Oracle inequality for the Lasso

Y=X8"+¢, p>n

for the Lasso:

Theorem 6.1 in Bihlmann and van de Geer (2011)
assume: compatibility condition holds with compatibility
constant ¢3 (> L > 0)

Then, on 7 and for A > 2\q:

IX(B — B°3/n+ 1B — 81 < 4X2s0/ %

recall: T ={2 max eTXW /n| < Ao}
J=10p

77777

P[T] large if A\g < +/log(p)/n

When does the compatibility condition hold?

Corollary 6.8 from Biihimann and van de Geer (2011) —
modified form

Assume that the row vectors of X are i.i.d. sampled from a
sub-Gaussian distribution with mean zero and covariance
matrix . Assume that

>)2 (£)>0

min

> S0 = |Sol = O(v/n/log(p))

Then, for some C > 0:
¢8> CX2,.(X) > 0 with probability — 1 (n — o)

Example: Toeplitz matrix £; = pl' /1 (0 < p < 1):
A2 (¥) > L, > 0where L, is independent of p

min

Implications of oracle inequality

assume that ¢3 > L > 0
on 72 |IX(5 — B%l5/n+ A5 — 5%l < 4N2s0/05
if \(=2Xg) < +/log/n:asp>n— o,

IX(3 = B°(13/n = Op(s0 log(p)/n)

13 — B8°l1 = Op(s0+/log(p)/n)

in summary:

> if compatibility condition holds with ¢Z > L > 0
1. fast rate of convergence for prediction

IX(3 = 8°l15/n = Op(s0log(p)/n)

if Sp with sp = o(n) would be known:

IX(Bovs — 8°)[I3/n = Op(s0/n)
~» factor log(p) is the (small!) price for not knowing Sy
2. estimation error for 5% in terms of the /;-norm

16— 8°|l+ = Or(s0V/log(p)/n)

» if stronger restricted eigenvalue condition holds with
#2(3,8) > L > 0:
3. estimation error for 59 in terms of the />-norm
13 = B°ll2 = Op(\/s0 log(p)/n)

“pbetter” result than in 2. but requiring stronger assumption
“petter”: requires only sy = o(+/n/ log(p)) for consistency

Variable screening
active set (of variables): Sy = {j; BIQ £ 0}
estimated active set: Sy = {j; f; # 0}

make an assumption that true regression coefficients are not
too small

"beta-min condition” : min |57| > 4\so/ 08
j€So ~——

bound for ||3 — 59|

— P[S D Sp] > P[T] = “large”

with high probab: Lasso selects a superset of the active set Sy
~» Lasso does not miss an important active variable!

P[S D Sy] > P[T] = “large”

Proof:

Suppose that S 2 Sp: ~ there exists j* € Sy with Bj* =0
But then, on 7

18— B%1 > 18 — 821 = 189 > 450/

which is a contradiction to the oracle inequality

(for || 3 — 8|1 < Mso/¢?)
|

Theory versus Practice

theory:
P[5 D Sp] — 1

if the following hold:
» compatibility condition for the (fixed) design X
» beta-min condition
» i.i.d. Gaussian errors (can be relaxed)

in addition: | S| < min(n, p)
hence: huge dimensionality reduction if p > n

in practice: P[S D Sy] may not be so large...
even if one chooses A very small which results in a typically
larger set S...

possible reasons to explain with theory:

> compatibility constant ¢Z might be very small (due to highly
correlated columns in X or near linear dependence among
a few columns of X)
~ [|B = BO]1 < 4Aso/ 3 is still large
~» requires strong beta-min condition!
» errors are strrongly non-Gaussian (heavy tailed)
need a large)\ to have reasonable probablity
~ [|B — B4 < 4Aso/¢3 is still large
~» requires strong beta-min condition!

it is “empirically evident” though: }P’[S‘ 2 Sqbstandal(c)] large
where Ssubstantial(C) = {j! |B/0| = \q_,}
large

