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Abstract

This thesis contains two main results. The first one is a new proof of the
fact that the universal symplectic classes d;(Z) € H¥ (Sp(Z),Z) have infinite
order (Theorem 3.3). This proof uses only techniques from group cohomology.
The second result is that for odd primes p with odd relative class number
h~ the p-period of the Farrell cohomology of Sp(p — 1,7Z) is 2y where y is
an odd integer with p — 1 = 2"y (Theorem 4.6). In order to prove these two
results, the conjugacy classes of elements and subgroups of odd prime order
p in Sp(p — 1,7Z) are studied. In particular, we determine the representations
Z/pZ — U((p — 1)/2) whose associated representation Z/pZ — Sp(p — 1, R)
factors, up to conjugation, through a representation Z/pZ — Sp(p—1,7Z). We
also compute the p-primary component of the Farrell cohomology of Sp(p—1, Z)
for small primes p with h~ = 1.



v
Zusammenfassung

Diese Arbeit enthdlt zwei Hauptresultate. Das erste Resultat (Theorem 3.3)
ist ein neuer Beweis der Tatsache, dafl die universellen symplektischen Klassen
d;(Z) € H¥(Sp(Z), Z) unendliche Ordnung haben. In diesem Beweis werden
nur Methoden aus der Gruppenkohomologie gebraucht. Das zweite Resultat
(Theorem 4.6) besagt, daB fiir ungerade Primzahlen p, deren relative Klassen-
zahl h~ ungerade ist, die p-Periode der Farrell-Kohomologie von Sp(p — 1,7)
gleich 2y ist, wobei y eine ungerade ganze Zahl ist mit p — 1 = 2"y. Um diese
beiden Resultate zu beweisen, werden die Konjugationsklassen von Elementen
und Untergruppen der Ordnung p in Sp(p — 1,Z) untersucht. Insbesondere
werden die Darstellungen Z/pZ — U((p — 1)/2) bestimmt, deren induzierte
Darstellung Z/pZ — Sp(p — 1, R) bis auf Konjugation durch eine Darstellung
Z|pZ — Sp(p — 1,7Z) faktorisiert. Fiir kleine Primzahlen p mit A~ = 1 wer-
den wir auch den p-primédren Teil der Farrell-Kohomologie von Sp(p — 1,7Z)
berechnen.
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Introduction

Let U(n) be the group of unitary nxmn-matrices and let Sp(2n, R) denote the
group of symplectic 2nx2n-matrices. We will define a homomorphism

¢ : U(n) — Sp(2n,R)
such that the induced homomorphism
¢* : H*(BSp(2n,R), Z) — H*(BU(n), Z)

is an isomorphism that maps the symplectic class d; € H*(BSp(2n,R),Z)
to the universal Chern class ¢; € H¥(BU(n),Z), j = 1,...,n. The map ¢
identifies U(n) with a maximal compact subgroup of Sp(2n,R). Biirgisser
proved in his paper [5] that elements of odd prime order p exist in Sp(2n,Z),
the group of symplectic 2nx2n-matrices over 7Z, if and only if 2n > p — 1.
Therefore a faithful representation p : Z/pZ — Sp(p — 1,7Z) exists. We can
consider any representation p : Z/pZ — U((p — 1)/2) as a representation
pop:Z/pZ — Sp(p — 1,R). We will determine the properties p has to fulfil
to factor up to conjugation through a representation p : Z/pZ — Sp(p — 1, Z).
This problem is equivalent to the question for which matrices X € U((p—1)/2)
of odd prime order p the image ¢(X) € Sp(p — 1,R) is conjugate to some
Y € Sp(p — 1,Z). At this point arithmetical problems appear, which are
related to the theory of cyclotomic fields. The answer to the question is given
by the following theorem.

Theorem 2.9. Let X € U((p—1)/2) be of odd prime order p. Then the image
#(X) € Sp(p — 1,R) of X is conjugate to' Y € Sp(p — 1,7Z) if and only if the
eigenvalues A, ..., A\p—1)2 of X are such that

{/\17 SR )\(p—l)/anli ce 7X(p—1)/2}

1s a complete set of primitive pth roots of unity.

The number of conjugacy classes of X € U((p—1)/2) that satisfy this condition
equals 2=1/2 We will show the following result.

1



Theorem 3.2. Let p be an odd prime. Then for anyn=1,....,(p—1)/2 a
representation p : Z/pZ — U((p—1)/2) can be chosen such that the nth Chern
class ¢, (p) is not zero and the representation ¢ o p : Z/pZ — Sp(p — 1,R)
factors, up to conjugation, through a representation p : Z/pZ — Sp(p —1,7Z).

We will obtain a relation between the symplectic classes d;(p) and the Chern
classes ¢;(p). This will allow us to use our previous result (Theorem 3.2) in
order to show the following theorem.

Theorem 3.3. The universal symplectic classes d;(Z) € H*(Sp(Z),7Z), j > 1,
have infinite order.

For the p-primary component of the Farrell cohomology of Sp(p — 1,7Z), the
following holds:

H*(Sp(p — 1.2), Z) gy = [ H*(N(P), Z))
Pe

where P is a set of representatives for the conjugacy classes of subgroups of
Sp(p—1,Z) of order p and N(P) denotes the normalizer of P € 8. Moreover,

we have
N(P)/C(P)

ﬁ*(N(P),Z)(p) = (ﬁ*(C(P):Z)(p)>

where C'(P) is the centralizer of P. In order to make use of these facts, we will
have to study the conjugacy classes of elements and subgroups of order p in
Sp(p—1,7Z). For those subgroups we will determine the structure of C'(P) and
of N(P)/C(P). After that we will compute the number of conjugacy classes
of those subgroups for which N(P)/C(P) has a given structure. Here again
arithmetical questions are involved. In the articles of Sjerve and Yang [10] and
Brown [3] is shown that the number of conjugacy classes of elements of order
p in Sp(p — 1,7Z) is 2P~Y/2h~ where h~ denotes the relative class number of
the cyclotomic field Q(€), £ a primitive pth root of unity. If A~ is odd, each
conjugacy class of matrices of order p in Sp(p — 1, R) that lifts to Sp(p — 1, Z)
splits into A~ conjugacy classes in Sp(p — 1,7Z). We will prove the following
concerning the periodicity of the p-primary part of the Farrell cohomology of

Sp(p - 17Z)

Theorem 4.6. Let p be an odd prime for which h™ is odd and let y be such
that p—1 = 2"y and y is odd. Then the period of H*(Sp(p —1,7Z),Z) ) is 2y.

Moreover, we will explicitly compute this cohomology for primes p with h~ = 1.



Chapter 1

Cyclotomic fields

1.1 Number fields

Let Q be the field of rational numbers. For an odd prime p let £ be a root of
the polynomial
m(z) =2+ 2P 4 o1

Then £ is a primitive pth root of unity. The roots of unity form a multiplicative
group of order p. We consider the field extension Q(¢)/Q. The minimal
polynomial of this extension is m(x), and the field Q(§) is a (p—1)-dimensional
Q-vector space with Q-basis &,..., P71, This means that any x € Q(§) can
uniquely be written as

T=ai+ -+ a1 &7

with ay,...,a, 1 € Q. Moreover, &, ..., P71 is a Z-basis of Z[¢], the ring of
integers in Q(¢). Furthermore,

gt L g2y D)2

is a Q-basis of Q(& + £), the maximal real subfield of Q(¢), and a Z-basis of
Z[€ + €], the ring of integers of Q(€ + €).

The Galois group Gal(Q(¢), Q) is the group of the automorphisms of Q(§) that
leave Q fixed. It is isomorphic to Z/(p — 1)Z = (Z/pZ)*. An automorphism
v; € Gal(Q(¢), Q) is determined by the image of . In order to set the notation,
we define for j =1,...,p—1
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Definition. Let £ be a primitive pth root of unity. We define the conjugates
of z € Q(§) to be the images of z under the different elements of the Galois

group Gal(Q(¢), Q).

Definition. Let F' be an extension of degree n of the field K. The trace and
the norm of an element x € F' are defined to be the trace and the determinant

of the transformation
T,: F — F
a — TQ

of the K-vector space F"
Trik(z) :==tr(Ty), Npg(x) = det(T;).

There is another way to define the trace and the norm of an element = € F.
In the characteristic polynomial

foA) =det( A —T,) = A" —ap A" 14+ (—=1)"a
of T,, we find the trace and the norm:
an—1 = Tre/(x), ao = Np/x(z).
Since Ty =T, + T, and Ty, = T, o T,,, we get the homomorphisms
Treg: FF— K and Ngjg: F" — K.

If the extension F/K is separable, we get the following interpretation of the
trace and the norm.

Proposition 1.1. Let_F/K be a separable extension of degree n of the field
K andlet o; : F — K, j =1,...,n, be the n different embeddings of F in
the algebraic closure K of K that let K fized. Then for x € F
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Proof. The characteristic polynomial f,(\) of the transformation T, is a power
of the minimal polynomial m, () of x

fo(N) = ma (N,

ma(N) = N 4 o AN+ - e
where d = [F: K[z]] and [ = [K[z] : K]. Indeed, 1,z,...,2'"" is a K-basis of
Klz]. If aq,..., a4 is a basis of F' over K|[z], then

-1, . -1
a1, 01T, ...,01T Yooy g, g, ..., Qg
is a K-basis of . The matrix of the linear transformation 7, : y —— zy in
this basis has matrices on the diagonal and zeros in the other entries. The
matrices on the diagonal are all equal to

0 1 0o .- 0

0 0 r .. 0

0 0 0 1
—C € —C - G-l

We can easily check that the characteristic polynomial of this matrix is
me(A) = A+ AN+ e,

and so the matrix of T, has the characteristic polynomial f,(\) = m,()\)%
The relation
o~T & ox)=71(x)

defines an equivalence relation, which splits Morg (F, K) into [ equivalence
classes of cardinality d. Let o1,...,0; be a set of representatives. Then

m. () = [[ - o@)
and
Jo(A) = H(A —oj(z))! = H A —o(@) = [[(A = o(x)).

This proves the first assertion and the second and third assertion follow im-
mediately. O

We will mainly apply Proposition 1.1 to compute the norm of an z € Q(¢)
over Q. The trace and the norm of z € Q(§) are the sum and the product of
its conjugates.
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1.2 The ring of integers

Definition. Let F' be a finite extension of the field Q of rational numbers. An
element of F'is called an algebraic integer if it is the root of a monic polynomial

k—1

xk+ak_1x + -4 ag

with coefficients a; € Z, 1 = 0,...,k — 1.

Proposition 1.2. Let p be an odd prime. Then, for a primitive pth root of
unity &, the ring of algebraic integers in Q(&) is Z[E].

Proof. See Washington [11]. O

We take any embedding of Q(¢) into the complex numbers. Complex conju-
gation acts as an automorphism sending € to £&. The maximal real subfield of
Q(¢) is the fixed field under complex conjugation. It is Q(& + &) = Q(¢) NR.
The field Q(¢ + €) has (p — 1)/2 real embeddings and no complex embeddings
into C. On the other hand Q(¢£) has no real embeddings and (p — 1)/2 pairs
of complex embeddings.

Proposition 1.3. Let p be an odd prime. Then for a primitive pth root of
unity & the ring of algebraic integers in Q(& + &) is Z[€ + &].

Proof. See Washington [11]. O
Proposition 1.4. Let p be an odd prime and & a primitive pth root of unity.

Let € be a unit of Z[€]. Then e, € Q(§ +_E) and r € Z exist such that ¢ = "¢y
It is even possible to choose g1 € Z[€ + &].

Lemma 1.5. Let I’ be a number field. If a € F' is an algebraic integer all of
whose conjugates have norm 1, then « is a root of unity.

Proof of Lemma 1.5. Let p,(z) be an irreducible polynomial in Z[x] with « as
a zero. The other zeros of p,(x) are conjugates of a. We set

Palz) = apa® + -+ ayz + ag.

Then aj, j = 0,...,k, is a sum of (’;) products of conjugates of a and so we

know that
k
ol < { )1
J

This shows that the coefficients are bounded and the bounds depend only on
the degree of o over Q. It follows that there are only finitely many irreducible
polynomials that have a power of a as a root. Therefore there exist only
finitely many powers of a. This implies that « is a root of unity. Indeed, if o
is not a root of unity, we can find no n that satisfies o™ = 1 and all powers of
a are different. O
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Proof of Proposition 1.4. Let o = ¢/&. Since ¢ is a unit, € is a unit and « is an
algebraic integer. Each conjugate of o has absolute value 1 because complex
conjugation commutes with the elements of the Galois group Gal(Q(§), Q). It
follows from Lemma 1.5 that a is a root of unity. So a = ¢/g = +£* for some
a € Z. The roots of unity in Q(&) are all of this form. First we suppose that
g/g = —£°. Since € € Z[€], we can write

e=by+ b+ +by 2P 2 E=by+ b &b, o2

Then e =€=by+ by + -+ b,—o (mod 1 —¢&). So we obtain that

E=e=—€C=—-¢ (mod1—¢).

Therefore 2¢ = 0 (mod 1—¢). We know that 2 ¢ (1—¢). Because (1-¢) C Z[¢]
is a prime ideal, € € (1 — ¢). This is impossible since € is a unit. Therefore
g/g = +£% Let 2r = a (mod p), and let ¢ = £ "c. Then € = £, and
the equation £ = ¢/z is equivalent to ¢ = £"g. Herewith we obtain
g1 = &7 = ¢ = £1. It now follows that 2, = e; € Q(¢ + £). Since ¢ € Z[¢],
§ € Z[€] as well as €7 € Q(€ + §), it follows that ¢ € Z[¢ + £]. So we
have shown the existence of e, € Z[¢ + €. O

Proposition 1.4 is equivalent to the following proposition.

