
Corollary 6.1 in Bühlmann and van de Geer (2011)
Corollary 6.1
assume:
I ε ∼ Nn(0, σ2I)
I scaled columns σ̂2

j ≡ 1 ∀ j
For

λ = 4σ̂

√
t2 + 2 log(p)

n

where σ̂ is an estimator for σ. Then, with probability at least
1− α where

α = 2 exp(−t2/2) + P[σ̂ < σ]

we have that

‖X (β̂ − β0)‖22/n ≤
3
2
λ‖β0‖1



Implications
Corollary 6.1 implies:

‖X (β̂ − β0)‖22/n = OP( λ︸︷︷︸
�
√

log(p)/n

‖β0‖1) = OP(
√

log(p)/n‖β0‖1)

even for very sparse case with ‖β0‖1 = O(1):
slow convergence rate of order OP(

√
log(p)/n)

benchmark: OLS orcale on the variables from S0 = {j ; β0
j 6= 0}

‖X (β̂OLS−oracle − β0)‖22/n = OP(s0/n), s0 = |S0|

we will later derive for the Lasso, under additional assumptions on X : fast
convergence rate

‖X (β̂ − β0)‖2
2/n = OP(log(p)

s0

n
)

for slow rate: no assumptions on X (could have perfectly
correlated columns)



Extensions

the proof technique decouples into a deterministic and
probablistic part (the set T )

the deterministic part remains the same for other probabilistic
structures (other analysis for P[T ]) such as:
I heteroscedastic errors with

E[εi ] = 0, Var(εi) = σ2
i 6≡ const.

I dependent observations ; for fixed design, dependent
errors

I non-Gaussian errors
sub-Gaussian distribution
second moments plus bounded X : see Example 14.3 in
Bühlmann and van de Geer (2011)

I random design: assume that ε is independent of X
; condition on X : invoke the results for fixed design and
integrate out



heteroscedastic errors

ε ∼ Nn(0,D), where D = diag(σ2
1, . . . , σ

2
n)

assume that: σ2
i ≤ σ2︸︷︷︸

some pos. const.
<∞

Then, Coroallry 6.1 remains true with σ2 as above

Proof:
exactly as before but exploiting that Vj ∼ N (0, τ2

j ) with τj ≤ 1
and using that P[Vj > c] ≤ P[ Z︸︷︷︸

∼N (0,1)

≤ c]

Exercise: work out the details.



errors from stationary distribution

ε ∼ Nn(0, Γ), where Γi,j = R(i − j) = R(j − i)
assume that:

∑∞
k=−∞ |R(k)| <∞ and |X (j)

i | ≤ KX <∞

Then, Corollary 6.1 remains true with σ2 = K 2
X
∑∞

k=−∞ |R(k)|

Proof:
Exercise. (A bit more tricky...)



Oracle inequality

aim: what can we say about
I ‖β̂ − β0‖q for q ∈ {1,2}
I fast convergence rate for ‖X (β̂ − β0)‖22/n

consider again

T = { max
j∈{1,...,p}

2|εT X (j)|/n ≤ λ0}

Theorem 6.1 in Bühlmann and van de Geer (2011)
assume: compatibility condition holds with compatibility
constant φ2

0 ≥ L > 0
Then, on T and for λ ≥ 2λ0:

‖X (β̂ − β0‖22/n + λ‖β̂ − β0‖1 ≤ 4λ2s0/φ
2
0



‖X (β̂ − β0‖22/n + λ‖β̂ − β0‖1 ≤ 4λ2s0/φ
2
0

;

‖X (β̂ − β0‖22/n ≤ 4λ2s0/φ
2
0 � log(p)s0/n fast converg. rate

‖β̂ − β0‖1 ≤ 4λs0/φ
2
0 � s0

√
log(p)/n estimation error. for par.



for oracle inequality (and estimation error): we cleary need
some assumptions on X

for p > n and rank(X ) = n, the null-space of X is not only the
zero vector:

Xξ = 0 for inifintely many ξ 6= 0

; Xβ0 = Xθ for θ = β0 + ξ with any ξ such that Xξ = 0.

we cannot identify the true parameter β0 from (inifintely many)
data
; we have to make an assumption on X



Compatibility condition

the compatibility condition holds for the true active set S0 with
compatibility constant φ2

