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Preface

Manifolds crop up everywhere in mathematics. These generalizations of curves and
surfaces to arbitrarily many dimensions provide the mathematical context for un-
derstanding “space” in all of its manifestations. Today, the tools of manifold theory
are indispensable in most major subfields of pure mathematics, and are becoming
increasingly important in such diverse fields as genetics, robotics, econometrics,
statistics, computer graphics, biomedical imaging, and, of course, the undisputed
leader among consumers (and inspirers) of mathematics—theoretical physics. No
longer the province of differential geometers alone, smooth manifold technology is
now a basic skill that all mathematics students should acquire as early as possible.

Over the past century or two, mathematicians have developed a wondrous collec-
tion of conceptual machines that enable us to peer ever more deeply into the invisi-
ble world of geometry in higher dimensions. Once their operation is mastered, these
powerful machines enable us to think geometrically about the 6-dimensional solu-
tion set of a polynomial equation in four complex variables, or the 10-dimensional
manifold of 5 � 5 orthogonal matrices, as easily as we think about the familiar
2-dimensional sphere in R3. The price we pay for this power, however, is that the
machines are assembled from layer upon layer of abstract structure. Starting with the
familiar raw materials of Euclidean spaces, linear algebra, multivariable calculus,
and differential equations, one must progress through topological spaces, smooth at-
lases, tangent bundles, immersed and embedded submanifolds, vector fields, flows,
cotangent bundles, tensors, Riemannian metrics, differential forms, foliations, Lie
derivatives, Lie groups, Lie algebras, and more—just to get to the point where one
can even think about studying specialized applications of manifold theory such as
comparison theory, gauge theory, symplectic topology, or Ricci flow.

This book is designed as a first-year graduate text on manifold theory, for stu-
dents who already have a solid acquaintance with undergraduate linear algebra, real
analysis, and topology. I have tried to focus on the portions of manifold theory that
will be needed by most people who go on to use manifolds in mathematical or sci-
entific research. I introduce and use all of the standard tools of the subject, and
prove most of its fundamental theorems, while avoiding unnecessary generalization
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or specialization. I try to keep the approach as concrete as possible, with pictures
and intuitive discussions of how one should think geometrically about the abstract
concepts, but without shying away from the powerful tools that modern mathemat-
ics has to offer. To fit in all of the basics and still maintain a reasonably sane pace,
I have had to omit or barely touch on a number of important topics, such as complex
manifolds, infinite-dimensional manifolds, connections, geodesics, curvature, fiber
bundles, sheaves, characteristic classes, and Hodge theory. Think of them as dessert,
to be savored after completing this book as the main course.

To convey the book’s compass, it is easiest to describe where it starts and where
it ends. The starting line is drawn just after topology: I assume that the reader has
had a rigorous introduction to general topology, including the fundamental group
and covering spaces. One convenient source for this material is my Introduction to
Topological Manifolds [LeeTM], which I wrote partly with the aim of providing the
topological background needed for this book. There are other books that cover sim-
ilar material well; I am especially fond of the second edition of Munkres’s Topology
[Mun00]. The finish line is drawn just after a broad and solid background has been
established, but before getting into the more specialized aspects of any particular
subject. In particular, I introduce Riemannian metrics, but I do not go into connec-
tions, geodesics, or curvature. There are many Riemannian geometry books for the
interested student to take up next, including one that I wrote [LeeRM] with the goal
of moving expediently in a one-quarter course from basic smooth manifold theory
to nontrivial geometric theorems about curvature and topology. Similar material is
covered in the last two chapters of the recent book by Jeffrey Lee (no relation)
[LeeJeff09], and do Carmo [dC92] covers a bit more. For more ambitious readers,
I recommend the beautiful books by Petersen [Pet06], Sharpe [Sha97], and Chavel
[Cha06].

This subject is often called “differential geometry.” I have deliberately avoided
using that term to describe what this book is about, however, because the term ap-
plies more properly to the study of smooth manifolds endowed with some extra
structure—such as Lie groups, Riemannian manifolds, symplectic manifolds, vec-
tor bundles, foliations—and of their properties that are invariant under structure-
preserving maps. Although I do give all of these geometric structures their due (after
all, smooth manifold theory is pretty sterile without some geometric applications),
I felt that it was more honest not to suggest that the book is primarily about one or
all of these geometries. Instead, it is about developing the general tools for working
with smooth manifolds, so that the reader can go on to work in whatever field of
differential geometry or its cousins he or she feels drawn to.

There is no canonical linear path through this material. I have chosen an order-
ing of topics designed to establish a good technical foundation in the first half of
the book, so that I can discuss interesting applications in the second half. Once the
first twelve chapters have been completed, there is some flexibility in ordering the
remaining chapters. For example, Chapter 13 (Riemannian Metrics) can be post-
poned if desired, although some sections of Chapters 15 and 16 would have to be
postponed as well. On the other hand, Chapters 19–21 (Distributions and Foliations,
The Exponential Map, and Quotient Manifolds, respectively) could in principle be
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inserted any time after Chapter 14, and much of the material can be covered even
earlier if you are willing to skip over the references to differential forms. And the
final chapter (Symplectic Manifolds) would make sense any time after Chapter 17,
or even after Chapter 14 if you skip the references to de Rham cohomology.

As you might have guessed from the size of the book, and will quickly confirm
when you start reading it, my style tends toward more detailed explanations and
proofs than one typically finds in graduate textbooks. I realize this is not to every
instructor’s taste, but in my experience most students appreciate having the details
spelled out when they are first learning the subject. The detailed proofs in the book
provide students with useful models of rigor, and can free up class time for dis-
cussion of the meanings and motivations behind the definitions as well as the “big
ideas” underlying some of the more difficult proofs. There are plenty of opportuni-
ties in the exercises and problems for students to provide arguments of their own.

I should say something about my choices of conventions and notations. The old
joke that “differential geometry is the study of properties that are invariant under
change of notation” is funny primarily because it is alarmingly close to the truth.
Every geometer has his or her favorite system of notation, and while the systems are
all in some sense formally isomorphic, the transformations required to get from one
to another are often not at all obvious to students. Because one of my central goals
is to prepare students to read advanced texts and research articles in differential
geometry, I have tried to choose notations and conventions that are as close to the
mainstream as I can make them without sacrificing too much internal consistency.
(One difference between this edition and the previous one is that I have changed
a number of my notational conventions to make them more consistent with main-
stream mathematical usage.) When there are multiple conventions in common use
(such as for the wedge product or the Laplace operator), I explain what the alterna-
tives are and alert the student to be aware of which convention is in use by any given
writer. Striving for too much consistency in this subject can be a mistake, however,
and I have eschewed absolute consistency whenever I felt it would get in the way
of ease of understanding. I have also introduced some common shortcuts at an early
stage, such as the Einstein summation convention and the systematic confounding
of maps with their coordinate representations, both of which tend to drive students
crazy at first, but pay off enormously in efficiency later.

Prerequisites

This subject draws on most of the topics that are covered in a typical undergraduate
mathematics education. The appendices (which most readers should read, or at least
skim, first) contain a cursory summary of prerequisite material on topology, linear
algebra, calculus, and differential equations. Although students who have not seen
this material before will not learn it from reading the appendices, I hope readers will
appreciate having all of the background material collected in one place. Besides
giving me a convenient way to refer to results that I want to assume as known, it
also gives the reader a splendid opportunity to brush up on topics that were once
(hopefully) understood but may have faded.
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Exercises and Problems

This book has a rather large number of exercises and problems for the student to
work out. Embedded in the text of each chapter are questions labeled as “Exercises.”
These are (mostly) short opportunities to fill in gaps in the text. Some of them are
routine verifications that would be tedious to write out in full, but are not quite trivial
enough to warrant tossing off as obvious. I recommend that serious readers take the
time at least to stop and convince themselves that they fully understand what is
involved in doing each exercise, if not to write out a complete solution, because it
will make their reading of the text far more fruitful.

At the end of each chapter is a collection of (mostly) longer and harder questions
labeled as “Problems.” These are the ones from which I select written homework
assignments when I teach this material. Many of them will take hours for students to
work through. Only by doing a substantial number of these problems can one hope
to absorb this material deeply. I have tried insofar as possible to choose problems
that are enlightening in some way and have interesting consequences in their own
right. When the result of a problem is used in an essential way in the text, the page
where it is used is noted at the end of the problem statement.

I have deliberately not provided written solutions to any of the problems, either
in the back of the book or on the Internet. In my experience, if written solutions
to problems are available, even the most conscientious students find it very hard
to resist the temptation to look at the solutions as soon as they get stuck. But it is
exactly at that stage of being stuck that students learn most effectively, by struggling
to get unstuck and eventually finding a path through the thicket. Reading someone
else’s solution too early can give one a comforting, but ultimately misleading, sense
of understanding. If you really feel you have run out of ideas, talk with an instructor,
a fellow student, or one of the online mathematical discussion communities such as
math.stackexchange.com. Even if someone else gives you a suggestion that turns out
to be the key to getting unstuck, you will still learn much more from absorbing the
suggestion and working out the details on your own than you would from reading
someone else’s polished proof.

About the Second Edition

Those who are familiar with the first edition of this book will notice first that the
topics have been substantially rearranged. This is primarily because I decided it was
worthwhile to introduce the two most important analytic tools (the rank theorem and
the fundamental theorem on flows) much earlier, so that they can be used throughout
the book rather than being relegated to later chapters.

A few new topics have been added, notably Sard’s theorem, some transversality
theorems, a proof that infinitesimal Lie group actions generate global group actions,
a more thorough study of first-order partial differential equations, a brief treatment
of degree theory for smooth maps between compact manifolds, and an introduction
to contact structures. I have consolidated the introductory treatments of Lie groups,
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Riemannian metrics, and symplectic manifolds in chapters of their own, to make
it easier to concentrate on the special features of those subjects when they are first
introduced (although Lie groups and Riemannian metrics still appear repeatedly in
later chapters). In addition, manifolds with boundary are now treated much more
systematically throughout the book.

Apart from additions and rearrangement, there are thousands of small changes
and also some large ones. Parts of every chapter have been substantially rewritten
to improve clarity. Some proofs that seemed too labored in the original have been
streamlined, while others that seemed unclear have been expanded. I have modified
some of my notations, usually moving toward more consistency with common no-
tations in the literature. There is a new notation index just before the subject index.

There are also some typographical improvements in this edition. Most impor-
tantly, mathematical terms are now typeset in bold italics when they are officially
defined, to reflect the fact that definitions are just as important as theorems and
proofs but fit better into the flow of paragraphs rather than being called out with
special headings. The exercises in the text are now indicated more clearly with a
special symbol (I), and numbered consecutively with the theorems to make them
easier to find. The symbol �, in addition to marking the ends of proofs, now also
marks the ends of statements of corollaries that follow so easily that they do not
need proofs; and I have introduced the symbol // to mark the ends of numbered ex-
amples. The entire book is now set in Times Roman, supplemented by the excellent
MathTime Professional II mathematics fonts from Personal TEX, Inc.
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Chapter 1
Smooth Manifolds

This book is about smooth manifolds. In the simplest terms, these are spaces that
locally look like some Euclidean space Rn, and on which one can do calculus. The
most familiar examples, aside from Euclidean spaces themselves, are smooth plane
curves such as circles and parabolas, and smooth surfaces such as spheres, tori,
paraboloids, ellipsoids, and hyperboloids. Higher-dimensional examples include the
set of points in RnC1 at a constant distance from the origin (an n-sphere) and graphs
of smooth maps between Euclidean spaces.

The simplest manifolds are the topological manifolds, which are topological
spaces with certain properties that encode what we mean when we say that they
“locally look like” Rn. Such spaces are studied intensively by topologists.

However, many (perhaps most) important applications of manifolds involve cal-
culus. For example, applications of manifold theory to geometry involve such prop-
erties as volume and curvature. Typically, volumes are computed by integration,
and curvatures are computed by differentiation, so to extend these ideas to mani-
folds would require some means of making sense of integration and differentiation
on a manifold. Applications to classical mechanics involve solving systems of or-
dinary differential equations on manifolds, and the applications to general relativity
(the theory of gravitation) involve solving a system of partial differential equations.

The first requirement for transferring the ideas of calculus to manifolds is some
notion of “smoothness.” For the simple examples of manifolds we described above,
all of which are subsets of Euclidean spaces, it is fairly easy to describe the mean-
ing of smoothness on an intuitive level. For example, we might want to call a curve
“smooth” if it has a tangent line that varies continuously from point to point, and
similarly a “smooth surface” should be one that has a tangent plane that varies con-
tinuously. But for more sophisticated applications it is an undue restriction to require
smooth manifolds to be subsets of some ambient Euclidean space. The ambient co-
ordinates and the vector space structure of Rn are superfluous data that often have
nothing to do with the problem at hand. It is a tremendous advantage to be able to
work with manifolds as abstract topological spaces, without the excess baggage of
such an ambient space. For example, in general relativity, spacetime is modeled as
a 4-dimensional smooth manifold that carries a certain geometric structure, called a
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Fig. 1.1 A homeomorphism from a circle to a square

Lorentz metric, whose curvature results in gravitational phenomena. In such a model
there is no physical meaning that can be assigned to any higher-dimensional ambient
space in which the manifold lives, and including such a space in the model would
complicate it needlessly. For such reasons, we need to think of smooth manifolds as
abstract topological spaces, not necessarily as subsets of larger spaces.

It is not hard to see that there is no way to define a purely topological property
that would serve as a criterion for “smoothness,” because it cannot be invariant under
homeomorphisms. For example, a circle and a square in the plane are homeomor-
phic topological spaces (Fig. 1.1), but we would probably all agree that the circle is
“smooth,” while the square is not. Thus, topological manifolds will not suffice for
our purposes. Instead, we will think of a smooth manifold as a set with two layers
of structure: first a topology, then a smooth structure.

In the first section of this chapter we describe the first of these structures. A topo-
logical manifold is a topological space with three special properties that express the
notion of being locally like Euclidean space. These properties are shared by Eu-
clidean spaces and by all of the familiar geometric objects that look locally like
Euclidean spaces, such as curves and surfaces. We then prove some important topo-
logical properties of manifolds that we use throughout the book.

In the next section we introduce an additional structure, called a smooth structure,
that can be added to a topological manifold to enable us to make sense of derivatives.

Following the basic definitions, we introduce a number of examples of manifolds,
so you can have something concrete in mind as you read the general theory. At the
end of the chapter we introduce the concept of a smooth manifold with boundary, an
important generalization of smooth manifolds that will have numerous applications
throughout the book, especially in our study of integration in Chapter 16.

Topological Manifolds

In this section we introduce topological manifolds, the most basic type of manifolds.
We assume that the reader is familiar with the definition and basic properties of
topological spaces, as summarized in Appendix A.

Suppose M is a topological space. We say that M is a topological manifold of
dimension n or a topological n-manifold if it has the following properties:
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� M is a Hausdorff space: for every pair of distinct points p;q 2M; there are
disjoint open subsets U;V �M such that p 2U and q 2 V .
� M is second-countable: there exists a countable basis for the topology of M .
� M is locally Euclidean of dimension n: each point of M has a neighborhood

that is homeomorphic to an open subset of Rn.

The third property means, more specifically, that for each p 2M we can find

� an open subset U �M containing p,
� an open subset yU �Rn, and
� a homeomorphism ' W U ! yU .

I Exercise 1.1. Show that equivalent definitions of manifolds are obtained if instead
of allowing U to be homeomorphic to any open subset of Rn, we require it to be
homeomorphic to an open ball in Rn, or to Rn itself.

If M is a topological manifold, we often abbreviate the dimension of M as
dimM . Informally, one sometimes writes “Let M n be a manifold” as shorthand
for “LetM be a manifold of dimension n.” The superscript n is not part of the name
of the manifold, and is usually not included in the notation after the first occurrence.

It is important to note that every topological manifold has, by definition, a spe-
cific, well-defined dimension. Thus, we do not consider spaces of mixed dimension,
such as the disjoint union of a plane and a line, to be manifolds at all. In Chapter 17,
we will use the theory of de Rham cohomology to prove the following theorem,
which shows that the dimension of a (nonempty) topological manifold is in fact a
topological invariant.

Theorem 1.2 (Topological Invariance of Dimension). A nonempty n-dimensional
topological manifold cannot be homeomorphic to an m-dimensional manifold un-
less mD n.

For the proof, see Theorem 17.26. In Chapter 2, we will also prove a related but
weaker theorem (diffeomorphism invariance of dimension, Theorem 2.17). See also
[LeeTM, Chap. 13] for a different proof of Theorem 1.2 using singular homology
theory.

The empty set satisfies the definition of a topological n-manifold for every n. For
the most part, we will ignore this special case (sometimes without remembering to
say so). But because it is useful in certain contexts to allow the empty manifold, we
choose not to exclude it from the definition.

The basic example of a topological n-manifold is Rn itself. It is Hausdorff be-
cause it is a metric space, and it is second-countable because the set of all open balls
with rational centers and rational radii is a countable basis for its topology.

Requiring that manifolds share these properties helps to ensure that manifolds
behave in the ways we expect from our experience with Euclidean spaces. For ex-
ample, it is easy to verify that in a Hausdorff space, finite subsets are closed and
limits of convergent sequences are unique (see Exercise A.11 in Appendix A). The
motivation for second-countability is a bit less evident, but it will have important
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Fig. 1.2 A coordinate chart

consequences throughout the book, mostly based on the existence of partitions of
unity (see Chapter 2).

In practice, both the Hausdorff and second-countability properties are usually
easy to check, especially for spaces that are built out of other manifolds, because
both properties are inherited by subspaces and finite products (Propositions A.17
and A.23). In particular, it follows that every open subset of a topological n-
manifold is itself a topological n-manifold (with the subspace topology, of course).

We should note that some authors choose to omit the Hausdorff property or
second-countability or both from the definition of manifolds. However, most of the
interesting results about manifolds do in fact require these properties, and it is ex-
ceedingly rare to encounter a space “in nature” that would be a manifold except for
the failure of one or the other of these hypotheses. For a couple of simple examples,
see Problems 1-1 and 1-2; for a more involved example (a connected, locally Eu-
clidean, Hausdorff space that is not second-countable), see [LeeTM, Problem 4-6].

Coordinate Charts

Let M be a topological n-manifold. A coordinate chart (or just a chart) on M is a
pair .U;'/, where U is an open subset of M and ' W U ! yU is a homeomorphism
from U to an open subset yU D '.U /�Rn (Fig. 1.2). By definition of a topological
manifold, each point p 2M is contained in the domain of some chart .U;'/. If
'.p/D 0, we say that the chart is centered at p. If .U;'/ is any chart whose domain
contains p, it is easy to obtain a new chart centered at p by subtracting the constant
vector '.p/.

Given a chart .U;'/, we call the set U a coordinate domain, or a coordinate
neighborhood of each of its points. If, in addition, '.U / is an open ball in Rn, then
U is called a coordinate ball; if '.U / is an open cube, U is a coordinate cube. The
map ' is called a (local) coordinate map, and the component functions

�
x1; : : : ; xn

�

of ', defined by '.p/ D
�
x1.p/; : : : ; xn.p/

�
, are called local coordinates on U .

We sometimes write things such as “.U;'/ is a chart containing p” as shorthand
for “.U;'/ is a chart whose domain U contains p.” If we wish to emphasize the
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coordinate functions
�
x1; : : : ; xn

�
instead of the coordinate map ', we sometimes

denote the chart by
�
U;
�
x1; : : : ; xn

� �
or
�
U;
�
xi
� �

.

Examples of Topological Manifolds

Here are some simple examples.

Example 1.3 (Graphs of Continuous Functions). Let U �Rn be an open subset,
and let f W U ! Rk be a continuous function. The graph of f is the subset of
Rn �Rk defined by

�.f /D
˚
.x; y/ 2Rn �Rk W x 2U and y D f .x/

�
;

with the subspace topology. Let �1 W Rn �Rk!Rn denote the projection onto the
first factor, and let ' W �.f /!U be the restriction of �1 to �.f /:

'.x;y/D x; .x;y/ 2 �.f /:

Because ' is the restriction of a continuous map, it is continuous; and it is a home-
omorphism because it has a continuous inverse given by '�1.x/D .x; f .x//. Thus
�.f / is a topological manifold of dimension n. In fact, �.f / is homeomorphic
to U itself, and .�.f /; '/ is a global coordinate chart, called graph coordinates.
The same observation applies to any subset of RnCk defined by setting any k of
the coordinates (not necessarily the last k) equal to some continuous function of the
other n, which are restricted to lie in an open subset of Rn. //

Example 1.4 (Spheres). For each integer n� 0, the unit n-sphere Sn is Hausdorff
and second-countable because it is a topological subspace of RnC1. To show that
it is locally Euclidean, for each index i D 1; : : : ; nC 1 let UCi denote the subset
of RnC1 where the i th coordinate is positive:

UCi D
˚�
x1; : : : ; xnC1

�
2RnC1 W xi > 0

�
:

(See Fig. 1.3.) Similarly, U�i is the set where xi < 0.
Let f W Bn!R be the continuous function

f .u/D
p
1� juj2:

Then for each i D 1; : : : ; nC 1, it is easy to check that UCi \ Sn is the graph of the
function

xi D f
�
x1; : : : ; bxi ; : : : ; xnC1

�
;

where the hat indicates that xi is omitted. Similarly, U�i \ Sn is the graph of

xi D�f
�
x1; : : : ; bxi ; : : : ; xnC1

�
:

Thus, each subset U˙i \ Sn is locally Euclidean of dimension n, and the maps
'˙i W U

˙
i \ Sn! Bn given by

'˙i
�
x1; : : : ; xnC1

�
D
�
x1; : : : ; bxi ; : : : ; xnC1

�
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Fig. 1.3 Charts for Sn

are graph coordinates for Sn. Since each point of Sn is in the domain of at least one
of these 2nC 2 charts, Sn is a topological n-manifold. //

Example 1.5 (Projective Spaces). The n-dimensional real projective space, de-
noted by RPn (or sometimes just Pn), is defined as the set of 1-dimensional lin-
ear subspaces of RnC1, with the quotient topology determined by the natural map
� W RnC1Xf0g!RPn sending each point x 2RnC1Xf0g to the subspace spanned
by x. The 2-dimensional projective space RP2 is called the projective plane. For
any point x 2RnC1 X f0g, let Œx�D �.x/ 2RPn denote the line spanned by x.

For each i D 1; : : : ; n C 1, let zUi � RnC1 X f0g be the set where xi ¤ 0,
and let Ui D �

�
zUi
�
� RPn. Since zUi is a saturated open subset, Ui is open and

�j zUi
W zUi ! Ui is a quotient map (see Theorem A.27). Define a map 'i W Ui !Rn

by

'i
�
x1; : : : ; xnC1

�
D

�
x1

xi
; : : : ;

xi�1

xi
;
xiC1

xi
; : : : ;

xnC1

xi

�
:

This map is well defined because its value is unchanged by multiplying x by a
nonzero constant. Because 'i ı � is continuous, 'i is continuous by the character-
istic property of quotient maps (Theorem A.27). In fact, 'i is a homeomorphism,
because it has a continuous inverse given by

'�1i
�
u1; : : : ; un

�
D
�
u1; : : : ; ui�1; 1; ui ; : : : ; un

�
;

as you can check. Geometrically, '.Œx�/ D u means .u; 1/ is the point in RnC1

where the line Œx� intersects the affine hyperplane where xi D 1 (Fig. 1.4). Be-
cause the sets U1; : : : ;UnC1 cover RPn, this shows that RPn is locally Eu-
clidean of dimension n. The Hausdorff and second-countability properties are left as
exercises. //
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Fig. 1.4 A chart for RPn

I Exercise 1.6. Show that RPn is Hausdorff and second-countable, and is therefore
a topological n-manifold.

I Exercise 1.7. Show that RPn is compact. [Hint: show that the restriction of � to
Sn is surjective.]

Example 1.8 (Product Manifolds). Suppose M1; : : : ;Mk are topological mani-
folds of dimensions n1; : : : ; nk , respectively. The product space M1 � � � � � Mk

is shown to be a topological manifold of dimension n1 C � � � C nk as follows. It
is Hausdorff and second-countable by Propositions A.17 and A.23, so only the
locally Euclidean property needs to be checked. Given any point .p1; : : : ; pk/ 2
M1� � � ��Mk , we can choose a coordinate chart .Ui ; 'i / for eachMi with pi 2Ui .
The product map

'1 � � � � � 'k W U1 � � � � �Uk!Rn1C���Cnk

is a homeomorphism onto its image, which is a product open subset of Rn1C���Cnk .
Thus, M1 � � � � �Mk is a topological manifold of dimension n1 C � � � C nk , with
charts of the form .U1 � � � � �Uk ; '1 � � � � � 'k/. //

Example 1.9 (Tori). For a positive integer n, the n-torus (plural: tori) is the product
space Tn D S1 � � � � � S1. By the discussion above, it is a topological n-manifold.
(The 2-torus is usually called simply the torus.) //

Topological Properties of Manifolds

As topological spaces go, manifolds are quite special, because they share so many
important properties with Euclidean spaces. Here we discuss a few such properties
that will be of use to us throughout the book.

Most of the properties we discuss in this section depend on the fact that every
manifold possesses a particularly well-behaved basis for its topology.

Lemma 1.10. Every topological manifold has a countable basis of precompact co-
ordinate balls.
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Proof. Let M be a topological n-manifold. First we consider the special case in
which M can be covered by a single chart. Suppose ' W M ! yU � Rn is a global
coordinate map, and let B be the collection of all open balls Br .x/�Rn such that
r is rational, x has rational coordinates, and Br 0.x/� yU for some r 0 > r . Each such
ball is precompact in yU , and it is easy to check that B is a countable basis for the
topology of yU . Because ' is a homeomorphism, it follows that the collection of sets
of the form '�1.B/ for B 2B is a countable basis for the topology ofM; consisting
of precompact coordinate balls, with the restrictions of ' as coordinate maps.

Now let M be an arbitrary n-manifold. By definition, each point of M is in
the domain of a chart. Because every open cover of a second-countable space has
a countable subcover (Proposition A.16), M is covered by countably many charts
f.Ui ; 'i /g. By the argument in the preceding paragraph, each coordinate domain Ui
has a countable basis of coordinate balls that are precompact in Ui , and the union of
all these countable bases is a countable basis for the topology ofM. If V � Ui is one
of these balls, then the closure of V in Ui is compact, and because M is Hausdorff,
it is closed in M . It follows that the closure of V in M is the same as its closure in
Ui , so V is precompact in M as well. �

Connectivity

The existence of a basis of coordinate balls has important consequences for the
connectivity properties of manifolds. Recall that a topological space X is

� connected if there do not exist two disjoint, nonempty, open subsets of X whose
union is X ;
� path-connected if every pair of points in X can be joined by a path in X ; and
� locally path-connected if X has a basis of path-connected open subsets.

(See Appendix A.) The following proposition shows that connectivity and path con-
nectivity coincide for manifolds.

Proposition 1.11. Let M be a topological manifold.

(a) M is locally path-connected.
(b) M is connected if and only if it is path-connected.
(c) The components of M are the same as its path components.
(d) M has countably many components, each of which is an open subset of M and

a connected topological manifold.

Proof. Since each coordinate ball is path-connected, (a) follows from the fact that
M has a basis of coordinate balls. Parts (b) and (c) are immediate consequences of
(a) and Proposition A.43. To prove (d), note that each component is open in M by
Proposition A.43, so the collection of components is an open cover of M . Because
M is second-countable, this cover must have a countable subcover. But since the
components are all disjoint, the cover must have been countable to begin with, which
is to say thatM has only countably many components. Because the components are
open, they are connected topological manifolds in the subspace topology. �
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Local Compactness and Paracompactness

The next topological property of manifolds that we need is local compactness (see
Appendix A for the definition).

Proposition 1.12 (Manifolds Are Locally Compact). Every topological manifold
is locally compact.

Proof. Lemma 1.10 showed that every manifold has a basis of precompact open
subsets. �

Another key topological property possessed by manifolds is called paracompact-
ness. It is a consequence of local compactness and second-countability, and in fact
is one of the main reasons why second-countability is included in the definition of
manifolds.

LetM be a topological space. A collection X of subsets ofM is said to be locally
finite if each point of M has a neighborhood that intersects at most finitely many
of the sets in X. Given a cover U of M; another cover V is called a refinement of
U if for each V 2 V there exists some U 2U such that V � U . We say that M is
paracompact if every open cover of M admits an open, locally finite refinement.

Lemma 1.13. Suppose X is a locally finite collection of subsets of a topological
space M .

(a) The collection
˚
xX WX 2X

�
is also locally finite.

(b)
S
X2X X D

S
X2X

xX .

I Exercise 1.14. Prove the preceding lemma.

Theorem 1.15 (Manifolds Are Paracompact). Every topological manifold is
paracompact. In fact, given a topological manifold M; an open cover X of M;
and any basis B for the topology of M; there exists a countable, locally finite open
refinement of X consisting of elements of B.

Proof. Given M; X, and B as in the hypothesis of the theorem, let .Kj /1jD1 be an
exhaustion of M by compact sets (Proposition A.60). For each j , let Vj DKjC1 X
IntKj and Wj D IntKjC2 X Kj�1 (where we interpret Kj as ¿ if j < 1). Then
Vj is a compact set contained in the open subset Wj . For each x 2 Vj , there is
some Xx 2X containing x, and because B is a basis, there exists Bx 2 B such
that x 2 Bx � Xx \ Wj . The collection of all such sets Bx as x ranges over Vj
is an open cover of Vj , and thus has a finite subcover. The union of all such finite
subcovers as j ranges over the positive integers is a countable open cover of M
that refines X. Because the finite subcover of Vj consists of sets contained in Wj ,
and Wj \Wj 0 D¿ except when j � 2 � j 0 � j C 2, the resulting cover is locally
finite. �

Problem 1-5 shows that, at least for connected spaces, paracompactness can be
used as a substitute for second-countability in the definition of manifolds.
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Fundamental Groups of Manifolds

The following result about fundamental groups of manifolds will be important in
our study of covering manifolds in Chapter 4. For a brief review of the fundamental
group, see Appendix A.

Proposition 1.16. The fundamental group of a topological manifold is countable.

Proof. Let M be a topological manifold. By Lemma 1.10, there is a countable
collection B of coordinate balls covering M . For any pair of coordinate balls
B;B 0 2B, the intersection B \B 0 has at most countably many components, each
of which is path-connected. Let X be a countable set containing a point from each
component of B \B 0 for each B;B 0 2B (including B DB 0). For each B 2B and
each x;x0 2X such that x;x0 2B , let hBx;x0 be some path from x to x0 in B .

Since the fundamental groups based at any two points in the same component
of M are isomorphic, and X contains at least one point in each component of M;
we may as well choose a point p 2X as base point. Define a special loop to be a
loop based at p that is equal to a finite product of paths of the form hBx;x0 . Clearly,
the set of special loops is countable, and each special loop determines an element
of �1.M;p/. To show that �1.M;p/ is countable, therefore, it suffices to show that
each element of �1.M;p/ is represented by a special loop.

Suppose f W Œ0; 1�!M is a loop based at p. The collection of components of
sets of the form f �1.B/ as B ranges over B is an open cover of Œ0; 1�, so by
compactness it has a finite subcover. Thus, there are finitely many numbers 0 D
a0 < a1 < � � � < ak D 1 such that Œai�1; ai � � f �1.B/ for some B �B. For each
i , let fi be the restriction of f to the interval Œai�1; ai �, reparametrized so that its
domain is Œ0; 1�, and let Bi 2 B be a coordinate ball containing the image of fi .
For each i , we have f .ai / 2 Bi \ BiC1, and there is some xi 2X that lies in the
same component of Bi \BiC1 as f .ai /. Let gi be a path in Bi \BiC1 from xi to
f .ai / (Fig. 1.5), with the understanding that x0 D xk D p, and g0 and gk are both
equal to the constant path cp based at p. Then, because xgi � gi is path-homotopic to
a constant path (where xgi .t/D gi .1� t/ is the reverse path of gi ),

f 	 f1 � � � � � fk

	 g0 � f1 � xg1 � g1 � f2 � xg2 � � � � � xgk�1 � gk�1 � fk � xgk

	 zf1 � zf2 � � � � � zfk ;

where zfi D gi�1 � fi � xgi . For each i , zfi is a path in Bi from xi�1 to xi . Since
Bi is simply connected, zfi is path-homotopic to hBixi�1;xi . It follows that f is path-
homotopic to a special loop, as claimed. �

Smooth Structures

The definition of manifolds that we gave in the preceding section is sufficient for
studying topological properties of manifolds, such as compactness, connectedness,



Smooth Structures 11

Fig. 1.5 The fundamental group of a manifold is countable

simple connectivity, and the problem of classifying manifolds up to homeomor-
phism. However, in the entire theory of topological manifolds there is no men-
tion of calculus. There is a good reason for this: however we might try to make
sense of derivatives of functions on a manifold, such derivatives cannot be in-
variant under homeomorphisms. For example, the map ' W R2 ! R2 given by
'.u; v/ D

�
u1=3; v1=3

�
is a homeomorphism, and it is easy to construct differen-

tiable functions f W R2!R such that f ı ' is not differentiable at the origin. (The
function f .x;y/D x is one such.)

To make sense of derivatives of real-valued functions, curves, or maps between
manifolds, we need to introduce a new kind of manifold called a smooth manifold. It
will be a topological manifold with some extra structure in addition to its topology,
which will allow us to decide which functions to or from the manifold are smooth.

The definition will be based on the calculus of maps between Euclidean spaces,
so let us begin by reviewing some basic terminology about such maps. If U and
V are open subsets of Euclidean spaces Rn and Rm, respectively, a function
F W U ! V is said to be smooth (or C1, or infinitely differentiable) if each of
its component functions has continuous partial derivatives of all orders. If in addi-
tion F is bijective and has a smooth inverse map, it is called a diffeomorphism.
A diffeomorphism is, in particular, a homeomorphism.

A review of some important properties of smooth maps is given in Appendix C.
You should be aware that some authors define the word smooth differently—for
example, to mean continuously differentiable or merely differentiable. On the other
hand, some use the word differentiable to mean what we call smooth. Throughout
this book, smooth is synonymous with C1.

To see what additional structure on a topological manifold might be appropriate
for discerning which maps are smooth, consider an arbitrary topological n-mani-
fold M . Each point in M is in the domain of a coordinate map ' W U ! yU � Rn.
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Fig. 1.6 A transition map

A plausible definition of a smooth function onM would be to say that f W M !R is
smooth if and only if the composite function f ı'�1 W yU !R is smooth in the sense
of ordinary calculus. But this will make sense only if this property is independent of
the choice of coordinate chart. To guarantee this independence, we will restrict our
attention to “smooth charts.” Since smoothness is not a homeomorphism-invariant
property, the way to do this is to consider the collection of all smooth charts as a
new kind of structure on M .

With this motivation in mind, we now describe the details of the construction.
Let M be a topological n-manifold. If .U;'/, .V; / are two charts such that

U \ V ¤ ¿, the composite map  ı '�1 W '.U \ V /!  .U \ V / is called the
transition map from ' to  (Fig. 1.6). It is a composition of homeomorphisms, and
is therefore itself a homeomorphism. Two charts .U;'/ and .V; / are said to be
smoothly compatible if either U \ V D ¿ or the transition map  ı '�1 is a dif-
feomorphism. Since '.U \ V / and  .U \ V / are open subsets of Rn, smoothness
of this map is to be interpreted in the ordinary sense of having continuous partial
derivatives of all orders.

We define an atlas for M to be a collection of charts whose domains cover M .
An atlas A is called a smooth atlas if any two charts in A are smoothly compatible
with each other.

To show that an atlas is smooth, we need only verify that each transition map
 ı'�1 is smooth whenever .U;'/ and .V; / are charts in A; once we have proved
this, it follows that  ı '�1 is a diffeomorphism because its inverse

�
 ı '�1

��1
D

' ı �1 is one of the transition maps we have already shown to be smooth. Alterna-
tively, given two particular charts .U;'/ and .V; /, it is often easiest to show that
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they are smoothly compatible by verifying that  ı'�1 is smooth and injective with
nonsingular Jacobian at each point, and appealing to Corollary C.36.

Our plan is to define a “smooth structure” on M by giving a smooth atlas, and to
define a function f W M !R to be smooth if and only if f ı '�1 is smooth in the
sense of ordinary calculus for each coordinate chart .U;'/ in the atlas. There is one
minor technical problem with this approach: in general, there will be many possible
atlases that give the “same” smooth structure, in that they all determine the same
collection of smooth functions on M . For example, consider the following pair of
atlases on Rn:

A1 D
˚�
Rn; IdRn

��
;

A2 D
˚�
B1.x/; IdB1.x/

�
W x 2Rn

�
:

Although these are different smooth atlases, clearly a function f W Rn ! R is
smooth with respect to either atlas if and only if it is smooth in the sense of or-
dinary calculus.

We could choose to define a smooth structure as an equivalence class of smooth
atlases under an appropriate equivalence relation. However, it is more straightfor-
ward to make the following definition: a smooth atlas A on M is maximal if it is
not properly contained in any larger smooth atlas. This just means that any chart that
is smoothly compatible with every chart in A is already in A. (Such a smooth atlas
is also said to be complete.)

Now we can define the main concept of this chapter. If M is a topological mani-
fold, a smooth structure on M is a maximal smooth atlas. A smooth manifold is a
pair .M;A/, where M is a topological manifold and A is a smooth structure on M .
When the smooth structure is understood, we usually omit mention of it and just say
“M is a smooth manifold.” Smooth structures are also called differentiable struc-
tures or C1 structures by some authors. We also use the term smooth manifold
structure to mean a manifold topology together with a smooth structure.

We emphasize that a smooth structure is an additional piece of data that must
be added to a topological manifold before we are entitled to talk about a “smooth
manifold.” In fact, a given topological manifold may have many different smooth
structures (see Example 1.23 and Problem 1-6). On the other hand, it is not always
possible to find a smooth structure on a given topological manifold: there exist topo-
logical manifolds that admit no smooth structures at all. (The first example was a
compact 10-dimensional manifold found in 1960 by Michel Kervaire [Ker60].)

It is generally not very convenient to define a smooth structure by explicitly de-
scribing a maximal smooth atlas, because such an atlas contains very many charts.
Fortunately, we need only specify some smooth atlas, as the next proposition shows.

Proposition 1.17. Let M be a topological manifold.

(a) Every smooth atlas A for M is contained in a unique maximal smooth atlas,
called the smooth structure determined by A.

(b) Two smooth atlases for M determine the same smooth structure if and only if
their union is a smooth atlas.
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Fig. 1.7 Proof of Proposition 1.17(a)

Proof. Let A be a smooth atlas for M; and let SA denote the set of all charts that
are smoothly compatible with every chart in A. To show that SA is a smooth atlas,
we need to show that any two charts of SA are smoothly compatible with each other,
which is to say that for any .U;'/, .V; / 2 SA, the map  ı '�1 W '.U \ V /!
 .U \ V / is smooth.

Let x D '.p/ 2 '.U \ V / be arbitrary. Because the domains of the charts in A

cover M; there is some chart .W; �/ 2A such that p 2W (Fig. 1.7). Since every
chart in SA is smoothly compatible with .W; �/, both of the maps � ı'�1 and ı��1

are smooth where they are defined. Since p 2U \V \W , it follows that  ı'�1 D�
 ı��1

�
ı
�
� ı'�1

�
is smooth on a neighborhood of x. Thus,  ı'�1 is smooth in

a neighborhood of each point in '.U \V /. Therefore, SA is a smooth atlas. To check
that it is maximal, just note that any chart that is smoothly compatible with every
chart in SA must in particular be smoothly compatible with every chart in A, so it is
already in SA. This proves the existence of a maximal smooth atlas containing A. If
B is any other maximal smooth atlas containing A, each of its charts is smoothly
compatible with each chart in A, so B � SA. By maximality of B, B D SA.

The proof of (b) is left as an exercise. �

I Exercise 1.18. Prove Proposition 1.17(b).

For example, if a topological manifold M can be covered by a single chart, the
smooth compatibility condition is trivially satisfied, so any such chart automatically
determines a smooth structure on M .

It is worth mentioning that the notion of smooth structure can be generalized
in several different ways by changing the compatibility requirement for charts.
For example, if we replace the requirement that charts be smoothly compatible by
the weaker requirement that each transition map  ı '�1 (and its inverse) be of
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class C k , we obtain the definition of a C k structure. Similarly, if we require that
each transition map be real-analytic (i.e., expressible as a convergent power series in
a neighborhood of each point), we obtain the definition of a real-analytic structure,
also called a C! structure. If M has even dimension nD 2m, we can identify R2m

with Cm and require that the transition maps be complex-analytic; this determines
a complex-analytic structure. A manifold endowed with one of these structures is
called a C k manifold, real-analytic manifold, or complex manifold, respectively.
(Note that a C 0 manifold is just a topological manifold.) We do not treat any of these
other kinds of manifolds in this book, but they play important roles in analysis, so it
is useful to know the definitions.

Local Coordinate Representations

IfM is a smooth manifold, any chart .U;'/ contained in the given maximal smooth
atlas is called a smooth chart, and the corresponding coordinate map ' is called a
smooth coordinate map. It is useful also to introduce the terms smooth coordinate
domain or smooth coordinate neighborhood for the domain of a smooth coordinate
chart. A smooth coordinate ball means a smooth coordinate domain whose image
under a smooth coordinate map is a ball in Euclidean space. A smooth coordinate
cube is defined similarly.

It is often useful to restrict attention to coordinate balls whose closures sit nicely
inside larger coordinate balls. We say a set B �M is a regular coordinate ball if
there is a smooth coordinate ball B 0 
 xB and a smooth coordinate map ' W B 0!Rn

such that for some positive real numbers r < r 0,

'.B/DBr .0/; '
�
xB
�
D xBr .0/; and '

�
B 0
�
DBr 0.0/:

Because xB is homeomorphic to xBr .0/, it is compact, and thus every regular coordi-
nate ball is precompact in M . The next proposition gives a slight improvement on
Lemma 1.10 for smooth manifolds. Its proof is a straightforward adaptation of the
proof of that lemma.