Proposition 1.6. Let W be the group of roots of unity in Q(&) where € is a
primitive pth root of unity for an odd prime p. Then

Z[g], WZ[¢ +¢€]] = 1.
Proof. See Washington [11]. O

Definition. A Dedekind domain is a commutative ring with 1 without zero
divisors, such that for any pair of ideals a C b there exists an ideal ¢ with
a = bc.

Proposition 1.7. The set O = O(F), consisting of all algebraic integers in
the number field F, is a Dedekind domain with quotient field F.

Proof. See Milnor [7]. O

Let O be the ring of algebraic integers of a number field F'. We consider O, the
group of units in O. In general O* is not finite, but it contains the finite group
W of roots of unity in F. Let r be the number of real embeddings p: F' — R
and s the number of conjugate pairs of complex embeddings 0,7 : F' — C.
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Theorem 1.8 (Dirichlet unit theorem). Let O be the ring of algebraic in-
tegers of a number field F'. The group of units O in O is the direct product
of the finite cyclic group W of roots of unity in F' and a free abelian group of
rank r + s — 1 where r is the number of real embeddings p : F — R and s the
number of conjugate pairs of complex embeddings o, : F — C.

Proof. See Neukirch [9]. O

We already know that for F' = Q(&) the number of real embeddings r = 0
and the number of conjugate pairs of complex embeddings s = (p —1)/2. For
F=Q(+¢&) wehave r = (p—1)/2 and s = 0. So we can state the following
corollary.

Corollary 1.9. Let C), be the cyclic group of odd prime order p, and let & be
a primitive pth root of unity. Then the groups of units in Z[§] and Z[§ +&] are

w

12

77 x {£1} x C,,
-

7' x {£1)}.

w‘

Z[E]"
ZE+ ¢

I

1.3 The group of ideal classes and
class numbers

Definition. Two nonzero ideals a and b in the Dedekind domain O belong
to the same ideal class if there exist nonzero elements x and y in O so that
xa = yb.

Proposition 1.10. The ideal classes of O form an abelian group under mul-
tiplication with the class of principal ideals as identity element.

Proof. See Neukirch [9]. O

Definition. The group of ideal classes of the Dedekind domain O is called
the ideal class group C(O) of O.

Let O be a Dedekind domain and F’ its quotient field.

Definition. An ideal of F'is a finitely generated O-submodule a # 0 of F'. It
is also called fractional ideal. An integral ideal is an ideal a C O.

Proposition 1.11. The fractional ideals form an abelian group J. The unity
is O and the inverse of an ideal a is a™* = {x € F | za C O}.

Proof. See Neukirch [9]. O
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The fractional principal ideals (a) = a - O, a € F*, form a subgroup of the
group of fractional ideals 7. We denote this group by H. The factor group
J /H is naturally isomorphic to the ideal class group C(O).

Proposition 1.12. The ideal class group C(O) = J/H is finite.
Proof. See Neukirch [9]. O

Definition. The order
h:= [T :H]

is called the class number of F'.

Let O* be the units in @. Then we have an exact sequence

1 O* F* J C(O) — 1

where the third arrow is given by a — (a). This is proved in Neukirch [9].

1.4 Cyclotomic units

A number field is called totally real if all its embeddings into C lie in R and
totally imaginary if none of its embeddings lie in R. A CM-field is a totally
imaginary quadratic extension of a totally real number field. All of the fields
Q(&,,), where &, is a primitive nth root of unity, are CM-fields.

Theorem 1.13. Let I be a CM-field, F* its mazimal real subfield, and let h
and h* be the respective class numbers. Then h* divides h.

Proof. See Washington [11]. O

Definition. The quotient

h_ ::h—+

is called the relative class number.

As before, we denote by £ a primitive pth root of unity where p is an odd
prime. Let V' be the multiplicative group of units in Q(§) generated by

{££,1-¢&%a=1,...,p—1}.

Let U be the group of units of Z[£].
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Definition. The intersection
C=VnUCZ

is called the group of cyclotomic units of Q(€). For Q(&)* we define the group
of cyclotomic units

ctr=utncC
where U™ is the group of units of Z[¢ + €.
Lemma 1.14. For p # 2 the following assertions hold.

i) The cyclotomic units of Q(&)* are generated by —1 and the units

¢ = gtz L8
A 1 _é- )
a=2..., p%l.
ii) The cyclotomic units of Q(&) are generated by & and the cyclotomic units
of Q(§)*.

Proof. 1t is obvious that (, is real. Since 1 —£* and 1 — ¢~ differ only by the

factor —£, we just need to consider a = 2,...,(p — 1)/2. We now suppose
that
(p—1)/2
(==+&" J] 1 —¢n
a=1

is a cyclotomic unit of Q(§). The ideals (1 — &%), a = 1,...,(p —1)/2, are
all the same. Indeed, this is true if and only if (1 — £%)/(1 — &%) € Z[¢]*,
a,b=1,...,(p—1)/2. Since (1—¢£°)/(1—£) is an inverse of (1 —£%)/(1— &),
it remains to show that (1 — £%)/(1 — &%) € Z[¢], a,b = 1,...,(p—1)/2. If
z € Z[£], all its conjugates are in Z[¢| and therefore it suffices to verify that
(1=¢&9/(1=¢ €ZEl,a=2,...,(p—1)/2. But

1-€9/1-&=(1+&+--+&7") € Z[g].

Moreover, the ideals (1 —&®) contain no units, and therefore > ¢, = 0 because
if "¢, > 0, then JJ(1 —£%)% is an element of the ideal (1 —¢) and not a unit.
If " c, <0, then [J(1—£%) % is an element of the ideal (1 —¢&) and its inverse
[J(1 —&%)% is not a unit. Now we can write

(== (—11__5£> - igel;[lcsa

where e = d + £ 3" c,(a — 1). This shows the second assertion. If ¢ € Q(¢)™,
then +£7 must be real since each factor in the above product is real. Hence
+£4 equals +1. O
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Proposition 1.15. Let p be an odd prime and & a primitive pth root of unity.
The cyclotomic units C* of Q(§)" are of finite index in the full unit group
Ut CZ[E+E and

ht =[U*:C"]

where h™ is the class number of Q(&)™.

Proof. See Washington [11]. O






Chapter 2

The symplectic group

2.1 Definition

Definition. Let R be a commutative ring with 1. The general linear group
GL(n, R) is defined to be the multiplicative group of invertible nxn-matrices
over R.

Definition. We define the symplectic group Sp(2n, R) over the ring R to be

Sp(2n, R) :={Y € GL2n,R) | Y"JY = J}

0 I,
)

and [, is the nxn-identity matrix.

where

Proposition 2.1. Sp(2n, R) is a group.

Proof. Tt is clear that Iy, € Sp(2n, R). If X, Y € Sp(2n, R), XY ! € Sp(2n, R)
because

(XY DHTJ(XY ™Y

Y H'XTIXYy = (v Yty

=Y Hytyyy—t =y Htyyy-!

=J.

Therefore Sp(2n, R) is a subgroup of GL(2n, R). O

13



14 2. The symplectic group

2.2 Elements of finite order in Sp(2n,Z)

Theorem 2.2. Let ¢ be the Fuler p-function. Let m = H?Zl pit € N, m # 2,

(2
where p;, 1 = 1,..., h, are primes that satisfy the condition p; < p;y1, and

a; =21 fori=1,..., h. There exists a matrix A € Sp(2n,7Z) of order m if and
only if

h
i) 3 () < 2n, if m =2 (mod 4)
=2

i) i e(pit) < 2n, if m #Z 2 (mod 4).
i=1

If m =2, then A € Sp(2n,Z) of order 2 exists for each n > 0.
Proof. See Biirgisser [5]. O

We consider elements of odd prime order p. Since for the Euler ¢-function
o(p) =p—1, amatrix Y € Sp(p — 1,Z) of order p exists.

Proposition 2.3. The eigenvalues of a matriz'Y € Sp(p — 1,7Z) of odd prime
order p are the primitive pth roots of unity, hence the zeros of the polynomial

m(z) ="'+ x4 1,
and the trace of Y is —1.

Proof. If X is an eigenvalue of Y, AP is an eigenvalue of Y? and we have \? = 1.
Therefore A =1 or A = £, a primitive pth root of unity. The trace of a matrix
in Sp(p — 1,Z) is an integer. Since the trace is the sum of the eigenvalues,
these are P71, ... €, the p — 1 different primitive pth roots of unity. We know
that

=1,

This shows that the trace of Y is —1. O

Now we consider elements of order p!, with 1 < [ € Z. Let Y € Sp(2n,Z)
be of order p'. Such a matrix Y exists for n with ¢(p') < 2n. Since in
the set {1,...,p,...,p'} ged(k,p') # 1 for each pth number k, we obtain
o(p') =p' —p'=t. Let Y € Sp(p! — p!~1,Z) be of order p'. The eigenvalues of
Y are p'th roots of unity. It is trivial that a p'~'th root of unity is also a p'th
root of unity. Now we define ¢ := e2™/?' p:= e27/P'"" and consider the set

M= {¢" 7 GNP )
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If A€ M, then A € M and |M| = (p' — 1) — (p* — 1) = p(p'). Moreover, M
is the set of eigenvalues of Y. Indeed, since
- l=@-1)@" "+ rz+1),
1= (=)@ T a4 1),

we get

0=¢" 1o (H 1,

O=n" """+,
which yields

G EPPNECNEE T Z)\:():trY.
AeM

Now we consider elements of order m. Let n € N be the smallest number such
that Y € Sp(2n,Z) of order m exists. We consider the case m # 2 (mod 4).

Then
h

2n =Y o(p})
i=1
where m = H?Zl pi* with p; < p;+1 and a; > 1. The eigenvalues of Y are mth
roots of unity. From our discussion of the case m = p', we can conclude that
the set of eigenvalues of Y is the set of primitive pfith and pf* 'th roots of
unity for i = 1,..., h. Let Y; € Sp(p% — p%~1,Z) be an element of order p{".
Since the set of eigenvalues of Y is the union of the eigenvalues of the Y;, we

get
h
Y =) Y
i=1
For a; = 1 we know that trY; = —1 and for a; > 1 we have trY; = 0. So we
get

trY = —(the number of primes p for which p|m, but p* Jm)

=—|{i|a; =1}

2.3 An embedding of U(n) in Sp(2n,R)

Let X € U(n), ie. X € GL(n,C) and X*X = I,, where [, is the nxn-identity
matrix. If we separate each entry of X in its real and imaginary part, we can
write

X=A+iB
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with A, B € M(n,R), the ring of real matrices. The condition X*X = I,
yields

X*X = (AT — iB")(A+iB)

(A
= (A"A+ B'B) +i(A"B — BT A)
I.

So we get
. ATA+B'B =1,
We now define the following map

o U(n) — Sp(2n,R)

. A B
X =A+iB +— (_B A) =: ¢(X).

We know that ¢(X) € Sp(2n,R) if and only if ¢(X)TJp(X) = J. This

condition becomes

oo = (5 o) (L §) (5 5)

 (-A'B+BYA AYA+ B'B
~ \-B'B—AYA B'A-A'B
—J
This proves that ¢(A + iB) € Sp(2n,R) if and only if X = A+ iB € U(n),

hence ¢ is well-defined. Moreover, ¢ maps the identity to the identity and ¢
is a homomorphism. For X = A+iB and X' = A’ +iB’ a computation shows

$(X') - o(X) = o(X'X)
(X))~ = (#(X)" = o(X7) = o(X7H).

We have the following lemma.

Lemma 2.4. The homomorphism
¢ : U(n) — Sp(2n,R) N SO(2n)
18 an isomorphism.

Proof. We already know that (¢(X))™t = (4(X)), and this means that
¢(U(n)) € SO(2n). The homomorphism ¢ is injective. We have to show
that

¢ : U(n) — Sp(2n,R) N SO(2n)
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is surjective. A matrix Y € Sp(2n,R) N SO(2n) has to satisfy the equations
YYJY = J and Y'Y = I,,, which are equivalent to the condition JY = Y J.

For
A B
v=(c b)

the equation JY =Y J implies C = —B and D = A, so

A B
r=(s 3)

which shows that Y = ¢(A+iB) with A+iB € U(n). So we have proved that
¢ is surjective and hence an isomorphism. O

Lemma 2.5. Let py(z) = Z?ZO c;x' be the characteristic polynomial of the
matriz'Y € Sp(2n,R). Then ¢; = cop_; for i =0,...,2n.

Proof. The equation YTJY = J implies that pyr(z) = py-1(z). Indeed, the
condition on Y to be symplectic can be written as YTJ = JY~!. Using
Y! = YT we get Y' = JY1J L. Since we know that the characteristic
polynomial of JY 1J ! is equal to the characteristic polynomial of Y, we
get pyr(z) = py-1(z). But pyr = py and for x # 0 we have

py1(z) = det(Y ™' =2 I,) = det(z Y (27" Iy, — V)

= 2" (=1)""py(z7") = 2""py(271).

Now
py(z) = 2™"py (a7
and the claim is proved for all z € R\ {0}. O

The proof of Lemma 2.5 shows that if ) is an eigenvalue of Y € Sp(2n,R), A
is also an eigenvalue of Y. The characteristic polynomial py (x) of Y has real
coefficients, hence the complex conjugate of a zero of py(z) is also a zero of
py(x). This proves that if A is an eigenvalue of Y, then X is also an eigenvalue

of Y.

We now define a skew-symmetric bilinear form on R??

(,): R"xR™ — R
(v,w) — (vw):=vtJw.

The group of isometries of this bilinear form is Sp(2n, R).
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Lemma 2.6. Let A\i,..., \, be the eigenvalues of X € U(n). Then
ISVIRUD WO VNS

is the set of eigenvalues of ¢(X) where ¢ : U(n) — Sp(2n,R) is defined as
above.