0 > 0 if:

∀β satisfying ‖βSC
0
‖1 ≤ 3‖βS0‖1 :

‖βS0‖
2
1 ≤ (βT Σ̂β)s0/φ

2
0

see p. 106 in Bühlmann and van de Geer (2011)

;

Theorem 6.1 in Bühlmann and van de Geer (2011)
assume: compatibility condition holds with compatibility
constant φ2

0 (≥ L) > 0
Then, on T and for λ ≥ 2λ0:

‖X (β̂ − β0‖22/n + λ‖β̂ − β0‖1 ≤ 4λ2s0/φ
2
0



Variable screening and ‖β̂ − β0‖q-norms

estimation of parameters: thanks to the oracle inequality

‖β̂ − β0‖1 = OP(s0
√

log(p)/n (n→∞)

assuming
I compatibility condition on the (fixed) design X
I Gaussian errors (can be relaxed)

; convergence to zero if sparsity s0 = o(
√

n/ log(p))

under restricted eigenvalue assumption (slightly stronger than
compatbility condition): one can show that

‖β̂ − β0‖2 = OP(
√

s0 log(p)/n) (n→∞)

; convergence to zero under weaker ass. s0 = o(n/ log(p))



Variable screening

active set (of variables): S0 = {j ; β0
j 6= 0}

estimated active set: Ŝ0 = {j ; β̂j 6= 0}

Question 1: is Ŝ0 = S0 with high probability?
; often too ambitious goal

problems with small |β0
j |’s

Question 2: can we do variable screening Ŝ ⊇ S0 with high
probability?
still very relevant in practice: dimensionality reduction!



need to make an assumption that true regression coefficients
are not too small

”beta-min condition” : min
j∈S0
|β0

j | � s0
√

log(p)/n

=⇒ P[Ŝ ⊇ S0] → 1 if ‖β̂ − β0‖1 = OP(s0
√

log(p)/n)

Proof: suppose that j∗ ∈ S0 but j∗ 6∈ Ŝ

‖β̂ − β0‖1 ≥ |β̂j∗ − β0
j∗ | = |β0

j∗ | � s0
√

log(p)/n

which is a contradiction 2



analogously: if
I beta-min condition minj∈S0 |β

0
j | �

√
s0 log(p)/n

I ‖β̂ − β0‖2 = OP(
√

s0 log(p)/n)

; P[Ŝ ⊇ S0]→ 1



Theory versus Practice

theory:

P[Ŝ ⊇ S0]→ 1

if the following hold:
I compatibility condition for the (fixed) design X
I beta-min condition
I Gaussian errors (can be relaxed)

in addition: |Ŝ| ≤ min(n,p)
hence: huge dimensionality reduction if p � n



in practice: P[Ŝ ⊇ S0] may not be soo large...
even if one chooses λ very small which results in a typically
larger set Ŝ...

possible reasons to explain with theory:
I compatibility constant φ2

0 might be very small (due to highly
correlated columns in X or near linear dependence among
a few columns of X )
; ‖β̂ − β0‖1 ≤ 4λs0/φ

2
0

; requires a stronger beta-min condition!
I errors are non-Gaussian (heavy tailed)

it is “empirically evident” though: P[Ŝ ⊇ Ssubstantial(C)] large
where Ssubstantial(C) = {j ; |β0

j | ≥ C︸︷︷︸
large

}



The Lasso workhorse
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The (adaptive) Lasso workhorse
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p = 195,n = 143, |ŜLasso(λCV )| = 26



When does the compatibility condition hold?

have seen that the compatibility condition plays a major role for
estimating β0 and for fast convergence rate for prediction

Corollary 6.8 from Bühlmann and van de Geer (2011) –
modified form
Assume that the row vectors of X are i.i.d. sampled from a
sub-Gaussian distribution with mean zero and covariance
matrix Σ. Assume that
I λ2

min(Σ) > 0
I s0 = |S0| = O(

√
n/ log(p))

Then: φ2
0 ≥ λ2

min(Σ) > 0 with probability→ 1 (n→∞)

Example: Toeplitz matrix Σij = ρ|i−j| (0 ≤ ρ < 1):
λ2

min(Σ) ≥ L > 0 where L is independent of p


