Adaptive Lasso

is a good way to address the bias problems of the Lasso
for orthonormal design

threshold functions

™7 — Adaptive Lasso
- - - Hard-thresholding
A Soft-thresholding

two-stage procedure:
> initial estimator S, €.9., the Lasso
> re-weighted ¢1-penalty

|61n1t,j

Badapt()—argmlnﬁ (Y Xﬁ”z/”-i-/\z 5’)

at least as sparse (typically more sparse) than Lasso

» “vaguely speaking”:
adaptive Lasso between /1- and ¢y-penalty methods

Bio(A) = argming (|| Y = XB]13/n+ Al18lo)

e.g. AIC, BIC, etc.

> adaptive Lasso has better theoretical properties than
Lasso for variable screening (and selection) if the truth is
assumed to be sufficiently sparse

alternatives: thresholding the Lasso; Relaxed Lasso

The adaptive Lasso workhorse

Lasso Adaptive Lasso
& 8
o =} °
°
o o
N N o
S S
) 0
bt = o
=) =)
2 2
£ £
g o g o
s = S o
£ o £ S
w0 ° 0 o ° o
S o S %o °
° Og o ° o © o °
°) 000 o ° ° o
- W ~srs W n— S CHSSEETTTTTTT—
=] © o =]
o ° N
r 0
< < |
S S o
! T T T T ! T T T T T
50 100 150 200 0 50 100 150 200
variables variables

p=195,n= 143, S Lasso(Acv)| = 16

we will discuss later in the course the issue of assigning
“significance of selected variables”

should we always use the adaptive Lasso?

» it's slightly more complicated — need two Lasso fits

> | tend to say:
“Yes, often the adaptive Lasso is perhaps a bit better”

Computational algorithm for Lasso

can use a very generic coordinate descent algorithm (not
gradient descent)

motivation of the algorithm:

consider the objective function and the corresponding
Karush-Kuhn-Tucker (KKT) conditions by taking the
sub-differential:

a‘;jw- X5|2/n+ A|5]h)
= Gj(ﬁ) +)\ej,
G(B) = —2XT(Y — XB)/n,
e =sign(p) if ; #0, e e[-1,1]if3=0

this implies (by setting the sub-differential to zero) the
KKT-conditions (Lemma 2.1, Bihlmann and van de Geer
(2011):

Gi(B) = sign(ﬁ,-)A if 5; # 0,
\G,(B)\ < \if B/

an interesting characterization of the Lasso solution!

coordinate descent algorithm in abbreviated form:

1: Let gl% e RP be an initial parameter vector. For m= 1,2, ...
2: repeat
3: Proceed componentwise j=1,2,...,p,1,2,...p,1,2,...
update:
if |Gj(gl) <A set g™ =0,

——
prev. parameter with jth comp=0

“we probe the gradient when setting jth comp. to zero”

otherwise: B[’"] is the minimizer of the objective function
with respect to the jth component but keeping all others
fixed

4: until numerical convergence

—_

. Let l0 € RP be an initial parameter vector. Set m = 0.
repeat
Increase mby one: m <« m+1.
Denote by SI™ the index cycling through the coordinates
{1,...,p}:
SIM = §Im=11 4 1 mod p. Abbreviate by j = SI" the value
of Slml,
if1G(8" ™ < A+ set g™ =0,
["?—1])
o)
where B[_'}’_” is the parameter vector where the jth

component is set to zero and ,BL”]_” is the parameter

vector which equals 5™ except for the jth component
where it is equal to j3; (i.e. the argument we minimize
over).

until numerical convergence

otherwise: 6}"’] = argming Q\(8

for the squared error loss: the update in Step 4 is explicit (a
soft-thresholding operation)

active set strategy can speed up the algorithm for sparse
cases: mainly work on the non-zero coordinates and up-date all
coordinates e.g. every 20th times

R-package glmnet

in addition to the KKT solutions
(Lemma 2.1, Bihlmann and van de Geer (2011)):

Gi(B) = —sign(B/)A if 3; # 0,
1Gi(B)| < \if B =

if |G;(3)| = A there is some “ambiguity”: but 3; = 0 and
|Gj(B)| = A happens with probability zero if the compatibility
condition holds

and the following is true:

if the solution of the Lasso optimization is not unique (p > n):

if G;(3) < X for some solution j3;
— ;= 0 for all solutions

~» uniqueness of the estimated zeros !

