P-values based on multi sample splitting (Ch. 11 in Bühlmann and van de Geer (2011))

Stability Selection

- uses subsampling many times a good thing!
- provides control of the expected number of false positives rather than e.g. the familywise error rate ~> we will "address" this with multi sample splitting and aggregation of P-values

familywise error rate (FWER):

FWER = $\mathbb{P}[V > 0]$, V number of false positives

Fixed design linear model

$$Y = X\beta^0 + \varepsilon$$

instead of de-biased/de-sparsified method, consider the "older" technique (which is not statistically optimal but more generic and more in the spirit of stability selection)

split the sample into two parts I_1 and I_2 of equal size $\lfloor n/2 \rfloor$

- use (e.g.) Lasso to select variables based on $I_1: \hat{S}(I_1)$
- perform low-dimensional statistical inference on *l*₂ based on data (*X*^{(Ŝ(l₁))}_{*l*₂}); for example using the *t*-test for single coefficients β⁰_j (if *j* ∉ Ŝ(*l*₁), assign the p-value 1 to the hypothesis *H*_{0,j} : β⁰_j = 0);

due to independence of I_1 and I_2 , this is a "valid" strategy (see later)

validity of the (single) data splitting procedure consider testing $H_{0,j}$: $\beta_j^0 = 0$ versus $H_{A,j}$: $\beta_j^0 \neq 0$ assume Gaussian errors for the fixed design linear model : thus, use the *t*-test on the second half of the sample I_2 to get a p-value

 $P_{\text{raw},j}$ from *t*-test based on $X_{l_2}^{\hat{S}(l_1)}, Y_{l_2}$

 $P_{\text{raw},j}$ is a valid p-value (controlling type I error) for testing $H_{0,j}$ if $\hat{S}(I_1) \supseteq S_0$ (i.e., the screening property holds)

if the screening property does not hold: $P_{\text{raw},j}$ is still valid for $H_{0,j}(M) : \beta_j(M) = 0$ where $M = \hat{S}(I_1)$ is a selected sub-model and $\beta(M) = (X_M^T X_M)^{-1} X_M^T \mathbb{E}[Y]$

a p-value lottery depending on the random split of the data

→ should aggregate/average over multiple splits!

・ロト・西ト・西ト・西ト・日・

Multiple testing and aggregation of p-values

the issue of multiple testing:

$$\tilde{P}_{j} = \begin{cases} P_{\text{raw},j} \text{ based on } Y_{l_{2}}, X_{l_{2}}^{\hat{S}(l_{1})} &, \text{if } j \in \hat{S}(l_{1}), \\ 1 &, \text{if } j \notin \hat{S}(l_{1}) \end{cases}$$

thus, we can have at most $|\hat{S}(I_1)|$ false positives \sim can correct with Bonferroni with factor $|\hat{S}(I_1)|$ (instead of factor *p*) to control the familywise error rate

$$\tilde{P}_{\operatorname{corr},j} = \min(\tilde{P}_j \cdot |\hat{S}(l_1)|, 1) \ (j = 1, \dots, p)$$

decision rule: reject $H_{0,j}$ if and only if $\tilde{P}_{corr,j} \leq \alpha$ $\rightsquigarrow FWER = \mathbb{P}[V > 0] \leq \alpha$ assuming that the raw p-values $P_{raw,j}$ are valid (e.g. screening property holds) the issue with P-value aggregation:

if we run sample splitting B times, we obtain P-values

$$\tilde{P}^{[1]}_{\mathrm{corr},j},\ldots,\tilde{P}^{[B]}_{\mathrm{corr},j}$$

how to aggregate these dependent p-values to a single one? for $\gamma \in (0, 1)$ define

$$Q_j(\gamma) = \min \left\{ q_{\gamma} \left(\{ \tilde{P}_{\text{corr},j}^{[b]} / \gamma; b = 1, \dots, B \} \right), 1 \right\},$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where $q_{\gamma}(\cdot)$ is the (empirical) γ -quantile function

