# IV. Group Lasso (... continued after material from visualizer) Parameterization of model matrix

4 levels, p = 2 variables

# main effects only

```
> xx1
[1] 0 1 2 3 3 2 1 0
Levels: 0 1 2 3
> xx2
[1] 3 3 2 2 1 1 0 0
Levels: 0 1 2 3
> model.matrix(~xx1+xx2,
contrasts=list(xx1="contr.sum",xx2="contr.sum"))
  (Intercept) xx11 xx12 xx13 xx21 xx22 xx23
            1 0 1 0 -1 -1 -1
1 0 0 1 0 -1 -1 -1
1 0 0 1 0 0 1
1 -1 -1 -1 0 0 1
1 -1 -1 -1 0 1 0
1 0 0 1 0 1 0 0
1 1 0 0 1 0 0
1 1 0 0 1 0 0
attr(, "assign")
[1] 0 1 1 1 2 2 2
attr(, "contrasts")
attr(, "contrasts") $xx1
[1] "contr.sum"
attr(, "contrasts") $xx2
[1] "contr.sum"
```

### with interaction terms

```
> model.matrix(~xx1*xx2.
contrasts=list(xx1="contr.sum",xx2="contr.sum"))
  (Intercept) xx11 xx12 xx13 xx21 xx22 xx23 xx11:xx21 xx12:xx21 xx13:xx21
                                                               0
                                        0
attr(,"assign")
[1] 0 1 1 1 2 2 2 3 3 3 3 3 3 3 3 3 3
attr(,"contrasts")
attr(,"contrasts")$xx1
[1] "contr.sum"
attr(, "contrasts") $xx2
[1] "contr.sum"
```

### Prediction of DNA splice sites (Ch. 4.3.1 in Bühlmann and van de Geer (2011))

want to predict donor splice site where coding and non-coding regions in DNA start/end

seven positions around "GT"

training data:

$$Y_i \in \{0, 1\}$$
 true donor site or not  $X_i \in \{A, C, G, T\}^7$  positions  $i = 1, \dots, n \approx 188'000$ 

unbalanced:  $Y_i = 1$ : 8415;  $Y_i = 0$ : 179'438

model: logistic linear regression model with intercept, main effects and interactions up to order 2 (3 variables interact)

 $\rightarrow$  dimension = 1155



## methods:

- ► Group Lasso
- ▶ MLE on  $\hat{S} = \{j; \ \hat{\beta}_{\mathcal{G}_i} \neq 0\}$
- ightharpoonup as above but with Ridge regularized MLE on  $\hat{S}$



mainly main effects (quite debated in computational biology...)

# Theoretical guarantees for Group Lasso

follows "similarly" but with more complicated arguments as for the Lasso (e.g. requiring group compatibility condition)

# Algorithm for Group Lasso

consider the KKT conditions for the objective function

$$Q_{\lambda}(\beta) = \underbrace{n^{-1} \sum_{i=1}^{n} \rho_{\beta}(X_i, Y_i)}_{\text{e.g. } \|Y - X\beta\|_2^2/n} + \lambda \sum_{j=1}^{q} m_j \|\beta_{\mathcal{G}_j}\|_2$$

Lemma (Lemma 4.3 in Bühlmann and van de Geer (2011)) Assume  $\rho_{\beta} = n^{-1} \sum_{i=1}^{n} \rho_{\beta}(X_i, Y_i)$  is differentiable and convex (in  $\beta$ ). Then, a necessary and sufficient condition for  $\hat{\beta}$  to be a solution is

$$\nabla \rho(\hat{\beta})_{\mathcal{G}_{j}} = -\lambda m_{j} \frac{\hat{\beta}_{\mathcal{G}_{j}}}{\|\hat{\beta}_{\mathcal{G}_{j}}\|_{2}} \quad \text{if } \hat{\beta}_{\mathcal{G}_{j}} \not\equiv 0,$$
$$\|\nabla \rho(\hat{\beta})_{\mathcal{G}_{j}}\|_{2} \leq \lambda m_{j} \quad \text{if } \hat{\beta}_{\mathcal{G}_{j}} \equiv 0$$

