Recap

KKT (Karush-Kuhn-Tucker) conditions
necessary and sufficient conditions for a solution of the Lasso
objective function

Gi(B) = Sign(Bj)A if 3 # 0
Gi(B)| < Aif 5 =
where
G(B) = —2XT(Y — XB)/n
(sub-differential must contain the zero element)

sparsity is potentially induced at points of non-differentiability
(here the components of ;)



Coordinate descent algorithms

for optimization, exploiting the KKT conditions
path following algorithms:
compute {3;(\)}7_; over all values of A € R*

the coefficient paths are typically “non-monotone” in the
non-zeros
it may happen that

Bi(\) #0, Bi(N) =0for X < X



Generalized Linear Models (GLMs)
univariate response Y, covariate X € X C RP

GLM: Yi,..., Y independent

p
gELYiX; = x]) =+ Y pxV)
j=1
=f()=1u.5(x)
1 in the model: one cannot simply center the data
g(+) real-valued, known link function

Lasso: ¢1-norm regularized maximum likelihood estimation

pi, B =argmin, 5 —£(u, B) +Al18l11)
——
neg. log-likelihood



Group Lasso (Yuan and Lin, 2006)

groups Gy, ..., Gq Which build a partition of {1,...,p}
write the (high-dimensional) parameter vector as

B = (ngﬁgg» s 769(7)7-

goal: an estimator which is “group-sparse”, i.e.:
forallj=1,...,p,

either g, = 0
or (Bg)r #0Vr € G



Group Lasso:

q
A(A) = argming ( Y - XBI3/n+ 1) mfﬁ’g,z)
j=1
where typically m; = /|G;|

group sparsity because objective function is non-differentiable
at||fglla=0 <= Bg=0(=1,...,q)



objective function is non-differentiable at || 3g, |2
sub-differential:

9%g, (Y XBz/nJrAZm,Bg,z)
J=1
= G(B)g, + Am;E(fg))

E(Bg, ={e e R, e=

HB H |fﬁg}7é0 ||e||2<1lfﬁg =0}

KKT conditions: solution is characterized by

0 € sub-differential



either Bg, =0 or (Bg)r #0Vr € G
N——
point of non-differentiability

why the second “or (ng), #0Vr e G?” (when Hﬁgjl\z # 0)

a4

suppose X7 X/n = I (orthonormal design) and 3r (ng), =0:

ng

0= (—2XTY/n)g, + 2Bg, + Am;—
[18;l2

rth component 0 = —2((X"Y/n)g); +0+0

but it will not happen that X7 Y is zero (random noise in Y)



Sparse Group Lasso
(Simon, Friedman, Hastie & Tibshirani, 2013)

q
B(X, ) = argmin ( Y = XBlg/n+ (1 —a)r)_ myllfg,ll2 + a/\ﬁ1)

J=1

convex combination of Group Lasso and Lasso penalties
~» may also lead to sparsity within groups for oo > 0