Proposition 11.1 (Bühlmann and van de Geer, 2011) Assume that the raw p-values $P_{\text{raw},j}$ are valid. For any $\gamma \in (0, 1)$, $Q_j(\gamma)$ are P-values which control the FWER

example: $\gamma=1/2$ aggregate the p-values with the sample median and multiply by the factor 2

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

avoid choosing γ :

$$P_{j} = \min\{\underbrace{(1 - \log \gamma_{\min})}_{\text{price to optimize over } \gamma} \inf_{\gamma \in (\gamma_{\min}, 1)} Q_{j}(\gamma), 1\} \ (j = 1, \dots, p).$$

Theorem 11.1 (Bühlmann and van de Geer (2011)) Assume that the raw p-values $P_{\text{raw},j}$ are valid. For any $\gamma_{\min} \in (0, 1)$, P_j are P-values which control the FWER that is: reject $H_{0,j}$: $\beta_j^0 = 0$ if and only if $P_j \le \alpha$ for all j = 1, ..., p \sim FWER = $\mathbb{P}[V > 0] \le \alpha$.

the entire framework for p-value aggregation holds whenever the single p-values are valid ($\mathbb{P}[P_{\text{raw},j} \leq \alpha] \leq \alpha$ under $H_{0,j}$) has nothing to do with high-dimensional regression and sample splitting

◆ロ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

one can also adapt the method to control the False Discovery Rate (FDR)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

multi sample splitting and p-value construction:

- is very generic, also for "any other" model class
- is powerful in terms of multiple testing correction: we only correct for multiplicity from |Ŝ(I₁)| variables
- it relies in theory on the screening property of the selector in practice: it is a quite competitive method!
- Schultheiss et al. (2021): can improve multi sample splitting by multi carve methods, based on "technology" from selected inference

(ロ) (同) (三) (三) (三) (○) (○)

Undirected graphical models

(Ch. 13 in Bühlmann and van de Geer (2011))

(日) (日) (日) (日) (日) (日) (日)

- graph G: set of vertices/nodes V = {1,...,p} set of edges E ⊆ V × V
- random variables X = X⁽¹⁾,..., X^(p) with distribution P identify nodes in V with components of X

graphical model: (G, P)

pairwise Markov property:

P satisfies the pairwise Markov property (w.r.t. G) if

$$(j,k) \notin E \Longrightarrow X^{(j)} \perp X^{(k)} | X^{(V \setminus \{j,k\})}$$

Global Markov property (stronger property than pairwise Markov prop): consider disjoint subsets $A, B, C \subseteq V$ P satisfies the global Markov property (w.r.t. G) if

A and B are separated by $C \implies X^{(A)} \perp X^{(B)}$

only condition on subset C

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

global Markov property \Longrightarrow pairwise Markov property

Proof: consider $(j, k) \notin E$ denote by $A = \{j\}, B = \{k\}, C = V \setminus \{j, k\};$ since $(j, k) \notin E, A = \{j\}$ and $B = \{k\}$ are separated by *C* by the global Markov property: $X^{(j)} \perp X^{(k)} | X^{(V \setminus \{j, k\})}$

A D F A 同 F A E F A E F A Q A

→ global Markov property is more "interesting"

consider graphical model (G, P)

if *P* has a positive and continuous density w.r.t. Lebesgue measure:

(ロ) (同) (三) (三) (三) (○) (○)

the global and pairwise Markov properties (w.r.t. *G*) coincide/are equivalent (Lauritzen, 1996)

prime example: P is Gaussian

the Markov properties imply some conditional independencies from graphical separation

for example with pairwise Markov property:

$$(j,k) \notin E \Longrightarrow X^{(j)} \perp X^{(k)} | X^{(V \setminus \{j,k\})}$$

how about reverse relation ?

$$(j,k) \in E \implies X^{(j)} \not\perp X^{(k)} | X^{(V \setminus \{j,k\})}$$

can we interpret existing edges?

in general: no! (unfortunately)

in some special cases:

$$(j,k) \in E \implies X^{(j)} \not\perp X^{(k)} | X^{(V \setminus \{j,k\})}$$

prime example: P is Gaussian

$$(j,k) \in E \iff X^{(j)} \not\perp X^{(k)} | X^{(V \setminus \{j,k\})}$$

for A and B not separated by C: in general not true that

$$X^{(A)} \not\perp X^{(B)} | X^{(C)}$$

... due to possible strange cancellations of "edge weights"