### block coordinate descent

#### Algorithm 1 Block Coordinate Descent Algorithm

- i. Let  $\beta^{[0]} \in \mathbb{R}^p$  be an initial parameter vector. Set m = 0.
- 2: repeat
- 3: Increase m by one:  $m \leftarrow m + 1$ .
  - Denote by  $\mathscr{S}^{[m]}$  the index cycling through the block coordinates  $\{1, \ldots, q\}$ :
  - $\mathscr{S}^{[m]} = \mathscr{S}^{[m-1]} + 1 \mod q$ . Abbreviate by  $j = \mathscr{S}^{[m]}$  the value of  $\mathscr{S}^{[m]}$ .
- $\begin{array}{ll} \text{4:} & \text{if } \|(-\nabla\rho(\beta_{\mathscr{G}_{j}}^{[m-1]})_{\mathscr{G}_{j}}\|_{2} \leq \lambda m_{j} \colon \operatorname{set} \beta_{\mathscr{G}_{j}}^{[m]} = 0, \\ & \text{otherwise: } \beta_{\mathscr{G}_{j}}^{[m]} = \arg\min_{\beta_{\mathscr{G}_{i}}} Q_{\lambda}(\beta_{+\mathscr{G}_{j}}^{[m-1]}), \end{array}$ 
  - where  $\beta_{-\mathcal{G}_j}^{[m-1]}$  is defined in (4.14) and  $\beta_{+\mathcal{G}_j}^{[m-1]}$  is the parameter vector which equals  $\beta^{[m-1]}$  except for the components corresponding to group  $\mathcal{G}_j$  whose entries are equal to  $\beta_{\mathcal{G}_j}$  (i.e. the argument we minimize over).
- 5: until numerical convergence

block-updates where the blocks correspond to the groups

# The generalized Group Lasso penalty

Chapter 4.5 in Bühlmann and van de Geer (2011)

$$pen(\beta) = \lambda \sum_{j=1}^{q} m_j \sqrt{\beta_{\mathcal{G}_j}^T A_j \beta_{\mathcal{G}_j}},$$
A positive definite

 $A_j$  positive definite

can do the computation with standard group Lasso by transformation:

$$\tilde{\beta}_{\mathcal{G}_j} = A_j^{1/2} \beta_{\mathcal{G}_j} \rightsquigarrow \text{pen}(\tilde{\beta}) = \lambda \sum_{j=1}^q m_j \|\tilde{\beta}_{\mathcal{G}_j}\|_2$$

$$X\beta = \sum_{j=1}^q \tilde{X}_{\mathcal{G}_j} \tilde{\beta}_{\mathcal{G}_j} =: \tilde{X}\tilde{\beta}, \ \tilde{X}_{\mathcal{G}_j} = X_{\mathcal{G}_j} A_j^{1/2}$$

can simply solve the "tilde" problem:  $\leadsto \hat{\tilde{\beta}} \leadsto \hat{\beta}_{\mathcal{G}_j} = A_j^{-1/2} \hat{\tilde{\beta}}_{\mathcal{G}_j}$ 

special but important case: groupwise prediction penalty

$$\begin{split} \text{pen}(\beta) &= \sum_{j=1}^q m_j \|X_{\mathcal{G}_j}\beta_{\mathcal{G}_j}\|_2 = \lambda \sum_{j=1}^q m_j \sqrt{\beta_{\mathcal{G}_j}^T X_{\mathcal{G}_j}^T X_{\mathcal{G}_j}\beta_{\mathcal{G}_j}} \\ X_{\mathcal{G}_i}^T X_{\mathcal{G}_j} \text{typically positive definite for } |\mathcal{G}_j| < n \end{split}$$

- ▶ penalty is invariant under arbitrary reparameterizations within every group  $G_i$ : important!
- when using an orthogonal parameterization such that  $X_{\mathcal{G}_j}^T X_{\mathcal{G}_j} = I$ : it is the standard Group Lasso with categorical variables: this is in fact what one has in mind (can use groupwise orthogonalized design) or one should use the groupwise prediction penalty



is with groupwise orthogonalized design matrices

# High-dimensional additive models

the special case with natural cubic splines

(Ch. 5.3.2 in Bühlmann and van de Geer (2011))

consider the estimation problem wit the SPS penalty:

$$\hat{f}_1, \dots, \hat{f}_p = \operatorname{argmin}_{f_1, \dots, f_p \in \mathcal{F}} (\|Y - \sum_{j=1}^p f_j\|_n^2 + \lambda_1 \|f_j\|_n + \lambda_2 I(f_j))$$

where  $\mathcal{F}$  = Sobolev space of functions on [a,b] that are continuously differentiable with square integrable second derivatives

