The de-biased Lasso: its Gaussian limiting distribution

(X(/))Tzu)/n A‘ ' .
S LA
scaling factor

(Wa.oo W) ~ Np(0.9), max|A] = 0p(1)
confidence intervals for ﬂ}’:
()
2o a2 1Z9V02/Vn gy
b £6n |(X(j))TZ(j)/n|¢ (1—-a/2)

6% = ||Y = XB|5/n or 82 =Y — XB|5/(n—[515)
all is very easy!



can also test
Ho, : 5] =0 versus Hy; : B] #0
can also test group hypothesis: for G C {1,...,p}
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Choice of tuning parameters
as usual: 3 = B(Acv); what is the role of \;?
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if A; \( (but not too small) then bias estimation error

~ inflate the variance a bit to have low error due to bias
estimation: control type | error at the price of slightly decreasing
power



How good is the de-biased Lasso?

asymptotic efficiency:
for the de-biased Lasso to “work” we require
> sparsity: sp = o(y/n/ log(p))
this cannot be beaten in a minimax sense
» compatibility condition for X

for optimality in terms of the lowest possible asymptotic
variance achieving the “Cramer-Rao” lower bound:

> require in addition that X) versus X(-/) is sparse:
sj < n/log(p)
then... skipping details, the de-biased Lasso achieves (see
Theorem 10.2):

vn(b; — B7) = N(0, 720; )
N——
Cramer-Rao lower bound

© =%, = Cov(X) "~ as for OLS in low dimensions!



Why the 1/1/n convergence rate?

de-biased/de-sparsified Lasso is considering
» low-dimensional components {Bjo;j € A} with |A| small

> V(b — 8%) = N(0, ) ¢ep Vi),V = lim nCov(b)
JeA J /€A

for large |A|: the sum would blow up the variance and the
scaling with v/n is not correct

» high-dimensional 3° and ¢,,-norm:

Vb= 3%|s ~ maximum of p dependent Gaussian r.v’s

~ C/log(p)
N———
under independence/weak dependence

~» +/log(p)/n convergence rate



Multiple testing adjustment

if we test all hypotheses, forall j=1,...,p:
Hoj: B} =0
Hyj : 5,9 #0

we have to adjust/correct for multiple testing

different type | error measures:
for multiple tests, one can control for:

FamilyWise Error Rate:  FWER = P[V > 0],
False Discovery Rate:  FDR =E[V/R],
V = number of false positives, R = number of rejections

e
null-hyp. rejected although it is true

other measures exist: but these are the two most common ones



> input: raw p-values p; for jth hypothesis test
j .
(e.g. from de-biased Lasso)

> output: corrected p-values P

reject Hyj <= Peorr; < a: then,
FWER < a or FDR < «

depending on the adjustment method

» for controlling FWER: Bonferroni-Holm procedure
for controlling FDR: Benjamini-Hochberg procedure (which
is only proven to be correct for independent hypotheses)

R-software: p.adjust or also package hdi has some more
clever adjustment for dependent p-values from de-biased Lasso



Empirical results

R-software hdi (Meier et al.)
de-sparsified Lasso
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Stablllty Selection (Ch. 10 in Bilhimann and van de Geer (2011))
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has been developed before one knew about the
de-biased/de-sparsified Lasso

even with new tools such as the de-biased/de-sparsified Lasso
estimation of discrete structures (“relevant” variables in a
generalized linear model; edges in a graphical model) is
notoriously difficult

e.g. choice of tuning parameters...?



The generic setup

ii.d. data Zy,...,2Z,
main example: Z; = (X, Y;) from regression or classification

S, is a “feature selection” method/algorithm among {1, ..., p}
features

can we assign “relevance” to the selected features in S, ?

prime example: S, from Lasso in linear model with p covariates



a “natural” approach: resampling!
here: use subsampling:

» [* random sub-sample of size [n/2] of {1,...,n}
> compute Sy(/*)

> repeat B times to obtain Sy(/*1), ..., 5\(/*8)

> consider the “overlap” among S ('), ..., 5(I*B)

regarding the latter, for example:

B
fk(\) =P [K € S\(M)] =~ B~ I(K € 85\(I"?))
b=1

eg. M) (e{1,....,p})

the probability P* is with respect to subsampling: a sum over
(1) terms, m = |n/2], i.e., all possible subsampling
combinations