Proposition 1.19. Every smooth manifold has a countable basis of regular coordi-
nate balls.

I Exercise 1.20. Prove Proposition 1.19.

Here is how one usually thinks about coordinate charts on a smooth manifold.
Once we choose a smooth chart .U;'/ on M; the coordinate map ' W U ! yU �Rn

can be thought of as giving a temporary identification between U and yU . Using this
identification, while we work in this chart, we can think of U simultaneously as an
open subset of M and as an open subset of Rn. You can visualize this identification
by thinking of a “grid” drawn on U representing the preimages of the coordinate
lines under ' (Fig. 1.8). Under this identification, we can represent a point p 2
U by its coordinates

�
x1; : : : ; xn

�
D '.p/, and think of this n-tuple as being the
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Fig. 1.8 A coordinate grid

point p. We typically express this by saying “
�
x1; : : : ; xn

�
is the (local) coordinate

representation for p” or “pD
�
x1; : : : ; xn

�
in local coordinates.”

Another way to look at it is that by means of our identification U $ yU , we can
think of ' as the identity map and suppress it from the notation. This takes a bit
of getting used to, but the payoff is a huge simplification of the notation in many
situations. You just need to remember that the identification is in general only local,
and depends heavily on the choice of coordinate chart.

You are probably already used to such identifications from your study of mul-
tivariable calculus. The most common example is polar coordinates .r; �/ in
the plane, defined implicitly by the relation .x; y/ D .r cos�; r sin�/ (see Exam-
ple C.37). On an appropriate open subset such as U D f.x; y/ W x > 0g �R2, .r; �/
can be expressed as smooth functions of .x; y/, and the map that sends .x; y/ to
the corresponding .r; �/ is a smooth coordinate map with respect to the standard
smooth structure on R2. Using this map, we can write a given point p 2 U either as
p D .x; y/ in standard coordinates or as p D .r; �/ in polar coordinates, where the
two coordinate representations are related by .r; �/D

�p
x2C y2; tan�1 y=x

�
and

.x; y/D .r cos�; r sin�/. Other polar coordinate charts can be obtained by restrict-
ing .r; �/ to other open subsets of R2 X f0g.

The fact that manifolds do not come with any predetermined choice of coordi-
nates is both a blessing and a curse. The flexibility to choose coordinates more or
less arbitrarily can be a big advantage in approaching problems in manifold the-
ory, because the coordinates can often be chosen to simplify some aspect of the
problem at hand. But we pay for this flexibility by being obliged to ensure that any
objects we wish to define globally on a manifold are not dependent on a particular
choice of coordinates. There are generally two ways of doing this: either by writing
down a coordinate-dependent definition and then proving that the definition gives
the same results in any coordinate chart, or by writing down a definition that is man-
ifestly coordinate-independent (often called an invariant definition). We will use the
coordinate-dependent approach in a few circumstances where it is notably simpler,
but for the most part we will give coordinate-free definitions whenever possible.
The need for such definitions accounts for much of the abstraction of modern man-
ifold theory. One of the most important skills you will need to acquire in order to
use manifold theory effectively is an ability to switch back and forth easily between
invariant descriptions and their coordinate counterparts.
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Examples of Smooth Manifolds

Before proceeding further with the general theory, let us survey some examples of
smooth manifolds.

Example 1.21 (0-Dimensional Manifolds). A topological manifold M of dimen-
sion 0 is just a countable discrete space. For each point p 2M; the only neighbor-
hood of p that is homeomorphic to an open subset of R0 is fpg itself, and there is
exactly one coordinate map ' W fpg!R0. Thus, the set of all charts on M trivially
satisfies the smooth compatibility condition, and each 0-dimensional manifold has
a unique smooth structure. //

Example 1.22 (Euclidean Spaces). For each nonnegative integer n, the Euclidean
space Rn is a smooth n-manifold with the smooth structure determined by the atlas
consisting of the single chart .Rn; IdRn/. We call this the standard smooth structure
on Rn and the resulting coordinate map standard coordinates. Unless we explic-
itly specify otherwise, we always use this smooth structure on Rn. With respect to
this smooth structure, the smooth coordinate charts for Rn are exactly those charts
.U;'/ such that ' is a diffeomorphism (in the sense of ordinary calculus) from U

to another open subset yU �Rn. //

Example 1.23 (Another Smooth Structure on R). Consider the homeomorphism
 W R!R given by

 .x/D x3: (1.1)

The atlas consisting of the single chart .R; / defines a smooth structure on R.
This chart is not smoothly compatible with the standard smooth structure, because
the transition map IdR ı �1.y/D y1=3 is not smooth at the origin. Therefore, the
smooth structure defined on R by  is not the same as the standard one. Using
similar ideas, it is not hard to construct many distinct smooth structures on any given
positive-dimensional topological manifold, as long as it has one smooth structure to
begin with (see Problem 1-6). //

Example 1.24 (Finite-Dimensional Vector Spaces). Let V be a finite-dimensional
real vector space. Any norm on V determines a topology, which is independent
of the choice of norm (Exercise B.49). With this topology, V is a topological n-
manifold, and has a natural smooth structure defined as follows. Each (ordered)
basis .E1; : : : ;En/ for V defines a basis isomorphism E W Rn! V by

E.x/D

nX

iD1

xiEi :

This map is a homeomorphism, so
�
V;E�1

�
is a chart. If

�
zE1; : : : ; zEn

�
is any other

basis and zE.x/D
P
j x

j zEj is the corresponding isomorphism, then there is some

invertible matrix
�
A
j
i

�
such that Ei D

P
j A

j
i
zEj for each i . The transition map

between the two charts is then given by zE�1 ıE.x/D zx, where zx D
�
zx1; : : : ; zxn

�
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is determined by
nX

jD1

zxj zEj D

nX

iD1

xiEi D

nX

i;jD1

xiA
j
i
zEj :

It follows that zxj D
P
i A

j
i x
i . Thus, the map sending x to zx is an invertible linear

map and hence a diffeomorphism, so any two such charts are smoothly compatible.
The collection of all such charts thus defines a smooth structure, called the standard
smooth structure on V . //

The Einstein Summation Convention

This is a good place to pause and introduce an important notational convention that
is commonly used in the study of smooth manifolds. Because of the proliferation
of summations such as

P
i x
iEi in this subject, we often abbreviate such a sum by

omitting the summation sign, as in

E.x/D xiEi ; an abbreviation for E.x/D
nX

iD1

xiEi :

We interpret any such expression according to the following rule, called the Einstein
summation convention: if the same index name (such as i in the expression above)
appears exactly twice in any monomial term, once as an upper index and once as
a lower index, that term is understood to be summed over all possible values of
that index, generally from 1 to the dimension of the space in question. This simple
idea was introduced by Einstein to reduce the complexity of expressions arising
in the study of smooth manifolds by eliminating the necessity of explicitly writing
summation signs. We use the summation convention systematically throughout the
book (except in the appendices, which many readers will look at before the rest of
the book).

Another important aspect of the summation convention is the positions of the
indices. We always write basis vectors (such as Ei ) with lower indices, and com-
ponents of a vector with respect to a basis (such as xi ) with upper indices. These
index conventions help to ensure that, in summations that make mathematical sense,
each index to be summed over typically appears twice in any given term, once as a
lower index and once as an upper index. Any index that is implicitly summed over
is a “dummy index,” meaning that the value of such an expression is unchanged if a
different name is substituted for each dummy index. For example, xiEi and xjEj
mean exactly the same thing.

Since the coordinates of a point
�
x1; : : : ; xn

�
2Rn are also its components with

respect to the standard basis, in order to be consistent with our convention of writing
components of vectors with upper indices, we need to use upper indices for these co-
ordinates, and we do so throughout this book. Although this may seem awkward at
first, in combination with the summation convention it offers enormous advantages
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when we work with complicated indexed sums, not the least of which is that expres-
sions that are not mathematically meaningful often betray themselves quickly by
violating the index convention. (The main exceptions are expressions involving the
Euclidean dot product x � y D

P
i x
iyi , in which the same index appears twice in

the upper position, and the standard symplectic form on R2n, which we will define
in Chapter 22. We always explicitly write summation signs in such expressions.)

More Examples

Now we continue with our examples of smooth manifolds.

Example 1.25 (Spaces of Matrices). Let M.m � n;R/ denote the set of m � n
matrices with real entries. Because it is a real vector space of dimension mn under
matrix addition and scalar multiplication, M.m�n;R/ is a smoothmn-dimensional
manifold. (In fact, it is often useful to identify M.m � n;R/ with Rmn, just by
stringing all the matrix entries out in a single row.) Similarly, the space M.m�n;C/
of m � n complex matrices is a vector space of dimension 2mn over R, and thus
a smooth manifold of dimension 2mn. In the special case in which mD n (square
matrices), we abbreviate M.n � n;R/ and M.n � n;C/ by M.n;R/ and M.n;C/,
respectively. //

Example 1.26 (Open Submanifolds). Let U be any open subset of Rn. Then U is
a topological n-manifold, and the single chart .U; IdU / defines a smooth structure
on U .

More generally, let M be a smooth n-manifold and let U �M be any open
subset. Define an atlas on U by

AU D
˚
smooth charts .V;'/ for M such that V � U

�
:

Every point p 2 U is contained in the domain of some chart .W;'/ forM ; if we set
V DW \ U , then .V;'jV / is a chart in AU whose domain contains p. Therefore,
U is covered by the domains of charts in AU , and it is easy to verify that this is
a smooth atlas for U . Thus any open subset of M is itself a smooth n-manifold
in a natural way. Endowed with this smooth structure, we call any open subset an
open submanifold of M . (We will define a more general class of submanifolds in
Chapter 5.) //

Example 1.27 (The General Linear Group). The general linear group GL.n;R/
is the set of invertible n�nmatrices with real entries. It is a smooth n2-dimensional
manifold because it is an open subset of the n2-dimensional vector space M.n;R/,
namely the set where the (continuous) determinant function is nonzero. //

Example 1.28 (Matrices of Full Rank). The previous example has a natural gener-
alization to rectangular matrices of full rank. Supposem< n, and let Mm.m�n;R/
denote the subset of M.m � n;R/ consisting of matrices of rank m. If A is an ar-
bitrary such matrix, the fact that rankA D m means that A has some nonsingular
m �m submatrix. By continuity of the determinant function, this same submatrix
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has nonzero determinant on a neighborhood of A in M.m � n;R/, which implies
that A has a neighborhood contained in Mm.m� n;R/. Thus, Mm.m� n;R/ is an
open subset of M.m� n;R/, and therefore is itself a smooth mn-dimensional man-
ifold. A similar argument shows that Mn.m� n;R/ is a smooth mn-manifold when
n <m. //

Example 1.29 (Spaces of Linear Maps). Suppose V andW are finite-dimensional
real vector spaces, and let L.V IW / denote the set of linear maps from V toW . Then
because L.V IW / is itself a finite-dimensional vector space (whose dimension is the
product of the dimensions of V and W ), it has a natural smooth manifold structure
as in Example 1.24. One way to put global coordinates on it is to choose bases for V
andW , and represent each T 2 L.V IW / by its matrix, which yields an isomorphism
of L.V IW / with M.m� n;R/ for mD dimW and nD dimV . //

Example 1.30 (Graphs of Smooth Functions). If U � Rn is an open subset and
f W U !Rk is a smooth function, we have already observed above (Example 1.3)
that the graph of f is a topological n-manifold in the subspace topology. Since
�.f / is covered by the single graph coordinate chart ' W �.f /!U (the restriction
of �1), we can put a canonical smooth structure on �.f / by declaring the graph
coordinate chart .�.f /; '/ to be a smooth chart. //

Example 1.31 (Spheres). We showed in Example 1.4 that the n-sphere Sn �RnC1

is a topological n-manifold. We put a smooth structure on Sn as follows. For each
i D 1; : : : ; nC 1, let

�
U˙i ; '

˙
i

�
denote the graph coordinate charts we constructed

in Example 1.4. For any distinct indices i and j , the transition map '˙i ı
�
'˙j
�
�1 is

easily computed. In the case i < j , we get

'˙i ı
�
'˙j
��1 �

u1; : : : ; un
�
D
	
u1; : : : ; bui ; : : : ;˙

p
1� juj2; : : : ; un




(with the square root in the j th position), and a similar formula holds when i > j .
When i D j , an even simpler computation gives 'Ci ı

�
'�i
�
�1 D '�i ı

�
'Ci
�
�1 D

IdBn . Thus, the collection of charts
˚�
U˙i ; '

˙
i

��
is a smooth atlas, and so defines a

smooth structure on Sn. We call this its standard smooth structure. //

Example 1.32 (Level Sets). The preceding example can be generalized as fol-
lows. Suppose U � Rn is an open subset and ˚ W U ! R is a smooth function.
For any c 2 R, the set ˚�1.c/ is called a level set of ˚ . Choose some c 2 R, let
M D ˚�1.c/, and suppose it happens that the total derivative D˚.a/ is nonzero
for each a 2 ˚�1.c/. Because D˚.a/ is a row matrix whose entries are the partial
derivatives .@˚=@x1.a/; : : : ; @˚=@xn.a//, for each a 2M there is some i such that
@˚=@xi .a/¤ 0. It follows from the implicit function theorem (Theorem C.40, with
xi playing the role of y) that there is a neighborhood U0 of a such that M \U0 can
be expressed as a graph of an equation of the form

xi D f
	
x1; : : : ; bxi ; : : : ; xn



;

for some smooth real-valued function f defined on an open subset of Rn�1. There-
fore, arguing just as in the case of the n-sphere, we see that M is a topological
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manifold of dimension .n � 1/, and has a smooth structure such that each of the
graph coordinate charts associated with a choice of f as above is a smooth chart.
In Chapter 5, we will develop the theory of smooth submanifolds, which is a far-
reaching generalization of this construction. //

Example 1.33 (Projective Spaces). The n-dimensional real projective space RPn

is a topological n-manifold by Example 1.5. Let us check that the coordinate charts
.Ui ; 'i / constructed in that example are all smoothly compatible. Assuming for con-
venience that i > j , it is straightforward to compute that

'j ı '
�1
i

�
u1; : : : ; un

�
D

�
u1

uj
; : : : ;

uj�1

uj
;
ujC1

uj
; : : : ;

ui�1

uj
;
1

uj
;
ui

uj
; : : : ;

un

uj

�
;

which is a diffeomorphism from 'i .Ui \Uj / to 'j .Ui \Uj /. //

Example 1.34 (Smooth Product Manifolds). IfM1; : : : ;Mk are smooth manifolds
of dimensions n1; : : : ; nk , respectively, we showed in Example 1.8 that the product
space M1 � � � � �Mk is a topological manifold of dimension n1 C � � � C nk , with
charts of the form .U1 � � � � �Uk ; '1 � � � � � 'k/. Any two such charts are smoothly
compatible because, as is easily verified,

. 1 � � � � � k/ ı .'1 � � � � � 'k/
�1 D

�
 1 ı '

�1
1

�
� � � � �

�
 k ı '

�1
k

�
;

which is a smooth map. This defines a natural smooth manifold structure on the
product, called the product smooth manifold structure. For example, this yields a
smooth manifold structure on the n-torus Tn D S1 � � � � � S1. //

In each of the examples we have seen so far, we constructed a smooth manifold
structure in two stages: we started with a topological space and checked that it was
a topological manifold, and then we specified a smooth structure. It is often more
convenient to combine these two steps into a single construction, especially if we
start with a set that is not already equipped with a topology. The following lemma
provides a shortcut—it shows how, given a set with suitable “charts” that overlap
smoothly, we can use the charts to define both a topology and a smooth structure on
the set.

Lemma 1.35 (Smooth Manifold Chart Lemma). Let M be a set, and suppose we
are given a collection fU˛g of subsets ofM together with maps '˛ W U˛!Rn, such
that the following properties are satisfied:

(i) For each ˛, '˛ is a bijection between U˛ and an open subset '˛.U˛/�Rn.
(ii) For each ˛ and ˇ, the sets '˛.U˛ \Uˇ / and 'ˇ .U˛ \Uˇ / are open in Rn.

(iii) Whenever U˛ \Uˇ ¤¿, the map 'ˇ ı '�1˛ W '˛.U˛ \Uˇ /! 'ˇ .U˛ \Uˇ / is
smooth.

(iv) Countably many of the sets U˛ cover M .
(v) Whenever p;q are distinct points in M; either there exists some U˛ containing

both p and q or there exist disjoint sets U˛;Uˇ with p 2U˛ and q 2 Uˇ .

ThenM has a unique smooth manifold structure such that each .U˛; '˛/ is a smooth
chart.
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Fig. 1.9 The smooth manifold chart lemma

Proof. We define the topology by taking all sets of the form '�1˛ .V /, with V an
open subset of Rn, as a basis. To prove that this is a basis for a topology, we need to
show that for any point p in the intersection of two basis sets '�1˛ .V / and '�1

ˇ
.W /,

there is a third basis set containing p and contained in the intersection. It suffices
to show that '�1˛ .V / \ '�1

ˇ
.W / is itself a basis set (Fig. 1.9). To see this, observe

that (iii) implies that
�
'ˇ ı '

�1
˛

�
�1.W / is an open subset of '˛.U˛ \Uˇ /, and (ii)

implies that this set is also open in Rn. It follows that

'�1˛ .V /\ '�1ˇ .W /D '�1˛
�
V \

�
'ˇ ı '

�1
˛

�
�1.W /

�

is also a basis set, as claimed.
Each map '˛ is then a homeomorphism onto its image (essentially by definition),

so M is locally Euclidean of dimension n. The Hausdorff property follows easily
from (v), and second-countability follows from (iv) and the result of Exercise A.22,
because each U˛ is second-countable. Finally, (iii) guarantees that the collection
f.U˛; '˛/g is a smooth atlas. It is clear that this topology and smooth structure are
the unique ones satisfying the conclusions of the lemma. �

Example 1.36 (Grassmann Manifolds). Let V be an n-dimensional real vector
space. For any integer 0� k � n, we let Gk.V / denote the set of all k-dimensional
linear subspaces of V . We will show that Gk.V / can be naturally given the struc-
ture of a smooth manifold of dimension k.n� k/. With this structure, it is called a
Grassmann manifold, or simply a Grassmannian. In the special case V DRn, the
Grassmannian Gk

�
Rn
�

is often denoted by some simpler notation such as Gk;n or
G.k; n/. Note that G1

�
RnC1

�
is exactly the n-dimensional projective space RPn.
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The construction of a smooth structure on Gk.V / is somewhat more involved
than the ones we have done so far, but the basic idea is just to use linear algebra
to construct charts for Gk.V /, and then apply the smooth manifold chart lemma.
We will give a shorter proof that Gk.V / is a smooth manifold in Chapter 21 (see
Example 21.21).

Let P and Q be any complementary subspaces of V of dimensions k and n� k,
respectively, so that V decomposes as a direct sum: V D P ˚Q. The graph of any
linear map X W P !Q can be identified with a k-dimensional subspace �.X/� V ,
defined by

�.X/D fvCXv W v 2 P g:

Any such subspace has the property that its intersection withQ is the zero subspace.
Conversely, any subspace S � V that intersects Q trivially is the graph of a unique
linear map X W P ! Q, which can be constructed as follows: let �P W V ! P

and �Q W V !Q be the projections determined by the direct sum decomposition;
then the hypothesis implies that �P jS is an isomorphism from S to P . Therefore,
X D .�QjS /ı .�P jS /

�1 is a well-defined linear map from P toQ, and it is straight-
forward to check that S is its graph.

Let L.P IQ/ denote the vector space of linear maps from P to Q, and let
UQ denote the subset of Gk.V / consisting of k-dimensional subspaces whose
intersections with Q are trivial. The assignment X 7! �.X/ defines a map
� W L.P IQ/ ! UQ, and the discussion above shows that � is a bijection. Let
' D ��1 W UQ ! L.P IQ/. By choosing bases for P and Q, we can identify
L.P IQ/ with M..n� k/� k;R/ and hence with Rk.n�k/, and thus we can think of
.UQ; '/ as a coordinate chart. Since the image of each such chart is all of L.P IQ/,
condition (i) of Lemma 1.35 is clearly satisfied.

Now let .P 0;Q0/ be any other such pair of subspaces, and let �P 0 , �Q0 be the cor-
responding projections and '0 W UQ0 ! L.P 0IQ0/ the corresponding map. The set
'.UQ \UQ0/� L.P IQ/ consists of all linear maps X W P !Q whose graphs in-
tersectQ0 trivially. To see that this set is open in L.P IQ/, for eachX 2 L.P IQ/, let
IX W P ! V be the map IX .v/D vCXv, which is a bijection from P to the graph
of X . Because �.X/D ImIX and Q0 D Ker�P 0 , it follows from Exercise B.22(d)
that the graph of X intersects Q0 trivially if and only if �P 0 ı IX has full rank.
Because the matrix entries of �P 0 ı IX (with respect to any bases) depend continu-
ously on X , the result of Example 1.28 shows that the set of all such X is open in
L.P IQ/. Thus property (ii) in the smooth manifold chart lemma holds.

We need to show that the transition map '0 ı '�1 is smooth on '.UQ \ UQ0/.
Suppose X 2 '.UQ \ UQ0/� L.P IQ/ is arbitrary, and let S denote the subspace
�.X/� V . If we put X 0 D '0 ı '�1.X/, then as above, X 0 D .�Q0 jS / ı .�P 0 jS /�1

(see Fig. 1.10). To relate this map to X , note that IX W P ! S is an isomorphism, so
we can write

X 0 D .�Q0 jS / ı IX ı .IX /
�1 ı .�P 0 jS /

�1 D .�Q0 ı IX / ı .�P 0 ı IX /
�1:
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Fig. 1.10 Smooth compatibility of coordinates on Gk.V /

To show that this depends smoothly on X , define linear maps A W P ! P 0,
B W P !Q0, C W Q! P 0, and D W Q!Q0 as follows:

AD �P 0
ˇ̌
P
; B D �Q0

ˇ̌
P
; C D �P 0

ˇ̌
Q
; D D �Q0

ˇ̌
Q
:

Then for v 2 P , we have

.�P 0 ı IX /vD .ACCX/v; .�Q0 ı IX /vD .B CDX/v;

from which it follows that X 0 D .B CDX/.AC CX/�1. Once we choose bases
for P , Q, P 0, and Q0, all of these linear maps are represented by matrices. Because
the matrix entries of .AC CX/�1 are rational functions of those of AC CX by
Cramer’s rule, it follows that the matrix entries of X 0 depend smoothly on those of
X . This proves that '0 ı '�1 is a smooth map, so the charts we have constructed
satisfy condition (iii) of Lemma 1.35.

To check condition (iv), we just note that Gk.V / can in fact be covered by finitely
many of the sets UQ: for example, if .E1; : : : ;En/ is any fixed basis for V , any
partition of the basis elements into two subsets containing k and n � k elements
determines appropriate subspaces P and Q, and any subspace S must have trivial
intersection with Q for at least one of these partitions (see Exercise B.9). Thus,
Gk.V / is covered by the finitely many charts determined by all possible partitions
of a fixed basis.

Finally, the Hausdorff condition (v) is easily verified by noting that for any two k-
dimensional subspaces P;P 0 � V , it is possible to find a subspace Q of dimension
n � k whose intersections with both P and P 0 are trivial, and then P and P 0 are
both contained in the domain of the chart determined by, say, .P;Q/. //

Manifolds with Boundary

In many important applications of manifolds, most notably those involving integra-
tion, we will encounter spaces that would be smooth manifolds except that they
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Fig. 1.11 A manifold with boundary

have a “boundary” of some sort. Simple examples of such spaces include closed
intervals in R, closed balls in Rn, and closed hemispheres in Sn. To accommodate
such spaces, we need to extend our definition of manifolds.

Points in these spaces will have neighborhoods modeled either on open subsets
of Rn or on open subsets of the closed n-dimensional upper half-space Hn �Rn,
defined as

Hn D
˚�
x1; : : : ; xn

�
2Rn W xn � 0

�
:

We will use the notations IntHn and @Hn to denote the interior and boundary of Hn,
respectively, as a subset of Rn. When n > 0, this means

IntHn D
˚�
x1; : : : ; xn

�
2Rn W xn > 0

�
;

@Hn D
˚�
x1; : : : ; xn

�
2Rn W xn D 0

�
:

In the nD 0 case, H0 DR0 D f0g, so IntH0 DR0 and @H0 D¿.
An n-dimensional topological manifold with boundary is a second-countable

Hausdorff space M in which every point has a neighborhood homeomorphic either
to an open subset of Rn or to a (relatively) open subset of Hn (Fig. 1.11). An open
subset U �M together with a map ' W U !Rn that is a homeomorphism onto an
open subset of Rn or Hn will be called a chart for M , just as in the case of man-
ifolds. When it is necessary to make the distinction, we will call .U;'/ an interior
chart if '.U / is an open subset of Rn (which includes the case of an open subset
of Hn that does not intersect @Hn), and a boundary chart if '.U / is an open subset
of Hn such that '.U / \ @Hn ¤ ¿. A boundary chart whose image is a set of the
form Br .x/\Hn for some x 2 @Hn and r > 0 is called a coordinate half-ball.

A point p 2M is called an interior point of M if it is in the domain of some
interior chart. It is a boundary point of M if it is in the domain of a boundary chart
that sends p to @Hn. The boundary of M (the set of all its boundary points) is
denoted by @M ; similarly, its interior, the set of all its interior points, is denoted by
IntM .

It follows from the definition that each point p 2M is either an interior point or a
boundary point: if p is not a boundary point, then either it is in the domain of an in-
terior chart or it is in the domain of a boundary chart .U;'/ such that '.p/ … @Hn,
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in which case the restriction of ' to U \ '�1
�
IntHn

�
is an interior chart whose

domain contains p. However, it is not obvious that a given point cannot be simulta-
neously an interior point with respect to one chart and a boundary point with respect
to another. In fact, this cannot happen, but the proof requires more machinery than
we have available at this point. For convenience, we state the theorem here.

Theorem 1.37 (Topological Invariance of the Boundary). If M is a topological
manifold with boundary, then each point of M is either a boundary point or an
interior point, but not both. Thus @M and IntM are disjoint sets whose union isM .

For the proof, see Problem 17-9. Later in this chapter, we will prove a weaker
version of this result for smooth manifolds with boundary (Theorem 1.46), which
will be sufficient for most of our purposes.

Be careful to observe the distinction between these new definitions of the terms
boundary and interior and their usage to refer to the boundary and interior of a sub-
set of a topological space. A manifold with boundary may have nonempty boundary
in this new sense, irrespective of whether it has a boundary as a subset of some other
topological space. If we need to emphasize the difference between the two notions
of boundary, we will use the terms topological boundary and manifold boundary
as appropriate. For example, the closed unit ball xBn is a manifold with boundary
(see Problem 1-11), whose manifold boundary is Sn�1. Its topological boundary as
a subset of Rn happens to be the sphere as well. However, if we think of xBn as
a topological space in its own right, then as a subset of itself, it has empty topo-
logical boundary. And if we think of it as a subset of RnC1 (considering Rn as a
subset of RnC1 in the obvious way), its topological boundary is all of xBn. Note that
Hn is itself a manifold with boundary, and its manifold boundary is the same as its
topological boundary as a subset of Rn. Every interval in R is a 1-manifold with
boundary, whose manifold boundary consists of its endpoints (if any).

The nomenclature for manifolds with boundary is traditional and well estab-
lished, but it must be used with care. Despite their name, manifolds with boundary
are not in general manifolds, because boundary points do not have locally Euclidean
neighborhoods. (This is a consequence of the theorem on invariance of the bound-
ary.) Moreover, a manifold with boundary might have empty boundary—there is
nothing in the definition that requires the boundary to be a nonempty set. On the
other hand, a manifold is also a manifold with boundary, whose boundary is empty.
Thus, every manifold is a manifold with boundary, but a manifold with boundary is
a manifold if and only if its boundary is empty (see Proposition 1.38 below).

Even though the term manifold with boundary encompasses manifolds as well,
we will often use redundant phrases such as manifold without boundary if we wish
to emphasize that we are talking about a manifold in the original sense, and man-
ifold with or without boundary to refer to a manifold with boundary if we wish
emphasize that the boundary might be empty. (The latter phrase will often appear
when our primary interest is in manifolds, but the results being discussed are just as
easy to state and prove in the more general case of manifolds with boundary.) Note
that the word “manifold” without further qualification always means a manifold
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without boundary. In the literature, you will also encounter the terms closed mani-
fold to mean a compact manifold without boundary, and open manifold to mean a
noncompact manifold without boundary.

Proposition 1.38. Let M be a topological n-manifold with boundary.

(a) IntM is an open subset of M and a topological n-manifold without boundary.
(b) @M is a closed subset of M and a topological .n � 1/-manifold without

boundary.
(c) M is a topological manifold if and only if @M D¿.
(d) If nD 0, then @M D¿ and M is a 0-manifold.

I Exercise 1.39. Prove the preceding proposition. For this proof, you may use the
theorem on topological invariance of the boundary when necessary. Which parts re-
quire it?

The topological properties of manifolds that we proved earlier in the chapter have
natural extensions to manifolds with boundary, with essentially the same proofs as
in the manifold case. For the record, we state them here.

Proposition 1.40. Let M be a topological manifold with boundary.

(a) M has a countable basis of precompact coordinate balls and half-balls.
(b) M is locally compact.
(c) M is paracompact.
(d) M is locally path-connected.
(e) M has countably many components, each of which is an open subset of M and

a connected topological manifold with boundary.
(f) The fundamental group of M is countable.

I Exercise 1.41. Prove the preceding proposition.

Smooth Structures on Manifolds with Boundary

To see how to define a smooth structure on a manifold with boundary, recall that a
map from an arbitrary subset A � Rn to Rk is said to be smooth if in a neighbor-
hood of each point of A it admits an extension to a smooth map defined on an open
subset of Rn (see Appendix C, p. 645). Thus, if U is an open subset of Hn, a map
F W U !Rk is smooth if for each x 2 U , there exists an open subset zU �Rn con-
taining x and a smooth map zF W zU !Rk that agrees with F on zU \Hn (Fig. 1.12).
If F is such a map, the restriction of F to U \ IntHn is smooth in the usual sense.
By continuity, all partial derivatives of F at points of U \ @Hn are determined by
their values in IntHn, and therefore in particular are independent of the choice of
extension. It is a fact (which we will neither prove nor use) that F W U ! Rk is
smooth in this sense if and only if F is continuous, F jU\IntHn is smooth, and the
partial derivatives of F jU\IntHn of all orders have continuous extensions to all of U .
(One direction is obvious; the other direction depends on a lemma of Émile Borel,
which shows that there is a smooth function defined in the lower half-space whose
derivatives all match those of F on U \ @Hn. See, e.g., [Hör90, Thm. 1.2.6].)
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Fig. 1.12 Smoothness of maps on open subsets of Hn

For example, let B2 � R2 be the open unit disk, let U D B2 \H2, and define
f W U !R by f .x;y/D

p
1� x2 � y2. Because f extends smoothly to all of B2

(by the same formula), f is a smooth function on U . On the other hand, although
g.x;y/ D

p
y is continuous on U and smooth in U \ IntH2, it has no smooth

extension to any neighborhood of the origin in R2 because @g=@y!1 as y! 0.
Thus g is not smooth on U .

Now let M be a topological manifold with boundary. As in the manifold case,
a smooth structure for M is defined to be a maximal smooth atlas—a collection
of charts whose domains cover M and whose transition maps (and their inverses)
are smooth in the sense just described. With such a structure, M is called a smooth
manifold with boundary. Every smooth manifold is automatically a smooth mani-
fold with boundary (whose boundary is empty).

Just as for smooth manifolds, if M is a smooth manifold with boundary, any
chart in the given smooth atlas is called a smooth chart for M . Smooth coordinate
balls, smooth coordinate half-balls, and regular coordinate balls inM are defined
in the obvious ways. In addition, a subset B �M is called a regular coordinate
half-ball if there is a smooth coordinate half-ball B 0 
 xB and a smooth coordinate
map ' W B 0!Hn such that for some r 0 > r > 0 we have

'.B/DBr .0/\Hn; '
�
xB
�
D xBr .0/\Hn; and '

�
B 0
�
DBr 0.0/\Hn:

I Exercise 1.42. Show that every smooth manifold with boundary has a countable
basis consisting of regular coordinate balls and half-balls.

I Exercise 1.43. Show that the smooth manifold chart lemma (Lemma 1.35) holds
with “Rn” replaced by “Rn or Hn” and “smooth manifold” replaced by “smooth
manifold with boundary.”

I Exercise 1.44. Suppose M is a smooth n-manifold with boundary and U is an
open subset of M . Prove the following statements:

(a) U is a topological n-manifold with boundary, and the atlas consisting of all smooth
charts .V;'/ for M such that V � U defines a smooth structure on U . With this
topology and smooth structure, U is called an open submanifold with boundary.

(b) If U � IntM; then U is actually a smooth manifold (without boundary); in this
case we call it an open submanifold of M .

(c) IntM is an open submanifold of M (without boundary).
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One important result about smooth manifolds that does not extend directly to
smooth manifolds with boundary is the construction of smooth structures on finite
products (see Example 1.8). Because a product of half-spaces Hn �Hm is not itself
a half-space, a finite product of smooth manifolds with boundary cannot generally
be considered as a smooth manifold with boundary. (Instead, it is an example of a
smooth manifold with corners, which we will study in Chapter 16.) However, we do
have the following result.

Proposition 1.45. Suppose M1; : : : ;Mk are smooth manifolds and N is a smooth
manifold with boundary. ThenM1�� � ��Mk �N is a smooth manifold with bound-
ary, and @.M1 � � � � �Mk �N/DM1 � � � � �Mk � @N .

Proof. Problem 1-12. �

For smooth manifolds with boundary, the following result is often an adequate
substitute for the theorem on invariance of the boundary.

Theorem 1.46 (Smooth Invariance of the Boundary). Suppose M is a smooth
manifold with boundary and p 2M . If there is some smooth chart .U;'/ for M
such that '.U /�Hn and '.p/ 2 @Hn, then the same is true for every smooth chart
whose domain contains p.

Proof. Suppose on the contrary that p is in the domain of a smooth interior chart
.U; / and also in the domain of a smooth boundary chart .V;'/ such that '.p/ 2
@Hn. Let � D ' ı  �1 denote the transition map; it is a homeomorphism from
 .U \V / to '.U \V /. The smooth compatibility of the charts ensures that both �
and ��1 are smooth, in the sense that locally they can be extended, if necessary, to
smooth maps defined on open subsets of Rn.

Write x0 D .p/ and y0 D '.p/D �.x0/. There is some neighborhoodW of y0
in Rn and a smooth function � W W !Rn that agrees with ��1 on W \ '.U \ V /.
On the other hand, because we are assuming that  is an interior chart, there is
an open Euclidean ball B that is centered at x0 and contained in '.U \ V /, so �
itself is smooth on B in the ordinary sense. After shrinking B if necessary, we may
assume that B � ��1.W /. Then � ı � jB D ��1 ı � jB D IdB , so it follows from the
chain rule that D�.�.x// ıD�.x/ is the identity map for each x 2B . Since D�.x/
is a square matrix, this implies that it is nonsingular. It follows from Corollary C.36
that � (considered as a map from B to Rn) is an open map, so �.B/ is an open
subset of Rn that contains y0 D '.p/ and is contained in '.V /. This contradicts the
assumption that '.V /�Hn and '.p/ 2 @Hn. �

Problems

1-1. Let X be the set of all points .x; y/ 2 R2 such that y D˙1, and let M be
the quotient of X by the equivalence relation generated by .x;�1/	 .x; 1/
for all x ¤ 0. Show that M is locally Euclidean and second-countable, but
not Hausdorff. (This space is called the line with two origins.)
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1-2. Show that a disjoint union of uncountably many copies of R is locally
Euclidean and Hausdorff, but not second-countable.

1-3. A topological space is said to be � -compact if it can be expressed as
a union of countably many compact subspaces. Show that a locally Eu-
clidean Hausdorff space is a topological manifold if and only if it is � -
compact.

1-4. Let M be a topological manifold, and let U be an open cover of M .
(a) Assuming that each set in U intersects only finitely many others, show

that U is locally finite.
(b) Give an example to show that the converse to (a) may be false.
(c) Now assume that the sets in U are precompact inM; and prove the con-

verse: if U is locally finite, then each set in U intersects only finitely
many others.

1-5. SupposeM is a locally Euclidean Hausdorff space. Show that M is second-
countable if and only if it is paracompact and has countably many connected
components. [Hint: assumingM is paracompact, show that each component
of M has a locally finite cover by precompact coordinate domains, and ex-
tract from this a countable subcover.]

1-6. Let M be a nonempty topological manifold of dimension n � 1. If M has
a smooth structure, show that it has uncountably many distinct ones. [Hint:
first show that for any s > 0, Fs.x/ D jxjs�1x defines a homeomorphism
from Bn to itself, which is a diffeomorphism if and only if s D 1.]

1-7. Let N denote the north pole .0; : : : ; 0; 1/ 2 Sn � RnC1, and let S de-
note the south pole .0; : : : ; 0;�1/. Define the stereographic projection
� W Sn X fN g!Rn by

�
�
x1; : : : ; xnC1

�
D
.x1; : : : ; xn/

1� xnC1
:

Let z�.x/D��.�x/ for x 2 Sn X fSg.
(a) For any x 2 Sn X fN g, show that �.x/ D u, where .u; 0/ is the point

where the line through N and x intersects the linear subspace where
xnC1 D 0 (Fig. 1.13). Similarly, show that z�.x/ is the point where the
line through S and x intersects the same subspace. (For this reason, z�
is called stereographic projection from the south pole.)

(b) Show that � is bijective, and

��1
�
u1; : : : ; un

�
D
.2u1; : : : ; 2un; juj2 � 1/

juj2C 1
:

(c) Compute the transition map z� ı ��1 and verify that the atlas consisting
of the two charts .Sn X fN g; �/ and .Sn X fSg; z�/ defines a smooth
structure on Sn. (The coordinates defined by � or z� are called stereo-
graphic coordinates.)

(d) Show that this smooth structure is the same as the one defined in
Example 1.31.

(Used on pp. 201, 269, 301, 345, 347, 450.)
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Fig. 1.13 Stereographic projection

1-8. By identifying R2 with C, we can think of the unit circle S1 as a subset of
the complex plane. An angle function on a subset U � S1 is a continuous
function � W U !R such that ei�.z/ D z for all z 2 U . Show that there exists
an angle function � on an open subset U � S1 if and only if U ¤ S1. For
any such angle function, show that .U; �/ is a smooth coordinate chart for
S1 with its standard smooth structure. (Used on pp. 37, 152, 176.)

1-9. Complex projective n-space, denoted by CPn, is the set of all 1-dimensional
complex-linear subspaces of CnC1, with the quotient topology inherited
from the natural projection � W CnC1 X f0g ! CPn. Show that CPn is a
compact 2n-dimensional topological manifold, and show how to give it a
smooth structure analogous to the one we constructed for RPn. (We use the
correspondence

�
x1C iy1; : : : ; xnC1C iynC1

�
$
�
x1; y1; : : : ; xnC1; ynC1

�

to identify CnC1 with R2nC2.) (Used on pp. 48, 96, 172, 560, 561.)

1-10. Let k and n be integers satisfying 0 < k < n, and let P;Q � Rn be the
linear subspaces spanned by .e1; : : : ; ek/ and .ekC1; : : : ; en/, respectively,
where ei is the i th standard basis vector for Rn. For any k-dimensional sub-
space S �Rn that has trivial intersection with Q, show that the coordinate
representation '.S/ constructed in Example 1.36 is the unique .n� k/� k
matrix B such that S is spanned by the columns of the matrix

�
Ik
B

�
, where

Ik denotes the k � k identity matrix.

1-11. Let M D xBn, the closed unit ball in Rn. Show that M is a topological man-
ifold with boundary in which each point in Sn�1 is a boundary point and
each point in Bn is an interior point. Show how to give it a smooth struc-
ture such that every smooth interior chart is a smooth chart for the standard
smooth structure on Bn. [Hint: consider the map � ı��1 W Rn!Rn, where
� W Sn! Rn is the stereographic projection (Problem 1-7) and � is a pro-
jection from RnC1 to Rn that omits some coordinate other than the last.]

1-12. Prove Proposition 1.45 (a product of smooth manifolds together with one
smooth manifold with boundary is a smooth manifold with boundary).



Chapter 2
Smooth Maps

The main reason for introducing smooth structures was to enable us to define smooth
functions on manifolds and smooth maps between manifolds. In this chapter we
carry out that project.

We begin by defining smooth real-valued and vector-valued functions, and then
generalize this to smooth maps between manifolds. We then focus our attention for
a while on the special case of diffeomorphisms, which are bijective smooth maps
with smooth inverses. If there is a diffeomorphism between two smooth manifolds,
we say that they are diffeomorphic. The main objects of study in smooth manifold
theory are properties that are invariant under diffeomorphisms.

At the end of the chapter, we introduce a powerful tool for blending together
locally defined smooth objects, called partitions of unity. They are used throughout
smooth manifold theory for building global smooth objects out of local ones.

Smooth Functions and Smooth Maps

Although the terms function and map are technically synonymous, in studying
smooth manifolds it is often convenient to make a slight distinction between them.
Throughout this book we generally reserve the term function for a map whose
codomain is R (a real-valued function) or Rk for some k > 1 (a vector-valued
function). Either of the words map or mapping can mean any type of map, such as
a map between arbitrary manifolds.

Smooth Functions on Manifolds

Suppose M is a smooth n-manifold, k is a nonnegative integer, and f W M ! Rk

is any function. We say that f is a smooth function if for every p 2M; there exists
a smooth chart .U;'/ for M whose domain contains p and such that the composite
function f ı '�1 is smooth on the open subset yU D '.U / � Rn (Fig. 2.1). If M
is a smooth manifold with boundary, the definition is exactly the same, except that
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Fig. 2.1 Definition of smooth functions

'.U / is now an open subset of either Rn or Hn, and in the latter case we interpret
smoothness of f ı'�1 to mean that each point of '.U / has a neighborhood (in Rn)
on which f ı '�1 extends to a smooth function in the ordinary sense.

