εY + Hδ,

X ← Aα0 + εX + Hγ,

Instrumental variables regression model
(cf. Angrist, Imbens, Lemieux, Newey, Rosenbaum, Rubin,...)



Anchor regression and causal regularization
(Rothenhäusler, Meinshausen, PB & Peters, 2018)

the environments from before, denoted as e:
they are now outcomes of a variable A︸︷︷︸

anchor

X Y

H hiddenA

β0

A is an “anchor”
source node!

; Anchor regressionX
Y
H

← B

X
Y
H

+ ε+ MA



Anchor regression and causal regularization
(Rothenhäusler, Meinshausen, PB & Peters, 2018)

the environments from before, denoted as e:
they are now outcomes of a variable A︸︷︷︸

anchor

X Y

H hiddenA

β0

A is an “anchor”
source node!

allowing also for
feedback loops

; Anchor regressionX
Y
H

← B

X
Y
H

+ ε+ MA



allow that A acts on Y and H

; there is a fundamental identifiability problem
cannot identify β0

this is the price for more realistic assumptions than IV model



... but “Causal Regularization” offers something

find a parameter vector β such that the residuals

(Y − Xβ) stabilize, have the same distribution

across perturbations of A = environments/sub-populations

we want to encourage orthogonality of residuals with A
something like

β̃ = argminβ‖Y − Xβ‖22/n + ξ‖AT (Y − Xβ)/n‖22



β̃ = argminβ‖Y − Xβ‖22/n + ξ‖AT (Y − Xβ)/n‖22

causal regularization:

β̂ = argminβ‖(I − ΠA)(Y − Xβ)‖22/n + γ‖ΠA(Y − Xβ)‖22/n

+ λ‖β‖1

ΠA = A(AT A)−1AT (projection onto column space of A)

I for γ = 1: least squares
I for γ = 0: adjusting for heterogeneity due to A
I for 0 ≤ γ <∞: general causal regularization

+ `1-penalty

convex optimization problem



β̃ = argminβ‖Y − Xβ‖22/n + ξ‖AT (Y − Xβ)/n‖22

causal regularization:

β̂ = argminβ‖(I − ΠA)(Y − Xβ)‖22/n + γ‖ΠA(Y − Xβ)‖22/n + λ‖β‖1
ΠA = A(AT A)−1AT (projection onto column space of A)

I for γ = 1: least squares + `1-penalty
I for γ = 0: adjusting for heterogeneity due to A + `1-penalty
I for 0 ≤ γ <∞: general causal regularization + `1-penalty

convex optimization problem



It’s simply linear transformation

consider

Wγ = I − (1−√γ)ΠA,

X̃ = WγX , Ỹ = WγY

then:
(`1-regularized) anchor regression is (Lasso-penalized) least
squares of Ỹ versus X̃
; super-easy (but have to choose a tuning parameter γ)



... there is a fundamental identifiability problem...

but causal regularization solves for

argminβ max
e∈F

E|Y e − X eβ|2

for a certain class of shift perturbations F
recap: causal parameter solves for
argminβ maxe∈F E|Y e − X eβ|2 for F = “essentially all” perturbations



Model for F : shift perturbations

model for observed heterogeneous data (“corresponding to E”)X
Y
H

 = B

X
Y
H

+ ε+ MA

model for unobserved perturbations F (in test data)
shift vectors v acting on (components of) X ,Y ,HX v

Y v

Hv

 = B

X v

Y v

Hv

+ ε+ v

v ∈ Cγ ⊂ span(M), γ measuring the size of v

i.e. v ∈ Cγ = {v ; v = Mu for some u with E[uuT ] � γE[AAT ]}



A fundamental duality theorem
(Rothenhäusler, Meinshausen, PB & Peters, 2018)

PA the population projection onto A: PA• = E[•|A]

For any β

max
v∈Cγ

E[|Y v − X vβ|2] = E
[∣∣(Id− PA)(Y − Xβ)

∣∣2]+ γE
[∣∣PA(Y − Xβ)

∣∣2]