The Lasso regularization path
compute () over “all” A
» just a grid of A-values and interpolate linearly (the true
solution path over all X is piecewise linear)
> fOr Amax = maxj—1__p [2X7Y/n|: B(Ama) = 0
(because of KKT conditions!)

Standardized Coefficients

00 02 04 o6 08 10
betal/max|betal

plot against ||3(\)[|1/ maxy |B(A)]l1 (A small is to the right)

T
1219

Standardized Coefficients

|beta|/max|beta|

regularization path: in general, “not monotone in the non-zeros”
it can happen in general that e.qg.

Bi(\) #0, Bi(N) =0for X < X

lll. Generalized linear models (GLMs)
(Ch. 3 in Bihlmann and van de Geer (2011))

univariate response Y, covariate X € X C RP

GLM: Yi, ..., Ynindependent
p
gEYIX = x]) =+ > px0
j=1
=1(x)=f,,5(x)

g(+) real-valued, known link function
w an intercept term: the intercept is important: we cannot
simply center the response and ignore an intercept...

Lasso: defined as ¢1-norm penalized negative log-likelihood
(where 1 is not penalized)

software: glmnet in R

Example: logistic (penalized) regression

Y €{0,1}

7(x) =E[Y|X =x] =P[Y =1|X = X]

logistic link function: g(7) = log(w/(1 — 7)) (7 € (0, 1))

denote by m; = P[Y; = 1|X]]

xp(u+XT
og(my/ (1 = 7)) = 1+ X[B, m = 122X

log-likelihood

n

S log(r) (1 —)17 Y) = S (Vilog(m) + (1 — Yi) log(1 — ;)
i=1 i=1

— Z(Y,-Iog(ﬂi/(1—77i))+ log(1—m;))

—
! p+ X7 log(1+exp(n+X]B))

negative log-likelihood

n

—U(p, B) = Y (=il + X[B) + log(1 + exp(n+ X 8)))

i=1
which is a convex function in u, 3

Lasso for linear logistic regression:

~

fi, p = argmin, s(—£(x, 3) + Al Bll1)

(typically) unpenalized intercept

note: often used nowadays for classification with deep neural
networks

log(mi/(1 —mi)) =+ X0 +8 Po(Xi)
N——
NN with linear connection features from last NN layer
estimator:

N

., B0, 3,9 = argmin (—¢(u, 81, 5, 0) + A(I8D 1 + 5@ 1))
this is now a highly non-convex function in 6...!

if somebody gives you the feature mapping ¢y(-) (e.g. trained
on large image database), then one can use logistic Lasso

V. Group Lasso (... continued after material from visualizer)
Parameterization of model matrix
4 levels, p = 2 variables

main effects only

> xxl
[1Jo1233210
Levels: 0123

> xx2
[1133221100
Levels: 0123

> model .matrix("xx1+xx2,
contrasts=list (xx1="contr.sum",xx2="contr.sum"))
(Intercept) xx11 xx12 xx13 xx21 xx22 xx23

1 1 1 0 o -1 -1 -1
2 1 0 1 o -1 -1 -1
3 1 0 0 1 0 0 1
4 1 -1 -1 -1 0 0 1
5 1 -1 -1 -1 0 1 0
6 1 0 0 1 0 1 0
7 1) 1 0 1 0 0
8 1 1 0 0 1 0 0

attr(,"assign")
[1Jo111222
attr(,"contrasts")
attr(,"contrasts")$xxl
[1] "contr.sum"

attr(,"contrasts")$xx2
[1] "contr.sum"

with interaction terms

> model .matrix(“xxisxx2,
contrasts=list(xx1="contr.sum",xx2="contr.sun"))