The most important special case is that of smooth real-valued functions f W M !
R; the set of all such functions is denoted by C1.M/. Because sums and constant
multiples of smooth functions are smooth, C1.M/ is a vector space over R.

I Exercise 2.1. Let M be a smooth manifold with or without boundary. Show that
pointwise multiplication turns C1.M/ into a commutative ring and a commutative
and associative algebra over R. (See Appendix B, p. 624, for the definition of an alge-
bra.)

I Exercise 2.2. Let U be an open submanifold of Rn with its standard smooth man-
ifold structure. Show that a function f W U ! Rk is smooth in the sense just defined
if and only if it is smooth in the sense of ordinary calculus. Do the same for an open
submanifold with boundary in Hn (see Exercise 1.44).

I Exercise 2.3. LetM be a smooth manifold with or without boundary, and suppose
f W M ! Rk is a smooth function. Show that f ı '�1 W '.U /! Rk is smooth for
every smooth chart .U;'/ for M .

Given a function f W M ! Rk and a chart .U;'/ for M; the function
yf W '.U /!Rk defined by yf .x/D f ı '�1.x/ is called the coordinate represen-

tation of f . By definition, f is smooth if and only if its coordinate representation is
smooth in some smooth chart around each point. By the preceding exercise, smooth
functions have smooth coordinate representations in every smooth chart.

For example, consider the real-valued function f .x;y/D x2Cy2 defined on the
plane. In polar coordinates on, say, the set U D f.x; y/ W x > 0g, it has the coordinate
representation yf .r; �/D r2. In keeping with our practice of using local coordinates
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Fig. 2.2 Definition of smooth maps

to identify an open subset of a manifold with an open subset of Euclidean space,
in cases where it causes no confusion we often do not even observe the distinction
between yf and f itself, and instead say something like “f is smooth on U because
its coordinate representation f .r; �/D r2 is smooth.”

Smooth Maps Between Manifolds

The definition of smooth functions generalizes easily to maps between manifolds.
Let M; N be smooth manifolds, and let F W M ! N be any map. We say that F
is a smooth map if for every p 2M; there exist smooth charts .U;'/ containing p
and .V; / containing F.p/ such that F.U /� V and the composite map  ı F ı
'�1 is smooth from '.U / to  .V / (Fig. 2.2). If M and N are smooth manifolds
with boundary, smoothness of F is defined in exactly the same way, with the usual
understanding that a map whose domain is a subset of Hn is smooth if it admits
an extension to a smooth map in a neighborhood of each point, and a map whose
codomain is a subset of Hn is smooth if it is smooth as a map into Rn. Note that our
previous definition of smoothness of real-valued or vector-valued functions can be
viewed as a special case of this one, by takingN D V DRk and D Id W Rk!Rk .

The first important observation about our definition of smooth maps is that, as
one might expect, smoothness implies continuity.

Proposition 2.4. Every smooth map is continuous.

Proof. Suppose M and N are smooth manifolds with or without boundary, and
F W M ! N is smooth. Given p 2M; smoothness of F means there are smooth
charts .U;'/ containing p and .V; / containing F.p/, such that F.U / � V and
 ıF ı'�1 W '.U /! .V / is smooth, hence continuous. Since ' W U ! '.U / and
 W V ! .V / are homeomorphisms, this implies in turn that

F jU D 
�1 ı

�
 ıF ı '�1

�
ı ' W U ! V;
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which is a composition of continuous maps. Since F is continuous in a neighbor-
hood of each point, it is continuous on M . �

To prove that a map F W M !N is smooth directly from the definition requires,
in part, that for each p 2M we prove the existence of coordinate domains U con-
taining p and V containing F.p/ such that F.U / � V . This requirement is in-
cluded in the definition precisely so that smoothness automatically implies conti-
nuity. (Problem 2-1 illustrates what can go wrong if this requirement is omitted.)
There are other ways of characterizing smoothness of maps between manifolds that
accomplish the same thing. Here are two of them.

Proposition 2.5 (Equivalent Characterizations of Smoothness). SupposeM and
N are smooth manifolds with or without boundary, and F W M !N is a map. Then
F is smooth if and only if either of the following conditions is satisfied:

(a) For every p 2M; there exist smooth charts .U;'/ containing p and .V; /
containing F.p/ such that U \ F �1.V / is open in M and the composite map
 ıF ı '�1 is smooth from '

�
U \F �1.V /

�
to  .V /.

(b) F is continuous and there exist smooth atlases f.U˛; '˛/g and f.Vˇ ; ˇ /g for
M and N , respectively, such that for each ˛ and ˇ,  ˇ ı F ı '�1˛ is a smooth
map from '˛

�
U˛ \F

�1.Vˇ /
�

to  ˇ .Vˇ /.

Proposition 2.6 (Smoothness Is Local). Let M and N be smooth manifolds with
or without boundary, and let F W M !N be a map.

(a) If every point p 2M has a neighborhood U such that the restriction F jU is
smooth, then F is smooth.

(b) Conversely, if F is smooth, then its restriction to every open subset is smooth.

I Exercise 2.7. Prove the preceding two propositions.

The next corollary is essentially just a restatement of the previous proposition,
but it gives a highly useful way of constructing smooth maps.

Corollary 2.8 (Gluing Lemma for Smooth Maps). LetM andN be smooth man-
ifolds with or without boundary, and let fU˛g˛2A be an open cover of M . Suppose
that for each ˛ 2 A, we are given a smooth map F˛ W U˛! N such that the maps
agree on overlaps: F˛jU˛\Uˇ D Fˇ jU˛\Uˇ for all ˛ and ˇ. Then there exists a
unique smooth map F W M !N such that F jU˛ D F˛ for each ˛ 2A. �

If F W M ! N is a smooth map, and .U;'/ and .V; / are any smooth charts
forM and N , respectively, we call yF D ıF ı'�1 the coordinate representation
of F with respect to the given coordinates. It maps the set '

�
U \ F �1.V /

�
to

 .V /.

I Exercise 2.9. Suppose F W M ! N is a smooth map between smooth manifolds
with or without boundary. Show that the coordinate representation of F with respect
to every pair of smooth charts for M and N is smooth.
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Fig. 2.3 A composition of smooth maps is smooth

As with real-valued or vector-valued functions, once we have chosen specific
local coordinates in both the domain and codomain, we can often ignore the distinc-
tion between F and yF .

Next we examine some simple classes of maps that are automatically smooth.

Proposition 2.10. Let M; N; and P be smooth manifolds with or without bound-
ary.

(a) Every constant map c W M !N is smooth.
(b) The identity map of M is smooth.
(c) If U �M is an open submanifold with or without boundary, then the inclusion

map U ,!M is smooth.
(d) If F W M !N and G W N ! P are smooth, then so is G ıF W M ! P .

Proof. We prove (d) and leave the rest as exercises. Let F W M !N and G W N !
P be smooth maps, and let p 2M . By definition of smoothness of G, there exist
smooth charts .V; �/ containing F.p/ and .W; / containing G.F.p// such that
G.V / � W and  ı G ı ��1 W �.V /!  .W / is smooth. Since F is continuous,
F �1.V / is a neighborhood of p in M; so there is a smooth chart .U;'/ for M
such that p 2U � F �1.V / (Fig. 2.3). By Exercise 2.9, � ıF ı '�1 is smooth from
'.U / to �.V /. Then we have G ı F.U / � G.V / �W , and  ı .G ı F / ı '�1 D�
 ıG ı��1

�
ı
�
� ıF ı'�1

�
W '.U /! .W / is smooth because it is a composition

of smooth maps between subsets of Euclidean spaces. �

I Exercise 2.11. Prove parts (a)–(c) of the preceding proposition.

Proposition 2.12. Suppose M1; : : : ;Mk and N are smooth manifolds with or with-
out boundary, such that at most one of M1; : : : ;Mk has nonempty boundary. For
each i , let �i W M1 � � � � �Mk ! Mi denote the projection onto the Mi factor.
A map F W N !M1� � � � �Mk is smooth if and only if each of the component maps
Fi D �i ıF W N !Mi is smooth.
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Proof. Problem 2-2. �

Although most of our efforts in this book are devoted to the study of smooth
manifolds and smooth maps, we also need to work with topological manifolds and
continuous maps on occasion. For the sake of consistency, we adopt the following
conventions: without further qualification, the words “function” and “map” are to be
understood purely in the set-theoretic sense, and carry no assumptions of continuity
or smoothness. Most other objects we study, however, will be understood to carry
some minimal topological structure by default. Unless otherwise specified, a “man-
ifold” or “manifold with boundary” is always to be understood as a topological one,
and a “coordinate chart” is to be understood in the topological sense, as a homeo-
morphism from an open subset of the manifold to an open subset of Rn or Hn. If
we wish to restrict attention to smooth manifolds or smooth coordinate charts, we
will say so. Similarly, our default assumptions for many other specific types of ge-
ometric objects and the maps between them will be continuity at most; smoothness
will not be assumed unless explicitly specified. The only exceptions will be a few
concepts that require smoothness for their very definitions.

This convention requires a certain discipline, in that we have to remember to state
the smoothness hypothesis whenever it is needed; but its advantage is that it frees
us (for the most part) from having to remember which types of maps are assumed
to be smooth and which are not.

On the other hand, because the definition of a smooth map requires smooth struc-
tures in the domain and codomain, if we say “F W M !N is a smooth map” without
specifying what M and N are, it should always be understood that they are smooth
manifolds with or without boundaries.

We now have enough information to produce a number of interesting examples
of smooth maps. In spite of the apparent complexity of the definition, it is usually
not hard to prove that a particular map is smooth. There are basically only three
common ways to do so:

� Write the map in smooth local coordinates and recognize its component functions
as compositions of smooth elementary functions.
� Exhibit the map as a composition of maps that are known to be smooth.
� Use some special-purpose theorem that applies to the particular case under con-

sideration.

Example 2.13 (Smooth Maps).

(a) Any map from a zero-dimensional manifold into a smooth manifold with or
without boundary is automatically smooth, because each coordinate representa-
tion is constant.

(b) If the circle S1 is given its standard smooth structure, the map " W R! S1

defined by ".t/ D e2�it is smooth, because with respect to any angle coordi-
nate � for S1 (see Problem 1-8) it has a coordinate representation of the form
y".t/D 2�t C c for some constant c, as you can check.

(c) The map "n W Rn ! Tn defined by "n
�
x1; : : : ; xn

�
D
�
e2�ix

1
; : : : ; e2�ix

n�
is

smooth by Proposition 2.12.
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(d) Now consider the n-sphere Sn with its standard smooth structure. The inclusion
map 	 W Sn ,!RnC1 is certainly continuous, because it is the inclusion map of a
topological subspace. It is a smooth map because its coordinate representation
with respect to any of the graph coordinates of Example 1.31 is

y	
�
u1; : : : ; un

�
D 	 ı

�
'˙i
��1 �

u1; : : : ; un
�

D
	
u1; : : : ; ui�1;˙

p
1� juj2; ui ; : : : ; un



;

which is smooth on its domain (the set where juj2 < 1).
(e) The quotient map � W RnC1 X f0g ! RPn used to define RPn is smooth, be-

cause its coordinate representation in terms of any of the coordinates for RPn

constructed in Example 1.33 and standard coordinates on RnC1 X f0g is

y�
�
x1; : : : ; xnC1

�
D 'i ı �

�
x1; : : : ; xnC1

�
D 'i

�
x1; : : : ; xnC1

�

D

�
x1

xi
; : : : ;

xi�1

xi
;
xiC1

xi
; : : : ;

xnC1

xi

�
:

(f) Define q W Sn ! RPn as the restriction of � W RnC1 X f0g ! RPn to Sn �
RnC1 X f0g. It is a smooth map, because it is the composition q D � ı 	 of the
maps in the preceding two examples.

(g) If M1; : : : ;Mk are smooth manifolds, then each projection map �i W M1 � � � � �

Mk!Mi is smooth, because its coordinate representation with respect to any
of the product charts of Example 1.8 is just a coordinate projection. //

Diffeomorphisms

If M and N are smooth manifolds with or without boundary, a diffeomorphism
from M to N is a smooth bijective map F W M ! N that has a smooth inverse.
We say that M and N are diffeomorphic if there exists a diffeomorphism between
them. Sometimes this is symbolized by M �N .

Example 2.14 (Diffeomorphisms).

(a) Consider the maps F W Bn!Rn and G W Rn! Bn given by

F.x/D
x

p
1� jxj2

; G.y/D
y

p
1C jyj2

: (2.1)

These maps are smooth, and it is straightforward to compute that they are in-
verses of each other. Thus they are both diffeomorphisms, and therefore Bn is
diffeomorphic to Rn.

(b) If M is any smooth manifold and .U;'/ is a smooth coordinate chart on M;
then ' W U ! '.U /� Rn is a diffeomorphism. (In fact, it has an identity map
as a coordinate representation.) //



Smooth Functions and Smooth Maps 39

Proposition 2.15 (Properties of Diffeomorphisms).

(a) Every composition of diffeomorphisms is a diffeomorphism.
(b) Every finite product of diffeomorphisms between smooth manifolds is a diffeo-

morphism.
(c) Every diffeomorphism is a homeomorphism and an open map.
(d) The restriction of a diffeomorphism to an open submanifold with or without

boundary is a diffeomorphism onto its image.
(e) “Diffeomorphic” is an equivalence relation on the class of all smooth manifolds

with or without boundary.

I Exercise 2.16. Prove the preceding proposition.

The following theorem is a weak version of invariance of dimension, which suf-
fices for many purposes.

Theorem 2.17 (Diffeomorphism Invariance of Dimension). A nonempty smooth
manifold of dimension m cannot be diffeomorphic to an n-dimensional smooth
manifold unless mD n.

Proof. Suppose M is a nonempty smooth m-manifold, N is a nonempty smooth n-
manifold, and F W M ! N is a diffeomorphism. Choose any point p 2M; and let
.U;'/ and .V; / be smooth coordinate charts containing p and F.p/, respectively.
Then (the restriction of) yF D ıF ı'�1 is a diffeomorphism from an open subset
of Rm to an open subset of Rn, so it follows from Proposition C.4 that mD n. �

There is a similar invariance statement for boundaries.

Theorem 2.18 (Diffeomorphism Invariance of the Boundary). Suppose M and
N are smooth manifolds with boundary and F W M !N is a diffeomorphism. Then
F.@M/D @N , and F restricts to a diffeomorphism from IntM to IntN .

I Exercise 2.19. Use Theorem 1.46 to prove the preceding theorem.

Just as two topological spaces are considered to be “the same” if they are home-
omorphic, two smooth manifolds with or without boundary are essentially indistin-
guishable if they are diffeomorphic. The central concern of smooth manifold theory
is the study of properties of smooth manifolds that are preserved by diffeomor-
phisms. Theorem 2.17 shows that dimension is one such property.

It is natural to wonder whether the smooth structure on a given topological mani-
fold is unique. This straightforward version of the question is easy to answer: we ob-
served in Example 1.21 that every zero-dimensional manifold has a unique smooth
structure, but as Problem 1-6 showed, each positive-dimensional manifold admits
many distinct smooth structures as soon as it admits one.

A more subtle and interesting question is whether a given topological mani-
fold admits smooth structures that are not diffeomorphic to each other. For ex-
ample, let zR denote the topological manifold R, but endowed with the smooth
structure described in Example 1.23 (defined by the global chart  .x/ D x3). It
turns out that zR is diffeomorphic to R with its standard smooth structure. Define
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a map F W R! zR by F.x/ D x1=3. The coordinate representation of this map is
yF .t/ D  ı F ı Id�1R .t/ D t , which is clearly smooth. Moreover, the coordinate

representation of its inverse is

bF �1.y/D IdR ıF
�1 ı �1.y/D y;

which is also smooth, so F is a diffeomorphism. (This is a case in which it is impor-
tant to maintain the distinction between a map and its coordinate representation!)

In fact, as you will see later, there is only one smooth structure on R up to diffeo-
morphism (see Problem 15-13). More precisely, if A1 and A2 are any two smooth
structures on R, there exists a diffeomorphism F W .R;A1/! .R;A2/. In fact, it
follows from work of James Munkres [Mun60] and Edwin Moise [Moi77] that every
topological manifold of dimension less than or equal to 3 has a smooth structure that
is unique up to diffeomorphism. The analogous question in higher dimensions turns
out to be quite deep, and is still largely unanswered. Even for Euclidean spaces,
the question of uniqueness of smooth structures was not completely settled until
late in the twentieth century. The answer is surprising: as long as n ¤ 4, Rn has
a unique smooth structure (up to diffeomorphism); but R4 has uncountably many
distinct smooth structures, no two of which are diffeomorphic to each other! The ex-
istence of nonstandard smooth structures on R4 (called fake R4’s) was first proved
by Simon Donaldson and Michael Freedman in 1984 as a consequence of their work
on the geometry and topology of compact 4-manifolds; the results are described in
[DK90] and [FQ90].

For compact manifolds, the situation is even more fascinating. In 1956, John
Milnor [Mil56] showed that there are smooth structures on S7 that are not diffeo-
morphic to the standard one. Later, he and Michel Kervaire [KM63] showed (using
a deep theorem of Steve Smale [Sma62]) that there are exactly 15 diffeomorphism
classes of such structures (or 28 classes if you restrict to diffeomorphisms that pre-
serve a property called orientation, which will be discussed in Chapter 15).

On the other hand, in all dimensions greater than 3 there are compact topological
manifolds that have no smooth structures at all. The problem of identifying the
number of smooth structures (if any) on topological 4-manifolds is an active subject
of current research.

Partitions of Unity

A frequently used tool in topology is the gluing lemma (Lemma A.20), which shows
how to construct continuous maps by “gluing together” maps defined on open or
closed subsets. We have a version of the gluing lemma for smooth maps defined
on open subsets (Corollary 2.8), but we cannot expect to glue together smooth maps
defined on closed subsets and obtain a smooth result. For example, the two functions
fC W Œ0;1/!R and f� W .�1; 0�!R defined by

fC.x/DCx; x 2 Œ0;1/;

f�.x/D�x; x 2 .�1; 0�;
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are both smooth and agree at the point 0 where they overlap, but the continuous
function f W R!R that they define, namely f .x/D jxj, is not smooth at the origin.

A disadvantage of Corollary 2.8 is that in order to use it, we must construct maps
that agree exactly on relatively large subsets of the manifold, which is too restrictive
for some purposes. In this section we introduce partitions of unity, which are tools
for “blending together” local smooth objects into global ones without necessarily
assuming that they agree on overlaps. They are indispensable in smooth manifold
theory and will reappear throughout the book.

All of our constructions in this section are based on the existence of smooth
functions that are positive in a specified part of a manifold and identically zero in
some other part. We begin by defining a smooth function on the real line that is zero
for t � 0 and positive for t > 0.

Lemma 2.20. The function f W R!R defined by

f .t/D

(
e�1=t ; t > 0;

0; t � 0;

is smooth.

Proof. The function in question is pictured in Fig. 2.4. It is smooth on R X f0g by
composition, so we need only show f has continuous derivatives of all orders at
the origin. Because existence of the .k C 1/st derivative implies continuity of the
kth, it suffices to show that each such derivative exists. We begin by noting that
f is continuous at 0 because limt&0 e

�1=t D 0. In fact, a standard application of
l’Hôpital’s rule and induction shows that for any integer k � 0,

lim
t&0

e�1=t

tk
D lim
t&0

t�k

e1=t
D 0: (2.2)

We show by induction that for t > 0, the kth derivative of f is of the form

f .k/.t/D pk.t/
e�1=t

t2k
(2.3)

for some polynomial pk of degree at most k. This is clearly true (with p0.t/D 1)
for k D 0, so suppose it is true for some k � 0. By the product rule,

f .kC1/.t/D p0k.t/
e�1=t

t2k
C pk.t/

t�2e�1=t

t2k
� 2kpk.t/

e�1=t

t2kC1

D
�
t2p0k.t/C pk.t/� 2ktpk.t/

� e�1=t

t2.kC1/
;

which is of the required form.
Finally, we prove by induction that f .k/.0/D 0 for each integer k � 0. For k D 0

this is true by definition, so assume that it is true for some k � 0. To prove that
f .kC1/.0/ exists, it suffices to show that f .k/ has one-sided derivatives from both
sides at t D 0 and that they are equal. Clearly, the derivative from the left is zero.
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Fig. 2.4 f .t/D e�1=t Fig. 2.5 A cutoff function

Using (2.3) and (2.2) again, we find that the derivative of f .k/ from the right at
t D 0 is equal to

lim
t&0

pk.t/
e�1=t

t2k
� 0

t
D lim
t&0

pk.t/
e�1=t

t2kC1
D pk.0/ lim

t&0

e�1=t

t2kC1
D 0:

Thus f .kC1/.0/D 0. �

Lemma 2.21. Given any real numbers r1 and r2 such that r1 < r2, there exists a
smooth function h W R! R such that h.t/ � 1 for t � r1, 0 < h.t/ < 1 for r1 <
t < r2, and h.t/� 0 for t � r2.

Proof. Let f be the function of the previous lemma, and set

h.t/D
f .r2 � t/

f .r2 � t/C f .t � r1/
:

(See Fig. 2.5.) Note that the denominator is positive for all t , because at least one
of the expressions r2 � t and t � r1 is always positive. The desired properties of h
follow easily from those of f . �

A function with the properties of h in the preceding lemma is usually called a
cutoff function.

Lemma 2.22. Given any positive real numbers r1 < r2, there is a smooth function
H W Rn!R such thatH � 1 on xBr1.0/, 0 <H.x/ < 1 for all x 2Br2.0/X xBr1.0/,
and H � 0 on Rn XBr2.0/.

Proof. Just set H.x/ D h.jxj/, where h is the function of the preceding lemma.
Clearly, H is smooth on Rn X f0g, because it is a composition of smooth functions
there. Since it is identically equal to 1 on Br1.0/, it is smooth there too. �

The function H constructed in this lemma is an example of a smooth bump
function, a smooth real-valued function that is equal to 1 on a specified set and
is zero outside a specified neighborhood of that set. Later in this chapter, we will
generalize this notion to manifolds.
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If f is any real-valued or vector-valued function on a topological space M; the
support of f , denoted by supp f , is the closure of the set of points where f is
nonzero:

suppf D
˚
p 2M W f .p/¤ 0

�
:

(For example, if H is the function constructed in the preceding lemma, then
supp H D xBr2.0/.) If supp f is contained in some set U �M; we say that f is
supported in U . A function f is said to be compactly supported if suppf is a
compact set. Clearly, every function on a compact space is compactly supported.

The next construction is the most important application of paracompactness. Sup-
pose M is a topological space, and let X D .X˛/˛2A be an arbitrary open cover
of M; indexed by a set A. A partition of unity subordinate to X is an indexed fam-
ily . ˛/˛2A of continuous functions  ˛ W M !R with the following properties:

(i) 0� ˛.x/� 1 for all ˛ 2A and all x 2M .
(ii) supp  ˛ �X˛ for each ˛ 2A.

(iii) The family of supports .supp  ˛/˛2A is locally finite, meaning that every point
has a neighborhood that intersects supp  ˛ for only finitely many values of ˛.

(iv)
P
˛2A ˛.x/D 1 for all x 2M .

Because of the local finiteness condition (iii), the sum in (iv) actually has only
finitely many nonzero terms in a neighborhood of each point, so there is no is-
sue of convergence. If M is a smooth manifold with or without boundary, a smooth
partition of unity is one for which each of the functions  ˛ is smooth.

Theorem 2.23 (Existence of Partitions of Unity). Suppose M is a smooth mani-
fold with or without boundary, and X D .X˛/˛2A is any indexed open cover of M .
Then there exists a smooth partition of unity subordinate to X.

Proof. For simplicity, suppose for this proof that M is a smooth manifold without
boundary; the general case is left as an exercise. Each setX˛ is a smooth manifold in
its own right, and thus has a basis B˛ of regular coordinate balls by Proposition 1.19,
and it is easy to check that B D

S
˛ B˛ is a basis for the topology of M . It follows

from Theorem 1.15 that X has a countable, locally finite refinement fBig consisting
of elements of B. By Lemma 1.13(a), the cover

˚
xBi
�

is also locally finite.
For each i , the fact that Bi is a regular coordinate ball in someX˛ guarantees that

there is a coordinate ball B 0i �X˛ such that B 0i 
 xBi , and a smooth coordinate map
'i W B

0
i !Rn such that 'i

�
xBi
�
D xBri .0/ and 'i .B 0i /DBr 0i .0/ for some ri < r 0i . For

each i , define a function fi W M !R by

fi D

(
Hi ı 'i on B 0i ;

0 on M X xBi ;

where Hi W Rn! R is a smooth function that is positive in Bri .0/ and zero else-
where, as in Lemma 2.22. On the set B 0i X xBi where the two definitions overlap,
both definitions yield the zero function, so fi is well defined and smooth, and
suppfi D xBi .
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Define f W M ! R by f .x/ D
P
i fi .x/. Because of the local finiteness of

the cover
˚
xBi
�
, this sum has only finitely many nonzero terms in a neighborhood

of each point and thus defines a smooth function. Because each fi is nonnega-
tive everywhere and positive on Bi , and every point of M is in some Bi , it fol-
lows that f .x/ > 0 everywhere on M . Thus, the functions gi W M ! R defined
by gi .x/ D fi .x/=f .x/ are also smooth. It is immediate from the definition that
0� gi � 1 and

P
i gi � 1.

Finally, we need to reindex our functions so that they are indexed by the same
set A as our open cover. Because the cover fB 0ig is a refinement of X, for each i
we can choose some index a.i/ 2 A such that B 0i � Xa.i/. For each ˛ 2 A, define
 ˛ W M !R by

 ˛ D
X

i Wa.i/D˛

gi :

If there are no indices i for which a.i/D ˛, then this sum should be interpreted as
the zero function. It follows from Lemma 1.13(b) that

supp ˛ D
[

i Wa.i/D˛

Bi D
[

i Wa.i/D˛

xBi �X˛:

Each  ˛ is a smooth function that satisfies 0 �  ˛ � 1. Moreover, the family of
supports .supp  ˛/˛2A is still locally finite, and

P
˛  ˛ �

P
i gi � 1, so this is the

desired partition of unity. �

I Exercise 2.24. Show how the preceding proof needs to be modified for the case in
which M has nonempty boundary.

There are basically two different strategies for patching together locally defined
smooth maps to obtain a global one. If you can define a map in a neighborhood of
each point in such a way that the locally defined maps all agree where they overlap,
then the local definitions piece together to yield a global smooth map by Corol-
lary 2.8. (This usually requires some sort of uniqueness result.) But if the local
definitions are not guaranteed to agree, then you usually have to resort to a partition
of unity. The trick then is showing that the patched-together objects still have the
required properties. We use both strategies repeatedly throughout the book.

Applications of Partitions of Unity

As our first application of partitions of unity, we extend the notion of bump functions
to arbitrary closed subsets of manifolds. If M is a topological space, A �M is a
closed subset, and U �M is an open subset containing A, a continuous function
 W M ! R is called a bump function for A supported in U if 0 �  � 1 on M;
 � 1 on A, and supp � U .

Proposition 2.25 (Existence of Smooth Bump Functions). Let M be a smooth
manifold with or without boundary. For any closed subset A �M and any open
subset U containing A, there exists a smooth bump function for A supported in U .
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Proof. Let U0 D U and U1 DM X A, and let f 0; 1g be a smooth partition of
unity subordinate to the open cover fU0;U1g. Because  1 � 0 on A and thus  0 DP
i  i D 1 there, the function  0 has the required properties. �
Our second application is an important result concerning the possibility of ex-

tending smooth functions from closed subsets. Suppose M and N are smooth man-
ifolds with or without boundary, and A �M is an arbitrary subset. We say that a
map F W A!N is smooth on A if it has a smooth extension in a neighborhood of
each point: that is, if for every p 2A there is an open subset W �M containing p
and a smooth map zF W W !N whose restriction to W \A agrees with F .

Lemma 2.26 (Extension Lemma for Smooth Functions). SupposeM is a smooth
manifold with or without boundary, A�M is a closed subset, and f W A!Rk is a
smooth function. For any open subsetU containingA, there exists a smooth function
zf W M !Rk such that zf jA D f and supp zf � U .

Proof. For each p 2 A, choose a neighborhood Wp of p and a smooth function
zfp W Wp!Rk that agrees with f on Wp \A. Replacing Wp by Wp \ U , we may

assume that Wp � U . The family of sets fWp W p 2Ag [ fM XAg is an open cover
of M . Let f p W p 2 Ag [ f 0g be a smooth partition of unity subordinate to this
cover, with supp p �Wp and supp 0 �M XA.

For each p 2A, the product  p zfp is smooth on Wp , and has a smooth extension
to all of M if we interpret it to be zero on M X supp p . (The extended function is
smooth because the two definitions agree on the open subset Wp X supp p where
they overlap.) Thus we can define zf W M !Rk by

zf .x/D
X

p2A

 p.x/ zfp.x/:

Because the collection of supports fsupp pg is locally finite, this sum actually has
only a finite number of nonzero terms in a neighborhood of any point of M; and
therefore defines a smooth function. If x 2 A, then  0.x/D 0 and zfp.x/D f .x/
for each p such that  p.x/¤ 0, so

zf .x/D
X

p2A

 p.x/f .x/D

�
 0.x/C

X

p2A

 p.x/

�
f .x/D f .x/;

so zf is indeed an extension of f . It follows from Lemma 1.13(b) that

supp zf D
[

p2A

supp p D
[

p2A

supp p � U:
�

I Exercise 2.27. Give a counterexample to show that the conclusion of the extension
lemma can be false if A is not closed.

The assumption in the extension lemma that the codomain of f is Rk , and not
some other smooth manifold, is needed: for other codomains, extensions can fail to
exist for topological reasons. (For example, the identity map S1! S1 is smooth,
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but does not have even a continuous extension to a map from R2 to S1.) Later we
will show that a smooth map from a closed subset of a smooth manifold into a
smooth manifold has a smooth extension if and only if it has a continuous one (see
Corollary 6.27).

This extension lemma, by the way, illustrates an essential difference between
smooth manifolds and real-analytic manifolds. The analogue of the extension
lemma for real-analytic functions on real-analytic manifolds is decidedly false, be-
cause a real-analytic function that is defined on a connected domain and vanishes
on an open subset must be identically zero.

Next, we use partitions of unity to construct a special kind of smooth function. If
M is a topological space, an exhaustion function for M is a continuous function
f W M !R with the property that the set f �1

�
.�1; c�

�
(called a sublevel set of f )

is compact for each c 2 R. The name comes from the fact that as n ranges over
the positive integers, the sublevel sets f �1

�
.�1; n�

�
form an exhaustion of M by

compact sets; thus an exhaustion function provides a sort of continuous version of an
exhaustion by compact sets. For example, the functions f W Rn!R and g W Bn!
R given by

f .x/D jxj2; g.x/D
1

1� jxj2

are smooth exhaustion functions. Of course, if M is compact, any continuous real-
valued function on M is an exhaustion function, so such functions are interesting
only for noncompact manifolds.

Proposition 2.28 (Existence of Smooth Exhaustion Functions). Every smooth
manifold with or without boundary admits a smooth positive exhaustion function.

Proof. Let M be a smooth manifold with or without boundary, let fVj g1jD1 be any
countable open cover of M by precompact open subsets, and let f j g be a smooth
partition of unity subordinate to this cover. Define f 2 C1.M/ by

f .p/D

1X

jD1

j j .p/:

Then f is smooth because only finitely many terms are nonzero in a neighborhood
of any point, and positive because f .p/�

P
j  j .p/D 1.

To see that f is an exhaustion function, let c 2 R be arbitrary, and choose a
positive integer N > c. If p …

SN
jD1
xVj , then  j .p/D 0 for 1� j �N , so

f .p/D

1X

jDNC1

j j .p/�

1X

jDNC1

N j .p/DN

1X

jD1

 j .p/DN > c:

Equivalently, if f .p/� c, then p 2
SN
jD1
xVj . Thus f �1

�
.�1; c�

�
is a closed subset

of the compact set
SN
jD1
xVj and is therefore compact. �

As our final application of partitions of unity, we will prove the remarkable fact
that every closed subset of a manifold can be expressed as a level set of some smooth
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real-valued function. We will not use this result in this book (except in a few of the
problems), but it provides an interesting contrast with the result of Example 1.32.

Theorem 2.29 (Level Sets of Smooth Functions). Let M be a smooth manifold.
If K is any closed subset of M; there is a smooth nonnegative function f W M !R

such that f �1.0/DK .

Proof. We begin with the special case in which M D Rn and K � Rn is a closed
subset. For each x 2M XK , there is a positive number r � 1 such that Br .x/ �
M XK . By Proposition A.16, M XK is the union of countably many such balls
fBri .xi /g

1
iD1.

Let h W Rn! R be a smooth bump function that is equal to 1 on xB1=2.0/ and
supported in B1.0/. For each positive integer i , let Ci � 1 be a constant that bounds
the absolute values of h and all of its partial derivatives up through order i . Define
f W Rn!R by

f .x/D

1X

iD1

.ri /
i

2iCi
h

�
x � xi

ri

�
:

The terms of the series are bounded in absolute value by those of the convergent
series

P
i 1=2

i , so the entire series converges uniformly to a continuous function by
the Weierstrass M -test. Because the i th term is positive exactly when x 2 Bri .xi /,
it follows that f is zero in K and positive elsewhere.

It remains only to show that f is smooth. We have already shown that it is con-
tinuous, so suppose k � 1 and assume by induction that all partial derivatives of f
of order less than k exist and are continuous. By the chain rule and induction, every
kth partial derivative of the i th term in the series can be written in the form

.ri /
i�k

2iCi
Dkh

�
x � xi

ri

�
;

where Dkh is some kth partial derivative of h. By our choices of ri and Ci , as soon
as i � k, each of these terms is bounded in absolute value by 1=2i , so the differenti-
ated series also converges uniformly to a continuous function. It then follows from
Theorem C.31 that the kth partial derivatives of f exist and are continuous. This
completes the induction, and shows that f is smooth.

Now let M be an arbitrary smooth manifold, and K �M be any closed subset.
Let fB˛g be an open cover of M by smooth coordinate balls, and let f ˛g be a
subordinate partition of unity. Since each B˛ is diffeomorphic to Rn, the preceding
argument shows that for each ˛ there is a smooth nonnegative function f˛ W B˛!R

such that f �1˛ .0/DB˛ \K . The function f D
P
˛  ˛f˛ does the trick. �
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Problems

2-1. Define f W R!R by

f .x/D

(
1; x � 0;

0; x < 0:

Show that for every x 2 R, there are smooth coordinate charts .U;'/ con-
taining x and .V; / containing f .x/ such that  ı f ı '�1 is smooth as a
map from '

�
U \ f �1.V /

�
to  .V /, but f is not smooth in the sense we

have defined in this chapter.

2-2. Prove Proposition 2.12 (smoothness of maps into product manifolds).

2-3. For each of the following maps between spheres, compute sufficiently many
coordinate representations to prove that it is smooth.
(a) pn W S1! S1 is the nth power map for n 2 Z, given in complex nota-

tion by pn.z/D zn.
(b) ˛ W Sn! Sn is the antipodal map ˛.x/D�x.
(c) F W S3! S2 is given by F.w; z/D .z xwCwxz; iwxz � iz xw;zxz �w xw/,

where we think of S3 as the subset
˚
.w; z/ W jwj2C jzj2 D 1

�
of C2.

2-4. Show that the inclusion map xBn ,!Rn is smooth when xBn is regarded as a
smooth manifold with boundary.

2-5. Let R be the real line with its standard smooth structure, and let zR denote
the same topological manifold with the smooth structure defined in Exam-
ple 1.23. Let f W R!R be a function that is smooth in the usual sense.
(a) Show that f is also smooth as a map from R to zR.
(b) Show that f is smooth as a map from zR to R if and only if f .n/.0/D 0

whenever n is not an integral multiple of 3.

2-6. Let P W RnC1 X f0g !RkC1 X f0g be a smooth function, and suppose that
for some d 2Z, P.
x/D 
dP.x/ for all 
 2RX f0g and x 2RnC1 X f0g.
(Such a function is said to be homogeneous of degree d .) Show that the map
zP W RPn!RPk defined by zP .Œx�/D ŒP.x/� is well defined and smooth.

2-7. Let M be a nonempty smooth n-manifold with or without boundary, and
suppose n� 1. Show that the vector space C1.M/ is infinite-dimensional.
[Hint: show that if f1; : : : ; fk are elements of C1.M/ with nonempty dis-
joint supports, then they are linearly independent.]

2-8. Define F W Rn ! RPn by F
�
x1; : : : ; xn

�
D
�
x1; : : : ; xn; 1

�
. Show that F

is a diffeomorphism onto a dense open subset of RPn. Do the same for
G W Cn ! CPn defined by G

�
z1; : : : ; zn

�
D
�
z1; : : : ; zn; 1

�
(see Problem

1-9).

2-9. Given a polynomial p in one variable with complex coefficients, not iden-
tically zero, show that there is a unique smooth map zp W CP1! CP1 that
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makes the following diagram commute, where CP1 is 1-dimensional com-
plex projective space and G W C!CP1 is the map of Problem 2-8:

C
G� CP1

C

p �

G
� CP1:

zp�

(Used on p. 465.)

2-10. For any topological space M; let C.M/ denote the algebra of continu-
ous functions f W M ! R. Given a continuous map F W M ! N , define
F � W C.N/! C.M/ by F �.f /D f ıF .
(a) Show that F � is a linear map.
(b) Suppose M and N are smooth manifolds. Show that F W M ! N is

smooth if and only if F �.C1.N //� C1.M/.
(c) Suppose F W M !N is a homeomorphism between smooth manifolds.

Show that it is a diffeomorphism if and only if F � restricts to an iso-
morphism from C1.N / to C1.M/.

[Remark: this result shows that in a certain sense, the entire smooth struc-
ture of M is encoded in the subset C1.M/� C.M/. In fact, some authors
define a smooth structure on a topological manifoldM to be a subalgebra of
C.M/ with certain properties; see, e.g., [Nes03].] (Used on p. 75.)

2-11. Suppose V is a real vector space of dimension n � 1. Define the projec-
tivization of V , denoted by P .V /, to be the set of 1-dimensional linear sub-
spaces of V , with the quotient topology induced by the map � W V X f0g!
P .V / that sends x to its span. (Thus P .Rn/D RPn�1.) Show that P .V /
is a topological .n � 1/-manifold, and has a unique smooth structure with
the property that for each basis .E1; : : : ;En/ for V , the map E W RPn�1!
P .V / defined by E

�
v1; : : : ; vn

�
D
�
viEi

�
(where brackets denote equiva-

lence classes) is a diffeomorphism. (Used on p. 561.)

2-12. State and prove an analogue of Problem 2-11 for complex vector spaces.

2-13. Suppose M is a topological space with the property that for every indexed
open cover X ofM; there exists a partition of unity subordinate to X. Show
that M is paracompact.

2-14. Suppose A and B are disjoint closed subsets of a smooth manifold M .
Show that there exists f 2 C1.M/ such that 0 � f .x/� 1 for all x 2M;
f �1.0/DA, and f �1.1/DB .



Chapter 3
Tangent Vectors

The central idea of calculus is linear approximation. This arises repeatedly in the
study of calculus in Euclidean spaces, where, for example, a function of one variable
can be approximated by its tangent line, a parametrized curve in Rn by its velocity
vector, a surface in R3 by its tangent plane, or a map from Rn to Rm by its total
derivative (see Appendix C).

In order to make sense of calculus on manifolds, we need to introduce the tangent
space to a manifold at a point, which we can think of as a sort of “linear model”
for the manifold near the point. Because of the abstractness of the definition of a
smooth manifold, this takes some work, which we carry out in this chapter.

We begin by studying much more concrete objects: geometric tangent vectors
in Rn, which can be visualized as “arrows” attached to points. Because the defi-
nition of smooth manifolds is built around the idea of identifying which functions
are smooth, the property of a geometric tangent vector that is amenable to gener-
alization is its action on smooth functions as a “directional derivative.” The key
observation, which we prove in the first section of this chapter, is that the process
of taking directional derivatives gives a natural one-to-one correspondence between
geometric tangent vectors and linear maps from C1 .Rn/ to R satisfying the prod-
uct rule. (Such maps are called derivations.) With this as motivation, we then define
a tangent vector on a smooth manifold as a derivation of C1.M/ at a point.

In the second section of the chapter, we show how a smooth map between mani-
folds yields a linear map between tangent spaces, called the differential of the map,
which generalizes the total derivative of a map between Euclidean spaces. This al-
lows us to connect the abstract definition of tangent vectors to our concrete geo-
metric picture by showing that any smooth coordinate chart .U;'/ gives a natural
isomorphism from the space of tangent vectors to M at p to the space of tangent
vectors to Rn at '.p/, which in turn is isomorphic to the space of geometric tangent
vectors at '.p/. Thus, any smooth coordinate chart yields a basis for each tangent
space. Using this isomorphism, we describe how to do concrete computations in
such a basis. Based on these coordinate computations, we show how the union of
all the tangent spaces at all points of a smooth manifold can be “glued together” to
form a new manifold, called the tangent bundle of the original manifold.

J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics 218,
DOI 10.1007/978-1-4419-9982-5_3, © Springer Science+Business Media New York 2013
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Next we show how a smooth curve determines a tangent vector at each point,
called its velocity, which can be regarded as the derivation of C1.M/ that takes the
derivative of each function along the curve.

In the final two sections we discuss and compare several other approaches to
defining tangent spaces, and give a brief overview of the terminology of category
theory, which puts the tangent space and differentials in a larger context.

Tangent Vectors

Imagine a manifold in Euclidean space—for example, the unit sphere Sn�1 � Rn.
What do we mean by a “tangent vector” at a point of Sn�1? Before we can answer
this question, we have to come to terms with a dichotomy in the way we think about
elements of Rn. On the one hand, we usually think of them as points in space, whose
only property is location, expressed by the coordinates

�
x1; : : : ; xn

�
. On the other

hand, when doing calculus we sometimes think of them instead as vectors, which are
objects that have magnitude and direction, but whose location is irrelevant. A vector
v D viei (where ei denotes the i th standard basis vector) can be visualized as an
arrow with its initial point anywhere in Rn; what is relevant from the vector point
of view is only which direction it points and how long it is.

