How good is the de-biased Lasso?

asymptotic efficiency:
for the de-biased Lasso to “work” we require
> sparsity: sp = o(y/n/ log(p))
this cannot be beaten in a minimax sense
» compatibility condition for X

for optimality in terms of the lowest possible asymptotic
variance achieving the “Cramer-Rao” lower bound:

> require in addition that XU) versus X(-/) is sparse:
sj < n/log(p)
then... skipping details, the de-biased Lasso achieves (see
Theorem 10.2):

vn(b; — 7) = N(0, 720; )
N——~—
Cramer-Rao lower bound

© =%, = Cov(X) "~ as for OLS in low dimensions!



Empirical results

R-software hdi
de-sparsified Lasso
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black: confidence interval covered the true coefficient
red: confidence interval failed to cover
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has been developed before one knew about the
de-biased/de-sparsified Lasso

even with new tools such as the de-biased/de-sparsified Lasso:
estimation of discrete structures (“relevant” variables in a
generalized linear model; edges in a graphical model) is
notoriously difficult

e.g. choice of tuning parameters...?



The generic setup

ii.d. data Z,...,2Z,

main example: Z; = (Xj, Y;) from regression or classification
\ASA is a “feature selection” method/algorithm among {1,...,p}
features

can we assign “relevance” to the selected features in 5,?



a “natural” approach: resampling!
here: use subsampling:

» [* random sub-sample of size [n/2] of {1,...,n}
> compute Sy(/*)

> repeat B times to obtain Sy(/*1),. .., 5\(/*8)

> consider the “overlap” among S (/*'), ..., 5x(I*B)

regarding the latter, for example:

B
fk(\) =P [K € 8\(IM)]~ B~ I(K € 85\(I"?))
b=1

eg. M) (e{1,....,p})

the probability P* is with respect to subsampling: a sum over
(1) terms, m = |n/2], i.e., all possible subsampling
combinations

~ it is approximated by B (=~ 100) times random subsampling



The stability regularization path

Riboflavin data: n= 115, p = 4088

Y log-production rat of riboflavin by bacillus subtilis

X: gene expressions of bacillus subtilis

all X-variables permuted except 6 “a-priori relevant” genes

left: Lasso regularization path (red: the 6 non-permuted “relevant” genes)
right: Stability path with I1; on y-axis (red: the 6 non-permuted “relevant”
variables stick out much more clearly from the noise covariates)



What is a good truncation value (for 11)?

aim: choose my, such that

Sstable = {fy TSK( Ialj(/\) > 7"'thr}

has not too many false positives
A can be a singleton or a range of values

as a measure for type | error control (against false positives):
V = number of false positives = | S N S|

where Sy is the set of the true relevant features, e.g.:
— active variables in regression
— true edges in a graphical model



“the miracle”:

a simple formula connecting 7, with E[V]

consider a setting with p possible features
S()) is a feature selection algorithm

S/\ = U)\g\/\S()\)

an=E[SA( L )]

random subsample



Theorem 10.1
Assume:

> exchangeability condition:
{I(j € S(N\)}),j € S§} is exchangeable for all A € A

» S is not worse than random guessing

E|Sy N Shl) S |So
E(ISSnS) — ISS]

Then, for g € (1/2,1):

1 @

E[V] < ——m A,
[ ] 27y — 1 p

suppose we know gy (see later)

strategy: specify E[V] = vy (e.g. =5)
2

o fOF Ty 1= & + 2Z—AVO: E[V] < vo



example: regression model with p = 1000 variables

S, = the top 10 variables from Lasso (e.g. the different A from
Lasso by CV and choose the top 10 variables with the largest
absolute values of the corresponding estimated coefficients; if
less than 10 variables are selected, take the selected variables)
the value A corresponds to the “top 10”; A is a singleton

we then know that gx = E[|S\(/)]] < 10
For E[V] = v := 5 we then obtain

1 g 102
Wthr—§+m—05+m—o51



there is room to play around
recommendation: take |S(\)| rather large and stability selection
will reduce again to reasonable size

when taking the “top 307, the threshold becomes

1 2 30°
Tiw = 5+ 50 = 05+

2" 2pvp 5510005 09



adding noise...
can always add (e.g. independent A (0, 1)) noise covariates
enlarged dimension Penarged

error control becomes better (for the same threshold)

2
1 ax
27 — 1 Penlarged

E[V]

this sometimes helps indeed in practice — at the cost of loss in
power



The assumptions for mathematical guarantees

not worse than random guessing

E[SonSal) . |Sol
ERENEE]

perhaps hard to check but very reasonabile...

for Lasso in linear models it holds assuming the variable
screening property
asymptotically: if beta-min and compatibility condition hold



exchangeability condition {1(j € S(\)}),] € S§}is
exchangeable for all A € A

a restrictive assumption A
but the theorem is very general, for any algorithm S



a very special case where exchangeability condition holds:
random equi-correlation design linear model

