Recap

P-values based on multi sample splitting

need to avoid "double dipping" using the data twice for variable selection and using statistical inference (tests, confidence intervals) afterwards \sim sample splitting

multiple sample splitting is much more reliable and statistically better than splitting once

- is very generic, also for "any other" model class
- is powerful in terms of multiple testing correction
- it relies in theory on the screening property of the selector in practice: it is a quite competitive method!

Undirected graphical models

(Ch. 13 in Bühlmann and van de Geer (2011))

- In the graph G: set of vertices/nodes V = {1,...,p} set of edges E ⊆ V × V
- random variables X = X⁽¹⁾,..., X^(p) with distribution P identify nodes in V with components of X

graphical model: (G, P)

pairwise Markov property:

P satisfies the pairwise Markov property (w.r.t. G) if

$$(j,k) \notin E \Longrightarrow X^{(j)} \perp X^{(k)} | X^{(V \setminus \{j,k\})}$$

Global Markov property (stronger property than pairwise Markov prop): consider disjoint subsets $A, B, C \subseteq V$ P satisfies the global Markov property (w.r.t. G) if

A and B are separated by $C \implies X^{(A)} \perp X^{(B)}$

only condition on subset C

global Markov property \Longrightarrow pairwise Markov property

Proof: consider $(j, k) \notin E$ denote by $A = \{j\}, B = \{k\}, C = V \setminus \{j, k\};$ since $(j, k) \notin E, A = \{j\}$ and $B = \{k\}$ are separated by *C* by the global Markov property: $X^{(j)} \perp X^{(k)} | X^{(V \setminus \{j, k\})}$

→ global Markov property is more "interesting"