
Recap

Y = Xβ0 + ε, p � n

for estimation of β0’:
we need some identifiability conditions on X

Oracle inequality

consider (again)

T = { max
j∈{1,...,p}

2|εT X (j)|/n ≤ λ0}

Theorem 6.1 in Bühlmann and van de Geer (2011)
assume: compatibility condition holds with compatibility
constant φ2

0 ≥ L > 0
Then, on T and for λ ≥ 2λ0:

‖X (β̂ − β0‖22/n + λ‖β̂ − β0‖1 ≤ 4λ2s0/φ
2
0

I we will “derive” the compatibility condition
I for e.g. ε ∼ Nn(0, σ2I) ; P[T]→ 1 if
λ ≥ 2λ0 ∼ C

√
log(p)/n for C > 0 sufficiently large

for estimating/identifying β0, we clearly need some
assumptions on X

for p > n and rank(X) = n, the null-space of X is not only the
zero vector:

Xξ = 0 for infinitely many ξ 6= 0

; Xβ0 = Xθ for θ = β0 + ξ with any ξ such that Xξ = 0.

we cannot identify the true parameter β0 from (infinitely many)
data
; we have to make an assumption on X

Compatibility condition

the compatibility condition holds for the true active set S0 with
compatibility constant φ2

0 > 0 if:

∀β satisfying ‖βSC
0
‖1 ≤ 3‖βS0‖1 :

‖βS0‖
2
1 ≤ (βT Σ̂β)s0/φ

2
0

see p. 106 in Bühlmann and van de Geer (2011)

;

Theorem 6.1 in Bühlmann and van de Geer (2011)
assume: compatibility condition holds with compatibility
constant φ2

0 (≥ L) > 0
Then, on T and for λ ≥ 2λ0:

‖X (β̂ − β0‖22/n + λ‖β̂ − β0‖1 ≤ 4λ2s0/φ
2
0

Variable screening and ‖β̂ − β0‖q-norms

estimation of parameters: thanks to the oracle inequality

‖β̂ − β0‖1 = OP(s0
√

log(p)/n (n→∞)

assuming
I compatibility condition on the (fixed) design X
I Gaussian errors (can be relaxed)

; convergence to zero if sparsity s0 = o(
√

n/ log(p))

under restricted eigenvalue assumption (slightly stronger than
compatibility condition): one can show that

‖β̂ − β0‖2 = OP(
√

s0 log(p)/n) (n→∞)

; convergence to zero under weaker ass. s0 = o(n/ log(p))

Variable screening

active set (of variables): S0 = {j ; β0
j 6= 0}

estimated active set: Ŝ0 = {j ; β̂j 6= 0}

Question 1: is Ŝ0 = S0 with high probability?
; often too ambitious goal

Question 2: can we do variable screening Ŝ ⊇ S0 with high
probability?
still very relevant in practice: dimensionality reduction!

need to make an assumption that true regression coefficients
are not too small

”beta-min condition” : min
j∈S0
|β0

j | � s0
√

log(p)/n

=⇒ P[Ŝ ⊇ S0] → 1 if ‖β̂ − β0‖1 = OP(s0
√

log(p)/n)

Proof: suppose that j∗ ∈ S0 but j∗ 6∈ Ŝ

‖β̂ − β0‖1 ≥ |β̂j∗ − β0
j∗ | = |β0

j∗ | � s0
√

log(p)/n

which is a contradiction 2

analogously: if
I beta-min condition minj∈S0 |β

0
j | �

√
s0 log(p)/n

I ‖β̂ − β0‖2 = OP(
√

s0 log(p)/n)

; P[Ŝ ⊇ S0]→ 1

Theory versus Practice

theory:

P[Ŝ ⊇ S0]→ 1

if the following hold:
I compatibility condition for the (fixed) design X
I beta-min condition
I i.i.d. Gaussian errors (can be relaxed)

in addition: |Ŝ| ≤ min(n,p)
hence: huge dimensionality reduction if p � n

in practice: P[Ŝ ⊇ S0] may not be SO large...
even if one chooses λ very small which results in a typically
larger set Ŝ...

possible reasons to explain with theory:
I compatibility constant φ2

0 might be very small (due to highly
correlated columns in X or near linear dependence among
a few columns of X)
; ‖β̂ − β0‖1 ≤ 4λs0/φ

2
0

; requires a stronger beta-min condition!
I errors are non-Gaussian (heavy tailed)

it is “empirically evident” though: P[Ŝ ⊇ Ssubstantial(C)] large
where Ssubstantial(C) = {j ; |β0

j | ≥ C︸︷︷︸
large

}

The Lasso workhorse

0 50 100 150 200

0.
00

0.
05

0.
10

0.
15

0.
20

motif regression

variables

co
ef

fic
ie

nt
s

p = 195,n = 143, |Ŝ(λCV)| = 26

The (adaptive) Lasso workhorse

0 50 100 150 200

−
0.

