Recap

if we want to analyze $\hat{\beta}-\beta^0$ (in a certain norm) we need conditions on X (e.g. $X^{(2)}=-X^{(1)}$ causes non-identifiability)

Sparse eigenvalues

suppose $X\theta = X\beta^0$ then:

$$0 = \|X(\theta - \beta^0)\|_2^2/n \geq \underbrace{\lambda_{\min}^2(\hat{\Sigma})}_{\text{min. eigenval. of } \hat{\Sigma}} \|\theta - \beta^0\|_2^2$$

$$\hat{\Sigma} = X^T X/n$$

for p > n: $\lambda_{\min}^2(\hat{\Sigma}) = 0 \rightarrow$ bound above is "useless"

idea: restrict to small sub-matrices

→ sparse eigenvalues (Meinshausen & Yu, 2009)

$$\begin{split} \phi_{\min}^2(\textit{m}) &= \min_{\textit{S} \subseteq \{1,...,p\}} \left(\lambda_{\textit{min}}^2(\hat{\Sigma}_{\textit{S}}); |\textit{S}| \leq \textit{m} \right) \\ \iff & \phi_{\min}^2(\textit{m}) = \min_{\beta \neq 0; \|\beta\|_0 \leq \textit{m}} \frac{\beta^T \hat{\Sigma} \beta}{\|\beta\|_2^2} \end{split}$$

Then: if we require $\phi_{\min}^2(s_{\theta} + s_0) > 0$: since $\|\theta - \beta^0\|_0 < s_\theta + s_0$ we obtain

$$0 = \|X(\theta - \beta^{0})\|_{2}^{2}/n \ge \phi_{\min}^{2}(s_{\theta} + s_{0})\|\theta - \beta^{0}\|_{2}^{2}$$

$$\Rightarrow \theta = \beta^{0}$$

$$\rightarrow \theta = \beta$$

Conclusion:

if we restrict to sparse vectors θ with at most the sparsity of β^0 , i.e., $\|\theta\|_0 = s_{\theta} \le \|\beta^0\|_0 = s_0$

 \sim can identify the regression parameter vector if $\phi_{\min}^2(2s_0) > 0$

in addition: can show that under sparse eigenvalue condition and with high probability, for suitable λ

$$\|\hat{\beta}(\lambda)\|_0 \asymp \|\beta^0\|_0 = s_0$$

(non-trivial to show)

 \sim Lasso identifies β^0 with high probability if $\phi^2(m) > 0$ for $m \gg s_0$

can also show (but this is non-trivial) that Lasso satisfies a cone condition with high probability

(C)
$$\|(\hat{\beta} - \beta^0)_{S_0^c}\|_1 \le 3\|(\hat{\beta} - \beta^0)_{S_0}\|_1$$

consider sparse eigenvalues with the additional restriction that (C) is satisfied

→ restricted eigenvalues and compatibility constant which are larger (provide weaker assumptions) than sparse eigenvalues

compatibility condition: compatibility constant $\phi_0^2>0$ is the weakest assumption (among restricted and sparse eigenvalues which still allows to achieve (near) statistical optimality of Lasso