The de-sparsified or de-biased Lasso

Recap: if p < nand rank(X) = p, then:
BOLS,;' =YTZ0 ) (XU\T ZU)
70 — x() _ x(—/’)ﬂ(/)
= OLS residuals from XD vs. XD = {(XK); Kk £}
40) = argmin_ | XUV — (|2

idea for high-dimensional setting:
use the Lasso for the residuals Z0)



The de-sparsified Lasso

consider

20 = X0 _ x(D50)
= Lasso residuals from X0 vs. X(=) = {x(0); k = j}
49 = argmin_ [|X0 — XCD 5+ Ajll7)4

build projection of Y onto Z0):

YTz B 0 (XUNT Z0) 0 4
X020 = 2 o200 Ok xayz0
Y=XB0+¢ k#j

bias



estimate bias and subtract it:

— (XUNT xU) A
bias =>_ Sz o
k7] standard Lasso

~» de-sparsified Lasso estimator

A yTz0) Z (X(k))Tz(/) .

i T T K
(XO)TZ0 2 (X0)TZ0

not sparse! Never equal to zero forall j=1,...,p

can also be represented as

~

(Y - XB)Tz0)
b =

(XDYT Z0) de-biased Lasso

B/ +
~—
standard Lasso



using that

yT Z0) 0 Z()((k))rzq) 0, Efo)'
(XUnTZ0) 5 e (X ()T Z0) KT (XOYTZ0)
j
we obtain
o 0 cTzZ0)
V(b - 5}) = fZ TZ(, (5k B)  + \F( X7 Z0)

k#/
vn- (bias term of de-biased Lasso)

fluctuation term

so far, this holds for any ZU)



assume fixed design X, e.g. condition on X
Gaussian error ¢ ~ Ny(0, o21)

fluctuation term:

4 n—1/2:T z0) a2HZ(f)H§/n

TXO)TZO ~ x0)Tz0/n =~ X0 TZ0 jnp2



bias term of de-biased Lasso: we exploit two things

> |13 = B°ll1 = Op(s0+/log(p)/n)
> KKT condition for Lasso (on XU) versus X(=)):
|(X(k))TZ(f)/n| < )\-/2

therefore: TZ() N
\fz ))TZ(J = B)
T Z()) ~
_ f% a8 — i
]
(KT N
< Ve SR 205 - o)
Aj/2
< \/ﬁmOP(SO log(p)/n)
= Onlsolog(p)/ V) = op(N)f 50 < L1

if \; < /log(p)/nand (XW)7Z0)/n=< O(1)



summarizing ~»
Theorem 10.1 in the notes
assume:

> ¢~ N(0,02)

> )\ = Cj/log(p)/nand |ZV|2/n> L >0

> so = o(v/n/log(p)) (a bit more sparse than “usual”)

> [|8 = 8%+ = Op(s0\/log(p)/n)

(i.e., compatibility constant ¢2 bounded away from zero)

Then:

XUNTzW /n A.

=1 /ml
VI 20T vn 1ZD]|2/v/n

5j)=>/\/(o 1) (=1,...,p)



more precisely:

L1 (XO)TZ0) 5
HZ’)Hz/f
(Wi,..., Wp)T ~ Ny(0,9), 9 =1, max 2] =0p(1)

-----

—B)) = W+ 4,

confidence intervals for BIQ:

172 11Z9]l2/v/n
(XU)TZW) /n

6% =Y = XBl5/n or 8% =Y = XB|3/(n—[5])

bj+én ®~ (1 - a/2)



can also test
Ho, : 5] =0 versus Hy; : B] #0
can also test group hypothesis: for G C {1,...,p}

Hog: B} =0vje G
Ha : 3 € Gsuch that 8 # 0

under Hy g
4 (XU Z0 /)
max o f— b = max W + Al < max | W;

N——
distr. simulated

and plug-in & for o



Choice of tuning parameters

as usual: 3 = B(Acv); what is the role of \;?

1 1Z915/n
(XU)TZ0) /n[2

variance = o2n~ = o?/|ZV|3

if \; \, then || ZW)|2 \, i.e. large variance

error due to bias estimation is bounded by:

Aj/2

N T O

15 = Bl o< A
assuming J; is not too small
if A; \( (but not too small) then bias estimation error

~> inflate the variance a bit to have low error due to bias
estimation: control type | error at the price of slightly decreasing
power



How good is the de-biased Lasso?

asymptotic efficiency:
for the de-biased Lasso to “work” we require
> sparsity: sp = o(y/n/ log(p))
this cannot be beaten in a minimax sense
» compatibility condition for X

for optimality in terms of the lowest possible asymptotic
variance achieving the “Cramer-Rao” lower bound:

> require in addition that XU) versus X(-/) is sparse:
sj < n/log(p)
then... skipping details, the de-biased Lasso achieves (see
Theorem 10.2):

vn(b; — 7) = N(0, 720; )
N——~—
Cramer-Rao lower bound

© =%, = Cov(X) "~ as for OLS in low dimensions!



