SpS penalty of group Lasso type

for easier computation: instead of

SpS penalty = A1 > [Ifilln + A2 > ()
J j

one can also use as an alternative:
SpS Group Lasso penalty = )\ Z \/ I3 + A3 2(F)
)

in parameterized form, the latter becomes:

p p
M D JIHBIE/n+ XZBTWis; = > \/B] (HT Hy/n + 23 W))5,

j=1 j=1

~ for every \»: a generalized Group Lasso penalty



simulated example: n = 150, p = 200 and 4 active variables
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dotted line: Ao =0
~ A2 seems not so important: just consider a few candidate values

(solid and dashed line)
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motif regression: n =287, p =195
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~+ a linear model would be “fine as well”



Theoretical properties of high-dimensional additive models

» prediction and function estimation:
compatibility-type assumption for the functions fj0

» screening property:
beta-min analogue assumption for non-zero functions 1;0

see Chapters 5.6 and 8.4 in Bihlmann and van de Geer (2011)



Conclusions
if the problem is sparse and smooth:
only a few X(U)’s influence Y (only a few non-zero f?) and the

non-zero f° are smooth
~> one can often afford to model and fit additive functions in
high dimensions

reason:

» dimensionality is of order dim = O(pn)
log(dim)/n = O((log(p) + log(n))/n) which is still small

» sparsity and smoothness then lead to: if each 1}0 is twice
continuously differentiable

IF—P18/n=0p(  sparsity  \/log(p)n /%)
N——

no. of non-zero fj0

(cf. Ch. 8.4 in Bihlmann & van de Geer (2011))



Uncertainty quantification:
p-values and confidence intervals (siides, denoted as ch. 10)

959%
Conf.
Interval

frequentist
uncertainty quantification

(in contrast to Bayesian inference)

HWHe X

classical concepts but in very high-dimensional settings



Toy example: Motif regression (p = 195, n = 143)

Lasso estimated coefficients 3(Acv)

coefficients
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p-values/quantifying uncertainty would be very useful!



Y=X3%+¢ (p>n)
classical goal: statistical hypothesis testing

Hoj : ) = 0 versus Ha; : 8) # 0
or  Hog:B)=0Vje G,  versusHag:3je Gwith 3} #0
C{1,P}

background: if we could handle the asymptotic distribution of
the Lasso () under the null-hypothesis

95%
Conf.

~> could construct p-values AN

this is very difficult!
asymptotic distribution of 4 has some point mass at zero
Knight and Fu (2000) for p < oo and n — oo



because of “non-regularity” of sparse estimators
“point mass at zero” phenomenon ~- “super-efficiency”

(Hodges, 1951)
~» standard bootstrapping and subsampling should not be used

~» de-sparsify/de-bias the Lasso instead



The de-sparsified or de-biased Lasso

Recap: if p < nand rank(X) = p, then:
fousj = YTZ0/(XNTZ0 (- = Y720/ 293
ZO=X0)—X0)
Z0 = x0) — x(=D30)
= OLS residuals from XU vs. X(=) = {x(); k £ j}

that is: partial regression of Y onto residuals Z;

idea for high-dimensional setting:
use the Lasso for the residuals ZU)



The de-sparsified Lasso

consider

20 = X0 _ x(D50)
= Lasso residuals from X0) vs. X(=) = {x(0); k = j}
49 = argmin_ [|X0 — XCD 5+ Ajll7]4

build projection of Y onto Z0):

YTz B 0 (XUNT Z0) 0 4
X0 = 2 o200 Ok xayz0
Y=XB0+¢ k#j

bias



estimate bias and subtract it:

— (XUNT xU) A
bias =>_ Sz o
k7] standard Lasso

~» de-gparsified Lasso estimator

N YTz Z (X(k))Tz(/) .

i T T K
(XO)TZ0 ~ 2 (X0)TZ0

not sparse! Never equal to zero forall j=1,...,p

can also be represented as (Exercise!)