What we really have in mind here is a separate copy of Rn at each point. When
we talk about vectors tangent to the sphere at a point a, for example, we imagine
them as living in a copy of Rn with its origin translated to a.

Geometric Tangent Vectors

Here is a preliminary definition of tangent vectors in Euclidean space. Given a point
a 2 Rn, let us define the geometric tangent space to Rn at a, denoted by Rna , to
be the set fag � Rn D f.a; v/ W v 2 Rng. A geometric tangent vector in Rn is an
element of Rna for some a 2Rn. As a matter of notation, we abbreviate .a; v/ as va
(or sometimes vja if it is clearer, for example if v itself has a subscript). We think
of va as the vector v with its initial point at a (Fig. 3.1).The set Rna is a real vector
space under the natural operations

va Cwa D .vCw/a; c.va/D .cv/a:

The vectors ei ja, i D 1; : : : ; n, are a basis for Rna . In fact, as a vector space, Rna is
essentially the same as Rn itself; the only reason we add the index a is so that the
geometric tangent spaces Rna and Rn

b
at distinct points a and b will be disjoint sets.

With this definition we could think of the tangent space to Sn�1 at a point
a 2 Sn�1 as a certain subspace of Rna (Fig. 3.2), namely the space of vectors that
are orthogonal to the radial unit vector through a, using the inner product that Rna
inherits from Rn via the natural isomorphism Rn ŠRna . The problem with this defi-
nition, however, is that it gives us no clue as to how we might define tangent vectors
on an arbitrary smooth manifold, where there is no ambient Euclidean space. So we
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Fig. 3.1 Geometric tangent space Fig. 3.2 Tangent space to Sn�1

need to look for another characterization of tangent vectors that might make sense
on a manifold.

The only things we have to work with on smooth manifolds so far are smooth
functions, smooth maps, and smooth coordinate charts. One thing that a geometric
tangent vector provides is a means of taking directional derivatives of functions. For
example, any geometric tangent vector va 2Rna yields a mapDvja W C

1 .Rn/!R,
which takes the directional derivative in the direction v at a:

Dvjaf DDvf .a/D
d

dt

ˇ̌
ˇ̌
tD0

f .aC tv/: (3.1)

This operation is linear over R and satisfies the product rule:

Dvja.fg/D f .a/DvjagC g.a/Dvjaf: (3.2)

If va D viei ja in terms of the standard basis, then by the chain rule Dvjaf can be
written more concretely as

Dvjaf D v
i @f

@xi
.a/:

(Here we are using the summation convention as usual, so the expression on the
right-hand side is understood to be summed over i D 1; : : : ; n. This sum is consistent
with our index convention if we stipulate that an upper index “in the denominator”
is to be regarded as a lower index.) For example, if va D ej ja, then

Dvjaf D
@f

@xj
.a/:

With this construction in mind, we make the following definition. If a is a point
of Rn, a map w W C1 .Rn/!R is called a derivation at a if it is linear over R and
satisfies the following product rule:

w.fg/D f .a/wgC g.a/wf: (3.3)

Let TaRn denote the set of all derivations of C1 .Rn/ at a. Clearly, TaRn is a
vector space under the operations

.w1Cw2/f Dw1f Cw2f; .cw/f D c.wf /:
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The most important (and perhaps somewhat surprising) fact about TaRn is that
it is finite-dimensional, and in fact is naturally isomorphic to the geometric tangent
space Rna that we defined above. The proof will be based on the following lemma.

Lemma 3.1 (Properties of Derivations). Suppose a 2Rn, w 2 TaRn, and f;g 2
C1 .Rn/.

(a) If f is a constant function, then wf D 0.
(b) If f .a/D g.a/D 0, then w.fg/D 0.

Proof. It suffices to prove (a) for the constant function f1.x/� 1, for then f .x/� c
implies wf Dw.cf1/D cwf1 D 0 by linearity. For f1, the product rule gives

wf1 Dw.f1f1/D f1.a/wf1C f1.a/wf1 D 2wf1;

which implies that wf1 D 0. Similarly, (b) also follows from the product rule:

w.fg/D f .a/wgC g.a/wf D 0C 0D 0: �
The next proposition shows that derivations at a are in one-to-one correspon-

dence with geometric tangent vectors.

Proposition 3.2. Let a 2Rn.

(a) For each geometric tangent vector va 2 Rna , the map Dvja W C
1 .Rn/! R

defined by (3.1) is a derivation at a.
(b) The map va 7!Dvja is an isomorphism from Rna onto TaRn.

Proof. The fact that Dvja is a derivation at a is an immediate consequence of the
product rule (3.2).

To prove that the map va 7!Dvja is an isomorphism, we note first that it is linear,
as is easily checked. To see that it is injective, suppose va 2Rna has the property that
Dvja is the zero derivation. Writing va D viei ja in terms of the standard basis, and
taking f to be the j th coordinate function xj W Rn! R, thought of as a smooth
function on Rn, we obtain

0DDvja
�
xj
�
D vi

@

@xi

�
xj
�
ˇ̌
ˇ̌
xDa

D vj ;

where the last equality follows because @xj =@xi D 0 except when i D j , in which
case it is equal to 1. Since this is true for each j , it follows that va is the zero vector.

To prove surjectivity, let w 2 TaRn be arbitrary. Motivated by the computation
in the preceding paragraph, we define v D viei , where the real numbers v1; : : : ; vn

are given by vi Dw
�
xi
�
. We will show that wDDvja.

To see this, let f be any smooth real-valued function on Rn. By Taylor’s theorem
(Theorem C.15), we can write

f .x/D f .a/C

nX

iD1

@f

@xi
.a/

�
xi � ai

�

C

nX

i;jD1

�
xi � ai

� �
xj � aj

�Z 1

0

.1� t/
@2f

@xi@xj

�
aC t.x � a/

�
dt:
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Note that each term in the last sum above is a product of two smooth functions of x
that vanish at x D a: one is

�
xi � ai

�
, and the other is

�
xj � aj

�
times the integral.

The derivation w annihilates this entire sum by Lemma 3.1(b). Thus

wf D w
�
f .a/

�
C

nX

iD1

w

�
@f

@xi
.a/

�
xi � ai

��

D 0C

nX

iD1

@f

@xi
.a/

�
w
�
xi
�
�w

�
ai
��

D

nX

iD1

@f

@xi
.a/vi DDvjaf: �

Corollary 3.3. For any a 2Rn, the n derivations

@

@x1

ˇ
ˇ̌
ˇ
a

; : : : ;
@

@xn

ˇ
ˇ̌
ˇ
a

defined by
@

@xi

ˇ
ˇ̌
ˇ
a

f D
@f

@xi
.a/

form a basis for TaRn, which therefore has dimension n.

Proof. Apply the previous proposition and note that @=@xi ja DDei ja. �

Tangent Vectors on Manifolds

Now we are in a position to define tangent vectors on manifolds and manifolds with
boundary. The definition is the same in both cases. LetM be a smooth manifold with
or without boundary, and let p be a point of M . A linear map v W C1.M/!R is
called a derivation at p if it satisfies

v.fg/D f .p/vgC g.p/vf for all f;g 2 C1.M/: (3.4)

The set of all derivations of C1.M/ at p, denoted by TpM; is a vector space called
the tangent space to M at p. An element of TpM is called a tangent vector at p.

The following lemma is the analogue of Lemma 3.1 for manifolds.

Lemma 3.4 (Properties of Tangent Vectors on Manifolds). Suppose M is a
smooth manifold with or without boundary, p 2M; v 2 TpM; and f;g 2 C1.M/.

(a) If f is a constant function, then vf D 0.
(b) If f .p/D g.p/D 0, then v.fg/D 0.

I Exercise 3.5. Prove Lemma 3.4.

With the motivation of geometric tangent vectors in Rn in mind, you should
visualize tangent vectors to M as “arrows” that are tangent to M and whose base
points are attached toM at the given point. Proofs of theorems about tangent vectors
must, of course, be based on the abstract definition in terms of derivations, but your
intuition should be guided as much as possible by the geometric picture.
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Fig. 3.3 The differential

The Differential of a Smooth Map

To relate the abstract tangent spaces we have defined on manifolds to geometric tan-
gent spaces in Rn, we have to explore the way smooth maps affect tangent vectors.
In the case of a smooth map between Euclidean spaces, the total derivative of the
map at a point (represented by its Jacobian matrix) is a linear map that represents
the “best linear approximation” to the map near the given point. In the manifold
case there is a similar linear map, but it makes no sense to talk about a linear map
between manifolds. Instead, it will be a linear map between tangent spaces.

If M and N are smooth manifolds with or without boundary and F W M !N is
a smooth map, for each p 2M we define a map

dFp W TpM ! TF.p/N;

called the differential of F at p (Fig. 3.3), as follows. Given v 2 TpM; we let
dFp.v/ be the derivation at F.p/ that acts on f 2 C1.N / by the rule

dFp.v/.f /D v.f ıF /:

Note that if f 2 C1.N /, then f ı F 2 C1.M/, so v.f ı F / makes sense. The
operator dFp.v/ W C1.N /! R is linear because v is, and is a derivation at F.p/
because for any f;g 2 C1.N / we have

dFp.v/.fg/D v
�
.fg/ ıF

�
D v

�
.f ıF /.g ıF /

�

D f ıF.p/v.g ıF /C g ıF.p/v.f ıF /

D f
�
F.p/

�
dFp.v/.g/C g

�
F.p/

�
dFp.v/.f /:

Proposition 3.6 (Properties of Differentials). Let M; N , and P be smooth man-
ifolds with or without boundary, let F W M !N and G W N ! P be smooth maps,
and let p 2M .

(a) dFp W TpM ! TF.p/N is linear.
(b) d.G ıF /p D dGF.p/ ı dFp W TpM ! TGıF.p/P .
(c) d.IdM /p D IdTpM W TpM ! TpM .
(d) If F is a diffeomorphism, then dFp W TpM ! TF.p/N is an isomorphism, and

.dFp/
�1 D d

�
F �1

�
F.p/

.
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I Exercise 3.7. Prove Proposition 3.6.

Our first important application of the differential will be to use coordinate charts
to relate the tangent space to a point on a manifold with the Euclidean tangent space.
But there is an important technical issue that we must address first: while the tangent
space is defined in terms of smooth functions on the whole manifold, coordinate
charts are in general defined only on open subsets. The key point, expressed in the
next proposition, is that tangent vectors act locally.

Proposition 3.8. Let M be a smooth manifold with or without boundary, p 2M;
and v 2 TpM . If f;g 2 C1.M/ agree on some neighborhood of p, then vf D vg.

Proof. Let hD f �g, so that h is a smooth function that vanishes in a neighborhood
of p. Let  2 C1.M/ be a smooth bump function that is identically equal to 1 on
the support of h and is supported inM Xfpg. Because � 1where h is nonzero, the
product  h is identically equal to h. Since h.p/D  .p/D 0, Lemma 3.4 implies
that vhD v. h/D 0. By linearity, this implies vf D vg. �

Using this proposition, we can identify the tangent space to an open submanifold
with the tangent space to the whole manifold.

Proposition 3.9 (The Tangent Space to an Open Submanifold). Let M be a
smooth manifold with or without boundary, let U � M be an open subset, and
let 	 W U ,!M be the inclusion map. For every p 2U , the differential d	p W TpU !
TpM is an isomorphism.

Proof. To prove injectivity, suppose v 2 TpU and d	p.v/ D 0 2 TpM . Let B be
a neighborhood of p such that xB � U . If f 2 C1.U / is arbitrary, the extension
lemma for smooth functions guarantees that there exists zf 2 C1.M/ such that
zf � f on xB . Then since f and zf jU are smooth functions on U that agree in a

neighborhood of p, Proposition 3.8 implies

vf D v
�
zf jU

�
D v

�
zf ı 	

�
D d	.v/p zf D 0:

Since this holds for every f 2 C1.U /, it follows that vD 0, so d	p is injective.
On the other hand, to prove surjectivity, suppose w 2 TpM is arbitrary. Define

an operator v W C1.U /!R by setting vf Dw zf , where zf is any smooth function
on all of M that agrees with f on xB . By Proposition 3.8, vf is independent of the
choice of zf , so v is well defined, and it is easy to check that it is a derivation of
C1.U / at p. For any g 2 C1.M/,

d	p.v/gD v.g ı 	/Dw
�
eg ı 	

�
Dwg;

where the last two equalities follow from the facts that g ı 	, eg ı 	, and g all agree
on B . Therefore, d	p is also surjective. �

Given an open subset U �M; the isomorphism d	p between TpU and TpM is
canonically defined, independently of any choices. From now on we identify TpU
with TpM for any point p 2 U . This identification just amounts to the observation
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Fig. 3.4 The tangent space to a manifold with boundary

that d	p.v/ is the same derivation as v, thought of as acting on functions on the
bigger manifold M instead of functions on U . Since the action of a derivation on
a function depends only on the values of the function in an arbitrarily small neigh-
borhood, this is a harmless identification. In particular, this means that any tangent
vector v 2 TpM can be unambiguously applied to functions defined only in a neigh-
borhood of p, not necessarily on all of M .

Proposition 3.10 (Dimension of the Tangent Space). If M is an n-dimensional
smooth manifold, then for each p 2M; the tangent space TpM is an n-dimensional
vector space.

Proof. Given p 2M; let .U;'/ be a smooth coordinate chart containing p. Be-
cause ' is a diffeomorphism from U onto an open subset yU � Rn, it follows
from Proposition 3.6(d) that d'p is an isomorphism from TpU to T'.p/ yU . Since
Proposition 3.9 guarantees that TpM Š TpU and T'.p/ yU Š T'.p/Rn, it follows
that dimTpM D dimT'.p/Rn D n. �

Next we need to prove an analogous result for manifolds with boundary. In fact,
if M is an n-manifold with boundary, it might not be immediately clear what one
should expect the tangent space at a boundary point of M to look like. Should it be
an n-dimensional vector space, like the tangent space at an interior point? Or should
it be .n�1/-dimensional, like the boundary? Or should it be an n-dimensional half-
space, like the space Hn on which M is modeled locally?

As we will show below, our definition implies that the tangent space at a bound-
ary point is an n-dimensional vector space (Fig. 3.4), just like the tangent spaces
at interior points. This may or may not seem like the most geometrically intuitive
choice, but it has the advantage of making most of the definitions of geometric ob-
jects on a manifold with boundary look exactly the same as those on a manifold.

First, we need to relate the tangent spaces TaHn and TaRn for points a 2 @Hn.
Since Hn is not an open subset of Rn, Proposition 3.9 does not apply. As a substi-
tute, we have the following lemma.

Lemma 3.11. Let 	 W Hn ,! Rn denote the inclusion map. For any a 2 @Hn, the
differential d	a W TaHn! TaRn is an isomorphism.

Proof. Suppose a 2 @Hn. To show that d	a is injective, assume d	a.v/D 0. Sup-
pose f W Hn!R is smooth, and let zf be any extension of f to a smooth function
defined on all of Rn. (Such an extension exists by the extension lemma for smooth
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functions, Lemma 2.26.) Then zf ı 	D f , so

vf D v
�
zf ı 	

�
D d	a.v/ zf D 0;

which implies that d	a is injective.
To show surjectivity, let w 2 TaRn be arbitrary. Define v 2 TaHn by

vf Dw zf ;

where zf is any smooth extension of f . Writing w D wi@=@xi ja in terms of the
standard basis for TaRn, this means that

vf Dwi
@ zf

@xi
.a/:

This is independent of the choice of zf , because by continuity the derivatives of zf
at a are determined by those of f in Hn. It is easy to check that v is a derivation at
a and that wD d	a.v/, so d	a is surjective. �

Just as we use Proposition 3.9 to identify TpU with TpM when U is an open
subset of M; we use this lemma to identify TaHn with TaRn when a 2 @Hn, and
we do not distinguish notationally between an element of TaHn and its image in
TaRn.

Proposition 3.12 (Dimension of Tangent Spaces on a Manifold with Boundary).
Suppose M is an n-dimensional smooth manifold with boundary. For each p 2M;
TpM is an n-dimensional vector space.

Proof. Let p 2 M be arbitrary. If p is an interior point, then because IntM is
an open submanifold of M; Proposition 3.9 implies that Tp.IntM/Š TpM . Since
IntM is a smooth n-manifold without boundary, its tangent spaces all have dimen-
sion n.

On the other hand, if p 2 @M; let .U;'/ be a smooth boundary chart con-
taining p, and let yU D '.U / � Hn. There are isomorphisms TpM Š TpU (by
Proposition 3.9); TpU Š T'.p/ yU (by Proposition 3.6(d), because ' is a diffeomor-
phism); T'.p/ yU Š T'.p/Hn (by Proposition 3.9 again); and T'.p/Hn Š T'.p/R

n

(by Lemma 3.11). The result follows. �

Recall from Example 1.24 that every finite-dimensional vector space has a nat-
ural smooth manifold structure that is independent of any choice of basis or norm.
The following proposition shows that the tangent space to a vector space can be
naturally identified with the vector space itself.

Suppose V is a finite-dimensional vector space and a 2 V . Just as we did earlier
in the case of Rn, for any vector v 2 V , we define a map Dvja W C

1.V /!R by

Dvjaf D
d

dt

ˇ̌
ˇ̌
tD0

f .aC tv/: (3.5)
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Proposition 3.13 (The Tangent Space to a Vector Space). Suppose V is a finite-
dimensional vector space with its standard smooth manifold structure. For each
point a 2 V , the map v 7!Dvja defined by (3.5) is a canonical isomorphism from V

to TaV , such that for any linear map L W V !W , the following diagram commutes:

V
Š� TaV

W

L
�

Š
� TLaW:

dLa�
(3.6)

Proof. Once we choose a basis for V , we can use the same argument as in the proof
of Proposition 3.2 to show that Dvja is indeed a derivation at a, and that the map
v 7!Dvja is an isomorphism.

Now suppose L W V !W is a linear map. Because its components with respect
to any choices of bases for V and W are linear functions of the coordinates, L is
smooth. Unwinding the definitions and using the linearity of L, we compute

dLa
�
Dvja

�
f DDvja.f ıL/

D
d

dt

ˇ̌
ˇ
ˇ
tD0

f
�
L.aC tv/

�
D

d

dt

ˇ̌
ˇ
ˇ
tD0

f .LaC tLv/

DDLvjLaf: �

It is important to understand that each isomorphism V Š TaV is canonically de-
fined, independently of any choice of basis (notwithstanding the fact that we used
a choice of basis to prove that it is an isomorphism). Because of this result, we can
routinely identify tangent vectors to a finite-dimensional vector space with elements
of the space itself. More generally, ifM is an open submanifold of a vector space V ,
we can combine our identifications TpM $ TpV $ V to obtain a canonical iden-
tification of each tangent space to M with V . For example, since GL.n;R/ is an
open submanifold of the vector space M.n;R/, we can identify its tangent space at
each point X 2GL.n;R/ with the full space of matrices M.n;R/.

There is another natural identification for tangent spaces to a product manifold.

Proposition 3.14 (The Tangent Space to a Product Manifold). Let M1; : : : ;Mk

be smooth manifolds, and for each j , let �j W M1�� � ��Mk!Mj be the projection
onto the Mj factor. For any point pD .p1; : : : ; pk/ 2M1 � � � � �Mk , the map

˛ W Tp.M1 � � � � �Mk/! Tp1M1˚ � � � ˚ TpkMk

defined by

˛.v/D
�
d.�1/p.v/; : : : ; d.�k/p.v/

�
(3.7)

is an isomorphism. The same is true if one of the spaces Mi is a smooth manifold
with boundary.

Proof. See Problem 3-2. �
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Fig. 3.5 Tangent vectors in coordinates

Once again, because the isomorphism (3.7) is canonically defined, independently
of any choice of coordinates, we can consider it as a canonical identification, and we
will always do so. Thus, for example, we identify T.p;q/.M �N/with TpM˚TqN ,
and treat TpM and TqN as subspaces of T.p;q/.M �N/.

Computations in Coordinates

Our treatment of the tangent space to a manifold so far might seem hopelessly ab-
stract. To bring it down to earth, we will show how to do computations with tangent
vectors and differentials in local coordinates.

First, suppose M is a smooth manifold (without boundary), and let .U;'/ be
a smooth coordinate chart on M . Then ' is, in particular, a diffeomorphism from
U to an open subset yU � Rn. Combining Propositions 3.9 and 3.6(d), we see that
d'p W TpM ! T'.p/R

n is an isomorphism.
By Corollary 3.3, the derivations @=@x1j'.p/; : : : ; @=@xnj'.p/ form a basis for

T'.p/R
n. Therefore, the preimages of these vectors under the isomorphism d'p

form a basis for TpM (Fig. 3.5). In keeping with our standard practice of treating
coordinate maps as identifications whenever possible, we use the notation @=@xi jp
for these vectors, characterized by either of the following expressions:

@

@xi

ˇ̌
ˇ̌
p

D .d'p/
�1

�
@

@xi

ˇ̌
ˇ̌
'.p/

�
D d

�
'�1

�
'.p/

�
@

@xi

ˇ̌
ˇ̌
'.p/

�
: (3.8)

Unwinding the definitions, we see that @=@xi jp acts on a function f 2 C1.U / by

@

@xi

ˇ̌
ˇ̌
p

f D
@

@xi

ˇ̌
ˇ̌
'.p/

�
f ı '�1

�
D
@ yf

@xi
. yp/;

where yf D f ı '�1 is the coordinate representation of f , and ypD
�
p1; : : : ; pn

�
D

'.p/ is the coordinate representation of p. In other words, @=@xi jp is just the deriva-
tion that takes the i th partial derivative of (the coordinate representation of) f at (the
coordinate representation of) p. The vectors @=@xi jp are called the coordinate vec-
tors at p associated with the given coordinate system. In the special case of standard
coordinates on Rn, the vectors @=@xi jp are literally the partial derivative operators.
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When M is a smooth manifold with boundary and p is an interior point, the
discussion above applies verbatim. For p 2 @M; the only change that needs to be
made is to substitute Hn for Rn, with the understanding that the notation @=@xi j'.p/
can be used interchangeably to denote either an element of T'.p/Rn or an el-
ement of T'.p/Hn, in keeping with our convention of considering the isomor-
phism d	'.p/ W T'.p/H

n! T'.p/R
n as an identification. The nth coordinate vector

@=@xnjp should be interpreted as a one-sided derivative in this case.
The following proposition summarizes the discussion so far.

Proposition 3.15. Let M be a smooth n-manifold with or without boundary, and
let p 2M . Then TpM is an n-dimensional vector space, and for any smooth chart�
U;
�
xi
��

containing p, the coordinate vectors @=@x1jp; : : : ; @=@xnjp form a basis
for TpM . �

Thus, a tangent vector v 2 TpM can be written uniquely as a linear combination

vD vi
@

@xi

ˇ̌
ˇ̌
p

;

where we use the summation convention as usual, with an upper index in the denom-
inator being considered as a lower index, as explained on p. 52. The ordered basis�
@=@xi jp

�
is called a coordinate basis for T pM , and the numbers

�
v1; : : : ; vn

�
are

called the components of v with respect to the coordinate basis. If v is known, its
components can be computed easily from its action on the coordinate functions. For
each j , the components of v are given by vj D v

�
xj
�

(where we think of xj as a
smooth real-valued function on U ), because

v
�
xj
�
D

�
vi

@

@xi

ˇ̌
ˇ
ˇ
p

��
xj
�
D vi

@xj

@xi
.p/D vj :

The Differential in Coordinates

Next we explore how differentials look in coordinates. We begin by considering
the special case of a smooth map F W U ! V , where U � Rn and V � Rm are
open subsets of Euclidean spaces. For any p 2 U , we will determine the ma-
trix of dFp W TpRn! TF.p/Rm in terms of the standard coordinate bases. Using�
x1; : : : ; xn

�
to denote the coordinates in the domain and

�
y1; : : : ; ym

�
to denote

those in the codomain, we use the chain rule to compute the action of dFp on a
typical basis vector as follows:

dFp

�
@

@xi

ˇ̌
ˇ̌
p

�
f D

@

@xi

ˇ̌
ˇ̌
p

.f ıF /D
@f

@yj

�
F.p/

�@F j

@xi
.p/

D

�
@F j

@xi
.p/

@

@yj

ˇ̌
ˇ̌
F.p/

�
f:
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Fig. 3.6 The differential in coordinates

Thus

dFp

�
@

@xi

ˇ
ˇ̌
ˇ
p

�
D
@F j

@xi
.p/

@

@yj

ˇ
ˇ̌
ˇ
F.p/

: (3.9)

In other words, the matrix of dFp in terms of the coordinate bases is

ˇ

@F 1

@x1
.p/ � � �

@F 1

@xn
.p/

:::
: : :

:::
@Fm

@x1
.p/ � � �

@Fm

@xn
.p/

�

:

(Recall that the columns of the matrix are the components of the images of the
basis vectors.) This matrix is none other than the Jacobian matrix of F at p,
which is the matrix representation of the total derivativeDF.p/ W Rn!Rm. There-
fore, in this case, dFp W TpRn ! TF.p/R

m corresponds to the total derivative
DF.p/ W Rn! Rm, under our usual identification of Euclidean spaces with their
tangent spaces. The same calculation applies if U is an open subset of Hn and V is
an open subset of Hm.

Now consider the more general case of a smooth map F W M ! N between
smooth manifolds with or without boundary. Choosing smooth coordinate charts
.U;'/ for M containing p and .V; / for N containing F.p/, we obtain the coor-
dinate representation yF D  ı F ı '�1 W '.U \ F �1.V //!  .V / (Fig. 3.6). Let
yp D '.p/ denote the coordinate representation of p. By the computation above,
d yF yp is represented with respect to the standard coordinate bases by the Jacobian
matrix of yF at yp. Using the fact that F ı '�1 D �1 ı yF , we compute

dFp

�
@

@xi

ˇ̌
ˇ̌
p

�
D dFp

�
d
�
'�1

�
yp

�
@

@xi

ˇ̌
ˇ̌
yp

��
D d

�
 �1

�
yF . yp/

�
d yF yp

�
@

@xi

ˇ̌
ˇ̌
yp

��
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D d
�
 �1

�
yF . yp/

�
@ yF j

@xi
. yp/

@

@yj

ˇ̌
ˇ̌
yF . yp/

�

D
@ yF j

@xi
. yp/

@

@yj

ˇ̌
ˇ̌
F.p/

: (3.10)

Thus, dFp is represented in coordinate bases by the Jacobian matrix of (the coor-
dinate representative of) F . In fact, the definition of the differential was cooked up
precisely to give a coordinate-independent meaning to the Jacobian matrix.

In the differential geometry literature, the differential is sometimes called the
tangent map, the total derivative, or simply the derivative of F . Because it “pushes”
tangent vectors forward from the domain manifold to the codomain, it is also called
the (pointwise) pushforward. Different authors denote it by symbols such as

F 0.p/; DF; DF.p/; F�; TF; TpF:

We will stick with the notation dFp for the differential of a smooth map between
manifolds, and reserve DF.p/ for the total derivative of a map between finite-
dimensional vector spaces, which in the case of Euclidean spaces we identify with
the Jacobian matrix of F .

Change of Coordinates

Suppose .U;'/ and .V; / are two smooth charts on M; and p 2 U \ V . Let us
denote the coordinate functions of ' by

�
xi
�

and those of  by
�
zxi
�
. Any tangent

vector at p can be represented with respect to either basis
�
@=@xi jp

�
or
�
@=@zxi jp

�
.

How are the two representations related?
In this situation, it is customary to write the transition map ı'�1 W '.U \V /!

 .U \ V / in the following shorthand notation:

 ı '�1.x/D
�
zx1.x/; : : : ; zxn.x/

�
:

Here we are indulging in a typical abuse of notation: in the expression zxi .x/, we
think of zxi as a coordinate function (whose domain is an open subset of M; identi-
fied with an open subset of Rn or Hn); but we think of x as representing a point (in
this case, in '.U \ V /). By (3.9), the differential d

�
 ı '�1

�
'.p/

can be written

d
�
 ı '�1

�
'.p/

�
@

@xi

ˇ̌
ˇ̌
'.p/

�
D
@zxj

@xi

�
'.p/

� @

@zxj

ˇ̌
ˇ̌
 .p/

:
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Fig. 3.7 Change of coordinates

(See Fig. 3.7.) Using the definition of coordinate vectors, we obtain

@

@xi

ˇ̌
ˇ̌
p

D d
�
'�1

�
'.p/

�
@

@xi

ˇ̌
ˇ̌
'.p/

�

D d
�
 �1

�
 .p/
ı d

�
 ı '�1

�
'.p/

�
@

@xi

ˇ̌
ˇ̌
'.p/

�

D d
�
 �1

�
 .p/

�
@zxj

@xi

�
'.p/

� @

@zxj

ˇ̌
ˇ̌
 .p/

�
D
@zxj

@xi
. yp/

@

@zxj

ˇ̌
ˇ̌
p

; (3.11)

where again we have written ypD '.p/. (This formula is easy to remember, because
it looks exactly the same as the chain rule for partial derivatives in Rn.) Applying
this to the components of a vector v D vi@=@xi jp D zvj @=@zxj jp , we find that the
components of v transform by the rule

zvj D
@zxj

@xi
. yp/vi : (3.12)

Example 3.16. The transition map between polar coordinates and standard coordi-
nates in suitable open subsets of the plane is given by .x; y/D .r cos�; r sin�/. Let
p be the point in R2 whose polar coordinate representation is .r; �/D .2;�=2/, and
let v 2 TpR2 be the tangent vector whose polar coordinate representation is

vD 3
@

@r

ˇ̌
ˇ̌
p

�
@

@�

ˇ̌
ˇ̌
p

:
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Applying (3.11) to the coordinate vectors, we find

@

@r

ˇ̌
ˇ̌
p

D cos
	�
2


 @

@x

ˇ̌
ˇ̌
p

C sin
	�
2


 @

@y

ˇ̌
ˇ̌
p

D
@

@y

ˇ̌
ˇ̌
p

;

@

@�

ˇ̌
ˇ̌
p

D �2 sin
	�
2


 @

@x

ˇ̌
ˇ̌
p

C 2 cos
	�
2


 @

@y

ˇ̌
ˇ̌
p

D�2
@

@x

ˇ̌
ˇ̌
p

;

and thus v has the following coordinate representation in standard coordinates:

vD 3
@

@y

ˇ̌
ˇ̌
p

C 2
@

@x

ˇ̌
ˇ̌
p

: //

One important fact to bear in mind is that each coordinate vector @=@xi jp de-
pends on the entire coordinate system, not just on the single coordinate function xi .
Geometrically, this reflects the fact that @=@xi jp is the derivation obtained by differ-
entiating with respect to xi while all the other coordinates are held constant. If the
coordinate functions other than xi are changed, then the direction of this coordinate
derivative can change. The next exercise illustrates how this can happen.

I Exercise 3.17. Let .x;y/ denote the standard coordinates on R2. Verify that�
zx; zy

�
are global smooth coordinates on R2, where

zx D x; zy D y C x3:

Let p be the point .1; 0/ 2R2 (in standard coordinates), and show that

@

@x

ˇ
ˇ̌
ˇ
p

¤
@

@zx

ˇ
ˇ̌
ˇ
p

;

even though the coordinate functions x and zx are identically equal.

The Tangent Bundle

Often it is useful to consider the set of all tangent vectors at all points of a mani-
fold. Given a smooth manifold M with or without boundary, we define the tangent
bundle of M , denoted by TM; to be the disjoint union of the tangent spaces at all
points of M :

TM D
a

p2M

TpM:

We usually write an element of this disjoint union as an ordered pair .p; v/,
with p 2M and v 2 TpM (instead of putting the point p in the second position,
as elements of a disjoint union are more commonly written). The tangent bundle
comes equipped with a natural projection map � W TM !M; which sends each
vector in TpM to the point p at which it is tangent: �.p; v/ D p. We will often
commit the usual mild sin of identifying TpM with its image under the canonical
injection v 7! .p; v/, and will use any of the notations .p; v/, vp , and v for a tangent
vector in TpM; depending on how much emphasis we wish to give to the point p.
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Fig. 3.8 Coordinates for the tangent bundle

For example, in the special case M DRn, using Proposition 3.2, we see that the
tangent bundle of Rn can be canonically identified with the union of its geometric
tangent spaces, which in turn is just the Cartesian product of Rn with itself:

TRn D
a

a2Rn

TaR
n Š

a

a2Rn

Rna D
a

a2Rn

fag �Rn DRn �Rn:

An element .a; v/ of this Cartesian product can be thought of as representing either
the geometric tangent vector va or the derivation Dvja defined by (3.1). Be warned,
however, that in general the tangent bundle of a smooth manifold cannot be identi-
fied in any natural way with a Cartesian product, because there is no canonical way
to identify tangent spaces at different points with each other. We will have more to
say about this below.

IfM is a smooth manifold, the tangent bundle TM can be thought of simply as a
disjoint union of vector spaces; but it is much more than that. The next proposition
shows that TM can be considered as a smooth manifold in its own right.

Proposition 3.18. For any smooth n-manifold M; the tangent bundle TM has a
natural topology and smooth structure that make it into a 2n-dimensional smooth
manifold. With respect to this structure, the projection � W TM !M is smooth.

Proof. We begin by defining the maps that will become our smooth charts. Given
any smooth chart .U;'/ for M; note that ��1.U / � TM is the set of all tangent
vectors to M at all points of U . Let

�
x1; : : : ; xn

�
denote the coordinate functions

of ', and define a map z' W ��1.U /!R2n by

z'

�
vi

@

@xi

ˇ̌
ˇ
ˇ
p

�
D
�
x1.p/; : : : ; xn.p/; v1; : : : ; vn

�
: (3.13)

(See Fig. 3.8.) Its image set is '.U / �Rn, which is an open subset of R2n. It is a
bijection onto its image, because its inverse can be written explicitly as

z'�1
�
x1; : : : ; xn; v1; : : : ; vn

�
D vi

@

@xi

ˇ̌
ˇ̌
'�1.x/

:
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Now suppose we are given two smooth charts .U;'/ and .V; / for M; and let�
��1.U /; z'

�
,
�
��1.V /; z 

�
be the corresponding charts on TM . The sets

z'
�
��1.U /\ ��1.V /

�
D '.U \ V /�Rn and

z 
�
��1.U /\ ��1.V /

�
D  .U \ V /�Rn

are open in R2n, and the transition map z ı z'�1 W '.U \ V /�Rn!  .U \ V /�

Rn can be written explicitly using (3.12) as

z ı z'�1
�
x1; : : : ; xn; v1; : : : ; vn

�

D

�
zx1.x/; : : : ; zxn.x/;

@zx1

@xj
.x/vj ; : : : ;

@zxn

@xj
.x/vj

�
:

This is clearly smooth.
Choosing a countable cover fUig ofM by smooth coordinate domains, we obtain

a countable cover of TM by coordinate domains
˚
��1.Ui /

�
satisfying conditions

(i)–(iv) of the smooth manifold chart lemma (Lemma 1.35). To check the Haus-
dorff condition (v), just note that any two points in the same fiber of � lie in one
chart, while if .p; v/ and .q;w/ lie in different fibers, there exist disjoint smooth
coordinate domains U , V for M such that p 2 U and q 2 V , and then ��1.U /
and ��1.V / are disjoint coordinate neighborhoods containing .p; v/ and .q;w/,
respectively.

To see that � is smooth, note that with respect to charts .U;'/ for M and�
��1.U /; z'

�
for TM; its coordinate representation is �.x; v/D x. �

The coordinates
�
xi ; vi

�
given by (3.13) are called natural coordinates on TM .

I Exercise 3.19. Suppose M is a smooth manifold with boundary. Show that TM
has a natural topology and smooth structure making it into a smooth manifold with
boundary, such that if

�
U;
�
xi
��

is any smooth boundary chart for M; then rearranging
the coordinates in the natural chart

�
��1.U /;

�
xi ; vi

��
for TM yields a boundary chart�

��1.U /;
�
vi ; xi

��
.

Proposition 3.20. If M is a smooth n-manifold with or without boundary, and M
can be covered by a single smooth chart, then TM is diffeomorphic to M �Rn.

Proof. If .U;'/ is a global smooth chart forM; then ' is, in particular, a diffeomor-
phism from U DM to an open subset yU � Rn or Hn. The proof of the previous
proposition showed that the natural coordinate chart z' is a bijection from TM to
yU �Rn, and the smooth structure on TM is defined essentially by declaring z' to
be a diffeomorphism. �

Although the picture of a product U �Rn is a useful way to visualize the smooth
structure on a tangent bundle locally as in Fig. 3.8, do not be misled into imagining
that every tangent bundle is globally diffeomorphic (or even homeomorphic) to a
product of the manifold with Rn. This is not the case for most smooth manifolds.
We will revisit this question in Chapters 8, 10, and 16.
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By putting together the differentials of F at all points of M; we obtain a globally
defined map between tangent bundles, called the global differential or global tan-
gent map and denoted by dF W TM ! TN . This is just the map whose restriction
to each tangent space TpM � TM is dFp . When we apply the differential of F
to a specific vector v 2 TpM; we can write either dFp.v/ or dF.v/, depending on
how much emphasis we wish to give to the point p. The former notation is more
informative, while the second is more concise.

One important feature of the smooth structure we have defined on TM is that it
makes the differential of a smooth map into a smooth map between tangent bundles.

Proposition 3.21. If F W M ! N is a smooth map, then its global differential
dF W TM ! TN is a smooth map.

Proof. From the local expression (3.9) for dFp in coordinates, it follows that dF
has the following coordinate representation in terms of natural coordinates for TM
and TN :

dF
�
x1; : : : ; xn; v1; : : : ; vn

�
D

�
F 1.x/; : : : ;F n.x/;

@F 1

@xi
.x/vi ; : : : ;

@F n

@xi
.x/vi

�
:

This is smooth because F is. �

The following properties of the global differential follow immediately from
Proposition 3.6.

Corollary 3.22 (Properties of the Global Differential). Suppose F W M ! N

and G W N ! P are smooth maps.

(a) d.G ıF /D dG ı dF .
(b) d.IdM /D IdTM .
(c) If F is a diffeomorphism, then dF W TM ! TN is also a diffeomorphism, and

.dF /�1 D d
�
F �1

�
. �

Because of part (c) of this corollary, when F is a diffeomorphism we can use the
notation dF �1 unambiguously to mean either .dF /�1 or d

�
F �1

�
.

Velocity Vectors of Curves

The velocity of a smooth parametrized curve in Rn is familiar from elementary
calculus. It is just the vector whose components are the derivatives of the component
functions of the curve. In this section we extend this notion to curves in manifolds.

If M is a manifold with or without boundary, we define a curve in M to be a
continuous map � W J !M; where J �R is an interval. (Most of the time, we will
be interested in curves whose domains are open intervals, but for some purposes it
is useful to allow J to have one or two endpoints; the definitions all make sense
with minor modifications in that case, either by considering J as a manifold with
boundary or by interpreting derivatives as one-sided derivatives.) Note that in this
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Fig. 3.9 The velocity of a curve

book the term curve always refers to a map from an interval into M (a parametrized
curve), not just a set of points in M .

Now let M be a smooth manifold, still with or without boundary. Our definition
of tangent spaces leads to a natural interpretation of velocity vectors: given a smooth
curve � W J !M and t0 2 J , we define the velocity of � at t0 (Fig. 3.9), denoted
by � 0.t0/, to be the vector

� 0.t0/D d�

�
d

dt

ˇ
ˇ̌
ˇ
t0

�
2 T�.t0/M;

where d=dt jt0 is the standard coordinate basis vector in Tt0R. (As in ordinary
calculus, it is customary to use d=dt instead of @=@t when the manifold is 1-
dimensional.) Other common notations for the velocity are

P�.t0/;
d�

dt
.t0/; and

d�

dt

ˇ̌
ˇ̌
tDt0

:

This tangent vector acts on functions by

� 0.t0/f D d�

�
d

dt

ˇ̌
ˇ̌
t0

�
f D

d

dt

ˇ̌
ˇ̌
t0

.f ı �/D .f ı �/0.t0/:

In other words, � 0.t0/ is the derivation at �.t0/ obtained by taking the derivative
of a function along � . (If t0 is an endpoint of J , this still holds, provided that we
interpret the derivative with respect to t as a one-sided derivative, or equivalently as
the derivative of any smooth extension of f ı � to an open subset of R.)

Now let .U;'/ be a smooth chart with coordinate functions
�
xi
�
. If �.t0/ 2U , we

can write the coordinate representation of � as �.t/D
�
�1.t/; : : : ; �n.t/

�
, at least for

t sufficiently close to t0, and then the coordinate formula for the differential yields

� 0.t0/D
d� i

dt
.t0/

@

@xi

ˇ
ˇ̌
ˇ
�.t0/

:

This means that � 0.t0/ is given by essentially the same formula as it would be in
Euclidean space: it is the tangent vector whose components in a coordinate basis are
the derivatives of the component functions of � .

The next proposition shows that every tangent vector on a manifold is the velocity
vector of some curve. This gives a different and somewhat more geometric way to
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think about the tangent bundle: it is just the set of all velocity vectors of smooth
curves in M .

Proposition 3.23. Suppose M is a smooth manifold with or without boundary and
p 2M . Every v 2 TpM is the velocity of some smooth curve in M .

Proof. First suppose that p 2 IntM (which includes the case @M D¿). Let .U;'/
be a smooth coordinate chart centered at p, and write v D vi@=@xi jp in terms of
the coordinate basis. For sufficiently small " > 0, let � W .�"; "/! U be the curve
whose coordinate representation is

�.t/D
�
tv1; : : : ; tvn

�
: (3.14)

(Remember, this really means �.t/D '�1
�
tv1; : : : ; tvn

�
.) This is a smooth curve

with �.0/D p, and the computation above shows that � 0.0/D vi@=@xi j�.0/ D v.
Now suppose p 2 @M . Let .U;'/ be a smooth boundary chart centered at p,

and write vD vi@=@xi jp as before. We wish to let � be the curve whose coordinate
representation is (3.14), but this formula represents a point ofM only when tvn � 0.
We can accommodate this requirement by suitably restricting the domain of � : if
vn D 0, we define � W .�"; "/! U as before; if vn > 0, we let the domain be Œ0; "/;
and if vn < 0, we let it be .�"; 0�. In each case, � is a smooth curve in M with
�.0/D p and � 0.0/D v. �

The next proposition shows that velocity vectors behave well under composition
with smooth maps.

