Recap

Stability Selection

random subsampling of half of the data:

$$I^{*1},\ldots,I^{*B}$$
 independent I^{*b} random subsample $\subset \{1,\ldots,n\}, |I^{*b}| = \lfloor n/2 \rfloor$ without replacement

feature selection algorithm $\hat{S}_{\lambda} \subseteq \{1, \dots, p\}$

stability of selected single features:

$$\hat{\Pi}_{j}(\lambda) = \mathbb{P}^{*}[j \in \hat{S}_{\lambda}(I^{*})] \approx B^{-1} \sum_{b=1}^{B} I(K \subseteq \hat{S}_{\lambda}(I^{*b}))$$

Why half-sampling? I.e., subsampling without replacement with $|I^{*b}| = \lfloor n/2 \rfloor$?

Freedman (1977): sampling without replacement with subsample size $m = \lfloor n/2 \rfloor$ is closest to i.i.d. sampling n individuals with replacement (i.e., bootstrap resampling)

"closest" means w.r.t total variance distance

Connecting to false discoveries

$$\hat{\mathcal{S}}_{\mathrm{stable}} = \{j; \max_{\lambda \in \Lambda} \hat{\Pi}_{j}(\lambda) \geq \pi_{\mathrm{thr}} \}$$

Choice of π_{thr} ?

as a measure for type I error control (against false positives):

$$V= ext{ number of false positives} = |\hat{S}_{ ext{stable}} \cap S_0^c|$$

where S_0 is the set of the true relevant features

$$\hat{S}_{\Lambda} = \cup_{\lambda \in \Lambda} \hat{S}(\lambda)$$
 $q_{\Lambda} = \mathbb{E}[|\hat{S}_{\Lambda}(\underbrace{I}_{\text{random subsample}})|]$

Theorem 10.1

Assume:

exchangeability condition:

$$\{1(j \in \hat{S}(\lambda))\}, j \in S_0^c\}$$
 is exchangeable for all $\lambda \in \Lambda$

 \triangleright \hat{S} is not worse than random guessing

$$\frac{\mathbb{E}|S_0 \cap \hat{S}_{\Lambda}|)}{\mathbb{E}(|S_0^c \cap \hat{S}_{\Lambda}|)} \geq \frac{|S_0|}{|S_0^c|}.$$

Then, for $\pi_{\text{thr}} \in (1/2, 1)$:

$$\mathbb{E}[V] \leq \frac{1}{2\pi_{\text{thr}}-1} \frac{q_{\Lambda}^2}{p}.$$

strategy: specify upper bound for $\mathbb{E}[V] \leq v_0$ and solve for π_{thr}

Stability Selection is very generic!

- specify a feature selector which (typically) selects "moderately" too many features
- ▶ retain the stable features such that $\mathbb{E}[V] \leq v_0$

