How good is the de-biased Lasso?

asymptotic efficiency:
for the de-biased Lasso to "work" we require

- sparsity: $s_{0}=o(\sqrt{n} / \log (p))$
this cannot be beaten in a minimax sense
- compatibility condition for X
for optimality in terms of the lowest possible asymptotic variance achieving the "Cramer-Rao" lower bound:
- require in addition that $X^{(j)}$ versus $X^{(-j)}$ is sparse: $s_{j} \ll n / \log (p)$
then... skipping details, the de-biased Lasso achieves (see Theorem 10.2):

$$
\sqrt{n}\left(\hat{b}_{j}-\beta_{j}^{0}\right) \Longrightarrow \mathcal{N}(0,
$$

$$
\underbrace{\sigma^{2} \Theta_{j j}}
$$

Cramer-Rao lower bound
$\Theta=\Sigma_{X}^{-1}=\operatorname{Cov}(X)^{-1} \leadsto$ as for OLS in low dimensions!

Empirical results

R-software hdi

> de-sparsified Lasso

black: confidence interval covered the true coefficient red: confidence interval failed to cover

Stability Selection (Ch. 10 in Bühlmann and van de Geer (2011))

Stability selection

Nicolai Meinshausen
University of Oxford, UK
and Peter Bühlmann
Eidgenössiche Technische Hochschule Zürich, Switzerland
[Read before The Royal Statistical Society at a meeting organized by the Research Section on Wednesday, February 3rd, 2010, Professor D. M. Titterington in the Chair]
has been developed before one knew about the de-biased/de-sparsified Lasso
even with new tools such as the de-biased/de-sparsified Lasso: estimation of discrete structures ("relevant" variables in a generalized linear model; edges in a graphical model) is notoriously difficult e.g. choice of tuning parameters...?

The generic setup

i.i.d. data Z_{1}, \ldots, Z_{n}
main example: $Z_{i}=\left(X_{i}, Y_{i}\right)$ from regression or classification
\hat{S}_{λ} is a "feature selection" method/algorithm among $\{1, \ldots, p\}$ features
can we assign "relevance" to the selected features in \hat{S}_{λ} ?
a "natural" approach: resampling!
here: use subsampling:

- ${ }^{*}$ random sub-sample of size $\lfloor n / 2\rfloor$ of $\{1, \ldots, n\}$
- compute $\hat{S}_{\lambda}\left(I^{*}\right)$
- repeat B times to obtain $\hat{S}_{\lambda}\left(I^{* 1}\right), \ldots, \hat{S}_{\lambda}\left(I^{* B}\right)$
- consider the "overlap" among $\hat{S}_{\lambda}\left(I^{* 1}\right), \ldots, \hat{S}_{\lambda}\left(I^{* B}\right)$
regarding the latter, for example:

$$
\begin{array}{ll}
& \hat{\Pi}_{K}(\lambda)=\mathbb{P}^{*}\left[K \subseteq \hat{S}_{\lambda}\left(I^{*}\right)\right] \approx B^{-1} \sum_{b=1}^{B} I\left(K \subseteq \hat{S}_{\lambda}\left(I^{* b}\right)\right) \\
\text { e.g. } & \hat{\Pi}_{j}(\lambda)(j \in\{1, \ldots, p\})
\end{array}
$$

the probability \mathbb{P}^{*} is with respect to subsampling: a sum over $\binom{n}{m}$ terms, $m=\lfloor n / 2\rfloor$, i.e., all possible subsampling combinations
\sim it is approximated by $B(\approx 100)$ times random subsampling

The stability regularization path

Riboflavin data: $n=115, p=4088$
Y : log-production rat of riboflavin by bacillus subtilis
X : gene expressions of bacillus subtilis
all X-variables permuted except 6 "a-priori relevant" genes

left: Lasso regularization path (red: the 6 non-permuted "relevant" genes) right: Stability path with $\hat{\Pi}_{j}$ on y-axis (red: the 6 non-permuted "relevant" variables stick out much more clearly from the noise covariates)

What is a good truncation value (for $\hat{\Pi}$)?

