Recap

Adaptive Lasso (Zou, 2006)

two-stage procedure:
> initial estimator Bmit, e.g., the Lasso
> re-weighted ¢1-penalty
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at least as sparse (typically more sparse) than Lasso

~» good/“better” for very sparse underlying mechanisms/models



KKT (Karush-Kuhn-Tucker) conditions

necessary and sufficient conditions for a solution of the Lasso
objective function
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G(B) = —2XT(Y = XB)/n
(subdifferential must contain the zero element)

sparsity is potentially induced at points of non-differentiability
(here the components of ;)



Coordinate descent algorithms

for optimization, exploiting the KKT conditions
path following algorithms:
compute {3;(\)}7_; over all values of A € R*

the coefficient paths are typically “non-monotone” in the
non-zeros
it may happen that
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Generalized Linear Models (GLMs)

univariate response Y, covariate X € X C RP

GLM: Yi, ..., Ynindependent
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g(+) real-valued, known link function
Lasso: ¢1-norm regularized maximum likelihood estimation
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