Recap

Lasso:
$$\hat{\beta}(\lambda) = \operatorname{argmin}_{\beta}(\|Y - X\beta\|_{2}^{2}/n + \lambda \|\beta\|_{1})$$

want to understand its asymptotic properties for high-dimensional linear model

$$Y = X\beta^0 + \varepsilon$$
, $p = p_n \gg n$ and $n \to \infty$

Assumptions on the model:

- condition on "nice" errors: $\varepsilon_1, \dots, \varepsilon_n$ i.i.d. $\mathcal{N}(0, \sigma^2)$
- ► scaled covariates: $n^{-1} \sum_{i=1}^{n} (X_i^{(i)})^2 \equiv 1$
- sparsity of regression coefficients w.r.t. ℓ_1 -norm: $\|\beta^0\|_1 = o(\sqrt{n/\log(p_n)}) \ (n \to \infty)$ (implicit: dimensionality p_n : $\log(p_n)/n \to 0 \ (n \to \infty)$)

Theorem

Assume the model assumptions (above)

Assumption on the estimator: choose $\lambda = 4\sigma \sqrt{\frac{t^2 + 2\log(p)}{n}}$

Then: with probability
$$\geq 1 - 2 \exp(-t^2/2)$$

$$\|X(\hat{\beta}(\lambda_n) - \beta^0)\|_2^2/n \leq \frac{3}{2}\lambda \|\beta^0\|_1$$

Asymptotically:

$$\lambda = \lambda_n = 4\sigma\sqrt{\frac{t_n^2 + 2\log(p_n)}{n}}$$
 with $t_n^2 \to \infty, \ t_n^2 = O(\log(p_n)), \ \text{e.g } t_n^2 = \log(p_n)$

in short:
$$\lambda_n = C\sigma \sqrt{\log(p_n)/n}$$
 with $C > 0$ sufficiently large (e.g. $C > 4\sqrt{3}$)

if
$$\sigma$$
 unknown: $\hat{\sigma}$ with $\mathbb{P}[\infty > C' > \hat{\sigma} \geq \sigma] \to 1 \ (n \to \infty)$

Then:
$$||X(\hat{\beta}(\lambda_n) - \beta^0)||_2^2/n \to 0$$
 in probability $(n \to \infty)$

The proof technique is based on decoupling into:

- \blacktriangleright a probabilistic part the probability statement then assumes distributional properties of the error ε
- an analytical part
 a good bound then assumes sparsity of β⁰