
High-dimensional additive models

the special case with natural cubic splines
(Ch. 5.3.2 in Bühlmann and van de Geer (2011))

consider the estimation problem with the SPS penalty:

f̂1, . . . , f̂p = argminf1,...,fp ∈F
(
‖Y −

p∑
j=1

fj‖2n + λ1

p∑
j=1

‖fj‖n + λ2

p∑
j=1

I(fj)
)

where F = Sobolev space of functions on [a, b] that are continuously
differentiable with square integrable second derivatives

Proposition 5.1 in Bühlmann and van de Geer (2011)
Let a,b ∈ R such that a < mini,j(X

(j)
i ) and b > maxi,j(X

(j)
i ). Let

F be as above. Then, the f̂j ’s are natural cubic splines with
knots at X (j)

i , i = 1, . . . ,n.

implication: the optimization over functions is exactly
representable as a parametric problem with dim ≈ 3np



the optimization over functions is exactly representable as a
parametric problem with

therefore:

fj = Hjβj , Hj from natural cubic spline basis

‖fj‖n = ‖Hjβj‖2/
√

n =
√
βT

j HT
j Hjβj/

√
n

I(fj) =

√∫
((Hjβj)

′′)2 =

√√√√βT
j (H

′′

j )T H
′′

j︸ ︷︷ ︸
=:Wj

β =
√
βT

j Wjβj

; convex problem

β̂ = argminβ

‖Y − Hβ‖22/n + λ1

p∑
j=1

√
βT

j HT
j Hjβj/n + λ2

p∑
j=1

√
βT

j Wjβj





SPS penalty of group Lasso type

for easier computation: instead of

SPS penalty = λ1

∑
j

‖fj‖n + λ2

∑
j

I(fj)

one can also use as an alternative:

SPS Group Lasso penalty = λ1
∑

j

√
‖fj‖2n + λ2

2I2(fj)

in parameterized form, the latter becomes:

λ1

p∑
j=1

√
‖Hjβj‖22/n + λ2

2β
T
j Wjβj = λ1

p∑
j=1

√
βT

j (HT
j Hj/n + λ2

2Wj)βj

; for every λ2: a generalized Group Lasso penalty



simulated example: n = 150,p = 200 and 4 active variables
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dotted line: λ2 = 0
; λ2 seems not so important: just consider a few candidate values

(solid and dashed line)



motif regression: n = 287, p = 195
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; a linear model would be “fine as well”



Prediction and variable screening with additive models
(Ch. 5.6 in Bühlmann & van de Geer (2011))

most of the theory is done for SPS penalty: w.l.o.g. assume
µ = 0 and that each f 0

j is twice continuously differentiable

f̂ (.) = f̂λ1,λ2(.) =
∑p

j=1 f̂j(.)

Consistency:

‖f̂ − f 0‖2n = n−1
n∑

i=1

|̂f (Xi)− f 0(Xi)|2 = oP(1) (p ≥ n→∞)

if
I Gaussian errors (for simplicity), fixed design
I λ1 � n−2/5, λ2 � n−4/5

√
log(pn) and log(p) = O(n1/5)

I λ1
∑p

j=1 ‖f
0
j ‖n + λ2

∑p
j=1 I(f 0

j ) = o(1)
(sparsity and smoothness)



assuming in addition a compatibility-type assumption
with compatibility-type constant bounded away from zero

(and p � n):

‖f̂ − f 0‖2n = OP(s0
√

log(p)n−4/5)

s0 = |S0 = {j ; ‖f 0
j ‖n 6= 0}| (sparsity w.r.t. additive functions)

; variable screening:
if for j ∈ S0: ‖f 0

j ‖n �
√

so log(p)1/4n−2/5, then

Ŝ = {j ; ‖f̂j‖n 6= 0} ⊇ S0 with high probability



Conclusions

if the problem is sparse and smooth:
only a few X (j)’s influence Y (only a few non-zero f 0

j ) and the
non-zero f 0

j are smooth
; one can often afford to model and fit additive functions in
high dimensions

reason:
I dimensionality is of order dim = O(pn)

log(dim)/n = O((log(p) + log(n))/n) which is still small
I sparsity and smoothness then lead to: if each f 0

j is twice
continuously differentiable

‖f̂ − f 0‖22/n = OP( sparsity︸ ︷︷ ︸
no. of non-zero f 0

j

√
log(p)n−4/5)

(cf. Ch. 8.4 in Bühlmann & van de Geer (2011))



Uncertainty quantification:
p-values and confidence intervals (slides, denoted as Ch. 10)

frequentist
uncertainty quantification

(in contrast to Bayesian inference)

classical concepts but in very high-dimensional settings



Toy example: Motif regression (p = 195,n = 143)

Lasso estimated coefficients β̂(λ̂CV)
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p-values/quantifying uncertainty would be very useful!