Proof. For any Y € Sp(2n,R)NSO(2n) we can find X € U(n) with ¢(X) =Y.
For each X € U(n) there exists a Z € U(n) such that Z='XZ is a diagonal

matrix. For £ = 1,...,n let \p = ax + iby with ag, b, € R be the eigenvalues
of X. Then
aj 0 bl 0
1 o 0 Qp, 0 bn o 1
sz xzy | S T ) b= ez hexsa),
0 —b, O y,

The characteristic polynomial of this matrix is

ap — A 0 bl 0

0 ap — A 0 b,

py(A) =det | 0 ar—\ 0
0 —b, 0 Ay — A

To compute the determinant, we first add ¢ times the (n + j)th column to the
jth column Vj = 1,...,n, and then we subtract ¢ times the jth row from the
(n+ j)th row Vj = 1,...,n. We obtain
py()\) = (a1 +Zbl —)\)(an+zbn —)\)(al —Zbl —)\)(an—zbn—)\)
= (=2 Q= M= A (R = ).

Corollary 2.7. Let py, ..., u, be the eigenvalues of X € U(n) and let

Ay A A ey

be the eigenvalues of ¢(X) € Sp(2n,R). Then for all j = 1,...,n exists
1 < k< n such that

either pj =X\, or ;=\



2.4. A necessary and sufficient condition 19

Proof. This is just Lemma 2.6. O

Proposition 2.8. Let X € U((p — 1)/2) be of odd prime order p, and let
¢ be defined as above. If ¢(X) € Sp(p — 1,R) is conjugate to some matriz
Y € Sp(p—1,7Z), the eigenvalues Ay, ..., Ap—1y/2 of X € U((p—1)/2) are such
that

{)\1, ceey )\(p—l)/27 )\1, SN )\(p—l)/Q}

is the set of primitive pth roots of unity.

Proof. Let Y € Sp(p — 1,Z) be of odd prime order p. We have seen in Propo-
sition 2.3 that the eigenvalues of Y are the primitive pth roots of unity. Now
the proposition follows directly from Lemma 2.6 with n = (p — 1) /2. O

This yields a necessary condition on X € U((p — 1)/2) such that ¢(X) is
conjugate to Y € Sp(p — 1,Z). Now the question is whether the image ¢(X)
of each matrix X € U((p — 1)/2) that satisfies this condition is conjugate to
a matrix Y € Sp(p — 1,Z). To find the answer, we have to solve the following
problem.

Given an element Y € Sp(p — 1,7Z) of odd prime order p, how can we find
X € U((p—1)/2) such that ¢(X) is conjugate to Y7

2.4 A necessary and sufficient condition

For X € U(n) we can find real matrices A, B € M(n,R) such that X = A+iB.
We have already defined the homomorphism

¢ U(n) — Sp(2n,R)
. A B
X=A+1B — (—B A> )

We will prove the following theorem.

Theorem 2.9. Let X € U((p—1)/2) be of odd prime order p. Then the image
#(X) € Sp(p — 1,R) of X is conjugate to'Y € Sp(p — 1,7Z) if and only if the
eigenvalues Ay, ..., Ap—1)2 of X are such that

s a complete set of primitive pth roots of unity.

In Proposition 2.8 we have shown that if ¢(X) € Sp(p — 1,R) is conjugate
to Y € Sp(p — 1,Z), the condition on the eigenvalues of X € U((p —1)/2)
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holds. Now we have to show that for any X that satisfies the condition on the
eigenvalues a matrix Y exists such that ¢(X) is conjugate to Y.

The eigenvalues of a unitary matrix X determine the conjugacy class of X.
We will take any Y € Sp(p — 1,Z) of prime order p and show, assuming Y
is conjugate to ¢(X), how to compute the eigenvalues of X € U((p — 1)/2).
Then we will prove that if we run through the conjugacy classes of matrices
Y € Sp(p — 1,Z) of prime order p, we will run through the conjugacy classes
of matrices X € U((p — 1)/2) that satisfy the necessary condition.

The matrix Y defines an isomorphism o : ZP~! — 7ZP~1. We will consider o
as an isomorphism o : RP~! — RP~! by linear extension. Then we will define
subspaces Vj, j = 1,...,(p — 1)/2, of RP"! that are invariant under o. A
sign sign(V;) defined on these spaces will tell us which are the eigenvalues of
X € U((p—1)/2) with ¢(X) conjugate to Y.

In the last part, we will show that if we run through all conjugacy classes of
matrices of order p in Sp(p — 1,Z), we will run through all the combinations
of sign(V1),...,sign(V{p-1)/2) and therefore through all conjugacy classes of
matrices X € U((p — 1)/2) that satisfy the condition on the eigenvalues. An
interesting corollary is the following.

Corollary 2.10. The number of conjugacy classes of elements of order p in
Sp(p — 1,Z) that are conjugate to elements of the form ¢(X), where X is in
U((p —1)/2), is greater or equal to 27~1/2,

2.4.1 The decomposition of R~!

Let p be an odd prime, and let m(z) be the minimal polynomial of the field
extension Q(§)/Q where £ is a primitive pth root of unity. We know that
m(z) is irreducible over Q and, by Proposition 2.3, that it is equal to the
characteristic polynomial of any Y € Sp(p — 1, Z) of order p.

Let o be an isomorphism o : ZP~! — 7ZP~! where Y € Sp(p — 1,7Z) is the
matrix that defines o in the standard basis of Z?~!. Then o is an isometry of
the skew-symmetric bilinear form ¢ : ZP~! x ZP~! — 7Z. In the standard basis

q=1{(,): Ztxzt — Z
(l’y) — <Q?,y> = xTJy

where J is like in the definition of the symplectic group. Without making
any special remark, we will extend the Z-automorphism o : ZP~t — ZP~1 to a
R-automorphism o : RP~! — RP~! or to a C-automorphism o : CP~* — CP 1L,
We can also extend the alternating Z-bilinear form ¢ : ZP~! x Z?~! — Z to an
alternating R-bilinear form ¢ : RP~! x R?~! — R or to an alternating C-bilinear
form ¢ : CP~ x C»~! — C.
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Over R the polymonial m(z) splits in factors of degree 2:

(p—1)/2
mz)=1+--+2"= [ filx)

where
filr) = (@ = &) (2= &) = (2= &) (z - €7)
=12% — 2cos(j2r/p)x + 1 € Rla].

Definition. Let o : RP~! — RP~! be an isomorphism of odd prime order p
whose eigenvalues are the primitive pth roots of unity. Let f; be the polynomial

fiz) == (@ = &) (x = £7)
where ¢ := €?/P. Then we define for j = 1,..., 2 the subspace
Vj = ket f3(0)
of RP~1,
Then

R =Vi@®- @ Vipoi)

with dimV; =2, j =1,...,(p—1)/2. The characteristic polynomial of o|y; is
fi(z), and Vj} is the o-invariant subspace of RP™! corresponding to the eigen-
values &7 and €77, So we have o(V;) = V;. Let

g =qlv;,: V; xV; — R

be the restriction of ¢ on V;. The bilinear form g¢; is skew-symmetric.
Now we will consider the complexification. Let v; € CP~! be an eigenvector of
o to the eigenvalue &/. Then 7; is an eigenvector to the eigenvalue €77 because

o) =& & o(v)) = oly) = &, = 7T,

The vectors v; and v; are linearly independent. Indeed, if they were linearly
dependent, we would have \v; = 7; and o(\v;) = Ao (v;) = Av; = v, but
o(Mv;) = o(v;) = £ 97;. This yields a contradiction since & # 1. Thus the
real vectors

U}j = ’Uj +5j, ’lIJ/j = —i(Uj — ﬁj)
are also linearly independent. Since v; and ?; are mapped to multiples of them-
selves, w; and w; are mapped to linear combinations of themselves. Moreover,
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wj, w; € RP~! span a 2-dimensional subspace of RP~!, which is V; since the
restriction of o to this space has the eigenvalues &7 and ¢ 7. Constructing for
all V;, 7=1,...,(p—1)/2, such a basis w;, w;, we get a basis

Wiy« -+, Wp-1)/2; &717 SR :w(pfl)/2
of RP1,

Lemma 2.11. Foranyz € V;, y € Vy withj #k and j,k=1,...,(p—1)/2
we have

q(z,y) = 0.
Proof. This follows from the fact that

q(vj, k) = q(o(vy), o(vr)) = q(&v;, o) = EExq(v), ve)

implies either &7¢% = 1 or q(v;,vx) = 0. Since &¢% = 1 means that & = £77,
the equation &7¢¥ = 1 is a contradiction to j,k = 1,...,(p—1)/2. So we must
have ¢(v;,vg) = 0. O

Since ¢ is regular, g is not degenerate on Vj. This implies that g; is not
degenerate. For linearly independent z,y € V; we have ¢;(z,y) # 0. Choose
any nonzero x € Vj. Since p is odd, z and o(z) form a basis of V. The
eigenvalues of oy, are & and {77, and we have (oly;)? = 1. So oly, : V; =V}
is a rotation of 5 2r/p. We set 6, := j2m/p. Then
O’(wj) = O'(Uj —f—ij) = §jvj + fijﬁj
= (cosO; +isinb;) v; + (cosO; —isinb,) v;
= cos0; (v; +7;) +isinb; (v; — V)
= COS 9]' w; — sin 0]‘ @j
and
o(@;) = o(~i(v; — 7)) = —i(§'v; — £77;)
= —i((cos; +isinb;)v; — (cos; —isinb;)v;)
= Sinﬁj (Uj =+ Ej) — 1C08 0j (Uj — Ej)

= sin6; w; + cos0; w;.

2.4.2 Definition of the sign of V}
Definition. We define the sign sign(V;) of V; to be
sign(Vj) := signg(z, o(z))

where o € Vj is any nonzero element.
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Lemma 2.12. The sign sign(V;) is well-defined, i.e. independent of the choice
of x.

Proof. Let w;, w; be the basis of V; that we defined above. Set 0 # z € V,
ie. = aw; + pw; with a # 0 or 3 # 0. Then

q(z,0(z)) = glaw; + Bw;, o(aw; + Bw;))
¢(aw; + pw;, (acosb; + Bsin ;) w; + (B cosb; — asinb;) w;)

=

(Beosb; — asinb;) q(w;, w;) + B(acosb; + Bsinb;) qg(w;, w;)
= —(a? + (%) sin 0, q(wj, w;).

We have o? + 3% > 0. Let 6; = j2r/p for j = 1,...,(p — 1)/2. Herewith we
have sin §; > 0, and therefore

sign q(z, o (x)) = sign(—q(w;, @;))

does not depend on the choice of a and 3. So we can choose any nonzero
x € V. O

Lemma 2.13. We have
sign(V;) = signIm(q(v;, 7;)).
Proof. Since q(x,0(x)) is real and
q(z,0()) = —2i (a” + 5?) sinb; q(v;,7;),
q(v;,7;) is purely imaginary. So we have
sign q(z, o(z)) = sign(—q(w;, 0;)) = sign(—q(v; + v;, =i (v; — 7;)))
= sign(—2i q(v;,7;)) = sign(—iq(v;, 7;))
= sign Im(q(vj,ij)).
U

We consider the vectors w;, w;, j = 1,...,(p —1)/2. It follows from Lemma
2.11 that for ¢, =1,...,(p — 1)/2 with ¢ # j the following is true:

but
q(w;, w;) # 0.
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We define for j =1,. T real constants

D=

¢j := (sign(q(wy, ;) q(w;, w;))
= (—sign(V;) q(w;, w;)) *
and vectors in Vj:

uj = ¢ wj, uj = —sign(V;) ¢; w;.

These u;, u; form a basis of V;, and therefore we have constructed a basis
Ug,y - .. ,U(pfl)/g, 61./ ce ,ﬂ(p,l)/g of Rp—l.

Lemma 2.14. The vectors uy, ..., Up-1)/2, U1,-..,Up-1)/2 form a symplectic
basis of RP~1,

Proof. For i # j with 4,7 =1,..., 22

q(ui, uy) = q(us, uy) = (Uuuy)
q(uy, ;) = —sign(V}) ¢ Q(wjawj) =L
In the basis u1, ..., up-1)/2, U1, ..., Up-1)/2, the form ¢ is given by the matrix

J, and since o is an isometry of ¢, o is given by a matrix Y € Sp(p—1,Z). O

With these definitions we can compute

O'(Uj) = YUj = CjY’UJj
= ¢ cosB; w; — ¢ sinb; w;

cosf; u; — (—sign(V;))siné; u;,

and

o(u;) =Y u; = —sign(V;) ¢; Y w,

—sign(Vj) ¢; sin0; w; — sign(V;) ¢; cos; w;

= —sign(V}) sin6; u; + cosb; u;.

The matrix corresponding to oy, : V; — Vj in the basis u;, u; is the following:

cos 0, — sign(V;) sin 6,
sign(V;) sin 6, cos 0; '



2.4. A necessary and sufficient condition 25

Now we see that the matrix corresponding to o : RP~! — RP! in the basis

U, ooy Up—1)/25 ULy - - -5 U(p—1)/2 18
cos 0; 0 -8 sin b, 0
0 COSG% 0 —S% sian;Ql
Sy sin 64 0 cos 0; 0
0 817;1 sin 9% 0 coS QpT—1

where S; :=sign(V}), j=1,..

. 1%1. We want this matrix to look like

cos 0 sin 4 0
0 cos v poL 0 sin 19%
—sin Y, 0 cos 0
0 —sin¥p-1 0 coS Wp—1
because in this case the ei, j = 1,...,(p —1)/2, are the eigenvalues of the
X € U((p—1)/2) we are searching for. Comparing both matrices we get
9. 0, if sign(V;) = —1
7T l2r -6, if sign(V;) = +1.

This proves the following proposition.