Proposition 3.24 (The Velocity of a Composite Curve). Let F W M ! N be a
smooth map, and let � W J !M be a smooth curve. For any t0 2 J , the velocity at
t D t0 of the composite curve F ı � W J !N is given by

.F ı �/0.t0/D dF
�
� 0.t0/

�
:

Proof. Just go back to the definition of the velocity of a curve:

.F ı �/0.t0/D d.F ı �/

�
d

dt

ˇ̌
ˇ̌
t0

�
D dF ı d�

�
d

dt

ˇ̌
ˇ̌
t0

�
D dF

�
� 0.t0/

�
: �

On the face of it, the preceding proposition tells us how to compute the velocity
of a composite curve in terms of the differential. However, it is often much more
useful to turn it around the other way, and use it as a streamlined way to compute
differentials. Suppose F W M ! N is a smooth map, and we need to compute the
differential dFp at some point p 2M . We can compute dFp.v/ for any v 2 TpM
by choosing a smooth curve � whose initial tangent vector is v, and then applying
Proposition 3.23 to the composite curve F ı � . The next corollary summarizes the
result.

Corollary 3.25 (Computing the Differential Using a Velocity Vector). Suppose
F W M !N is a smooth map, p 2M; and v 2 TpM . Then

dFp.v/D .F ı �/
0.0/

for any smooth curve � W J !M such that 0 2 J , �.0/D p, and � 0.0/D v. �
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This corollary frequently yields a much more succinct computation of dF , espe-
cially if F is presented in some form other than an explicit coordinate representa-
tion. We will see many examples of this technique in later chapters.

Alternative Definitions of the Tangent Space

In the literature you will find tangent vectors to a smooth manifold defined in several
different ways. Here we describe the most common ones. (Yet another definition is
suggested in the remark following Problem 11-4.) It is good to be conversant with
all of them. Throughout this section, M represents an arbitrary smooth manifold
with or without boundary.

Tangent Vectors as Derivations of the Space of Germs

The most common alternative definition is based on the notion of “germs” of smooth
functions, which we now define.

A smooth function element on M is an ordered pair .f;U /, where U is an open
subset ofM and f W U !R is a smooth function. Given a point p 2M; let us define
an equivalence relation on the set of all smooth function elements whose domains
contain p by setting .f;U / 	 .g;V / if f � g on some neighborhood of p. The
equivalence class of a function element .f;U / is called the germ of f at p. The
set of all germs of smooth functions at p is denoted by C1p .M/. It is a real vector
space and an associative algebra under the operations

c
�
.f;U /

�
D
�
.cf;U /

�
;

�
.f;U /

�
C
�
.g;V /

�
D
�
.f C g;U \ V /

�
;

�
.f;U /

��
.g;V /

�
D
�
.fg;U \ V /

�
:

(The zero element of this algebra is the equivalence class of the zero function onM .)
Let us denote the germ at p of the function element .f;U / simply by Œf �p ; there is
no need to include the domain U in the notation, because the same germ is repre-
sented by the restriction of f to any neighborhood of p. To say that two germs Œf �p
and Œg�p are equal is simply to say that f � g on some neighborhood of p, however
small.

A derivation of C1p .M/ is a linear map v W C1p .M/!R satisfying the follow-
ing product rule analogous to (3.4):

vŒfg�p D f .p/vŒg�p C g.p/vŒf �p:

It is common to define the tangent space to M at p as the vector space DpM of
derivations of C1p .M/. Thanks to Proposition 3.8, it is a simple matter to prove
that DpM is naturally isomorphic to the tangent space as we have defined it (see
Problem 3-7).
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The germ definition has a number of advantages. One of the most significant is
that it makes the local nature of the tangent space clearer, without requiring the use
of bump functions. Because there do not exist analytic bump functions, the germ
definition of tangent vectors is the only one available on real-analytic or complex-
analytic manifolds. The chief disadvantage of the germ approach is simply that it
adds an additional level of complication to an already highly abstract definition.

Tangent Vectors as Equivalence Classes of Curves

Another common approach to tangent vectors is to define an intrinsic equivalence
relation on the set of smooth curves with the same starting point, which captures the
idea of “having the same velocity,” and to define a tangent vector as an equivalence
class of curves. Here we describe one such equivalence relation.

Suppose p is a point of M . We wish to define an equivalence relation on the set
of all smooth curves of the form � W J !M; where J is an interval containing 0
and �.0/ D p. Given two such curves �1 W J1!M and �2 W J2!M; let us say
that �1 	 �2 if .f ı �1/0.0/D .f ı �2/0.0/ for every smooth real-valued function
f defined in a neighborhood of p. Let VpM denote the set of equivalence classes.
The tangent space to M at p is often defined to be the set VpM .

Using this definition, it is very easy to define the differential of a smooth map
F W M !N as the map that sends Œ�� 2 VpM to ŒF ı�� 2 VF.p/N . Velocity vectors
of smooth curves are almost as easy to define. Suppose � W J !M is any smooth
curve. If 0 2 J , then the velocity of � at 0 is just the equivalence class of � in
V�.0/M . The velocity at any other point t0 2 J can be defined as the equivalence
class in V�.t0/M of the curve �t0 defined by �t0.t/D �.t0C t/.

Problem 3-8 shows that there is a natural one-to-one correspondence between
VpM and TpM . This definition has the advantage of being geometrically more
intuitive, but it has the serious drawback that the existence of a vector space structure
on VpM is not at all obvious.

Tangent Vectors as Equivalence Classes of n-Tuples

Yet another approach to defining the tangent space is based on the transforma-
tion rule (3.12) for the components of tangent vectors in coordinates. One defines
a tangent vector at a point p 2 M to be a rule that assigns an ordered n-tuple�
v1; : : : ; vn

�
2 Rn to each smooth coordinate chart containing p, with the prop-

erty that the n-tuples assigned to overlapping charts transform according to (3.12).
(This is, in fact, the oldest definition of all, and many physicists are still apt to think
of tangent vectors this way.)

In this approach, the velocity of a curve is defined by the usual Euclidean for-
mula in coordinates, and the differential of F W M !N is defined as the linear map
determined by the Jacobian matrix of F in coordinates. One then has to show, by
means of tedious computations involving the chain rule, that these operations are
well defined, independently of the choices of coordinates.
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It is a matter of individual taste which of the various characterizations of TpM
one chooses to take as the definition. The definition we have chosen, however ab-
stract it may seem at first, has several advantages: it is relatively concrete (tangent
vectors are actual derivations of C1.M/, with no equivalence classes involved); it
makes the vector space structure on TpM obvious; and it leads to straightforward
coordinate-independent definitions of differentials, velocities, and many of the other
geometric objects we will be studying.

Categories and Functors

Another useful perspective on tangent spaces and differentials is provided by the
theory of categories. In this section we summarize the basic definitions of category
theory. We do not do much with the theory in this book, but we mention it because
it provides a convenient and powerful language for talking about many of the math-
ematical structures we will meet.

A category C consists of the following things:

� a class Ob.C/, whose elements are called objects of C,
� a class Hom.C/, whose elements are called morphisms of C,
� for each morphism f 2 Hom.C/, two objects X;Y 2 Ob.C/ called the source

and target of f , respectively,
� for each triple X;Y;Z 2Ob.C/, a mapping called composition:

HomC.X;Y /�HomC.Y;Z/!HomC.X;Z/;

written .f;g/ 7! g ı f , where HomC.X;Y / denotes the class of all morphisms
with source X and target Y .

The morphisms are required to satisfy the following axioms:

(i) ASSOCIATIVITY: .f ı g/ ı hD f ı .g ı h/.
(ii) EXISTENCE OF IDENTITIES: For each object X 2Ob.C/, there exists an iden-

tity morphism IdX 2 HomC.X;X/, such that IdY ıf D f D f ı IdX for all
f 2HomC.X;Y /.

A morphism f 2HomC.X;Y / is called an isomorphism in C if there exists a mor-
phism g 2HomC.Y;X/ such that f ı gD IdY and g ı f D IdX .

Example 3.26 (Categories). In most of the categories that one meets “in nature,”
the objects are sets with some extra structure, the morphisms are maps that preserve
that structure, and the composition laws and identity morphisms are the obvious
ones. Some of the categories of this type that appear in this book (implicitly or
explicitly) are listed below. In each case, we describe the category by giving its
objects and its morphisms.

� Set: sets and maps
� Top: topological spaces and continuous maps
� Man: topological manifolds and continuous maps
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� Manb: topological manifolds with boundary and continuous maps
� Diff: smooth manifolds and smooth maps
� Diffb: smooth manifolds with boundary and smooth maps
� VecR: real vector spaces and real-linear maps
� VecC : complex vector spaces and complex-linear maps
� Grp: groups and group homomorphisms
� Ab: abelian groups and group homomorphisms
� Rng: rings and ring homomorphisms
� CRng: commutative rings and ring homomorphisms

There are also important categories whose objects are sets with distinguished
base points, in addition to (possibly) other structures. A pointed set is an ordered
pair .X;p/, where X is a set and p is an element of X . Other pointed objects such
as pointed topological spaces or pointed smooth manifolds are defined similarly. If
.X;p/ and .X 0; p0/ are pointed sets (or topological spaces, etc.), a map F W X !
X 0 is said to be a pointed map if F.p/D p0; in this case, we write F W .X;p/!
.X 0; p0/. Here are some important examples of categories of pointed objects.

� Set�: pointed sets and pointed maps
� Top�: pointed topological spaces and pointed continuous maps
� Man�: pointed topological manifolds and pointed continuous maps
� Diff�: pointed smooth manifolds and pointed smooth maps //

We use the word class instead of set for the collections of objects and morphisms
in a category because in some categories they are “too large” to be considered sets.
For example, in the category Set, Ob.Set/ is the class of all sets; any attempt to treat
it as a set in its own right leads to the well-known Russell paradox of set theory. (See
[LeeTM, Appendix A] or almost any book on set theory for more.) Even though the
classes of objects and morphisms might not constitute sets, we still use notations
such as X 2 Ob.C/ and f 2 Hom.C/ to indicate that X is an object and f is a
morphism in C. A category in which both Ob.C/ and Hom.C/ are sets is called a
small category, and one in which each class of morphisms HomC.X;Y / is a set is
called locally small. All the categories listed above are locally small but not small.

If C and D are categories, a covariant functor from C to D is a rule F that
assigns to each object X 2Ob.C/ an object F .X/ 2Ob.D/, and to each morphism
f 2HomC.X;Y / a morphism F .f / 2HomD.F .X/;F .Y //, so that identities and
composition are preserved:

F .IdX /D IdF .X/I F .g ı h/D F .g/ ıF .h/:

We also need to consider functors that reverse morphisms: a contravariant func-
tor from C to D is a rule F that assigns to each object X 2 Ob.C/ an object
F .X/ 2 Ob.D/, and to each morphism f 2 HomC.X;Y / a morphism F .f / 2

HomD.F .Y /;F .X//, such that

F .IdX /D IdF .X/I F .g ı h/D F .h/ ıF .g/:

I Exercise 3.27. Show that any (covariant or contravariant) functor from C to D
takes isomorphisms in C to isomorphisms in D.
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One trivial example of a covariant functor is the identity functor from any cat-
egory to itself: it takes each object and each morphism to itself. Another example
is the forgetful functor: if C is a category whose objects are sets with some addi-
tional structure and whose morphisms are maps preserving that structure (as are all
the categories listed in the first part of Example 3.26 except Set itself), the forgetful
functor F W C! Set assigns to each object its underlying set, and to each morphism
the same map thought of as a map between sets.

More interesting functors arise when we associate “invariants” to classes of
mathematical objects. For example, the fundamental group is a covariant functor
from Top� to Grp. The results of Problem 2-10 show that there is a contravari-
ant functor from Diff to VecR defined by assigning to each smooth manifold M
the vector space C1.M/, and to each smooth map F W M ! N the linear map
F � W C1.N /! C1.M/ defined by F �.f /D f ıF .

The discussion in this chapter has given us some other important examples of
functors. First, the tangent space functor is a covariant functor from the category
Diff� of pointed smooth manifolds to the category VecR of real vector spaces. To
each pointed smooth manifold .M;p/ it assigns the tangent space TpM; and to
each pointed smooth map F W .M;p/! .N;F.p// it assigns the differential dFp .
The fact that this is a functor is the content of parts (b) and (c) of Proposition 3.6.

Similarly, we can think of the assignments M 7! TM and F 7! dF (sending
each smooth manifold to its tangent bundle and each smooth map to its global dif-
ferential) as a covariant functor from Diff to itself, called the tangent functor.

Problems

3-1. Suppose M and N are smooth manifolds with or without boundary, and
F W M ! N is a smooth map. Show that dFp W TpM ! TF.p/N is the zero
map for each p 2M if and only if F is constant on each component of M .

3-2. Prove Proposition 3.14 (the tangent space to a product manifold).

3-3. Prove that if M and N are smooth manifolds, then T .M �N/ is diffeomor-
phic to TM � TN .

3-4. Show that TS1 is diffeomorphic to S1 �R.

3-5. Let S1 �R2 be the unit circle, and let K �R2 be the boundary of the square
of side 2 centered at the origin: K D f.x; y/ Wmax.jxj; jyj/D 1g. Show that
there is a homeomorphism F W R2!R2 such that F

�
S1
�
DK , but there is

no diffeomorphism with the same property. [Hint: let � be a smooth curve
whose image lies in S1, and consider the action of dF.� 0.t// on the coordi-
nate functions x and y.] (Used on p. 123.)

3-6. Consider S3 as the unit sphere in C2 under the usual identification C2$R4.
For each z D

�
z1; z2

�
2 S3, define a curve �z W R ! S3 by �z.t/ D�

ei tz1; ei tz2
�
. Show that �z is a smooth curve whose velocity is never zero.
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3-7. Let M be a smooth manifold with or without boundary and p be a point of
M . Let C1p .M/ denote the algebra of germs of smooth real-valued func-
tions at p, and let DpM denote the vector space of derivations of C1p .M/.
Define a map ˚ W DpM ! TpM by .˚v/f D v.Œf �p/. Show that ˚ is an
isomorphism. (Used on p. 71.)

3-8. LetM be a smooth manifold with or without boundary and p 2M . Let VpM

denote the set of equivalence classes of smooth curves starting at p under the
relation �1 	 �2 if .f ı �1/0.0/D .f ı �2/0.0/ for every smooth real-valued
function f defined in a neighborhood of p. Show that the map � W VpM !

TpM defined by �Œ��D � 0.0/ is well defined and bijective. (Used on p. 72.)



Chapter 4
Submersions, Immersions, and Embeddings

Because the differential of a smooth map is supposed to represent the “best linear
approximation” to the map near a given point, we can learn a great deal about a
map by studying linear-algebraic properties of its differential. The most essential
property of the differential—in fact, just about the only property that can be defined
independently of choices of bases—is its rank (the dimension of its image).

In this chapter we undertake a detailed study of the ways in which geometric
properties of smooth maps can be detected from their differentials. The maps for
which differentials give good local models turn out to be the ones whose differen-
tials have constant rank. Three categories of such maps play special roles: smooth
submersions (whose differentials are surjective everywhere), smooth immersions
(whose differentials are injective everywhere), and smooth embeddings (injective
smooth immersions that are also homeomorphisms onto their images). Smooth im-
mersions and embeddings, as we will see in the next chapter, are essential ingredi-
ents in the theory of submanifolds, while smooth submersions play a role in smooth
manifold theory closely analogous to the role played by quotient maps in topology.

The engine that powers this discussion is the rank theorem, a corollary of the in-
verse function theorem. In the first section of the chapter, we prove the rank theorem
and some of its important consequences. Then we delve more deeply into smooth
embeddings and smooth submersions, and apply the theory to a particularly useful
class of smooth submersions, the smooth covering maps.

Maps of Constant Rank

The key linear-algebraic property of a linear map is its rank. In fact, as Theo-
rem B.20 shows, the rank is the only property that distinguishes different linear
maps if we are free to choose bases independently for the domain and codomain.

Suppose M and N are smooth manifolds with or without boundary. Given a
smooth map F W M !N and a point p 2M; we define the rank of F at p to be the
rank of the linear map dFp W TpM ! TF.p/N ; it is the rank of the Jacobian matrix

J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics 218,
DOI 10.1007/978-1-4419-9982-5_4, © Springer Science+Business Media New York 2013
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of F in any smooth chart, or the dimension of ImdFp � TF.p/N . If F has the same
rank r at every point, we say that it has constant rank, and write rankF D r .

Because the rank of a linear map is never higher than the dimension of either
its domain or its codomain (Exercise B.22), the rank of F at each point is bounded
above by the minimum of fdimM;dimN g. If the rank of dFp is equal to this upper
bound, we say that F has full rank at p, and if F has full rank everywhere, we say
F has full rank.

The most important constant-rank maps are those of full rank. A smooth map
F W M ! N is called a smooth submersion if its differential is surjective at each
point (or equivalently, if rankF D dimN ). It is called a smooth immersion if its
differential is injective at each point (equivalently, rankF D dimM ).

Proposition 4.1. Suppose F W M ! N is a smooth map and p 2 M . If dFp is
surjective, then p has a neighborhood U such that F jU is a submersion. If dFp is
injective, then p has a neighborhood U such that F jU is an immersion.

Proof. If we choose any smooth coordinates for M near p and for N near F.p/,
either hypothesis means that Jacobian matrix of F in coordinates has full rank at p.
Example 1.28 shows that the set of m� n matrices of full rank is an open subset of
M.m�n;R/ (where mD dimM and nD dimN ), so by continuity, the Jacobian of
F has full rank in some neighborhood of p. �

As we will see in this chapter, smooth submersions and immersions behave lo-
cally like surjective and injective linear maps, respectively. (There are also analo-
gous notions of topological submersions and topological immersions, which apply
to maps that are merely continuous. We do not have any need to use these, but for
the sake of completeness, we describe them later in the chapter.)

Example 4.2 (Submersions and Immersions).

(a) Suppose M1; : : : ;Mk are smooth manifolds. Then each of the projection maps
�i W M1 � � � � �Mk!Mi is a smooth submersion. In particular, the projection
� W RnCk!Rn onto the first n coordinates is a smooth submersion.

(b) If � W J !M is a smooth curve in a smooth manifoldM with or without bound-
ary, then � is a smooth immersion if and only if � 0.t/¤ 0 for all t 2 J .

(c) If M is a smooth manifold and its tangent bundle TM is given the smooth
manifold structure described in Proposition 3.18, the projection � W TM !M

is a smooth submersion. To verify this, just note that with respect to any smooth
local coordinates

�
xi
�

on an open subset U �M and the corresponding natural
coordinates

�
xi ; vi

�
on ��1.U / � TM (see Proposition 3.18), the coordinate

representation of � is y�.x; v/D x.
(d) The smooth map X W R2!R3 given by

X.u;v/D
�
.2C cos2�u/ cos2�v; .2C cos2�u/ sin2�v; sin2�u

�

is a smooth immersion of R2 into R3 whose image is the doughnut-shaped
surface obtained by revolving the circle .y � 2/2 C z2 D 1 in the .y; z/-plane
about the z-axis (Fig. 4.1). //
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Fig. 4.1 A torus of revolution in R3

I Exercise 4.3. Verify the claims made in the preceding example.

I Exercise 4.4. Show that a composition of smooth submersions is a smooth sub-
mersion, and a composition of smooth immersions is a smooth immersion. Give a
counterexample to show that a composition of maps of constant rank need not have
constant rank.

Local Diffeomorphisms

If M and N are smooth manifolds with or without boundary, a map F W M !N is
called a local diffeomorphism if every point p 2M has a neighborhood U such that
F.U / is open in N and F jU W U ! F.U / is a diffeomorphism. The next theorem
is the key to the most important properties of local diffeomorphisms.

Theorem 4.5 (Inverse Function Theorem for Manifolds). SupposeM and N are
smooth manifolds, and F W M !N is a smooth map. If p 2M is a point such that
dFp is invertible, then there are connected neighborhoods U0 of p and V0 of F.p/
such that F jU0 W U0! V0 is a diffeomorphism.

Proof. The fact that dFp is bijective implies that M and N have the same dimen-
sion, say n. Choose smooth charts .U;'/ centered at p and .V; / centered at F.p/,
with F.U / � V . Then yF D  ı F ı '�1 is a smooth map from the open subset
yU D '.U /�Rn into yV D  .V /�Rn, with yF .p/D 0. Because ' and  are dif-
feomorphisms, the differential d yF0 D d F.p/ ı dFp ı d

�
'�1

�
0

is nonsingular. The
ordinary inverse function theorem (Theorem C.34) shows that there are connected
open subsets yU0 � yU and yV0 � yV containing 0 such that yF restricts to a diffeo-
morphism from yU0 to yV0. Then U0 D '�1

�
yU0
�

and V0 D  �1
�
yV0
�

are connected
neighborhoods of p and F.p/, respectively, and it follows by composition that F jU0
is a diffeomorphism from U0 to V0. �

It is important to notice that we have stated Theorem 4.5 only for manifolds with-
out boundary. In fact, it can fail for a map whose domain has nonempty boundary
(see Problem 4-1). However, when the codomain has nonempty boundary, there is
something useful that can be said: provided the map takes its values in the interior of
the codomain, the same conclusion holds because the interior is a smooth manifold
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without boundary. Problem 4-2 shows that this is always the case at points where
the differential is invertible.

Proposition 4.6 (Elementary Properties of Local Diffeomorphisms).

(a) Every composition of local diffeomorphisms is a local diffeomorphism.
(b) Every finite product of local diffeomorphisms between smooth manifolds is a

local diffeomorphism.
(c) Every local diffeomorphism is a local homeomorphism and an open map.
(d) The restriction of a local diffeomorphism to an open submanifold with or with-

out boundary is a local diffeomorphism.
(e) Every diffeomorphism is a local diffeomorphism.
(f) Every bijective local diffeomorphism is a diffeomorphism.
(g) A map between smooth manifolds with or without boundary is a local diffeo-

morphism if and only if in a neighborhood of each point of its domain, it has a
coordinate representation that is a local diffeomorphism.

I Exercise 4.7. Prove the preceding proposition.

Proposition 4.8. SupposeM andN are smooth manifolds (without boundary), and
F W M !N is a map.

(a) F is a local diffeomorphism if and only if it is both a smooth immersion and a
smooth submersion.

(b) If dimM D dimN and F is either a smooth immersion or a smooth submer-
sion, then it is a local diffeomorphism.

Proof. Suppose first that F is a local diffeomorphism. Given p 2 M; there is a
neighborhood U of p such that F is a diffeomorphism from U to F.U /. It then fol-
lows from Proposition 3.6(d) that dFp W TpM ! TF.p/N is an isomorphism. Thus
rankF D dimM D dimN , so F is both a smooth immersion and a smooth sub-
mersion. Conversely, if F is both a smooth immersion and a smooth submersion,
then dFp is an isomorphism at each p 2M; and the inverse function theorem for
manifolds (Theorem 4.5) shows that p has a neighborhood on which F restricts to
a diffeomorphism onto its image. This proves (a).

To prove (b), note that if M and N have the same dimension, then either injec-
tivity or surjectivity of dFp implies bijectivity, so F is a smooth submersion if and
only if it is a smooth immersion, and thus (b) follows from (a). �

I Exercise 4.9. Show that the conclusions of Proposition 4.8 still hold if N is al-
lowed to be a smooth manifold with boundary, but not if M is. (See Problems 4-1
and 4-2.)

I Exercise 4.10. SupposeM; N , P are smooth manifolds with or without boundary,
and F W M !N is a local diffeomorphism. Prove the following:

(a) If G W P !M is continuous, then G is smooth if and only if F ıG is smooth.
(b) If in addition F is surjective and G W N ! P is any map, then G is smooth if and

only if G ıF is smooth.
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Example 4.11 (Local Diffeomorphisms). The map " W R! S1 defined in Exam-
ple 2.13(b) is a local diffeomorphism because in a neighborhood of each point it
has a coordinate representation of the form t 7! 2�t C c, which is a local diffeo-
morphism. Similarly, the map "n W Rn! Tn defined in Example 2.13(c) is a local
diffeomorphism because it is a product of local diffeomorphisms. //

At the end of this chapter, we will explore an important special class of local
diffeomorphisms, the smooth covering maps.

The Rank Theorem

The most important fact about constant-rank maps is the following consequence of
the inverse function theorem, which says that a constant-rank smooth map can be
placed locally into a particularly simple canonical form by a change of coordinates.
It is a nonlinear version of the canonical form theorem for linear maps given in
Theorem B.20.

Theorem 4.12 (Rank Theorem). Suppose M and N are smooth manifolds of di-
mensions m and n, respectively, and F W M ! N is a smooth map with constant
rank r . For each p 2M there exist smooth charts .U;'/ for M centered at p and
.V; / for N centered at F.p/ such that F.U /� V , in which F has a coordinate
representation of the form

yF
�
x1; : : : ; xr ; xrC1; : : : ; xm

�
D
�
x1; : : : ; xr ; 0; : : : ; 0

�
: (4.1)

In particular, if F is a smooth submersion, this becomes

yF
�
x1; : : : ; xn; xnC1; : : : ; xm

�
D
�
x1; : : : ; xn

�
; (4.2)

and if F is a smooth immersion, it is

yF
�
x1; : : : ; xm

�
D
�
x1; : : : ; xm; 0; : : : ; 0

�
: (4.3)

Proof. Because the theorem is local, after choosing smooth coordinates we can re-
place M and N by open subsets U � Rm and V � Rn. The fact that DF.p/ has
rank r implies that its matrix has some r � r submatrix with nonzero determinant.
By reordering the coordinates, we may assume that it is the upper left submatrix,�
@F i=@xj

�
for i; j D 1; : : : ; r . Let us relabel the standard coordinates as .x; y/D�

x1; : : : ; xr ; y1; : : : ; ym�r
�

in Rm and .v;w/D
�
v1; : : : ; vr ;w1; : : : ;wn�r

�
in Rn.

By initial translations of the coordinates, we may assume without loss of generality
that p D .0; 0/ and F.p/ D .0; 0/. If we write F.x;y/ D

�
Q.x;y/;R.x;y/

�
for

some smooth maps Q W U ! Rr and R W U ! Rn�r , then our hypothesis is that�
@Qi=@xj

�
is nonsingular at .0; 0/.

Define ' W U !Rm by '.x;y/D
�
Q.x;y/; y

�
. Its total derivative at .0; 0/ is

D'.0; 0/D

�

@Qi

@xj
.0; 0/

@Qi

@yj
.0; 0/

0 ıij

�

;
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where we have used the following standard notation: for positive integers i and j ,
the symbol ıij , called the Kronecker delta, is defined by

ıij D

(
1 if i D j;

0 if i ¤ j:
(4.4)

The matrix D'.0; 0/ is nonsingular by virtue of the hypothesis. Therefore, by the
inverse function theorem, there are connected neighborhoods U0 of .0; 0/ and zU0
of '.0; 0/ D .0; 0/ such that ' W U0 ! zU0 is a diffeomorphism. By shrinking U0
and zU0 if necessary, we may assume that zU0 is an open cube. Writing the inverse
map as '�1.x; y/ D

�
A.x;y/;B.x;y/

�
for some smooth functions A W zU0 ! Rr

and B W zU0!Rm�r , we compute

.x; y/D '
�
A.x;y/;B.x;y/

�
D
�
Q
�
A.x;y/;B.x;y/

�
;B.x;y/

�
: (4.5)

Comparing y components shows that B.x;y/D y, and therefore '�1 has the form

'�1.x; y/D
�
A.x;y/; y

�
:

On the other hand, ' ı '�1 D Id implies Q
�
A.x;y/; y

�
D x, and therefore

F ı '�1 has the form

F ı '�1.x; y/D
�
x; zR.x;y/

�
;

where zR W zU0!Rn�r is defined by zR.x;y/DR
�
A.x;y/; y

�
. The Jacobian matrix

of this composite map at an arbitrary point .x; y/ 2 zU0 is

D
�
F ı '�1

�
.x; y/D

�

ıij 0

@ zRi

@xj
.x; y/

@ zRi

@yj
.x; y/

�

:

Since composing with a diffeomorphism does not change the rank of a map, this
matrix has rank r everywhere in zU0. The first r columns are obviously linearly
independent, so the rank can be r only if the derivatives @ zRi=@yj vanish identically
on zU0, which implies that zR is actually independent of

�
y1; : : : ; ym�r

�
. (This is one

reason we arranged for zU0 to be a cube.) Thus, if we let S.x/D zR.x; 0/, then we
have

F ı '�1.x; y/D
�
x;S.x/

�
: (4.6)

To complete the proof, we need to define an appropriate smooth chart in some
neighborhood of .0; 0/ 2 V . Let V0 � V be the open subset defined by V0 D˚
.v;w/ 2 V W .v; 0/ 2 zU0

�
. Then V0 is a neighborhood of .0; 0/. Because zU0 is

a cube and F ı '�1 has the form (4.6), it follows that F ı '�1
�
zU0
�
� V0, and

therefore F.U0/ � V0. Define  W V0 ! Rn by  .v;w/ D
�
v;w � S.v/

�
. This

is a diffeomorphism onto its image, because its inverse is given explicitly by
 �1.s; t/D

�
s; t C S.s/

�
; thus .V0; / is a smooth chart. It follows from (4.6) that

 ıF ı '�1.x; y/D 
�
x;S.x/

�
D
�
x;S.x/� S.x/

�
D .x; 0/;

which was to be proved. �
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The next corollary can be viewed as a more invariant statement of the rank theo-
rem. It says that constant-rank maps are precisely the ones whose local behavior is
the same as that of their differentials.

Corollary 4.13. Let M and N be smooth manifolds, let F W M !N be a smooth
map, and suppose M is connected. Then the following are equivalent:

(a) For each p 2M there exist smooth charts containing p and F.p/ in which the
coordinate representation of F is linear.

(b) F has constant rank.

Proof. First suppose F has a linear coordinate representation in a neighborhood of
each point. Since every linear map has constant rank, it follows that the rank of F is
constant in a neighborhood of each point, and thus by connectedness it is constant
on all of M . Conversely, if F has constant rank, the rank theorem shows that it has
the linear coordinate representation (4.1) in a neighborhood of each point. �

The rank theorem is a purely local statement. However, it has the following pow-
erful global consequence.

Theorem 4.14 (Global Rank Theorem). Let M and N be smooth manifolds, and
suppose F W M !N is a smooth map of constant rank.

(a) If F is surjective, then it is a smooth submersion.
(b) If F is injective, then it is a smooth immersion.
(c) If F is bijective, then it is a diffeomorphism.

Proof. Let m D dimM; n D dimN , and suppose F has constant rank r . To
prove (a), assume that F is not a smooth submersion, which means that r < n. By
the rank theorem, for each p 2M there are smooth charts .U;'/ for M centered
at p and .V; / for N centered at F.p/ such that F.U / � V and the coordinate
representation of F is given by (4.1). (See Fig. 4.2.) Shrinking U if necessary, we
may assume that it is a regular coordinate ball and F

�
xU
�
� V . This implies that

F
�
xU
�

is a compact subset of the set
˚
y 2 V W yrC1 D � � � D yn D 0

�
, so it is closed

inN and contains no open subset ofN ; hence it is nowhere dense inN . Since every
open cover of a manifold has a countable subcover, we can choose countably many
such charts f.Ui ; 'i /g covering M; with corresponding charts f.Vi ; i /g covering
F.M/. Because F.M/ is equal to the countable union of the nowhere dense sets
F
�
xUi
�
, it follows from the Baire category theorem (Theorem A.58) that F.M/ has

empty interior in N , which means F cannot be surjective.
To prove (b), assume that F is not a smooth immersion, so that r < m. By

the rank theorem, for each p 2 M we can choose charts on neighborhoods of
p and F.p/ in which F has the coordinate representation (4.1). It follows that
F.0; : : : ; 0; "/D F.0; : : : ; 0; 0/ for any sufficiently small ", so F is not injective.

Finally, (c) follows from (a) and (b), because a bijective smooth map of constant
rank is a smooth submersion by part (a) and a smooth immersion by part (b); so
Proposition 4.8 implies that F is a local diffeomorphism, and because it is bijective,
it is a diffeomorphism. �
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Fig. 4.2 Proof of Theorem 4.14(a)

The Rank Theorem for Manifolds with Boundary

In the context of manifolds with boundary, we need the rank theorem only in one
special case: that of a smooth immersion whose domain is a smooth manifold with
boundary. Of course, since the interior of a smooth manifold with boundary is a
smooth manifold, near any interior point of the domain the ordinary rank theorem
applies. For boundary points, we have the following substitute for the rank theorem.

Theorem 4.15 (Local Immersion Theorem for Manifolds with Boundary). Sup-
pose M is a smooth m-manifold with boundary, N is a smooth n-manifold, and
F W M !N is a smooth immersion. For any p 2 @M; there exist a smooth bound-
ary chart .U;'/ for M centered at p and a smooth coordinate chart .V; / for N
centered at F.p/ with F.U /� V , in which F has the coordinate representation

yF
�
x1; : : : ; xm

�
D
�
x1; : : : ; xm; 0; : : : ; 0

�
: (4.7)

Proof. By choosing initial smooth charts for M and N , we may assume that M
and N are open subsets of Hm and Rn, respectively, and also that p D 0 2 Hm,
and F.p/D 0 2 Rn. By definition of smoothness for functions on Hm, F extends
to a smooth map zF W W !Rn, where W is some open subset of Rm containing 0.
Because d zF0 D dF0 is injective, by shrinking W if necessary, we may assume that
zF is a smooth immersion. Let us write the coordinates on Rm as x D

�
x1; : : : ; xm

�
,

and those on Rn as .v;w/D
�
v1; : : : ; vm;w1; : : : ;wn�m

�
.

By the rank theorem, there exist smooth charts .U0; '0/ for Rm centered at 0 and
.V0; 0/ for Rn centered at 0 such that yF D  0 ı zF ı '�10 is given by (4.7). The
only problem with these coordinates is that '0 might not restrict to a boundary chart
for M . But we can correct this easily as follows. Because '0 is a diffeomorphism
from U0 to an open subset yU0 D '0.U0/�Rm, the map '�10 � IdRn�m is a diffeo-
morphism from yU0 �Rn�m to U0 �Rn�m. Let  D

�
'�10 � IdRn�m

�
ı  0, which

is a diffeomorphism from some open subset V � V0 containing 0 to a neighborhood
of 0 in Rn. Using (4.7), we compute

 ıF.x/D
�
'�10 � IdRn�m

�
ı 0 ıF ı '

�1
0 ı '0.x/

D
�
'�10 � IdRn�m

�
ı yF

�
'0.x/

�
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D
�
'�10 � IdRn�m

� �
'0.x/; 0

�
D .x; 0/:

Thus, the original coordinates forM (restricted to a sufficiently small neighborhood
of 0) and the chart .V; / for N satisfy the desired conditions. �

It is possible to prove a similar theorem for more general maps with constant rank
out of manifolds with boundary, but the proof is more elaborate because an extension
of F to an open subset does not automatically have constant rank. Since we have
no need for this more general result, we leave it to the interested reader to pursue
(Problem 4-3). On the other hand, the situation is considerably more complicated
for a map whose codomain is a manifold with boundary: since the image of the map
could intersect the boundary in unpredictable ways, there is no way to put such a
map into a simple canonical form without strong restrictions on the map.

Embeddings

One special kind of immersion is particularly important. If M and N are smooth
manifolds with or without boundary, a smooth embedding of M intoN is a smooth
immersion F W M !N that is also a topological embedding, i.e., a homeomorphism
onto its image F.M/�N in the subspace topology. A smooth embedding is a map
that is both a topological embedding and a smooth immersion, not just a topological
embedding that happens to be smooth.

I Exercise 4.16. Show that every composition of smooth embeddings is a smooth
embedding.

Example 4.17 (Smooth Embeddings).

(a) If M is a smooth manifold with or without boundary and U �M is an open
submanifold, the inclusion map U ,!M is a smooth embedding.

(b) If M1; : : : ;Mk are smooth manifolds and pi 2Mi are arbitrarily chosen points,
each of the maps 	j W Mj !M1 � � � � �Mk given by

	j .q/D .p1; : : : ; pj�1; q;pjC1; : : : ; pk/

is a smooth embedding. In particular, the inclusion map Rn ,!RnCk given by
sending

�
x1; : : : ; xn

�
to
�
x1; : : : ; xn; 0; : : : ; 0

�
is a smooth embedding.

(c) Problem 4-12 shows that the map X W R2!R3 of Example 4.2(d) descends to
a smooth embedding of the torus S1 � S1 into R3. //

To understand more fully what it means for a map to be a smooth embedding,
it is useful to bear in mind some examples of injective smooth maps that are not
smooth embeddings. The next three examples illustrate three rather different ways
in which this can happen.

Example 4.18 (A Smooth Topological Embedding). The map � W R!R2 given
by �.t/ D

�
t3; 0

�
is a smooth map and a topological embedding, but it is not a

smooth embedding because � 0.0/D 0. //
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Fig. 4.3 The figure-eight curve of Example 4.19

Example 4.19 (The Figure-Eight Curve). Consider the curve ˇ W .��;�/! R2

defined by

ˇ.t/D .sin2t; sin t/:

Its image is a set that looks like a figure-eight in the plane (Fig. 4.3),sometimes
called a lemniscate. (It is the locus of points .x; y/ where x2 D 4y2

�
1� y2

�
, as

you can check.) It is easy to see that ˇ is an injective smooth immersion because
ˇ0.t/ never vanishes; but it is not a topological embedding, because its image is
compact in the subspace topology, while its domain is not. //

Example 4.20 (A Dense Curve on the Torus). Let T2 D S1�S1 �C2 denote the
torus, and let ˛ be any irrational number. The map � W R! T2 given by

�.t/D
�
e2�it ; e2�i˛t

�

is a smooth immersion because � 0.t/ never vanishes. It is also injective, because
�.t1/D �.t2/ implies that both t1 � t2 and ˛t1 �˛t2 are integers, which is impossi-
ble unless t1 D t2.

Consider the set �.Z/D f�.n/ W n 2 Zg. It follows from Dirichlet’s approxima-
tion theorem (see below) that for every " > 0, there are integers n;m such that
j˛n�mj< ". Using the fact that

ˇ̌
ei t1 � ei t2

ˇ̌
� jt1 � t2j for t1; t2 2R (because the

line segment from ei t1 to ei t2 is shorter than the circular arc of length jt1 � t2j), we
have

ˇ̌
e2�i˛n � 1

ˇ̌
D
ˇ̌
e2�i˛n � e2�im

ˇ̌
�
ˇ̌
2�.˛n�m/

ˇ̌
< 2�". Therefore,

ˇ
ˇ�.n/� �.0/

ˇ
ˇD

ˇ
ˇ�e2�in; e2�i˛n

�
� .1; 1/

ˇ
ˇD

ˇ
ˇ�1; e2�i˛n

�
� .1; 1/

ˇ
ˇ< 2�":

Thus, �.0/ is a limit point of �.Z/. But this means that � is not a homeomorphism
onto its image, because Z has no limit point in R. In fact, it is not hard to show that
the image set �.R/ is actually dense in T2 (see Problem 4-4). //

The preceding example and Problem 4-4 depend on the following elementary
result from number theory.

Lemma 4.21 (Dirichlet’s Approximation Theorem). Given ˛ 2R and any posi-
tive integer N , there exist integers n;m with 1� n�N such that jn˛ �mj< 1=N .

Proof. For any real number x, let f .x/D x�bxc, where bxc is the greatest integer
less than or equal to x. Since the N C 1 numbers ff .i˛/ W i D 0; : : : ;N g all lie in
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the interval Œ0; 1/, by the pigeonhole principle there must exist integers i and j with
0 � i < j � N such that both f .i˛/ and f .j˛/ lie in one of the N subintervals
Œ0; 1=N /, Œ1=N;2=N/, : : : , Œ.N � 1/=N;1/. This means that jf .j˛/ � f .i˛/j <
1=N , so we can take nD j � i and mD bj˛c � bi˛c. �

The following proposition gives a few simple sufficient criteria for an injective
immersion to be an embedding.

Proposition 4.22. Suppose M and N are smooth manifolds with or without
boundary, and F W M !N is an injective smooth immersion. If any of the following
holds, then F is a smooth embedding.

(a) F is an open or closed map.
(b) F is a proper map.
(c) M is compact.
(d) M has empty boundary and dimM D dimN .

Proof. If F is open or closed, then it is a topological embedding by Theorem A.38,
so it is a smooth embedding. Either (b) or (c) implies that F is closed: if F is proper,
then it is closed by Theorem A.57, and if M is compact, then F is closed by the
closed map lemma. Finally, assume M has empty boundary and dimM D dimN .
Then dFp is nonsingular everywhere, and Problem 4-2 shows that F.M/� IntN .
Proposition 4.8(b) shows that F W M ! IntN is a local diffeomorphism, so it is
an open map. It follows that F W M ! N is a composition of open maps M !
IntN ,!N , so it is an embedding. �
Example 4.23. Let 	 W Sn ,! RnC1 be the inclusion map. We showed in Exam-
ple 2.13(d) that 	 is smooth by computing its coordinate representation with respect
to graph coordinates. It is easy to verify in the same coordinates that its differen-
tial is injective at each point, so it is an injective smooth immersion. Because Sn is
compact, 	 is a smooth embedding by Proposition 4.22. //

I Exercise 4.24. Give an example of a smooth embedding that is neither an open
map nor a closed map.

Theorem 4.25 (Local Embedding Theorem). SupposeM andN are smooth man-
ifolds with or without boundary, and F W M ! N is a smooth map. Then F is a
smooth immersion if and only if every point in M has a neighborhood U �M such
that F jU W U !N is a smooth embedding.

Proof. One direction is immediate: if every point has a neighborhood on which F is
a smooth embedding, then F has full rank everywhere, so it is a smooth immersion.