Y = Xβ0 + ε (p � n)

classical goal: statistical hypothesis testing

H0,j : β0
j = 0 versus HA,j : β0

j 6= 0

or H0,G : β0
j = 0 ∀ j ∈ G︸︷︷︸

⊆{1,...,p}

versus HA,G : ∃j ∈ G with β0
j 6= 0

background: if we could handle the asymptotic distribution of
the Lasso β̂(λ) under the null-hypothesis

; could construct p-values

this is very difficult!
asymptotic distribution of β̂ has some point mass at zero,...
Knight and Fu (2000) for p <∞ and n→∞



because of “non-regularity” of sparse estimators
“point mass at zero” phenomenon ; “super-efficiency”

(Hodges, 1951)

; standard bootstrapping and subsampling should not be used

; de-sparsify/de-bias the Lasso instead



The de-sparsified or de-biased Lasso

Recap: if p < n and rank(X ) = p, then:

β̂OLS,j = Y T Z (j)/(X (j))T Z (j)

Z (j) = X (j) − X (−j)γ̂(j)

= OLS residuals from X (j) vs. X (−j) = {X (k); k 6= j}
γ̂(j) = argminγ‖X (j) − X (−j)γ‖22

idea for high-dimensional setting:
use the Lasso for the residuals Z (j)



The de-sparsified Lasso

consider

Z (j) = X (j) − X (−j)γ̂(j)

= Lasso residuals from X (j) vs. X (−j) = {X (k); k 6= j}
γ̂(j) = argminγ‖X (j) − X (−j)γ‖22 + λj‖γ‖1

build projection of Y onto Z (j):

Y T Z (j)

(X (j))T Z (j) =︸︷︷︸
Y=Xβ0+ε

β0
j +

∑
k 6=j

(X (k))T Z (j)

(X (j))T Z (j) β
0
k︸ ︷︷ ︸

bias

+
εT Z (j)

(X (j))T Z (j)



estimate bias and subtract it:

b̂ias =
∑
k 6=j

(X (k))T X (j)

(X (j))T Z (j) β̂k︸︷︷︸
standard Lasso

; de-sparsified Lasso estimator

b̂j =
Y T Z (j)

(X (j))T Z (j) −
∑
k 6=j

(X (k))T Z (j)

(X (j))T Z (j) β̂k (j = 1, . . . ,p)

not sparse! Never equal to zero for all j = 1, . . . ,p

can also be represented as

b̂j = β̂j︸︷︷︸
standard Lasso

+
(Y − X β̂)T Z (j)

(X (j))T Z (j) “de-biased Lasso”



using that

Y T Z (j)

(X (j))T Z (j) = β0
j +

∑
k 6=j

(X (k))T Z (j)

(X (j))T Z (j) β
0
k +

εT Z (j)

(X (j))T Z (j)

we obtain

√
n(b̂j − β0

j ) =
√

n
∑
k 6=j

(X (k))T Z (j)

(X (j))T Z (j) (β0
k − β̂k )

︸ ︷︷ ︸
√

n· (bias term of de-biased Lasso)

+
√

n
εT Z (j)

(X (j))T Z (j)︸ ︷︷ ︸
fluctuation term

so far, this holds for any Z (j)



assume fixed design X , e.g. condition on X
Gaussian error ε ∼ Nn(0, σ2I)

fluctuation term:

√
n

εT Z (j)

(X (j))T Z (j) =
n−1/2εT Z (j)

(X (j))T Z (j)/n
∼ N (0,

σ2‖Z (j)‖22/n
|(X (j))T Z (j)/n|2

)



bias term of de-biased Lasso: we exploit two things
I ‖β̂ − β0‖1 = OP(s0

√
log(p)/n)