Proposition 2.15. Let Y € Sp(p — 1,7Z) of odd prime order p define an iso-
morphism o : ZP~t — ZP7L. Let £ := /P, RP71 = Vi@ - @ V{,_1)2 where Vj,
j=1,...,(p—1)/2, is the invariant subspace corresponding to the eigenvalues
&1, P77 of the extension of o to an isomorphism of RP™L. Then there exists
X e U((p—1)/2) such thatY is conjugate to $(X) € Sp(p— 1,R). Moreover,

if sign(V;) = —1, & is eigenvalue of X € U((p —1)/2), and
if sign(V;) = 1, €77 is eigenvalue of X € U((p —1)/2).
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2.4.3 The proof of the necessary and sufficient condition

The sign of a nonzero real number can be considered as an element of Z/27 if
we define
P R\{0} — Z/2Z
0 ifx>0

! —
T Y e

Let v; € Gal(Q(€), Q) with ;(§) = & where £ is a primitive pth root of unity
and j=1,...,p—1. For vy = (aq,...,q,_1) € Z[]P~! we define the vector

v = (), ... 7%'(%—1))T-

Let M be theset of Y € Sp(p—1,Z) with Y? = 1, Y # 1. If vy is an eigenvector
to the eigenvalue £ of Y € M, v; is an eigenvector to the eigenvalue &7. We
define a mapping

v: M — (Z)272)P D2
Y o= (=i vpn)e 8 (=012 V) 2)))

where sign(—i(vj,vp,—;)) = sign(V;), 7 = 1,...,(p — 1)/2. It follows from
Proposition 2.15 that the necessary condition is sufficient if ¢ is surjective.
Therefore we now have to prove the surjectivity of ¥. First we will prove that
in each conjugacy class of matrices of order p in Sp(p — 1,Z[1/p]) one can
find a matrix in Sp(p — 1,Z). Let M, be the set of matrices of order p in
Sp(p — 1,Z[1/p]). We will show the surjectivity of the mapping

Yp: M, — (Z/22)*D/?
Yy — (w,(_i<vlv Up—1>)7 K 71/)/(_Z'<U(p—1)/27 U(p+1)/2>))

where v is an eigenvector of Y to the eigenvalue £. Then we have shown that
1 is surjective since matrices of M, that are in the same conjugacy class have
the same image under 1,,.

In the article of Sjerve and Yang [10] is shown that a bijection exists between
the conjugacy classes of elements of order p in Sp(p—1, Z) and some equivalence
classes of pairs (a,a) where a C Z[¢] is an ideal and a € Z[¢]. In the article
of Brown [3] is shown that a bijection exists between the conjugacy classes of
elements of order p in Sp(p — 1,Z[1/p]) and some equivalence classes of pairs
(a,a) where a is an ideal in Z[1/p|[¢] and a € Z[1/p][£].

Let P be the set of pairs (a,a) consisting of an integral ideal 0 # a C Z[¢]
and an element a € Z[{] such that aa = (a) C Z[{] is a principal ideal and
a = a. The bar denotes complex conjugation and @ = {a@ | a € a}. We define
an equivalence relation ~ on P:
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(a,a) ~ (b,b) < I\ pueZ[E]\ {0} such that
Aa = pb and Aa = piib.

We denote by |[a,a] the equivalence class of (a,a), and P denotes the set of
equivalence classes of P.

Let P, be the set of pairs (a,,a) consisting of an ideal 0 # a, C Z[1/p|[¢] and
a € Z[1/p]€] such that a,a, = (a) C Z[1/p][¢] is a principal ideal and a = @.
We define an equivalence relation on P,:

(a,,a) ~ (b,,0) < 3\ pueZ1/p][E]\ {0} such that
Aa, = pb, and AMa = b,

We denote by [a,, a] the equivalence class of (a,, a), and P, denotes the set of
equivalence classes of P,.
The sets of equivalence classes P and P, are abelian groups. The multiplication
is given by |a, a|[b, b] = [ab, ab], the inverse of [a,a] is [a, a|, and the unit in P
and P, are [Z[¢], 1] and [Z[1/p][¢], 1] respectively.
Let Cp := Co(Z[£]) be the subgroup of the ideal class group C = C(Z[]) given
by

Co={a€C|aa=(a),a=a for some a € Z[{]}.

Let C, := C(Z[1/p][¢]) denote the ideal class group of the Dedekind domain
Z[1/p][€]. We define a subgroup C,g := Co(Z[1/p][£]) of C,:

Coo = Co(Z[1/pl[€])
={a, €C, | a,a, = (a),a = a for some a € Z[1/p][£]}

Let U be the group of units in Z[§] and Ut = {u € U | u = u} the group of
units in Z[§ + €. Let N : Q&) — Q& +€), a — N(a) = aa, be the norm
mapping and N(U) := {uu = N(u) | w € U}. Let U, be the group of units
in Z[1/p][¢] and U} = {u € U, | u =7}, N(U,) = {utw | u € Uy,}. Clearly
N(U) c U*, N(U,) C Uf, and we can define the abelian groups U*/N(U)
and U;f /N (U,).

According to Theorem 2 in the article of Sjerve and Yang [10], there is a short
exact sequence of abelian groups

)

1 —— UY/N(U) P — G 1

where §(uN(U)) = [Z[€], u], n(a, a]) = [a]. Theorem 3 in the article of Sjerve
and Yang [10] states that the number of elements in P is 2P~Y/2h=. Here
h~ := h/h* where h and h* are the class numbers of Q(¢) and Q(€ + &)

respectively. A short introduction to this subject can be found in the chapter
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about cyclotomic fields. In the article of Brown [3] we find that there is a short
exact sequence

9p

1 —— Uf/N(U,) Py —— Cpop —— 1

where 0,(uN(U)) = [Z[1/p][£], u], ny([ay,a]) = [ay]. Moreover, a bijection
exists between the conjugacy classes of matrices of order p in Sp(p —1,Z[1/p))
and P,. Proposition 7 in the article of Brown [3] states that the cardinality of
Py is [Uy : N(Up)]h~. Now we have to determine the first factor. It is well-
known (see Washington [11]) that the prime above p in Q(&) is principal and
generated by 1 —&. The prime above p in Q(€ + &) is principal and generated
by (1—&)(1—¢&) = N(1—¢). It is clear that for any 2 € U either z € U
or there exists y € Z[¢] such that xy = p" for some r € Z. This implies
that U, = U - (1 — &) where (1 — &) is the group generated by 1 — &, and

UfF =U*- (1 =81 —¢&)) where ((1 —&)(1 —¢)) is the subgroup of (1 — &)

generated by (1 —&)(1 —&). Hence
U7+ N(U,)] = [UF : N(U)] = 2672
The last equation is a consequence of the Dirichlet unit theorem:
Ut = 7032 7./27.
Therefore the number of classes in P is equal to the number of classes in P,
which is 20=1/2p,

Now we will define homomorphisms p;, p and ps such that the following dia-
gram commutes.

1 —— UY/N(U) P 15 C — 1

T

1 —— UF/N(U,) —2 P, —2 Cp —— 1

We define a homomorphism of abelian groups:

b UHN(U) — UF/N(U,)
uN{U) +—  uN(U,).

Let uN(U) #vN(U) € Ut/N(U), then uN(U,) # vN(U,) since (1 — &) is not
a subgroup of U. Therefore p; is injective and p; is an isomorphism since

U*/NU)| = U IN(U,)| = 2077,
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Now we will define ps : Coy — Cpo. Let (a) = aZ[€] C Z[£] be a principal ideal.
Then aZ[1/p|[€] is a principal ideal in Z[1/p|[£]. Let a C Z[¢] be an ideal.
Then we consider the ideal a, € Z[1/p][£] generated by the elements az with
a€a, z € Z[1/p|[¢]. An element of a,, is a finite sum )", a;2; with o; € a,
zi € Z[1/pll€]. For each z; € Z[1/p|[£] exists r; € N with p"iz; € Z[¢]. Let
re=max{r; |i=1,....,n}. Then p"z, € Z[¢] fori =1,...,n, 1/p" € Z[1/p][¢]
and a;p"z; € a. Herewith we get

> am= 2> € 2/
i=1 =1

Thus a, = aZ[1/p][¢] and we can define a homomorphism

P2 C — 0
[a] — lap).

Let [a],[b] € Co, [a] # [b]. Then [a,] # [b,]. Indeed, let a and b be repre-
sentatives of [a] and [b] respectively. Then it is clear that a # b. It is even
true that a, # b, since if a # b, there exists an o € a with o ¢ b and then
aZ[€] € b. This implies [a,] # [b,] because [a,] = [b,] would mean that there
exist A, u € Z[1/p][¢] with Aa, = pb,. For each 8 € b, would exist o € a, with
Aa = pp. Let r;s € N be the smallest numbers such that p" A, p*u € Z[€]; then
for each 3 € b exists a € a with p"Aa = p*ul. Herewith ps is injective and ps
is an isomorphism since |Cy| = |Cop| = b~ < co. Now it remains to define

p: P — P

la,a] +— fap, a].

Let aa = (a). Then a,a, = (a), a principal ideal in Z[1/p][¢], since if x € a,a,,
v=Y @zBz =Y @fz € aZll/p]l¢]
i=1 i=1

where oy, 5; € a and z, 2! € Z[1/p][¢] with z; = 2}z, i = 1,...,n. Therefore
p is well defined.
It follows directly from the definitions that

pod=0d,0p1 and pyon=mn,0p.

Therefore the squares commute and, as a consequence of the five-lemma, p is
an isomorphism.

In the articles of Brown [3] and of Sjerve and Yang [10] is shown that a bijec-
tion exists between the elements in P, resp. P,, and the conjugacy classes of
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elements of order p in Sp(p — 1,Z), resp. Sp(p — 1,Z[1/p]). Since P and P,
are isomorphic, each conjugacy class in Sp(p — 1, Z[1/p]) contains an element
of Sp(p — 1,Z). This means that the isomorphism p : P — P, corresponds to
mapping conjugacy classes of elements of order p in Sp(p — 1,7Z) to conjugacy
classes of elements of order p in Sp(p — 1,Z[1/p]).

Now we will recall parts of the discussion in [10] that are important for our
purposes. Let Y € Sp(p — 1,Z) be of prime order p and

vy = (a,...,0p_1)" € Z[EPH

be an eigenvector corresponding to &, that is Yv; = £vy. Let a be the Z-module

generated by a,...,q, -1, a = Zag + -+ - + Za,_1. Then a is an integral ideal
in Z[¢] where the action of £ on the Z-module a is given by Y. This means
that §ai = Zf;i Yij O where (yij)i,jzl ..... p—1 = Y. Moreover, a1, ...,0p 1 are

independent over Z. Let v; € Gal(Q(€),Q) with ;&) =¢/, j=1,...,p— 1,

be an element of the Galois group. Then v; = (vj(a1),...,7v;(qp-1))* is an
eigenvector to the eigenvalue &7. The eigenvectors vy,...,v,—1 are linearly
independent over Z and by this the o, ..., ap—; are independent over Z. Now

let @ = D~ Jv, where D = pé®+Y/2/(¢ — 1), D = —D. Then Sjerve and
Yang showed that (a, a) is a pair with aa = (a). Following the same procedure,
we can find for a given matrix Y, € Sp(p — 1,Z[1/p]) an ideal a, C Z[1/p|[¢]
such that a,a, = (a).

In Lemma 2.13 we showed that for j = 1,..., (p—1)/2 the sign of the invariant
subspaces V; corresponding to the eigenvalues &7, €77 is

sign(V;) = sign(Im(v;, v,—;)) = sign(—i(v;, v,—;))

where v; is the eigenvector corresponding to the eigenvalue &/. We get by the
definition

sign(—1(vj, vp—;)) = sign(—iv;(Da))
where the sign of z € Z[¢ + €] is the sign of ¢(z) for the real embedding ¢ of
Z[€ + €] with (€ + &) = e™/P 4-e727/P_ Now we see that v is surjective if and
only if
V" {a € Z[¢] | Fa with (a,a) € P} — (Z/272)%~1/?
with
ar— (Y (71(a), -, ' (Vp-1)/2(a)))

is surjective. Because of a remark in the article of Alexander, Conner, Hamrick
and Vick [1],

1/11/,' :{a € Z[1/p][¢] | 3a with (a,a) € P,} — (Z/2Z)(p—l)/2
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with
ar— (¥'((a),. .. ¥ (Vp-1)2(a)))

is surjective. With the same procedure as for Y € Sp(p — 1,Z), we can define
Vi, sign(V;), j = 1,...,(p — 1)/2, for Y, € Sp(p — 1,Z[1/p]), and we get
the statement of Proposition 2.15 and Lemma 2.13 for matrices of order p in
Sp(p — 1,Z[1/p]). Then we see that

Yyt My — (2/22)*7 V7
is surjective and therefore
v M — (2)22)"= 172

is surjective too. Herewith we have finished the proof of Theorem 2.9.

2.4.4 An interesting remark

We have seen in the proof of Theorem 2.9 that a bijection exists between the
conjugacy classes of matrices of odd prime order p in Sp(p — 1,Z) and the
equivalence classes [a,a] € P where a C Z[¢] is an ideal such that aa = (a)
for an a € Z[¢ + €. Let (a,a) be a representative of such a class and let
Y € Sp(p — 1,Z) be a representative of the conjugacy class corresponding to
[a,a]. Let vy = (ay,...,a, 1)" be an eigenvector of ¥ corresponding to the
eigenvalue £. Then we already know that oy, ..., a,_; form a Z-basis of a and
a = D Wl Ju, where D = p¢@+1)/2/(¢ — 1), D = —D. Let V; be the invariant
subspace corresponding to the eigenvalues &7 and € 7. We have already seen
that sign(V;) = sign(—ivy;(Da)) where the sign of z € Z[¢ + £] is the sign of
1(z) for a real embedding ¢ of Z[¢ +¢]. Let U be the group of units in Z[¢] and
Ut ={ueU|u=m1a}. Let wu e U\ N(U) where N is the norm map. Then
[a,ua] € P and [a,a] # [a,ua]. Let Y, be a representative of the conjugacy
class of matrices corresponding to [a, ua]. We denote by sign,(V;) the sign of
the invariant subspace V; of Y, corresponding to the eigenvalues &/ and £77.
Then

sign, (V;) = sign(—in;(Dua))
= sign(vy;(u)) sign(—iv,;(Da)).
We define 1" as in the proof of Theorem 2.9. If

" Ut — (Z)22)@7V/2
u o (sign(m(w),. ... sign(vp-12(u)))
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is surjective, then 1" is surjective. But 1" is not surjective for each prime.
Let h and h* be the class numbers of Q(¢) and Q(& + €) respectively. Then
h= = h/ht. Let C denote the group of cyclotomic units in Q(§) and let
Ct=C0NZE+E. Tt is known that [Z[§ +€]* : OF] = h*. We can find in the
article of Garbanati [6] that A~ is odd if and only if C'* contains units of all
signatures, which means that every totally positive unit in C'* is the square
of a unit of C'. So in case h™ is odd, we have surjectivity. However it may be
possible that Z[¢ +£]* contains units of all signatures even if C* does not. This
can only happen if At is even and then we do not know if 9" is surjective. If
h~ is even and h' is odd, we have no surjectivity. This happens for example
for the primes 29 and 113. The case where h™ is odd is very interesting because
of the following proposition.

