
The de-sparsified or de-biased Lasso

Recap: if p < n and rank(X ) = p, then:

β̂OLS,j = Y T Z (j)/(X (j))T Z (j)

Z (j) = X (j) − X (−j)γ̂(j)

= OLS residuals from X (j) vs. X (−j) = {X (k); k 6= j}
γ̂(j) = argminγ‖X (j) − X (−j)γ‖22

idea for high-dimensional setting:
use the Lasso for the residuals Z (j)



The de-sparsified Lasso

consider

Z (j) = X (j) − X (−j)γ̂(j)

= Lasso residuals from X (j) vs. X (−j) = {X (k); k 6= j}
γ̂(j) = argminγ‖X (j) − X (−j)γ‖22 + λj‖γ‖1

build projection of Y onto Z (j):

Y T Z (j)

(X (j))T Z (j) =︸︷︷︸
Y =Xβ0+ε

β0
j +

∑
k 6=j

(X (k))T Z (j)

(X (j))T Z (j) β
0
k︸ ︷︷ ︸

bias

+
εT Z (j)

(X (j))T Z (j)



estimate bias and subtract it:

b̂ias =
∑
k 6=j

(X (k))T X (j)

(X (j))T Z (j) β̂k︸︷︷︸
standard Lasso

; de-sparsified Lasso estimator

b̂j =
Y T Z (j)

(X (j))T Z (j) −
∑
k 6=j

(X (k))T Z (j)

(X (j))T Z (j) β̂k (j = 1, . . . ,p)

not sparse! Never equal to zero for all j = 1, . . . ,p

can also be represented as

b̂j = β̂j︸︷︷︸
standard Lasso

+
(Y − X β̂)T Z (j)

(X (j))T Z (j) “de-biased Lasso”



using that

Y T Z (j)

(X (j))T Z (j) = β0
j +

∑
k 6=j

(X (k))T Z (j)

(X (j))T Z (j) β
0
k +

εT Z (j)

(X (j))T Z (j)

we obtain

√
n(b̂j − β0

j ) =
√

n
∑
k 6=j

(X (k))T Z (j)

(X (j))T Z (j) (β0
k − β̂k )

︸ ︷︷ ︸
√

n· (bias term of de-biased Lasso)

+
√

n
εT Z (j)

(X (j))T Z (j)︸ ︷︷ ︸
fluctuation term

so far, this holds for any Z (j)



assume fixed design X , e.g. condition on X
Gaussian error ε ∼ Nn(0, σ2I)

fluctuation term:

√
n

εT Z (j)

(X (j))T Z (j) =
n−1/2εT Z (j)

(X (j))T Z (j)/n
∼ N (0,

σ2‖Z (j)‖22/n
|(X (j))T Z (j)/n|2

)



bias term of de-biased Lasso: we exploit two things
I ‖β̂ − β0‖1 = OP(s0

√
log(p)/n)

I KKT condition for Lasso (on X (j) versus X (−j)):
|(X (k))T Z (j)/n| ≤ λj/2

therefore: √
n
∑
k 6=j

(X (k))T Z (j)

(X (j))T Z (j) (β0
k − β̂k )

=
√

n
∑
k 6=j

(X (k))T Z (j)/n
(X (j))T Z (j)/n

(β0
k − β̂k )

≤
√

n max
k 6=j
|(X

(k))T Z (j)/n
(X (j))T Z (j)/n

|‖β̂ − β0‖1

≤
√

n
λj/2

(X (j))T Z (j)/n
OP(s0

√
log(p)/n)

= OP(s0 log(p)/
√

n) = oP(1) if s0 �
√

n
log(p)

if λj �
√

log(p)/n and (X (j))T Z (j)/n � O(1)



summarizing ;

Theorem 10.1 in the notes
assume:
I ε ∼ N (0, σ2I)
I λj = Cj

√
log(p)/n and ‖Z (j)‖22/n ≥ L > 0

I s0 = o(
√

n/ log(p)) (a bit more sparse than “usual”)
I ‖β̂ − β0‖1 = OP(s0

√
log(p)/n)

(i.e., compatibility constant φ2
o bounded away from zero)

Then:

σ−1√n
(X (j))T Z (j)/n
‖Z (j)‖2/

√
n

(b̂j − β0
j ) =⇒ N (0,1) (j = 1, . . . ,p)



more precisely:

