The de-sparsified or de-biased Lasso

Recap: if $p<n$ and $\operatorname{rank}(X)=p$, then:

$$
\begin{aligned}
& \hat{\beta}_{\mathrm{OLS}, j}=Y^{T} Z^{(j)} /\left(X^{(j)}\right)^{T} Z^{(j)} \\
& Z^{(j)}=X^{(j)}-X^{(-j)} \hat{\gamma}^{(j)} \\
& \quad=\text { OLS residuals from } X^{(j)} \text { vs. } X^{(-j)}=\left\{X^{(k)} ; k \neq j\right\} \\
& \hat{\gamma}^{(j)}=\operatorname{argmin}_{\gamma}\left\|X^{(j)}-X^{(-j)} \gamma\right\|_{2}^{2}
\end{aligned}
$$

idea for high-dimensional setting: use the Lasso for the residuals $Z^{(j)}$

The de-sparsified Lasso

consider

$$
\begin{aligned}
Z^{(j)} & =X^{(j)}-X^{(-j)} \hat{\gamma}^{(j)} \\
& =\text { Lasso residuals from } X^{(j)} \text { vs. } X^{(-j)}=\left\{X^{(k)} ; k \neq j\right\} \\
\hat{\gamma}^{(j)} & =\operatorname{argmin}_{\gamma}\left\|X^{(j)}-X^{(-j)} \gamma\right\|_{2}^{2}+\lambda_{j}\|\gamma\|_{1}
\end{aligned}
$$

build projection of Y onto $Z^{(j)}$:

$$
\frac{Y^{\top} Z^{(j)}}{\left(X^{(j)}\right)^{\top} Z^{(j)}} \underbrace{=}_{Y=X \beta^{0}+\varepsilon} \beta_{j}^{0}+\underbrace{\sum_{k \neq j} \frac{\left(X^{(k)}\right)^{\top} Z^{(j)}}{\left(X^{(j)}\right)^{\top} Z^{(j)}} \beta_{k}^{0}}_{\text {bias }}+\frac{\varepsilon^{\top} \boldsymbol{Z}^{(j)}}{\left(X^{(j)}\right)^{\top} \boldsymbol{Z}^{(j)}}
$$

estimate bias and subtract it:

$$
\widehat{\mathrm{bias}}=\sum_{k \neq j} \frac{\left(X^{(k)}\right)^{T} X^{(j)}}{\left(X^{(j)}\right)^{T} Z^{(j)}} \underbrace{\hat{\beta}_{k}}_{\text {standard Lasso }}
$$

$~$ de-sparsified Lasso estimator

$$
\hat{b}_{j}=\frac{Y^{T} Z^{(j)}}{\left(X^{(j)}\right)^{T} Z^{(j)}}-\sum_{k \neq j} \frac{\left(X^{(k)}\right)^{T} Z^{(j)}}{\left(X^{(j)}\right)^{T} Z^{(j)}} \hat{\beta}_{k} \quad(j=1, \ldots, p)
$$

not sparse! Never equal to zero for all $j=1, \ldots, p$
can also be represented as

$$
\hat{b}_{j}=\underbrace{\hat{\beta}_{j}}_{\text {standard Lasso }}+\frac{(Y-X \hat{\beta})^{T} Z^{(j)}}{\left(X^{(j)}\right)^{T} Z^{(j)}} \text { "de-biased Lasso" }
$$

using that

$$
\frac{Y^{T} Z^{(j)}}{\left(X^{(j)}\right)^{T} Z^{(j)}}=\beta_{j}^{0}+\sum_{k \neq j} \frac{\left(X^{(k)}\right)^{T} Z^{(j)}}{\left(X^{(j)}\right)^{T} Z^{(j)}} \beta_{k}^{0}+\frac{\varepsilon^{T} Z^{(j)}}{\left(X^{(j)}\right)^{T} Z^{(j)}}
$$

we obtain
$\sqrt{n}\left(\hat{b}_{j}-\beta_{j}^{0}\right)=\underbrace{\sqrt{n} \sum_{k \neq j} \frac{\left(X^{(k)}\right)^{T} Z^{(j)}}{\left(X^{(j)}\right)^{T} Z^{(j)}}\left(\beta_{k}^{0}-\hat{\beta}_{k}\right)}_{\sqrt{n} \cdot(\text { bias term of de-biased Lasso) }}+\underbrace{\sqrt{n} \frac{\varepsilon^{\top} Z^{(j)}}{\left(X^{(j)}\right)^{T} Z^{(j)}}}_{\text {fluctuation term }}$
so far, this holds for any $Z^{(j)}$
assume fixed design X, e.g. condition on X
Gaussian error $\varepsilon \sim \mathcal{N}_{n}\left(0, \sigma^{2} I\right)$
fluctuation term:

$$
\sqrt{n} \frac{\varepsilon^{T} Z^{(j)}}{\left(X^{(j)}\right)^{T} Z^{(j)}}=\frac{n^{-1 / 2} \varepsilon^{T} Z^{(j)}}{\left(X^{(j)}\right)^{T} Z^{(j)} / n} \sim \mathcal{N}\left(0, \frac{\sigma^{2}\left\|Z^{(j)}\right\|_{2}^{2} / n}{\left|\left(X^{(j)}\right)^{T} Z^{(j)} / n\right|^{2}}\right)
$$

bias term of de-biased Lasso: we exploit two things

- $\left\|\hat{\beta}-\beta^{0}\right\|_{1}=O_{P}\left(s_{0} \sqrt{\log (p) / n}\right)$
- KKT condition for Lasso (on $X^{(j)}$ versus $X^{(-j)}$): $\left|\left(X^{(k)}\right)^{T} Z^{(j)} / n\right| \leq \lambda_{j} / 2$
therefore:

$$
\begin{aligned}
& \sqrt{n} \sum_{k \neq j} \frac{\left(X^{(k)}\right)^{T} Z^{(j)}}{\left(X^{(j)}\right)^{T} Z^{(j)}}\left(\beta_{k}^{0}-\hat{\beta}_{k}\right) \\
&= \sqrt{n} \sum_{k \neq j} \frac{\left(X^{(k)}\right)^{T} Z^{(j)} / n}{\left(X^{(j)}\right)^{T} Z^{(j)} / n}\left(\beta_{k}^{0}-\hat{\beta}_{k}\right) \\
& \leq \sqrt{n} \max _{k \neq j}\left|\frac{\left(X^{(k)}\right)^{T} Z^{(j)} / n}{\left(X^{(j)}\right)^{T} Z^{(j)} / n}\right|\left\|\hat{\beta}-\beta^{0}\right\|_{1} \\
& \leq \sqrt{n} \frac{\lambda_{j} / 2}{\left(X^{(j)}\right)^{T} Z^{(j)} / n} O_{P}\left(s_{0} \sqrt{\log (p) / n}\right) \\
&= O_{P}\left(s_{0} \log (p) / \sqrt{n}\right)=o_{P}(1) \text { if } s_{0} \ll \frac{\sqrt{n}}{\log (p)}
\end{aligned}
$$

if $\lambda_{j} \asymp \sqrt{\log (p) / n}$ and $\left(X^{(j)}\right)^{T} Z^{(j)} / n \asymp O(1)$

summarizing \leadsto

Theorem 10.1 in the notes assume:

- $\varepsilon \sim \mathcal{N}\left(0, \sigma^{2} I\right)$
- $\lambda_{j}=C_{j} \sqrt{\log (p) / n}$ and $\left\|Z^{(j)}\right\|_{2}^{2} / n \geq L>0$
- $s_{0}=o(\sqrt{n} / \log (p))$ (a bit more sparse than "usual")
- $\left\|\hat{\beta}-\beta^{0}\right\|_{1}=O_{P}\left(s_{0} \sqrt{\log (p) / n}\right)$
(i.e., compatibility constant ϕ_{o}^{2} bounded away from zero)

Then:

$$
\sigma^{-1} \sqrt{n} \frac{\left(X^{(j)}\right)^{T} Z^{(j)} / n}{\left\|Z^{(j)}\right\|_{2} / \sqrt{n}}\left(\hat{b}_{j}-\beta_{j}^{0}\right) \Longrightarrow \mathcal{N}(0,1) \quad(j=1, \ldots, p)
$$

more precisely:

$$
\begin{aligned}
& \sigma^{-1} \sqrt{n} \frac{\left(X^{(j)}\right)^{T} Z^{(j)} / n}{\left\|Z^{(j)}\right\|_{2} / \sqrt{n}}\left(\hat{b}_{j}-\beta_{j}^{0}\right)=W_{j}+\Delta_{j} \\
& \left(W_{1}, \ldots, W_{p}\right)^{T} \sim \mathcal{N}_{p}(0, \Omega), \Omega_{j j} \equiv 1 \forall j, \max _{j=1, \ldots, p}\left|\Delta_{j}\right|=o_{P}(1)
\end{aligned}
$$