I KKT condition for Lasso (on X (j) versus X (−j)):
|(X (k))T Z (j)/n| ≤ λj/2

therefore: √
n
∑
k 6=j

(X (k))T Z (j)

(X (j))T Z (j) (β0
k − β̂k )

=
√

n
∑
k 6=j

(X (k))T Z (j)/n
(X (j))T Z (j)/n

(β0
k − β̂k )

≤
√

n max
k 6=j
|(X

(k))T Z (j)/n
(X (j))T Z (j)/n

|‖β̂ − β0‖1

≤
√

n
λj/2

(X (j))T Z (j)/n
OP(s0

√
log(p)/n)

= OP(s0 log(p)/
√

n) = oP(1) if s0 �
√

n
log(p)

if λj �
√

log(p)/n and (X (j))T Z (j)/n � O(1)



summarizing ;

Theorem 10.1 in the notes
assume:
I ε ∼ N (0, σ2I)
I λj = Cj

√
log(p)/n and ‖Z (j)‖22/n ≥ L > 0

I s0 = o(
√

n/ log(p)) (a bit sparse than “usual”)
I ‖β̂ − β0‖1 = OP(s0

√
log(p)/n)

(i.e., compatibility constant φ2
o bounded away from zero)

Then:

σ−1√n
(X (j))T Z (j)/n
‖Z (j)‖2/

√
n

(b̂j − β0
j ) =⇒ N (0,1) (j = 1, . . . ,p)



more precisely:

σ−1√n
(X (j))T Z (j)/n
‖Z (j)‖2/

√
n

(b̂j − β0
j ) = Wj + ∆j

(W1, . . . ,Wp)T ∼ Np(0, σ2Ω), max
j=1,...,p

|∆j | = oP(1)

confidence intervals for β0
j :

b̂j ± σ̂n−1/2 ‖Z (j)‖2/
√

n
|(X (j))T Z (j)/n

Φ−1(1− α/2)

σ̂2 = ‖Y − X β̂‖22/n or σ̂2 = ‖Y − X β̂‖22/(n − ‖β̂‖00)



can also test

H0,j : β0
j = 0 versus HA,j : β0

j 6= 0

can also test group hypothesis: for G ⊆ {1, . . . ,p}

H0,G : β0
j ≡ 0∀j ∈ G

HA,G : ∃j ∈ G such that β0
j 6= 0

under H0,G:

max
j∈G

σ−1√n
|(X (j))T Z (j)/n|
‖Z (j)‖2/

√
n
|b̂j | = max

j∈G
|Wj + ∆j | � max

j∈G
|Wj |︸ ︷︷ ︸

distr. simulated

and plug-in σ̂ for σ



Choice of tuning parameters

as usual: β̂ = β̂(λ̂CV); what is the role of λj?

variance = σ2n−1 ‖Z (j)‖22/n
|(X (j))T Z (j)/n|2

� σ2/‖Z (j)‖22

if λj ↘ then ‖Z (j)‖22 ↘, i.e. large variance

error due to bias estimation is bounded by:

| . . . | ≤
√

n
λj/2

|(X (j))T Z (j)/n|
‖β̂ − β0‖1 ∝ λj

assuming λj is not too small
if λj ↘ (but not too small) then bias estimation error↘

; inflate the variance a bit to have low error due to bias
estimation: control type I error at the price of slightly decreasing
power



How good is the de-biased Lasso?

asymptotic efficiency:
for the de-biased Lasso to “work” we require
I sparsity: s0 = o(

√
n/ log(p))

this cannot be beaten in a minimax sense
I compatibility condition for X

for optimality in terms of the lowest possible asymptotic
variance achieving the “Cramer-Rao” lower bound:
I require in addition that X (j) versus X (−j) is sparse:

sj � n/ log(p)

then... skipping details, the de-biased Lasso achieves (see
Theorem 10.2):

√
n(b̂j − β0

j ) =⇒ N (0, σ2Θjj︸ ︷︷ ︸
Cramer-Rao lower bound

)

Θ = Σ−1
X = Cov(X )−1 ; as for OLS in low dimensions!



Empirical results

R-software hdi
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black: confidence interval covered the true coefficient
red: confidence interval failed to cover