aim: choose $\pi_{\text {thr }}$ such that

$$
\hat{S}_{\text {stable }}=\left\{j ; \max _{\lambda \in \Lambda} \hat{\Pi}_{j}(\lambda) \geq \pi_{\text {thr }}\right\}
$$

has not too many false positives
Λ can be a singleton or a range of values
as a measure for type I error control (against false positives):

$$
V=\text { number of false positives }=\left|\hat{S}_{\text {stable }} \cap S_{0}^{C}\right|
$$

where S_{0} is the set of the true relevant features, e.g.:

- active variables in regression
- true edges in a graphical model
"the miracle":
a simple formula connecting $\pi_{\text {thr }}$ with $\mathbb{E}[V]$
consider a setting with p possible features
$\hat{S}(\lambda)$ is a feature selection algorithm
$\hat{S}_{\Lambda}=\cup_{\lambda \in \Lambda} \hat{S}(\lambda)$
$q_{\Lambda}=\mathbb{E}[|\hat{S}_{\Lambda}(\underbrace{I}_{\text {random subsample }})|]$

Theorem 10.1

Assume:

- exchangeability condition:

$$
\left.\{1(j \in \hat{S}(\lambda)\}), j \in S_{0}^{c}\right\} \text { is exchangeable for all } \lambda \in \Lambda
$$

- \hat{S} is not worse than random guessing

$$
\frac{\left.\mathbb{E}\left|S_{0} \cap \hat{S}_{\Lambda}\right|\right)}{\mathbb{E}\left(\left|S_{0}^{c} \cap \hat{S}_{\Lambda}\right|\right)} \geq \frac{\left|S_{0}\right|}{\left|S_{0}^{c}\right|}
$$

Then, for $\pi_{\text {thr }} \in(1 / 2,1)$:

$$
\mathbb{E}[V] \leq \frac{1}{2 \pi_{\mathrm{thr}}-1} \frac{q_{\Lambda}^{2}}{p}
$$

suppose we know q_{\wedge} (see later) strategy: specify $\mathbb{E}[V]=v_{0} \quad($ e.g. $=5)$
\leadsto for $\pi_{\mathrm{thr}}:=\frac{1}{2}+\frac{q_{1}^{2}}{2 p v_{0}}: \mathbb{E}[V] \leq v_{0}$
example: regression model with $p=1000$ variables
$\hat{S}_{\lambda}=$ the top 10 variables from Lasso (e.g. the different λ from Lasso by CV and choose the top 10 variables with the largest absolute values of the corresponding estimated coefficients; if less than 10 variables are selected, take the selected variables) the value λ corresponds to the "top 10 "; Λ is a singleton
we then know that $q_{\Lambda}=\mathbb{E}\left[\left|\hat{S}_{\lambda}(I)\right|\right] \leq 10$
For $\mathbb{E}[V]=v_{0}:=5$ we then obtain

$$
\pi_{\mathrm{thr}}=\frac{1}{2}+\frac{q_{\Lambda}^{2}}{2 p v_{0}}=0.5+\frac{10^{2}}{2 * 1000 * 5}=0.51
$$

there is room to play around recommendation: take $|\hat{S}(\lambda)|$ rather large and stability selection will reduce again to reasonable size
when taking the "top 30", the threshold becomes

$$
\pi_{\mathrm{thr}}=\frac{1}{2}+\frac{q_{\Lambda}^{2}}{2 p v_{0}}=0.5+\frac{30^{2}}{2 * 1000 * 5}=0.59
$$

adding noise...
can always add (e.g. independent $\mathcal{N}(0,1))$ noise covariates enlarged dimension $p_{\text {enlarged }}$
error control becomes better (for the same threshold)

$$
\mathbb{E}[V] \leq \frac{1}{2 \pi_{\mathrm{thr}}-1} \frac{q_{\Lambda}^{2}}{p_{\text {enlarged }}}
$$

this sometimes helps indeed in practice - at the cost of loss in power

The assumptions for mathematical guarantees

not worse than random guessing

$$
\frac{\left.\mathbb{E}\left|S_{0} \cap \hat{S}_{\Lambda}\right|\right)}{\mathbb{E}\left(\left|S_{0}^{c} \cap \hat{S}_{\Lambda}\right|\right)} \geq \frac{\left|S_{0}\right|}{\left|S_{0}^{c}\right|}
$$