05
0.

00
0.

05
0.

10
0.

15
0.

20
0.

25

Lasso

variables

co
ef

fic
ie

nt
s

0 50 100 150 200

−
0.

05
0.

00
0.

05
0.

10
0.

15
0.

20
0.

25

Adaptive Lasso

variables

co
ef

fic
ie

nt
s

p = 195,n = 143, |Ŝada−Lasso(λCV)| = 16

When does the compatibility condition hold?

have seen that the compatibility condition plays a major role for
estimating β0 and for fast convergence rate for prediction

Corollary 6.8 from Bühlmann and van de Geer (2011) –
modified form
Assume that the row vectors of X are i.i.d. sampled from a
sub-Gaussian distribution with mean zero and covariance
matrix Σ. Assume that
I λ2

min(Σ) > 0
I s0 = |S0| = O(

√
n/ log(p))

Then: φ2
0 ≥ λ2

min(Σ) > 0 with probability→ 1 (n→∞)

Example: Toeplitz matrix Σij = ρ|i−j| (0 ≤ ρ < 1):
λ2

min(Σ) ≥ L > 0 where L is independent of p

Variable selection

under more restrictive irrepresentable condition or
neighborhood stability condition on the design X
and assuming beta-min condition minj∈S0 |β

0
j | �

√
s0 log(p)/n:

P[Ŝ = S0]→ 1 (n→∞)

the irrepresentable condition is sufficient and essentially
necessary for consistent variable selection

this condition is often not fulfilled in practice
(and choosing the correct λ would be difficult as well)

; variable screening is realistic (“choose λ by CV”)
variable selection is not very realistic

better “translation”:
LASSO = Least Absolute Shrinkage and Screening Operator

Variable selection

under more restrictive irrepresentable condition or
neighborhood stability condition on the design X
and assuming beta-min condition minj∈S0 |β

0
j | �

√
s0 log(p)/n:

P[Ŝ = S0]→ 1 (n→∞)

the irrepresentable condition is sufficient and essentially
necessary for consistent variable selection

this condition is often not fulfilled in practice
(and choosing the correct λ would be difficult as well)

; variable screening is realistic (“choose λ by CV”)
variable selection is not very realistic

better “translation”:
LASSO = Least Absolute Shrinkage and Screening Operator

version of Table 2.2 in the book:

property design condition size of non-zero coeff.
slow prediction conv. rate no requirement no requirement
fast prediction conv. rate compatibility no requirement
estimation error bound ‖β̂ − β0‖1 compatibility no requirement
variable screening compatibility beta-min condition

or restricted eigenvalue weaker beta-min cond.
variable selection neighborhood stability beta-min condition

⇔ irrepresentable cond.

Adaptive Lasso

is a good way to address the bias problems of the Lasso

for orthonormal design

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

threshold functions

z

Adaptive Lasso
Hard−thresholding
Soft−thresholding

two-stage procedure:
I initial estimator β̂init, e.g., the Lasso
I re-weighted `1-penalty

β̂adapt(λ) = argminβ

‖Y − Xβ‖22/n + λ

p∑
j=1

|βj |
|β̂init,j |



adaptive Lasso often works well in practice (more sparse than
Lasso) and has better theoretical properties than Lasso for
variable screening (and selection) if the truth is assumed to be
sparse

alternatives: thresholding the Lasso; Relaxed Lasso

The adaptive Lasso workhorse

0 50 100 150 200

−
0.

05
0.

00
0.

05
0.

10
0.

15
0.

20
0.

25

Lasso

variables

co
ef

fic
ie

nt
s

0 50 100 150 200

−
0.

05
0.

00
0.

05
0.

10
0.

15
0.

20
0.

25

Adaptive Lasso

variables
co

ef
fic

ie
nt

s

p = 195,n = 143, |Ŝada−Lasso(λCV)| = 16

we will discuss later in the course the issue of assigning
“significance of selected variables”

should we always use the adaptive Lasso?