≈ ‖(I − ΠA)(Y − Xβ)‖2
2/n + γ‖ΠA(Y − Xβ)‖2

2/n︸ ︷︷ ︸
objective function on data

worst case shift interventions←→ regularization!
in the population case



for any β

argminβ

worst case test error︷ ︸︸ ︷
max
v∈Cγ

E
[∣∣Y v − X vβ

∣∣2]
=

argminβ

E
[∣∣(Id− PA)(Y − Xβ)

∣∣2]+ γE
[∣∣PA(Y − Xβ)

∣∣2]︸ ︷︷ ︸
criterion on training population sample

and “therefore” also finite sample guarantee:

β̂ = argminβ‖(I − ΠA)(Y − Xu)‖22/n + γ‖ΠA(Y − Xβ)‖22 (+λ‖u‖1)

leads to predictive stability (i.e. optimizing a worst case risk)
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max
v∈Cγ

E
[∣∣Y v − X vβ

∣∣2]
= argminβ E

[∣∣(Id− PA)(Y − Xβ)
∣∣2]+ γE

[∣∣PA(Y − Xβ)
∣∣2]︸ ︷︷ ︸

criterion on training population sample

and “therefore” also finite sample guarantee:

β̂ = argminβ‖(I − ΠA)(Y − Xu)‖22/n + γ‖ΠA(Y − Xβ)‖22 (+λ‖β‖1)

leads to predictive stability (i.e. optimizing a worst case risk)



fundamental duality in anchor regression model:

max
v∈Cγ

E[|Y v − X vβ|2] = E
[∣∣(Id− PA)(Y − Xβ)

∣∣2]+ γE
[∣∣PA(Y − Xβ)

∣∣2]
;

robustness ←→ causal regularization

Adversarial Robustness
machine learning, Generative Networks

e.g. Ian Goodfellow

Causality

e.g. Judea Pearl



robustness ←→ causal regularization

the languages are rather different:

I metric for robustness
Wasserstein, f-divergence

I minimax optimality
I inner and outer

optimization
I regularization
I ...

I causal graphs
I Markov properties on

graphs
I perturbation models
I identifiability of systems
I transferability of systems
I ...

mathematics allows to classify equivalences and differences
; can be exploited for better methods and algorithms

taking “the good” from both worlds!



indeed: causal regularization is nowadays used (still a
“side-branch”) in robust deep learning
Bouttou et al. (2013), ... , Heinze-Deml & Meinshausen (2017), ...

and indeed, we can improve prediction



Stickmen classification (Heinze-Deml & Meinshausen (2017))

Classification into {child, adult} based on stickmen images

5-layer CNN, training data (n = 20′000)

5-layer CNN 5-layer CNN with
some causal regularization

training set 4% 4%
test set 1 3% 4%
test set 2 (domain shift) 41 % 9 %

in training and test set 1: children show stronger movement than adults
in test set 2 data: adults show stronger movement
spurious correlation between age and movement is reversed!



Connection to distributionally robust optimization
(Ben-Tal, El Ghaoui & Nemirovski, 2009; Sinha, Namkoong & Duchi, 2017)

argminβ max
P∈P

EPP[(Y − Xβ)2]

perturbations are within a class of distributions

P = {P; d(P, P0︸︷︷︸
emp. distrib.

) ≤ ρ}

the “model” is the metric d(., .) and is simply postulated
often as Wasserstein distance

metric d(.,.)

Perturbations from distributional robustness

radius rho



our anchor regression approach:

bγ = argminβ max
v∈Cγ

E[|Y v − X vβ|2]

perturbations are assumed from a causal-type model
the class of perturbations is learned from data



learned

from

data

amplified

anchor regression     robust optimization

      pre−specified radius
perturbations

anchor regression: the class of perturbations is an amplification
of the observed and learned heterogeneity from E



Science aims for causal understanding

... but this may be a bit ambitious...

in absence of randomized studies, causal inference necessarily
requires (often untestable) additional assumptions

in anchor regression model: we cannot find/identify the causal
(“systems”) parameter β0

X Y

H hiddenA

β0



The parameter b→∞: “diluted causality”

bγ = argminβE
[∣∣(Id− PA)(Y − Xβ)

∣∣2]+ γE
[∣∣PA(Y − Xβ)

∣∣2])
b→∞ = lim

γ→∞
bγ

by the fundamental duality: it leads to “invariance”

the parameter which optimizes worst case prediction risk over
shift interventions of arbitrary strength

it is generally not the causal parameter
but because of shift invariance: name it “diluted causal”
note: causal = invariance w.r.t. very many perturbations



notions of associations

marginal correlation

regression

invariance

           
causal*

under faithfulness conditions, the figure is valid (causal* are the
causal variables as in e.g. large parts of Dawid, Pearl, Robins, Rubin, ...)