Conversely, suppose F is a smooth immersion, and let p 2M . We show first
that p has a neighborhood on which F is injective. If F.p/ … @N , then either the
rank theorem (if p … @M ) or Theorem 4.15 (if p 2 @M ) implies that there is a neigh-
borhood U1 of p on which F has a coordinate representation of the form (4.3).
It follows from this formula that F jU1 is injective. On the other hand, suppose
F.p/ 2 @N , and let .W; / be any smooth boundary chart for N centered at F.p/.
If we let U0 D F �1.W /, which is a neighborhood of p, and let 	 W Hn ,!Rn be the
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inclusion map, then the preceding argument can be applied to the composite map
	 ı  ı F jU0 W U0 ! Rn, to show that p has a neighborhood U1 � U0 such that
	 ı ıF jU1 is injective, from which it follows that F jU1 is injective.

Now let p 2M be arbitrary, and let U1 be a neighborhood of p on which F is
injective. There exists a precompact neighborhood U of p such that xU � U1. The
restriction of F to xU is an injective continuous map with compact domain, so it
is a topological embedding by the closed map lemma. Because any restriction of a
topological embedding is again a topological embedding, F jU is both a topological
embedding and a smooth immersion, hence a smooth embedding. �

Theorem 4.25 points the way to a notion of immersions that makes sense for
arbitrary topological spaces: if X and Y are topological spaces, a continuous map
F W X ! Y is called a topological immersion if every point of X has a neighbor-
hood U such that F jU is a topological embedding. Thus, every smooth immersion
is a topological immersion; but, just as with embeddings, a topological immersion
that happens to be smooth need not be a smooth immersion (cf. Example 4.18).

Submersions

One of the most important applications of the rank theorem is to vastly expand our
understanding of the properties of submersions. If � W M ! N is any continuous
map, a section of � is a continuous right inverse for � , i.e., a continuous map
� W N !M such that � ı � D IdN :

A local section of � is a continuous map � W U !M defined on some open subset
U � N and satisfying the analogous relation � ı � D IdU . Many of the important
properties of smooth submersions follow from the fact that they admit an abundance
of smooth local sections.

Theorem 4.26 (Local Section Theorem). Suppose M and N are smooth mani-
folds and � W M !N is a smooth map. Then � is a smooth submersion if and only
if every point of M is in the image of a smooth local section of � .

Proof. First suppose that � is a smooth submersion. Given p 2 M; let q D
�.p/ 2 N . By the rank theorem, we can choose smooth coordinates

�
x1; : : : ; xm

�

centered at p and
�
y1; : : : ; yn

�
centered at q in which � has the coordinate repre-

sentation �
�
x1; : : : ; xn; xnC1; : : : ; xm

�
D
�
x1; : : : ; xn

�
. If " is a sufficiently small

positive number, the coordinate cube

C" D
˚
x W
ˇ̌
xi
ˇ̌
< " for i D 1; : : : ;m

�
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Fig. 4.4 Local section of a submersion

is a neighborhood of p whose image under � is the cube

C 0" D
˚
y W
ˇ̌
yi
ˇ̌
< " for i D 1; : : : ; n

�
:

The map � W C 0"! C" whose coordinate representation is

�
�
x1; : : : ; xn

�
D
�
x1; : : : ; xn; 0; : : : ; 0

�

is a smooth local section of � satisfying �.q/D p (Fig. 4.4).
Conversely, assume each point of M is in the image of a smooth local section.

Given p 2M; let � W U !M be a smooth local section such that �.q/D p, where
q D �

�
�.q/

�
D �.p/ 2 N . The equation � ı � D IdU implies that d�p ı d�q D

IdTqN , which in turn implies that d�p is surjective. �

This theorem motivates the following definition: if � W X ! Y is a continuous
map, we say � is a topological submersion if every point of X is in the image of
a (continuous) local section of � . The preceding theorem shows that every smooth
submersion is a topological submersion.

I Exercise 4.27. Give an example of a smooth map that is a topological submersion
but not a smooth submersion.

Proposition 4.28 (Properties of Smooth Submersions). Let M and N be smooth
manifolds, and suppose � W M ! N is a smooth submersion. Then � is an open
map, and if it is surjective it is a quotient map.

Proof. SupposeW is an open subset ofM and q is a point of �.W /. For any p 2W
such that �.p/D q, there is a neighborhood U of q on which there exists a smooth
local section � W U !M of � satisfying �.q/D p. For each y 2 ��1.W /, the fact
that �.y/ 2W implies y D �

�
�.y/

�
2 �.W /. Thus ��1.W / is a neighborhood of q

contained in �.W /, which implies that �.W / is open. The second assertion follows
from the first because every surjective open continuous map is a quotient map. �
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The next three theorems provide important tools that we will use frequently
when studying submersions. Notice the similarity between these results and The-
orems A.27(a), A.30, and A.31. This demonstrates that surjective smooth submer-
sions play a role in smooth manifold theory analogous to the role of quotient maps
in topology. The first theorem generalizes the result of Exercise 4.10(b).

Theorem 4.29 (Characteristic Property of Surjective Smooth Submersions).
Suppose M and N are smooth manifolds, and � W M !N is a surjective smooth
submersion. For any smooth manifold P with or without boundary, a map
F W N ! P is smooth if and only if F ı � is smooth:

M

N

�
�

F
� P:

F ı �
�

Proof. If F is smooth, then F ı � is smooth by composition. Conversely, suppose
that F ı � is smooth, and let q 2 N be arbitrary. Since � is surjective, there is
a point p 2 ��1.q/, and then the local section theorem guarantees the existence
of a neighborhood U of q and a smooth local section � W U !M of � such that
�.q/D p. Then � ı � D IdU implies

F jU D F jU ı IdU D F jU ı .� ı �/D .F ı �/ ı �;

which is a composition of smooth maps. This shows that F is smooth in a neigh-
borhood of each point, so it is smooth. �

Problem 4-7 explains the sense in which this property is “characteristic.”
The next theorem gives a very general sufficient condition under which a smooth

map can be “pushed down” by a submersion.

Theorem 4.30 (Passing Smoothly to the Quotient). Suppose M and N are
smooth manifolds and � W M ! N is a surjective smooth submersion. If P is a
smooth manifold with or without boundary and F W M ! P is a smooth map that is
constant on the fibers of � , then there exists a unique smooth map zF W N ! P such
that zF ı � D F :

M

N

�
�

zF

� P:

F
�

Proof. Because a surjective smooth submersion is a quotient map, Theorem A.30
shows that there exists a unique continuous map zF W N ! P satisfying zF ı� D F .
It is smooth by Theorem 4.29. �

Finally, we have the following uniqueness result.

Theorem 4.31 (Uniqueness of Smooth Quotients). Suppose that M; N1, and N2
are smooth manifolds, and �1 W M ! N1 and �2 W M ! N2 are surjective smooth
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submersions that are constant on each other’s fibers. Then there exists a unique
diffeomorphism F W N1!N2 such that F ı �1 D �2:

M

N1
F

�

�1

�

N2:

�2�

I Exercise 4.32. Prove Theorem 4.31.

Smooth Covering Maps

In this section, we introduce a class of local diffeomorphisms that play a significant
role in smooth manifold theory. You are probably already familiar with the notion
of a covering map between topological spaces: this is a surjective continuous map
� W E !M between connected, locally path-connected spaces with the property
that each point of M has a neighborhood U that is evenly covered, meaning that
each component of ��1.U / is mapped homeomorphically onto U by � . The basic
properties of covering maps are summarized in Appendix A (pp. 615–616).

In the context of smooth manifolds, it is useful to introduce a slightly more re-
strictive type of covering map. If E and M are connected smooth manifolds with
or without boundary, a map � W E !M is called a smooth covering map if � is
smooth and surjective, and each point in M has a neighborhood U such that each
component of ��1.U / is mapped diffeomorphically onto U by � . In this context we
also say that U is evenly covered. The space M is called the base of the covering,
and E is called a covering manifold of M . If E is simply connected, it is called the
universal covering manifold of M .

To distinguish this new definition from the previous one, we often call an ordi-
nary (not necessarily smooth) covering map a topological covering map. A smooth
covering map is, in particular, a topological covering map. But as with other types
of maps we have studied in this chapter, a smooth covering map is more than just
a topological covering map that happens to be smooth: the definition requires in
addition that the restriction of � to each component of the preimage of an evenly
covered set be a diffeomorphism, not just a smooth homeomorphism.

Proposition 4.33 (Properties of Smooth Coverings).

(a) Every smooth covering map is a local diffeomorphism, a smooth submersion,
an open map, and a quotient map.

(b) An injective smooth covering map is a diffeomorphism.
(c) A topological covering map is a smooth covering map if and only if it is a local

diffeomorphism.

I Exercise 4.34. Prove Proposition 4.33.

Example 4.35 (Smooth Covering Maps). The map " W R! S1 defined in Ex-
ample 2.13(b) is a topological covering map and a local diffeomorphism (see also
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Example 4.11), so it is a smooth covering map. Similarly, the map "n W Rn! Tn of
Example 2.13(c) is a smooth covering map. For each n� 1, the map q W Sn!RPn

defined in Example 2.13(f) is a two-sheeted smooth covering map (see Prob-
lem 4-10). //

Because smooth covering maps are surjective smooth submersions, all of the
results in the preceding section about smooth submersions can be applied to them.
For example, Theorem 4.30 is a particularly useful tool for defining a smooth map
out of the base of a covering space. See Problems 4-12 and 4-13 for examples of
this technique.

For smooth covering maps, the local section theorem can be strengthened.

Proposition 4.36 (Local Section Theorem for Smooth Covering Maps). Sup-
pose E and M are smooth manifolds with or without boundary, and � W E!M is
a smooth covering map. Given any evenly covered open subset U �M; any q 2 U ,
and any p in the fiber of � over q, there exists a unique smooth local section
� W U !E such that �.q/D p.

Proof. Suppose U �M is evenly covered, q 2 U , and p 2 ��1.q/. Let zU0 be the
component of ��1.U / containing p. Since the restriction of � to zU0 is a diffeomor-
phism onto U , the map � D

�
�j zU0

��1
is the required smooth local section.

To prove uniqueness, suppose � 0 W U !E is any other smooth local section sat-
isfying � 0.q/D p. Since U is connected, � 0.U / is contained in the component zU0
containing p. Because � 0 is a right inverse for the bijective map �j zU0 , it must be
equal to its inverse, and therefore equal to � . �

I Exercise 4.37. Suppose � W E!M is a smooth covering map. Show that every
local section of � is smooth.

I Exercise 4.38. Suppose E1; : : : ;Ek and M1; : : : ;Mk are smooth manifolds
(without boundary), and �i W Ei !Mi is a smooth covering map for each i D 1; : : : ; k.
Show that �1 � � � � ��k W E1 � � � � �Ek!M1 � � � � �Mk is a smooth covering map.

I Exercise 4.39. Suppose � W E !M is a smooth covering map. Since � is also
a topological covering map, there is a potential ambiguity about what it means for a
subset U �M to be evenly covered: does � map the components of ��1.U / diffeo-
morphically onto U , or merely homeomorphically? Show that the two concepts are
equivalent: if U �M is evenly covered in the topological sense, then � maps each
component of ��1.U / diffeomorphically onto U .

Proposition 4.40 (Covering Spaces of Smooth Manifolds). Suppose M is a con-
nected smooth n-manifold, and � W E !M is a topological covering map. Then
E is a topological n-manifold, and has a unique smooth structure such that � is a
smooth covering map.

Proof. Because � is a local homeomorphism, E is locally Euclidean. To show that
it is Hausdorff, let p1 and p2 be distinct points in E . If �.p1/D �.p2/ and U �M
is an evenly covered open subset containing �.p1/, then the components of ��1.U /
containing p1 and p2 are disjoint open subsets of E that separate p1 and p2. On
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Fig. 4.5 Smooth compatibility of charts on a covering manifold

the other hand, if �.p1/¤ �.p2/, there are disjoint open subsets U1;U2 �M con-
taining �.p1/ and �.p2/, respectively, and then ��1.U1/ and ��1.U2/ are disjoint
open subsets of E containing p1 and p2. Thus E is Hausdorff.

To show that E is second-countable, we will show first that each fiber of � is
countable. Given q 2M and an arbitrary point p0 2 ��1.q/, we will construct a
surjective map ˇ W �1.M;q/! ��1.q/; since �1.M;q/ is countable by Proposi-
tion 1.16, this suffices. Let Œf � 2 �1.M;q/ be the path class of an arbitrary loop
f W Œ0; 1�!M based at q. The path-lifting property of covering maps (Proposi-
tion A.77(b)) guarantees that there is a lift zf W Œ0; 1�!E of f starting at p0, and the
monodromy theorem (Proposition A.77(c)) shows that the endpoint zf .1/ 2 ��1.q/
depends only on the path class of f , so it makes sense to define ˇŒf �D zf .1/. To
see that ˇ is surjective, just note that for any point p 2 ��1.q/, there is a path zf in
E from p0 to p, and then f D � ı zf is a loop in M such that pD ˇŒf �.

The collection of all evenly covered open subsets is an open cover of M; and
therefore has a countable subcover fUig. For any given i , each component of
��1.Ui / contains exactly one point in each fiber over Ui , so ��1.Ui / has count-
ably many components. The collection of all components of all sets of the form
��1.Ui / is thus a countable open cover of E; since each such component is second-
countable, it follows from Exercise A.22 thatE is second-countable. This completes
the proof that E is a topological manifold.

To construct a smooth structure on E , suppose p is any point in E , and
let U be an evenly covered neighborhood of �.p/. After shrinking U if nec-
essary, we may assume also that it is the domain of a smooth coordinate map
' W U ! Rn (see Fig. 4.5).If zU is the component of ��1.U / containing p, and
z' D ' ı �j zU W

zU !Rn, then
�
zU ; z'

�
is a chart on E . If two such charts

�
zU ; z'

�
and
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�
zV ; z 

�
overlap, the transition map can be written

z ı z'�1 D
�
 ı �j zU\ zV

�
ı
�
' ı �j zU\ zV

��1

D  ı
�
�j zU\ zV

�
ı
�
�j zU\ zV

��1
ı '�1

D  ı '�1;

which is smooth. Thus the collection of all such charts defines a smooth structure
on E . The uniqueness of this smooth structure is left to the reader (Problem 4-9).

Finally, � is a smooth covering map because its coordinate representation in
terms of any pair of charts

�
zU ; z'

�
and .U;'/ constructed above is the identity. �

Here is the analogous result for manifolds with boundary.

Proposition 4.41 (Covering Spaces of Smooth Manifolds with Boundary). Sup-
pose M is a connected smooth n-manifold with boundary, and � W E !M is a
topological covering map. Then E is a topological n-manifold with boundary such
that @E D ��1.@M/, and it has a unique smooth structure such that � is a smooth
covering map.

I Exercise 4.42. Prove the preceding proposition.

Corollary 4.43 (Existence of a Universal Covering Manifold). If M is a con-
nected smooth manifold, there exists a simply connected smooth manifold �M , called
the universal covering manifold of M , and a smooth covering map � W �M !M .

The universal covering manifold is unique in the following sense: if �M 0 is any other
simply connected smooth manifold that admits a smooth covering map � 0 W �M 0!
M; then there exists a diffeomorphism ˚ W �M ! �M 0 such that � 0 ı˚ D � .

I Exercise 4.44. Prove the preceding corollary.

I Exercise 4.45. Generalize the preceding corollary to smooth manifolds with
boundary.

There are not many simple criteria for determining whether a given map is a
smooth covering map, even if it is known to be a surjective local diffeomorphism.
The following proposition gives one useful sufficient criterion. (It is not necessary,
however; see Problem 4-11.)

Proposition 4.46. Suppose E and M are nonempty connected smooth manifolds
with or without boundary. If � W E!M is a proper local diffeomorphism, then �
is a smooth covering map.

Proof. Because � is a local diffeomorphism, it is an open map, and because it is
proper, it is a closed map (Theorem A.57). Thus �.E/ is both open and closed
in M . Since it is obviously nonempty, it is all of M; so � is surjective.
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Fig. 4.6 A proper local diffeomorphism is a covering map

Let q 2 M be arbitrary. Since � is a local diffeomorphism, each point of
��1.q/ has a neighborhood on which � is injective, so ��1.q/ is a discrete
subset of E . Since � is proper, ��1.q/ is also compact, so it is finite. Write
��1.q/D fp1; : : : ; pkg. For each i , there exists a neighborhood Vi of pi on which
� is a diffeomorphism onto an open subset Ui �M . Shrinking each Vi if necessary,
we may assume also that Vi \ Vj D¿ for i ¤ j .

Set U D U1\ � � �\Uk (Fig. 4.6), which is a neighborhood of q. Then U satisfies

U � Ui for each i: (4.8)

Because K D E X .V1 [ � � � [ Vk/ is closed in E and � is a closed map, �.K/ is
closed in M . Replacing U by U X �.K/, we can assume that U also satisfies

��1.U /� V1 [ � � � [ Vk : (4.9)

Finally, after replacing U by the connected component of U containing q, we can
assume that U is connected and still satisfies (4.8) and (4.9). We will show that U
is evenly covered.

Let zVi D ��1.U / \ Vi . By virtue of (4.9), ��1.U / D zV1 [ � � � [ zVk . Because
� W Vi !Ui is a diffeomorphism, (4.8) implies that � W zVi ! U is still a diffeomor-
phism, and in particular zVi is connected. Because zV1; : : : ; zVk are disjoint connected
open subsets of ��1.U /, they are exactly the components of ��1.U /. �

Problems

4-1. Use the inclusion map Hn ,!Rn to show that Theorem 4.5 does not extend
to the case in which M is a manifold with boundary. (Used on p. 80.)
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4-2. Suppose M is a smooth manifold (without boundary), N is a smooth man-
ifold with boundary, and F W M ! N is smooth. Show that if p 2M is a
point such that dFp is nonsingular, then F.p/ 2 IntN . (Used on pp. 80, 87.)

4-3. Formulate and prove a version of the rank theorem for a map of constant rank
whose domain is a smooth manifold with boundary. [Hint: after extending F
arbitrarily as we did in the proof of Theorem 4.15, follow through the proof
of the rank theorem until the point at which the constant-rank hypothesis
is used, and then explain how to modify the extended map so that it has
constant rank.]

4-4. Let � W R! T2 be the curve of Example 4.20. Show that the image set �.R/
is dense in T2. (Used on pp. 502, 542.)

4-5. Let CPn denote the n-dimensional complex projective space, as defined in
Problem 1-9.
(a) Show that the quotient map � W CnC1 X f0g ! CPn is a surjective

smooth submersion.
(b) Show that CP1 is diffeomorphic to S2.
(Used on pp. 172, 560.)

4-6. Let M be a nonempty smooth compact manifold. Show that there is no
smooth submersion F W M !Rk for any k > 0.

4-7. Suppose M and N are smooth manifolds, and � W M ! N is a surjective
smooth submersion. Show that there is no other smooth manifold structure
onN that satisfies the conclusion of Theorem 4.29; in other words, assuming
that zN represents the same set as N with a possibly different topology and
smooth structure, and that for every smooth manifold P with or without
boundary, a map F W zN ! P is smooth if and only if F ı� is smooth, show
that IdN is a diffeomorphism between N and zN . [Remark: this shows that
the property described in Theorem 4.29 is “characteristic” in the same sense
as that in which Theorem A.27(a) is characteristic of the quotient topology.]

4-8. This problem shows that the converse of Theorem 4.29 is false. Let
� W R2 ! R be defined by �.x;y/ D xy. Show that � is surjective and
smooth, and for each smooth manifold P , a map F W R! P is smooth if
and only if F ı � is smooth; but � is not a smooth submersion.

4-9. LetM be a connected smooth manifold, and let � W E!M be a topological
covering map. Complete the proof of Proposition 4.40 by showing that there
is only one smooth structure on E such that � is a smooth covering map.
[Hint: use the existence of smooth local sections.]

4-10. Show that the map q W Sn! RPn defined in Example 2.13(f) is a smooth
covering map. (Used on p. 550.)

4-11. Show that a topological covering map is proper if and only if its fibers are
finite, and therefore the converse of Proposition 4.46 is false.
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4-12. Using the covering map "2 W R2! T2 (see Example 4.35), show that the
immersion X W R2! R3 defined in Example 4.2(d) descends to a smooth
embedding of T2 into R3. Specifically, show that X passes to the quotient
to define a smooth map zX W T2! R3, and then show that zX is a smooth
embedding whose image is the given surface of revolution.

4-13. Define a map F W S2 ! R4 by F.x;y; z/ D
�
x2 � y2; xy;xz;yz

�
. Using

the smooth covering map of Example 2.13(f) and Problem 4-10, show that
F descends to a smooth embedding of RP2 into R4.



Chapter 5
Submanifolds

Many familiar manifolds appear naturally as subsets of other manifolds. We have
already seen that open subsets of smooth manifolds can be viewed as smooth man-
ifolds in their own right; but there are many interesting examples beyond the open
ones. In this chapter we explore smooth submanifolds, which are smooth manifolds
that are subsets of other smooth manifolds. As you will soon discover, the situation
is quite a bit more subtle than the analogous theory of topological subspaces.

We begin by defining the most important type of smooth submanifolds, called
embedded submanifolds. These have the subspace topology inherited from their con-
taining manifold, and turn out to be exactly the images of smooth embeddings. As
we will see in this chapter, they are modeled locally on linear subspaces of Euclidean
spaces. Because embedded submanifolds are most often presented as level sets of
smooth maps, we devote some time to analyzing the conditions under which level
sets are smooth submanifolds. We will see, for example, that level sets of constant-
rank maps (in particular, smooth submersions) are always embedded submanifolds.

Next, we introduce a more general kind of submanifolds, called immersed sub-
manifolds, which turn out to be the images of injective immersions. An immersed
submanifold looks locally like an embedded one, but globally it may have a topol-
ogy that is different from the subspace topology.

After introducing these basic concepts, we address two crucial technical ques-
tions about submanifolds: When is it possible to restrict the domain or codomain
of a smooth map to a smooth submanifold and still retain smoothness? How can
we identify the tangent space to a smooth submanifold as a subspace of the tangent
space of its ambient manifold? Then we show how the theory of submanifolds can
be generalized to the case of submanifolds with boundary.

Embedded Submanifolds

SupposeM is a smooth manifold with or without boundary. An embedded subman-
ifold of M is a subset S �M that is a manifold (without boundary) in the subspace
topology, endowed with a smooth structure with respect to which the inclusion map
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S ,!M is a smooth embedding. Embedded submanifolds are also called regular
submanifolds by some authors.

If S is an embedded submanifold of M; the difference dimM � dimS is called
the codimension of S in M , and the containing manifold M is called the ambi-
ent manifold for S . An embedded hypersurface is an embedded submanifold of
codimension 1. The empty set is an embedded submanifold of any dimension.

The easiest embedded submanifolds to understand are those of codimension 0.
Recall that in Example 1.26, for any smooth manifold M we defined an open sub-
manifold of M to be any open subset with the subspace topology and with the
smooth charts obtained by restricting those of M .

Proposition 5.1 (Open Submanifolds). SupposeM is a smooth manifold. The em-
bedded submanifolds of codimension 0 in M are exactly the open submanifolds.

Proof. SupposeU �M is an open submanifold, and let 	 W U ,!M be the inclusion
map. Example 1.26 showed that U is a smooth manifold of the same dimension
as M; so it has codimension 0. In terms of the smooth charts for U constructed in
Example 1.26, 	 is represented in coordinates by an identity map, so it is a smooth
immersion; and because U has the subspace topology, 	 is a smooth embedding.
Thus U is an embedded submanifold. Conversely, suppose U is any codimension-0
embedded submanifold of M . Then inclusion 	 W U ,!M is a smooth embedding
by definition, and therefore it is a local diffeomorphism by Proposition 4.8, and an
open map by Proposition 4.6. Thus U is an open subset of M . �

The next few propositions demonstrate several other ways to produce embedded
submanifolds.

Proposition 5.2 (Images of Embeddings as Submanifolds). Suppose M is
a smooth manifold with or without boundary, N is a smooth manifold, and
F W N !M is a smooth embedding. Let S D F.N/. With the subspace topology,
S is a topological manifold, and it has a unique smooth structure making it into an
embedded submanifold of M with the property that F is a diffeomorphism onto its
image.

Proof. If we give S the subspace topology that it inherits fromM; then the assump-
tion that F is an embedding means that F can be considered as a homeomorphism
from N onto S , and thus S is a topological manifold. We give S a smooth structure
by taking the smooth charts to be those of the form

�
F.U /;' ıF �1

�
, where .U;'/

is any smooth chart for N ; smooth compatibility of these charts follows immedi-
ately from the smooth compatibility of the corresponding charts for N . With this
smooth structure on S , the map F is a diffeomorphism onto its image (essentially
by definition), and this is obviously the only smooth structure with this property. The
inclusion map S ,!M is equal to the composition of a diffeomorphism followed
by a smooth embedding:

S
F�1� N

F� M; (5.1)

and therefore it is a smooth embedding. �



100 5 Submanifolds

Fig. 5.1 A graph is an embedded submanifold

Since every embedded submanifold is the image of a smooth embedding (namely
its own inclusion map), the previous proposition shows that embedded submanifolds
are exactly the images of smooth embeddings.

Proposition 5.3 (Slices of Product Manifolds). Suppose M and N are smooth
manifolds. For each p 2N , the subset M � fpg (called a slice of the product man-
ifold) is an embedded submanifold of M �N diffeomorphic to M .

Proof. The set M � fpg is the image of the smooth embedding x 7! .x;p/. �

Proposition 5.4 (Graphs as Submanifolds). Suppose M is a smooth m-manifold
(without boundary), N is a smooth n-manifold with or without boundary, U �M
is open, and f W U ! N is a smooth map. Let �.f / �M � N denote the graph
of f :

�.f /D
˚
.x; y/ 2M �N W x 2 U; y D f .x/

�
:

Then �.f / is an embedded m-dimensional submanifold of M �N (see Fig. 5.1).

Proof. Define a map �f W U !M �N by

�f .x/D
�
x;f .x/

�
: (5.2)

It is a smooth map whose image is �.f /. Because the projection �M W M �N !M

satisfies �M ı �f .x/D x for x 2U , the composition d.�M /.x;f .x// ı d.�f /x is the
identity on TxM for each x 2 U . Thus, d.�f /x is injective, so �f is a smooth
immersion. It a homeomorphism onto its image because �M j� .f / is a continuous
inverse for it. Thus, �.f / is an embedded submanifold diffeomorphic to U . �

For some purposes, merely being an embedded submanifold is not quite a strong
enough condition. (See, e.g., Lemma 5.34 below.) An embedded submanifold S �
M is said to be properly embedded if the inclusion S ,!M is a proper map.

Proposition 5.5. Suppose M is a smooth manifold with or without boundary and
S �M is an embedded submanifold. Then S is properly embedded if and only if it
is a closed subset of M .
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Proof. If S is properly embedded, then it is closed by Theorem A.57. Conversely,
if S is closed in M; then Proposition A.53(c) shows that the inclusion map S ,!M

is proper. �
Corollary 5.6. Every compact embedded submanifold is properly embedded.

Proof. Compact subsets of Hausdorff spaces are closed. �
Graphs of globally defined functions are common examples of properly embed-

ded submanifolds.

Proposition 5.7 (Global Graphs Are Properly Embedded). Suppose M is
a smooth manifold, N is a smooth manifold with or without boundary, and
f W M ! N is a smooth map. With the smooth manifold structure of Proposi-
tion 5.4, �.f / is properly embedded in M �N .

Proof. In this case, the projection �M W M � N !M is a smooth left inverse for
the embedding �f W M !M �N defined by (5.2). Thus �f is proper by Proposi-
tion A.53. �

Slice Charts for Embedded Submanifolds

As our next theorem will show, embedded submanifolds are modeled locally on the
standard embedding of Rk into Rn, identifying Rk with the subspace

˚�
x1; : : : ; xk; xkC1; : : : ; xn

�
W xkC1 D � � � D xn D 0

�
�Rn:

Somewhat more generally, if U is an open subset of Rn and k 2 f0; : : : ; ng, a k-
dimensional slice of U (or simply a k-slice) is any subset of the form

S D
˚�
x1; : : : ; xk ; xkC1; : : : ; xn

�
2 U W xkC1 D ckC1; : : : ; xn D cn

�

for some constants ckC1; : : : ; cn. (When k D n, this just means S D U .) Clearly,
every k-slice is homeomorphic to an open subset of Rk . (Sometimes it is convenient
to consider slices defined by setting some subset of the coordinates other than the
last ones equal to constants. The meaning should be clear from the context.)

Let M be a smooth n-manifold, and let .U;'/ be a smooth chart on M . If S
is a subset of U such that '.S/ is a k-slice of '.U /, then we say that S is a k-
slice of U . (Although in general we allow our slices to be defined by arbitrary
constants ckC1; : : : ; cn, it is sometimes useful to have slice coordinates for which
the constants are all zero, which can easily be achieved by subtracting a constant
from each coordinate function.) Given a subset S �M and a nonnegative integer k,
we say that S satisfies the local k-slice condition if each point of S is contained
in the domain of a smooth chart .U;'/ for M such that S \ U is a single k-slice
in U . Any such chart is called a slice chart for S in M , and the corresponding
coordinates

�
x1; : : : ; xn

�
are called slice coordinates.

Theorem 5.8 (Local Slice Criterion for Embedded Submanifolds). Let M be a
smooth n-manifold. If S �M is an embedded k-dimensional submanifold, then S



102 5 Submanifolds

Fig. 5.2 A chart for a subset satisfying the k-slice condition

satisfies the local k-slice condition. Conversely, if S �M is a subset that satisfies
the local k-slice condition, then with the subspace topology, S is a topological man-
ifold of dimension k, and it has a smooth structure making it into a k-dimensional
embedded submanifold of M .

Proof. First suppose that S �M is an embedded k-dimensional submanifold. Since
the inclusion map S ,!M is an immersion, the rank theorem shows that for any
p 2 S there are smooth charts .U;'/ for S (in its given smooth manifold structure)
and .V; / for M; both centered at p, in which the inclusion map 	jU W U ! V has
the coordinate representation

�
x1; : : : ; xk

�
7!
�
x1; : : : ; xk ; 0; : : : ; 0

�
:

Choose " > 0 small enough that both U and V contain coordinate balls of radius "
centered at p, and denote these coordinate balls by U0 � U and V0 � V . It follows
that U0 D 	.U0/ is exactly a single slice in V0. Because S has the subspace topology,
the fact that U0 is open in S means that there is an open subset W �M such that
U0 DW \ S . Setting V1 D V0 \W , we obtain a smooth chart

�
V1; jV1

�
for M

containing p such that V1 \ S D U0, which is a single slice of V1.
Conversely, suppose S satisfies the local k-slice condition. With the subspace

topology, S is Hausdorff and second-countable, because both properties are inher-
ited by subspaces. To see that S is locally Euclidean, we construct an atlas. The basic
idea of the construction is that if

�
x1; : : : ; xn

�
are slice coordinates for S in M; we

can use
�
x1; : : : ; xk

�
as local coordinates for S .

For this proof, let � W Rn!Rk denote the projection onto the first k coordinates.
Let .U;'/ be any slice chart for S in M (Fig. 5.2), and define

V D U \ S; yV D � ı '.V /;  D � ı 'jV W V ! yV :

By definition of slice charts, '.V / is the intersection of '.U / with a certain k-slice
A�Rn defined by setting xkC1 D ckC1; : : : ; xn D cn, and therefore '.V / is open
in A. Since �jA is a diffeomorphism from A to Rk , it follows that yV is open in Rk .
Moreover,  is a homeomorphism because it has a continuous inverse given by
'�1 ı j j yV , where j W Rk!Rn is the map

j
�
x1; : : : ; xk

�
D
�
x1; : : : ; xk ; ckC1; : : : ; cn

�
:
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Fig. 5.3 Smooth compatibility of slice charts

Thus S is a topological k-manifold, and the inclusion map 	 W S ,!M is a topolog-
ical embedding.

To put a smooth structure on S , we need to verify that the charts constructed
above are smoothly compatible. Suppose .U;'/ and .U 0; '0/ are two slice charts
for S in M; and let .V; /, .V 0; 0/ be the corresponding charts for S . The transi-
tion map is given by  0 ı  �1 D � ı '0 ı '�1 ı j , which is a composition of four
smooth maps (Fig. 5.3). Thus the atlas we have constructed is in fact a smooth atlas,
and it defines a smooth structure on S . In terms of a slice chart .U;'/ for M and
the corresponding chart .V; / for S , the inclusion map S ,!M has a coordinate
representation of the form

�
x1; : : : ; xk

�
7!
�
x1; : : : ; xk; ckC1; : : : ; cn

�
;

which is a smooth immersion. Since the inclusion is a smooth immersion and a
topological embedding, S is an embedded submanifold. �

Notice that the local slice condition for S �M is a condition on the subset S
only; it does not presuppose any particular topology or smooth structure on S . As
we will see later (Theorem 5.31), the smooth manifold structure constructed in the
preceding theorem is the unique one in which S can be considered as a submanifold,
so a subset satisfying the local slice condition is an embedded submanifold in only
one way.

Example 5.9 (Spheres as Submanifolds). For any n� 0, Sn is an embedded sub-
manifold of RnC1, because it is locally the graph of a smooth function: as we
showed in Example 1.4, the intersection of Sn with the open subset

˚
x W xi > 0

�

is the graph of the smooth function

xi D f
�
x1; : : : ; xi�1; xiC1; : : : ; xnC1

�
;

where f W Bn!R is given by f .u/D
p
1� juj2. Similarly, the intersection of Sn

with
˚
x W xi < 0

�
is the graph of �f . Since every point in Sn is in one of these

sets, Sn satisfies the local n-slice condition and is thus an embedded submanifold of
RnC1. The smooth structure thus induced on Sn is the same as the one we defined
in Chapter 1: in fact, the coordinates for Sn determined by these slice charts are
exactly the graph coordinates defined in Example 1.31. //
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Fig. 5.4 A level set

I Exercise 5.10. Show that spherical coordinates (Example C.38) form a slice chart
for S2 in R3 on any open subset where they are defined.

IfM is a smooth manifold with nonempty boundary and S �M is an embedded
submanifold, then S might intersect @M in very complicated ways, so we will not
attempt to prove any general results about the existence of slice charts for S in M
in that case.However, in the special case in which the submanifold is the boundary
of M itself, the boundary charts for M play the role of slice charts for @M in M;
and we do have the following result.

Theorem 5.11. IfM is a smooth n-manifold with boundary, then with the subspace
topology, @M is a topological .n � 1/-dimensional manifold (without boundary),
and has a smooth structure such that it is a properly embedded submanifold of M .

Proof. See Problem 5-2. �
We will see later that the smooth structure on @M is unique. (See Theorem 5.31.)
In order to analyze more general submanifolds of M when M has a boundary,

the most effective technique is often to find an embedding ofM into a larger smooth
manifold �M without boundary, and apply the preceding results in that context. Ex-
ample 9.32 will show that every smooth manifold with boundary can be embedded
in such a way.

Level Sets

In practice, embedded submanifolds are most often presented as solution sets of
equations or systems of equations. Extending the terminology we introduced in Ex-
ample 1.32, if ˚ W M ! N is any map and c is any point of N , we call the set
˚�1.c/ a level set of ˚ (Fig. 5.4). (In the special case N DRk and c D 0, the level
set ˚�1.0/ is usually called the zero set of ˚ .)

It is easy to find level sets of smooth functions that are not smooth submanifolds.
For instance, consider the three smooth functions ;˚;� W R2!R defined by

.x;y/D x2 � y; ˚.x;y/D x2 � y2; �.x;y/D x2 � y3:

(See Fig. 5.5.) Although the zero set of  (a parabola) is an embedded submanifold
of R2 because it is the graph of the smooth function f .x/D x2, Problem 5-11 asks
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you to show that neither the zero set of˚ nor that of � is an embedded submanifold.
In fact, without further assumptions on the smooth function, the situation is about
as bad as could be imagined: as Theorem 2.29 showed, every closed subset of M
can be expressed as the zero set of some smooth real-valued function.

The argument we used in Example 1.32 (based on the implicit function theorem)
to show that certain level sets in Rn are smooth manifolds can be adapted to show
that those level sets are in fact embedded submanifolds of Rn. But using the rank
theorem, we can prove something much stronger.

Theorem 5.12 (Constant-Rank Level Set Theorem). Let M and N be smooth
manifolds, and let ˚ W M ! N be a smooth map with constant rank r . Each level
set of ˚ is a properly embedded submanifold of codimension r in M .

Proof. Write mD dimM; nD dimN , and k Dm� r . Let c 2N be arbitrary, and
let S denote the level set ˚�1.c/�M . From the rank theorem, for each p 2 S there
are smooth charts .U;'/ centered at p and .V; / centered at c D˚.p/ in which ˚
has a coordinate representation of the form (4.1), and therefore S \U is the slice

˚�
x1; : : : ; xr ; xrC1; : : : ; xm

�
2U W x1 D � � � D xr D 0

�
:

Thus S satisfies the local k-slice condition, so it is an embedded submanifold of
dimension k. It is closed in M by continuity, so it is properly embedded by Propo-
sition 5.5. �

Corollary 5.13 (Submersion Level Set Theorem). If M and N are smooth mani-
folds and ˚ W M !N is a smooth submersion, then each level set of ˚ is a properly
embedded submanifold whose codimension is equal to the dimension of N .

Proof. Every smooth submersion has constant rank equal to the dimension of its
codomain. �

This result should be compared to the corresponding result in linear algebra: if
L W Rm! Rr is a surjective linear map, then the kernel of L is a linear subspace
of codimension r by the rank-nullity law. The vector equation Lx D 0 is equivalent
to r linearly independent scalar equations, each of which can be thought of as cutting
down one of the degrees of freedom in Rm, leaving a subspace of codimension r . In
the context of smooth manifolds, the analogue of a surjective linear map is a smooth
submersion, each of whose (local) component functions cuts down the dimension
by one.

Corollary 5.13 can be strengthened considerably, because we need only check
the submersion condition on the level set we are interested in. If ˚ W M ! N is a
smooth map, a point p 2M is said to be a regular point of ˚ if d p̊ W TpM !

T˚.p/N is surjective; it is a critical point of ˚ otherwise. This means, in particular,
that every point of M is critical if dimM < dimN , and every point is regular if and
only if F is a submersion. Note that the set of regular points of ˚ is always an open
subset of M by Proposition 4.1. A point c 2N is said to be a regular value of ˚ if
every point of the level set ˚�1.c/ is a regular point, and a critical value otherwise.
In particular, if ˚�1.c/D¿, then c is a regular value. Finally, a level set ˚�1.c/ is
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Fig. 5.5 Level sets may or may not be embedded submanifolds

called a regular level set if c is a regular value of ˚ ; in other words, a regular level
set is a level set consisting entirely of regular points of ˚ (points p such that d p̊

is surjective).

Corollary 5.14 (Regular Level Set Theorem). Every regular level set of a smooth
map between smooth manifolds is a properly embedded submanifold whose codi-
mension is equal to the dimension of the codomain.

Proof. Let ˚ W M ! N be a smooth map and let c 2 N be a regular value. The
set U of points p 2M where rankd p̊ D dimN is open in M by Proposition 4.1,
and contains ˚�1.c/ because of the assumption that c is a regular value. It follows
that ˚ jU W U !N is a smooth submersion, and the preceding corollary shows that
˚�1.c/ is an embedded submanifold of U . Since the composition of smooth em-
beddings ˚�1.c/ ,! U ,!M is again a smooth embedding, it follows that ˚�1.c/
is an embedded submanifold of M; and it is closed by continuity. �

It is worth noting that the previous corollary also applies to empty level sets,
which are both regular level sets and properly embedded submanifolds.

Example 5.15 (Spheres). Now we can give a much easier proof that Sn is an
embedded submanifold of RnC1. The sphere is a regular level set of the smooth
function f W RnC1!R given by f .x/D jxj2, since dfx.v/D 2

P
i x
ivi , which is

surjective except at the origin. //

Not all embedded submanifolds can be expressed as level sets of smooth submer-
sions. However, the next proposition shows that every embedded submanifold is at
least locally of this form.

Proposition 5.16. Let S be a subset of a smooth m-manifold M . Then S is an
embedded k-submanifold of M if and only if every point of S has a neighborhood
U in M such that U \ S is a level set of a smooth submersion ˚ W U !Rm�k .

Proof. First suppose S is an embedded k-submanifold. If
�
x1; : : : ; xm

�
are slice

coordinates for S on an open subset U �M; the map ˚ W U ! Rm�k given in
coordinates by ˚.x/D

�
xkC1; : : : ; xm

�
is easily seen to be a smooth submersion,

one of whose level sets is S \ U (Fig. 5.6). Conversely, suppose that around every
point p 2 S there is a neighborhood U and a smooth submersion ˚ W U ! Rm�k
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Fig. 5.6 An embedded submanifold is locally a level set

such that S \U is a level set of ˚ . By the submersion level set theorem, S \U is
an embedded submanifold of U , so it satisfies the local slice condition; it follows
that S is itself an embedded submanifold of M . �

If S �M is an embedded submanifold, a smooth map ˚ W M ! N such that
S is a regular level set of ˚ is called a defining map for S . In the special case
N DRm�k (so that ˚ is a real-valued or vector-valued function), it is usually called
a defining function. Example 5.15 shows that f .x/D jxj2 is a defining function for
the sphere. More generally, if U is an open subset ofM and ˚ W U !N is a smooth
map such that S \ U is a regular level set of ˚ , then ˚ is called a local defining
map (or local defining function) for S . Proposition 5.16 says that every embedded
submanifold admits a local defining function in a neighborhood of each of its points.

In specific examples, finding a (local or global) defining function for a submani-
fold is usually just a matter of using geometric information about how the subman-
ifold is defined together with some computational ingenuity. Here is an example.