(Intercept) xx11 xx12 xx13 xx21 xx22 xx23 xx11:xx21 xx12:xx21 xx13:xx21

0
1
[
1
1
0
1
[

0
0
1
-1
-1
1
0
0

1 1 1

2 1 0

3 1 0

4 1 -1 -
5 1 -1 -
6 1 0

T 1 0

8 1 1

xrllixx22 wxl12:xx22 xx13:xx22

1 -1 o
2 0 -1
3 0 0
4 0 0
5 -1 -1
6 0 o
7 0 o
8 0 0

attr (,"assign")

-1
-1
0

0
0
0
1
1

-1
-1

0
1
1
0

0

-1

-1

1

1

o

0

0

[
®xx11:xx23 xx12:xx23
-1 0
0 -1
0 0
-1 -1
[0
o 0
o 0
0 0

[110111222333333333

attr(, "contrasts")
attr(,"contrasts") $xxl
[1] "contr.sum"

attr (, "contrasts") $xx2
[1] "contr.sum"

-1
0
0
0
0
0
0
1

®x13: xx23

o

0

1

-1

[

o

o

0

0
-1
0

orooo

coocococooo

Prediction of DNA splice sites (Ch. 4.3.1 in Bihimann and van de Geer (2011))

want to predict donor splice site where coding and non-coding
regions in DNA start/end

.. .. @GT o

exon: coding intron: non-coding

seven positions around “GT”

training data: _
Y; € {0, 1} true donor site or not

X; € {A,C, G, T} positions
i=1,...,n~ 188000
unbalanced: Y; = 1: 8415; Y; = 0: 179438

model: logistic linear regression model with intercept, main
effects and interactions up to order 2 (3 variables interact)
~» dimension = 1155

methods:
» Group Lasso
> MLE on S = {j; Bg, # 0}
> as above but with Ridge regularized MLE on &

o —— GL
-A- GLR
E +- GUMLE
S
c
T
o
n
e
7N AN
-0 o
o 3P
T T T T
47 57
4:6 5:6 6:7
]
E
S
c
T
o
oL
o4 ©0.0-0°%0.0-0:0:0:9:0:0:0-9:0-0-0-0-0-9:0-0-0-0-0-0-0-0-0-0" ?-0-9
T T T T T

L L T
123 1:25 1:27 1:35 1:3:7 1:46
1:24 1:2:6 1:3:4 1:36 1:45 1

L T L L T 1T
1:5:6 1:6:7 2:3:5 2:37 2:4:6 2:56 2:6:7 3:4:6 356 3:6:7 457 567
4.7 1:57 2:3:4 2:36 2:4:5 2:47 257 345 347 357 456 467

Term

o
T
3!

mainly main effects (quite debated in computational biology...)

Theoretical guarantees for Group Lasso

follows “similarly” but with more complicated arguments as for
the Lasso

Algorithm for Group Lasso

block coordinate descent (updates on blocks of coefficients)

Algorithm 1 Block Coordinate Descent Algorithm
- Let B9 € R” be an initial parameter vector. Set m =
0.

2 repeat

3 Increase m by one: m < m—+ 1.
Denote by . the index cycling through the
block coordinates {1,...,q}:
S = 1] + 1 mod g. Abbreviate by j = .7l
the value of .7

o=V, il < Ay set B(=0,

otherwise: [3[nf _ = argmin Ql([ﬁg,)’
Ba;

where BL"Z% is defined in (4.14) and [3 "1 s the

+9;
parameter vector which equals B~ except for
the components corresponding to group ¢; whose
entries are equal to ﬁ{yj (i.e. the argument we min-
imize over).

s: until numerical convergence

