High-dimensional additive models

the special case with natural cubic splines
(Ch. 5.3.2 in Bihlmann and van de Geer (2011))
consider the estimation problem with the SPS penalty:

p p p
Foooob=argming o (1Y = S HIZ+ 20 Y 16lln+ 22 3 1(5)
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where F = Sobolev space of functions on [a, b] that are continuously
differentiable with square integrable second derivatives

Proposition 5.1 in Biihimann and van de Geer (2011)

Let a,b € R such that a < mm,j(X(/)) and b > max,j(X(.)). Let
F be as above. Then, the f s are natural cubic splines with
knotsatX,.U), i=1,...,n

implication: the optimization over functions is exactly
representable as a parametric problem with dim ~ 3np



the optimization over functions is exactly representable as a
parametric problem with

therefore:

fi = H;B;, H; from natural cubic spline basis

#lln = [ Hy8ylle/v/n = \/BTHT Hi/ v/

15) =/ [ (Ha) )2 =

~» convex problem

P P
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SPS penalty of group Lasso type

for easier computation: instead of

SPS penalty = A1 Y [[flln+ X2 > I(f)
J J

one can also use as an alternative:
SPS Group Lasso penalty = A1 Y 1 /[|fil13 + A3F(F)
J

in parameterized form, the latter becomes:

p p
M D VJIHBIE/n+ BT Wi = M > /BT (HT Hy/n + 23 W))5

j=1 =

~» for every \»: a generalized Group Lasso penalty



simulated example: n = 150, p = 200 and 4 active variables
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dotted line: Ao =0
~ A2 seems not so important: just consider a few candidate values
(solid and dashed line)



0.8

0.6
I

0.4

0.2

0.0

Partial Effect

-0.2
|

0.4

-0.6

motif regression: n =287, p =195
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~+ a linear model would be “fine as well”



Prediction and variable screening with additive models
(Ch. 5.6 in Bihlmann & van de Geer (2011))

most of the theory is done for SPS penalty: w.l.o.g. assume
= 0 and that each 1;0 is twice continuously differentiable

A

) = tue() = 274 ()

Consistency:

n
I1f = O)5 = =" H(X:) = (X)) = 0p(1) (P = n — o)
=1
it '
» Gaussian errors (for simplicity), fixed design
> A\ < n2/% \o < n=4/5, /log(pn) and log(p) = O(n'/®)

> A 0 1810+ A2 P 1(12) = o(1)
(sparsity and smoothness)



assuming in addition a compatibility-type assumption
with compatibility-type constant bounded away from zero
(and p > n):

|F = £°I|3 = Op(s0+/log(p)n~*/°)
So = 1So = {J; HijHn # 0}| (sparsity w.r.t. additive functions)

~> variable screening:
if for j € So: (|20 > v/Solog(p)/*n~2/°, then

S = {j; |%lln # 0} 2 Sp with high probability



Conclusions
if the problem is sparse and smooth:
only a few X(U)’s influence Y (only a few non-zero f?) and the

non-zero f° are smooth
~> one can often afford to model and fit additive functions in
high dimensions

reason:

» dimensionality is of order dim = O(pn)
log(dim)/n = O((log(p) + log(n))/n) which is still small

> sparsity and smoothness then lead to: if each 1}0 is twice
continuously differentiable

IF—P18/n=0p(  sparsity  \/log(p)n /%)
N——

no. of non-zero fj0

(cf. Ch. 8.4 in Bihlmann & van de Geer (2011))



Uncertainty quantification:
p-values and confidence intervals (siides, denoted as ch. 10)

959%
Conf.
Interval

frequentist
uncertainty quantification

(in contrast to Bayesian inference)

HWHe X

classical concepts but in very high-dimensional settings



Toy example: Motif regression (p = 195, n = 143)
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p-values/quantifying uncertainty would be very useful!



Y=X3%+¢ (p>n)
classical goal: statistical hypothesis testing

Hoj : ) = 0 versus Ha; : ) # 0
or  Hog:B)=0Vje G, versusHag:3je Gwith 3} #0
C{1,P}

background: if we could handle the asymptotic distribution of
the Lasso () under the null-hypothesis

95%
Conf.

