
IV. Group Lasso (... continued after material from visualizer)
Parameterization of model matrix
4 levels, p = 2 variables

main effects only



with interaction terms



Prediction of DNA splice sites (Ch. 4.3.1 in Bühlmann and van de Geer (2011))

want to predict donor splice site where coding and non-coding
regions in DNA start/end

· · · ·︸ ︷︷ ︸
exon: coding

GT · · ·︸︷︷︸
intron: non-coding

seven positions around “GT”

training data:
Yi ∈ {0,1} true donor site or not
Xi ∈ {A,C,G,T}7 positions
i = 1, . . . ,n ≈ 188′000

unbalanced: Yi = 1: 8415; Yi = 0: 179’438

model: logistic linear regression model with intercept, main
effects and interactions up to order 2 (3 variables interact)
; dimension = 1155



methods:
I Group Lasso
I MLE on Ŝ = {j ; β̂Gj 6= 0}
I as above but with Ridge regularized MLE on Ŝ
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mainly main effects (quite debated in computational biology...)



Theoretical guarantees for Group Lasso

follows “similarly” but with more complicated arguments as for
the Lasso (e.g. requiring group compatibility condition)



Algorithm for Group Lasso

consider the KKT conditions for the objective function

Qλ(β) = n−1
n∑

i=1

ρβ(Xi ,Yi)︸ ︷︷ ︸
e.g. ‖Y−Xβ‖2

2/n

+λ

q∑
j=1

mj‖βGj‖2

Lemma (Lemma 4.3 in Bühlmann and van de Geer (2011))
Assume ρβ = n−1∑n

i=1 ρβ(Xi ,Yi) is differentiable and convex
(in β). Then, a necessary and sufficient condition for β̂ to be a
solution is

∇ρ(β̂)Gj = −λmj
β̂Gj

‖β̂Gj‖2
if β̂Gj 6≡ 0,

‖∇ρ(β̂)Gj‖2 ≤ λmj if β̂Gj ≡ 0



block coordinate descent

Algorithm 1 Block Coordinate Descent Algorithm

1: Let β [0] ∈Rp be an initial parameter vector. Set m =

0.
2: repeat
3: Increase m by one: m← m+1.

Denote by S [m] the index cycling through the
block coordinates {1, . . . ,q}:
S [m] =S [m−1]+1 mod q. Abbreviate by j =S [m]

the value of S [m].
4: if ‖(−∇ρ(β [m−1]

−G j
)G j‖2 ≤ λm j : set β [m]

G j
= 0,

otherwise: β [m]
G j

= argmin
βG j

Qλ(β
[m−1]
+G j

),

where β [m−1]
−G j

is defined in (4.14) and β [m−1]
+G j

is the
parameter vector which equals β [m−1] except for
the components corresponding to group G j whose
entries are equal to βG j (i.e. the argument we min-
imize over).

5: until numerical convergence

1

block-updates where the blocks correspond to the groups



The generalized Group Lasso penalty
Chapter 4.5 in Bühlmann and van de Geer (2011)

pen(β) = λ

q∑
j=1

mj

√
βT
Gj

AjβGj ,

Aj positive definite

can do the computation with standard group Lasso by
transformation:

β̃Gj = A1/2
j βGj ; pen(β̃) = λ

q∑
j=1

mj‖β̃Gj‖2

Xβ =

q∑
j=1

X̃Gj β̃Gj =: X̃ β̃, X̃Gj = XGj A
1/2
j

can simply solve the “tilde” problem: ; ˆ̃β ; β̂Gj = A−1/2
j

ˆ̃βGj



special but important case: groupwise prediction penalty

pen(β) =
q∑

j=1

mj‖XGjβGj‖2 = λ

q∑
j=1

mj

√
βT
Gj

X T
Gj

XGjβGj

X T
Gj

XGj typically positive definite for |Gj | < n

I penalty is invariant under arbitrary reparameterizations
within every group Gj : important!

I when using an orthogonal parameterization such that
X T
Gj

XGj = I: it is the standard Group Lasso
with categorical variables: this is in fact what one has in
mind (can use groupwise orthogonalized design) or one
should use the groupwise prediction penalty



Term

1 3 5 7 1:3 1:5 1:7 2:4 2:6 3:4 3:6 4:5 4:7 5:7
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is with groupwise orthogonalized design matrices



High-dimensional additive models

the special case with natural cubic splines
(Ch. 5.3.2 in Bühlmann and van de Geer (2011))

consider the estimation problem wit the SPS penalty:

f̂1, . . . , f̂p = argminf1,...,fp ∈F
(
‖Y −

p∑
j=1

fj‖2n + λ1‖fj‖n + λ2I(fj)
)

where F = Sobolev space of functions on [a, b] that are continuously
differentiable with square integrable second derivatives

Proposition 5.1 in Bühlmann and van de Geer (2011)
Let a,b ∈ R such that a < mini,j(X

(j)
i ) and b > maxi,j(X

(j)
i ). Let

F be as above. Then, the f̂j ’s are natural cubic splines with
knots at X (j)

i , i = 1, . . . ,n.

implication: the optimization over functions is exactly
representable as a parametric problem with dim ≈ 3np



the optimization over functions is exactly representable as a
parametric problem with

therefore:

fj = Hjβj , Hj from natural cubic spline basis

‖fj‖n = ‖Hjβj‖2/
√

n =
√
βT

j HT
j Hjβj/

√
n

I(fj) =

√∫
((Hjβj)

′′)2 =

√√√√βT
j (H

′′

j )
T H

′′

j︸ ︷︷ ︸
=:Wj

β =
√
βT

j Wjβj

; convex problem

β̂ = argminβ

‖Y − Hβ‖22/n + λ1

p∑
j=1

√
βT

j HT
j Hjβj/n + λ2

p∑
j=1

√
βT

j Wjβj





SPS penalty of group Lasso type

for easier computation: instead of

SPS penalty = λ1

∑
j

‖fj‖n + λ2

∑
j

I(fj)

one can also use as an alternative:

SPS Group Lasso penalty = λ1
∑

j

√
‖fj‖2n + λ2I2(fj)

in parameterized form, the latter becomes:

λ1

p∑
j=1

√
‖Hjβj‖22/n + λ2

2β
T
j Wjβj = λ1

p∑
j=1

√
βT

j (H
T
j Hj/n + λ2

2Wj)βj

; for every λ2: a generalized Group Lasso penalty



simulated example: n = 150,p = 200 and 4 active variables
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dotted line: λ2 = 0
; λ2 seems not so important: just consider a few candidate values

(solid and dashed line)



motif regression: n = 287, p = 195
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; a linear model would be “fine as well”



Conclusions

if the problem is sparse and smooth:
only a few X (j)’s influence Y (only a few non-zero f 0

j ) and the
non-zero f 0

j are smooth
; one can often afford to model and fit additive functions in
high dimensions

reason:
I dimensionality is of order dim = O(pn)

log(dim)/n = O((log(p) + log(n))/n) which is still small
I sparsity and smoothness then lead to: if each f 0

j is twice
continuously differentiable

‖f̂ − f 0‖22/n = OP( sparsity︸ ︷︷ ︸
no. of non-zero f 0

j

√
log(p)n−4/5)

(cf. Ch. 8.4 in Bühlmann & van de Geer (2011))