confidence intervals for β_{j}^{0} :

$$
\begin{array}{r}
\hat{b}_{j} \pm \hat{\sigma} n^{-1 / 2} \frac{\left\|Z^{(j)}\right\|_{2} / \sqrt{n}}{\mid\left(X^{(j)}\right)^{T} Z^{(j)} / n} \Phi^{-1}(1-\alpha / 2) \\
\hat{\sigma}^{2}=\|Y-X \hat{\beta}\|_{2}^{2} / n \text { or } \hat{\sigma}^{2}=\|Y-X \hat{\beta}\|_{2}^{2} /\left(n-\|\hat{\beta}\|_{0}^{0}\right)
\end{array}
$$

can also test

$$
H_{0, j}: \beta_{j}^{0}=0 \text { versus } H_{A, j}: \beta_{j}^{0} \neq 0
$$

can also test group hypothesis: for $G \subseteq\{1, \ldots, p\}$

$$
\begin{aligned}
& H_{0, G}: \beta_{j}^{0} \equiv 0 \forall j \in G \\
& H_{A, G}: \exists j \in G \text { such that } \beta_{j}^{0} \neq 0
\end{aligned}
$$

under $H_{0, G}$:
$\max _{j \in G} \sigma^{-1} \sqrt{n} \frac{\left|\left(X^{(j)}\right)^{T} Z^{(j)} / n\right|}{\left\|Z^{(j)}\right\|_{2} / \sqrt{n}}\left|\hat{b}_{j}\right|=\max _{j \in G}\left|W_{j}+\Delta_{j}\right| \asymp \underbrace{\max _{j \in G}\left|W_{j}\right|}_{\text {distr. simulated }}$
and plug-in $\hat{\sigma}$ for σ

Choice of tuning parameters

as usual: $\hat{\beta}=\hat{\beta}\left(\hat{\lambda}_{\mathrm{CV}}\right)$; what is the role of λ_{j} ?

$$
\text { variance }=\sigma^{2} n^{-1} \frac{\left\|Z^{(j)}\right\|_{2}^{2} / n}{\left(\left(X^{(j)}\right)^{T} Z^{(j)} /\left.n\right|^{2}\right.} \asymp \sigma^{2} /\left\|Z^{(j)}\right\|_{2}^{2}
$$

if $\lambda_{j} \searrow$ then $\left\|Z^{(j)}\right\|_{2}^{2} \searrow$, i.e. large variance
error due to bias estimation is bounded by:

$$
|\ldots| \leq \sqrt{n} \frac{\lambda_{j} / 2}{\left|\left(X^{(j)}\right)^{T} Z^{(j)} / n\right|}\left\|\hat{\beta}-\beta^{0}\right\|_{1} \propto \lambda_{j}
$$

assuming λ_{j} is not too small if $\lambda_{j} \searrow$ (but not too small) then bias estimation error \searrow
\leadsto inflate the variance a bit to have low error due to bias estimation: control type I error at the price of slightly decreasing power

How good is the de-biased Lasso?

asymptotic efficiency:
for the de-biased Lasso to "work" we require

- sparsity: $s_{0}=o(\sqrt{n} / \log (p))$
this cannot be beaten in a minimax sense
- compatibility condition for X
for optimality in terms of the lowest possible asymptotic variance achieving the "Cramer-Rao" lower bound:
- require in addition that $X^{(j)}$ versus $X^{(-j)}$ is sparse: $s_{j} \ll n / \log (p)$
then... skipping details, the de-biased Lasso achieves (see Theorem 10.2):

$$
\sqrt{n}\left(\hat{b}_{j}-\beta_{j}^{0}\right) \Longrightarrow \mathcal{N}(0,
$$

$$
\underbrace{\sigma^{2} \Theta_{j j}}
$$

Cramer-Rao lower bound
$\Theta=\Sigma_{X}^{-1}=\operatorname{Cov}(X)^{-1} \leadsto$ as for OLS in low dimensions!

Empirical results

R-software hdi

> de-sparsified Lasso

black: confidence interval covered the true coefficient red: confidence interval failed to cover

Stability Selection (Ch. 10 in Bühlmann and van de Geer (2011))

Stability selection

Nicolai Meinshausen
University of Oxford, UK
and Peter Bühlmann
Eidgenössiche Technische Hochschule Zürich, Switzerland
[Read before The Royal Statistical Society at a meeting organized by the Research Section on Wednesday, February 3rd, 2010, Professor D. M. Titterington in the Chair]
has been developed before one knew about the de-biased/de-sparsified Lasso
even with new tools such as the de-biased/de-sparsified Lasso estimation of discrete structures ("relevant" variables in a generalized linear model; edges in a graphical model) is notoriously difficult e.g. choice of tuning parameters...?

