
P-values based on multi sample splitting
(Ch. 11 in Bühlmann and van de Geer (2011))

Stability Selection
I uses subsampling many times – a good thing!
I provides control of the expected number of false positives

rather than e.g. the familywise error rate ; we will
“address” this with
multi sample splitting and aggregation of P-values

familywise error rate (FWER):

FWER = P[V > 0], V number of false positives



Fixed design linear model

Y = Xβ0 + ε

instead of de-biased/de-sparsified method, consider the “older”
technique (which is not statistically optimal but more generic
and more in the spirit of stability selection)



split the sample into two parts I1 and I2 of equal size bn/2c
I use (e.g.) Lasso to select variables based on I1: Ŝ(I1)

I perform low-dimensional statistical inference on I2 based

on data (X (Ŝ(I1))
I2

,YI2);
for example using the t-test for single coefficients β0

j

(if j /∈ Ŝ(I1), assign the p-value 1 to the hypothesis
H0,j : β0

j = 0);

due to independence of I1 and I2, this is a “valid” strategy
(see later)



validity of the (single) data splitting procedure
consider testing H0,j : β0

j = 0 versus HA,j : β0
j 6= 0

assume Gaussian errors for the fixed design linear model :
thus, use the t-test on the second half of the sample I2 to get a
p-value

Praw,j from t-test based on X Ŝ(I1)
I2

,YI2

Praw,j is a valid p-value (controlling type I error) for testing H0,j

if Ŝ(I1) ⊇ S0 (i.e., the screening property holds)

if the screening property does not hold: Praw,j is still valid for
H0,j(M) : βj(M) = 0 where M = Ŝ(I1) is a selected sub-model
and β(M) = (X T

MXM)−1X T
ME[Y ]



a p-value lottery depending on the random split of the data

motif regression n = 287, p = 195

ADJUSTED P−VALUE

F
R

E
Q

U
E

N
C

Y

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80

; should aggregate/average over multiple splits!



Multiple testing and aggregation of p-values

the issue of multiple testing:

P̃j =

{
Praw,j based on YI2 ,X

Ŝ(I1)
I2

, i f j ∈ Ŝ(I1),

1 , if j /∈ Ŝ(I1)

thus, we can have at most |Ŝ(I1)| false positives
; can correct with Bonferroni with factor |Ŝ(I1)| (instead of
factor p) to control the familywise error rate

P̃corr,j = min(P̃j · |Ŝ(I1)|,1) (j = 1, . . . ,p)

decision rule: reject H0,j if and only if P̃corr,j ≤ α
; FWER = P[V > 0] ≤ α
assuming that the raw p-values Praw,j are valid

(e.g. screening property holds)



the issue with P-value aggregation:

if we run sample splitting B times, we obtain P-values

P̃ [1]
corr,j , . . . , P̃

[B]
corr,j

how to aggregate these dependent p-values to a single one?

for γ ∈ (0,1) define

Qj(γ) = min
{

qγ
(
{P̃ [b]

corr,j/γ; b = 1, . . . ,B}
)
,1
}
,

where qγ(·) is the (empirical) γ-quantile function



Proposition 11.1 (Bühlmann and van de Geer, 2011)
Assume that the raw p-values Praw,j are valid.
For any γ ∈ (0,1), Qj(γ) are P-values which control the FWER

example: γ = 1/2
aggregate the p-values with the sample median and multiply by
the factor 2



avoid choosing γ:

Pj = min{
(
1− log γmin

)︸ ︷︷ ︸
price to optimize over γ

inf
γ∈(γmin,1)

Qj(γ),1} (j = 1, . . . ,p).

Theorem 11.1 (Bühlmann and van de Geer (2011))
Assume that the raw p-values Praw,j are valid.
For any γmin ∈ (0,1), Pj are P-values which control the FWER

that is: reject H0,j : β0
j = 0 if and only if Pj ≤ α for all j = 1, . . . ,p

; FWER = P[V > 0] ≤ α.

