
Undirected graphical models

consider graphical model (G,P)

if P has a positive and continuous density w.r.t. Lebesgue
measure:
the global and pairwise Markov properties (w.r.t. G)
coincide/are equivalent (Lauritzen, 1996)

prime example: P is Gaussian



the Markov properties imply some conditional independencies
from graphical separation

for example with pairwise Markov property:

(j , k) /∈ E =⇒ X (j) ⊥ X (k)|X (V\{j,k})

how about reverse relation ?

(j , k) ∈ E
?︷︸︸︷

=⇒ X (j) 6⊥ X (k)|X (V\{j,k})

can we interpret existing edges?

in general: no! (unfortunately)



in some special cases:

(j , k) ∈ E =⇒ X (j) 6⊥ X (k)|X (V\{j,k})

prime example: P is Gaussian

(j , k) ∈ E ⇐⇒ X (j) 6⊥ X (k)|X (V\{j,k})

for A and B not separated by C: in general not true that

X (A) 6⊥ X (B)|X (C)

... due to possible strange cancellations of “edge weights”



Gaussian “counterexample”

X1 X2

X3

α

β γ

X (1) ← ε(1),

X (2) ← αX (1) + ε(2),

X (3) ← βX (1) + γX (2) + ε(3),

ε(1), ε(2), ε(3) i.i.d. N (0,1)

; a Gaussian distribution P
for β + αγ = 0: Corr(X1,X3) = 0 that is: X (1) ⊥ X (3)



it is a Gaussian Graphical Model where P is Markov w.r.t. the
following graph

X1 X2

X3

we know that X (1) ⊥ X (3) (for special constellations of α, β, γ)

take A = {1},B = {3},C = ∅
although A and B are not separated (by the emptyset)

since there is a direct edge
it does not hold that X (1) 6⊥ X (3) (conditional on ∅, i.e., marginal)



Gaussian Graphical Model

conditional independence graph (CIG):
(G,P) satisfies the pairwise Markov property

Gaussian Graphical Model (GGM):
a conditional independence graph with P being Gaussian

for simplicity, assume mean zero: P ∼ Np(0,Σ)

we know already that edges are equivalent to conditional
dependence given all other variables

for a GGM:

(j , k) ∈ E ⇐⇒ (Σ−1)jk 6= 0



Neighborhood selection: nodewise regression

(Meinshausen & Bühlmann, 2006)

X (j) = β
(j)
k X (k) +

∑
r 6=j,k

β
(j)
r X (r) + ε(j), j = 1 . . . ,p

X (k) = β
(k)
j X (j) +

∑
r 6=k ,j

β
(k)
r X (r) + ε(k)

for GGM:

(j , k) ∈ E ⇐⇒ β
(j)
k 6= 0 ⇐⇒ β

(k)
j 6= 0



nodewise regression
I run Lasso for every node variable X (j) versus all others
{X (k); k 6= j} (j = 1, . . . ,p)

I estimated active set Ŝ(j) = {r ; β̂
(j)
r 6= 0} (j = 1, . . . ,p)

I estimate edges in Ê :

or rule: (j , k) ∈ Ê ⇐⇒ j ∈ Ŝ(k) or k ∈ Ŝ(j)

and rule: (j , k) ∈ Ê ⇐⇒ j ∈ Ŝ(k) and k ∈ Ŝ(j)

just run Lasso p times: it’s fast!
(given the difficulty of the problem)

O(np2min(n,p)) computational complexity

and it has “near-optimal” statistical properties
(slightly better than penalized MLE)

R-packages huge and also in glasso (and set ‘approx = T’)



GLasso: regularized maximum likelihood estimation
data X1, . . .Xn i.i.d. ∼ Np(µ,Σ)

goal: estimate K = Σ−1 (precision matrix)

approach, called GLasso (Friedman, Hastie and Tibshirani, 2008):

K̂ , µ̂ = argminK�0,µ (−log-likelihood(K , µ; X1, . . . ,Xn) + λ‖K‖1)

µ̂ = n−1
n∑

i=1

Xi decouples

K̂ = argminK�0(−log-likelihood(K , µ̂; X1, . . . ,Xn)︸ ︷︷ ︸
∝− log(det K )+trace(Σ̂MLEK )

+λ‖K‖1)

‖K‖1 =
∑
j,k

|Kj,k | or
∑
j 6=k

|Kj,k |

Σ̂MLE = n−1
n∑

i=1

(Xi − µ̂)(Xi − µ̂)T



I GLasso is computationally (much) slower than nodewise
regression
O(np3) computational complexity (for potentially dense
problems)

I GLasso provides estimates of Σ−1 and also of Σ by
inversion

I one can run a hybrid approach:
nodewise selection first with estimated edge set Ê
GLasso restricted to Ê with λ = 0:
that is, unpenalized MLE restricted to Ê

fast and accurate!