I it’s slightly more complicated – need two Lasso fits
I the differences in large-scale data are perhaps not so large
I I tend to say:

“Yes, often the adaptive Lasso is perhaps a bit better”

Computational algorithm for Lasso

can use a very generic coordinate descent algorithm (not
gradient descent)

motivation of the algorithm:
consider the objective function and the corresponding
Karush-Kuhn-Tucker (KKT) conditions by taking the
sub-differential:

∂

∂j
(‖Y − Xβ‖22/n + λ‖β‖1)

= Gj(β) + λej ,

G(β) = −2X T (Y − Xβ)/n,
ej = sign(βj) if βj 6= 0, ej ∈ [−1,1] if βj = 0

this implies (by setting the sub-differential to zero) the
KKT-conditions (Lemma 2.1, Bühlmann and van de Geer
(2011):

Gj(β̂) = −sign(β̂j)λ if β̂j 6= 0,

|Gj(β̂)| ≤ λ if β̂j = 0.

an interesting characterization of the Lasso solution!

in abbreviated form:
1: Let β[0] ∈ Rp be an initial parameter vector. For m = 1,2, . . .
2: repeat
3: Proceed componentwise j = 1,2, . . . ,p,1,2, . . .p,1,2, . . .

update:
if |Gj(β

[m−1]
−j︸ ︷︷ ︸

prev. parameter with j th comp=0

)| ≤ λ : set β[m]
j = 0,

otherwise: β[m]
j is the minimizer of the objective function

with respect to the j th component but keeping all others
fixed

4: until numerical convergence

1: Let β[0] ∈ Rp be an initial parameter vector. Set m = 0.
2: repeat
3: Increase m by one: m← m + 1.

Denote by S [m] the index cycling through the coordinates
{1, . . . ,p}:
S [m] = S [m−1] + 1 mod p. Abbreviate by j = S [m] the value
of S [m].

4: if |Gj(β
[m−1]
−j)| ≤ λ : set β[m]

j = 0,

otherwise: β[m]
j = argminβj

Qλ(β
[m−1]
+j),

where β[m−1]
−j is the parameter vector where the j th

component is set to zero and β[m−1]
+j is the parameter

vector which equals β[m−1] except for the j th component
where it is equal to βj (i.e. the argument we minimize
over).

5: until numerical convergence

for the squared error loss: the update in Step 4 is explicit (a
soft-thresholding operation)

active set strategy can speed up the algorithm for sparse
cases: mainly work on the non-zero coordinates and up-date all
coordinates e.g. every 20th times

R-package glmnet

The Lasso regularization path
compute β̂(λ) over “all” λ
I just a grid of λ-values and interpolate linearly (the true

solution path over all λ is piecewise linear)
I for λmax = |2X T Y/n|: β̂(λmax) = 0

(because of KKT conditions!)

* ** * * *** ** ** *** ** * *****

***** *

*** * *

0.0 0.2 0.4 0.6 0.8 1.0

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

|beta|/max|beta|

S
ta

nd
ar

di
ze

d
C

oe
ffi

ci
en

ts

* * * * * *** ** ** *** ** * ***** *** ******* ******* ***** * *** * *

* ** * * *** ** ** *** ** * ***** *** ******* ******* ***** * *** * *

* ** * * ***

**
**

*** ** * *****
*** ******* ******* ***** * *** * *

* ** * * *** ** ** *** ** * ***** *** ******* ******* ***** * *** * ** ** * * *** ** ** *** ** * ***** *** *******

* ***** * *** * *
* ** * * *** ** ** *** ** * ***** *** ******* ******* ***** * *** * ** ** * * *** ** ** ***

**
* ***** *** ******* ******* ***** * *** * ** ** * * *** ** ** *** ** * ***** *** ******* *******

***** * *** * *

*

*
*

*

*
*** ** ** ***

** *

**
***** ******* ***** * *** * ** ** * * *** ** ** *** ** * *****

**
*

**
**
*
** *******

***** * *** * *

* ** * * *** ** ** *** ** * ***** *** ******* ******* ***** * *** * ** ** * * *** ** ** *** ** *
***** *** ******* ******* ***** * *** * ** ** * * ***

**
**

*** ** * ***** *** *******
******* ***** * *** * *

* ** * * *** ** ** *** ** * ***** *** *******
******* ***** * *** * *

* ** * * *** ** ** *** ** * ***** *** ******* ******* ***** * *** * ** ** * * ***
** ** *** ** * ***** *** ******* ******* ***** * *** * ** ** * * *** ** ** *** ** * ***** *** ******* ******* ***** * *** * ** **

