
the issue with P-value aggregation:

if we run sample splitting B times, we obtain P-values

P̃ [1]
corr,j , . . . , P̃

[B]
corr,j

how to aggregate these dependent p-values to a single one?

for γ ∈ (0,1) define

Qj(γ) = min
{

qγ
(
{P̃ [b]

corr,j/γ; b = 1, . . . ,B}
)
,1
}
,

where qγ(·) is the (empirical) γ-quantile function



Proposition 11.1 (Bühlmann and van de Geer, 2011)
For any γ ∈ (0,1), Qj(γ) are P-values which control the FWER

example: γ = 1/2
aggregate the p-values with the sample median and multiply by
the factor 2



avoid choosing γ:

Pj = min


(
1− log γmin

)︸ ︷︷ ︸
price to optimize over γ

inf
γ∈(γmin,1)

Qj(γ),1

 (j = 1, . . . ,p).

Theorem 11.1 (Bühlmann and van de Geer (2011))
For any γmin ∈ (0,1), Pj are P-values which control the FWER

the entire framework for p-value aggregation holds for single
p-values whenever the raw p-values are valid (P[Praw,j ≤ α] ≤ α
under H0,j )
a general method to aggregate multiple p-values for the same
hypothesis (multiple testing correction is another issue)



n = 100,p = 100
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one can also adapt the method to control the False Discovery
Rate (FDR)



multi sample splitting and p-value construction:
I is very generic, also for “any other” model class
I is powerful in terms of multiple testing correction: we only

correct for multiplicity from |Ŝ(I1)| variables
I it relies in theory on the screening property of the selector

in practice: it is a quite competitive method!
I Schultheiss et al. (2021): can improve multi sample

splitting by multi carve methods, based on “technology”
from selective inference



Undirected graphical models
(Ch. 13 in Bühlmann and van de Geer (2011))

I graph G:
set of vertices/nodes V = {1, . . . ,p}
set of edges E ⊆ V × V

I random variables X = X (1), . . . ,X (p) with distribution P
identify nodes in V with components of X

graphical model: (G,P)

pairwise Markov property:
P satisfies the pairwise Markov property (w.r.t. G) if

(j , k) /∈ E =⇒ X (j) ⊥ X (k)|X (V\{j,k})



Global Markov property
(stronger property than pairwise Markov prop):

consider disjoint subsets A,B,C ⊆ V
P satisfies the global Markov property (w.r.t. G) if

A and B are separated by C =⇒ X (A) ⊥ X (B)| X (C)︸︷︷︸
only condition on subset C



global Markov property =⇒ pairwise Markov property

Proof:
consider (j , k) /∈ E

denote by A = {j},B = {k},C = V \ {j , k};
since (j , k) /∈ E , A = {j} and B = {k} are separated by C

by the global Markov property: X (j) ⊥ X (k)|X (V\{j,k})

2

; global Markov property is more “interesting”



consider graphical model (G,P)

if P has a positive and continuous density w.r.t. Lebesgue
measure:
the global and pairwise Markov properties (w.r.t. G)
coincide/are equivalent (Lauritzen, 1996)

prime example: P is Gaussian



the Markov properties imply some conditional independencies
from graphical separation

for example with pairwise Markov property:

(j , k) /∈ E =⇒ X (j) ⊥ X (k)|X (V\{j,k})

how about reverse relation ?

(j , k) ∈ E
?︷︸︸︷

=⇒ X (j) 6⊥ X (k)|X (V\{j,k})

can we interpret existing edges?

in general: no! (unfortunately)



in some special cases:

(j , k) ∈ E =⇒ X (j) 6⊥ X (k)|X (V\{j,k})

prime example: P is Gaussian

(j , k) ∈ E ⇐⇒ X (j) 6⊥ X (k)|X (V\{j,k})

for A and B not separated by C: in general not true that

X (A) 6⊥ X (B)|X (C)

... due to possible strange cancellations of “edge weights”



Gaussian “counterexample”

X1 X2

X3

α

β γ

X (1) ← ε(1),

X (2) ← αX (1) + ε(2),

X (3) ← βX (1) + γX (2) + ε(3),

ε(1), ε(2), ε(3) i.i.d. N (0,1)

α 6= 0, β 6= 0, γ 6= 0

; a Gaussian distribution P
for β + αγ = 0: Corr(X1,X3) = 0 that is: X (1) ⊥ X (3)



it is a Gaussian Graphical Model where P is Markov w.r.t. the
following graph

X1 X2

X3

we know that X (1) ⊥ X (3) (for special constellations of α, β, γ)

take A = {1},B = {3},C = ∅
although A and B are not separated (by the emptyset)

since there is a direct edge
it does not hold that X (1) 6⊥ X (3) (conditional on ∅, i.e., marginal)



Gaussian Graphical Model

conditional independence graph (CIG):
(G,P) satisfies the pairwise Markov property

Gaussian Graphical Model (GGM):
a conditional independence graph with P being Gaussian

for simplicity, assume mean zero: P ∼ Np(0,Σ)

we know already that non-edges imply conditional
independence given all other variables

for a GGM:

