High-dimensional additive models

the special case with natural cubic splines
(Ch. 5.3.2 in Bühlmann and van de Geer (2011)) consider the estimation problem with the SPS penalty:
$\hat{f}_{1}, \ldots, \hat{f}_{p}=\operatorname{argmin}_{f_{1}, \ldots, f_{p} \in \mathcal{F}}\left(\left\|Y-\sum_{j=1}^{p} f_{j}\right\|_{n}^{2}+\lambda_{1} \sum_{j=1}^{p}\left\|f_{j}\right\|_{n}+\lambda_{2} \sum_{j=1}^{p} I\left(f_{j}\right)\right)$
where $\mathcal{F}=$ Sobolev space of functions on $[a, b]$ that are continuously differentiable with square integrable second derivatives

Proposition 5.1 in Bühlmann and van de Geer (2011) Let $a, b \in \mathbb{R}$ such that $a<\min _{i, j}\left(X_{i}^{(j)}\right)$ and $b>\max _{i, j}\left(X_{i}^{(j)}\right)$. Let \mathcal{F} be as above. Then, the \hat{f}_{j} 's are natural cubic splines with knots at $X_{i}^{(j)}, i=1, \ldots, n$.
implication: the optimization over functions is exactly representable as a parametric problem with $\operatorname{dim} \approx 3 n p$
the optimization over functions is exactly representable as a parametric problem with
therefore:
$f_{j}=H_{j} \beta_{j}, H_{j}$ from natural cubic spline basis

$$
\begin{aligned}
& \left\|f_{j}\right\|_{n}=\left\|H_{j} \beta_{j}\right\|_{2} / \sqrt{n}=\sqrt{\beta_{j}^{T} H_{j}^{T} H_{j} \beta_{j} / \sqrt{n}} \\
& I\left(f_{j}\right)=\sqrt{\int\left(\left(H_{j} \beta_{j}\right)^{\prime \prime}\right)^{2}}=\sqrt{\beta_{j}^{T} \underbrace{\left(H_{j}^{\prime \prime}\right)^{T} H_{j}^{\prime \prime}}_{=: w_{j}} \beta}=\sqrt{\beta_{j}^{T} W_{j} \beta_{j}}
\end{aligned}
$$

\leadsto convex problem
$\hat{\beta}=\operatorname{argmin}_{\beta}\left(\|Y-H \beta\|_{2}^{2} / n+\lambda_{1} \sum_{j=1}^{p} \sqrt{\beta_{j}^{T} H_{j}^{T} H_{j} \beta_{j} / n}+\lambda_{2} \sum_{j=1}^{p} \sqrt{\beta_{j}^{T} W_{j} \beta_{j}}\right)$

SPS penalty of group Lasso type

for easier computation: instead of

$$
\text { SPS penalty }=\lambda_{1} \sum_{j}\left\|f_{j}\right\|_{n}+\lambda_{2} \sum_{j} I(f j)
$$

one can also use as an alternative:

$$
\text { SPS Group Lasso penalty }=\lambda_{1} \sum_{j} \sqrt{\left\|f_{j}\right\|_{n}^{2}+\lambda_{2}^{2} I^{2}\left(f_{j}\right)}
$$

in parameterized form, the latter becomes:
$\lambda_{1} \sum_{j=1}^{p} \sqrt{\left\|H_{j} \beta_{j}\right\|_{2}^{2} / n+\lambda_{2}^{2} \beta_{j}^{T} W_{j} \beta_{j}}=\lambda_{1} \sum_{j=1}^{p} \sqrt{\beta_{j}^{T}\left(H_{j}^{T} H_{j} / n+\lambda_{2}^{2} W_{j}\right) \beta_{j}}$
\leadsto for every λ_{2} : a generalized Group Lasso penalty
simulated example: $n=150, p=200$ and 4 active variables

dotted line: $\lambda_{2}=0$
$\leadsto \lambda_{2}$ seems not so important: just consider a few candidate values (solid and dashed line)
motif regression: $n=287, p=195$

