P-values based on multi sample splitting

(Ch. 11 in Bühlmann and van de Geer (2011))

Stability Selection

- uses subsampling many times - a good thing!
- provides control of the expected number of false positives rather than e.g. the familywise error rate \leadsto we will "address" this with
multi sample splitting and aggregation of P -values
familywise error rate (FWER):
FWER $=\mathbb{P}[V>0], V$ number of false positives

Fixed design linear model

$$
Y=X \beta^{0}+\varepsilon
$$

instead of de-biased/de-sparsified method, consider the "older" technique (which is not statistically optimal but more generic and more in the spirit of stability selection)
split the sample into two parts I_{1} and I_{2} of equal size $\lfloor n / 2\rfloor$

- use (e.g.) Lasso to select variables based on $I_{1}: \hat{S}\left(I_{1}\right)$
- perform low-dimensional statistical inference on I_{2} based on data $\left(X_{l_{2}}^{\left(\hat{S}\left(I_{1}\right)\right)}, Y_{l_{2}}\right)$; for example using the t-test for single coefficients β_{j}^{0} (if $j \notin \hat{S}\left(I_{1}\right)$, assign the p -value 1 to the hypothesis $\left.H_{0, j}: \beta_{j}^{0}=0\right)$;
due to independence of I_{1} and I_{2}, this is a "valid" strategy (see later)
validity of the (single) data splitting procedure consider testing $H_{0, j}: \beta_{j}^{0}=0$ versus $H_{A, j}: \beta_{j}^{0} \neq 0$ assume Gaussian errors for the fixed design linear model : thus, use the t-test on the second half of the sample I_{2} to get a p-value

$$
P_{\text {raw }, j} \text { from } t \text {-test based on } X_{l_{2}}^{\hat{S}\left(l_{1}\right)}, Y_{l_{2}}
$$

$P_{\text {raw }, j}$ is a valid p -value (controlling type I error) for testing $H_{0, j}$ if $\hat{S}\left(I_{1}\right) \supseteq S_{0}$ (i.e., the screening property holds)
if the screening property does not hold: $P_{\text {raw }, j}$ is still valid for $H_{0, j}(M): \beta_{j}(M)=0$ where $M=\hat{S}\left(I_{1}\right)$ is a selected sub-model and $\beta(M)=\left(X_{M}^{T} X_{M}\right)^{-1} X_{M}^{T} \mathbb{E}[Y]$
a p-value lottery depending on the random split of the data motif regression $n=287, p=195$

\leadsto should aggregate/average over multiple splits!

Multiple testing and aggregation of p-values

the issue of multiple testing:

$$
\tilde{P}_{j}= \begin{cases}P_{\text {raw }, j} \text { based on } Y_{l_{2}}, X_{l_{2}}^{\hat{S}\left(l_{1}\right)} & , \text { if } j \in \hat{S}\left(I_{1}\right), \\ 1 & , \text { if } j \notin \hat{S}\left(l_{1}\right)\end{cases}
$$

thus, we can have at most $\left|\hat{S}\left(I_{1}\right)\right|$ false positives
\leadsto can correct with Bonferroni with factor $\left|\hat{S}\left(I_{1}\right)\right|$ (instead of factor p) to control the familywise error rate

$$
\tilde{P}_{\text {corr }, j}=\min \left(\tilde{P}_{j} \cdot\left|\hat{S}\left(l_{1}\right)\right|, 1\right)(j=1, \ldots, p)
$$

decision rule: reject $H_{0, j}$ if and only if $\tilde{P}_{\text {corr, } j} \leq \alpha$
\leadsto FWER $=\mathbb{P}[V>0] \leq \alpha$
assuming that the raw p -values $P_{\text {raw }, j}$ are valid
(e.g. screening property holds)
the issue with P -value aggregation:
if we run sample splitting B times, we obtain P -values

$$
\tilde{P}_{\mathrm{corr}, j}^{[1]}, \ldots, \tilde{P}_{\mathrm{corr}, j}^{[B]}
$$

how to aggregate these dependent p-values to a single one?
for $\gamma \in(0,1)$ define

$$
Q_{j}(\gamma)=\min \left\{q_{\gamma}\left(\left\{\tilde{P}_{\mathrm{corr}, j}^{[b]} / \gamma ; b=1, \ldots, B\right\}\right), 1\right\}
$$