Example 5.17 (Surfaces of Revolution). Let H be the half-plane f.r; z/ W r > 0g,
and suppose C � H is an embedded 1-dimensional submanifold. The surface of
revolution determined by C is the subset SC �R3 given by

SC D
n
.x; y; z/ W

	p
x2C y2; z



2 C

o
:

The set C is called its generating curve (see Fig. 5.7). If ' W U ! R is any local
defining function for C in H , we get a local defining function ˚ for SC by

˚.x;y; z/D '
	p

x2C y2; z


;

defined on the open subset

zU D
n
.x; y; z/ W

	p
x2C y2; z



2U

o
�R3:

A computation shows that the Jacobian matrix of ˚ is

D˚.x;y; z/D

�
x

r

@'

@r
.r; z/

y

r

@'

@r
.r; z/

@'

@z
.r; z/

�
;
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Fig. 5.7 A surface of revolution

where we have written r D
p
x2C y2. At any point .x; y; z/ 2 SC , at least one of

the components of D˚.x;y; z/ is nonzero, so SC is a regular level set of ˚ and is
thus an embedded 2-dimensional submanifold of R3.

For a specific example, the doughnut-shaped torus of revolution D described
in Example 4.2(d) is the surface of revolution obtained from the circle .r � 2/2 C
z2 D 1. It is a regular level set of the function ˚.x;y; z/D

�p
x2C y2 � 2

�2
C z2,

which is smooth on R3 minus the z-axis. //

Immersed Submanifolds

Although embedded submanifolds are the most natural and common submanifolds
and suffice for most purposes, it is sometimes important to consider a more general
notion of submanifold. In particular, when we study Lie subgroups in Chapter 7 and
foliations in Chapter 19, we will encounter subsets of smooth manifolds that are
images of injective immersions, but not necessarily of embeddings. To see some of
the kinds of phenomena that occur, look back at the two examples we introduced
in Chapter 4 of sets that are images of injective immersions that are not embed-
dings: the figure-eight curve of Example 4.19 and the dense curve on the torus of
Example 4.20. Neither of these sets is an embedded submanifold (see Problems 5-4
and 5-5).

So as to have a convenient language for talking about examples like these, we
introduce the following definition. Let M be a smooth manifold with or without
boundary. An immersed submanifold of M is a subset S �M endowed with a
topology (not necessarily the subspace topology) with respect to which it is a topo-
logical manifold (without boundary), and a smooth structure with respect to which
the inclusion map S ,!M is a smooth immersion. As for embedded submanifolds,
we define the codimension of S in M to be dimM � dimS .

Every embedded submanifold is also an immersed submanifold. Because im-
mersed submanifolds are the more general of the two types of submanifolds, we
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adopt the convention that the term smooth submanifold without further qualifica-
tion means an immersed one, which includes an embedded submanifold as a special
case. Similarly, the term smooth hypersurface without qualification means an im-
mersed submanifold of codimension 1.

You should be aware that there are variations in how smooth submanifolds are
defined in the literature. Some authors reserve the unqualified term “submanifold”
to mean what we call an embedded submanifold. If there is room for confusion, it is
safest to specify explicitly which type of submanifold—embedded or immersed—is
meant. Even though both terms “smooth submanifold” and “immersed submani-
fold” encompass embedded ones as well, when we are considering general sub-
manifolds we sometimes use the phrase immersed or embedded submanifold as a
reminder that the discussion applies equally to the embedded case.

(Some authors define immersed submanifolds even more generally than we have,
as images of smooth immersions with no injectivity requirement. Such a subman-
ifold can have “self-crossings” at points where the immersion fails to be injective.
We do not consider such sets as submanifolds, but it is good to be aware that some
authors do.)

There are also various notions of submanifolds in the topological category. For
example, if M is a topological manifold, one could define an immersed topological
submanifold of M to be a subset S �M endowed with a topology such that it
is a topological manifold and such that the inclusion map is a topological immer-
sion. It is an embedded topological submanifold if the inclusion is a topological
embedding. To be entirely consistent with our convention of assuming by default
only continuity rather than smoothness, we would have to distinguish the types of
submanifolds we have defined in this chapter by calling them smooth embedded
submanifolds and smooth immersed submanifolds, respectively; but since we have
no reason to treat topological submanifolds in this book, for the sake of simplicity
let us agree that the terms embedded submanifold and immersed submanifold always
refer to the smooth kind.

Immersed submanifolds often arise in the following way.

Proposition 5.18 (Images of Immersions as Submanifolds). Suppose M is a
smooth manifold with or without boundary, N is a smooth manifold, and F W N !
M is an injective smooth immersion. Let S D F.N/. Then S has a unique topol-
ogy and smooth structure such that it is a smooth submanifold of M and such that
F W N ! S is a diffeomorphism onto its image.

Proof. The proof is very similar to that of Proposition 5.2, except that now we also
have to define the topology on S . We give S a topology by declaring a set U � S to
be open if and only if F �1.U /�N is open, and then give it a smooth structure by
taking the smooth charts to be those of the form

�
F.U /;' ı F �1

�
, where .U;'/ is

any smooth chart forN . As in the proof of Proposition 5.2, the smooth compatibility
condition follows from that for N . With this topology and smooth structure on S ,
the map F is a diffeomorphism onto its image, and these are the only topology and
smooth structure on S with this property. As in the embedding case, the inclusion
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S ,!M can be written as the composition

S
F�1� N

F� M I

in this case, the first map is a diffeomorphism and the second is a smooth immersion,
so the composition is a smooth immersion. �

Example 5.19 (The Figure-Eight and the Dense Curve on the Torus). Look back
at the two examples we introduced in Chapter 4 of injective smooth immersions that
are not embeddings: because the figure-eight of Example 4.19 and the dense curve
of Example 4.20 are images of injective smooth immersions, they are immersed
submanifolds when given appropriate topologies and smooth structures. As smooth
manifolds, they are diffeomorphic to R. They are not embedded submanifolds, be-
cause neither one has the subspace topology. In fact, their image sets cannot be made
into embedded submanifolds even if we are allowed to change their topologies and
smooth structures (see Problems 5-4 and 5-5). //

The following observation is sometimes useful when thinking about the topology
of an immersed submanifold.

I Exercise 5.20. Suppose M is a smooth manifold and S �M is an immersed sub-
manifold. Show that every subset of S that is open in the subspace topology is also
open in its given submanifold topology; and the converse is true if and only if S is
embedded.

Given a smooth submanifold that is known only to be immersed, it is often useful
to have simple criteria that guarantee that it is embedded. The next proposition gives
several such criteria.

Proposition 5.21. Suppose M is a smooth manifold with or without boundary,
and S �M is an immersed submanifold. If any of the following holds, then S is
embedded.

(a) S has codimension 0 in M .
(b) The inclusion map S �M is proper.
(c) S is compact.

Proof. Problem 5-3. �

Although many immersed submanifolds are not embedded, the next proposition
shows that the local structure of an immersed submanifold is the same as that of an
embedded one.

Proposition 5.22 (Immersed Submanifolds Are Locally Embedded). If M is a
smooth manifold with or without boundary, and S �M is an immersed submani-
fold, then for each p 2 S there exists a neighborhood U of p in S that is an embed-
ded submanifold of M .

Proof. Theorem 4.25 shows that each p 2 S has a neighborhood U in S such that
the inclusion 	jU W U ,!M is an embedding. �
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Fig. 5.8 An immersed submanifold is locally embedded

It is important to be clear about what this proposition does and does not say:
given an immersed submanifold S �M and a point p 2 S , it is possible to find a
neighborhood U of p (in S ) such that U is embedded; but it may not be possible to
find a neighborhood V of p in M such that V \ S is embedded (see Fig. 5.8).

Suppose S �M is an immersed k-dimensional submanifold. A local param-
etrization of S is a continuous map X W U !M whose domain is an open subset
U � Rk , whose image is an open subset of S , and which, considered as a map
into S , is a homeomorphism onto its image. It is called a smooth local parametri-
zation if it is a diffeomorphism onto its image (with respect to S ’s smooth manifold
structure). If the image of X is all of S , it is called a global parametrization.

Proposition 5.23. SupposeM is a smooth manifold with or without boundary, S �
M is an immersed k-submanifold, 	 W S ,!M is the inclusion map, and U is an
open subset of Rk . A map X W U !M is a smooth local parametrization of S if
and only if there is a smooth coordinate chart .V;'/ for S such that X D 	 ı '�1.
Therefore, every point of S is in the image of some local parametrization.

I Exercise 5.24. Prove the preceding proposition.

Example 5.25 (Graph Parametrizations). Suppose U � Rn is an open subset
and f W U ! Rk is a smooth function. The map �f W U ! Rn � Rk given by
�f .u/D .u;f .u// is a smooth global parametrization of �.f /, called a graph pa-
rametrization. Its inverse is the graph coordinate map constructed in Example 1.3.
For example, the map F W B2!R3 given by

F.u; v/D
	
u;v;
p
1� u2 � v2




is a smooth local parametrization of S2 whose image is the open upper hemisphere,
and whose inverse is one of the graph coordinate maps described in Example 1.4. //

Example 5.26 (Parametrization of the Figure-Eight Curve). Let S � R2 be
the figure-eight curve of Example 5.19, considered as an immersed submanifold
of R2. The map ˇ W .��;�/! R2 of Example 4.19 is a smooth global parametri-
zation of S . //
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Fig. 5.9 Restricting the domain Fig. 5.10 Restricting the codomain

Restricting Maps to Submanifolds

Given a smooth map F W M !N , it is important to know whether F is still smooth
when its domain or codomain is restricted to a submanifold. In the case of restricting
the domain, the answer is easy.

Theorem 5.27 (Restricting the Domain of a Smooth Map). If M and N are
smooth manifolds with or without boundary, F W M ! N is a smooth map, and
S �M is an immersed or embedded submanifold (Fig. 5.9), then F jS W S !N is
smooth.

Proof. The inclusion map 	 W S ,!M is smooth by definition of an immersed sub-
manifold. Since F jS D F ı 	, the result follows. �

When the codomain is restricted, however, the resulting map may not be smooth,
as the following example shows.

Example 5.28. Let S �R2 be the figure-eight submanifold, with the topology and
smooth structure induced by the immersion ˇ of Example 4.19. Define a smooth
map G W R!R2 by

G.t/D .sin2t; sin t/:

(This is the same formula that we used to define ˇ, but now the domain is extended
to the whole real line instead of being just a subinterval.) It is easy to check that the
image of G lies in S . However, as a map from R to S , G is not even continuous,
because ˇ�1 ıG is not continuous at t D � . //

The next theorem gives sufficient conditions for a map to be smooth when its
codomain is restricted to an immersed submanifold.It shows that the failure of con-
tinuity is the only thing that can go wrong.

Theorem 5.29 (Restricting the Codomain of a Smooth Map). Suppose M is
a smooth manifold (without boundary), S �M is an immersed submanifold, and
F W N !M is a smooth map whose image is contained in S (Fig. 5.10). If F is
continuous as a map from N to S , then F W N ! S is smooth.

Remark. This theorem is stated only for the case in which the ambient manifold M
is a manifold without boundary, because it is only in that case that we have con-
structed slice charts for embedded submanifolds of M . But the conclusion of the
theorem is still true when M has nonempty boundary; see Problem 9-13.
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Fig. 5.11 Proof of Theorem 5.29

Proof. Let p 2 N be arbitrary and let q D F.p/ 2 S . Proposition 5.22 guaran-
tees that there is a neighborhood V of q in S such that 	jV W V ,!M is a smooth
embedding. Thus there exists a smooth chart .W; / for M that is a slice chart
for V in M centered at q (Fig. 5.11). (It might not be a slice chart for S in M .)
The fact that .W; / is a slice chart means that

�
V0; z 

�
is a smooth chart for V ,

where V0 DW \ V and z D � ı , with � W Rn!Rk the projection onto the first
k D dimS coordinates. Since V0 D .	jV /�1.W / is open in V , it is open in S in its
given topology, and so

�
V0; z 

�
is also a smooth chart for S .

Let U D F �1.V0/, which is an open subset of N containing p. (Here is where
we use the hypothesis that F is continuous into S .) Choose a smooth chart .U0; '/
forN such that p 2U0 � U . Then the coordinate representation of F W N ! S with
respect to the charts .U0; '/ and

�
V0; z 

�
is

z ıF ı '�1 D � ı
�
 ıF ı '�1

�
;

which is smooth because F W N !M is smooth. �

In the special case in which the submanifold S is embedded, the continuity
hypothesis is always satisfied.

Corollary 5.30 (Embedded Case). Let M be a smooth manifold and S �M be
an embedded submanifold. Then every smooth map F W N !M whose image is
contained in S is also smooth as a map from N to S .

Proof. Since S �M has the subspace topology, a continuous map F W N !M

whose image is contained in S is automatically continuous into S , by the character-
istic property of the subspace topology (Proposition A.17(a)). �

Although the conclusion of the preceding corollary fails for some immersed sub-
manifolds such as the figure-eight curve (see Example 5.28), it turns out that there
are certain immersed but nonembedded submanifolds for which it holds. To dis-
tinguish them, we introduce the following definition. If M is a smooth manifold
and S �M is an immersed submanifold, then S is said to be weakly embedded in
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M if every smooth map F W N !M whose image lies in S is smooth as a map
from N to S . (Weakly embedded submanifolds are called initial submanifolds by
some authors.) Corollary 5.30 shows that every embedded submanifold is weakly
embedded. It follows from Example 5.28 that the figure-eight curve is not weakly
embedded. However, the dense curve on the torus is weakly embedded; see Prob-
lem 5-13. In Chapter 19, we will encounter some classes of submanifolds that are
automatically weakly embedded (see Theorems 19.17 and 19.25).

Uniqueness of Smooth Structures on Submanifolds

Using the preceding results about restricting maps to submanifolds, we can prove
the promised uniqueness theorem for the smooth manifold structure on an embedded
submanifold.

Theorem 5.31. Suppose M is a smooth manifold and S �M is an embedded
submanifold. The subspace topology on S and the smooth structure described in
Theorem 5.8 are the only topology and smooth structure with respect to which S is
an embedded or immersed submanifold.

Proof. Suppose S �M is an embedded k-dimensional submanifold. Theorem 5.8
shows that it satisfies the local k-slice condition, so it is an embedded submani-
fold with the subspace topology and the smooth structure of Theorem 5.8. Suppose
there were some other topology and smooth structure on S making it into an im-
mersed submanifold of some dimension. Let zS denote the same set S , considered
as a smooth manifold with the non-standard topology and smooth structure, and let
Q	 W zS ,!M denote the inclusion map, which by assumption is an injective immer-
sion (but not necessarily an embedding). Because Q	

�
zS
�
D S , Corollary 5.30 implies

that Q	 is also smooth when considered as a map from zS to S . For each p 2 zS , the
differential d Q	p W Tp zS! TpM is equal to the composition

Tp zS
dQ�p� TpS

d�p� TpM;

where 	 W S ,!M is also inclusion. Because this composition is injective (since zS
is assumed to be a smooth submanifold of M ), d Q	p must be injective. In particular,
this means that Q	 W zS ! S is an immersion. Because it is bijective, it follows from
the global rank theorem that it is a diffeomorphism. In other words, the topology
and smooth manifold structure of zS are the same as those of S . �

Thanks to this uniqueness result, we now know that a subset S �M is an em-
bedded submanifold if and only if it satisfies the local slice condition, and if so, its
topology and smooth structure are uniquely determined. Because the local slice con-
dition is a local condition, if every point p 2 S has a neighborhoodU �M such that
U \ S is an embedded k-submanifold of U , then S is an embedded k-submanifold
of M .

The preceding theorem is false in general if S is merely immersed; but we do
have the following uniqueness theorem for the smooth structure of an immersed
submanifold once the topology is known.
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Theorem 5.32. Suppose M is a smooth manifold and S �M is an immersed sub-
manifold. For the given topology on S , there is only one smooth structure making S
into an immersed submanifold.

Proof. See Problem 5-14. �

It is certainly possible for a given subset of M to have more than one topology
making it into an immersed submanifold (see Problem 5-15). However, for weakly
embedded submanifolds we have a stronger uniqueness result.

Theorem 5.33. If M is a smooth manifold and S �M is a weakly embedded sub-
manifold, then S has only one topology and smooth structure with respect to which
it is an immersed submanifold.

Proof. See Problem 5-16. �

Extending Functions from Submanifolds

Complementary to the restriction problem is the problem of extending smooth func-
tions from a submanifold to the ambient manifold. Let M be a smooth manifold
with or without boundary, and let S �M be a smooth submanifold. If f W S !R
is a function, there are two ways we might interpret the statement “f is smooth”:
it might mean that f is smooth as a function on the smooth manifold S (i.e., each
coordinate representation is smooth), or it might mean that it is smooth as a function
on the subset S �M (i.e., it admits a smooth extension to a neighborhood of each
point). We adopt the convention that the notation f 2 C1.S/ always means that f
is smooth in the former sense (as a function on the manifold S ).

Lemma 5.34 (Extension Lemma for Functions on Submanifolds). Suppose M
is a smooth manifold, S �M is a smooth submanifold, and f 2 C1.S/.

(a) If S is embedded, then there exist a neighborhood U of S in M and a smooth
function zf 2 C1.U / such that zf jS D f .

(b) If S is properly embedded, then the neighborhood U in part (a) can be taken to
be all of M .

Proof. Problem 5-17. �

Problem 5-18 shows that the hypotheses in both (a) and (b) are necessary.

The Tangent Space to a Submanifold

If S is a smooth submanifold of Rn, we intuitively think of the tangent space TpS
at a point of S as a subspace of the tangent space TpRn. Similarly, the tangent
space to a smooth submanifold of an abstract smooth manifold can be viewed as a
subspace of the tangent space to the ambient manifold, once we make appropriate
identifications.
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Fig. 5.12 The tangent space to an embedded submanifold

LetM be a smooth manifold with or without boundary, and let S �M be an im-
mersed or embedded submanifold. Since the inclusion map 	 W S ,!M is a smooth
immersion, at each point p 2 S we have an injective linear map d	p W TpS! TpM .
In terms of derivations, this injection works in the following way: for any vector
v 2 TpS , the image vector zvD d	p.v/ 2 TpM acts on smooth functions on M by

zvf D d	p.v/f D v.f ı 	/D v .f jS / :

We adopt the convention of identifying TpS with its image under this map, thereby
thinking of TpS as a certain linear subspace of TpM (Fig. 5.12). This identification
makes sense regardless of whether S is embedded or immersed.

There are several alternative ways of characterizing TpS as a subspace of TpM .
The first one is the most general; it is just a straightforward generalization of Propo-
sition 3.23.

Proposition 5.35. Suppose M is a smooth manifold with or without boundary,
S �M is an immersed or embedded submanifold, and p 2 S . A vector v 2 TpM is
in TpS if and only if there is a smooth curve � W J !M whose image is contained
in S , and which is also smooth as a map into S , such that 0 2 J , �.0/D p, and
� 0.0/D v.

I Exercise 5.36. Prove the preceding proposition.

The next proposition gives a useful way to characterize TpS in the embedded
case. (Problem 5-20 shows that this does not work in the nonembedded case.)

Proposition 5.37. Suppose M is a smooth manifold, S �M is an embedded sub-
manifold, and p 2 S . As a subspace of TpM; the tangent space TpS is characterized
by

TpS D
˚
v 2 TpM W vf D 0 whenever f 2 C1.M/ and f

ˇ̌
S
D 0

�
:

Proof. First suppose v 2 TpS � TpM . This means, more precisely, that vD d	p.w/
for some w 2 TpS , where 	 W S !M is inclusion. If f is any smooth real-valued
function on M that vanishes on S , then f ı 	� 0, so

vf D d	p.w/f Dw.f ı 	/D 0:
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Conversely, if v 2 TpM satisfies vf D 0 whenever f vanishes on S , we need to
show that there is a vector w 2 TpS such that vD d	p.w/. Let

�
x1; : : : ; xn

�
be slice

coordinates for S in some neighborhood U of p, so that U \ S is the subset of U
where xkC1 D � � � D xn D 0, and

�
x1; : : : ; xk

�
are coordinates for U \ S . Because

the inclusion map 	 W S \U ,!M has the coordinate representation

	
�
x1; : : : ; xk

�
D
�
x1; : : : ; xk; 0; : : : ; 0

�

in these coordinates, it follows that TpS (that is, d	p.TpS/) is exactly the subspace
of TpM spanned by @=@x1jp; : : : ; @=@xkjp . If we write the coordinate representation
of v as

vD

nX

iD1

vi
@

@xi

ˇ̌
ˇ̌
p

;

we see that v 2 TpS if and only if vi D 0 for i > k.
Let ' be a smooth bump function supported in U that is equal to 1 in a neigh-

borhood of p. Choose an index j > k, and consider the function f .x/D '.x/xj ,
extended to be zero on M X supp'. Then f vanishes identically on S , so

0D vf D

nX

iD1

vi
@
�
'.x/xj

�

@xi
.p/D vj :

Thus v 2 TpS as desired. �

If an embedded submanifold is characterized by a defining map, the defining
map gives a concise characterization of its tangent space at each point, as the next
proposition shows.

Proposition 5.38. Suppose M is a smooth manifold and S � M is an embed-
ded submanifold. If ˚ W U ! N is any local defining map for S , then TpS D
Kerd p̊ W TpM ! T˚.p/N for each p 2 S \U .

Proof. Recall that we identify TpS with the subspace d	p.TpS/ � TpM; where
	 W S ,!M is the inclusion map. Because ˚ ı 	 is constant on S \U , it follows that
d p̊ ı d	p is the zero map from TpS to T˚.p/N , and therefore Imd	p � Kerd p̊ .
On the other hand, d p̊ is surjective by the definition of a defining map, so the
rank–nullity law implies that

dim Kerd p̊ D dimTpM � dimT˚.p/N D dimTpS D dim Imd	p;

which implies that Imd	p DKerd p̊ . �

When the defining function ˚ takes its values in Rk , it is useful to restate the
proposition in terms of component functions of ˚ . The proof of the next corollary
is immediate.

Corollary 5.39. Suppose S � M is a level set of a smooth submersion ˚ D

.˚1; : : : ;˚k/ W M ! Rk . A vector v 2 TpM is tangent to S if and only if v˚1 D
� � � D v˚k D 0. �
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Fig. 5.13 An inward-pointing vector

I Exercise 5.40. Suppose S �M is a level set of a smooth map ˚ W M !N with
constant rank. Show that TpS DKerd p̊ for each p 2 S .

If M is a smooth manifold with boundary and p 2 @M; it is intuitively evident
that the vectors in TpM can be separated into three classes: those tangent to the
boundary, those pointing inward, and those pointing outward. Formally, we make
the following definition. If p 2 @M; a vector v 2 TpM XTp@M is said to be inward-
pointing if for some " > 0 there exists a smooth curve � W Œ0; "/!M such that
�.0/ D p and � 0.0/ D v, and it is outward-pointing if there exists such a curve
whose domain is .�"; 0�. The following proposition gives another characterization
of inward-pointing and outward-pointing vectors, which is usually much easier to
check. (See Fig. 5.13.)

Proposition 5.41. Suppose M is a smooth n-dimensional manifold with boundary,
p 2 @M; and

�
xi
�

are any smooth boundary coordinates defined on a neighbor-
hood of p. The inward-pointing vectors in TpM are precisely those with positive
xn-component, the outward-pointing ones are those with negative xn-component,
and the ones tangent to @M are those with zero xn-component. Thus, TpM is the
disjoint union of Tp@M; the set of inward-pointing vectors, and the set of outward-
pointing vectors, and v 2 TpM is inward-pointing if and only if �v is outward-
pointing.

I Exercise 5.42. Prove Proposition 5.41.

If M is a smooth manifold with boundary, a boundary defining function for
M is a smooth function f W M ! Œ0;1/ such that f �1.0/D @M and dfp ¤ 0 for
all p 2 @M . For example, f .x/D 1� jxj2 is a boundary defining function for the
closed unit ball xBn.

Proposition 5.43. Every smooth manifold with boundary admits a boundary defin-
ing function.

Proof. Let f.U˛; '˛/g be a collection of smooth charts whose domains coverM . For
each ˛, define a smooth function f˛ W U˛! Œ0;1/ as follows: if U˛ is an interior
chart, let f˛ � 1; while if U˛ is a boundary chart, let f˛

�
x1; : : : ; xn

�
D xn (the

nth coordinate function in that chart). Thus, f˛.p/ is positive if p 2 IntM and
zero if p 2 @M . Let f ˛g be a partition of unity subordinate to this cover, and let
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f D
P
˛  ˛f˛ . Then f is smooth, identically zero on @M; and strictly positive

in IntM . To see that df does not vanish on @M; suppose p 2 @M and v is an
inward-pointing vector at p. For each ˛ such that p 2 U˛ , we have f˛.p/D 0 and
df˛jp.v/D dx

njp.v/ > 0 by Proposition 5.41. Thus

dfp.v/D
X

˛

�
f˛.p/d ˛jp.v/C ˛.p/df˛jp.v/

�
:

For each ˛, the first term in parentheses is zero and the second is nonnegative, and
there is at least one ˛ for which the second term is positive. Thus dfp.v/ > 0, which
implies that dfp ¤ 0. �

I Exercise 5.44. Suppose M is a smooth manifold with boundary, f is a boundary
defining function, and p 2 @M . Show that a vector v 2 TpM is inward-pointing if and
only if vf > 0, outward-pointing if and only if vf < 0, and tangent to @M if and only
if vf D 0.

The results of this section have important applications to the problem of deciding
whether a given subset of a smooth manifold is a submanifold. Given a smooth
manifold M and a subset S �M; it is important to bear in mind that there are
two very different questions one can ask. The simplest question is whether S is an
embedded submanifold. Because embedded submanifolds are exactly those subsets
satisfying the local slice condition, this is simply a question about the subset S
itself: either it is an embedded submanifold or it is not, and if so, the topology and
smooth structure making it into an embedded submanifold are uniquely determined
(Theorem 5.31).

A more subtle question is whether S can be an immersed submanifold. In this
case, neither the topology nor the smooth structure is known in advance, so one
needs to ask whether there exist any topology and smooth structure on S making
it into an immersed submanifold. This question is not always straightforward to
answer, and it can be especially tricky to prove that S is not a smooth submanifold.
A typical approach is to assume that it is, and then use one or more of the following
phenomena to derive a contradiction:

� At each p 2 S , the tangent space TpS is a linear subspace of TpM; with the same
dimension at each point.
� Each point of S is in the image of a local parametrization of S .
� Each vector tangent to S is the velocity vector of some smooth curve in S .
� Each vector tangent to S annihilates every smooth function that is constant on S .

Here is one example of how this can be done; others can be found in Problems 5-4
through 5-11.

Example 5.45. Consider the subset S D f.x; y/ W y D jxjg �R2. It is easy to check
that S X f.0; 0/g is an embedded 1-dimensional submanifold of R2, so if S itself is
a smooth submanifold at all, it must be 1-dimensional. Suppose there were some
smooth manifold structure on S making it into an immersed submanifold. Then
T.0;0/S would be a 1-dimensional subspace of T.0;0/R2, so by Proposition 5.35,
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Fig. 5.14 A submanifold with boundary in a manifold with boundary

there would be a smooth curve � W .�"; "/! R2 whose image lies in S , and that
satisfies �.0/D .0; 0/ and � 0.0/¤ 0. Writing �.t/D

�
x.t/; y.t/

�
, we see that y.t/

takes a global minimum at t D 0, so y0.0/D 0. On the other hand, because every
point .x; y/ 2 S satisfies x2 D y2, we have x.t/2 D y.t/2 for all t . Differentiat-
ing twice and setting t D 0, we conclude that 2x0.0/2 D 2y0.0/2 D 0, which is a
contradiction. Thus, there is no such smooth manifold structure. //

Submanifolds with Boundary

So far in this chapter, all of our submanifolds have been manifolds without bound-
ary. For some purposes (notably in the theory of integration), it is important also
to consider submanifolds that have boundaries. The definitions are straightforward
generalizations of the ones for ordinary submanifolds. If M is a smooth manifold
with or without boundary, a smooth submanifold with boundary in M is a subset
S �M endowed with a topology and smooth structure making it into a smooth
manifold with boundary such that the inclusion map is a smooth immersion. If the
inclusion map is an embedding, then it is called an embedded submanifold with
boundary; in the general case, it is an immersed submanifold with boundary. The
terms codimension and properly embedded are defined just as in the submanifold
case.

For example, for any positive integers k � n, the closed unit k-dimensional ball
xBk is a properly embedded submanifold with boundary in xBn, because the inclusion
map xBk ,! xBn is easily seen to be a proper smooth embedding (Fig. 5.14).

One particular type of submanifold with boundary is especially important. If M
is a smooth manifold with or without boundary, a regular domain inM is a properly
embedded codimension-0 submanifold with boundary. Familiar examples are the
closed upper half space Hn � Rn, the closed unit ball xBn � Rn, and the closed
upper hemisphere in Sn.

Proposition 5.46. SupposeM is a smooth manifold without boundary andD �M
is a regular domain. The topological interior and boundary of D are equal to its
manifold interior and boundary, respectively.

Proof. Suppose p 2D is arbitrary. If p is in the manifold boundary of D, Theo-
rem 4.15 shows that there exist a smooth boundary chart .U;'/ for D centered at p
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and a smooth chart .V; / forM centered at p in which F has the coordinate repre-
sentation F

�
x1; : : : ; xn

�
D
�
x1; : : : ; xn

�
, where nD dimM D dimD. Since D has

the subspace topology, U DD\W for some open subsetW �M; so V0 D V \W
is a neighborhood of p inM such that V0\D consists of all the points in V0 whose
xm coordinate is nonnegative. Thus every neighborhood of p intersects both D and
M XD, so p is in the topological boundary of D.

On the other hand, suppose p is in the manifold interior of D. The manifold
interior is a smooth embedded codimension-0 submanifold without boundary in M;
so it is an open subset by Proposition 5.1. Thus p is in the topological interior of D.

Conversely, if p is in the topological interior ofD, then it is not in the topological
boundary, so the preceding argument shows that it is not in the manifold boundary
and hence must be in the manifold interior. Similarly, if p is in the topological
boundary, it is also in the manifold boundary. �

Here are some ways in which regular domains often arise.

Proposition 5.47. Suppose M is a smooth manifold and f 2 C1.M/.

(a) For each regular value b of f , the sublevel set f �1
�
.�1; b�

�
is a regular

domain in M .
(b) If a and b are two regular values of f with a < b, then f �1

�
Œa; b�

�
is a regular

domain in M .

Proof. Problem 5-21. �

A set of the form f �1
�
.�1; b�

�
for b a regular value of f is called a regular

sublevel set of f . Part (a) of the preceding theorem shows that every regular sub-
level set of a smooth real-valued function is a regular domain. IfD �M is a regular
domain and f 2 C1.M/ is a smooth function such that D is a regular sublevel set
of f , then f is called a defining function for D.

Theorem 5.48. If M is a smooth manifold and D �M is a regular domain, then
there exists a defining function for D. If D is compact, then f can be taken to be a
smooth exhaustion function for M .

Proof. Problem 5-22. �

Many (though not all) of the earlier results in this chapter have analogues for
submanifolds with boundary. Since we will have little reason to consider nonem-
bedded submanifolds with boundary, we focus primarily on the embedded case.
The statements in the following proposition can be proved in the same way as their
submanifold counterparts.

Proposition 5.49 (Properties of Submanifolds with Boundary). Suppose M is a
smooth manifold with or without boundary.

(a) Every open subset of M is an embedded codimension-0 submanifold with (pos-
sibly empty) boundary.

(b) If N is a smooth manifold with boundary and F W N !M is a smooth em-
bedding, then with the subspace topology F.N/ is a topological manifold with
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boundary, and it has a smooth structure making it into an embedded submani-
fold with boundary in M .

(c) An embedded submanifold with boundary in M is properly embedded if and
only if it is closed.

(d) If S �M is an immersed submanifold with boundary, then for each p 2 S there
exists a neighborhood U of p in S that is embedded in M .

I Exercise 5.50. Prove the preceding proposition.

In order to adapt the results that depended on the existence of local slice charts,
we have to generalize the local k-slice condition as follows. SupposeM is a smooth
manifold (without boundary). If

�
U;
�
xi
��

is a chart for M; a k-dimensional half-
slice of U is a subset of the following form for some constants ckC1; : : : ; cn:

n�
x1; : : : ; xn

�
2U W xkC1 D ckC1; : : : ; xn D cn; and xk � 0

o
:

We say that a subset S � M satisfies the local k-slice condition for submani-
folds with boundary if each point of S is contained in the domain of a smooth
chart

�
U;
�
xi
��

such that S \ U is either an ordinary k-dimensional slice or a
k-dimensional half-slice. In the former case, the chart is called an interior slice
chart for S in M , and in the latter, it is a boundary slice chart for S in M .

Theorem 5.51. Let M be a smooth n-manifold without boundary. If S � M is
an embedded k-dimensional submanifold with boundary, then S satisfies the local
k-slice condition for submanifolds with boundary. Conversely, if S �M is a subset
that satisfies the local k-slice condition for submanifolds with boundary, then with
the subspace topology, S is a topological k-manifold with boundary, and it has a
smooth structure making it into an embedded submanifold with boundary in M .

I Exercise 5.52. Prove the preceding theorem.

Using the preceding theorem in place of Theorem 5.8, one can readily prove the
following theorem.

Theorem 5.53 (Restricting Maps to Submanifolds with Boundary). Suppose M
and N are smooth manifolds with boundary and S �M is an embedded submani-
fold with boundary.

(a) RESTRICTING THE DOMAIN: If F W M !N is a smooth map, then F jS W S!
N is smooth.

(b) RESTRICTING THE CODOMAIN: If @M D¿ and F W N !M is a smooth map
whose image is contained in S , then F is smooth as a map from N to S .

Remark. The requirement that @M D¿ can be removed in part (b) just as for The-
orem 5.29; see Problem 9-13.

I Exercise 5.54. Prove Theorem 5.53.
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Problems

5-1. Consider the map ˚ W R4!R2 defined by

˚.x;y; s; t/D
�
x2C y;x2C y2C s2C t2C y

�
:

Show that .0; 1/ is a regular value of ˚ , and that the level set ˚�1.0; 1/ is
diffeomorphic to S2.

5-2. Prove Theorem 5.11 (the boundary of a manifold with boundary is an em-
bedded submanifold).

5-3. Prove Proposition 5.21 (sufficient conditions for immersed submanifolds to
be embedded).

5-4. Show that the image of the curve ˇ W .��;�/! R2 of Example 4.19 is
not an embedded submanifold of R2. [Be careful: this is not the same as
showing that ˇ is not an embedding.]

5-5. Let � W R! T2 be the curve of Example 4.20. Show that �.R/ is not an
embedded submanifold of the torus. [Remark: the warning in Problem 5-4
applies in this case as well.]

5-6. Suppose M � Rn is an embedded m-dimensional submanifold, and let
UM � TRn be the set of all unit tangent vectors to M :

UM D
˚
.x; v/ 2 TRn W x 2M; v 2 TxM; jvj D 1

�
:

It is called the unit tangent bundle of M . Prove that UM is an embedded
.2m� 1/-dimensional submanifold of TRn �Rn �Rn. (Used on p. 147.)

5-7. Let F W R2!R be defined by F.x;y/D x3 C xy C y3. Which level sets
of F are embedded submanifolds of R2? For each level set, prove either that
it is or that it is not an embedded submanifold.

5-8. SupposeM is a smooth n-manifold and B �M is a regular coordinate ball.
Show that M XB is a smooth manifold with boundary, whose boundary is
diffeomorphic to Sn�1. (Used on p. 225.)

5-9. Let S � R2 be the boundary of the square of side 2 centered at the ori-
gin (see Problem 3-5). Show that S does not have a topology and smooth
structure in which it is an immersed submanifold of R2.

5-10. For each a 2R, let Ma be the subset of R2 defined by

Ma D
˚
.x; y/ W y2 D x.x � 1/.x � a/

�
:

For which values of a is Ma an embedded submanifold of R2? For which
values can Ma be given a topology and smooth structure making it into an
immersed submanifold?

5-11. Let ˚ W R2!R be defined by ˚.x;y/D x2 � y2.
(a) Show that ˚�1.0/ is not an embedded submanifold of R2.
(b) Can ˚�1.0/ be given a topology and smooth structure making it into an

immersed submanifold of R2?
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(c) Answer the same two questions for � W R2!R defined by �.x;y/D
x2 � y3.

5-12. Suppose E and M are smooth manifolds with boundary, and � W E !M

is a smooth covering map. Show that the restriction of � to each connected
component of @E is a smooth covering map onto a component of @M . (Used
on p. 433.)

5-13. Prove that the image of the dense curve on the torus described in Exam-
ple 4.20 is a weakly embedded submanifold of T2.

5-14. Prove Theorem 5.32 (uniqueness of the smooth structure on an immersed
submanifold once the topology is given).

5-15. Show by example that an immersed submanifold S �M might have more
than one topology and smooth structure with respect to which it is an im-
mersed submanifold.

5-16. Prove Theorem 5.33 (uniqueness of the topology and smooth structure of a
weakly embedded submanifold).

5-17. Prove Lemma 5.34 (the extension lemma for functions on submanifolds).

5-18. Suppose M is a smooth manifold and S �M is a smooth submanifold.
(a) Show that S is embedded if and only if every f 2 C1.S/ has a smooth

extension to a neighborhood of S in M . [Hint: if S is not embedded,
let p 2 S be a point that is not in the domain of any slice chart. Let U
be a neighborhood of p in S that is embedded, and consider a function
f 2 C1.S/ that is supported in U and equal to 1 at p.]

(b) Show that S is properly embedded if and only if every f 2 C1.S/ has
a smooth extension to all of M .

5-19. Suppose S �M is an embedded submanifold and � W J !M is a smooth
curve whose image happens to lie in S . Show that � 0.t/ is in the subspace
T�.t/S of T�.t/M for all t 2 J . Give a counterexample if S is not embedded.

5-20. Show by giving a counterexample that the conclusion of Proposition 5.37
may be false if S is merely immersed.

5-21. Prove Proposition 5.47 (regular domains defined by smooth functions).

5-22. Prove Theorem 5.48 (existence of defining functions for regular domains).

5-23. Suppose M is a smooth manifold with boundary, N is a smooth manifold,
and F W M !N is a smooth map. Let S D F �1.c/, where c 2N is a regu-
lar value for both F and F j@M . Prove that S is a smooth submanifold with
boundary in M; with @S D S \ @M .



Chapter 6
Sard’s Theorem

This chapter introduces a powerful tool in smooth manifold theory, Sard’s theorem,
which says that the set of critical values of a smooth function has measure zero. This
theorem is fundamental in differential topology (the study of properties of smooth
manifolds that are preserved by diffeomorphisms or by smooth deformations).

Before we begin, we need to extend the notion of sets of measure zero to man-
ifolds. These are sets that are “small” in a sense that is closely related to having
zero volume (even though we do not yet have a way to measure volume quantita-
tively on manifolds); they include such things as countable unions of submanifolds
of positive codimension. With this tool in hand, we then prove Sard’s theorem itself.

After proving Sard’s theorem, we use it to prove three important results about
smooth manifolds. The first result is the Whitney embedding theorem, which says
that every smooth manifold can be smoothly embedded in some Euclidean space.
(This justifies our habit of visualizing manifolds as subsets of Rn.) The second
result is the Whitney approximation theorem, which comes in two versions: every
continuous real-valued or vector-valued function can be uniformly approximated by
smooth ones, and every continuous map between smooth manifolds is homotopic to
a smooth map. The third result is the transversality homotopy theorem, which says,
among other things, that embedded submanifolds can always be deformed slightly
so that they intersect “nicely” in a certain sense that we will make precise.

We will use some basic properties of sets of measure zero in the theory of inte-
gration in Chapter 16, and we will use the Whitney approximation theorems in our
treatment of line integrals and de Rham cohomology in Chapters 16–18.

Sets of Measure Zero

An important notion in integration theory is that certain subsets of Rn, called sets
of measure zero, are so “thin” that they are negligible in integrals. In this section,
we show how to define sets of measure zero in manifolds, and show that smooth
maps between manifolds of the same dimension take sets of measure zero to sets of
measure zero.

J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics 218,
DOI 10.1007/978-1-4419-9982-5_6, © Springer Science+Business Media New York 2013
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Fig. 6.1 A set of measure zero Fig. 6.2 Balls and cubes

Recall what it means for a set A� Rn to have measure zero (see Appendix C):
for any ı > 0, A can be covered by a countable collection of open rectangles, the
sum of whose volumes is less than ı (Fig. 6.1).

I Exercise 6.1. Show that open rectangles can be replaced by open balls or open
cubes in the definition of subsets of measure zero. [Hint: for cubes, first show that
every open rectangle R�Rn can be covered by finitely many open cubes, the sum of
whose volumes is no more than 2n times the volume of R. For balls, Fig. 6.2 suggests
the main idea.]

We need the following technical lemma about sets of measure zero. If you are
familiar with the theory of Lebesgue measure, you will notice that this result follows
easily from Fubini’s theorem for integrals of measurable functions over product sets;
but this is an elementary proof that does not depend on measure theory.

Lemma 6.2. Suppose A � Rn is a compact subset whose intersection with
fcg � Rn�1 has .n � 1/-dimensional measure zero for every c 2 R. Then A has
n-dimensional measure zero.

Proof. Choose an interval Œa; b� � R such that A � Œa; b� � Rn�1. For each c 2
Œa; b�, let Ac �Rn�1 denote the compact subset

˚
x 2Rn�1 W .c; x/ 2A

�
.

Let ı > 0 be given. Our hypothesis implies that for each c 2 Œa; b�, the set Ac
is covered by finitely many .n � 1/-dimensional open cubes C1; : : : ;Ck with total
volume less than ı. Let Uc be the open subset C1 [ � � � [Ck �Rn�1. Because A is
compact, there must be an open interval Jc containing c such that the intersection of
A with Jc �Rn�1 is contained in Jc �Uc , for otherwise there would be a sequence
of points .ci ; xi / 2A such that ci ! c and xi …Uc ; but then passing to a convergent
subsequence we obtain xi ! x 2Ac XUc , which contradicts the fact that Ac � Uc .

The intervals fJc W c 2 Œa; b�g form an open cover of Œa; b�, so there are finitely
many numbers c1 < � � � < cm such that the intervals Jc1 ; : : : ; Jcm cover Œa; b�. By
shrinking the intervals Jci where they overlap if necessary, we can arrange that the
combined lengths of Jc1 ; : : : ; Jcm add up to no more than 2jb � aj. It follows that A
is contained in

�
Jc1 �Uc1

�
[ � � � [ .Jcm �Ucm/, which is a union of finitely many

open rectangles with combined volume less than 2ıjb � aj. Since this can be made
as small as desired, it follows that A has n-dimensional measure zero. �
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The most important sets of measure zero are graphs of continuous functions.