Proposition 2.16. If the homomorphism

" Ut — (Z)27Z)PD/?
u o (sign(yi(u)), ..., sign(yp-1)/2(u)))

is surjective, each X € U((p—1)/2) for which ¢(X) € Sp(p—1,R) is conjugate
to a matrizY € Sp(p — 1,Z) yields h~ conjugacy classes in Sp(p — 1, 7).

Proof. In the preceding discussion we have already seen that a bijection exists
between conjugacy classes of matrices of order p in Sp(p—1, Z) and the elements
[a,a] € P. Let uj,up € Ut with uy N(U) # uaN(U). Then, if [a,a] € P, we
have [a, uia] # [a,uga] € P. If 10" is surjective, we get for each class uN(U)
a matrix Y, with a different combination of signs. Herewith there exists for
each a for which a € Z[¢ + €] exists with [a,a] € P a bijection between the
matrices X € U((p — 1)/2) that satisfy the conditions stated in Theorem 2.9
and the equivalence classes [a, ua] where u € U™ is a representative of the class
ulN(U) € UT/N(U). Since h™ ideals a exist with [a, a] € P, we can choose for
each X € U((p—1)/2) the matrix Y € Sp(p — 1,Z) with ¢(X) € Sp(p — 1, R)
conjugate to Y in h~ different conjugacy classes. O

2.5 Conjugacy classes of subgroups of order p
in Sp(p — 1,%)

We have shown that a surjection exists that maps the conjugacy classes of
matrices Y € Sp(p — 1,Z) of odd prime order p onto the conjugacy classes of
matrices X in U((p — 1)/2) that satisfy

{)\1, e )\(p,l)/%xl, ... ,X(p,l)/g} = {6i2ﬂ/p, ... ,ei(p_l)%-/p}



2.5. Subgroups of order p in Sp(p — 1,7Z) 33

where Ap, ..., Ap-1)/2 are the eigenvalues of X, and X denotes the complex
conjugate of A. It is clear that det X = €™/ for some 1 < [ < p. If
X € U((p — 1)/2) satisfies this condition on the eigenvalues, then so does
X E=1,...,p—1. IfdetX # 1, det X* # det X' for any k # [ with
k,l=1,...,p, and the X* are in different conjugacy classes. If det X = e/27i/»
for some 1 <[ < p, then

{det X,... . det XP71} = {e/P . elmli2m/py

If det X = 1, it is possible that some k exists such that X and X* are in the
same conjugacy class. In this section we will analyse when and how many times
this happens. The number of conjugacy classes of matrices X € U((p — 1)/2)
that satisfy the necessary and sufficient condition is 2°~Y/2. Herewith we will
be able to compute the number of conjugacy classes of subgroups of matrices
of order p in U((p—1)/2). We remember that the number of conjugacy classes
of matrices of order p in Sp(p — 1,Z) is 2°=Y/2h=. If b~ = 1, a bijection
exists between the conjugacy classes of matrices of order p in Sp(p — 1,Z) and
the conjugacy classes of matrices of order p in U((p — 1)/2) that satisfy the
condition required in Theorem 2.9.

Let X € U((p—1)/2) with X? =1, X # 1. Then X generates a subgroup
S of order p in U((p —1)/2). If det X = 1, it is possible that X is conjugate
to X’ € S with X # X’. Two matrices in U((p — 1)/2) are conjugate to each
other if and only if they have the same eigenvalues. The set of eigenvalues of
X is

{ei9127r/p_/ o ,eig(pfl)/ﬂﬂ/p}

Where1<gl<p—1f0rl:1,...,p%1 and

gz7ép—gj7 917593'

for all [ # j with {,7 = 1,...,(p — 1)/2. If we consider the g; as elements of
(Z/pZ)*, the condition on the g; is equivalent to

a F —9j, a 7 g

for all | # j with [,7 =1,...,(p — 1)/2. The matrix X is conjugate to X" for
some k if the eigenvalues of X and X" are the same. This is equivalent to

{917 e 7g(p—1)/2} = {Fﬁgl; Cee K/g(p—l)/Q} C (Z/pZ)*

where g; and kg;, j = 1,...,(p — 1)/2, denote the corresponding congruence
classes. Now we introduce some notation that will be used in the whole section.
Let

G:={91,---, 9012} C (Z/pZ)",
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then

kG = {Kg1,...,kGp-1)2} C (Z/pZ)*
for some k € (Z/pZ)*. Let x be a generator of the multiplicative cyclic group
(Z/pZ)* and let K be a subgroup of (Z/pZ)* with |K| = k. Then K is cyclic
and k divides p — 1. Let m := (p — 1)/k, then 2™ generates K.
First we will prove the following proposition.

Proposition 2.17. Let G C (Z/pZ)* be a subset with |G| = (p — 1)/2. Then
the following are equivalent.

i) For all gj,g; € G holds g; # —g; and k € (Z/pZ)* ezists with kG = G,
Kk #£ 1.

ii) An integer h € N, 1 < h < (p—1)/2, and n; € (Z/pZ)*, j =1,...,h,
exist with

h
G= U an
j=1

where n; € K Vj = 2,...,h, and for all ' € K, n; # —myr' Yn;,n
where j,1 = 1,..., h, and the order of the subgroup K generated by k is
odd.

Then we will analyse the uniqueness of this decomposition of . This will
enable us to determine the number of G C (Z/pZ)* with |G| = (p —1)/2 and
G = kG for some 1 # k € (Z/pZ)*. Herewith we will determine the number of
conjugacy classes of subgroups of order p in U((p—1)/2) whose group elements
satisfy the necessary and sufficient condition.

Lemma 2.18. Let G C (Z/pZ)* with |G| = (p—1)/2. Then 1 # k € (Z/pZ)*

exists with kG = G if and only if 1 < h < (p—1)/2 and n; € (Z/pZ)*,
jg=1,...,h, exist with

h
G = U an
j=1
where nj & K for j =2,...,h, and K is the subgroup generated by k.

Proof. <: Let k! € K. Then

h h h
kG = K U n; K = U njan = U n; K
=1 j=1 j=1

=G.
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=: Without loss of generality we assume that 1 € G. If 1 € G, A € (Z/pZ)*
exists with 1 € AG because (Z/pZ)* is a multiplicative group. Then we have

KAG = AxG = M\G.

Moreover, if we can decompose AG as required, this is also true for G. Indeed,

h h
)\G:Un;-K = G:Uan

Jj=1 Jj=1

where n; = )\_ln;-, j=1,...,h In fact A € K since if A € K, then \G = G
and 1 € G would imply that 1 € \G.

We can show that k = |K| < |G|. Indeed, if kG = G and 1 € G, then k € G.
Moreover, we have k! € K and x!G = G for | = 1,...,k. This shows that
K CGand k=|K|<|G|.

If K = G, we have finished the proof. If K C G, we consider G| = G'\ K. We
have 1 ¢ G because 1 € K. For all k' € K we have

kG =G\ K)=KG\KK=G\K
el
= .
Now A\ € (Z/pZ)* exists with 1 € A\{G} =: G1. In the same way as we did it for
G, we can show that k = | K| < |G1]. Then we have G = K UX;'G;. Now we

make the same construction with G instead of with G. We will have finished
after h := (p—1)/2k steps. Let ny :== 1, n; == nj,l)\jill for j =2,...,h. Then

h
G == U TLjK.
j=1

O

Let G = {g1,....9p-1)2} C (Z/pZ)* with |G| = (p —1)/2 and kG = G for
some k € (Z/pZ)* with k # 1, k¥ = 1. The following lemma will give an
answer to the question when (' satisfies the conditions

a # gj. a # —9;

for all j # { with j,l =1,..., 2L,

Lemma 2.19. Let G = U?Zl n;K C (Z/pZ)* be defined as in Lemma 2.18.

Then g; # —gi for all g;, g1 € G if and only if K7 # —k' for all ¥, k' € K and
n; # —myk for all 5,1l =1,... h and for all k € K.
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Proof. =: Suppose there exist 7, k' € K with x/ = —x!. Then nix/ = —nx',
and since myx/,mk! € G (m K C G), we have found gj = nik’ € G and
g :=mr € G with g; = nik? = —nykl = —g,.

<: Suppose g, € G exist with g; = —g;. Let g; = njr?, ¢ = mr!. Then
n;k! = —nyk!, and we have found x/~! € K with n; = —n;x?~". O

The question, which now arises, is whether subgroups K C (Z/pZ)* exist that
satisfy the condition x7/ # —x! for all x/, k! € K. To answer to this question,
we first state a lemma.

Lemma 2.20. Let x be a generator of (Z/pZ)*. Then

.Tm T {Em-i-(p—l)/Q — 0

Proof. Since p is a prime, Z/pZ is a field and (Z/pZ)* = Z/pZ \ {0} contains
the additive inverse of each of its elements. Therefore o + 22 4 - -+ 2P~ = 0.
A computation shows

g2t 4P = (T2 2) (z 4 22

The order of z®=1/2 is 2 since 2z2~! = 1 and therefore z®=1/2 = —1. Now we
get
" gt e=N2 g, (1 + x(p_l)/Q) =0.
]

Lemma 2.21. Let K C (Z/pZ)* be a subgroup of order (p — 1)/m. Let x
be a generator of (Z/pZ)* and x™ a generator of K. Then ki # —k! for all
k1, k' € K if and only if m does not divide (p — 1)/2.

Proof. Because of the statement of Lemma 2.20, a subgroup K exists that
contains two elements x7, k! with k7 = —x! if and only if m € Z exists with
2™, 2"+ 0=D/2 ¢ K. Moreover, 2" generates K if m = (p — 1)/2k. Then

m+(p /2 ¢ K if and only if x(p /2 ¢ K. This happens if and only if m
divides (p — 1)/2. O

Proof of Proposition 2.17. We consider the divisors of p — 1. Let r € Z be
maximal such that 2"|p — 1. Then r > 1 since 2|p — 1. We define y such
that p — 1 = 2"y. Then 2" 'y = (p — 1)/2. Now it is clear that m|p — 1 and
m f(p—1)/2 if and only if m = 2"y’ where y/|y. This happens if and only if
k= (p—1)/mis odd. Herewith we see that a subgroup K decomposes a set ¢

as required in Lemma 2.19 if and only if the order of K is odd. We can show
that |K| = (p — 1)/m divides (p — 1)/2. Indeed,

-1 ,
p—1(p-—1 m 2y 1
- - = — = :27‘ EZ
2 (m) 2~ 2 Y

since r > 1. With the preceding lemmas we have shown Proposition 2.17. O
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We did not analyse the uniqueness of the decomposition

h
G == U an
j=1

of the set G. It is evident that the n; can be permuted and multiplied with
any k! € K, but we will see that K and h are not uniquely determined. The
next lemma states that instead of K we could take any nontrivial subgroup of
K.

Lemma 2.22. Let G = U?Zl n;K C (Z/pZ)* be as in Proposition 2.17. Let
|K| = k be odd and not a prime. Let K' # K be a nontrivial subgroup of K.
Then 1 <K < (p—1)/2 andn, € (Z/pZ)*, i =1,...,}, exist so that

W
G = U n,K'
i=1

where n, & K' fori=2,... 0, and n} # —njx’ Vi, l =1,... 0, VK € K'.

Proof. We set k/ :== |K’|. Then k’ divides k. Let x be a generator of (Z/pZ)*,
m:=(p—1)/k, m' = (p—1)/K. Since K' C K, we get k' < k and m’ > m.
Moreover, m divides m’ because

/ _
mo_p—l k_ _ k. g
m K p—1 K

Now we define [ such that m’ = ml. Then k = k’l. Because of the definitions,
h=(p-1)/2k =m/2. Let k' :=m//2. Then b’ = hl. It is easy to check that

l
K = U l,rmKl’
r=1

but herewith we get

h

h ! hoo
G=|nK= U n; < x””K') = U U n;x’m K’
1 j=1 r=1

Jj= j=1r=1

h'=nhl
/ !
=1

The n} are all different since all the n; and all the 2™ are different. Moreover,
at most one n; € K’, namely n;z!™ if n; € K'. For all ¥ € K’ holds n) # —n/x’
Vnj,n, with i,l=1,..., k. O



38 2. The symplectic group

Now we will consider for a given G the group K for which | K| is maximal and
allows the decomposition G = U?:l n; K.
Our next aim is to determine the number of sets G.

Lemma 2.23. Let K C (Z/pZ)* be a nontrivial subgroup of odd order k.
Then there exist 2P~Y/%k djfferent sets G with |G| = (p —1)/2 and

h
G == U an
j=1
where h = pz—_kl and all the conditions of Proposition 2.17 are fulfilled.