where $q_{\gamma}(\cdot)$ is the (empirical) γ-quantile function

Proposition 11.1 (Bühlmann and van de Geer, 2011) Assume that the raw p -values $P_{\text {raw }, j}$ are valid.
For any $\gamma \in(0,1), Q_{j}(\gamma)$ are P-values which control the FWER
example: $\gamma=1 / 2$
aggregate the p -values with the sample median and multiply by the factor 2
avoid choosing γ :

$$
P_{j}=\min \{\underbrace{\left(1-\log \gamma_{\min }\right)}_{\text {price to optimize over } \gamma} \inf _{\gamma \in\left(\gamma_{\text {min }}, 1\right)} Q_{j}(\gamma), 1\}(j=1, \ldots, p)
$$

Theorem 11.1 (Bühlmann and van de Geer (2011)) Assume that the raw p-values $P_{\text {raw }, j}$ are valid.
For any $\gamma_{\text {min }} \in(0,1), P_{j}$ are P-values which control the FWER
that is: reject $H_{0, j}: \beta_{j}^{0}=0$ if and only if $P_{j} \leq \alpha$ for all $j=1, \ldots, p$
$\leadsto \mathrm{FWER}=\mathbb{P}[V>0] \leq \alpha$.
the entire framework for p-value aggregation holds whenever the single p -values are valid ($\mathbb{P}\left[P_{\text {raw }, j} \leq \alpha\right] \leq \alpha$ under $H_{0, j}$) has nothing to do with high-dimensional regression and sample splitting

$$
n=100, p=100
$$

$n=100, p=1000$

one can also adapt the method to control the False Discovery Rate (FDR)
multi sample splitting and p-value construction:

- is very generic, also for "any other" model class
- is powerful in terms of multiple testing correction: we only correct for multiplicity from $\left|\hat{S}\left(I_{1}\right)\right|$ variables
- it relies in theory on the screening property of the selector in practice: it is a quite competitive method!
- Schultheiss et al. (2021): can improve multi sample splitting by multi carve methods, based on "technology" from selected inference

Undirected graphical models

(Ch. 13 in Bühlmann and van de Geer (2011))

- graph G :
set of vertices/nodes $V=\{1, \ldots, p\}$ set of edges $E \subseteq V \times V$
- random variables $X=X^{(1)}, \ldots, X^{(p)}$ with distribution P identify nodes in V with components of X
graphical model: (G, P)
pairwise Markov property:
P satisfies the pairwise Markov property (w.r.t. G) if

$$
(j, k) \notin E \Longrightarrow X^{(j)} \perp X^{(k)} \mid X^{(V \backslash\{j, k\})}
$$

Global Markov property
(stronger property than pairwise Markov prop):
consider disjoint subsets $A, B, C \subseteq V$
P satisfies the global Markov property (w.r.t. G) if
A and B are separated by $C \Longrightarrow X^{(A)} \perp X^{(B)} \mid \underbrace{X^{(C)}}_{\text {only condition on subset } C}$

global Markov property \Longrightarrow pairwise Markov property
Proof:
consider $(j, k) \notin E$
denote by $A=\{j\}, B=\{k\}, C=V \backslash\{j, k\}$; since $(j, k) \notin E, A=\{j\}$ and $B=\{k\}$ are separated by C by the global Markov property: $X^{(j)} \perp X^{(k)} \mid X^{(V \backslash\{j, k\})}$
\leadsto global Markov property is more "interesting"
consider graphical model (G, P)
if P has a positive and continuous density w.r.t. Lebesgue measure:
the global and pairwise Markov properties (w.r.t. G) coincide/are equivalent (Lauritzen, 1996)
prime example: P is Gaussian
the Markov properties imply some conditional independencies from graphical separation
for example with pairwise Markov property:

$$
(j, k) \notin E \Longrightarrow X^{(j)} \perp X^{(k)} \mid X^{(V \backslash\{j, k\})}
$$

how about reverse relation?

$$
(j, k) \in E \stackrel{?}{\Longrightarrow} X^{(j)} \not \perp X^{(k)} \mid X^{(V \backslash\{j, k\})}
$$

can we interpret existing edges?
in general: no! (unfortunately)
in some special cases:

$$
(j, k) \in E \quad \Longrightarrow \quad X^{(j)} \not \perp X^{(k)} \mid X^{(V \backslash\{j, k\})}
$$

prime example: P is Gaussian

$$
(j, k) \in E \Longleftrightarrow X^{(j)} \not \perp X^{(k)} \mid X^{(V \backslash\{j, k\})}
$$

for A and B not separated by C : in general not true that

$$
X^{(A)} \not \perp X^{(B)} \mid X^{(C)}
$$

... due to possible strange cancellations of "edge weights"