(日) (日) (日) (日) (日) (日) (日)

Gaussian "counterexample"

$$\begin{aligned} \boldsymbol{X}^{(1)} &\leftarrow \boldsymbol{\varepsilon}^{(1)}, \\ \boldsymbol{X}^{(2)} &\leftarrow \boldsymbol{\alpha} \boldsymbol{X}^{(1)} + \boldsymbol{\varepsilon}^{(2)}, \\ \boldsymbol{X}^{(3)} &\leftarrow \boldsymbol{\beta} \boldsymbol{X}^{(1)} + \boldsymbol{\gamma} \boldsymbol{X}^{(2)} + \boldsymbol{\varepsilon}^{(3)}, \\ \boldsymbol{\varepsilon}^{(1)}, \boldsymbol{\varepsilon}^{(2)}, \boldsymbol{\varepsilon}^{(3)} \text{ i.i.d. } \mathcal{N}(0, 1) \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 \rightsquigarrow a Gaussian distribution *P* for $\beta + \alpha \gamma = 0$: Corr(*X*₁, *X*₃) = 0 that is: *X*⁽¹⁾ \perp *X*⁽³⁾ it is a Gaussian Graphical Model where P is Markov w.r.t. the following graph

we know that $X^{(1)} \perp X^{(3)}$ (for special constellations of α, β, γ)

take $A = \{1\}, B = \{3\}, C = \emptyset$ although A and B are not separated (by the emptyset) since there is a direct edge it does not hold that $X^{(1)} \not\perp X^{(3)}$ (conditional on \emptyset , i.e., marginal)

Gaussian Graphical Model

conditional independence graph (CIG): (G, P) satisfies the pairwise Markov property

Gaussian Graphical Model (GGM): a conditional independence graph with *P* being Gaussian for simplicity, assume mean zero: $P \sim N_p(0, \Sigma)$

we know already that edges are equivalent to conditional dependence given all other variables

for a GGM:

$$(j,k)\in E \iff (\Sigma^{-1})_{jk} \neq 0$$

(日) (日) (日) (日) (日) (日) (日)

Neighborhood selection: nodewise regression

$$X^{(j)} = \beta_k^{(j)} X^{(k)} + \sum_{r \neq j,k} \beta_r^{(j)} X^{(r)} + \varepsilon^{(j)}, \ j = 1 \dots, p$$
$$X^{(k)} = \beta_j^{(k)} X^{(j)} + \sum_{r \neq k,j} \beta_r^{(k)} X^{(r)} + \varepsilon^{(k)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

for GGM:

$$(j,k) \in E \iff \beta_k^{(j)} \neq 0 \iff \beta_j^{(k)} \neq 0$$

nodewise regression (Meinshausen & Bühlmann, 2006)

- ▶ run Lasso for every node variable $X^{(j)}$ versus all others $\{X^{(k)}; k \neq j\}$ (j = 1, ..., p)
- estimated active set $\hat{S}^{(j)} = \{r; \hat{\beta}_r^{(j)} \neq 0\} \ (j = 1, \dots, p)$
- estimate edges in Ê :

or rule:
$$(j,k) \in \hat{E} \iff j \in \hat{S}^{(k)} \text{ or } k \in \hat{S}^{(j)}$$

and rule: $(j,k) \in \hat{E} \iff j \in \hat{S}^{(k)} \text{ and } k \in \hat{S}^{(j)}$

just run Lasso p times: it's fast!