(j , k) ∈ E ⇐⇒ (Σ−1)jk 6= 0



Neighborhood selection: nodewise regression

X (j) = β
(j)
k X (k) +

∑
r 6=j,k

β
(j)
r X (r) + ε(j), j = 1 . . . ,p

X (k) = β
(k)
j X (j) +

∑
r 6=k ,j

β
(k)
r X (r) + ε(k)

for GGM:

(j , k) ∈ E ⇐⇒ β
(j)
k 6= 0 ⇐⇒ β

(k)
j 6= 0



nodewise regression (Meinshausen & Bühlmann, 2006)

I run Lasso for every node variable X (j) versus all others
{X (k); k 6= j} (j = 1, . . . ,p)

I estimated active set Ŝ(j) = {r ; β̂
(j)
r 6= 0} (j = 1, . . . ,p)

I estimate edges in Ê :

or rule: (j , k) ∈ Ê ⇐⇒ j ∈ Ŝ(k) or k ∈ Ŝ(j)

and rule: (j , k) ∈ Ê ⇐⇒ j ∈ Ŝ(k) and k ∈ Ŝ(j)

just run Lasso p times: it’s fast!
(given the difficulty of the problem)

O(np2min(n,p)) computational complexity

and it has “near-optimal” statistical properties
(slightly better than penalized MLE)

R-packages huge and also in glasso (and set ‘approx = T’)



GLasso: regularized maximum likelihood estimation
data X1, . . .Xn i.i.d. ∼ Np(µ,Σ)

goal: estimate K = Σ−1 (precision matrix)

approach, called GLasso (Friedman, Hastie and Tibshirani, 2008):

K̂ , µ̂ = argminK�0,µ (−log-likelihood(K , µ; X1, . . . ,Xn) + λ‖K‖1)

µ̂ = n−1
n∑

i=1

Xi decouples

K̂ = argminK�0(−log-likelihood(K , µ̂; X1, . . . ,Xn)︸ ︷︷ ︸
∝− log(det K )+trace(Σ̂MLEK )

+λ‖K‖1)

‖K‖1 =
∑
j,k

|Kj,k | or
∑
j 6=k

|Kj,k |

Σ̂MLE = n−1
n∑

i=1

(Xi − µ̂)(Xi − µ̂)T



I GLasso is computationally (much) slower than nodewise
regression
O(np3) computational complexity (for potentially dense
problems)

I GLasso provides estimates of Σ−1 and also of Σ by
inversion

I one can run a hybrid approach:
nodewise selection first with estimated edge set Ê
GLasso restricted to Ê with λ = 0:
that is, unpenalized MLE restricted to Ê

fast and accurate!

analogous to Lasso-OLS hybrid in regression



Tuning of the methods

cross-validation of the (nodewise) likelihood

and/or Stability Selection

p = 160 gene expressions, n = 115
GLasso estimator, selecting among the

(p
2

)
= 12′720 features stability

selection with E[V ] ≤ v0 = 30
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The nonparanormal graphical model
(Liu, Lafferty and Wasserman, 2009)

motivating question: are there other “interesting” distributions,
besides the Gaussian, where conditional independence
between two rv.’s is encoded as zero entries in a matrix?

nonparanormal graphical model:
(G,P) a conditional independence graph
X ∼ P has a nonparanormal distribution if there exist functions
fj (j = 1, . . . ,p) such that

Z = f (X ) = (f1(X (1)), . . . , fp(X (p))) ∼ Np(µ,Σ)

w.l.o.g. µ = 0 and Σjj = 1
; Zj = fj(X (j)) ∼ N (0,1) and therefore:
fj(·) = Φ−1Fj(·) where Fj(u) = P[X (j) ≤ u]: monotone

; a semiparametric Gaussian copula model



Lemma
Assume that (G,P) is a nonparanormal graphical model with fjs
being differentiable. Then:

(j , k) ∈ E ⇐⇒ X (j) 6⊥ X (k)|X (V\{j,k}) ⇐⇒ Σ−1
j,k 6= 0

Proof: the density of X is

p(x) =
1

(2π)p/2det(Σ)1/2 exp(−1
2

(f (x)− µ)T Σ−1(f (x)− µ))

p∏
j=1

|f ′j (xj)|

; the density factorizes exactly as in the Gaussian case
according to Σ−1 2



we only have to estimate the non-zeroes of Σ−1

but Σ is the covariance of the unknown f (X )...

the “best” proposal (Lue and Zhou, 2012):
rank-based!
compute empirical rank correlation of X (1), . . . ,X (p) with a bias
correction from Kendall (1948)
denote this empirical rank correlation matrix as R̂ (invariant
under monotone fj ’s)

stick it into GLasso:

K̂ = argminK�0 − log(det K ) + trace(R̂K ) + λ‖K‖1

this has provable guarantees in the case of a nonparanormal
graphical model
robustness of GLasso by using rank-correlation as input matrix