Y = Xﬂo + &, COV(X),’J =p ([ 7&]), VB_I'(X/) = 1\V/_I

distributions of (Y X(50) {X0); j e S¢}) and of
(Y, X(S0) {X(=0)); j e SE}) are the same for any permutation
m: 8§ — S§

> distribution of X(%0) {X()); j e S¢} is the same for all =
(because of equi- correlahon)

» distribution of Y|X (%) {X(()); j e S¢} is the same for all 7
(because it depends only on X(50))

> therefore: distribution of Y, X(50) {X(()); j e S¢} is the
same for all =
and hence exchangeability condition holds for any
(measurable) function S(\)



An illustration for graphical modeling
p = 160 gene expressions, n =115
GLasso estimator, selecting among the (g) = 12720 features
stability selection with IE[V] < Vo =30

with permutation (empty graph is correct)

A=0065 A=0.063 A=0.061 A=0.059 A=0.057 A=0.055

.ISI>

bility Selection

Stabi




Stability Selection is extremely easy to use
and super-generic

the sufficient assumptions (far from necessary) for
mathematical guarantees are restrictive
but the method seems to work very well in practice



P-values based on multi sample splitting
(Ch. 11 in Bihimann and van de Geer (2011))

Stability Selection
» uses subsampling many times — a good thing!

» provides control of the expected number of false positives
rather than e.g. the familywise error rate ~» we will
“address” this with
multi sample splitting and aggregation of P-values

familywise error rate (FWER):

FWER = P[V > 0], V number of false positives



Fixed design linear model

Y =X3%+¢

instead of de-biased/de-sparsified method, consider the “older”
technique (which is not statistically optimal but more generic
and more in the spirit of stability selection)



split the sample into two parts /1 and L of equal size |n/2]

A

> use (e.g.) Lasso to select variables based on /1: S(/y)

> perform low-dimensional statistical inference on I based
on data (x,(ZS(“)), YL);
for example using the t-test for single coefficients 5})

(if j ¢ S(Iy), assign the p-value 1 to the hypothesis
HO,j : /Bjo = O(!

due to independence of /1 and b, this is a “valid” strategy
(see later)



validity of the (single) data splitting procedure

consider testing Ho; : 37 = 0 versus Ha;: 3} # 0

assume Gaussian errors for the fixed design linear model :
thus, use the t-test on the second half of the sample £ to get a
p-value

Praw j from t-test based on X

12,3(11)7 Yl2

Praw j is a valid p-value (controlling type | error) for testing Hy
if 3(11) 2 & (i.e., the screening property holds)

if the screening property does not hold: Praw ; is still valid for
Ho (M) : B;,(M) = 0 where M = 5(I) is a selected sub-model
and B(M) = (XJ X)X E[Y]



a p-value lottery depending on the random split of the data

motif regression n = 287, p = 195

o
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ADJUSTED P-VALUE

~» should aggregate/average over multiple splits!



Multiple testing and aggregation of p-values
the issue of multiple testing:

" {me,, based on Y, X, &, »ifj € S(h),
j — )

Rt Jitj ¢ 8(h)
thus, we can have at most |S(/;)| false positives

~» can correct with Bonferroni with factor |S(/)| (instead of
factor p) to control the familywise error rate

Peorrj = min(B;- [5(1)1,1) (= 1,...,p)

decision rule: reject Hy ; if and only if .o < a
~ FWER < «



the issue with P-value aggregation:

if we run sample splitting B times, we obtain P-values

pli! ple)

corr,j’ """ " corr,f
how to aggregate these dependent p-values to a single one?

for v € (0, 1) define

Qy(7) = min { @, (PR} /7 b=1,....B}), 1},

where g, (-) is the (empirical) v-quantile function



Proposition 11.1 (Bthlmann and van de Geer, 2011)
For any v € (0,1), Q;(v) are P-values which control the FWER

example: v =1/2
aggregate the p-values with the sample median and multiply by
the factor 2



avoid choosing ~:

P; = min (1 — Iog’ymin) inf Q)1 (G=1,...,p).
|

YE(Ymin,1)
price to optimize over ~

Theorem 11.1 (Bidhlmann and van de Geer (2011))
For any ymin € (0, 1), P; are P-values which control the FWER

the entire framework for p-value aggregation holds whenever
the single p-values are valid (P[P ; < a] < o under Hy )

has nothing to do with high-dimensional regression and sample
splitting
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one can also adapt the method to control the False Discovery
Rate (FDR)



multi sample splitting and p-value construction:
> is very generic, also for “any other” model class

> is powerful in terms of multiple testing correction: we only
correct for multiplicity from |S(/;)| variables

> it relies in theory on the screening property of the selector
in practice: it is a quite competitive method!

» Schultheiss et al. (2021): can improve multi sample
splitting by multi carve methods, based on “technology”
from selected inference



