the issue with P-value aggregation:

if we run sample splitting B times, we obtain P-values

pli! ple)

corr,j’ """ " corr,f
how to aggregate these dependent p-values to a single one?

for v € (0, 1) define

Qy(7) = min { @, (PR} /7 b=1,....B}), 1},

where g, (-) is the (empirical) v-quantile function



Proposition 11.1 (Buhlmann and van de Geer, 2011)
For any v € (0,1), Q;(v) are P-values which control the FWER

example: v =1/2
aggregate the p-values with the sample median and multiply by
the factor 2



avoid choosing ~:

P; = min (1 — log Ymin) inf  Q(y),1p (j=1,...,p).
—_———

’Ye('Ymim“)
price to optimize over ~

Theorem 11.1 (Bdhlmann and van de Geer (2011))
For any ymin € (0, 1), P; are P-values which control the FWER

the entire framework for p-value aggregation holds for single
p-values whenever the raw p-values are valid (P[P, j < o] < «
under Hp ;)

a general method to aggregate multiple p-values for the same
hypothesis (multiple testing correction is another issue)
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one can also adapt the method to control the False Discovery
Rate (FDR)



multi sample splitting and p-value construction:
> is very generic, also for “any other” model class

> is powerful in terms of multiple testing correction: we only
correct for multiplicity from |S(/;)| variables

> it relies in theory on the screening property of the selector
in practice: it is a quite competitive method!

» Schultheiss et al. (2021): can improve multi sample
splitting by multi carve methods, based on “technology”
from selective inference



Undirected graphical models
(Ch. 13 in Bihlmann and van de Geer (2011))

» graph G:
set of vertices/nodes V = {1,...,p}
setofedges EC V x V

» random variables X = X(1), ..., X(P) with distribution P
identify nodes in V with components of X

graphical model: (G, P)

pairwise Markov property:
P satisfies the pairwise Markov property (w.r.t. G) if

(G, K) ¢ E — XU) 1| x| X(\GAD



Global Markov property

(stronger property than pairwise Markov prop):
consider disjoint subsets A,B,C C V
P satisfies the global Markov property (w.r.t. G) if

Aand B are separated by C — X 1 x(8)| X©)

only condition on subset C




global Markov property = pairwise Markov property
Proof:
consider (j,k) ¢ E

denote by A = {J}v B= {k}v C= V\ {]a k}s
since (j,k) ¢ E, A= {j} and B = {k} are separated by C

by the global Markov property: XU) L X(9)| x(V\U:A})

~» global Markov property is more “interesting”



consider graphical model (G, P)

if P has a positive and continuous density w.r.t. Lebesgue
measure:

the global and pairwise Markov properties (w.r.t. G)
coincide/are equivalent (Lauritzen, 1996)

prime example: P is Gaussian



the Markov properties imply some conditional independencies
from graphical separation

for example with pairwise Markov property:

(j, k) ¢ E = XU 1 x| x(V\UK})

how about reverse relation ?

?
(k) € E == X0 y xk)| x(\UA})

can we interpret existing edges?

in general: no! (unfortunately)



in some special cases:

(k) e E = XU y x| x(\UAD

prime example: P is Gaussian
(k)€ E = X0 g x®|x\UkD
for A and B not separated by C: in general not true that
XAy xB)x(©)

.. due to possible strange cancellations of “edge weights”



Gaussian “counterexample”

) a % XM o),

X®  ax() 4 £3)
5 . X®  gX (D 44 X@ 4 (3),
M @ C)iid. N(0,1)

a#0,5#0,7#0

~» a Gaussian distribution P
for B + ay = 0: Corr(Xq, X3) = 0 thatis: X(1) 1 x©)



it is a Gaussian Graphical Model where P is Markov w.r.t. the
following graph

we know that X() 1. X (for special constellations of «, 3, )

take A={1},B={3},C =1
although A and B are not separated (by the emptyset)

since there is a direct edge
it does not hold that X y X (conditional on @, i.e., marginal)



Gaussian Graphical Model

conditional independence graph (CIG):
(G, P) satisfies the pairwise Markov property