σ−1√n
(X (j))T Z (j)/n
‖Z (j)‖2/

√
n

(b̂j − β0
j ) = Wj + ∆j

(W1, . . . ,Wp)T ∼ Np(0,Ω), Ωjj ≡ 1 ∀j , max
j=1,...,p

|∆j | = oP(1)

confidence intervals for β0
j :

b̂j ± σ̂n−1/2 ‖Z (j)‖2/
√

n
|(X (j))T Z (j)/n

Φ−1(1− α/2)

σ̂2 = ‖Y − X β̂‖22/n or σ̂2 = ‖Y − X β̂‖22/(n − ‖β̂‖00)



can also test

H0,j : β0
j = 0 versus HA,j : β0

j 6= 0

can also test group hypothesis: for G ⊆ {1, . . . ,p}

H0,G : β0
j ≡ 0∀j ∈ G

HA,G : ∃j ∈ G such that β0
j 6= 0

under H0,G:

max
j∈G

σ−1√n
|(X (j))T Z (j)/n|
‖Z (j)‖2/

√
n
|b̂j | = max

j∈G
|Wj + ∆j | � max

j∈G
|Wj |︸ ︷︷ ︸

distr. simulated

and plug-in σ̂ for σ



Choice of tuning parameters

as usual: β̂ = β̂(λ̂CV); what is the role of λj?

variance = σ2n−1 ‖Z (j)‖22/n
|(X (j))T Z (j)/n|2

� σ2/‖Z (j)‖22

if λj ↘ then ‖Z (j)‖22 ↘, i.e. large variance

error due to bias estimation is bounded by:

| . . . | ≤
√

n
λj/2

|(X (j))T Z (j)/n|
‖β̂ − β0‖1 ∝ λj

assuming λj is not too small
if λj ↘ (but not too small) then bias estimation error↘

; inflate the variance a bit to have low error due to bias
estimation: control type I error at the price of slightly decreasing
power



How good is the de-biased Lasso?

asymptotic efficiency:
for the de-biased Lasso to “work” we require
I sparsity: s0 = o(

√
n/ log(p))

this cannot be beaten in a minimax sense
I compatibility condition for X

for optimality in terms of the lowest possible asymptotic
variance achieving the “Cramer-Rao” lower bound:
I require in addition that X (j) versus X (−j) is sparse:

sj � n/ log(p)

then... skipping details, the de-biased Lasso achieves (see
Theorem 10.2):

√
n(b̂j − β0

j ) =⇒ N (0, σ2Θjj︸ ︷︷ ︸
Cramer-Rao lower bound

)

Θ = Σ−1
X = Cov(X )−1 ; as for OLS in low dimensions!



Empirical results

R-software hdi
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black: confidence interval covered the true coefficient
red: confidence interval failed to cover



Stability Selection (Ch. 10 in Bühlmann and van de Geer (2011))

has been developed before one knew about the
de-biased/de-sparsified Lasso

even with new tools such as the de-biased/de-sparsified Lasso
estimation of discrete structures (“relevant” variables in a
generalized linear model; edges in a graphical model) is
notoriously difficult
e.g. choice of tuning parameters...?



The generic setup

i.i.d. data Z1, . . . ,Zn

main example: Zi = (Xi ,Yi) from regression or classification

Ŝλ is a “feature selection” method/algorithm among {1, . . . ,p}
features

can we assign “relevance” to the selected features in Ŝλ?



a “natural” approach: resampling!
here: use subsampling:
I I∗ random sub-sample of size bn/2c of {1, . . . ,n}
I compute Ŝλ(I∗)
I repeat B times to obtain Ŝλ(I∗1), . . . , Ŝλ(I∗B)

I consider the “overlap” among Ŝλ(I∗1), . . . , Ŝλ(I∗B)

regarding the latter, for example:

Π̂K (λ) = P∗[K ⊆ Ŝλ(I∗)] ≈ B−1
B∑

b=1

I(K ⊆ Ŝλ(I∗b))

e.g. Π̂j(λ) (j ∈ {1, . . . ,p})

the probability P∗ is with respect to subsampling: a sum over(n
m

)
terms, m = bn/2c, i.e., all possible subsampling

combinations
; it is approximated by B (≈ 100) times random subsampling



The stability regularization path

Riboflavin data: n = 115, p = 4088
Y : log-production rat of riboflavin by bacillus subtilis
X : gene expressions of bacillus subtilis
all X -variables permuted except 6 “a-priori relevant” genes
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left: Lasso regularization path (red: the 6 non-permuted “relevant” genes)

right: Stability path with Π̂j on y-axis (red: the 6 non-permuted “relevant”

variables stick out much more clearly from the noise covariates)



