Recap: High-dimensional additive models

$$
Y_{i}=\mu+\sum_{j=1}^{p} f_{j}\left(X_{i}^{(j)}\right)+\varepsilon_{i}(i=1, \ldots, n), \quad \sum_{i=1}^{n} f_{j}\left(X_{i}^{(j)}\right)=0 \forall j
$$

parameterization: $\quad f_{j}(\cdot) \approx \sum_{k=1}^{K} \beta_{j, k} \underbrace{h_{j, k}(\cdot)}_{\text {basis fct.s }}$

$$
\begin{aligned}
& \left(H_{j}\right)_{i, k}=h_{j, k}\left(X_{i}^{(j)}\right), \\
& \beta_{j}=\left(\beta_{j, 1}, \ldots, \beta j, K\right)^{T}, \beta=\left(\beta_{1}, \ldots, \beta_{p}\right)^{T}
\end{aligned}
$$

\leadsto approximation with basis functions at observed data points:

$$
\sum_{j=1}^{p} \beta_{j} \underbrace{H_{j}}_{n \times K}
$$

Naive estimation with (prediction) Group Lasso penalty

$$
\hat{\beta}=\operatorname{argmin}_{\beta}\left\|Y-\sum_{j=1}^{p} \beta_{j} H_{j}\right\|_{2}^{2} / n+\underbrace{\lambda \sum_{j=1}^{p}\left\|H_{j} \beta_{j}\right\|_{2} / \sqrt{n}}_{\text {scaled pred. Group Lasso pen. }}
$$

for $f_{j}=\left(f_{j}\left(X_{1}^{(j)}\right), \ldots, f_{j}\left(X_{n}^{(j)}\right)\right)^{T}$ and $\left\|f_{j}\right\|_{n}^{2}=\left\|f_{j}\right\|_{2}^{2} / n$

$$
\hat{\beta}=\operatorname{argmin}_{\beta}\left\|Y-\sum_{j=1}^{p} \beta_{j} H_{j}\right\|_{2}^{2} / n+\sum_{j=1}^{p}\left\|f_{j}\right\|_{n}
$$

doesn't take smoothness into account!

Natural cubic splines

the special case with natural cubic splines
(Ch. 5.3.2 in Bühlmann and van de Geer (2011)) consider the estimation problem wit the SSP penalty:
$\hat{f}_{1}, \ldots, \hat{f}_{p}=\operatorname{argmin}_{f_{1}, \ldots, f_{p} \in \mathcal{F}}\left(\left\|Y-\sum_{j=1}^{p} f_{j}\right\|_{n}^{2}+\lambda_{1}\left\|f_{j}\right\|_{n}+\lambda_{2} I\left(f_{j}\right)\right)$
where $\mathcal{F}=$ Sobolev space of functions on $[a, b]$ that are continuously differentiable with square integrable second derivatives

Proposition 5.1 in Bühlmann and van de Geer (2011) Let $a, b \in \mathbb{R}$ such that $a<\min _{i, j}\left(X_{i}^{(j)}\right)$ and $b>\max _{i, j}\left(X_{i}^{(j)}\right)$. Let \mathcal{F} be as above. Then, the \hat{f}_{j} 's are natural cubic splines with knots at $X_{i}^{(j)}, i=1, \ldots, n$.
implication: the optimization over functions is exactly representable as a parametric problem with $\operatorname{dim} \approx 3 n p$

SSP penalty of group Lasso type

for easier computation: instead of

$$
\text { SSP penalty }=\lambda_{1} \sum_{j}\left\|f_{j}\right\|_{n}+\lambda_{2} \sum_{j} I(f j)
$$

one can also use as an alternative:

$$
\text { SSP Group Lasso penalty }=\lambda_{1} \sum_{j} \sqrt{\left\|f_{j}\right\|_{n}^{2}+\lambda_{2} I^{2}\left(f_{j}\right)}
$$

in parameterized form, the latter becomes:
$\lambda_{1} \sum_{j=1}^{p} \sqrt{\left\|H_{j} \beta_{j}\right\|_{2}^{2} / n+\lambda_{2}^{2} \beta_{j}^{T} W_{j} \beta_{j}}=\lambda_{1} \sum_{j=1}^{p} \sqrt{\beta_{j}^{T}\left(H_{j}^{T} H_{j} / n+\lambda_{2}^{2} W_{j}\right) \beta_{j}}$
\leadsto for every λ_{2} : a generalized Group Lasso penalty R-package hgam
simulated example: $n=150, p=200$ and 4 active variables

dotted line: $\lambda_{2}=0$
$\sim \lambda_{2}$ seems not so important: just consider a few candidates
motif regression: $n=287, p=195$

Uncertainty quantification:

 p -values and confidence intervals (slides, denoted as Ch. 10)
frequentist
uncertainty quantification
(in contrast to Bayesian inference)
classical concepts but in very high-dimensional settings

Toy example: Motif regression ($p=195, n=143$)

Lasso estimated coefficients $\widehat{\beta}\left(\hat{\lambda}_{\mathrm{CV}}\right)$

p-values/quantifying uncertainty would be very useful!

$$
Y=X \beta^{0}+\varepsilon(p \gg n)
$$

classical goal: statistical hypothesis testing
or $H_{0, G}: \beta_{j}^{0}=0 \forall j \in \underbrace{G}_{\subseteq\{1, \ldots, p\}}$ versus $H_{A, G}: \exists j \in G$ with $\beta_{j}^{0} \neq 0$
background: if we could handle the asymptotic distribution of the Lasso $\hat{\beta}(\lambda)$ under the null-hypothesis
\leadsto could construct p-values
this is very difficult! asymptotic distribution of $\hat{\beta}$ has some point mass at zero,... Knight and Fu (2000) for $p<\infty$ and $n \rightarrow \infty$
because of "non-regularity" of sparse estimators "point mass at zero" phenomenon \leadsto "super-efficiency"

$~$ standard bootstrapping and subsampling should not be used
\leadsto de-sparsify/de-bias the Lasso instead