Gaussian Graphical Model (GGM):

a conditional independence graph with P being Gaussian
for simplicity, assume mean zero: P ~ N,(0,X)

we know already that non-edges imply conditional
independence given all other variables

for a GGM:

(k) € E<= () #0



Neighborhood selection: nodewise regression

X0 =gDx® 1 37 VX0 10 =1, p
r#j,k

Xk — 5/(“ X043 58U x(0) 4 (k)
r#K.j

for GGM:

U.K) e Ee= B #0 <5 20



nodewise regression (Meinshausen & Blhlmann, 2006)
» run Lasso for every node variable XU) versus all others
{X®; k#j}(=1,....p)
> estimated active set SO = {r; Y £ 0} (j=1,....p)
> estimate edges in E :

orrule:  (j,k) e E<—=je 8W orke 8V
andrule:  (jk)e E <= je 8® and k ¢ SV

just run Lasso p times: it’s fast!

(given the difficulty of the problem)
O(np?min(n, p)) computational complexity
and it has “near-optimal” statistical properties

(slightly better than penalized MLE)
R-packages huge and also in glasso (and set ‘approx = T’)



GLasso: regularized maximum likelihood estimation
data Xi,... Xpiid. ~ Np(p,X)

goal: estimate K = ¥~ (precision matrix)

approach, called GLasso (Friedman, Hastie and Tibshirani, 2008)

K, = argminy, o , (—log-likelihood(K. 1i; Xi,...,Xn) + AllK]|l1)

n
fi=n"1> " X; decouples

i=1
K= argming., o(—log-likelihood(K, fi; Xi,...,Xn) +A||K]1)

o — log(det K)+trace(Syr e K)

1Kl —ZlK;kl or Y |Kix

J#k

Smig=n"" Z(X/ -
=1

-7



» Glasso is computationally (much) slower than nodewise
regression
O(np®) computational complexity (for potentially dense
problems)

» Glasso provides estimates of ¥ ~' and also of £ by
inversion

» one can run a hybrid approach:
nodewise selection first with estimated edge set E
GlLasso restricted to E with A = 0:
that is, unpenalized MLE restricted to £

fast and accurate!

analogous to Lasso-OLS hybrid in regression



Tuning of the methods
cross-validation of the (nodewise) likelihood

and/or Stability Selection

p = 160 gene expressions, n = 115
GLasso estimator, selecting among the (’2’) = 12'720 features stability
selection with E[V] < vy = 30




The nonparanormal graphical model
(Liu, Lafferty and Wasserman, 2009)

motivating question: are there other “interesting” distributions,
besides the Gaussian, where conditional independence
between two rv.s is encoded as zero entries in a matrix?

nonparanormal graphical model:

(G, P) a conditional independence graph

X ~ P has a nonparanormal distribution if there exist functions
fi(j=1,...,p)such that

Z=1(X) = (F(XD).... (X)) ~ Np(p. E)

wlog. p=0and L; =1
~  Z = fi(XW) ~ N(0,1) and therefore:
fi(-) = ®~'F;(-) where Fj(u) = P[XU) < u]: monotone

~> a semiparametric Gaussian copula model



Lemma
Assume that (G, P) is a nonparanormal graphical model with f;s
being differentiable. Then:

(k) € E = XU g xR XKD o 570 £ 0
Proof: the density of X is

1 1 d ”
p(x) = (@) 72del(T) /2 exp(—5(F(x) — ) = m) [T 17(x
j=1

~» the density factorizes exactly as in the Gaussian case
according to ¥~ O



we only have to estimate the non-zeroes of ¥~
but X is the covariance of the unknown 7(X)...

the “best” proposal (Lue and Zhou, 2012):

rank-based!

compute empirical rank correlation of X ..., X(®) with a bias
correction from Kendall (1948)

denote this empirical rank correlation matrix as R (invariant
under monotone f’s)

stick it into GLasso:
K = argminy., o — log(det K) + trace(RK) + \|| K|/

this has provable guarantees in the case of a nonparanormal
graphical model
robustness of GLasso by using rank-correlation as input matrix