~ it is approximated by B (= 500) times random subsampling



The stability regularization path

Riboflavin data: n= 115, p = 4088

Y log-production rat of riboflavin by bacillus subtilis

X: gene expressions of bacillus subtilis

all X-variables permuted except 6 “a-priori relevant” genes

left: Lasso regularization path (red: the 6 non-permuted “relevant” genes)
right: Stability path with I1; on y-axis (red: the 6 non-permuted “relevant”
variables stick out much more clearly from the noise covariates)



What is a good truncation value (for 11)?

aim: choose my,, such that

Sstable = {fy TSK( Ialj(/\) > 7"'thr}

has not too many false positives
A can be a singleton or a range of values

as a measure for type | error control (against false positives):
V = number of false positives = | S N S|

where Sy is the set of the true relevant features, e.g.:
— active variables in regression
— true edges in a graphical model



“the miracle”:

a simple formula connecting 7, with E[V]

consider a setting with p possible features
S is a feature selection algorithm

S\ = U)\AE/\S)\

a=E[S\( I )

random subsample



Theorem 10.1
Assume:

> exchangeability condition:
{I(j € S»),j € S§} is exchangeable for all A € A

» $is not worse than random guessing

E|Sy N Sal) S |So
E(ISSnSy) — ISS]

Then, for g € (1/2,1):

1 @

E[V] < ——m A,
[ ] 27y — 1 p

suppose we know gy (see later)

strategy: specify E[V] = vy (e.g. =5)
2

o fOF Ty = & + 2Z—AVO: E[V] < vo



example: regression model with p = 1000 variables

S, = the top 10 variables from Lasso (e.g. the different X from
Lasso by CV and choose the top 10 variables with the largest
absolute values of the corresponding estimated coefficients; if
less than 10 variables are selected, take the selected variables)
the value A corresponds to the “top 10”; A is a singleton

we then know that gy = E[|S\(/)]] < 10
For E[V] = v := 5 we then obtain

1 g 102
Wthr—§+m—05+m—o51



there is room to play around
recommendation: take |S,| rather large and stability selection
will reduce again to reasonable size

when taking the “top 307, the threshold becomes

1 2 30°
Tiw = 5+ 50 =05+

2" 2pvp 5+1000:5  0°°



adding noise...
can always add (e.g. independent A/ (0, 1)) noise covariates
enlarged dimension Penarged

error control becomes better (for the same threshold)

2
1 ax
27 — 1 Penlarged

E[V]

this sometimes helps indeed in practice — at the cost of loss in
power



The assumptions for mathematical guarantees

not worse than random guessing

E[SonSnl) . |Sol
ERENEE]

perhaps hard to check but very reasonabile...

for Lasso in linear models it holds assuming the variable
screening property
asymptotically: if beta-min and compatibility condition hold



exchangeability condition:
{1(j € S»),j € S5} is exchangeable for all A € A

a restrictive assumption
but the theorem is very general, for any algorithm S



a very special case where exchangeability condition holds:
random equi-correlation design linear model

Y = XB° + ¢, Cov(X);j = p (i # J), Var(X;) = 1V]

distributions of (Y X(50) {X0); j e S¢}) and of
(Y, X(S) {x(0)); j e S§}) are the same for any permutation
m: 8§ — 5§

» distribution of X(50) {X(()); j € SE} is the same for all 7
(because of equi- correlatlon)

» distribution of Y|X(50) {X(()); j e S¢} is the same for all 7
(because it depends only on X(50))

> therefore: distribution of Y, X(50) {X(()); j e S¢} is the
same for all =
and hence exchangeability condition holds for any
(measurable) function S,



An illustration for graphical modeling
p = 160 gene expressions, n =115
GLasso estimator, selecting among the (g) = 12/720 features
stability selection with IE[V] < Vo =30

with permutation (empty graph is correct)

A=0065 A=0.063 A=0.061 A=0.059 A=0.057 A=0.055

.ISI>

bility Selection

Stabi




Stability Selection is extremely easy to use
and super-generic

the sufficient assumptions (far from necessary) for
mathematical guarantees are restrictive
but the method seems to work very well in practice