Gaussian "counterexample"

$$
\begin{aligned}
& X^{(1)} \leftarrow \varepsilon^{(1)}, \\
& X^{(2)} \leftarrow \alpha X^{(1)}+\varepsilon^{(2)}, \\
& X^{(3)} \leftarrow \beta X^{(1)}+\gamma X^{(2)}+\varepsilon^{(3)}, \\
& \varepsilon^{(1)}, \varepsilon^{(2)}, \varepsilon^{(3)} \text { i.i.d. } \mathcal{N}(0,1)
\end{aligned}
$$

\leadsto a Gaussian distribution P
for $\beta+\alpha \gamma=0: \operatorname{Corr}\left(X_{1}, X_{3}\right)=0$ that is: $X^{(1)} \perp X^{(3)}$
it is a Gaussian Graphical Model where P is Markov w.r.t. the following graph

we know that $X^{(1)} \perp X^{(3)}$ (for special constellations of α, β, γ)
take $A=\{1\}, B=\{3\}, C=\emptyset$
although A and B are not separated (by the emptyset)
since there is a direct edge
it does not hold that $X^{(1)} \not \perp X^{(3)}$ (conditional on \emptyset, i.e., marginal)

Gaussian Graphical Model

conditional independence graph (CIG):
(G, P) satisfies the pairwise Markov property
Gaussian Graphical Model (GGM):
a conditional independence graph with P being Gaussian for simplicity, assume mean zero: $P \sim \mathcal{N}_{p}(0, \Sigma)$
we know already that edges are equivalent to conditional dependence given all other variables
for a GGM:

$$
(j, k) \in E \Longleftrightarrow\left(\Sigma^{-1}\right)_{j k} \neq 0
$$

Neighborhood selection: nodewise regression

$$
\begin{aligned}
& X^{(j)}=\beta_{k}^{(j)} X^{(k)}+\sum_{r \neq j, k} \beta_{r}^{(j)} X^{(r)}+\varepsilon^{(j)}, j=1 \ldots, p \\
& X^{(k)}=\beta_{j}^{(k)} X^{(j)}+\sum_{r \neq k, j} \beta_{r}^{(k)} X^{(r)}+\varepsilon^{(k)}
\end{aligned}
$$

for GGM:

$$
(j, k) \in E \Longleftrightarrow \beta_{k}^{(j)} \neq 0 \Longleftrightarrow \beta_{j}^{(k)} \neq 0
$$

- run Lasso for every node variable $X^{(j)}$ versus all others $\left\{X^{(k)} ; k \neq j\right\}(j=1, \ldots, p)$
- estimated active set $\hat{S}^{(j)}=\left\{r ; \hat{\beta}_{r}^{(j)} \neq 0\right\}(j=1, \ldots, p)$
- estimate edges in \hat{E} :

$$
\begin{array}{cl}
\text { or rule: } & (j, k) \in \hat{E} \Longleftrightarrow j \in \hat{S}^{(k)} \text { or } k \in \hat{S}^{(j)} \\
\text { and rule: } & (j, k) \in \hat{E} \Longleftrightarrow j \in \hat{S}^{(k)} \text { and } k \in \hat{S}^{(j)}
\end{array}
$$

just run Lasso p times: it's fast!
(given the difficulty of the problem)
$O\left(n p^{2} \min (n, p)\right)$ computational complexity
and it has "near-optimal" statistical properties
(slightly better than penalized MLE)
R-packages huge and also in glasso (and set 'approx = T')