the entire framework for p-value aggregation holds whenever
the single p-values are valid (P[Praw,j ≤ α] ≤ α under H0,j )
has nothing to do with high-dimensional regression and sample
splitting



n = 100,p = 100
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one can also adapt the method to control the False Discovery
Rate (FDR)



multi sample splitting and p-value construction:
I is very generic, also for “any other” model class
I is powerful in terms of multiple testing correction: we only

correct for multiplicity from |Ŝ(I1)| variables
I it relies in theory on the screening property of the selector

in practice: it is a quite competitive method!
I Schultheiss et al. (2021): can improve multi sample

splitting by multi carve methods, based on “technology”
from selected inference



Undirected graphical models
(Ch. 13 in Bühlmann and van de Geer (2011))

I graph G:
set of vertices/nodes V = {1, . . . ,p}
set of edges E ⊆ V × V

I random variables X = X (1), . . . ,X (p) with distribution P
identify nodes in V with components of X

graphical model: (G,P)

pairwise Markov property:
P satisfies the pairwise Markov property (w.r.t. G) if

(j , k) /∈ E =⇒ X (j) ⊥ X (k)|X (V\{j,k})



Global Markov property
(stronger property than pairwise Markov prop):

consider disjoint subsets A,B,C ⊆ V
P satisfies the global Markov property (w.r.t. G) if

A and B are separated by C =⇒ X (A) ⊥ X (B)| X (C)︸︷︷︸
only condition on subset C



global Markov property =⇒ pairwise Markov property

Proof:
consider (j , k) /∈ E

denote by A = {j},B = {k},C = V \ {j , k};
since (j , k) /∈ E , A = {j} and B = {k} are separated by C

by the global Markov property: X (j) ⊥ X (k)|X (V\{j,k})

2

; global Markov property is more “interesting”



consider graphical model (G,P)

if P has a positive and continuous density w.r.t. Lebesgue
measure:
the global and pairwise Markov properties (w.r.t. G)
coincide/are equivalent (Lauritzen, 1996)

prime example: P is Gaussian



the Markov properties imply some conditional independencies
from graphical separation

for example with pairwise Markov property:

(j , k) /∈ E =⇒ X (j) ⊥ X (k)|X (V\{j,k})

how about reverse relation ?

(j , k) ∈ E
?︷︸︸︷

=⇒ X (j) 6⊥ X (k)|X (V\{j,k})

can we interpret existing edges?

in general: no! (unfortunately)



in some special cases:

(j , k) ∈ E =⇒ X (j) 6⊥ X (k)|X (V\{j,k})

prime example: P is Gaussian

(j , k) ∈ E ⇐⇒ X (j) 6⊥ X (k)|X (V\{j,k})

for A and B not separated by C: in general not true that

X (A) 6⊥ X (B)|X (C)

... due to possible strange cancellations of “edge weights”



Gaussian “counterexample”

X1 X2

X3

α

β γ

X (1) ← ε(1),

X (2) ← αX (1) + ε(2),

X (3) ← βX (1) + γX (2) + ε(3),

ε(1), ε(2), ε(3) i.i.d. N (0,1)

; a Gaussian distribution P
for β + αγ = 0: Corr(X1,X3) = 0 that is: X (1) ⊥ X (3)



it is a Gaussian Graphical Model where P is Markov w.r.t. the
following graph

X1 X2

X3

we know that X (1) ⊥ X (3) (for special constellations of α, β, γ)

take A = {1},B = {3},C = ∅
although A and B are not separated (by the emptyset)

since there is a direct edge
it does not hold that X (1) 6⊥ X (3) (conditional on ∅, i.e., marginal)



Gaussian Graphical Model

conditional independence graph (CIG):
(G,P) satisfies the pairwise Markov property

Gaussian Graphical Model (GGM):
a conditional independence graph with P being Gaussian

for simplicity, assume mean zero: P ∼ Np(0,Σ)

we know already that edges are equivalent to conditional
dependence given all other variables

for a GGM:

(j , k) ∈ E ⇐⇒ (Σ−1)jk 6= 0



Neighborhood selection: nodewise regression

X (j) = β
(j)
k X (k) +

∑
r 6=j,k

β
(j)
r X (r) + ε(j), j = 1 . . . ,p

X (k) = β
(k)
j X (j) +

∑
r 6=k ,j

β
(k)
r X (r) + ε(k)

for GGM:

(j , k) ∈ E ⇐⇒ β
(j)
k 6= 0 ⇐⇒ β

(k)
j 6= 0



nodewise regression (Meinshausen & Bühlmann, 2006)