The Lasso workhorse

motif regression

coefficients
0.10 0.15 0.20
L L Il

0.05
I

0.00
I

o
o]
(o)
o o]
o] I} o]
o] (o]
o QO o O °
o]
o o]
T T T T T
0 50 100 150 200
variables

p=195n=143,|5(\cv)| = 26

Variable selection

under more restrictive irrepresentable condition or
neighborhood stability condition on the design X

and assuming beta-min condition mincg, |6j°| > /8 log(p)/n:

P[S = So] — 1 (n — o)

the irrepresentable condition is sufficient and essentially
necessary for consistent variable selection

this condition is often not fulfilled in practice
(and choosing the correct A would be difficult as well)

~» variable screening is realistic (“choose A\ by CV”)
variable selection is not very realistic

Variable selection

under more restrictive irrepresentable condition or
neighborhood stability condition on the design X

and assuming beta-min condition mincg, |6j°| > /8 log(p)/n:

P[S = So] — 1 (n — o)

the irrepresentable condition is sufficient and essentially
necessary for consistent variable selection

this condition is often not fulfilled in practice
(and choosing the correct A would be difficult as well)

~» variable screening is realistic (“choose A\ by CV”)
variable selection is not very realistic
better “translation”:
LASSO = Least Absolute Shrinkage and Screening Operator

version of Table 2.2 in the book:

property | design condition | size of non-zero coeff.

slow prediction conv. rate no requirement no requirement

fast prediction conv. rate compatibility no requirement

estimation error bound |5 — 3°||4 compatibility no requirement

variable screening compatibility beta-min condition
or restricted eigenvalue | weaker beta-min cond.

variable selection neighborhood stability beta-min condition
< irrepresentable cond.

Adaptive Lasso

is a good way to address the bias problems of the Lasso
for orthonormal design

threshold functions

™7 — Adaptive Lasso
- - - Hard-thresholding
4 Soft-thresholding

two-stage procedure:
> initial estimator Binita e.g., the Lasso
> re-weighted ¢1-penalty

p

. , B
Batape(X) = argming ([|Y — XB|5/n+ X WA' i
j=1 init,j

adaptive Lasso often works well in practice (more sparse than
Lasso) and has better theoretical properties than Lasso for
variable screening (and selection) if the truth is assumed to be
sparse

alternatives: thresholding the Lasso; Relaxed Lasso

The adaptive Lasso workhorse

Lasso Adaptive Lasso
& 8
=} =} °
°
o o
) N o
S S
) 0
bt = o
= =)
2 2
£ £
g o g o
s = S o
£ o £ S
w0 ° 0 o ° o
S o S %o °
° Og o ° o © o °
°) 000 o ° ° o
S - W ~rs W n— S CHSSEETTTTTTT—
=] © o =]
o ° N
r 0
< < |
S S o
! T T T T ! T T T T T
50 100 150 200 0 50 100 150 200
variables variables

p=195,n= 143, S rasso(Acv)| = 16

we will discuss later in the course the issue of assigning
“significance of selected variables”

should we always use the adaptive Lasso?

» it’s slightly more complicated — need two Lasso fits
» the differences in large-scale data are perhaps not so large

> | tend to say:
“Yes, often the adaptive Lasso is perhaps a bit better”

Computational algorithm for Lasso

can use a very generic coordinate descent algorithm (not
gradient descent)

motivation of the algorithm:

consider the objective function and the corresponding
Karush-Kuhn-Tucker (KKT) conditions by taking the
sub-differential:

0
o IY = XBIE/n-+ AlBll+)
= G/(B)+ e,
G(8) = —2XT(Y — XB)/n,
e = sign()) if 5; # 0, g € [-1,1]if5=0

this implies (by setting the sub-differential to zero) the
KKT-conditions (Lemma 2.1, Bihlmann and van de Geer
(2011):

Gi(B) = sign(ﬁ,-)A if 5; # 0,
\G,(B)\ < \if B/

an interesting characterization of the Lasso solution!

in abbreviated form:
1: Let Bl% e RP be an initial parameter vector. For m= 1,2, ...