Proof. Let M C (Z/pZ)* be a subgroup of order m := (p — 1)/k. Let x be a
generator of (Z/pZ)*. Then 2™ and a* generate K and M respectively. If k
and m have no common divisors, then K N M = {1} and

(Z/pZ) ={abla€e K, be M}.
Since k divides (p—1)/2, it follows from b € M that —b € M. If k and m have

common divisors, then
(Z/pZ)" = {wla |a€K, [ = 1,...,m}.
We get 2*V/2 [ = K since (2)*~1/2 € K and herewith
2 K = 2ttt K
Now we can write

(Z/pZ)* = {2'a, 2" %a lae K, I=1,...,m/2}

m(k—1)

:{xla, PR ‘aEK, 1:1,...,m/2},

but k-1 k 1
—_—t—F+l=—Fl=—+1
m 5 + 5 + 5 + 5 + ¢,
and therefore

Herewith we can write
(Z/pZ)" = {xla, —zla ‘a eK, =1, ...,m/2} ,

which means that

(Z/pz)" = | n; K
j=1
where Vj = 1,...,m exist K € K and 1 < i < m such that n, = —sn;. So

for a given group K we can find 2°—1/2k = 2m/2 gets G that fulfil the required
conditions. O
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The evident question that arises is how many sets G' with

h
=1
cannot be written as
h/
G = U n.K'
i=1

where K’ is a subgroup of (Z/pZ)* with K C K’. Let N} be the number of
such G.

To determine A, we have to subtract the number N from 2~1/2k for each
odd k' # k with k|k', K'|p— 1. The integer k' is the order of the group K’ with
K C K'. Therefore we get a recursive formula

N, = o(p=1)/2k _ Z N
K odd, k'>k
k|, K'|p—1
Let y € Z be such that p — 1 = 2"y and y is odd. Then
Ny — ol=1)/2y _ 927!

closes the formula.

Let p—1=2"p}" ... p" be a factorisation of p — 1 into primes where p1, ..., p
are odd and p; # p; Vi # j with 4,5 =1,...,[. Since p — 1 is even, r > 1. Let
K be of order k = pi'...p]" where 0 < s; < r; for j =1,...,1. Let z be a
generator of (Z/pZ)*. Then K is generated by z™, m = 2”p’1”1 toptT I
K =ph. tl where s; < t; <r; for j = 1 ., [, then K is a proper subgroup
of K’ of order k' if s; < t; for some 1 < j < l. Herewith —1 +H§:1(rj —s;+1)
groups K’ exist such that K is a proper subgroup of K’.

We will say that GG is decomposed by K if

h
j=1

as in Proposition 2.17. Now the number of sets GG that are decomposed by K
and for which no K’ D K exists such that G is decomposed by K’ is

Nk p 1)/2k ZN
yeT)

where

T == {y| y odd, kly, y# k and y|p—1}.
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Now we have to determine the number of sets GG that satisfy the conditions of
Proposition 2.17. Let this be the number Ng. One easily sees that

NG: Z MK|: ZNk

KC(Z/pZ)* klp—1
K#{1}, k#1
|K| odd k odd

Now let G C (Z/pZ)* with |G| = (p — 1)/2, such that Vg;,9; € G, g: # —g;.
Let A7 be the number of sets G for which no x € (Z/pZ)*, k # 1, exists such
that kG = G. Then

N, =20-D/2 _ Af, = o=1)/2 _ Z N

1#£k| p—1
k odd

This formula shows that N; is not a special case but simply N, for k = 1.

Definition. Let G C (Z/pZ)* with |G| = (p —1)/2 and g; # —g; for all
9. g; € G. We define the multiplicity Vg of G to be the number of k € (Z/pZ)*
with kG = G. This is the order of the group K with |K| maximal and kG = G
for all k € K.

It follows from the definitions that Vg = k£ and that the number of G with
Vo = k is N.. Tt is possible that Vg = 1.

Lemma 2.24. Let G be as in Proposition 2.17 with multiplicity Vg = k. Then
each IG, | € (Z/pZ)*, has also multiplicity Vig = k.

Proof. Let k' be the multiplicity of [G. Let K be the subgroup of order k& with
kG = G for all Kk € K. We have

klG =1kG =1G Vle (Z/pZ) .

Therefore K’ O K where K’ C (Z/pZ)* is a subgroup of order &’. This means
that &' > k. Let ' € K'\ K. Then 'lG = IG and r'lG = [k'G imply that
k'G = (. This is a contradiction, and therefore ' € K. O

We will consider each set G as the set of eigenvalues of a matrix in U((p—1)/2)
that satisfies the necessary and sufficient condition.

Definition. We define a matrix Xqg € U(p—gl) with the eigenvalues

{ei9127f/1’7 o ,eig(p—l)/227T/P}

where G = {g1,...,9p-1)2} C (Z/pZ)*. We used the same notation for the
elements of (Z/pZ)* and their representatives in Z.
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Let G have the multiplicity k. Then G yields k elements of the group generated
by Xg. Now we are convinced of the fact that the following proposition is true.

Proposition 2.25. The number of conjugacy classes of subgroups of order
p in U((p — 1)/2) whose group elements satisfy the necessary and sufficient

condition s .

k odd
klp—1

We cannot simplify the formulas for K(p) and N, but a special case appears.

Lemma 2.26. Let p — 1 = 2"y where y is odd. Let py be an odd prime with
pily. Let s be mazimal such that pily. Let k :=y/p} with 0 <t < s. Then we
get

Ny, =277 g
Proof. We know that 21 = 2"~!p!. Therefore

p—1

/\/’kZQW Nkpl_”'_Nkp’i
t t
p—1 p=1
T (2 - ZNM) =2 N
=2 =2
— 9% _ 2%

O
Now we consider the case p—1 = 2"p3. Then pt, ¢t =1,..., s, are odd divisors
of p — 1. Then Lemma 2.26 yields
./\/pi _ 227‘ 1
Nyemr = 277178 92 ol
and






Chapter 3

Symplectic characteristic classes

3.1 Introduction

It is well-known that
H*(BU(n),Z) = Zicy, . - ., ¢,

where the ¢; € H¥(BU(n),Z), j = 1,...,n, are the universal Chern classes.

Moreover,
H*(BSp(2n,R),Z) = Z|dy, . .., dy)

where the d; € H¥(BSp(2n,R),Z), j = 1,...,n, are the symplectic classes.
The previously defined homomorphism ¢ : U(n) — Sp(2n,R) is injective and
induces N

H*(BSp(2n,R),Z) — H*(BU(n), Z)

such that the d;’s map to the ¢;’s. Now let

p: Z/pZ — Sp(2n,Z),
i L — U(n)

be representations of Z/pZ. They induce homomorphisms

p*: H*(Sp(2n,Z2),Z) — HY(Z/pZ,Z),
p*: HYBU(n),z2) — HY(Z/pZ,7Z)

since Z/pZ and Sp(2n,Z) are discrete groups. Moreover, using the restriction

res: H%(BSp(2n,R),Z) — H¥(Sp(2n,Z),7Z)
d; = d;(R) — d;(2),

we define d;(p) := p*d;(Z), the symplectic class of the representation p. Note
that, strictly speaking, the class d;(Z) € H¥(Sp(2n, Z),Z) depends also on n;
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but it is well-known that H* (Sp(2n, Z), Z) is independent of n for n > j. Any
representation p : Z/pZ — U(n) induces a representation

¢op:ZL/pZ — Sp(2n,R).

Since ¢ is injective, we can consider any representation in U(n) as a represen-
tation in Sp(2n,R). We say that the representation p : Z/pZ — U(n) factors
through Sp(2n,Z) if

Z/pZ. —"— U(n) —— Sp(2n,R)

has the property that the image ¢(p(x)) of any = € Z/pZ is conjugate to an
element in Sp(2n,Z). Then d;(p) = p*c;.

Each representation p : Z/pZ — U(n) can be written as a direct sum of
1-dimensional representations:

p—1

p=EPm;p; : Z/pZ — U(n)

§=0
where B
Bt Ll —  U(L)

j 2mi
T — el 2mi/P,

m; is the multiplicity and x is a generator of Z/pZ. Let p : G — U(n) be a
representation of a discrete group GG. Then p induces

5. HYBUM).Z) — H(C.Z)
¢ — p(e) =g(p).

We define the total Chern class of the representation p to be
c(p) =1+ cu(p) + ca(p) + -+ - + calp)-

It has the well-known properties c¢(p ® o) = c(p)c(o), c(mp) = c(p)™ where p
and o are two representations of G. Herewith we get

(p) = c (69 m@) ~Let)™

= [ @ +jx)™ e H'(Z/pZ.Z)

JEZ/PL

where x = ¢1(p1) € HX(Z/pZ,7) = 7/ pZ is a generator.
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3.2 On the characteristic classes of symplectic
representations of Z/pZ

We are going to show that for each n = 1,...,p — 1 we can find a repre-
sentation p : Z/pZ — U((p — 1)/2) that factors through Sp(p — 1,Z) and
for which the universal Chern class ¢,(p) # 0. Thus p*(¢,) = dn(p) # 0
where p : Z/pZ — Sp(p — 1,7Z) is the representation corresponding to p. The
representation p factors through Sp(p — 1, Z) if the image p(z) of a generator
x € Z/pZ satisfies the necessary and sufficient condition stated in Theorem
2.9. Let U be the set of subsets T C (Z/pZ)* with |Z| = (p—1)/2, and j € T
implies p — j € Z. The number of elements in U is 27"1/2. We always assume
the elements j € 7 to be represented by integers 5 with 1 < j < p. Note that
we will use the same notation for the elements of Z and their representatives.

We define
- D
jET
where p; is defined as above. The total Chern class of this representation is
c(pz) = H(l + jz).
jeT
For a given 7 we define
—IT:={p—jljeI}el.
Then Z U —Z = (Z/pZ)* and

c(pr)e(p-1) = [ [+ jz) (1 + (p = j)x)

JET
1
= 1+ kz) = k|-
H (1 + kx) H (k + x)
ke(z/pZ)* ke(Z/pZL)*
= 1] * H kt+a)=— ] *k+2
ke(Z/pZ)*  ke(Z/pL)* ke(Z/pL)*
=1- xp_l.

Lemma 3.1. LetZ € U. Then

(p—1)/2 (p—1)/2

Z az" = c(p-z) = (—1)"apz"
where ag ;=1 and a,, = Z Hj.

JCT, |J|=n jE€J



46 3. Symplectic characteristic classes

Proof. This is obvious because

(r—1)/2
c(ﬁz):H(l—l-jx ) =1+ Z " Z Hj
JjET JCI, |J|=n jE€J
and
(p—1)/2
c(pr) = [J(1 —j=) =1+ Z CVE D | ¥
JjET JCI, |J|=n j€J

O

Theorem 3.2. For an odd prime p let T C (Z/pZ)* with |I| = (p—1)/2, and
J € I implies p—j & I. Let a representative of j € T be an integer 7 with
1 < j < p. We define the representation

pr =P : Z/pZ—>U( 21)

JET

with _
Bt 2/t — (1)

> — el 27 /p

for a generator z of Z/pZ. Then for any integern = 1,...,(p—1)/2 the subset
Z can be chosen such that the nth Chern class c,(pz) is not zero.

Proof. Let x := ¢;(p1); then the nth Chern class ¢,(pr) is not zero if and only
if the coefficient of 2" in the total Chern class

e(pr) = [T ey = [T + )
JET jET
is not zero. Let Z := {j1,...,jp-1)2} € U; then we denote by Z; € U the set
-,Z—l = {jla v ajl—la _jlajl-i-lv BRI 7j(p—1)/2}-

We assume that 1 < n < (p — 1)/2 exists such that for each set Z € U the
coefficient a,, of ™ in ¢(pz) is zero. It is impossible that n = (p —1)/2 because

ag-n2 =[5 #0.
jez
Now let n # 0, n # (p — 1)/2; then we define for any [ =1,...,(p—1)/2

Z Hj, bé:zl.

JCI\{qi} jeJ
|J|=n
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Now let
(p—1)/2

c(pr) == Y ana™;

n=0

then a, = b, + jibl,_,. Because of our assumption, the coefficients of z" in
c(pr) and in c(pz,) are b, + bl | = 0 and o), — 5,0}, _, = 0 respectively. This

implies that 8!, = 0, bl,_;, = 0 and
= S T1

JCT  jeJ

|J|=n+1
1 1

_ . AN . bl -0
n+12(” Z H ‘7> n+1Z‘7’ n=0
JI€T J|§JI|\{J1} JjeJ JET

The factor 1/(n + 1) appears because in the second line we have n + 1 times
each term appearing in the sum of the first line. Therefore a,,.; = 0 for each
set Z € U, and by induction we get a,—1)/2 = 0 for each set T € U, which is
impossible. O

Let Sp(Z) = U Sp(2n.Z).

n>1
Theorem 3.3. For every j > 1, d;(Z) € H¥(Sp(Z),Z) has infinite order.

Proof. This theorem is a corollary of Theorem 3.2. Tt is well-known that for
p>J
H2j(Sp(Z)j Z) — H2j (Sp(p - L Z)v Z)

In Theorem 3.2 we have shown that for any odd prime p and any integer
n=1,...,(p — 1)/2 a representation pz : Z/pZ — U((p — 1)/2) exists that
factors through Sp(p—1, Z) and for which the nth Chern class ¢, (pz) is not zero.
Then the nth symplectic class d,,(pr) is not zero, too. Here the representation
pr : Z/pZ — Sp(p — 1, 7Z) is the one corresponding to pr. We have an induced
homomorphism

py: H¥(Sp(p—1,2),2) — HY(Z/pZ.Z)
d;(Z) — d;i(p2).