I run Lasso for every node variable X (j) versus all others
{X (k); k 6= j} (j = 1, . . . ,p)

I estimated active set Ŝ(j) = {r ; β̂
(j)
r 6= 0} (j = 1, . . . ,p)

I estimate edges in Ê :

or rule: (j , k) ∈ Ê ⇐⇒ j ∈ Ŝ(k) or k ∈ Ŝ(j)

and rule: (j , k) ∈ Ê ⇐⇒ j ∈ Ŝ(k) and k ∈ Ŝ(j)

just run Lasso p times: it’s fast!
(given the difficulty of the problem)

O(np2min(n,p)) computational complexity

and it has “near-optimal” statistical properties
(slightly better than penalized MLE)

R-packages huge and also in glasso (and set ‘approx = T’)



GLasso: regularized maximum likelihood estimation
data X1, . . .Xn i.i.d. ∼ Np(µ,Σ)

goal: estimate K = Σ−1 (precision matrix)

approach, called GLasso (Friedman, Hastie and Tibshirani, 2008):

K̂ , µ̂ = argminK�0,µ (−log-likelihood(K , µ; X1, . . . ,Xn) + λ‖K‖1)

µ̂ = n−1
n∑

i=1

Xi decouples

K̂ = argminK�0(−log-likelihood(K , µ̂; X1, . . . ,Xn)︸ ︷︷ ︸
∝− log(det K )+trace(Σ̂MLEK )

+λ‖K‖1)

‖K‖1 =
∑
j,k

|Kj,k | or
∑
j 6=k

|Kj,k |

Σ̂MLE = n−1
n∑

i=1

(Xi − µ̂)(Xi − µ̂)T



I GLasso is computationally (much) slower than nodewise
regression
O(np3) computational complexity (for potentially dense
problems)

I GLasso provides estimates of Σ−1 and also of Σ by
inversion

I one can run a hybrid approach:
nodewise selection first with estimated edge set Ê
GLasso restricted to Ê with λ = 0:
that is, unpenalized MLE restricted to Ê

fast and accurate!

analogous to Lasso-OLS hybrid in regression



Tuning of the methods

cross-validation of the (nodewise) likelihood

and/or Stability Selection

p = 160 gene expressions, n = 115
GLasso estimator, selecting among the

(p
2

)
= 12′720 features stability

selection with E[V ] ≤ v0 = 30
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The nonparanormal graphical model
(Liu, Lafferty and Wasserman, 2009)

motivating question: are there other “interesting” distributions,
besides the Gaussian, where conditional independence
between two rv.’s is encoded as zero entries in a matrix?

nonparanormal graphical model:
X has a nonparanormal distribution if there exist functions
fj (j = 1, . . . ,p) such that

Z = f (X ) = (f1(X (1)), . . . , fp(X (p))) ∼ Np(µ,Σ)

w.l.o.g. µ = 0 and Σjj = 1
; Zj = fj(X (j)) ∼ N (0,1) and therefore:
fj(·) = Φ−1Fj(·) where Fj(u) = P[X (j) ≤ u]: monotone

; a semiparametric Gaussian copula model



Lemma
Assume that (G,P) is a nonparanormal graphical model with fjs
being differentiable. Then:

(j , k) ∈ E ⇐⇒ X (j) 6⊥ X (k)|X (V\{j,k}) ⇐⇒ Σ−1
j,k 6= 0

Proof: the density of X is

p(x) =
1

(2π)p/2det(Σ)1/2 exp(−1
2

(f (x)− µ)T Σ−1(f (x)− µ))

p∏
j=1

|f ′j (xj)|

; the density factorizes exactly as in the Gaussian case
according to Σ−1 2



we only have to estimate the non-zeroes of Σ−1

but Σ is the covariance of the unknown f (X )...

the best proposal (Lue and Zhou, 2012):
rank-based!
compute empirical rank correlation of X (1), . . . ,X (p) with a bias
correction from Kendall (1948)
denote this empirical rank correlation matrix as R̂ (invariant
under monotone fj ’s)

stick it into GLasso:

K̂ = argminK�0 − log(det K ) + trace(R̂K ) + λ‖K‖1

this has provable guarantees in the case of a nonparanormal
graphical model
robustness of GLasso by using rank-correlation as input matrix