Prediction and variable screening with additive models

 (Ch. 5.6 in Bühlmann \& van de Geer (2011))most of the theory is done for SPS penalty: w.l.o.g. assume $\mu=0$ and that each f_{j}^{0} is twice continuously differentiable
$\hat{f}()=.\hat{f}_{\lambda_{1}, \lambda_{2}}()=.\sum_{j=1}^{p} \hat{f}_{j}($.
Consistency:

$$
\left\|\hat{f}-f^{0}\right\|_{n}^{2}=n^{-1} \sum_{i=1}^{n}\left|\hat{f}\left(X_{i}\right)-f^{0}\left(X_{i}\right)\right|^{2}=o_{P}(1)(p \geq n \rightarrow \infty)
$$

if

- Gaussian errors (for simplicity), fixed design
- $\lambda_{1} \asymp n^{-2 / 5}, \lambda_{2} \asymp n^{-4 / 5} \sqrt{\log (p n)}$ and $\log (p)=O\left(n^{1 / 5}\right)$
- $\lambda_{1} \sum_{j=1}^{p}\left\|f_{j}^{0}\right\|_{n}+\lambda_{2} \sum_{j=1}^{p} l\left(f_{j}^{0}\right)=o(1)$
(sparsity and smoothness)
assuming in addition a compatibility-type assumption with compatibility-type constant bounded away from zero

$$
\begin{aligned}
\left\|\hat{f}-f^{0}\right\|_{n}^{2} & =O_{P}\left(s_{0} \sqrt{\log (p)} n^{-4 / 5}\right) \\
s_{0}=\mid S_{0} & =\left\{j ;\left\|f_{j}^{0}\right\|_{n} \neq 0\right\} \mid \text { (sparsity w.r.t. additive functions) }
\end{aligned}
$$

\leadsto variable screening:
if for $j \in S_{0}:\left\|f_{j}^{0}\right\|_{n} \gg \sqrt{S_{o}} \log (p)^{1 / 4} n^{-2 / 5}$, then

$$
\hat{S}=\left\{j ;\left\|\hat{f}_{j}\right\|_{n} \neq 0\right\} \supseteq S_{0} \text { with high probability }
$$

Conclusions

if the problem is sparse and smooth:
only a few $X^{(j)}$'s influence Y (only a few non-zero f_{j}^{0}) and the non-zero f_{j}^{0} are smooth
\leadsto one can often afford to model and fit additive functions in high dimensions
reason:

- dimensionality is of order $\operatorname{dim}=O(p n)$ $\log (\operatorname{dim}) / n=O((\log (p)+\log (n)) / n)$ which is still small
- sparsity and smoothness then lead to: if each f_{j}^{0} is twice continuously differentiable

$$
\left\|\hat{f}-f^{0}\right\|_{2}^{2} / n=O_{P}(\underbrace{\text { sparsity }}_{\text {no. of non-zero } f_{j}^{0}} \sqrt{\log (p)} n^{-4 / 5})
$$

(cf. Ch. 8.4 in Bühlmann \& van de Geer (2011))

Uncertainty quantification:

 p -values and confidence intervals (slides, denoted as Ch. 10)
frequentist
uncertainty quantification
(in contrast to Bayesian inference)
classical concepts but in very high-dimensional settings

Toy example: Motif regression ($p=195, n=143$)

Lasso estimated coefficients $\widehat{\beta}\left(\hat{\lambda}_{\mathrm{CV}}\right)$

p-values/quantifying uncertainty would be very useful!

$$
Y=X \beta^{0}+\varepsilon(p \gg n)
$$

classical goal: statistical hypothesis testing
or $H_{0, G}: \beta_{j}^{0}=0 \forall j \in \underbrace{G}_{\subseteq\{1, \ldots, p\}}$ versus $H_{A, G}: \exists j \in G$ with $\beta_{j}^{0} \neq 0$
background: if we could handle the asymptotic distribution of the Lasso $\hat{\beta}(\lambda)$ under the null-hypothesis
\leadsto could construct p-values
this is very difficult! asymptotic distribution of $\hat{\beta}$ has some point mass at zero,... Knight and Fu (2000) for $p<\infty$ and $n \rightarrow \infty$
because of "non-regularity" of sparse estimators "point mass at zero" phenomenon \leadsto "super-efficiency"

$~$ standard bootstrapping and subsampling should not be used
\leadsto de-sparsify/de-bias the Lasso instead