~+ could construct p-values At

this is very difficult! A

asymptotic distribution of 4 has some point mass at zero
Knight and Fu (2000) for p < oo and n — oo



because of “non-regularity” of sparse estimators
“point mass at zero” phenomenon ~- “super-efficiency”

(Hodges, 1951)
~» standard bootstrapping and subsampling should not be used

~» de-sparsify/de-bias the Lasso instead



The de-sparsified or de-biased Lasso

Recap: if p < nand rank(X) = p, then:
BOLS,;' =YTZ0 ) (XU\T ZU)
70 — x() _ x(—/’)ﬂ(/)
= OLS residuals from XD vs. XD = {(XK); Kk £}
40) = argmin_ | XUV — (|2

idea for high-dimensional setting:
use the Lasso for the residuals Z0)



The de-sparsified Lasso

consider

20 = X0 _ x(D50)
= Lasso residuals from X0 vs. X(=) = {x(0); k = j}
49 = argmin_ [|X0 — XCD 5+ Ajll7)4

build projection of Y onto Z0):

YTz B 0 (XUNT Z0) 0 4
X020 = 2 o200 Ok xayz0
Y=XB0+¢ k#j

bias



estimate bias and subtract it:

— (XUNT xU) A
bias =>_ Sz o
k7] standard Lasso

~» de-sparsified Lasso estimator

A yTz0) Z (X(k))Tz(/) .

i T T K
(XO)TZ0 2 (X0)TZ0

not sparse! Never equal to zero forall j=1,...,p

can also be represented as

~

(Y - XB)Tz0)
b =

(XDYT Z0) de-biased Lasso

B/ +
~—
standard Lasso



using that

yT Z0) 0 Z()((k))rzq) 0, Efo)'
(XUnTZ0) 5 e (X ()T Z0) KT (XOYTZ0)
j
we obtain
o 0 cTzZ0)
V(b - 5}) = fZ TZ(, (5k B)  + \F( X7 Z0)

k#/
vn- (bias term of de-biased Lasso)

fluctuation term

so far, this holds for any ZU)



assume fixed design X, e.g. condition on X
Gaussian error ¢ ~ Ny(0, o21)

fluctuation term:

4 n—1/2:T z0) a2HZ(f)H§/n

TXO)TZO ~ x0)Tz0/n =~ X0 TZ0 jnp2



bias term of de-biased Lasso: we exploit two things

> |13 = B°ll1 = Op(s0+/log(p)/n)
> KKT condition for Lasso (on XU) versus X(=)):
|(X(k))TZ(f)/n| < )\-/2

therefore: TZ() N
\fz ))TZ(J = B)
T Z()) ~
_ f% a8 — i
]
(KT N
< Ve SR 205 - o)
Aj/2
< \/ﬁmOP(SO log(p)/n)
= Onlsolog(p)/ V) = op(N)f 50 < L1

if \; < /log(p)/nand (XW)7Z0)/n=< O(1)



summarizing ~»
Theorem 10.1 in the notes
assume:

> ¢~ N(0,02)

> )\ = Cj/log(p)/nand |ZV|2/n> L >0

> so = o(v/n/log(p)) (a bit sparse than “usual”)

> [|8 = 8%+ = Op(s0\/log(p)/n)

(i.e., compatibility constant ¢2 bounded away from zero)

Then:

XUNTzW /n A.

=1 /ml
VI 20T vn 1ZD]|2/v/n

5j)=>/\/(o 1) (=1,...,p)



more precisely:

(X0)7Z0/n

_1 g .
VP 20 rn O ) = Wik
(Wy,..., W) ~ Np(0,0%Q), max 1A = op(1)
j 7777
confidence intervals for BIQ:
. ()
bjié}n_1/2 HZ HQ/ﬁ ¢—1(1 —Oé/2)

(XU)TZW) /n

6% =Y = XBl5/n or 8% =Y = XB|3/(n—[5])



can also test
Ho, : 5] =0 versus Hy; : B] #0
can also test group hypothesis: for G C {1,...,p}

Hog: B} =0vje G
Ha : 3 € Gsuch that 8 # 0

under Hy g
4 (XU Z0 /)
max o f— b = max W + Al < max | W;

N——
distr. simulated

and plug-in & for o



Choice of tuning parameters

as usual: 3 = B(Acv); what is the role of \;?

1 1Z915/n
(XU)TZ0) /n[2

variance = o2n~ = o?/|ZV|3

if \; \, then || ZW)|2 \, i.e. large variance

error due to bias estimation is bounded by:

Aj/2

N T O

15 = Bl o< A
assuming J; is not too small
if A; \( (but not too small) then bias estimation error

~> inflate the variance a bit to have low error due to bias
estimation: control type | error at the price of slightly decreasing
power



How good is the de-biased Lasso?

asymptotic efficiency:
for the de-biased Lasso to “work” we require
> sparsity: sp = o(y/n/ log(p))
this cannot be beaten in a minimax sense
» compatibility condition for X

for optimality in terms of the lowest possible asymptotic
variance achieving the “Cramer-Rao” lower bound:

> require in addition that XU) versus X(-/) is sparse:
sj < n/log(p)
then... skipping details, the de-biased Lasso achieves (see
Theorem 10.2):

vn(b; — 7) = N(0, 720; )
N——~—
Cramer-Rao lower bound

© =%, = Cov(X) "~ as for OLS in low dimensions!



Empirical results

R-software hdi
de-sparsified Lasso
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black: confidence interval covered the true coefficient
red: confidence interval failed to cover