~

(v~ xB)T20
by =

XY Z0) name: “de-biased Lasso

3/ +
~—
standard Lasso



using that

yT Z0) 0 Z()((k))rzq) 0, Efo)'
(XUnTZ0) =" 7 e (X ()T Z0) KT (XOYTZ0)
j
we obtain
o 0 T Z0)
V(b - 57) = fZ TZ(, (5k B)  + \F( X7 Z0)

k#/
vn- (bias term of de-biased Lasso)

fluctuation term

so far, this holds for any ZU)



assume fixed design X, e.g. condition on X
Gaussian error ¢ ~ Ny(0, o21)

fluctuation term:

4 n—1/2:T z0) a2HZ(f)H§/n

TXO)TZO ~ x0)TZz0/n =~ X0 TZ0 jnp2



bias term of de-biased Lasso: we exploit two things

> 13— 8%

= Op(s0+/log(p)/n)

> KKT conditjon for Lasso (on XU) versus X(~):
(XUNTZUW) /n| < >\‘/2 Vk 75/

therefore:

If)\jx

IN

IN

\fz TZ(J BR = Bx)

x(k Tz(/ n N

(X(k )TZ /n

Vvn max ’—(X(/ )TZ(/ n

115 = 811

ﬁMop(so log(p)/1)
Op(50108(p)/ V) = 0p(1) if 5 < \f)

log(p)/n and (XU)TzU) /n =< O(1)



summarizing ~»
Theorem 10.1 in the notes
assume:

> ¢~ N(0,02)

> )\ = Cj/log(p)/nand |ZV|2/n> L >0

> so = o(v/n/log(p)) (a bit sparser than “usual’”)

> [|8 = B+ = Op(s0+/log(p)/n)

(i.e., compatibility constant ¢2 bounded away from zero)

Then:

XUNTzW /n A.

=1 /ml
VI 20T/ vn 1ZD]|2/v/n

5j)=>/\/(o 1 (=1,...,p)



more precisely:

s (XU)TZW/n “_
VI Z0,/ 1ZW]12/v/n

(W17- R} Wp) Np(OaU Q)7 j:rr‘l]axp|Aj| = OP(1)

,81) WJrA/'

confidence intervals for ﬁ}’:

sn-1/2 1Z¢ )Hz/\f

b+ —’(XU)TZU/ (1= 0a/2)

6% =Y — XB|3/n or 8% =Y — XBl3/(n—53)

all is very easy!



can also test
Ho, : 5] =0 versus Hy; : B] #0
can also test group hypothesis: for G C {1,...,p}

Hog: B =0vje G
Ha : 3j € Gsuch that 8 # 0

under Hy g
4 (XU Z0 /)
max o f— b = max W + Al < max | W;

N——
distr. simulated

and plug-in & for o



Choice of tuning parameters

as usual: 3 = B(Acv); what is the role of \;?

1 1Z915/n
(XU)TZ0) /n[2

variance = o2n— = o?/|ZV|3

if \; \, then || ZW)|2 \, i.e. large variance

error due to bias estimation is bounded by:

)j/2

=Y S Tz

15 = Bl o< A
assuming J; is not too small
if A; \( (but not too small) then bias estimation error

~> inflate the variance a bit to have low error due to bias
estimation: control type | error at the price of slightly decreasing
power



How good is the de-biased Lasso?

asymptotic efficiency:
for the de-biased Lasso to “work” we require
> sparsity: sp = o(y/n/ log(p))
this cannot be beaten in a minimax sense
» compatibility condition for X

for optimality in terms of the lowest possible asymptotic
variance achieving the “Cramer-Rao” lower bound:

> require in addition that X) versus X(-/) is sparse:
sj < n/log(p)
then... skipping details, the de-biased Lasso achieves (see
Theorem 10.2):

vn(b; — B7) = N(0, 720; )
N——
Cramer-Rao lower bound

© =%, = Cov(X) "~ as for OLS in low dimensions!



Empirical results

R-software hdi (Meier et al.)
de-sparsified Lasso

96 Avg

- 73 81 83 84 84 84 84 84 85 85 85 85 86 86 87

Original i %8 w ﬂ w m
96.5

bt e
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Bootstrap W; mm mwwwmmww‘mw«*mwm 9.1

93

Original Wm ﬁ M Wwwmwmmmmﬁmmmm 96.2

93
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black: confidence interval covered the true coefficient
red: confidence interval failed to cover