The generic setup

i.i.d. data Z_{1}, \ldots, Z_{n}
main example: $Z_{i}=\left(X_{i}, Y_{i}\right)$ from regression or classification
\hat{S}_{λ} is a "feature selection" method/algorithm among $\{1, \ldots, p\}$ features
can we assign "relevance" to the selected features in \hat{S}_{λ} ?
a "natural" approach: resampling!
here: use subsampling:

- ${ }^{*}$ random sub-sample of size $\lfloor n / 2\rfloor$ of $\{1, \ldots, n\}$
- compute $\hat{S}_{\lambda}\left(I^{*}\right)$
- repeat B times to obtain $\hat{S}_{\lambda}\left(I^{* 1}\right), \ldots, \hat{S}_{\lambda}\left(I^{* B}\right)$
- consider the "overlap" among $\hat{S}_{\lambda}\left(I^{* 1}\right), \ldots, \hat{S}_{\lambda}\left(I^{* B}\right)$
regarding the latter, for example:

$$
\begin{array}{ll}
& \hat{\Pi}_{K}(\lambda)=\mathbb{P}^{*}\left[K \subseteq \hat{S}_{\lambda}\left(I^{*}\right)\right] \approx B^{-1} \sum_{b=1}^{B} I\left(K \subseteq \hat{S}_{\lambda}\left(I^{* b}\right)\right) \\
\text { e.g. } & \hat{\Pi}_{j}(\lambda)(j \in\{1, \ldots, p\})
\end{array}
$$

the probability \mathbb{P}^{*} is with respect to subsampling: a sum over $\binom{n}{m}$ terms, $m=\lfloor n / 2\rfloor$, i.e., all possible subsampling combinations
\sim it is approximated by $B(\approx 100)$ times random subsampling

The stability regularization path

Riboflavin data: $n=115, p=4088$
Y : log-production rat of riboflavin by bacillus subtilis
X : gene expressions of bacillus subtilis
all X-variables permuted except 6 "a-priori relevant" genes

left: Lasso regularization path (red: the 6 non-permuted "relevant" genes) right: Stability path with $\hat{\Pi}_{j}$ on y-axis (red: the 6 non-permuted "relevant" variables stick out much more clearly from the noise covariates)

What is a good truncation value (for $\hat{\Pi}$)?

aim: choose $\pi_{\text {thr }}$ such that

$$
\hat{S}_{\text {stable }}=\left\{j ; \max _{\lambda \in \Lambda} \hat{\Pi}_{j}(\lambda) \geq \pi_{\text {thr }}\right\}
$$

has not too many false positives
Λ can be a singleton or a range of values
as a measure for type I error control (against false positives):

$$
V=\text { number of false positives }=\left|\hat{S}_{\text {stable }} \cap S_{0}^{C}\right|
$$

where S_{0} is the set of the true relevant features, e.g.:

- active variables in regression
- true edges in a graphical model
"the miracle":
a simple formula connecting $\pi_{\text {thr }}$ with $\mathbb{E}[V]$
consider a setting with p possible features
$\hat{S}(\lambda)$ is a feature selection algorithm
$\hat{S}_{\Lambda}=\cup_{\lambda \in \Lambda} \hat{S}(\lambda)$
$q_{\Lambda}=\mathbb{E}[\hat{S}_{\Lambda}(\underbrace{I})]$
random subsample

Theorem 10.1

Assume:

- exchangeability condition:

$$
\left.\{1(j \in \hat{S}(\lambda)\}), j \in S_{0}^{c}\right\} \text { is exchangeable for all } \lambda \in \Lambda
$$

- \hat{S} is not worse than random guessing

$$
\frac{\left.\mathbb{E}\left|S_{0} \cap \hat{S}_{\Lambda}\right|\right)}{\mathbb{E}\left(\left|S_{0}^{c} \cap \hat{S}_{\Lambda}\right|\right)} \geq \frac{\left|S_{0}\right|}{\left|S_{0}^{c}\right|}
$$