The de-sparsified or de-biased Lasso

Recap: if $p<n$ and $\operatorname{rank}(X)=p$, then:

$$
\begin{aligned}
& \hat{\beta}_{\mathrm{OLS}, j}=Y^{T} Z^{(j)} /\left(X^{(j)}\right)^{T} Z^{(j)} \\
& Z^{(j)}=X^{(j)}-X^{(-j)} \hat{\gamma}^{(j)} \\
& \quad=\text { OLS residuals from } X^{(j)} \text { vs. } X^{(-j)}=\left\{X^{(k)} ; k \neq j\right\} \\
& \hat{\gamma}^{(j)}=\operatorname{argmin}_{\gamma}\left\|X^{(j)}-X^{(-j)} \gamma\right\|_{2}^{2}
\end{aligned}
$$

idea for high-dimensional setting: use the Lasso for the residuals $Z^{(j)}$

The de-sparsified Lasso

consider

$$
\begin{aligned}
Z^{(j)} & =X^{(j)}-X^{(-j)} \hat{\gamma}^{(j)} \\
& =\text { Lasso residuals from } X^{(j)} \text { vs. } X^{(-j)}=\left\{X^{(k)} ; k \neq j\right\} \\
\hat{\gamma}^{(j)} & =\operatorname{argmin}_{\gamma}\left\|X^{(j)}-X^{(-j)} \gamma\right\|_{2}^{2}+\lambda_{j}\|\gamma\|_{1}
\end{aligned}
$$

build projection of Y onto $Z^{(j)}$:

$$
\frac{Y^{\top} Z^{(j)}}{\left(X^{(j)}\right)^{\top} Z^{(j)}} \underbrace{=}_{Y=X \beta^{0}+\varepsilon} \beta_{j}^{0}+\underbrace{\sum_{k \neq j} \frac{\left(X^{(k)}\right)^{\top} Z^{(j)}}{\left(X^{(j)}\right)^{\top} Z^{(j)}} \beta_{k}^{0}}_{\text {bias }}+\frac{\varepsilon^{\top} \boldsymbol{Z}^{(j)}}{\left(X^{(j)}\right)^{\top} \boldsymbol{Z}^{(j)}}
$$

estimate bias and subtract it:

$$
\widehat{\mathrm{bias}}=\sum_{k \neq j} \frac{\left(X^{(k)}\right)^{T} X^{(j)}}{\left(X^{(j)}\right)^{T} Z^{(j)}} \underbrace{\hat{\beta}_{k}}_{\text {standard Lasso }}
$$

$~$ de-sparsified Lasso estimator

$$
\hat{b}_{j}=\frac{Y^{T} Z^{(j)}}{\left(X^{(j)}\right)^{T} Z^{(j)}}-\sum_{k \neq j} \frac{\left(X^{(k)}\right)^{T} Z^{(j)}}{\left(X^{(j)}\right)^{T} Z^{(j)}} \hat{\beta}_{k} \quad(j=1, \ldots, p)
$$

not sparse! Never equal to zero for all $j=1, \ldots, p$
can also be represented as

$$
\hat{b}_{j}=\underbrace{\hat{\beta}_{j}}_{\text {standard Lasso }}+\frac{(Y-X \hat{\beta})^{T} Z^{(j)}}{\left(X^{(j)}\right)^{T} Z^{(j)}} \text { "de-biased Lasso" }
$$

using that

$$
\frac{Y^{T} Z^{(j)}}{\left(X^{(j)}\right)^{T} Z^{(j)}}=\beta_{j}^{0}+\sum_{k \neq j} \frac{\left(X^{(k)}\right)^{T} Z^{(j)}}{\left(X^{(j)}\right)^{T} Z^{(j)}} \beta_{k}^{0}+\frac{\varepsilon^{T} Z^{(j)}}{\left(X^{(j)}\right)^{T} Z^{(j)}}
$$

we obtain
$\sqrt{n}\left(\hat{b}_{j}-\beta_{j}^{0}\right)=\underbrace{\sqrt{n} \sum_{k \neq j} \frac{\left(X^{(k)}\right)^{T} Z^{(j)}}{\left(X^{(j)}\right)^{T} Z^{(j)}}\left(\beta_{k}^{0}-\hat{\beta}_{k}\right)}_{\sqrt{n} \cdot(\text { bias term of de-biased Lasso) }}+\underbrace{\sqrt{n} \frac{\varepsilon^{\top} Z^{(j)}}{\left(X^{(j)}\right)^{T} Z^{(j)}}}_{\text {fluctuation term }}$
so far, this holds for any $Z^{(j)}$
assume fixed design X, e.g. condition on X
Gaussian error $\varepsilon \sim \mathcal{N}_{n}\left(0, \sigma^{2} I\right)$
fluctuation term:

