
Recap: High-dimensional additive models

Yi = µ+

p∑
j=1

fj(X
(j)
i ) + εi (i = 1, . . . ,n),

n∑
i=1

fj(X
(j)
i ) = 0 ∀j

parameterization: fj(·) ≈
K∑

k=1

βj,k hj,k (·)︸ ︷︷ ︸
basis fct.s

(Hj)i,k = hj,k (X
(j)
i ),

βj = (βj,1, . . . , βj ,K )T , β = (β1, . . . , βp)
T

; approximation with basis functions at observed data points:

p∑
j=1

βj Hj︸︷︷︸
n×K matrix



Naive estimation with (prediction) Group Lasso penalty

β̂ = argminβ‖Y −
p∑

j=1

βjHj‖22/n + λ

p∑
j=1

‖Hjβj‖2/
√

n

︸ ︷︷ ︸
scaled pred. Group Lasso pen.

for fj = (fj(X
(j)
1 ), . . . , fj(X

(j)
n ))T and ‖fj‖2n = ‖fj‖22/n

;

β̂ = argminβ‖Y −
p∑

j=1

βjHj‖22/n +

p∑
j=1

‖fj‖n

doesn’t take smoothness into account!



Natural cubic splines

the special case with natural cubic splines
(Ch. 5.3.2 in Bühlmann and van de Geer (2011))

consider the estimation problem wit the SSP penalty:

f̂1, . . . , f̂p = argminf1,...,fp ∈F
(
‖Y −

p∑
j=1

fj‖2n + λ1‖fj‖n + λ2I(fj)
)

where F = Sobolev space of functions on [a, b] that are continuously
differentiable with square integrable second derivatives

Proposition 5.1 in Bühlmann and van de Geer (2011)
Let a,b ∈ R such that a < mini,j(X

(j)
i ) and b > maxi,j(X

(j)
i ). Let

F be as above. Then, the f̂j ’s are natural cubic splines with
knots at X (j)

i , i = 1, . . . ,n.

implication: the optimization over functions is exactly
representable as a parametric problem with dim ≈ 3np



SSP penalty of group Lasso type

for easier computation: instead of

SSP penalty = λ1

∑
j

‖fj‖n + λ2

∑
j

I(fj)

one can also use as an alternative:

SSP Group Lasso penalty = λ1
∑

j

√
‖fj‖2n + λ2I2(fj)

in parameterized form, the latter becomes:

λ1

p∑
j=1

√
‖Hjβj‖22/n + λ2

2β
T
j Wjβj = λ1

p∑
j=1

√
βT

j (H
T
j Hj/n + λ2

2Wj)βj

; for every λ2: a generalized Group Lasso penalty

R-package hgam



simulated example: n = 150,p = 200 and 4 active variables
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dotted line: λ2 = 0

; λ2 seems not so important: just consider a few candidates



motif regression: n = 287, p = 195
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; a linear model would be “fine as well”



Uncertainty quantification:
p-values and confidence intervals (slides, denoted as Ch. 10)

frequentist
uncertainty quantification

(in contrast to Bayesian inference)

classical concepts but in very high-dimensional settings



Toy example: Motif regression (p = 195,n = 143)

Lasso estimated coefficients β̂(λ̂CV)
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p-values/quantifying uncertainty would be very useful!



Y = Xβ0 + ε (p � n)

classical goal: statistical hypothesis testing

H0,j : β
0
j = 0 versus HA,j : β

0
j 6= 0

or H0,G : β0
j = 0 ∀ j ∈ G︸︷︷︸

⊆{1,...,p}

versus HA,G : ∃j ∈ G with β0
j 6= 0

background: if we could handle the asymptotic distribution of
the Lasso β̂(λ) under the null-hypothesis

; could construct p-values

this is very difficult!
asymptotic distribution of β̂ has some point mass at zero,...
Knight and Fu (2000) for p <∞ and n→∞



because of “non-regularity” of sparse estimators
“point mass at zero” phenomenon ; “super-efficiency”

(Hodges, 1951)

; standard bootstrapping and subsampling should not be used

; de-sparsify/de-bias the Lasso instead