perhaps hard to check but very reasonable...
for Lasso in linear models it holds assuming the variable screening property asymptotically: if beta-min and compatibility condition hold
exchangeability condition $\left.\{1(j \in \hat{S}(\lambda)\}), j \in S_{0}^{c}\right\}$ is exchangeable for all $\lambda \in \Lambda$
a restrictive assumption but the theorem is very general, for any algorithm \hat{S}
a very special case where exchangeability condition holds: random equi-correlation design linear model

$$
Y=X \beta^{0}+\varepsilon, \operatorname{Cov}(X)_{i, j} \equiv \rho(i \neq j), \operatorname{Var}\left(X_{j}\right) \equiv 1 \forall j
$$

distributions of ($\left.Y, X^{\left(S_{0}\right)},\left\{X^{(j)} ; j \in S_{0}^{C}\right\}\right)$ and of
$\left(Y, X^{\left(S_{0}\right)},\left\{X^{(\pi(j))} ; j \in S_{0}^{c}\right\}\right)$ are the same for any permutation
$\pi: S_{0}^{C} \rightarrow S_{0}^{C}$

- distribution of $X^{\left(S_{0}\right)},\left\{X^{(\pi(j))} ; j \in S_{0}^{c}\right\}$ is the same for all π (because of equi-correlation)
- distribution of $Y \mid X^{\left(S_{0}\right)},\left\{X^{(\pi(j))} ; j \in S_{0}^{c}\right\}$ is the same for all π (because it depends only on $X^{\left(S_{0}\right)}$)
- therefore: distribution of $Y, X^{\left(S_{0}\right)},\left\{X^{(\pi(j))} ; j \in S_{0}^{c}\right\}$ is the same for all π and hence exchangeability condition holds for any (measurable) function $\hat{S}(\lambda)$

An illustration for graphical modeling
$p=160$ gene expressions, $n=115$
GLasso estimator, selecting among the $\binom{p}{2}=12^{\prime} 720$ features stability selection with $\mathbb{E}[V] \leq v_{0}=30$

with permutation (empty graph is correct)

Stability Selection is extremely easy to use and super-generic
the sufficient assumptions (far from necessary) for mathematical guarantees are restrictive but the method seems to work very well in practice

P-values based on multi sample splitting

(Ch. 11 in Bühlmann and van de Geer (2011))

Stability Selection

- uses subsampling many times - a good thing!
- provides control of the expected number of false positives rather than e.g. the familywise error rate \leadsto we will "address" this with
multi sample splitting and aggregation of P -values
familywise error rate (FWER):
FWER $=\mathbb{P}[V>0], V$ number of false positives

Fixed design linear model

$$
Y=X \beta^{0}+\varepsilon
$$

instead of de-biased/de-sparsified method, consider the "older" technique (which is not statistically optimal but more generic and more in the spirit of stability selection)
split the sample into two parts I_{1} and I_{2} of equal size $\lfloor n / 2\rfloor$

- use (e.g.) Lasso to select variables based on $I_{1}: \hat{S}\left(I_{1}\right)$
- perform low-dimensional statistical inference on I_{2} based on data $\left(x_{l_{2}}^{\left(\hat{S}\left(l_{1}\right)\right)}, Y_{l_{2}}\right)$; for example using the t-test for single coefficients β_{j}^{0} (if $j \notin \hat{S}\left(I_{1}\right)$, assign the p -value 1 to the hypothesis $H_{0, j}: \beta_{j}^{0}=0$ (,
due to independence of I_{1} and I_{2}, this is a "valid" strategy (see later)
validity of the (single) data splitting procedure consider testing $H_{0, j}: \beta_{j}^{0}=0$ versus $H_{A, j}: \beta_{j}^{0} \neq 0$ assume Gaussian errors for the fixed design linear model : thus, use the t-test on the second half of the sample I_{2} to get a p-value

$$
\text { Praw,j from } t \text {-test based on } X_{I_{2}, \hat{S}\left(I_{1}\right)}, Y_{l_{2}}
$$

