Recap

High-dimensional additive models

Y, = M+Zﬁ Nte (i=1,....n p>n)

fi : R — R smooth, E[f( )] =0Vj
aim: estimator such that either #(.) = 0 or f(.) is not the zero
function

~» sparsity smoothness (SPS) penalty
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where F = Sobolev space of functions ohat are continuously differentiable
with square integrable second derivatives
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is a parametric problem of dimension d ~ 3pn, parametrized by
natural cubic splines with basis functions encoded in a matrix

Hn><d = (H17' ey HP)T
and integrated squared second derivatives encoded in a matrix

(W)es = / B () (X)ax

[ 4

P P
3 = argmin, (Y HBI3/n-+ 2 - [BTHT Higy/n+ 22 Y \/W)
j=1 j=1



SPS penalty of group Lasso type

instead of

p p
pen(8) = M /BT HTHiB/n+ e /8T W5,
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use

p
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~» for every \,: a generalized Group Lasso penalty
can simply use standard Group Lasso software!



high-dimensional additive modeling “works” because with e.g.
smoothing splines, the dimension is

d ~ 3pn, log(d)/n=log(p)/n(p> n)
and assuming spasrity and smoothness

can extend to interaction modeling of first order with functions

p p

ZO(X/) + Z fi.r (X, Xr)

j=1 j#r=1
~» dimension
d = O(p*n?), log(d)/n = log(p)/n (p > n)

but the computation becomes cumbersome!



Inference in high-dimensional linear models: p-values
and confidence intervals

one cannot use the bootstrap or subsampling for approximating
the distribution of the Lasso

it is inconsistent due to non-Gaussian limiting distribution of the
Lasso

it an(BLassoyj — B)) = Z,Z ~ non-Gaussian distribution F
then  an(B 40, — Brasso) 7= Z in probability