(given the difficulty of the problem) $O(np^2 min(n, p))$ computational complexity

and it has "near-optimal" statistical properties (slightly better than penalized MLE)

R-packages huge and also in glasso (and set 'approx = T')

GLasso: regularized maximum likelihood estimation data $X_1, \ldots X_n$ i.i.d. $\sim \mathcal{N}_p(\mu, \Sigma)$

goal: estimate $K = \Sigma^{-1}$ (precision matrix)

approach, called GLasso (Friedman, Hastie and Tibshirani, 2008):

$$\begin{split} \hat{K}, \hat{\mu} &= \operatorname{argmin}_{K \succ 0, \mu} \left(-\log\text{-likelihood}(K, \mu; X_1, \dots, X_n) + \lambda \|K\|_1 \right) \\ \hat{\mu} &= n^{-1} \sum_{i=1}^n X_i \text{ decouples} \\ \hat{K} &= \operatorname{argmin}_{K \succ 0} \left(-\log\text{-likelihood}(K, \hat{\mu}; X_1, \dots, X_n) + \lambda \|K\|_1 \right) \\ &\|K\|_1 &= \sum_{j,k} |K_{j,k}| \text{ or } \sum_{j \neq k} |K_{j,k}| \\ \hat{\Sigma}_{\text{MLE}} &= n^{-1} \sum_{i=1}^n (X_i - \hat{\mu}) (X_i - \hat{\mu})^T \end{split}$$

(ロ) (同) (三) (三) (三) (○) (○)

- GLasso is computationally (much) slower than nodewise regression
 O(np³) computational complexity (for potentially dense problems)
- GLasso provides estimates of Σ⁻¹ and also of Σ by inversion
- one can run a hybrid approach: nodewise selection first with estimated edge set Ê GLasso restricted to Ê with λ = 0: that is, unpenalized MLE restricted to Ê

fast and accurate!

analogous to Lasso-OLS hybrid in regression

Tuning of the methods

cross-validation of the (nodewise) likelihood

and/or Stability Selection

p = 160 gene expressions, n = 115

GLasso estimator, selecting among the $\binom{\rho}{2}=12'720$ features stability selection with $\mathbb{E}[\textit{V}]\leq\textit{v}_0=30$

The nonparanormal graphical model (Liu, Lafferty and Wasserman, 2009)

motivating question: are there other "interesting" distributions, besides the Gaussian, where conditional independence between two rv.'s is encoded as zero entries in a matrix?

nonparanormal graphical model: X has a nonparanormal distribution if there exist functions f_j (j = 1, ..., p) such that

$$Z = f(X) = (f_1(X^{(1)}), \ldots, f_p(X^{(p)})) \sim \mathcal{N}_p(\mu, \Sigma)$$

w.l.o.g. $\mu = 0$ and $\Sigma_{jj} = 1$ $\rightarrow Z_j = f_j(X^{(j)}) \sim \mathcal{N}(0, 1)$ and therefore: $f_j(\cdot) = \Phi^{-1}F_j(\cdot)$ where $F_j(u) = \mathbb{P}[X^{(j)} \leq u]$: monotone

→ a semiparametric Gaussian copula model

Lemma

Assume that (G, P) is a nonparanormal graphical model with f_j s being differentiable. Then:

$$(j,k)\in E \Longleftrightarrow X^{(j)}
ot \perp X^{(k)}|X^{(V\setminus\{j,k\})} \Longleftrightarrow \Sigma_{j,k}^{-1}
eq 0$$

Proof: the density of X is

$$p(x) = \frac{1}{(2\pi)^{p/2} \det(\Sigma)^{1/2}} \exp(-\frac{1}{2} (f(x) - \mu)^T \Sigma^{-1} (f(x) - \mu)) \prod_{j=1}^p |f_j'(x_j)|$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 \rightsquigarrow the density factorizes exactly as in the Gaussian case according to Σ^{-1}

we only have to estimate the non-zeroes of Σ^{-1} but Σ is the covariance of the unknown f(X)...

the best proposal (Lue and Zhou, 2012): rank-based!

compute empirical rank correlation of $X^{(1)}, \ldots, X^{(p)}$ with a bias correction from Kendall (1948)

denote this empirical rank correlation matrix as \hat{R} (invariant under monotone f_j 's)

stick it into GLasso:

$$\hat{K} = \operatorname{argmin}_{K \succ 0} - \log(\det K) + \operatorname{trace}(\hat{R}K) + \lambda \|K\|_1$$

this has provable guarantees in the case of a nonparanormal graphical model

robustness of GLasso by using rank-correlation as input matrix