$P_{\text {raw }, j}$ is a valid p -value (controlling type I error) for testing $H_{0, j}$ if $\hat{S}\left(I_{1}\right) \supseteq S_{0}$ (i.e., the screening property holds)
if the screening property does not hold: $P_{\text {raw }, j}$ is still valid for $H_{0, j}(M): \beta_{j}(M)=0$ where $M=\hat{S}\left(I_{1}\right)$ is a selected sub-model and $\beta(M)=\left(X_{M}^{T} X_{M}\right)^{-1} X_{M}^{T} \mathbb{E}[Y]$
a p-value lottery depending on the random split of the data motif regression $n=287, p=195$

\leadsto should aggregate/average over multiple splits!

Multiple testing and aggregation of p-values

the issue of multiple testing:

$$
\tilde{P}_{j}= \begin{cases}P_{\text {raw }, j} \text { based on } \mathbf{Y}_{l_{2}}, \mathbf{X}_{l_{2}, \hat{S}\left(l_{1}\right)} & , \text { if } j \in \hat{S}\left(I_{1}\right), \\ 1 & \text {, if } j \notin \hat{S}\left(l_{1}\right)\end{cases}
$$

thus, we can have at most $\left|\hat{S}\left(I_{1}\right)\right|$ false positives \leadsto can correct with Bonferroni with factor $\left|\hat{S}\left(I_{1}\right)\right|$ (instead of factor p) to control the familywise error rate

$$
\tilde{P}_{\text {corr }, j}=\min \left(\tilde{P}_{j} \cdot\left|\hat{S}\left(I_{1}\right)\right|, 1\right)(j=1, \ldots, p)
$$

decision rule: reject $H_{0, j}$ if and only if $\tilde{P}_{\text {corr }, j} \leq \alpha$
$\leadsto \mathrm{FWER} \leq \alpha$
the issue with P -value aggregation:
if we run sample splitting B times, we obtain P -values

$$
\tilde{P}_{\mathrm{corr}, j}^{[1]}, \ldots, \tilde{P}_{\mathrm{corr}, j}^{[B]}
$$

how to aggregate these dependent p-values to a single one?
for $\gamma \in(0,1)$ define

$$
Q_{j}(\gamma)=\min \left\{q_{\gamma}\left(\left\{\tilde{P}_{\mathrm{corr}, j}^{[b]} / \gamma ; b=1, \ldots, B\right\}\right), 1\right\}
$$

where $q_{\gamma}(\cdot)$ is the (empirical) γ-quantile function

Proposition 11.1 (Bühlmann and van de Geer, 2011)
For any $\gamma \in(0,1), Q_{j}(\gamma)$ are P-values which control the FWER
example: $\gamma=1 / 2$
aggregate the p -values with the sample median and multiply by the factor 2
avoid choosing γ :
$P_{j}=\min \{\underbrace{\left(1-\log \gamma_{\text {min }}\right)}_{\text {price to optimize over } \gamma} \inf _{\gamma \in\left(\gamma_{\text {min }}, 1\right)} Q_{j}(\gamma), 1\}(j=1, \ldots, p)$.

Theorem 11.1 (Bühlmann and van de Geer (2011))
For any $\gamma_{\min } \in(0,1), P_{j}$ are P-values which control the FWER
the entire framework for p -value aggregation holds whenever the single p -values are valid $\left(\mathbb{P}\left[P_{\text {raw }, j} \leq \alpha\right] \leq \alpha\right.$ under $\left.H_{0, j}\right)$ has nothing to do with high-dimensional regression and sample splitting

$$
n=100, p=100
$$

$n=100, p=1000$

one can also adapt the method to control the False Discovery Rate (FDR)
multi sample splitting and p-value construction:

- is very generic, also for "any other" model class
- is powerful in terms of multiple testing correction: we only correct for multiplicity from $\left|\hat{S}\left(I_{1}\right)\right|$ variables
- it relies in theory on the screening property of the selector in practice: it is a quite competitive method!
- Schultheiss et al. (2021): can improve multi sample splitting by multi carve methods, based on "technology" from selected inference