*

*

**
**

*** ** * *****
*** ******* *******

***** * *** * *

* ** * * *** ** ** *** ** * ***** *** *******

***** * *** * *

* ** * * *** ** ** *** ** * ***** *** ******* ******* ***** * *** * *
* ** * * *** ** ** *** ** * ***** *** ******* ******* ***** * *** * ** ** * * *** ** ** *** ** * ***** *** ******* ******* ***** * *** * ** ** * * *** **

**
*** ** * ***** *** ******* ******* ***** * *** * *

* ** * * *** ** ** *** ** * *****
*** ******* ******* ***** * *** * *

* ** * * *** ** ** *** ** * *****
*** ******* ******* ***** * *** * *

* ** * * *** ** ** *** ** * ***** *** *******

***** * *** * *

* ** * * *** ** ** *** ** * ***** *** ******* ******* ***** * *** * ** ** * * *** ** ** *** ** * ***** *** ******* ******* ***** * *** * ** ** * * *** ** ** *** ** * ***** *** ******* ******* ***** * *** * *
* ** * * *** ** **

*** ** * ***** *** ******* ******* ***** * *** * ** ** * * *** ** ** *** ** * ***** *** ******* *******
***** * *** * *

* ** * * *** ** ** *** ** * ***** *** ******* ******* ***** * *** * *

* ** *

*

** ** *** ** * *****

******* *******
***** * *** * *

* ** * * *** ** ** *** ** * ***** *** ******* ******* ***** * *** * *

* ** * * *** ** ** *** ** * ***** *** ******* ******* ***** * *** * *
* ** * * *** ** ** *** ** * ***** *** ******* ******* ***** * *** * *
* ** * * *** ** ** ***

**
* ***** *** ******* ******* ***** * *** * *

* *
*

*

*

**
**

*** ** * ***** ***
******* *******

***** * *** * *

* ** * * *** ** ** *** ** * *****

******* *******
***** *

*** * *

* ** * * *** ** ** *** ** * ***** *** ******* ******* ***** * *** * *

LASSO

25
64

73
17

62
16

39
40

75
18

55
11

31
12

79

plot against ‖β̂(λ)‖1/maxλ ‖β̂(λ)‖1 (λ small is to the right)

Generalized linear models (GLMs)

univariate response Y , covariate X ∈ X ⊆ Rp

GLM: Y1, . . . ,Yn independent

g(E[Yi |Xi = x]) = µ+

p∑
j=1

βjx (j)

︸ ︷︷ ︸
=f (x)=fµ,β(x)

g(·) real-valued, known link function
µ an intercept term: the intercept is important: we cannot
simply center the response and ignore an intercept...

Lasso: defined as `1-norm penalized negative log-likelihood
(where µ is not penalized)

software: glmnet in R

Example: logistic (penalized) regression
Y ∈ {0,1}
π(x) = E[Y |X = x] = P[Y = 1|X = x]
logistic link function: g(π) = log(π/(1− π)) (π ∈ (0,1))

denote by πi = P[Y1 = 1|Xi]

log(πi/(1− πi)) = exp(µ+ X T
i β), πi =

exp(µ+X T
i β)

1+exp(µ+X T
i β)

log-likelihood

n∑
i=1

log(πYi
i (1− πi)

1−Yi) =
n∑

i=1

(Yi log(πi) + (1− Yi) log(1− πi)

=
n∑

i=1

(Yi log(πi/(1− πi))︸ ︷︷ ︸
µ+X T

i β

+ log(1− πi)︸ ︷︷ ︸
log(1+exp(µ+X T

i β))

)

negative log-likelihood

−`(µ, β) =
n∑

i=1

(−Yi(µ+ X T
i β) + log(1 + exp(µ+ X T

i β)))

which is a convex function in µ, β

Lasso for linear logistic regression:

µ̂, β̂ = argminµ,β(−`(µ, β) + λ‖β‖1)

note: often used nowadays for classification with deep neural
networks

log(πi/(1− πi)) = µ+ X Tβ(1)︸ ︷︷ ︸
NN with linear connection

+β(2) wθ(X)︸ ︷︷ ︸
features from last NN layer

estimator:

µ̂, β̂(1), β̂(2), θ̂ = argmin− `
(
µ, β(1), β(2), θ) + λ(‖β(1)‖1 + ‖β(2)‖1)

)
this is now a highly non-convex function in θ...!

if somebody gives you the feature mapping wθ(·) (e.g. trained
on large image database), then one can use logistic Lasso