Stabilizing

John W. Tukey (1915 – 2000)Tukey (1954)
“One of the major arguments for regression instead of corre-

lation is potential stability. We are very sure that the correlation
cannot remain the same over a wide range of situations, but it is
possible that the regression coefficient might. ...
We are seeking stability of our coefficients so that we can hope to
give them theoretical significance.”

marginal correlation

regression

invariance

           
causal*



“Diluted causality” and robustness in proteomics

Ruedi Aebersold, ETH Zürich Niklas Pfister, ETH Zürich

3934 other proteins
which of those are
“diluted causal”
for cholesterol

experiments with mice: 2 environments with fat/low fat diet

high-dimensional regression, total sample size n = 270
Y = cholesterol pathway activity, X = 3934 protein expressions



x-axis: importance w.r.t
regression but non-invariant

y-axis: importance w.r.t.
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beyond cholesterol: with transcriptomics and proteomics

not all of the predictive variables
from regression lead to invariance!
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“validation” in terms of

I finding known pathways (here for Ribosome pathway)
Ribosome − diet, mRNA
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; invariance-type modeling improves over regression!

I reported results in the literature



Distributional Replicability

The replicability crisis

... scholars have found that the results of many scientific
studies are difficult or impossible to replicate (Wikipedia)



Distributional Replicability

Replicability on new and different data

I regression parameter b is estimated on one (possibly
heterogeneous) dataset with distributions Pe, e ∈ E

I can we see replication for b on another different dataset
with distribution Pe′ , e′ /∈ E?

this is a question of “zero order” replicability
it is a first step before talking about efficient inference

(in an i.i.d. or stationary setting)

it’s not about accurate p-values, selective inference, etc.



The projectability condition

I = {β;E[Y − Xβ|A] ≡ 0} 6= ∅

it holds iff

rank(Cov(A,X )) = rank (Cov(A,X )|Cov(A,Y ))

example:
rank(Cov(A,X )) is full rank and dim(A) ≤ dim(X )
“under- or just-identified case” in IV literature

checkable! in practice



the “diluted causal” parameter b→∞ is replicable

assume
I new dataset arises from shift perturbations v ∈ span(M)

(as before)
I projectability condition holds

consider
b→∞ which is estimated from the first dataset
b′→∞ which is estimated from the second (new) dataset

Then: b→∞ is replicable, i.e.,

b→∞ = b′→∞



Replicability for b→∞ in GTEx data across tissues

I 13 tissues
I gene expression measurements for 12’948 genes, sample

size between 300 - 700
I Y = expression of a target gene

X = expressions of all other genes
A = 65 PEER factors (potential confounders)

estimation and findings on one tissue
; are they replicable on other tissues?



Replicability for b→∞ in GTEx data across tissues
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additional information in anchor regression path!

the anchor regression path:

anchor stability: b0 = b→∞(= bγ ∀γ ≥ 0)

checkable!

assume:
I anchor stability
I projectability condition

; the least squares parameter b1 is replicable!

we can safely use “classical” least squares principle and
methods (Lasso/`1-norm regularization, de-biased Lasso, etc.)
for transferability to some class of new data generating
distributions Pe′ e′ /∈ E



Replicability for least squares par. in GTEx data across tissues
using anchor stability, denoted here as “anchor regression”
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We can make relevant progress by exploiting
invariances/stability

I finding more promising proteins and genes: based on
high-throughput proteomics

I replicable findings across tissues: based on
high-throughput transcriptomics

I prediction of gene knock-downs: based on transcriptomics
(Meinshausen, Hauser, Mooij, Peters, Versteeg, and PB, 2016)

I large-scale kinetic systems (not shown): based on
metabolomics (Pfister, Bauer and Peters, 2019)



What if there is only observational data with hidden
confounding variables?

can lead to spurious associations

number of Nobel prizes vs. chocolate consumption

F. H. Messerli: Chocolate Consumption, Cognitive Function, and Nobel Laureates, N Engl J Med 2012



Hidden confounding

, causality and perturbation of sparsity

can be a major problem



Hidden confounding, causality and perturbation of sparsity

does smoking cause lung cancer?

