Corollary 6.1 in Bihlmann and van de Geer (2011)

Corollary 6.1
assume:
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where & is an estimator for o. Then, with probability at least
1 — a where

For

o = 2exp(—1?/2) + P[5 < o]
we have that
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Implications
Corollary 6.1 implies:

IX(B=)B/n=0e( X 81) = Op(+/1og(p)/n]|5°)1)
~/loB D)/

even for very sparse case with ||3°(|; = O(1):
slow convergence rate of order Op(+/log(p)/n)

benchmark: OLS orcale on the variables from Sy = {}; 5]9 # 0}

”X(BOLS—oracle - ﬂo)Hg/” = OP(SO/n)7 So = |SO‘

we will later derive for the Lasso, under additional assumptions on X: fast
convergence rate

IX(B = 8°)[13/n = Or(log(p)2)

for slow rate: no assumptions on X (could have perfectly
correlated columns)



Extensions

the proof technique decouples into a deterministic and
probablistic part (the set 7))

the deterministic part remains the same for other probabilistic
structures (other analysis for P[7]) such as:

» heteroscedastic errors with
Ele] = 0, Var(ej) = 02 # const.

» dependent observations ~- for fixed design, dependent
errors

» non-Gaussian errors
sub-Gaussian distribution
second moments plus bounded X: see Example 14.3 in
Bdhlmann and van de Geer (2011)

» random design: assume that ¢ is independent of X
~» condition on X: invoke the results for fixed design and
integrate out



heteroscedastic errors
e ~ Np(0, D), where D = diag(o?, .. .,02)
assume that: o2 < o2 < 0
=~
some pos. const.

Then, Coroallry 6.1 remains true with o2 as above

Proof:
exactly as before but exploiting that V; ~ A(0, 77) with 7; < 1
and using that P[V; > ¢c] <P[ Z <]
~—
~N(0,1)
Exercise: work out the details.



errors from stationary distribution

e ~Np(0,T), where I';; = R(i — j) = R(j — i)

assume that: 3°5° _|R(k)| < oo and [XV| < Ky < oo
Then, Corollary 6.1 remains true with 0 = K2>%° __|R(K)|

Proof:
Exercise. (A bit more tricky...)



Oracle inequality

aim: what can we say about
> |5 qfor g e {1,2}
> fast convergence rate for | X(5 — 8°)|j3/n

consider again

-----

Theorem 6.1 in Bihlmann and van de Geer (2011)
assume: compatibility condition holds with compatibility

constant ¢3 > L > 0
Then, on 7 and for A > 2)\q:

IX(B — B3/n+ N8 — Bl < 4X2s0/ ¢



IX(B — 8°3/n+ A5 — 8%l < 4X2s0/ 3

IX(B — BC|3/n < 4)2sp/¢3 = log(p)so/n fast converg. rate
18— 811 < 4Xsy/0’ = so+/log(p)/n estimation error. for par.



for oracle inequality (and estimation error): we cleary need
some assumptions on X

for p > n and rank(X) = n, the null-space of X is not only the
zero vector:

X¢& = 0 for inifintely many & # 0
~ X309 = X6 for § = 59 + £ with any ¢ such that X¢ = 0.

we cannot identify the true parameter 5° from (inifintely many)
data
~> we have to make an assumption on X



Compeatibility condition

the compatibility condition holds for the true active set Sy with
compatibility constant ¢3 > 0 if:

v satisfying [|Bsell1 < 3185, 1 :

185,115 < (87£8)s0/¢5

see p. 106 in Buhlmann and van de Geer (2011)

a4

Theorem 6.1 in Bihlmann and van de Geer (2011)
assume: compatibility condition holds with compatibility
constant ¢3 (> L) > 0

Then, on 7 and for A > 2)\q:

IX(B — B3/n+ N8 — Bl < 4X2s0/ 03



Variable screening and || 5 — 5°||g-norms

estimation of parameters: thanks to the oracle inequality

13 = 8%y = Op(sov/log(p)/n (n — )

assuming
» compatibility condition on the (fixed) design X
» Gaussian errors (can be relaxed)
~> convergence to zero if sparsity sp = o(1/n/ log(p))

under restricted eigenvalue assumption (slightly stronger than
compatbility condition): one can show that

13— B2 = Op(+/s0 log(p)/n) (n — o0)

~» convergence to zero under weaker ass. sy = o(n/ log(p))



Variable screening

active set (of variables): Sy = {j; 8 # 0}
estimated active set: So = {j; 5 # 0}
Question 1: is Sy = Sy with high probability?

~» often too ambitious goal
problems with small |ﬁjQ 'S

Question 2: can we do variable screening S O S, with high
probability?
still very relevant in practice: dimensionality reduction!



need to make an assumption that true regression coefficients
are not too small

"beta-min condition” : min 1891 > s0+/log(p)/n
J€%0

— P[52 So] = 1if |88+ = Op(s0/Tog(p)/n)
Proof: suppose that j* € Sy but j* ¢ 5
13 =81 > \Bj* — ﬂjq = !ﬂﬁ > sp+/log(p)/n

which is a contradiction




analogously: if
> beta-min condition min;cs, [37| > /so log(p)/n
> |3 = B2 = Op(y/s0 log(p)/n)

~ P[§ D ) — 1



Theory versus Practice

theory:
P[5 D Sp] — 1

if the following hold:
» compatibility condition for the (fixed) design X
» beta-min condition
» Gaussian errors (can be relaxed)

in addition: | S| < min(n, p)
hence: huge dimensionality reduction if p > n



in practice: P[S D Sy] may not be soo large...
even if one chooses A very small which results in a typically
larger set S...

possible reasons to explain with theory:

> compatibility constant ¢7 might be very small (due to highly
correlated columns in X or near linear dependence among
a few columns of X)

~ |18 = 8%l < 4Xso/¢B
~+ requires a stronger beta-min condition!

» errors are non-Gaussian (heavy tailed)
it is “empirically evident” though: }P’[S 2 Sqbstandial(c)] large
where Ssubstantial(C) = {/, |6_/0| 2 N c ,}
large



The Lasso workhorse

motif regression

coefficients
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The (adaptive) Lasso workhorse

Lasso Adaptive Lasso
& &
=} (=} °
o
o o
N N4
o o
wn wn
- - - -
o o
2 2
o o
2 o 2 o
S o R
% o % o °
] 3 o
0 ° [T} ° o
S 4 o 2+ o %o o
© o o o © o
o ° o ° ° o
oo °
S | et e g -
(=] o o (=]
o
o o
wn wn
o <
=} S o
! T T T T T ! T T T T T
0 50 100 150 200 0 50 100 150 200
variables variables

p =195 n= 143, ’SLasso()\CV)’ =26



When does the compatibility condition hold?

have seen that the compatibility condition plays a major role for
estimating 3° and for fast convergence rate for prediction

Corollary 6.8 from Bihlmann and van de Geer (2011) —
modified form

Assume that the row vectors of X are i.i.d. sampled from a
sub-Gaussian distribution with mean zero and covariance
matrix . Assume that

> A2 (£)>0

min

> 5o = |Sol = O(+/n/ log(p))

Then: ¢3 > )2 (¥) > 0 with probability — 1 (n — o)

min

Example: Toeplitz matrix £; = pl'~/1 (0 < p < 1):
A2 (X) > L > 0 where L is independent of p

min



