Recap

Oracle inequality for the Lasso

Theorem 6.1 in Blihimann and van de Geer (2011)
assume: compatibility condition holds with compatibility
constant ¢3 (> L > 0)

Then, on 7 and for A > 2\q:

IX(3 = 8215/n+ A3 — 8°ll1 < 4X2s0/65

recall: T ={2 max 1eTXY /n| < Mo}
=10

.....

P[T] large if A\g < /log(p)/n



implications:
IX(3 — 8°(13/n = Op(so log(p)/n) (fast rate)
18 = 5°ll1 = Op(s0\/log(p)/n)

these are the (minimax) optimal rates:
no other method can do better



Variable Screening

assume compatibility condition and (e.g.) Gaussian errors
in addition, require beta-min condition:

min 1801 > s0+/log(p)/n
0

— P[SD Sy —1(p>n— )
with high probab: Lasso selects a superset of the active set Sy
~» Lasso does not miss an important active variable!
in practice: A = Agy ~ leads “typically” to a too large model

LASSO: Least Absolute Shrinkage and Screening Operator



Variable Selection

obtaining
P[S = Syl = 1 (p>n— )

necessarily requires restrictive condition on X, the so-called
irrepresentability condition (= neighborhood stability condition)



Adaptive Lasso (Zou, 2006)

two-stage procedure:
> initial estimator Bmit, e.g., the Lasso
> re-weighted /4-penalty

Baaap(A) = argmingg (Y X5|12/n+/\z IB il )
init,j

at least as sparse (typically more sparse) than Lasso

~» good/“better” for very sparse underlying mechanisms/models