GLasso: regularized maximum likelihood estimation

 data $X_{1}, \ldots X_{n}$ i.i.d. $\sim \mathcal{N}_{p}(\mu, \Sigma)$goal: estimate $K=\Sigma^{-1}$ (precision matrix) approach, called GLasso (Friedman, Hastie and Tibshirani, 2008):

$$
\begin{aligned}
& \hat{K}, \hat{\mu}=\operatorname{argmin}_{K \succ 0, \mu}\left(-\log -\text { likelihood }\left(K, \mu ; X_{1}, \ldots, X_{n}\right)+\lambda\|K\|_{1}\right) \\
& \hat{\mu}=n^{-1} \sum_{i=1}^{n} X_{i} \text { decouples } \\
& \hat{K}=\operatorname{argmin}_{K \succ 0}(\underbrace{-\log \operatorname{lihood}\left(K, \hat{\mu} ; X_{1}, \ldots, X_{n}\right)}_{\propto-\log (\operatorname{det} K)+\operatorname{trace}\left(\hat{\Sigma}_{\mathrm{MLE}} K\right)}+\lambda\|K\|_{1}) \\
& \|K\|_{1}=\sum_{j, k}\left|K_{j, k}\right| \text { or } \sum_{j \neq k}\left|K_{j, k}\right| \\
& \hat{\Sigma}_{\mathrm{MLE}}=n^{-1} \sum_{i=1}^{n}\left(X_{i}-\hat{\mu}\right)\left(X_{i}-\hat{\mu}\right)^{T}
\end{aligned}
$$

- GLasso is computationally (much) slower than nodewise regression
$O\left(n p^{3}\right)$ computational complexity (for potentially dense problems)
- GLasso provides estimates of Σ^{-1} and also of Σ by inversion
- one can run a hybrid approach: nodewise selection first with estimated edge set \hat{E} GLasso restricted to \hat{E} with $\lambda=0$: that is, unpenalized MLE restricted to \hat{E}
fast and accurate!
analogous to Lasso-OLS hybrid in regression

Tuning of the methods

cross-validation of the (nodewise) likelihood

and/or Stability Selection

$p=160$ gene expressions, $n=115$
GLasso estimator, selecting among the $\binom{p}{2}=12^{\prime} 720$ features stability selection with $\mathbb{E}[V] \leq v_{0}=30$

The nonparanormal graphical model

(Liu, Lafferty and Wasserman, 2009)
motivating question: are there other "interesting" distributions, besides the Gaussian, where conditional independence between two rv.'s is encoded as zero entries in a matrix?
nonparanormal graphical model:
X has a nonparanormal distribution if there exist functions
$f_{j}(j=1, \ldots, p)$ such that

$$
Z=f(X)=\left(f_{1}\left(X^{(1)}\right), \ldots, f_{p}\left(X^{(p)}\right)\right) \sim \mathcal{N}_{p}(\mu, \Sigma)
$$

w.l.o.g. $\mu=0$ and $\Sigma_{j j}=1$
$\leadsto Z_{j}=f_{j}\left(X^{(j)}\right) \sim \mathcal{N}(0,1)$ and therefore:
$f_{j}(\cdot)=\Phi^{-1} F_{j}(\cdot)$ where $F_{j}(u)=\mathbb{P}\left[X^{(j)} \leq u\right]$: monotone
\leadsto a semiparametric Gaussian copula model

Lemma

Assume that (G, P) is a nonparanormal graphical model with $f_{j} s$ being differentiable. Then:

$$
(j, k) \in E \Longleftrightarrow X^{(j)} \not \perp X^{(k)} \mid X^{(V \backslash\{j, k\})} \Longleftrightarrow \Sigma_{j, k}^{-1} \neq 0
$$

Proof: the density of X is

$$
p(x)=\frac{1}{(2 \pi)^{p / 2} \operatorname{det}(\Sigma)^{1 / 2}} \exp \left(-\frac{1}{2}(f(x)-\mu)^{T} \Sigma^{-1}(f(x)-\mu)\right) \prod_{j=1}^{p}\left|f_{j}^{\prime}\left(x_{j}\right)\right|
$$

\leadsto the density factorizes exactly as in the Gaussian case according to Σ^{-1}
we only have to estimate the non-zeroes of Σ^{-1} but Σ is the covariance of the unknown $f(X) \ldots$
the best proposal (Lue and Zhou, 2012):
rank-based!
compute empirical rank correlation of $X^{(1)}, \ldots, X^{(p)}$ with a bias correction from Kendall (1948)
denote this empirical rank correlation matrix as \hat{R} (invariant under monotone f_{j} 's)
stick it into GLasso:

$$
\hat{K}=\operatorname{argmin}_{K \succ 0}-\log (\operatorname{det} K)+\operatorname{trace}(\hat{R} K)+\lambda\|K\|_{1}
$$

this has provable guarantees in the case of a nonparanormal graphical model
robustness of GLasso by using rank-correlation as input matrix