2: repeat

3: Proceed componentwise j=1,2,...,p,1,2,...p,1,2,...
update:
it |G g)l <A set g™ =0,

~——
prev. parameter with jth comp=0

otherwise: B[m] is the minimizer of the objective function
with respect to the jth component but keeping all others
fixed

4: until numerical convergence

—_

. Let l% € RP be an initial parameter vector. Set m = 0.
repeat
Increase mby one: m <+ m+1.
Denote by SI™ the index cycling through the coordinates
{1,...,p}:
StM = §Im=11 4 1 mod p. Abbreviate by j = SI" the value
of Slml,
if1G(8" ™l < A+ set g™ =0,
["?—1])
o)
where B[_'}’_” is the parameter vector where the jth

component is set to zero and ,BL”]_” is the parameter

vector which equals 5™ except for the jth component
where it is equal to j3; (i.e. the argument we minimize
over).

until numerical convergence

otherwise: 6}"’] = argming Q\(8

for the squared error loss: the update in Step 4 is explicit (a
soft-thresholding operation)

active set strategy can speed up the algorithm for sparse
cases: mainly work on the non-zero coordinates and up-date all
coordinates e.g. every 20th times

R-package glmnet

The Lasso regularization path
compute 3(\) over “all” A
» just a grid of A-values and interpolate linearly (the true
solution path over all X is piecewise linear)
> fOr Amax = max; |(2XTY/n)j|: B(Amax) =0
(because of KKT conditions!)

Standardized Coefficients

04
betal/max|betal

plot against ||3(\)[|1/ maxy |3(A)]l1 (A small is to the right)

T
1219

Standardized Coefficients

|beta|/max|beta|

regularization path: in general, “not monotone in the non-zeros”
it can happen in general that e.qg.

Bi(\) #0, Bi(N) =0for X < X

Generalized linear models (GLMs)

univariate response Y, covariate X € X C RP

GLM: Yi,..., Y independent
p
gEYiIX = X)) = u+ Y gix0)
j=1
=f(x)=f.,5(x)

g(+) real-valued, known link function
w an intercept term: the intercept is important: we cannot
simply center the response and ignore an intercept...

Lasso: defined as ¢1-norm penalized negative log-likelihood
(where p is not penalized)

software: glmnet in R

Example: logistic (penalized) regression

Y €{0,1}

7(x) =E[Y|X =x] =P[Y =1|X = X]

logistic link function: g(7) = log(w/(1 — 7)) (7 € (0, 1))

denote by m; = P[Yy = 1]X]]

X xT
log(mi/(1 = 7)) = exp(u + X[B), mi = %

log-likelihood

n

> log(n (1 = m)' =) = D" (Yilog(m) + (1 — i) log(1 — ;)
i i

— Z(Y,-Iog(ﬂi/(1—77i))+ log(1 —m;))

—
: uXT8 log(1-+exp(u+ X 5))

negative log-likelihood

n

—U(p, B) =D (=il + X B) + log(1 + exp(u+ X 8)))

=1
which is a convex function in u, 5

Lasso for linear logistic regression:

A

fi, p = argmin, s(—£(x, B) + Al Bll1)

w1 is not penalized

note: often used nowadays for classification with deep neural
networks

log(mi/(1 — 7)) = pu + xTpM + We(X)" 8@
NN with linear connection features from last NN layer

estimator:

7, B0, 5,6 = argmin — £ (11, 80, 83, 6) + A(18M 1 + 8@]1)

this is now a highly non-convex function in 6...!

if somebody gives you the feature mapping w;(-) (e.g. trained
on large image database), then one can use logistic Lasso

V. Group Lasso (... continued after material from visualizer)
Parameterization of model matrix
4 levels, p = 2 variables

main effects only

> xxl
[1Jo1233210
Levels: 0123

> xx2
[1133221100
Levels: 0123

> model .matrix("xx1+xx2,
contrasts=list (xx1="contr.sum",xx2="contr.sum"))
(Intercept) xx11 xx12 xx13 xx21 xx22 xx23