Herewith for any p the class d;(Z) € H¥(Sp(p — 1,7Z),7Z) is not zero and has
either infinite order or finite order divisible by p, since it restricts non-trivially
to H¥(Z/pZ,7Z). This shows that d;(Z) € H* (Sp(Z), Z) has infinite order. O






Chapter 4

The Farrell cohomology of
Sp(p — 1,7Z)

4.1 An introduction to Farrell cohomology

We will give a short introduction to the Farrell cohomology theory. More
details and the proofs can be found in the book of Brown [4].
We say that a group G is virtually torsion-free if G has a torsion-free subgroup
of finite index. All such subgroups have the same cohomological dimension,
which is called the virtual cohomological dimension of G and denoted by ved G.
If G is finite, vedG = 0. A complete resolution for G is an acyclic chain
complex F' of projective ZG-modules together with an ordinary projective
resolution € : P — 7Z over ZG such that F' and P coincide in sufficiently
high dimensions. Such a complete resolution (F, P, ¢) exists for groups G with
vedG < oo. We can even choose (F,P,¢) such that F' and P coincide in
dimensions > ved GG. In what follows, we always assume that ved G < oo. It
is well-known that the groups Sp(2n, Z) have finite ved.
Let (F, P, ¢) be a complete resolution for G and let M be a ZG-module. We
define R

H*(G, M) = H*(Homg(F, M))

to be the Farrell cohomology of G with coefficients in M. If G is finite, the
Farrell cohomology and the Tate cohomology of GG coincide.

Definition. An elementary abelian p-group of rank r > 0 is a group that is
isomorphic to (Z/pZ)".

It is well-known that ﬁi(G, Z) is a torsion group for every i € Z. We write
H'(G,Z) ) for the p-primary part of this torsion group, i.e. the subgroup of
elements of order some power of p.
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We will use the following theorem.

Theorem 4.1. Let G be a group such that ved G < oo and let p be a prime.
Suppose that every elementary abelian p-subgroup of G has rank < 1. Then

H* (G, Z) ) = HH* )

pPep

where P is a set of representatives for the conjugacy classes of subgroups of G
of order p and N(P) denotes the normalizer of P.

Proof. See Brown'’s book [4]. O

We also have

0*(G,7) = [[0*(G, Z)
V4

where p ranges over the primes such that G has p-torsion.

A group G of finite virtual cohomological dimension is said to have periodic
cohomology if for some d # 0 there is an element u € ﬁd(G , Z) that is invertible
in the ring ﬁ*(G . 7). Cup product with u then gives a periodicity isomorphism
Hi(G, M) =~ H* (G, M) for any G-module M and any i € Z.

Similarly we say that G has p-periodic cohomology if the p-primary component
H*(G, Z) ), which is itself a ring, contains an invertible element of non-zero
degree d. Then we have

HY(G, M)y = HHY(G, M)y,

and the smallest positive d that satisfies this condition is called the p-period

of G.
Proposition 4.2. The following are equivalent:

i) G has p-periodic cohomology.

ii) Every elementary abelian p-subgroup of G has rank < 1.
Proof. See Brown’s book [4]. O
Remark. Ash [2] used Theorem 4.1 to compute the Farrell cohomology of
GL(n,Z),n=p—1,...,2p—3, with coefficients in Z/pZ. Another application

of Theorem 4.1 is given by Naffah [8], who calculated the integral Farrell
cohomology ring of PSLy(Z[1/n]).
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4.2 About normalizers

In order to use Theorem 4.1, we have to analyse the structure of the normalizers
of subgroups of order p in Sp(p — 1,Z). We already analysed the conjugacy
classes of subgroups of order p in Sp(p—1,7Z). Let N be the normalizer and let
C be the centralizer of such a subgroup. Then we have a short exact sequence

1 C N N/O — 1.

Moreover, it follows from the discussion in the paper of Brown [3] that for p
an odd prime
C = Z/pL x LJ2Z = 7,/2pZ,

and therefore N is a finite group. We will use the following well-known propo-
sition.

Proposition 4.3. Let
1 U G Q 1

be a short exact sequence with Q) a finite group of order prime to p. Then
AN - Q
HY(G. Z)) = (H (U, Z)(P)) :

Applying this to our case, we get

~ ~ N/C

H*(N, Z) ) = (H*(C, Z)(zo))

Therefore we have to determine N/C and its action on C' = Z/2pZ. From
now on, if we consider subgroups or elements of order p in U((p — 1)/2), we
mean those which satisfy the condition of Theorem 2.9. In what follows we
assume that p is an odd prime for which h~™ = 1, because in this case we have a
bijection between the conjugacy classes of subgroups of order pin U((p—1)/2)
and those in Sp(p — 1,Z). Therefore, in order to determine the structure of
the conjugacy classes of subgroups of order p in Sp(p — 1,7Z), we can consider
the corresponding conjugacy classes in U((p — 1)/2). We have already seen
that in a subgroup of U((p — 1)/2) of order p different elements can be in the
same conjugacy class. Let NV} be the number of conjugacy classes of elements
of order p in U((p — 1)/2) where k powers of one element are in the same
conjugacy class. Let K, be the number of conjugacy classes of subgroups of
U((p—1)/2) in which k elements are conjugate to each other. Then the number
K(p) of conjugacy classes of subgroups of order p in U((p — 1)/2) is

K(p) = Z K.

klp—1,
k odd



52 4. The Farrell cohomology of Sp(p — 1,7Z)

If in a subgroup k elements are conjugate to each other, then |N/C| = k and
N/C=Z[KZ CZ[(p—1)Z = Aut(Z/2pZ)

where k|p —1 and k is odd. This means that N/C' is isomorphic to a subgroup
of Aut(Z/pZ). So we get the short exact sequence

1 —— Z/2pZ N Z/kZ — 1.

Moreover, we have an injection Z/pZ — 7 /2pZ — N. Applying the proposi-
tion to this case yields

~

. . Z/kZ.
(V. 2)g) = (H(2/202.2) )

The action of Z/kZ on Z/2pZ is given by the action of Z/kZ as a subgroup of
the group of automorphisms of Z/pZ C 7 /2pZ.
The following is a well-known result.

Lemma 4.4. The Farrell cohomology of Z/IZ is
H*(Z/1Z.7) = Z)IZ [z, 27"]
where degx = 2, x € HX(Z/IZ,Z), and (z) =~ Z/IZ.
This yields for an odd prime p
H*(Z/2pZ, Z) ) = (Z/20Zlw,27Y) ) = Z/pZlw,x™").

In order to compute
~ Z/kZ
(/2. 2)0) "
we have to consider the action of Z/kZ on Z/pZ|x,x~']. We have pr = 0 and
z € H? (Z/2pZ, 7). The action is given by x — gz with ¢ such that (¢,p) = 1,
¢" =1 (mod p) and k is the smallest number such that this is fulfilled. The
action of Z/kZ on

0™ (Z,)2pZ, Z) ) = ((2™)) = Z/pZ

is given by

R
The Z/kZ-invariants of H*(Z/2pZ, Z)( are the 2™ € H2™(7,/2p7., Z) () with
™ +— 2™, or equivalently ¢™ =1 (mod p). Herewith we get

~

H*(N.Z)) = (ﬁ*(Z/QpZ, Z)(,,)>Z/kZ — (2/pZlz,27"))
= 7/pZ[z* 2 7F].

Z/KZ

Let p be a prime with h~— = 1. Then K, conjugacy classes of subgroups exist

for which |N/C| = k. Theorem 4.1 yields
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Proposition 4.5. Let p be an odd prime for which h~ = 1. Then

H*(Sp(p— 1,2).2)y = [] (HZ/pZ[x’“w‘k])-

klp—1 1
k odd

If Y € Sp(p — 1,Z) is a matrix of order p whose conjugacy class corresponds
to the equivalence class [a,a] € P, the conjugacy class of Y* corresponds to
[V-k(a),7-x(a)] where v, € Gal(Q(£), Q) is defined by y_4(§) = . For a
definition of P see the proof of Theorem 2.9. If A~ is odd, a bijection exists
between the conjugacy classes of matrices of order p in U((p—1)/2) that satisfy
the conditions of Theorem 2.9 and the conjugacy classes of matrices of order
p in Sp(p — 1,Z) that correspond to the equivalence classes [Z[¢],u] € P. In
this case we get

K
H*Sp(p—1.2),Z)y = ] | []2/p2Zla", =7

Elp—1 \ 1
k odd

where K, denotes the number of conjugacy classes of subgroups of order p of
Sp(p — 1,Z) in which k elements are conjugate to each other. If A~ is odd,
Ky > K. If b~ is even, it may be possible that no subgroup of Sp(p — 1, Z) of
order p exists for which |[N/C| = k.

Now it remains to determine K, the number of conjugacy classes of subgroups
of U((p — 1)/2) of order p with N/C = Z/kZ. Therefore we need Ny, the
number of conjugacy classes of elements X € U((p—1)/2) of order p for which
1 =7 <+ < jr < p exist such that the X7, [ = 1,...,k, are in the same
conjugacy class than X and k is maximal. One such class yields k elements in
a group for which |N/C| = k and therefore

1
p—1

ICk = k/\/k

We recall the formula for Nj:

p—1
Nk =22% — E Nk"
k' odd, k'>k
k|, K |p—1

Now we have everything we need to compute the p-primary part of the Farrell
cohomology of Sp(p — 1,Z) for some examples of primes with A~ = 1.
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4.3 The p-primary part of the Farrell
cohomology of Sp(p — 1,Z) for 3 < p < 19
p=3: Itis Sp(2,Z) = SI(2,7Z). We just have k = 1 and get
Ny =2t=2 /Clz./\/lﬁ:l.
This means that one conjugacy class exists with N = C. Therefore
H(Sp(2,2), 2) 5 = Z/3Z [z, "),
and Sp(2, Z) has 3-period 2.
p=>5: We just have k£ = 1 and get
Ny =22=4 /Clz./\/’l%l:l.
This means that one conjugacy class exists with N = C'. Therefore
H*(Sp(4.Z), Z)5) = Z/5Z[z, a7,
and Sp(4, Z) has 5-period 2.
p="7: Here k € {1,3} and we get
Ny =23 =2 Ka=3N5-4 =1
N =22-2=6 Ki=Nz =1
This means that one conjugacy class exists with N/C' = Z/3Z, and one
class exists with N = C'. Therefore
H*(Sp(6,Z), Z)(r) = Z) T2z, &3] x Z)TZ[z,x~Y],
and Sp(6, Z) has T-period 6.
p=11: Here k € {1,5} and we get
Ny =2 Ks=5N5-25 =1
Ni=25—2=30 Ky =M= =3

p—1

This means that one conjugacy class exists with N/C = Z/57 and 3
classes exist with N = C'. Therefore

~ 3
H*(Sp(10,Z), Z) 11y = Z/11Z[2°, 7] x [[ Z/11Z[z, z7],
1

and Sp(10,Z) has 11-period 10.
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p = 13: Here k € {1,3} and we get

Ny =28 =4 Ks=3Ns-L =1
N, =20 —4 =60 /clleﬁ:a

This means that one conjugacy class exists with N/C = Z/3Z and 5
classes exist with N = C. Therefore

~ 5
H*(Sp(12,7Z), Z)(13) = Z/13Z[z*, 7] x [] Z/13Z[z, 1],
1
and Sp(12,Z) has 13-period 6.
p=17: We just have k£ = 1 and get
Ny = 28 = 256 Ki= N7 =16.

This means that 16 conjugacy classes exist with N = C. Therefore
~ 16
H*(Sp(16,Z), Z)any = 1] Z/17Z[x, x 7],
1

and Sp(16,Z) has 17-period 2.

p=19: Here k € {1,3,9} and we get

Ny =28 =2 Ko = 0Ny 15 = 1
Ny =25 —2=6 Ks=3N3-1 =1
N, =292 6=>504 Ki= N4 =28,

This means that one conjugacy class exists with N/C' = Z/97Z, one class
exists with N/C' = 7Z/3Z, and 28 classes exist with N = C.

H*(Sp(18,Z), Z) 10y = Z/19Z[2°, &) X Z/19Z[a?, 2]

28
x [12/19Z[z, =],
1

and Sp(18,7Z) has 19-period 18.
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4.4 The p-period of the Farrell cohomology of
Sp(p — 1,7)

For 3 < p < 19 we have computed the period of ﬁ*(Sp(p — 1,2),Z) ). We
can determine the p-period of Sp(p — 1, 7Z) for any odd prime p for which A~ is
odd where A~ denotes the relative class number of the cyclotomic field Q(&),
& a primitive pth root of unity.

Theorem 4.6. Let p be an odd prime for which h™ is odd and let y be such
that p — 1 = 2"y and y is odd. Then the period of H*(Sp(p —1,7Z),Z) ) is 2y.

Proof. Each conjugacy class of subgroups of order p in U((p — 1)/2) whose
group elements satisfy the condition required in Theorem 2.9 yields at least
one conjugacy class in Sp(p — 1,7Z). This implies that the p-primary part of
the Farrell cohomology of Sp(p — 1,Z) is a product

H HZ/pZ[xk,a:’k]

klp—1, 1
k odd

where K denotes the number of conjugacy classes of subgroups of order p of
Sp(p — 1,Z) in which k elements are conjugate to each other. There are Ky
such subgroups in U((p — 1)/2), and, because h~ is odd, each such subgroup
gives at least one such subgroup of Sp(p—1,Z). Therefore Kr. > Ky. Moreover,
the period of Z/pZ[x*, x7*] is 2k. Herewith the period of the p-primary part
of the Farrell cohomology is 2y. O

If p is a prime for which A~ is even, the p-period of ﬁ*(Sp(p —1,2),7Z) is 2z
where z is odd and divides p — 1. The period is not necessarily y because
there may be no subgroup of order p in which y elements are conjugate in
Sp(p — 1,Z) even if we know that they are conjugate in Sp(p — 1, R).



Chapter 5

Examples

5.1 The companion matrix

In this section we will show an application of the construction we did in order
to prove Theorem 2.9.