What is a good truncation value (for Π̂)?

aim: choose πthr such that

Ŝstable = {j ; max
λ∈Λ

Π̂j(λ) ≥ πthr}

has not too many false positives
Λ can be a singleton or a range of values

as a measure for type I error control (against false positives):

V = number of false positives = |Ŝstable ∩ Sc
0 |

where S0 is the set of the true relevant features, e.g.:
– active variables in regression
– true edges in a graphical model



“the miracle”:

a simple formula connecting πthr with E[V ]

consider a setting with p possible features
Ŝ(λ) is a feature selection algorithm
ŜΛ = ∪λ∈ΛŜ(λ)
qΛ = E[ŜΛ( I︸︷︷︸

random subsample

)]



Theorem 10.1
Assume:
I exchangeability condition:
{l(j ∈ Ŝ(λ)}), j ∈ Sc

0} is exchangeable for all λ ∈ Λ

I Ŝ is not worse than random guessing

E|S0 ∩ ŜΛ|)
E(|Sc

0 ∩ ŜΛ|)
≥ |S0|
|Sc

0 |
.

Then, for πthr ∈ (1/2,1):

E[V ] ≤ 1
2πthr − 1

q2
Λ

p
.

suppose we know qΛ (see later)
strategy: specify E[V ] = v0 (e.g. = 5)

; for πthr := 1
2 +

q2
Λ

2pv0
: E[V ] ≤ v0



example: regression model with p = 1000 variables

Ŝλ = the top 10 variables from Lasso (e.g. the different λ from
Lasso by CV and choose the top 10 variables with the largest
absolute values of the corresponding estimated coefficients; if
less than 10 variables are selected, take the selected variables)
the value λ corresponds to the “top 10”; Λ is a singleton

we then know that qΛ = E[|Ŝλ(I)|] ≤ 10

For E[V ] = v0 := 5 we then obtain

πthr =
1
2

+
q2

Λ

2pv0
= 0.5 +

102

2 ∗ 1000 ∗ 5
= 0.51



there is room to play around
recommendation: take |Ŝ(λ)| rather large and stability selection
will reduce again to reasonable size

when taking the “top 30”, the threshold becomes

πthr =
1
2

+
q2

Λ

2pv0
= 0.5 +

302

2 ∗ 1000 ∗ 5
= 0.59



adding noise...
can always add (e.g. independent N (0,1)) noise covariates
enlarged dimension penlarged

error control becomes better (for the same threshold)

E[V ] ≤ 1
2πthr − 1

q2
Λ

penlarged

this sometimes helps indeed in practice – at the cost of loss in
power



The assumptions for mathematical guarantees

not worse than random guessing

E|S0 ∩ ŜΛ|)
E(|Sc

0 ∩ ŜΛ|)
≥ |S0|
|Sc

0 |

perhaps hard to check but very reasonable...

for Lasso in linear models it holds assuming the variable
screening property
asymptotically: if beta-min and compatibility condition hold



exchangeability condition {l(j ∈ Ŝ(λ)}), j ∈ Sc
0} is

exchangeable for all λ ∈ Λ

a restrictive assumption
but the theorem is very general, for any algorithm Ŝ



a very special case where exchangeability condition holds:
random equi-correlation design linear model

Y = Xβ0 + ε, Cov(X )i,j ≡ ρ (i 6= j), Var(Xj) ≡ 1∀j

distributions of (Y ,X (S0), {X (j); j ∈ Sc
0}) and of

(Y ,X (S0), {X (π(j)); j ∈ Sc
0}) are the same for any permutation

π : Sc
0 → Sc

0

I distribution of X (S0), {X (π(j)); j ∈ Sc
0} is the same for all π

(because of equi-correlation)
I distribution of Y |X (S0), {X (π(j)); j ∈ Sc

0} is the same for all π
(because it depends only on X (S0))

I therefore: distribution of Y ,X (S0), {X (π(j)); j ∈ Sc
0} is the

same for all π
and hence exchangeability condition holds for any
(measurable) function Ŝ(λ)



An illustration for graphical modeling
p = 160 gene expressions, n = 115
GLasso estimator, selecting among the

(p
2

)
= 12′720 features

stability selection with E[V ] ≤ v0 = 30
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Stability Selection is extremely easy to use
and super-generic

the sufficient assumptions (far from necessary) for
mathematical guarantees are restrictive
but the method seems to work very well in practice