X
smoking

Y
lung cancer

H “genetic factors”
(unobserved)

?

systematic
intervention



Genes mirror geography within Europe (Novembre et al., 2008)

confounding effects are found on the first principal components



also for “non-causal” questions:

want to adjust for unobserved confounding

when interpreting regression coefficients, correlations,
undirected graphical models, ...

... interpretable AI ...

..., Leek and Storey, 2007; Gagnon-Bartsch and Speed, 2012; Wang,
Zhao, Hastie and Owen, 2017; Wang and Blei, 2018;...

in particular: we want to “robustify” the Lasso against hidden
confounding variables



also for “non-causal” questions:

want to adjust for unobserved confounding

when interpreting regression coefficients, correlations,
undirected graphical models, ...

... interpretable AI ...

..., Leek and Storey, 2007; Gagnon-Bartsch and Speed, 2012; Wang,
Zhao, Hastie and Owen, 2017; Wang and Blei, 2018;...

in particular: we want to “robustify” the Lasso against hidden
confounding variables



Linear model setting

response Y , covariates X

aim: estimate the regression parameter of Y versus X in
presence of hidden confounding

I want to be
“robust” against unobserved confounding
we might not completely address the unobserved confounding problem
in a particular application
but we are “essentially always” better than doing nothing against it!

I the procedure should be
simple with almost zero effort to be used!

; it’s just linearly transforming the data!
I some mathematical guarantees



The setting and a first formula

X Y

H

β

Y = Xβ + Hδ + η

X = HΓ + E

goal: infer β from observations (X1,Y1), . . . , (Xn,Yn)

the population least squares principle leads to the parameter

β∗ = argminuE[(Y − X T u)2],

β∗ = β + b︸︷︷︸
“bias”/”perturbation”

‖b‖2 ≤
‖δ‖2√

“number of X -components affected by H”

small “bias”/”perturbation” if confounder has dense effects!
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β∗ = argminuE[(Y − X T u)2],

β∗ = β + b︸︷︷︸
“bias”/”perturbation”

‖b‖2 ≤
‖δ‖2√

“number of X -components affected by H”

small “bias”/”perturbation” if confounder has dense effects!



Perturbation of sparsity
the hidden confounding model

Y = Xβ + Hδ + η

X = HΓ + E

can be written as

Y = Xβ∗ + ε,

β∗ = β︸︷︷︸
”sparse”

+ b︸︷︷︸
”dense”

ε uncorrelated of X , E[ε] = 0

and ‖b‖2 ≤
‖δ‖2√

“number of X -components affected by H”



Perturbation of sparsity
the hidden confounding model

Y = Xβ + Hδ + η

X = HΓ + E

can be written as

Y = Xβ∗ + ε,

β∗ = β︸︷︷︸
”sparse”

+ b︸︷︷︸
”dense”

ε uncorrelated of X , E[ε] = 0

and ‖b‖2 ≤
‖δ‖2√

“number of X -components affected by H”



hidden confounding is perturbation to sparsity

X Y

H

β
; X Y

β + b

Y = Xβ + Hδ + η,

X = HΓ + E

Y = X (β + b) + ε,

b = Σ−1ΓT δ (”dense”)
Σ = ΣE + ΓT Γ,

σ2
ε = σ2

η + δT (I − ΓΣΓT )δ



and thus ; consider the more general model

Y = X (β + b) + ε,

β ”sparse”, b ”dense”

goal: recover β

Lava method (Chernozhukov, Hansen & Liao, 2017) is considering
this model/problem
I with no connection to hidden confounding
I we improve the results and provide a “somewhat simpler”

methodology
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I we improve the results and provide a “somewhat simpler”

methodology



What has been proposed earlier (among many other suggestions)