Proposition 5.1 in Bühlmann and van de Geer (2011) Let  $a,b\in\mathbb{R}$  such that  $a<\min_{i,j}(X_i^{(j)})$  and  $b>\max_{i,j}(X_i^{(j)})$ . Let  $\mathcal{F}$  be as above. Then, the  $\hat{f}_j$ 's are natural cubic splines with knots at  $X_i^{(j)}$ ,  $i=1,\ldots,n$ .

implication: the optimization over functions is exactly representable as a parametric problem with dim  $\approx 3np$ 



the optimization over functions is exactly representable as a parametric problem with

### therefore:

$$f_j = H_j \beta_j$$
,  $H_j$  from natural cubic spline basis 
$$||f_j||_n = ||H_j \beta_j||_2 / \sqrt{n} = \sqrt{\beta_j^T H_j^T H_j \beta_j} / \sqrt{n}$$

$$I(f_j) = \sqrt{\int ((H_j \beta_j)'')^2} = \sqrt{\beta_j^T \underbrace{(H_j'')^T H_j''}_{=:W_j} \beta} = \sqrt{\beta_j^T W_j \beta_j}$$

→ convex problem

$$\hat{\beta} = \operatorname{argmin}_{\beta} \left( \|Y - H\beta\|_2^2 / n + \lambda_1 \sum_{j=1}^p \sqrt{\beta_j^T H_j^T H_j \beta_j} / n + \lambda_2 \sum_{j=1}^p \sqrt{\beta_j^T W_j \beta_j} \right)$$

# SPS penalty of group Lasso type

for easier computation: instead of

$$\mathsf{SPS} \; \mathsf{penalty} = \lambda_1 \sum_j \|f_j\|_n + \lambda_2 \sum_j \textit{I(fj)}$$

one can also use as an alternative:

SPS Group Lasso penalty = 
$$\lambda_1 \sum_j \sqrt{\|f_j\|_n^2 + \lambda_2 I^2(f_j)}$$

in parameterized form, the latter becomes:

$$\lambda_{1} \sum_{j=1}^{p} \sqrt{\|H_{j}\beta_{j}\|_{2}^{2}/n + \lambda_{2}^{2}\beta_{j}^{T}W_{j}\beta_{j}} = \lambda_{1} \sum_{j=1}^{p} \sqrt{\beta_{j}^{T}(H_{j}^{T}H_{j}/n + \lambda_{2}^{2}W_{j})\beta_{j}}$$

 $\rightarrow$  for every  $\lambda_2$ : a generalized Group Lasso penalty



### simulated example: n = 150, p = 200 and 4 active variables



dotted line:  $\lambda_2 = 0$ 

 $\sim \lambda_2$  seems not so important: just consider a few candidate values (solid and dashed line)

# motif regression: n = 287, p = 195



→ a linear model would be "fine as well"

### Conclusions

if the problem is sparse and smooth: only a few  $X^{(j)}$ 's influence Y (only a few non-zero  $f_j^0$ ) and the non-zero  $f_j^0$  are smooth

 $\sim$  one can often afford to model and fit additive functions in high dimensions

#### reason:

- ▶ dimensionality is of order  $\dim = O(pn)$  $\log(\dim)/n = O((\log(p) + \log(n))/n)$  which is still small
- ightharpoonup sparsity and smoothness then lead to: if each  $f_j^0$  is twice continuously differentiable

$$\|\hat{f} - f^0\|_2^2/n = O_P(\underbrace{\text{sparsity}}_{\text{no. of non-zero } f_i^0} \sqrt{\log(p)} n^{-4/5})$$

(cf. Ch. 8.4 in Bühlmann & van de Geer (2011))

