
Recap

Adaptive Lasso (Zou, 2006)

two-stage procedure:
I initial estimator β̂init, e.g., the Lasso
I re-weighted `1-penalty

β̂adapt(λ) = argminβ

‖Y − Xβ‖22/n + λ

p∑
j=1

|βj |
|β̂init,j |


at least as sparse (typically more sparse) than Lasso

; good/“better” for very sparse underlying mechanisms/models



KKT (Karush-Kuhn-Tucker) conditions

necessary and sufficient conditions for a solution of the Lasso
objective function

Gj(β̂) = −sign(β̂j)λ if βj 6= 0

|Gj(β̂)| ≤ λ if βj = 0

where

G(β) = −2X T (Y − Xβ)/n

(subdifferential must contain the zero element)

sparsity is potentially induced at points of non-differentiability
(here the components of βj )



Coordinate descent algorithms

for optimization, exploiting the KKT conditions

path following algorithms:
compute {β̂j(λ)}pj=1 over all values of λ ∈ R+

the coefficient paths are typically “non-monotone” in the
non-zeros
it may happen that

β̂j(λ) 6= 0, β̂j(λ
′) = 0 for λ′ < λ



Generalized Linear Models (GLMs)

univariate response Y , covariate X ∈ X ⊆ Rp

GLM: Y1, . . . ,Yn independent

g(E[Yi |Xi = x ]) = µ+

p∑
j=1

βjx (j)

︸ ︷︷ ︸
=f (x)=fµ,β(x)

g(·) real-valued, known link function

Lasso: `1-norm regularized maximum likelihood estimation

µ̂, β̂ = argminµ,β( −`(µ, β)︸ ︷︷ ︸
neg. log-likelihood

+λ‖β‖1)