I adjust for a few first PCA components from X
motivation: low-rank structure is generated from a few

unobserved confounders

well known among practitioners:
often pretty reasonable... but we will improve on it

I latent variable models and EM-type or MCMC algorithms
(Wang and Blei, 2018)

need precise knowledge of hidden confounding structure
cumbersome for fitting to data

I undirected graphical model search
with penalization encouraging sparsity plus low-rank

(Chandrasekharan et al., 2012)

two tuning parameters to choose, not so straightforward

..., Leek and Storey, 2007; Gagnon-Bartsch and Speed, 2012; Wang, Zhao, Hastie and Owen, 2017; ... ; different



motivation: when using Lasso for the non-sparse problem with
β∗ = β + b

a bias term ‖Xb‖22/n enters

for the bound of ‖X β̂ − Xβ∗‖2
2/n + ‖β̂ − β∗‖1

strategy: linear transformation F : Rn → Rn

Ỹ = FY , X̃ = FX , ε̃ = Fε,
Ỹ = X̃β∗ + ε̃

and use Lasso for Ỹ versus X̃ such that
I ‖X̃b‖22/n small
I X̃β “large”
I ε̃ remains “of order O(1)”



Spectral transformations

which transform singular values of X will achieve
I ‖X̃b‖22/n small
I X̃β “large”
I ε̃ remains “of order O(1)

consider SVD of X :

X = UDV T ,

Un×n,Vp×n, UT U = V T V = I,
D = diag(d1, . . . ,dn), d1 ≥ d2 ≥ . . . ≥ dn ≥ 0

map di to d̃i : spectral transformation is defined as

F = Udiag(d̃1/d1, . . . , d̃n/dn)UT

; X̃ = UD̃V T



Examples of spectral transformations

1. adjustment with r largest principal components
equivalent to d̃1 = . . . = d̃r = 0

2. Lava (Chernozhukov, Hansen & Liao, 2017)

argminβ,b‖Y − X (β + b)‖22/n + λ1‖β‖1 + λ2‖b‖22

can be represented as a spectral transform plus Lasso
3. Puffer transform (Jia & Rohe 2015) uses

d̃i ≡ 1
; if dn is small, the errors are inflated...!

4. Trim transform (Ćevid, PB & Meinshausen, 2018)
d̃i = min(di , τ) with τ = dbn/2c



singular values of X̃
Lasso = no transformation



Heuristics

in hidden confounding model:
I b points towards singular vectors with large singular val.

; it suffices to shrink only large singular values
to make the “bias” ‖X̃b‖22/n small

I β typically does not point to singular vectors with large
singular val.: since β is sparse and V is dense
(unless there is a tailored dependence between β and the
structure of X )
; “signal” ‖X̃β‖22/n does not change too much

when shrinking only large singular values



Some (subtle) theory

consider confounding model

Y = Xβ + Hδ + η,

X = HΓ + E

Theorem (Ćevid, PB & Meinshausen, 2018)
Assume:
I Γ must spread to O(p) components of X

components of Γ and δ are i.i.d. sub-Gaussian r.v.s (but then thought as fixed)

I condition number of ΣE = O(1)

I dim(H) = q < s log(p), s = supp(β) (sparsity)
Then, when using Lasso on X̃ and Ỹ :

‖β̂ − β‖1 = OP

(
σs

λmin(Σ)

√
log(p)

n

)
same optimal rate of Lasso as without confounding variables



limitation: when hidden confounders only spread to/affect m
components of X

‖β̂ − β‖1 ≤ OP

(
σs

λmin(Σ)

√
log(p)

n
+

√
s‖δ‖2√

m

)

; if only few (the number m is small) of the X -components are
affected by hidden confounding variables, this and other
techniques for adjustment must fail without further information
(that is, without going to different settings)



Some numerical examples

‖β̂ − β‖1 versus no. of confounders

left: the confounding model

black: Lasso, blue: Trim transform, red: Lava, PCA adjustment



‖β̂ − β‖1 versus σ

left: the confounding model

black: Lasso, blue: Trim transform, red: Lava, PCA adjustment



‖β̂ − β‖1 versus no. of factors (“confounders”)

but with b = 0 (no confounding)

black: Lasso, blue: Trim transform, red: Lava, PCA adjustment

using Trim transform does not hurt: plain Lasso is not better



using Trim transform does not hurt: plain Lasso is not better

spectral deconfounding leads to robustness
against hidden confounders
I much improvement in presence of confounders
I (essentially) no loss in cases with no confounding!



