
Recap

if we want to analyze β̂ − β0 (in a certain norm) we need
conditions on X (e.g. X (2) = −X (1) causes non-identifiability)



Sparse eigenvalues

suppose Xθ = Xβ0

then:

0 = ‖X (θ − β0)‖22/n ≥ λ2
min(Σ̂)︸ ︷︷ ︸

min. eigenval. of Σ̂

‖θ − β0‖22

Σ̂ = X T X/n

for p > n: λ2
min(Σ̂) = 0 ; bound above is “useless”



idea: restrict to small sub-matrices
; sparse eigenvalues (Meinshausen & Yu, 2009)

φ2
min(m) = min

S⊆{1,...,p}

(
λ2

min(Σ̂S); |S| ≤ m
)

⇐⇒ φ2
min(m) = min

β 6=0;‖β‖0≤m

βT Σ̂β

‖β‖22

Then: if we require φ2
min(sθ + s0) > 0:

since ‖θ − β0‖0 ≤ sθ + s0 we obtain

0 = ‖X (θ − β0)‖22/n ≥ φ2
min(sθ + s0)‖θ − β0‖22

; θ = β0



Conclusion:
if we restrict to sparse vectors θ with at most the sparsity of β0,
i.e., ‖θ‖0 = sθ ≤ ‖β0‖0 = s0

; can identify the regression parameter vector if φ2
min(2s0) > 0

in addition: can show that under sparse eigenvalue condition
and with high probability, for suitable λ

‖β̂(λ)‖0 � ‖β0‖0 = s0

(non-trivial to show)

; Lasso identifies β0 with high probability
if φ2(m) > 0 for m� s0



can also show (but this is non-trivial) that Lasso satisfies a cone
condition with high probability

(C) ‖(β̂ − β0)Sc
0
‖1 ≤ 3‖(β̂ − β0)S0‖1

consider sparse eigenvalues with the additional restriction that
(C) is satisfied
; restricted eigenvalues and compatibility constant which are
larger (provide weaker assumptions) than sparse eigenvalues

compatibility condition: compatibility constant φ2
0 > 0

is the weakest assumption (among restricted and sparse
eigenvalues which still allows to achieve (near) statistical
optimality of Lasso