1 1 1 0 o -1 -1 -1
2 1 0 1 o -1 -1 -1
3 1 0 0 1 0 0 1
4 1 -1 -1 -1 0 0 1
5 1 -1 -1 -1 0 1 0
6 1 0 0 1 0 1 0
7 1) 1 0 1 0 0
8 1 1 0 0 1 0 0

attr(,"assign")
[1Jo111222
attr(,"contrasts")
attr(,"contrasts")$xxl
[1] "contr.sum"

attr(,"contrasts")$xx2
[1] "contr.sum"

with interaction terms

> model .matrix(“xxisxx2,
contrasts=list(xx1="contr.sum",xx2="contr.sun"))

(Intercept) xx11 xx12 xx13 xx21 xx22 xx23 xx11:xx21 xx12:xx21 xx13:xx21

0
1
[
1
1
0
1
[

0
0
1
-1
-1
1
0
0

1 1 1

2 1 0

3 1 0

4 1 -1 -
5 1 -1 -
6 1 0

T 1 0

8 1 1

xrllixx22 wxl12:xx22 xx13:xx22

1 -1 o
2 0 -1
3 0 0
4 0 0
5 -1 -1
6 0 o
7 0 o
8 0 0

attr (,"assign")

-1
-1
0

0
0
0
1
1

-1
-1

0
1
1
0

0

-1

-1

1

1

o

0

0

[
®xx11:xx23 xx12:xx23
-1 0
0 -1
0 0
-1 -1
[0
o 0
o 0
0 0

[110111222333333333

attr(, "contrasts")
attr(,"contrasts") $xxl
[1] "contr.sum"

attr (, "contrasts") $xx2
[1] "contr.sum"

-1
0
0
0
0
0
0
1

®x13: xx23

o

0

1

-1

[

o

o

0

0
-1
0

orooo

coocococooo

Prediction of DNA splice sites (Ch. 4.3.1 in Bihimann and van de Geer (2011))

want to predict donor splice site where coding and non-coding
regions in DNA start/end

. ... @GT o

exon: coding intron: non-coding

seven positions around “GT”

training data: _
Y; € {0, 1} true donor site or not

X; € {A,C,G, T} positions
i=1,...,n~ 188000
unbalanced: Y; = 1: 8415; Y; = 0: 179438

model: logistic linear regression model with intercept, main
effects and interactions up to order 2 (3 variables interact)
~» dimension = 1155

methods:
» Group Lasso
> MLE on S = {j; Bg, # 0}
> as above but with Ridge regularized MLE on &

o —— GL
-A- GLR
E + GLMLE
S
c
T
o
n
e
7N AN
-0 o
o 3P
T T T T
47 57
4:6 5:6 6:7
]
E
S
c
T
o
oL
o4 ©0.0-:0°%0.0-0-0:0:9:0:0:0:9:0-0-0-0-0-9:0-0-0-0-0-0-0-0-0-07 ?-0-°
T T T T T

o
L L T T
1:23 1:25 1:27 1:35 1:3:77 1:46
1:24 1:2:6 1:3:4 1:36 1:45 1

L T L L T 1T
1:5:6 1:6:7 2:3:5 2:37 2:4:6 2:56 2:6:7 3:4:6 356 3:6:7 457 567
4.7 1:57 2:3:4 2:36 2:4:5 2:47 257 345 347 357 456 467

Term

mainly main effects (quite debated in computational biology...)

Theoretical guarantees for Group Lasso

follows “similarly” but with more complicated arguments as for
the Lasso

Algorithm for Group Lasso

block coordinate descent (updates on blocks of coefficients)

Algorithm 1 Block Coordinate Descent Algorithm
- Let B9 € R” be an initial parameter vector. Set m =
0.

2 repeat

3 Increase m by one: m < m—+ 1.
Denote by . the index cycling through the
block coordinates {1,...,q}:
S = 1] + 1 mod g. Abbreviate by j = .7
the value of .7

o=V, il < Ay set B(=0,

otherwise: [3[nf _ = argmin Ql([ﬁg,)’
Ba;

where BL"Z% is defined in (4.14) and [3 "1 s the

+9;
parameter vector which equals B~ except for
the components corresponding to group ¢; whose
entries are equal to ﬁ{yj (i.e. the argument we min-
imize over).

s. until numerical convergence