Let us first examine the construction in the paper of Biirgisser [5]. For an odd
prime p let & be a primitive pth root of unity. The minimal polynomial of the

extension Q(£)/Q is
m(x) =1+z+- 2"

We define the companion matrix B of m(z) as

0 1 o --- 0
0 0 1 o
o o --- 0 1
1 -1 - -1 -1

Then det B =1 and B? = I. Now we set

r 0 --- 0
_ : 0 D
D = L and D := —T
0 -D" 0
1 1 1

It is obvious that D € SL(p—1,Z) is skew-symmetric and defines an alternating

bilinear form
q: 7P lxzrt — Z
(z,y) — q(z,y) =a"Dy

o7
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on ZP~! endowed with the standard basis. The matrix B defines a Z-auto-
morphism ¢, which is an isometry of ¢, i.e.

q(z,y) = q(o(),0(y)) = q(Bz, By).

This is equivalent to BTDB = D. A matrix G € GL(p — 1,7) exists such
that GTDG = J. Then G™'BG =Y € Sp(p — 1,Z) and Y has order p.
The companion matrix B is conjugate to Y € Sp(p — 1,7Z). We will explicitly
determine the eigenvalues of X € U((p — 1)/2) with ¢(X) € Sp(p — 1,R)
conjugate to Y € Sp(p—1,Z). Therefore we have to compute the eigenvectors
of o and then sign(V;) of the invariant subspaces V.

Now we will determine a basis of the spaces V;, j = 1,...,(p—1)/2, in order
to compute sign(V;) explicitly. We consider the complexifications of o and of
q. Let

V= (ZL']_, . ,l'p_l)T

be an eigenvector of B corresponding to the eigenvalue A. Then v satisfies the
equation

A1 0 --- 0 - 0
0 —Xx 1 :
Pl el 0 N
0O -+ 0 =X 1
1o =1 -1 —1-1) \@a 0
Let 2, 1 := A1 Then we get &, o = A2 ... ;21 = A. So
p—1 p—1 T
v:(A,V,...,AT,A—?,...,A—Q,A—l) ,
p—1 p—1 T
v:(A—l,A—Q,...,A—T,A?,...,A%A)

where v is the eigenvector corresponding to the eigenvalue A and U is the
eigenvector corresponding to the eigenvalue A. Moreover, we have
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and .
A%
p1 p-3
Az + )2
_ AT A
Dv = R R
A
A
This yields
q(v,v) = v Dv
— A\ (,\%+2 1 A%H) +ot (/\p*1 ot A%“)
_ (A%Jr +)\> o ()\”TJF)\%—l) A\
1. » 1, »
:_A—2A2—---—pTA?1+pTA—*+ F2A2 4N
(r=1)/2
— Y W)
j=1
(r=1)/2
=20 Y  jsinf;,
j=1
and therefore s
q(v;,75) Z k sin 0y;.
k=1

We have already computed

sign(V;) := signq(z, Bx) = sign(—iq(v;,7;))

p—1

= sign [ —2 Z ksin(k6;)

k=1
Proposition 5.1. For the invariant subspaces V;, j=1,....(p—1)/2, of the

isometry given by the companion matrix B the following is true.

If j is odd, sign(V;) = —1, and
if 7 is even, sign(V;) = 1.
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We will first prove a lemma.

5. FEzxamples

Lemma 5.2. For anyn € N\ {0} and any x € R, = # 0,

d < 1 nsin((n+1)x) — (n + 1) sin(nz)
T ;cos kx = 3 .

1 —cosz

Proof of Lemma 5.2. We first have to check that for any n € N\ {0} and any

LS Ra z 7é 07
1 .
" cOS w sin 2%
g cos(kz) = — :
sin &
k=1 2

Indeed, we have

n

(eia: . e—ia}) Z eik‘w + e—ikw

k=1

_ i (ei(k+1):c _ ik _ gi(k=lz e—i(k—l)x)
k=1

n+1 n—1
_ Zeikx _ ik Z etkr _ =ik
k=2 k=0
_ ei(n-}-l)m o e—i(n—i—l)az + einx o e—ina: . (eiaz

= 2isin((n + 1)x) + 2isin(nz) — 2isinz,

and herewith

3

—e 41— 1)

n 1
g coskx = 5 ek 4 g ike
k=1 k=1
1 2i sin((n+ 1)z) + 2i sin(nz) — 2i sinx
2 21 sinx
. (2n4+-1 .
1 2sin ! ";r )z cos 5 —sinx
2 sin x
. 2 1 .
1 sin @2tz gip e
_ 1 2 2
an T
2 sin 5
1 .
cos (”+2 )T gin e

T
SlIl2
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Using some well-known trigonometric formulas, we get

d cos ("H)x sin &
Z coskxr = — 2
dx sin §
1 msin((n+1)x) — (n + 1) sin(nz)
2 1—coszx '

Proof of Proposition 5.1. We consider the function

x) = —Qstin(lm) = % (22(’0%(1{1’)) .

Lemma 5.2 yields

9 Z I sin bz — nsin((n + 1)1 ) CO(Sn + 1) sin(nz) ‘
— COs T

k=1

We now consider the case n = (p — 1)/2 and = = 6; where 6; = j2r/p,
j=1,...,(p—1)/2. Then we have

(r—1)/2 p=1 ;. (p+l pt+l p—1
B _ By sin(B ;) — B sin(P5 0))
2 j{: ksin(k6,) )
_ i sin(5520;) — B sin(PF 0))
1 — cos (9]
B —psin(p%l 9]-)
1 —cos 0;

since

—1- —1—p+2
sin ( 5 p 9]) = sin (% 9]) .

In the case we are considering 0; := j2n/p for j =1,...,(p — 1)/2. Therefore
cosf; # 1 Vj since j # np Vn € N and 1 — cos; > 0. Herewith we get
(p—1)/2
sign(V;) = sign | —2 Z ksin(k6;)

k=1
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We now have to consider two cases.

jis even: then dk, 1 <k < ;%1 such that j = 2k. Then

-1 -1 .2 2
sin (pT 9]-) = sin (ij %) = sin (k(p — 1)%)
2
= —sin (k —T)
p
and with the preceding computations
. . . (p—1
sign(V;) = sign | —p sin N 0,
2
= sign (p sin </<: —W))
p

=1.
j is odd: then Fk, 0 < k < ’%1 such that 7 =2k + 1. Then
—1 -1 .2 —1 2
sin (pT Hj) = sin (ij %) = sin (p? (2k+1) %)

—1

— sin <(2k+ 1)u>
p

— sin ((Zk + 1)5)

and

O

If we compare Proposition 2.15 and Proposition 5.1, we get the following result.



5.2. The examplesp =5 andp =7 63

Proposition 5.3. For an odd prime p let € :== €**/?. Let Y € Sp(p —1,7Z) be
conjugate in GL(p — 1,7Z) to the companion matric B € GL(p —1,Z). Let V},
j=1,...,(p—1)/2, be the invariant subspace corresponding to the eigenvalues
& and £ of Y. We choose X € U((p—1)/2) such that $(X) € Sp(p—1,7Z) is
conjugate to Y € Sp(p—1,R). Then the following holds for j =1,...,(p—1)/2.

If § is odd, & is eigenvalue of X, and
if § is even, €7 is eigenvalue of X .

Herewith the set of eigenvalues of X is

{€1jodd 1<j<p—1,}.
Proof. We just have to justify the last statement, but this is clear because
if jiseven, 1 < j < (p—1)/2, then €7 = &7 where p — j is odd and
(p—3)/2<p-j<p-1L 0
5.2 The examples p=5and p=7

The companion matrix

0o 1 0 0
0o 0 1 0
B := o 0o o 1l¢€ GL(4,7)
-1 -1 -1 -1
is conjugate to the matrix
o 1 1 0
_ 0O 0 1 0 . 5
Y = 0o 0 0 1 € Sp(4,7Z), with Y” = 1.

-1 0 -1 -1

The eigenvalues of Y are {£,£2,€3 &4}, € = 27/5. We will show by a direct
calculation that the eigenvalues of X € U(2) with ¢(X) € Sp(4,R) conjugate
to Y are {£,£%}. Like in the general case, Y defines a Z-automorphism o of
Z* that acts as an isometry of the Z-bilinear form ¢ defined by (x,y) = 27 Jy.
Without making a remark, we will extend o linearly to an R-automorphism of
R* or take its complexification. In the same way we will extend ¢ linearly to
an R-bilinear form on R* or take its complexification.

For j =1,...,4 let v; be the eigenvector of Y with eigenvalue &’. Since £ = ¢*
and ? = &3, we can choose vy,...,vs such that 77 = v, and U, = v3. Let
fi(x) = (z = &)(x—&7), j =1,2, then we define V; := ker f;(0) and

’lUj = ’U]' + Ej; iDj = —’i(Uj — 5]')
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is a basis of V}. Moreover, it is easy to check that for 0; := j%”, j=1,2,
Yw; = cosf; w; —sin b, w;,
Yw; = sin6; w; + cos 0; w;.
It is easy to compute the eigenvectors of Y. We get
vi= (@ ELE LT, we= (486,18 =T,
w=E . 81, u= (@4 21,8 =0
Then

sign(V4) = sign(—2i(vy, 1)) = sign(2 (£* — €%) + (54 —¢))
= sign < 21 (2 sin in + sin 2%))
B a 5 5
=1,
sign(Va) = sign(—2i(vo, Do) = sign(2 (£ — 54) + (& - &)
—wion (2 (2 2r . Amw
= sign < i < sin - — sm?>>
= +1.
We define the real numbers
e = (—sign(Vi) (—2i(v1, 1)) 2 = (2i{vy. 71)) "%,
ey = (= sign(Va) (~2i(va, 1)) ™2 = (—2i(vy, o))"

and herewith vectors € R*

g
—
|
wn
—-
oS
=
—
=
SN—
o
—
£
i
I
|
—
DO
o~
—
I~
=
<
[

U9 = CQ Wq = (—2Z'<U2,62>
Uy = —sign(Va) caWo = (—2i(va, ) 2 i(vs — ).

A computation shows that

(w1, u1) = (ug, Uy)
(w1, ug) = (up, Uy)

= 1,
== (ﬂl,u2> = <’(71,172> =0.

The vectors uy, us, Uy, Us form a basis of R Let S be the transformation
matrix

S = (U1 U2 ?71 772)
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Then S*JS = J and the basis u1, us, U1, Us is a symplectic basis. Because of
the construction of uy, ug, Uy, Uy, the matrix S~1Y'S is

CoS 2?” 0 sin 2?” 0
47 s 4w
g1y — 0 cos 0 sin
s 27 21
—sin = 0 cos = 0
0 sin 4x 0 cos &
5 5
21 s 2
cos = 0 . sin % 0 .
_ 0 Cos % 0 sin ?’T
—sin 2% 0 Cos 2% 0
0 —gin & 0 cos 5=

5

This shows that the eigenvalues of X € U(2), with ¢(X) conjugate to Y, are
£ = e/ and €3

For p = 7 we can make a similar computation. We have

€ Sp(6,7Z), with Y7 = I.

SO OO O
OO O = O
—_ O O =
— o= O OO
-0 O OO

The eigenvalues of X € U(3), with ¢(X) conjugate to Y, are

5 — ei27r/7,€3 and 55.

5.3 On the signature of units

For an odd prime p let & be a primitive pth root of unity. The equation

vi(€) = & defines v; € Gal(Q(£),Q), j = 1,...,p — 1. Let U = Z[¢]*,
Ut =7Z[¢ + &]*. We already defined

" Ut — (Z)22)®7V/2
u o (sign(mi(w)),. ... sign(vp-12(u)))

where the sign of z € Z[¢ + €] is the sign of «(z) for the real embedding ¢
of Z[¢ + €] with (& + &) = e2™/P 4 e/ We will consider Z/27Z to be an
additive group. Then the sign of a positive number is 0 and the sign of a
negative number is 1.
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Now we will determine some primes for which ¥" is surjective without using
class numbers. In fact we will check if 1" is already surjective when we restrict
Y™ to the cyclotomic units of Q(€+€). If ¥ restricted to the cyclotomic units
is not surjective, then we do not know if 1" is surjective. We already know
that the cyclotomic units of Q(¢ + &) are generated by —1 and

5@/2 _ g—a/Q
Ca = gz _¢-1/2
for a = 2,...,(p—1)/2. If the images under ¢ of these (p — 1)/2 genera-

tors form a basis of (Z/27)®~1/2, the homomorphism " is surjective. This
happens if and only if the matrix

sign(—1) sign(—1) e sign(—1)
P sign (Cg) sign(qg(@)) e sign (7(;;-1)/2(@))
sign(Gmvyz) sign (12(Cmny2)) -+ siEn(Ym1y2(Cm2))

is invertible. For the embedding ¢ : Z[¢ +&] — R with o(§ +&) = e27/P - e=27/p
we get sign((;) =0for j=2,...,(p—1)/2. So Z is invertible if and only if

sign(12(G)) - sign(Yp-1)2(G))
T := : :

sign(72(Cp-y/2)) -+ sign(Yp-1)/2(Cp-1)/2))

is invertible. Since ¢(v;((,)) = sin(jan/p)/sin(jn/p) and sin(jn/p) > 0 for
j=1,...,(p—1)/2, the matrix T is equal to

sign (Sin <2277r>> ... sign (sin (p—;l 2;”))
sign (Siﬂ <2%>> ... sign (sin (%%))

We recall that |z| € Z with |z] <z < |z] + 1. If (j,p) = 1, then sin(j7/p) is
positive if |j/p] =0 (mod 2) and negative if |j/p| =1 (mod 2). This we can
use to compute with Mathematica the matrix 7" and check if its determinant
is 0 or 1.

e T[p_]:=Table[Mod[Floor[(j k*2)/p]l,2],
{j,2,(p-1)/2},{k,2, (p-1)/2}]
o Do[If[EvenQ[Det[T[Prime[i]]]],Print[Primel[i]] ,n=0],
{i,3,100}]

The first primes that yield det 7" = 0 are 29, 113, 163, 197, 239, 277, 311, 337,
349, 373, 397, 421, 463, 491, 547.

T —
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