Example from genomics (GTEx data)

a (small) aspect of GTEx data

p = 14713 protein-coding gene expressions
n = 491 human tissue samples (same tissue)

q = 65 different covariates which are proxys for hidden
confounding variables

; we can check robustness/stability of Trim transform in
comparison to adjusting for proxys of hidden confounders



singular values of X

adjusted for 65 proxys of confounders

; some evidence for factors, potentially being confounders



robustness/stability of selected variables

do we see similar selected variables for the original and the
proxy-adjusted dataset?

I expression of one randomly chosen gene is response Y ;
all other gene expressions are the covariates X

I use a variable selection method Ŝ = supp(β̂):

Ŝ(1) based on original dataset
Ŝ(2) based on dataset adjusted with proxies

I compute Jaccard distance d(Ŝ(1), Ŝ(2)) = 1− |Ŝ
(1)∩Ŝ(2)|
|Ŝ(1)∪Ŝ(2)|

I repeat over 500 randomly chosen genes



Jaccard distance d(supp(β̂original, supp(β̂adjusted) (vs. size)
between original and adjusted data

averaged over 500 randomly chosen responses

adjusted for 5 proxy-confounders

black: Lasso, blue: Trim transform, red: Lava

Trim transform (and Lava): more stable w.r.t. confounding



Jaccard distance d(supp(β̂original, supp(β̂adjusted) (vs. size)
between original and adjusted data

averaged over 500 randomly chosen responses

adjusted for 15 proxy-confounders

black: Lasso, blue: Trim transform, red: Lava

Trim transform (and Lava): more stable w.r.t. confounding



Jaccard distance d(supp(β̂original, supp(β̂adjusted) (vs. size)
between original and adjusted data

averaged over 500 randomly chosen responses

adjusted for 65 proxy-confounders

black: Lasso, blue: Trim transform, red: Lava

Trim transform (and Lava): more stable w.r.t. confounding



when “being able to do approximate deconfounding” ; more
stability under perturbations of the hidden confounders

X Y

H

β

perturbation

X Y

H
proxies

β

perturbation

for replicability (reproducibility): want to be robust against
heterogeneities or perturbations (of the hidden confounders)
; see the results for the GTEx data



Spectral deconfounding: some conclusions

spectral deconfounding, especially the Trim transform:
I is extremely easy to use: linear transformation of X and Y

(no tuning parameter with the default choice)

I leads to robustness of Lasso against hidden confounding
and increases the “degree of replicability”
with (essentially) no harm if there is no confounding and a standard
linear model is correct

perhaps always to be used when aiming to interpret
high-dimensional regression coefficients
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high-dimensional regression coefficients



Conclusions

I causality can be framed as worst case risk optimization!
I causality can be inferred from invariance and a “stability”

argument
I ICP (Invariant Causal Prediction) is a conceptual approach

and method
Causal Dantzig is more powerful and “makes more
statistical sense”, at the price of restricting the
interventions



I causality and distributional robustness are related to each
other!

causal regularization is a technique which enables a
spectrum between invariance and “diluted causality”, and
least squares (adjusted for anchor variables)

I there is much open space for improving distributional
robustness (and hence performance) and interpretability
beyond regression/classification association
(invariance/“diluted causality” being one first example)



Conclusions

large on-going “dynamics” in data science, machine learn., “AI”,
...

in the topic area of this course but also in other fields:

“Statistical Thinking”

Tukey Fienberg Cox Wahba Efron Donoho
... ... ...

will remain to be important



Thank you!

I really enjoy(ed) being here!



Thank you!
I really enjoy(ed) being here!
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I Ćevid, D., Bühlmann, P. and Meinshausen, N. (2018). Spectral deconfounding
and perturbed sparse linear models. Preprint arXiv:1811.05352

I Meinshausen, N., Hauser, A., Mooij, J.M., Peters, J., Versteeg, P. and Bühlmann,
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