Then, for $\pi_{\text {thr }} \in(1 / 2,1)$:

$$
\mathbb{E}[V] \leq \frac{1}{2 \pi_{\mathrm{thr}}-1} \frac{q_{\Lambda}^{2}}{p}
$$

suppose we know q_{\wedge} (see later) strategy: specify $\mathbb{E}[V]=v_{0} \quad($ e.g. $=5)$
\leadsto for $\pi_{\mathrm{thr}}:=\frac{1}{2}+\frac{q_{1}^{2}}{2 p v_{0}}: \mathbb{E}[V] \leq v_{0}$
example: regression model with $p=1000$ variables
$\hat{S}_{\lambda}=$ the top 10 variables from Lasso (e.g. the different λ from Lasso by CV and choose the top 10 variables with the largest absolute values of the corresponding estimated coefficients; if less than 10 variables are selected, take the selected variables) the value λ corresponds to the "top 10 "; Λ is a singleton
we then know that $q_{\Lambda}=\mathbb{E}\left[\left|\hat{S}_{\lambda}(I)\right|\right] \leq 10$
For $\mathbb{E}[V]=v_{0}:=5$ we then obtain

$$
\pi_{\mathrm{thr}}=\frac{1}{2}+\frac{q_{\Lambda}^{2}}{2 p v_{0}}=0.5+\frac{10^{2}}{2 * 1000 * 5}=0.51
$$

there is room to play around recommendation: take $|\hat{S}(\lambda)|$ rather large and stability selection will reduce again to reasonable size
when taking the "top 30", the threshold becomes

$$
\pi_{\mathrm{thr}}=\frac{1}{2}+\frac{q_{\Lambda}^{2}}{2 p v_{0}}=0.5+\frac{30^{2}}{2 * 1000 * 5}=0.59
$$

adding noise...
can always add (e.g. independent $\mathcal{N}(0,1))$ noise covariates enlarged dimension $p_{\text {enlarged }}$
error control becomes better (for the same threshold)

$$
\mathbb{E}[V] \leq \frac{1}{2 \pi_{\mathrm{thr}}-1} \frac{q_{\Lambda}^{2}}{p_{\text {enlarged }}}
$$

this sometimes helps indeed in practice - at the cost of loss in power

The assumptions for mathematical guarantees

not worse than random guessing

$$
\frac{\left.\mathbb{E}\left|S_{0} \cap \hat{S}_{\Lambda}\right|\right)}{\mathbb{E}\left(\left|S_{0}^{c} \cap \hat{S}_{\Lambda}\right|\right)} \geq \frac{\left|S_{0}\right|}{\left|S_{0}^{c}\right|}
$$

perhaps hard to check but very reasonable...
for Lasso in linear models it holds assuming the variable screening property asymptotically: if beta-min and compatibility condition hold
exchangeability condition $\left.\{1(j \in \hat{S}(\lambda)\}), j \in S_{0}^{c}\right\}$ is exchangeable for all $\lambda \in \Lambda$
a restrictive assumption but the theorem is very general, for any algorithm \hat{S}
a very special case where exchangeability condition holds: random equi-correlation design linear model

$$
Y=X \beta^{0}+\varepsilon, \operatorname{Cov}(X)_{i, j} \equiv \rho(i \neq j), \operatorname{Var}\left(X_{j}\right) \equiv 1 \forall j
$$

distributions of ($\left.Y, X^{\left(S_{0}\right)},\left\{X^{(j)} ; j \in S_{0}^{C}\right\}\right)$ and of
$\left(Y, X^{\left(S_{0}\right)},\left\{X^{(\pi(j))} ; j \in S_{0}^{c}\right\}\right)$ are the same for any permutation
$\pi: S_{0}^{C} \rightarrow S_{0}^{C}$

- distribution of $X^{\left(S_{0}\right)},\left\{X^{(\pi(j))} ; j \in S_{0}^{c}\right\}$ is the same for all π (because of equi-correlation)
- distribution of $Y \mid X^{\left(S_{0}\right)},\left\{X^{(\pi(j))} ; j \in S_{0}^{c}\right\}$ is the same for all π (because it depends only on $X^{\left(S_{0}\right)}$)
- therefore: distribution of $Y, X^{\left(S_{0}\right)},\left\{X^{(\pi(j))} ; j \in S_{0}^{c}\right\}$ is the same for all π and hence exchangeability condition holds for any (measurable) function $\hat{S}(\lambda)$

An illustration for graphical modeling
$p=160$ gene expressions, $n=115$
GLasso estimator, selecting among the $\binom{p}{2}=12^{\prime} 720$ features stability selection with $\mathbb{E}[V] \leq v_{0}=30$

with permutation (empty graph is correct)

Stability Selection is extremely easy to use and super-generic
the sufficient assumptions (far from necessary) for mathematical guarantees are restrictive but the method seems to work very well in practice