Empirical results

R-software hdi
de-sparsified Lasso

rigina " m m MMM%MmeW@MWM”“ 965

86 90 90 90 90 91 91 91 91 91 91 91 91 91 91

“W“mmﬁmmmmmﬁmmmﬁmMMWM%z

Robust " 95 87 88 88 89 90 90 90 91 91 91 91 91 91 91
Bootstrap WM mmwmwwwwmmmmwmwm 9%

black: confidence interval covered the true coefficient
red: confidence interval failed to cover



Stablllty Selection (Ch. 10 in Bilhimann and van de Geer (2011))

SERIES B

J. R. Statist. Soc. B (2010)
72, Part 4, pp. 417473

Stability selection

Nicolai Meinshausen
University of Oxford, UK

and Peter Bithimann

Ziirich,

[Read before The Royal Statistical Society at a meeting organized by the Research Section on
Wednesday, February 3rd, 2010, Professor D. M. Titterington in the Chair]

has been developed before one knew about the
de-biased/de-sparsified Lasso

even with new tools such as the de-biased/de-sparsified Lasso
estimation of discrete structures (“relevant” variables in a
generalized linear model; edges in a graphical model) is
notoriously difficult

e.g. choice of tuning parameters...?



The generic setup

ii.d. data Z,...,2Z,

main example: Z; = (Xj, Y;) from regression or classification
\ASA is a “feature selection” method/algorithm among {1,...,p}
features

can we assign “relevance” to the selected features in 5,?



a “natural” approach: resampling!
here: use subsampling:

» [* random sub-sample of size [n/2] of {1,...,n}
> compute Sy(/*)

> repeat B times to obtain Sy(/*1),. .., 5\(/*8)

> consider the “overlap” among S (/*'), ..., 5x(I*B)

regarding the latter, for example:

B
fk(\) =P [K € 8\(IM)]~ B~ I(K € 85\(I"?))
b=1

eg. M) (e{1,....,p})

the probability P* is with respect to subsampling: a sum over
(1) terms, m = |n/2], i.e., all possible subsampling
combinations

~ it is approximated by B (=~ 100) times random subsampling



The stability regularization path

Riboflavin data: n= 115, p = 4088

Y log-production rat of riboflavin by bacillus subtilis

X: gene expressions of bacillus subtilis

all X-variables permuted except 6 “a-priori relevant” genes

left: Lasso regularization path (red: the 6 non-permuted “relevant” genes)
right: Stability path with I1; on y-axis (red: the 6 non-permuted “relevant”
variables stick out much more clearly from the noise covariates)



What is a good truncation value (for 11)?

aim: choose my, such that

Sstable = {fy TSK( Ialj(/\) > 7"'thr}

has not too many false positives
A can be a singleton or a range of values

as a measure for type | error control (against false positives):
V = number of false positives = | S N S|

where Sy is the set of the true relevant features, e.g.:
— active variables in regression
— true edges in a graphical model



“the miracle”:

a simple formula connecting 7, with E[V]

consider a setting with p possible features
S(A) is a feature selection algorithm

Sh = U)\AE/\S()‘)

am=E[S( L )

random subsample



Theorem 10.1
Assume:

> exchangeability condition:
{I(j € S(N\)}),j € S§} is exchangeable for all A € A

» S is not worse than random guessing

E|Sy N Shl) S |So
E(ISSnS) — ISS]

Then, for g € (1/2,1):

1 @

E[V] < ——m A,
[ ] 27y — 1 p

suppose we know gy (see later)

strategy: specify E[V] = vy (e.g. =5)
2

o fOF Ty 1= & + 2Z—AVO: E[V] < vo



example: regression model with p = 1000 variables

S, = the top 10 variables from Lasso (e.g. the different A from
Lasso by CV and choose the top 10 variables with the largest
absolute values of the corresponding estimated coefficients; if
less than 10 variables are selected, take the selected variables)
the value A corresponds to the “top 10”; A is a singleton

we then know that gx = E[|S\(/)]] < 10
For E[V] = v := 5 we then obtain

1 g 102
Wthr—§+m—05+m—o51



there is room to play around
recommendation: take |S(\)| rather large and stability selection
will reduce again to reasonable size

when taking the “top 307, the threshold becomes

1 2 30°
Tiw = 5+ 50 = 05+

2" 2pvp 5510005 09



adding noise...
can always add (e.g. independent A (0, 1)) noise covariates
enlarged dimension Penarged

error control becomes better (for the same threshold)

2
1 ax
27 — 1 Penlarged

E[V]

this sometimes helps indeed in practice — at the cost of loss in
power



The assumptions for mathematical guarantees

not worse than random guessing

E[SonSal) . |Sol
ERENEE]

perhaps hard to check but very reasonabile...

for Lasso in linear models it holds assuming the variable
screening property
asymptotically: if beta-min and compatibility condition hold



exchangeability condition {1(j € S(\)}),] € S§}is
exchangeable for all A € A

a restrictive assumption A
but the theorem is very general, for any algorithm S



a very special case where exchangeability condition holds:
random equi-correlation design linear model

Y = Xﬂo + &, COV(X),’J =p ([ 7&]), VB_I'(X/) = 1\V/_I

distributions of (Y X(50) {X0); j e S¢}) and of
(Y, X(S0) {X(=0)); j e SE}) are the same for any permutation
m: 8§ — S§

> distribution of X(%0) {X()); j e S¢} is the same for all =
(because of equi- correlahon)

» distribution of Y|X (%) {X(()); j e S¢} is the same for all 7
(because it depends only on X(50))

> therefore: distribution of Y, X(50) {X(()); j e S¢} is the
same for all =
and hence exchangeability condition holds for any
(measurable) function S(\)



An illustration for graphical modeling
p = 160 gene expressions, n =115
GLasso estimator, selecting among the (g) = 12720 features
stability selection with IE[V] < Vo =30

with permutation (empty graph is correct)

A=0065 A=0.063 A=0.061 A=0.059 A=0.057 A=0.055

.ISI>

bility Selection

Stabi




Stability Selection is extremely easy to use
and super-generic

the sufficient assumptions (far from necessary) for
mathematical guarantees are restrictive
but the method seems to work very well in practice