analogous to Lasso-OLS hybrid in regression



Tuning of the methods

cross-validation of the (nodewise) likelihood

and/or Stability Selection

p = 160 gene expressions, n = 115
GLasso estimator, selecting among the

(p
2

)
= 12′720 features stability

selection with E[V ] ≤ v0 = 30
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The nonparanormal graphical model
(Liu, Lafferty and Wasserman, 2009)

motivating question: are there other “interesting” distributions,
besides the Gaussian, where conditional independence
between two rv.’s is encoded as zero entries in a matrix?

nonparanormal graphical model:
X has a nonparanormal distribution if there exist functions
fj (j = 1, . . . ,p) such that

Z = f (X ) = (f1(X (1)), . . . , fp(X (p))) ∼ Np(µ,Σ)

w.l.o.g. µ = 0 and Σjj = 1
; Zj = fj(X (j)) ∼ N (0,1) and therefore:
fj(·) = Φ−1(Fj(·)) where Fj(u) = P[X (j) ≤ u]: monotone

; a semiparametric Gaussian copula model



Lemma
Assume that (G,P) is a nonparanormal graphical model with fj
being differentiable for all j = 1, . . . ,p. Then:

(j , k) ∈ E ⇐⇒ X (j) 6⊥ X (k)|X (V\{j,k}) ⇐⇒ Σ−1
j,k 6= 0

Proof: the density of X is

p(x) =
1

(2π)p/2det(Σ)1/2 exp(−1
2

(f (x)− µ)T Σ−1(f (x)− µ))

p∏
j=1

|f ′j (xj)|

; the density factorizes exactly as in the Gaussian case
according to Σ−1 2



we only have to estimate the non-zeroes of Σ−1

but Σ is not the covariance matrix of X = (X (1), . . . ,X (p))
Σ is the covariance matrix of the unknown f1(X (1)), . . . , fp(X (p))

the “best” proposal (Lue and Zhou, 2012): rank-based!
compute empirical rank correlation of X (1), . . . ,X (p) with a bias
correction from Kendall (1948)
denote this empirical rank correlation matrix as R̂ (invariant
under monotone fj ’s)

stick it into GLasso:

K̂ = argminK�0 − log(det K ) + trace(R̂K ) + λ‖K‖1

this has provable guarantees in the case of a nonparanormal
graphical model for estimating Σ−1



as an important implication:
the rank-based version of GLasso exhibits some robustness for
estimating the conditional independence pattern of X ∼ P
that is: if the distribution is nonparanormal, it still works well
and properly!

this is different and much better than:
GLasso works for estimating Cov(X )−1 even if X ∼ P is
non-Gaussian
although this is true, if sufficient amount of moments exist
for non-Gaussian P: zeroes of Cov(X )−1 do not encode
conditional independencies!



The danger of hidden confounding!

Lasso, Group Lasso, neural networks, neighborhood selection,
GLasso,...
for (generalized) linear models, nonlinear models, undirected
graphical models, ...

they all give “wrong” answers in presence of hidden
confounding



Does smoking cause lung cancer?

X
smoking

Y
lung cancer

H “genetic factors”
(unobserved)

?

systematic
intervention



Genes mirror geography within Europe (Novembre et al., 2008)

SNP data plotted on first 2 principal components

confounding effects about geographical origin of data are found
on the first principal components



X Y

H

β0

δΓ Y ← Xn×pβ
0 + Hδ + η

X ← Hn×qΓ + E

goal: infer β0 from observations (X1,Y1), . . . , (Xn,Yn)

the population least squares principle leads to the parameter

β∗ = argminuE[(Y − Xu)2], β∗ = β0 + b︸︷︷︸
“bias”

‖b‖2 ≤
‖δ‖2√

“number of X -components affected by H”

small “bias” if confounder has dense effects!
blessing of high dimensionality!



X Y

H

β0

δΓ Y ← Xn×pβ
0 + Hδ + η

X ← Hn×qΓ + E

goal: infer β0 from observations (X1,Y1), . . . , (Xn,Yn)

the population least squares principle leads to the parameter

β∗ = argminuE[(Y − Xu)2], β∗ = β0 + b︸︷︷︸
“bias”

‖b‖2 ≤
‖δ‖2√

“number of X -components affected by H”

small “bias” if confounder has dense effects!
blessing of high dimensionality!



perhaps more importantly: view this as

Y = Xβ∗ + ε = X (β0 + b)︸ ︷︷ ︸
sparse + dense

+ε,

ε = Y − E[Y |x ]

; we should use high-dimensional methods for “sparse +
dense” regression parameter vector
I Lava (Chernozhukov, Hansen & Liao, 2017)
I Spectral Deconfounding (Ćevid, Bühlmann & Meinshausen,

2020, Guo, Ćevid & Bühlmann, 2021)



similarly for undirected graphical modeling:

Cov(X )−1 = sparse matrix + low rank matrix

; use Gaussian likelihood for Cov(X )−1 but with
penalty enforcing sparsity + low rank

(Chandrasekaran, Parrilo & Willsky, 2012)



still lots of things to do!