$$
\sqrt{n} \frac{\varepsilon^{T} Z^{(j)}}{\left(X^{(j)}\right)^{T} Z^{(j)}}=\frac{n^{-1 / 2} \varepsilon^{T} Z^{(j)}}{\left(X^{(j)}\right)^{T} Z^{(j)} / n} \sim \mathcal{N}\left(0, \frac{\sigma^{2}\left\|Z^{(j)}\right\|_{2}^{2} / n}{\left|\left(X^{(j)}\right)^{T} Z^{(j)} / n\right|^{2}}\right)
$$

bias term of de-biased Lasso: we exploit two things

- $\left\|\hat{\beta}-\beta^{0}\right\|_{1}=O_{P}\left(s_{0} \sqrt{\log (p) / n}\right)$
- KKT condition for Lasso (on $X^{(j)}$ versus $X^{(-j)}$): $\left|\left(X^{(k)}\right)^{T} Z^{(j)} / n\right| \leq \lambda_{j} / 2$
therefore:

$$
\begin{aligned}
& \sqrt{n} \sum_{k \neq j} \frac{\left(X^{(k)}\right)^{T} Z^{(j)}}{\left(X^{(j)}\right)^{T} Z^{(j)}}\left(\beta_{k}^{0}-\hat{\beta}_{k}\right) \\
&= \sqrt{n} \sum_{k \neq j} \frac{\left(X^{(k)}\right)^{T} Z^{(j)} / n}{\left(X^{(j)}\right)^{T} Z^{(j)} / n}\left(\beta_{k}^{0}-\hat{\beta}_{k}\right) \\
& \leq \sqrt{n} \max _{k \neq j}\left|\frac{\left(X^{(k)}\right)^{T} Z^{(j)} / n}{\left(X^{(j)}\right)^{T} Z^{(j)} / n}\right|\left\|\hat{\beta}-\beta^{0}\right\|_{1} \\
& \leq \sqrt{n} \frac{\lambda_{j} / 2}{\left(X^{(j)}\right)^{T} Z^{(j)} / n} O_{P}\left(s_{0} \sqrt{\log (p) / n}\right) \\
&= O_{P}\left(s_{0} \log (p) / \sqrt{n}\right)=o_{P}(1) \text { if } s_{0} \ll \frac{\sqrt{n}}{\log (p)}
\end{aligned}
$$

if $\lambda_{j} \asymp \sqrt{\log (p) / n}$ and $\left(X^{(j)}\right)^{T} Z^{(j)} / n \asymp O(1)$

summarizing \leadsto

Theorem 10.1 in the notes assume:

- $\varepsilon \sim \mathcal{N}\left(0, \sigma^{2} I\right)$
- $\lambda_{j}=C_{j} \sqrt{\log (p) / n}$ and $\left\|Z^{(j)}\right\|_{2}^{2} / n \geq L>0$
- $s_{0}=o(\sqrt{n} / \log (p))$ (a bit sparse than "usual")
- $\left\|\hat{\beta}-\beta^{0}\right\|_{1}=O_{P}\left(s_{0} \sqrt{\log (p) / n}\right)$
(i.e., compatibility constant ϕ_{o}^{2} bounded away from zero)

Then:

$$
\sigma^{-1} \sqrt{n} \frac{\left(X^{(j)}\right)^{T} Z^{(j)} / n}{\left\|Z^{(j)}\right\|_{2} / \sqrt{n}}\left(\hat{b}_{j}-\beta_{j}^{0}\right) \Longrightarrow \mathcal{N}(0,1) \quad(j=1, \ldots, p)
$$

more precisely:

$$
\begin{aligned}
& \sigma^{-1} \sqrt{n} \frac{\left(X^{(j)}\right)^{T} Z^{(j)} / n}{\left\|Z^{(j)}\right\|_{2} / \sqrt{n}}\left(\hat{b}_{j}-\beta_{j}^{0}\right)=W_{j}+\Delta_{j} \\
& \left(W_{1}, \ldots, W_{p}\right)^{T} \sim \mathcal{N}_{p}\left(0, \sigma^{2} \Omega\right), \max _{j=1, \ldots, p}\left|\Delta_{j}\right|=o_{P}(1)
\end{aligned}
$$

confidence intervals for β_{j}^{0} :

$$
\begin{array}{r}
\hat{b}_{j} \pm \hat{\sigma} n^{-1 / 2} \frac{\left\|Z^{(j)}\right\|_{2} / \sqrt{n}}{\|\left(X^{(j)}\right)^{T} Z^{(j)} / n} \Phi^{-1}(1-\alpha / 2) \\
\hat{\sigma}^{2}=\|Y-X \hat{\beta}\|_{2}^{2} / n \text { or } \hat{\sigma}^{2}=\|Y-X \hat{\beta}\|_{2}^{2} /\left(n-\|\hat{\beta}\|_{0}^{0}\right)
\end{array}
$$

can also test

$$
H_{0, j}: \beta_{j}^{0}=0 \text { versus } H_{A, j}: \beta_{j}^{0} \neq 0
$$

can also test group hypothesis: for $G \subseteq\{1, \ldots, p\}$

$$
\begin{aligned}
& H_{0, G}: \beta_{j}^{0} \equiv 0 \forall j \in G \\
& H_{A, G}: \exists j \in G \text { such that } \beta_{j}^{0} \neq 0
\end{aligned}
$$

under $H_{0, G}$:
$\max _{j \in G} \sigma^{-1} \sqrt{n} \frac{\left|\left(X^{(j)}\right)^{T} Z^{(j)} / n\right|}{\left\|Z^{(j)}\right\|_{2} / \sqrt{n}}\left|\hat{b}_{j}\right|=\max _{j \in G}\left|W_{j}+\Delta_{j}\right| \asymp \underbrace{\max _{j \in G}\left|W_{j}\right|}_{\text {distr. simulated }}$
and plug-in $\hat{\sigma}$ for σ

Choice of tuning parameters

as usual: $\hat{\beta}=\hat{\beta}\left(\hat{\lambda}_{\mathrm{CV}}\right)$; what is the role of λ_{j} ?

$$
\text { variance }=\sigma^{2} n^{-1} \frac{\left\|Z^{(j)}\right\|_{2}^{2} / n}{\left(\left(X^{(j)}\right)^{T} Z^{(j)} /\left.n\right|^{2}\right.} \asymp \sigma^{2} /\left\|Z^{(j)}\right\|_{2}^{2}
$$

if $\lambda_{j} \searrow$ then $\left\|Z^{(j)}\right\|_{2}^{2} \searrow$, i.e. large variance
error due to bias estimation is bounded by:

$$
|\ldots| \leq \sqrt{n} \frac{\lambda_{j} / 2}{\left|\left(X^{(j)}\right)^{T} Z^{(j)} / n\right|}\left\|\hat{\beta}-\beta^{0}\right\|_{1} \propto \lambda_{j}
$$

assuming λ_{j} is not too small if $\lambda_{j} \searrow$ (but not too small) then bias estimation error \searrow
\leadsto inflate the variance a bit to have low error due to bias estimation: control type I error at the price of slightly decreasing power

How good is the de-biased Lasso?

asymptotic efficiency:
for the de-biased Lasso to "work" we require

- sparsity: $s_{0}=o(\sqrt{n} / \log (p))$
this cannot be beaten in a minimax sense
- compatibility condition for X
for optimality in terms of the lowest possible asymptotic variance achieving the "Cramer-Rao" lower bound:
- require in addition that $X^{(j)}$ versus $X^{(-j)}$ is sparse: $s_{j} \ll n / \log (p)$
then... skipping details, the de-biased Lasso achieves (see Theorem 10.2):

$$
\sqrt{n}\left(\hat{b}_{j}-\beta_{j}^{0}\right) \Longrightarrow \mathcal{N}(0,
$$

$$
\underbrace{\sigma^{2} \Theta_{j j}}
$$

Cramer-Rao lower bound
$\Theta=\Sigma_{X}^{-1}=\operatorname{Cov}(X)^{-1} \leadsto$ as for OLS in low dimensions!

Empirical results

R-software hdi

> de-sparsified Lasso

black: confidence interval covered the true coefficient red: confidence interval failed to cover