Proposition 6.3. Suppose A is an open or closed subset of Rn�1 or Hn�1, and
f W A!R is a continuous function. Then the graph of f has measure zero in Rn.

Proof. First assume A is compact. We prove the theorem in this case by induction
on n. When n D 1, it is trivial because the graph of f is at most a single point.
To prove the inductive step, we appeal to Lemma 6.2. For each c 2R, the intersec-
tion of the graph of f with fcg �Rn�1 is just the graph of the restriction of f to˚
x 2A W x1 D c

�
, which is in turn the graph of a continuous function of n� 2 vari-

ables. It follows by induction that each such graph has .n�1/-dimensional measure
zero, and thus by Lemma 6.2, the graph of f itself has n-dimensional measure zero.

If A is noncompact, it is a countable union of compact subsets by Proposi-
tion A.60, so the graph of f is a countable union of sets of measure zero. �

Corollary 6.4. Every proper affine subspace of Rn has measure zero in Rn.

Proof. Let S � Rn be a proper affine subspace. Suppose first that dimS D n� 1.
Then there is at least one coordinate axis, say the xi -axis, that is not paral-
lel to S , and in that case S is the graph of an affine function of the form
xi D F

�
x1; : : : ; xi�1; xiC1; : : : ; xn

�
, so it has measure zero by Proposition 6.3. If

dimS < n� 1, then S is contained in some affine subspace of dimension n� 1, so
it follows from Proposition C.18(b) that S has measure zero. �

Our goal is to extend the notion of measure zero in a diffeomorphism-invariant
fashion to subsets of manifolds. Because a manifold does not come with a metric,
volumes of cubes or balls do not make sense, so we cannot simply use the same
definition. However, the key is provided by the next proposition, which implies that
the condition of having measure zero is diffeomorphism-invariant for subsets of Rn.

Proposition 6.5. Suppose A�Rn has measure zero and F W A!Rn is a smooth
map. Then F.A/ has measure zero.

Proof. By definition, for each p 2 A, F has an extension to a smooth map, which
we still denote by F , on a neighborhood of p in Rn. Shrinking this neighborhood
if necessary, we may assume that there is an open ball U containing p such that F
extends smoothly to xU . By Proposition A.16, A is covered by countably many such
precompact open subsets, so F.A/ is the union of countably many sets of the form
F
�
A\ xU

�
. Thus, it suffices to show that each such set has measure zero.

Since xU is compact, there is a constant C such that jDF.x/j � C for all x 2 xU .
Using the Lipschitz estimate for smooth functions (Proposition C.29), we have

ˇ̌
F.x/�F.x0/

ˇ̌
� C jx � x0j (6.1)

for all x;x0 2 xU .
Given ı > 0, choose a countable cover fBj g of A \ xU by open balls satisfyingP
j Vol.Bj / < ı. Then by (6.1), F

�
xU \Bj

�
is contained in a ball zBj whose radius is

no more than C times that of Bj (Fig. 6.3). We conclude that F
�
A\ xU

�
is contained
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Fig. 6.3 The image of a set of measure zero

in the collection of balls
˚
zBj
�
, the sum of whose volumes is at most C nı. Since this

can be made as small as desired, it follows that F
�
A\ xU

�
has measure zero. �

If M is a smooth n-manifold with or without boundary, we say that a subset
A�M has measure zero in M if for every smooth chart .U;'/ for M; the subset
'.A\U /�Rn has n-dimensional measure zero. The following lemma shows that
we need only check this condition for a single collection of smooth charts whose
domains cover A.

Lemma 6.6. LetM be a smooth n-manifold with or without boundary and A�M .
Suppose that for some collection f.U˛; '˛/g of smooth charts whose domains
cover A, '˛.A \ U˛/ has measure zero in Rn for each ˛. Then A has measure
zero in M .

Proof. Let .V; / be an arbitrary smooth chart. We need to show that  .A \ V /
has measure zero. Some countable collection of the U˛’s covers A \ V . For each
such U˛ , we have

 .A\ V \U˛/D
�
 ı '�1˛

�
ı '˛.A\ V \U˛/:

(See Fig. 6.4.)Now, '˛.A \ V \ U˛/ is a subset of '˛.A \ U˛/, which has mea-
sure zero in Rn by hypothesis. By Proposition 6.5 applied to  ı '�1˛ , therefore,
 .A\ V \U˛/ has measure zero. Since  .A\V / is the union of countably many
such sets, it too has measure zero. �

I Exercise 6.7. Let M be a smooth manifold with or without boundary. Show that
a countable union of sets of measure zero in M has measure zero.

Proposition 6.8. Suppose M is a smooth manifold with or without boundary and
A�M has measure zero in M . Then M XA is dense in M .

Proof. IfM XA is not dense, then A contains a nonempty open subset ofM; which
implies that there is a smooth chart .V; / such that  .A\V / contains a nonempty
open subset of Rn (where nD dimM ). Because  .A\V / has measure zero in Rn,
this contradicts Corollary C.25. �

Theorem 6.9. Suppose M and N are smooth n-manifolds with or without bound-
ary, F W M ! N is a smooth map, and A �M is a subset of measure zero. Then
F.A/ has measure zero in N .
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Fig. 6.4 Proof of Lemma 6.6

Proof. Let f.Ui ; 'i /g be a countable cover of M by smooth charts. We need to
show that for each smooth chart .V; / for N , the set  

�
F.A/ \ V

�
has measure

zero in Rn. Note that this set is the union of countably many subsets of the form
 ıF ı '�1i

�
'i
�
A\Ui \F

�1.V /
��

, each of which has measure zero by the result
of Proposition 6.5. �

Sard’s Theorem

Here is the theorem that underlies all of our results about embedding, approxima-
tion, and transversality.

Theorem 6.10 (Sard’s Theorem). Suppose M and N are smooth manifolds with
or without boundary and F W M ! N is a smooth map. Then the set of critical
values of F has measure zero in N .

Proof. Let mD dimM and nD dimN . We prove the theorem by induction on m.
For mD 0, the result is immediate, because if nD 0, F has no critical points, while
if n > 0, the entire image of F has measure zero because it is countable.

Now suppose m � 1, and assume the theorem holds for maps whose domains
have dimensions less than m. By covering M and N with countably many smooth
charts, we can reduce to the case in which F is a smooth map from an open subset
U �Rm or Hm to Rn. Write the coordinates in the domain U as

�
x1; : : : ; xm

�
, and

those in the codomain as
�
y1; : : : ; yn

�
.

Let C � U denote the set of critical points of F . We define a decreasing sequence
of subsets C 
 C1 
 C2 
 � � � as follows:

Ck D fx 2 C W for 1� i � k; all i th partial derivatives of F vanish at xg:

By continuity, C and all of the Ck’s are closed in U . We will prove in three steps
that F.C/ has measure zero.

STEP 1: F.C X C1/ has measure zero. Because C1 is closed in U , we might
as well replace U by U X C1, and assume that C1 D ¿. Let a be a point of C .
Our assumption means that some first partial derivative of F is not zero at a.
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By rearranging the coordinates in the domain and codomain, we may assume
that @F 1=@x1.a/ ¤ 0. This means that we can define new smooth coordinates
.u; v/D

�
u;v2; : : : ; vm

�
in some neighborhood Va of a in U by

uD F 1; v2 D x2; : : : ; vm D xm;

because the Jacobian of the coordinate transformation is nonsingular at a. Shrinking
Va if necessary, we can assume that xVa is a compact subset of U and the coordinates
extend smoothly to xVa. In these coordinates, F has the coordinate representation

F
�
u;v2; : : : ; vm

�
D
�
u;F 2.u; v/; : : : ;F n.u; v/

�
; (6.2)

and its Jacobian is

DF.u;v/D

�

1 0


@F i

@vj

�

:

Therefore, C \ xVa consists of exactly those points where the .n � 1/ � .m � 1/
matrix

�
@F i=@vj

�
has rank less than n� 1.

We wish to show that the set F
�
C \ xVa

�
has measure zero in Rn. Because this

set is compact, by Lemma 6.2 it suffices to show that its intersection with each
hyperplane y1 D c has .n� 1/-dimensional measure zero.

For c 2R, let Bc D
˚
v W .c; v/ 2 xVa

�
�Rm�1, and define Fc W Bc!Rn�1 by

Fc.v/D
�
F 2.c; v/; : : : ;F n.c; v/

�
:

Because F.c; v/D .c;Fc.v//, the critical values of F j xVa that lie in the hyperplane
y1 D c are exactly the points of the form .c;w/ with w a critical value of Fc . By the
induction hypothesis, the set of critical values of each Fc has .n� 1/-dimensional
measure zero. Thus by Lemma 6.2, F

�
C \ xVa

�
has measure zero.

Because U is covered by countably many sets of the form xVa, it follows that
F.C \U / is a countable union of sets of measure zero and thus has measure zero.
This completes the proof of Step 1.

STEP 2: For each k, F.Ck X CkC1/ has measure zero. Again, since CkC1 is
closed in U , we can discard it and assume that at every point of Ck there is some
.kC 1/st partial derivative of F that does not vanish.

Let a 2 Ck be arbitrary, and let y W U !R denote some kth partial derivative of
F that has at least one nonvanishing first partial derivative at a. Then a is a regular
point of the smooth map y, so there is a neighborhood Va of a consisting entirely
of regular points of y. Let Y be the zero set of y in Va, which is a smooth hyper-
surface by the regular level set theorem. By definition of Ck , all kth derivatives of
F (including y) vanish on Ck , so Ck \ Va is contained in Y . At any p 2 Ck \ Va,
dFp is not surjective, so certainly d.F jY /p D .dFp/jTpY is not surjective. Thus,
F.Ck \ Va/ is contained in the set of critical values of F jY W Y ! Rn, which has
measure zero by the induction hypothesis. Since U can be covered by countably
many neighborhoods like Va, it follows that F.Ck XCkC1/ is contained in a count-
able union of sets of the form F.Ck \ Va/, and thus has measure zero.
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We are not yet finished, because there may be points of C at which all par-
tial derivatives of F vanish, which means that they are neither in C X C1 nor in
Ck XCkC1 for any k. This possibility is taken care of by the final step.

STEP 3: For k > m=n� 1, F.Ck/ has measure zero. For each a 2 U , there is a
closed cube E such that a 2 E � U . Since U can be covered by countably many
such cubes, it suffices to show that F.Ck \ E/ has measure zero whenever E is
a closed cube contained in U . Let E be such a cube, and let A be a constant that
bounds the absolute values of all of the .k C 1/st derivatives of F in E . Let R
denote the side length of E , and let K be a large integer to be chosen later. We
can subdivide E into Km cubes of side length R=K , denoted by

�
E1; : : : ;EKm

�
.

If Ei is one of these cubes and there is a point ai 2 Ck \Ei , then Corollary C.16 to
Taylor’s theorem implies that for all x 2Ei we have

ˇ̌
F.x/�F.ai /

ˇ̌
�A0jx � ai j

kC1;

for some constant A0 that depends only on A, k, andm. Thus, F.Ei / is contained in
a ball of radius A0.R=K/kC1. This implies that F.Ck \E/ is contained in a union
of Km balls, the sum of whose n-dimensional volumes is no more than

Km.A0/n.R=K/n.kC1/ DA00Km�nk�n;

where A00 D .A0/nRn.kC1/. Since k >m=n�1, this can be made as small as desired
by choosing K large, so F.Ck \E/ has measure zero. �
Corollary 6.11. Suppose M and N are smooth manifolds with or without bound-
ary, and F W M !N is a smooth map. If dimM < dimN , then F.M/ has measure
zero in N .

Proof. In this case, each point of M is a critical point for F . �
Problem 6-1 outlines a simple proof of the preceding corollary that does not

depend on the full strength of Sard’s theorem.
It is important to be aware that Corollary 6.11 is false if F is merely assumed

to be continuous. For example, there is a continuous map F W Œ0; 1�! R2 whose
image is the entire unit square Œ0; 1� � Œ0; 1�. (Such a map is called a space-filling
curve. See [Rud76, p. 168] for an example.)

Corollary 6.12. Suppose M is a smooth manifold with or without boundary, and
S �M is an immersed submanifold with or without boundary. If dimS < dimM;
then S has measure zero in M .

Proof. Apply Corollary 6.11 to the inclusion map S ,!M . �

The Whitney Embedding Theorem

Our first application of Sard’s theorem is to show that every smooth manifold can
be embedded into a Euclidean space. In fact, we will show that every smooth n-
manifold with or without boundary is diffeomorphic to a properly embedded sub-
manifold (with or without boundary) of R2nC1.
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The first step is to show that an injective immersion of an n-manifold into RN

can be turned into an injective immersion into a lower-dimensional Euclidean space
if N > 2nC 1.

Lemma 6.13. Suppose M � RN is a smooth n-dimensional submanifold with or
without boundary. For any v 2RN XRN�1, let �v W RN !RN�1 be the projection
with kernel Rv (where we identify RN�1 with the subspace of RN consisting of
points with last coordinate zero). If N > 2nC 1, then there is a dense set of vectors
v 2RN XRN�1 for which �vjM is an injective immersion of M into RN�1.

Proof. In order for �vjM to be injective, it is necessary and sufficient that p � q
never be parallel to v when p and q are distinct points in M . Similarly, in order
for �vjM to be a smooth immersion, it is necessary and sufficient that TpM not
contain any nonzero vectors in Kerd.�v/p for any p 2M . Because �v is linear, its
differential is the same linear map (under the usual identification TpRN ŠRN ), so
this condition is equivalent to the requirement that TpM not contain any nonzero
vectors parallel to v.

Let �M �M �M denote the closed set �M D f.p;p/ W p 2M g (called the
diagonal of M �M ), and let M0 � TM denote the closed set M0 D f.p; 0/ 2

TM W p 2M g (the set of zero vectors at all points of M ). Consider the following
two maps into the real projective space RPN�1:

� W .M �M/X�M !RPN�1; �.p; q/D Œp � q�;

� W TM XM0!RPN�1; �.p;w/D Œw�;

where the brackets mean the equivalence class of a vector in RN Xf0g considered as
a point in RPN�1. These are both smooth because they are compositions of smooth
maps with the projection RN X f0g !RPN�1, and the condition that �vjM be an
injective smooth immersion is precisely the condition that Œv� not be in the image of
either � or � . Because the domains of both � and � have dimension 2n < N � 1D
dimRPN�1, Corollary 6.11 to Sard’s theorem implies that the image of each map
has measure zero, and so their union has measure zero as well. Thus, the set of
vectors whose equivalence classes are not in either image is dense. �

By applying the preceding lemma repeatedly, we can conclude that if an
n-manifold admits an injective immersion into some Euclidean space, then it ad-
mits one into R2nC1. When M is compact, this map is actually an embedding by
Proposition 4.22(c); but if M is not compact, we need to work a little harder to
ensure that our injective immersions are also embeddings.

Lemma 6.14. Let M be a smooth n-manifold with or without boundary. If M ad-
mits a smooth embedding into RN for some N , then it admits a proper smooth
embedding into R2nC1.

Proof. For this proof, given a one-dimensional linear subspace S �RN and a pos-
itive number R, let us define the tube with axis S and radius R to be the open
subset TR.S/�RN consisting of points whose distance from S is less than R:

TR.S/D
˚
x 2RN W jx � yj<R for some y 2 S

�
:
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Fig. 6.5 Reducing the codimension of a proper embedding

Suppose F W M ! RN is an arbitrary smooth embedding. Let G W RN ! BN

be a diffeomorphism, and let f W M ! R be a smooth exhaustion function (see
Proposition 2.28). Define � W M !RN �R by �.p/D

�
G ıF.p/;f .p/

�
. Because

G ı F is an embedding, it follows that � is injective and d�p is injective for each
p, so � is an injective immersion. It is proper because the preimage of any compact
set is a closed subset of the compact set f �1

�
.�1; c�

�
for some c, so � is a smooth

embedding by Proposition 4.22(b). By construction, the image of � is contained in
the tube BN �R.

Henceforth (after replacing N C 1 by N ), we assume that M admits a proper
smooth embedding into RN that takes its values in some tube TR.S/ (Fig. 6.5).
Identifying M with its image, we may consider M as a properly embedded sub-
manifold of RN contained in the tube.

If N > 2n C 1, Lemma 6.13 shows that there exists v 2 RN X RN�1 so that
�vjM is an injective immersion of M into RN�1. Moreover, we may choose v so
that it does not lie in the subspace S ; it follows that �v.S/ is a one-dimensional sub-
space of RN�1, and �v.M/ lies in a tube around �v.S/ because �v is a bounded
linear map. We will show that �vjM is proper, so it is an embedding by Proposi-
tion 4.22(b).

Suppose K � RN�1 is a compact set. Then K is contained in the open ball
around 0 of some radius R1. For any x 2 ��1v .K/, there is some c 2R such that
�v.x/ D x � cv; since j�v.x/j < R1, this means that x is in the tube of radius
R1 around the line Rv spanned by v. It follows that M \ ��1v .K/ is contained in
two tubes, one around S and the other around Rv. A simple geometric argument
shows that the intersection of two tubes is bounded when their axes are not parallel,
so M \ ��1v .K/ is compact. Thus �vjM is proper, which implies that �v.M/ is a
properly embedded submanifold of RN�1 contained in a tube. We can now iterate
this argument until we achieve a proper smooth embedding of M into R2nC1. �
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Theorem 6.15 (Whitney Embedding Theorem). Every smooth n-manifold with
or without boundary admits a proper smooth embedding into R2nC1.

Proof. Let M be a smooth n-manifold with or without boundary. By Lemma 6.14,
it suffices to show that M admits a smooth embedding into some Euclidean space.

First suppose M is compact. In this case M admits a finite cover fB1; : : : ;Bmg
in which each Bi is a regular coordinate ball or half-ball. This means that for each i
there exist a coordinate domainB 0i 
 xBi and a smooth coordinate map 'i W B 0i !Rn

that restricts to a diffeomorphism from xBi to a compact subset of Rn. For each i ,
let �i W M !R be a smooth bump function that is equal to 1 on xBi and supported
in B 0i . Define a smooth map F W M !RnmCm by

F.p/D
�
�1.p/'1.p/; : : : ; �m.p/'m.p/; �1.p/; : : : ; �m.p/

�
;

where, as usual, �i'i is extended to be zero away from the support of �i . We will
show that F is an injective smooth immersion; because M is compact, this implies
that F is a smooth embedding.

To see that F is injective, suppose F.p/D F.q/. Because the sets Bi cover M;
there is some i such that p 2 Bi . Then �i .p/ D 1, and the fact that �i .q/ D
�i .p/D 1 implies that q 2 supp�i �B 0i , and

'i .q/D �i .q/'i .q/D �i .p/'i .p/D 'i .p/:

Since 'i is injective on B 0i , it follows that pD q.
Next, to see that F is a smooth immersion, let p 2M be arbitrary and choose i

such that p 2 Bi . Because �i � 1 on a neighborhood of p, we have d.�i'i /p D
d.'i /p , which is injective. It follows easily that dFp is injective. Thus, F is an
injective smooth immersion and hence an embedding.

Now suppose M is noncompact. Let f W M !R be a smooth exhaustion func-
tion. Sard’s theorem shows that for each nonnegative integer i , there are regular
values ai ; bi of f such that i < ai < bi < i C 1. Define subsets Di ;Ei �M by

D0 D f
�1
�
.�1; 1�

�
; E0 D f

�1
�
.�1; a1�

�
I

Di D f
�1
�
Œi; i C 1�

�
; Ei D f

�1
�
Œbi�i ; aiC1�

�
; i � 1:

By Proposition 5.47, each Ei is a compact regular domain. We have Di � IntEi ,
M D

S
i Di , and Ei \Ej D¿ unless j D i � 1, i , or i C 1. The first part of the

proof shows that for each i there is a smooth embedding of Ei into some Euclidean
space, and therefore by Lemma 6.14 there is an embedding 'i W Ei ! R2nC1. For
each i , let �i W M ! R be a smooth bump function that is equal to 1 on a neigh-
borhood of Di and supported in IntEi , and define F W M ! R2nC1 �R2nC1 �R
by

F.p/D

�X

i even

�i .p/'i .p/;
X

i odd

�i .p/'i .p/; f .p/

�
:

Then F is smooth because only one term in each sum is nonzero in a neighborhood
of each point, and F is proper because f is. We will show that F is also an injective
smooth immersion, hence a smooth embedding.
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Suppose F.p/D F.q/. Then p 2Dj for some j , and f .q/D f .p/ implies that
q 2Dj as well. Arguing just as in the compact case above, we conclude that pD q.

Now let p 2M be arbitrary, and choose j such that p 2Dj . Then �j � 1 on a
neighborhood of p. Assuming j is odd, for all q in that neighborhood we have

F.q/D
�
'j .q/; : : : ; : : :

�
;

which implies that dFp is injective. A similar argument applies when j is even. �
Corollary 6.16. Every smooth n-dimensional manifold with or without boundary
is diffeomorphic to a properly embedded submanifold (with or without boundary) of
R2nC1. �
Corollary 6.17. Suppose M is a compact smooth n-manifold with or without
boundary. If N � 2nC 1, then every smooth map from M to RN can be uniformly
approximated by embeddings.

Proof. Assume N � 2n C 1, and let f W M ! RN be a smooth map. By the
Whitney embedding theorem, there is a smooth embedding F W M ! R2nC1. The
map G D f � F W M ! RN � R2nC1 is also a smooth embedding, and f is
equal to the composition � ı G, where � W RN � R2nC1 ! RN is the projec-
tion. Let �M D G.M/ � RN � R2nC1. Lemma 6.13 shows that there is a vector
vNC2nC1 2 RN � R2nC1 arbitrarily close to eNC2nC1 D .0; : : : ; 0; 1/ such that
�vNC2nC1 j �M is an embedding. This implies that �vNC2nC1 is arbitrarily close to
�eNC2nC1 . Iterating this, we obtain vectors vNC2nC1; vNC2n; : : : ; vNC1 such that

�vNC1 ı � � � ı �vNC2nC1 restricts to an embedding of �M that is arbitrarily close to
�eNC1 ı � � � ı �eNC2nC1 D � , and therefore �vNC1 ı � � � ı �vNC2nC1 ıG is an em-
bedding of M into RN that is arbitrarily close to f . �

If we require only immersions rather than embeddings, we can lower the dimen-
sion by one.

Theorem 6.18 (Whitney Immersion Theorem). Every smooth n-manifold with or
without boundary admits a smooth immersion into R2n.

Proof. See Problem 6-2 for the case @M D ¿, and Problem 9-14 for the general
case. �

Theorem 6.15, first proved by Hassler Whitney (in the case of empty boundary) in
1936 [Whi36], answered a question that had been nagging mathematicians since the
notion of an abstract manifold was first introduced: Are there abstract smooth man-
ifolds that are not diffeomorphic to embedded submanifolds of Euclidean space?
Now we know that there are not.

Although the version of the embedding theorem that we have proved is quite
sufficient for our purposes, it is interesting to note that eight years later, using much
more sophisticated techniques of algebraic topology, Whitney was able to obtain the
following improvements [Whi44a, Whi44b].

Theorem 6.19 (Strong Whitney Embedding Theorem). If n > 0, every smooth
n-manifold admits a smooth embedding into R2n.
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Theorem 6.20 (Strong Whitney Immersion Theorem). If n > 1, every smooth
n-manifold admits a smooth immersion into R2n�1.

Because of these results, Theorems 6.15 and 6.18 are sometimes called the easy
or weak Whitney embedding and immersion theorems.

In fact, not even the strong Whitney theorems are sharp in all dimensions. In
1985, Ralph Cohen proved that every compact smooth n-manifold can be im-
mersed in R2n�a.n/, where a.n/ is the number of 1’s in the binary expression for n.
Thus, for example, every 3-manifold can be immersed in R4, while 4-manifolds
require R7. This result is the best possible in every dimension. On the other hand,
the best possible embedding dimension is known only for certain dimensions. For
example, Whitney’s dimension 2n is optimal for manifolds of dimensions n D 1
and nD 2, but C.T.C. Wall showed in 1965 [Wal65] that every 3-manifold can be
embedded in R5. A good summary of the state of the art with references can be
found in [Osb82].

The Whitney Approximation Theorems

In this section we prove the two theorems mentioned at the beginning of the chapter
on approximation of continuous maps by smooth ones. Both of these theorems, like
the embedding theorem we just proved, are due to Hassler Whitney [Whi36].

We begin with a theorem about smoothly approximating functions into Euclidean
spaces. Our first theorem shows, in particular, that any continuous function from a
smooth manifold M into Rk can be uniformly approximated by a smooth function.
In fact, we will prove something stronger. If ı W M ! R is a positive continuous
function, we say that two functions F; zF W M !Rk are ı-close if

ˇ̌
F.x/� zF .x/

ˇ̌
<

ı.x/ for all x 2M .

Theorem 6.21 (Whitney Approximation Theorem for Functions). Suppose M
is a smooth manifold with or without boundary, and F W M ! Rk is a continuous
function. Given any positive continuous function ı W M !R, there exists a smooth
function zF W M !Rk that is ı-close to F . If F is smooth on a closed subsetA�M;
then zF can be chosen to be equal to F on A.

Proof. If F is smooth on the closed subset A, then by the extension lemma for
smooth functions (Lemma 2.26), there is a smooth function F0 W M ! Rk that
agrees with F on A. Let

U0 D
˚
y 2M W

ˇ̌
F0.y/�F.y/

ˇ̌
< ı.y/

�
:

Then U0 is an open subset containing A. (If there is no such set A, we just take
U0 DAD¿ and F0 � 0.)

We will show that there are countably many points fxig1iD1 in M XA and neigh-
borhoods Ui of xi in M XA such that fUig1iD1 is an open cover of M XA and

ˇ̌
F.y/�F.xi /

ˇ̌
< ı.y/ for all y 2 Ui : (6.3)
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To see this, for any x 2M XA, let Ux be a neighborhood of x contained in M XA
and small enough that

ı.y/ > 1
2
ı.x/ and

ˇ̌
F.y/�F.x/

ˇ̌
< 1
2
ı.x/

for all y 2 Ux . (Such a neighborhood exists by continuity of ı and F .) Then if
y 2Ux , we have

ˇ̌
F.y/�F.x/

ˇ̌
< 1
2
ı.x/ < ı.y/:

The collection fUx W x 2M XAg is an open cover of M XA. Choosing a countable
subcover fUxi g

1
iD1 and setting Ui D Uxi , we have (6.3).

Let f'0; 'ig be a smooth partition of unity subordinate to the cover fU0;Uig
of M; and define zF W M !Rk by

zF .y/D '0.y/F0.y/C
X

i�1

'i .y/F.xi /:

Then clearly zF is smooth, and is equal to F on A. For any y 2M; the fact thatP
i�0 'i � 1 implies that

ˇ̌
zF .y/�F.y/

ˇ̌
D

ˇ̌
ˇ̌'0.y/F0.y/C

X

i�1

'i .y/F.xi /�

�
'0.y/C

X

i�1

'i .y/

�
F.y/

ˇ̌
ˇ̌

� '0.y/
ˇ̌
F0.y/�F.y/

ˇ̌
C
X

i�1

'i .y/
ˇ̌
F.xi /�F.y/

ˇ̌

< '0.y/ı.y/C
X

i�1

'i .y/ı.y/D ı.y/:
�

Corollary 6.22. If M is a smooth manifold with or without boundary and ı W M !
R is a positive continuous function, there is a smooth function e W M !R such that
0 < e.x/ < ı.x/ for all x 2M .

Proof. Use the Whitney approximation theorem to construct a smooth function
e W M !R that satisfies

ˇ
ˇe.x/� 1

2
ı.x/

ˇ
ˇ< 1

2
ı.x/ for all x 2M . �

Tubular Neighborhoods

We would like to find a way to apply the Whitney approximation theorem to produce
smooth approximations to continuous maps between smooth manifolds. If F W N !
M is such a map, then by the Whitney embedding theorem we can consider M as
an embedded submanifold of some Euclidean space Rn, and approximate F by a
smooth map into Rn. However, in general, the image of this smooth map will not
lie in M . To correct for this, we need to know that there is a smooth retraction
from some neighborhood of M onto M . For this purpose, we introduce tubular
neighborhoods.

For each x 2Rn, the tangent space TxRn is canonically identified with Rn itself,
and the tangent bundle TRn is canonically diffeomorphic to Rn � Rn. By virtue
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of this identification, each tangent space TxRn inherits a Euclidean dot product.
Suppose M � Rn is an embedded m-dimensional submanifold. For each x 2M;
we define the normal space to M at x to be the .n � m/-dimensional subspace
NxM � TxRn consisting of all vectors that are orthogonal to TxM with respect to
the Euclidean dot product. The normal bundle of M , denoted by NM; is the subset
of TRn �Rn �Rn consisting of vectors that are normal to M :

NM D
˚
.x; v/ 2Rn �Rn W x 2M; v 2NxM

�
:

There is a natural projection �NM W NM !M defined as the restriction to NM of
� W TRn!Rn.

Theorem 6.23. If M �Rn is an embedded m-dimensional submanifold, then NM
is an embedded n-dimensional submanifold of TRn �Rn �Rn.

Proof. Let x0 be any point of M; and let .U;'/ be a slice chart for M in Rn cen-
tered at x0. Write yU D '.U / � Rn, and write the coordinate functions of ' as�
u1; : : : ; un

�
, so that M \ U is the set where umC1 D � � � D un D 0. At each point

x 2 U , the vectors Ej jx D .d'x/�1
�
@=@uj j'.x/

�
form a basis for TxRn. We can

expand each Ej jx in terms of the standard coordinate frame as

Ej
ˇ̌
x
DE ij .x/

@

@xi

ˇ̌
ˇ̌
x

;

where each Eij .x/ is a partial derivative of '�1 evaluated at '.x/, and thus is a
smooth function of x.

Define a smooth function ˚ W U �Rn! yU �Rn by

˚.x; v/D
�
u1.x/; : : : ; un.x/; v �E1

ˇ̌
x
; : : : ; v �En

ˇ̌
x

�
:

The total derivative of ˚ at a point .x; v/ is

D˚.x;v/ D

�

@ui

@xj
.x/ 0

 E ij .x/

�

;

which is invertible, so ˚ is a local diffeomorphism. If ˚.x; v/ D ˚.x0; v0/, then
x D x0 because ' is injective, and then the fact that v �Ei jx D v0 �Ei jx for each i
implies that v � v0 is orthogonal to the span of .E1jx ; : : : ;Enjx/ and is therefore
zero. Thus ˚ is injective, so it defines a smooth coordinate chart on U �Rn. The
definitions imply that .x; v/ 2NM if and only if ˚.x; v/ is in the slice

˚
.y; z/ 2Rn �Rn W ymC1 D � � � D yn D 0; z1 D � � � D zm D 0

�
:

Thus ˚ is a slice chart for NM in Rn �Rn. �
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Fig. 6.6 A tubular neighborhood

(We will be able to give a shorter proof of this theorem in Chapter 10; see Corol-
lary 10.36.)

Thinking of NM as a submanifold of Rn �Rn, we define E W NM !Rn by

E.x; v/D xC v:

This maps each normal space NxM affinely onto the affine subspace through x and
orthogonal to TxM . Clearly, E is smooth, because it is the restriction to NM of the
addition map Rn �Rn!Rn. A tubular neighborhood of M is a neighborhood U
of M in Rn that is the diffeomorphic image under E of an open subset V � NM
of the form

V D
˚
.x; v/ 2NM W jvj< ı.x/

�
; (6.4)

for some positive continuous function ı W M !R (Fig. 6.6).

Theorem 6.24 (Tubular Neighborhood Theorem). Every embedded submanifold
of Rn has a tubular neighborhood.

Proof. Let M0 � NM be the subset f.x; 0/ W x 2M g. We begin by showing that
E is a local diffeomorphism on a neighborhood of M0. By the inverse function
theorem, it suffices to show that the differential dE.x;0/ is bijective at each point
.x; 0/ 2M0. This follows easily from the following two facts: First, the restriction
of E toM0 is the obvious diffeomorphismM0!M; so dE.x;0/ maps the subspace
T.x;0/M0 � T.x;0/NM isomorphically onto TxM . Second, the restriction of E to
the fiber NxM is the affine map w 7! x C w, so dE.x;0/ maps T.x;0/.NxM/ �

T.x;0/NM isomorphically onto NxM . Since TxRn D TxM ˚ NxM; this shows
that dE.x;0/ is surjective, and hence is bijective for dimensional reasons. Thus, E is
a diffeomorphism on a neighborhood of .x; 0/ in NM; which we can take to be of
the form Vı.x/D f.x

0; v0/ 2NM W jx�x0j< ı; jv0j< ıg for some ı > 0. (This uses
the fact that NM is embedded in Rn �Rn, and therefore its topology is induced by
the Euclidean metric.)

To complete the proof, we need to show that there is an open subset V of the
form (6.4) on which E is a global diffeomorphism. For each point x 2M; let �.x/
be the supremum of all ı � 1 such that E is a diffeomorphism from Vı.x/ to its
image. The argument in the preceding paragraph implies that � W M !R is positive.
To show it is continuous, let x;x0 2M be arbitrary, and suppose first that jx�x0j<
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Fig. 6.7 Continuity of � Fig. 6.8 Injectivity of E

�.x/. By the triangle inequality, Vı.x0/ is contained in V�.x/.x/ for ı D �.x/ �
jx � x0j (Fig. 6.7), which implies that �.x0/� �.x/� jx � x0j, or

�.x/� �.x0/� jx � x0j: (6.5)

On the other hand, if jx � x0j � �.x/, then (6.5) holds for trivial reasons. Re-
versing the roles of x and x0 yields an analogous inequality, which shows that
j�.x/ � �.x0/j � jx � x0j, so � is continuous. Note that E is injective on the en-
tire set V�.x/.x/, because any two points .x1; v1/; .x2; v2/ in this set are in Vı.x/
for some ı < �.x/.

Now let V D
˚
.x; v/ 2 NM W jvj < 1

2
�.x/

�
. We will show that E is injective

on V . Suppose that .x; v/ and .x0; v0/ are points in V such that E.x; v/DE.x0; v0/
(Fig. 6.8). Assume without loss of generality that �.x0/ � �.x/. It follows from
xC vD x0C v0 that

jx � x0j D jv � v0j � jvj C jv0j< 1
2
�.x/C 1

2
�.x0/� �.x/:

Therefore, both .x; v/ and .x0; v0/ are in V�.x/.x/. Since E is injective on this set,
this implies .x; v/D .x0; v0/.

The set U D E.V / is open in Rn because EjV is a local diffeomorphism and
thus an open map. It follows that E W V ! U is a smooth bijection and a local dif-
feomorphism, hence a diffeomorphism by Proposition 4.6. Therefore, U is a tubular
neighborhood of M . �

One of the most useful features of tubular neighborhoods is expressed in the next
proposition. A retraction of a topological space X onto a subspace M � X is a
continuous map r W X!M such that r jM is the identity map of M .

Proposition 6.25. Let M � Rn be an embedded submanifold. If U is any tubular
neighborhood of M; there exists a smooth map r W U !M that is both a retraction
and a smooth submersion.

Proof. Let NM � TRn be the normal bundle of M; and let M0 � NM be the
set M0 D f.x; 0/ W x 2M g. By definition of a tubular neighborhood, there is an
open subset V � NM containing M0 such that E W V ! U is a diffeomorphism.
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Define r W U !M by r D �NM ı E�1, where �NM W NM !M is the natural
projection. Then r is smooth by composition. For x 2M; note that E.x; 0/D x, so
r.x/D � ı E�1.x/D �.x; 0/D x, which shows that r is a retraction. Since � is
a smooth submersion and E�1 is a diffeomorphism, it follows that r is a smooth
submersion. �

Smooth Approximation of Maps Between Manifolds

Now we can extend the Whitney approximation theorem to maps between mani-
folds. This extension will have important applications to line integrals in Chapter 16
and to de Rham cohomology in Chapters 17–18.

Theorem 6.26 (Whitney Approximation Theorem). SupposeN is a smooth man-
ifold with or without boundary, M is a smooth manifold (without boundary), and
F W N !M is a continuous map. Then F is homotopic to a smooth map. If F is
already smooth on a closed subset A � N , then the homotopy can be taken to be
relative to A.

Proof. By the Whitney embedding theorem, we may as well assume that M is a
properly embedded submanifold of Rn. Let U be a tubular neighborhood of M
in Rn, and let r W U !M be the smooth retraction given by Proposition 6.25. For
any x 2M; let

ı.x/D sup
˚
"� 1 WB".x/� U

�
: (6.6)

By a triangle-inequality argument just like the one in the proof of the tubular neigh-
borhood theorem, ı W M ! RC is continuous. Let zı D ı ı F W N ! RC. By The-
orem 6.21, there exists a smooth function zF W N ! Rn that is zı-close to F , and
is equal to F on A (which might be the empty set). Let H W N � I !M be the
composition of r with the straight-line homotopy between F and zF :

H.p; t/D r
�
.1� t/F.p/C t zF .p/

�
:

This is well defined, because our condition on zF guarantees that for each p 2 N ,ˇ̌
zF .p/� F.p/

ˇ̌
< zı.p/D ı.F.p//, which means that zF .p/ is contained in the ball

of radius ı
�
F.p/

�
around F.p/; since this ball is contained in U , so is the entire

line segment from F.p/ to zF .p/.
ThusH is a homotopy betweenH.p;0/D F.p/ andH.p;1/D r

�
zF .p/

�
, which

is a smooth map by composition. It satisfies H.p; t/D F.p/ for all p 2 A, since
F D zF there. �
Corollary 6.27 (Extension Lemma for Smooth Maps). Suppose N is a smooth
manifold with or without boundary, M is a smooth manifold, A � N is a closed
subset, and f W A!M is a smooth map. Then f has a smooth extension to N if
and only if it has a continuous extension to N .

Proof. If F W N !M is a continuous extension of f to all of N , the Whitney ap-
proximation theorem guarantees the existence of a smooth map zF (homotopic to F ,
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Fig. 6.9 The function ' in the proof of Lemma 6.28

in fact, though we do not need that here) that agrees with f on A; in other words,
zF is a smooth extension of f . The converse is obvious. �

If N and M are two smooth manifolds with or without boundary, a homotopy
H W N �I !M is called a smooth homotopy if it is also a smooth map, in the sense
that it extends to a smooth map on some neighborhood of N � I in N � R. Two
maps are said to be smoothly homotopic if there is a smooth homotopy between
them.

Lemma 6.28. If N andM are smooth manifolds with or without boundary, smooth
homotopy is an equivalence relation on the set of all smooth maps from N to M .

Proof. Reflexivity and symmetry are proved just as for ordinary homotopy. To prove
transitivity, suppose F;G;K W N !M are smooth maps, andH1;H2 W N �I !M

are smooth homotopies from F toG andG toK , respectively. Let ' W Œ0; 1�! Œ0; 2�

be a smooth map such that 0� '.t/� 1 for t 2
�
0; 1
2

�
, 1� '.t/� 2 for t 2

�
1
2
; 1
�
,

'.0/D 0, '.1/D 2, and '.t/� 1 for t in a neighborhood of 1
2

(see Fig. 6.9).Define
H W N � I !M by

H.x; t/D

(
H1
�
x;'.t/

�
; t 2

�
0; 1
2

�
;

H2
�
x;'.t/� 1

�
; t 2

�
1
2
; 1
�
:

Then it is easy to check that H is a smooth homotopy from F to K . �

Theorem 6.29. Suppose N is a smooth manifold with or without boundary, M is a
smooth manifold, and F;G W N !M are smooth maps. If F and G are homotopic,
then they are smoothly homotopic. If F andG are homotopic relative to some closed
subset A�N , then they are smoothly homotopic relative to A.

Proof. Suppose F;G W N !M are smooth, and letH W N �I !M be a homotopy
from F to G (relative to A, which may be empty). We wish to show that H can be
replaced by a smooth homotopy.
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Define xH W N �R!M by

xH.x; t/D

�

H.x; t/; t 2 Œ0; 1�;

H.x; 0/; t � 0;

H.x; 1/; t � 1:

This is continuous by the gluing lemma. The restriction of xH to N � f0g[N � f1g
is smooth, because it is equal to F ı �1 on N � f0g and G ı �1 on N � f1g (where
�1 W N � R! N is the projection). If H is a homotopy relative to A, then xH is
also smooth on A� I . Because N �R is a smooth manifold with (possibly empty)
boundary, the Whitney approximation theorem guarantees that there is a smooth
map zH W N �R!M (homotopic to xH , but we do not need that here) whose re-
striction toN �f0g[N �f1g[A�I agrees with xH (and thereforeH ). Restricting
back to N � I again, we see that zH jN�I is a smooth homotopy (relative to A) be-
tween F and G. �

When the target manifold has nonempty boundary, the analogues of Theo-
rems 6.26 and 6.29 do not hold, because it might not be possible to find a smooth
map that agrees with F on A (see Problem 6-7). However, if we do not insist on
homotopy relative to a subset, the rest of the results can be extended to maps into
manifolds with boundary. The proofs will have to wait until Chapter 9 (see Theo-
rems 9.27 and 9.28).

Transversality

As our final application of Sard’s theorem, we show how submanifolds can be per-
turbed so that they intersect “nicely.” To explain what this means, we introduce the
concept of transversality.

The intersection of two linear subspaces of a vector space is always another lin-
ear subspace. The analogous statement for submanifolds is certainly not true: it is
easy to come up with examples of smooth submanifolds whose intersection is not
a submanifold. (See Problem 6-14.) But with an additional assumption about the
submanifolds, it is possible to show that their intersection is again a submanifold.

Suppose M is a smooth manifold. Two embedded submanifolds S;S 0 �M are
said to intersect transversely if for each p 2 S \ S 0, the tangent spaces TpS and
TpS

0 together span TpM (where we consider TpS and TpS 0 as subspaces of TpM ).
For many purposes, it is more convenient to work with the following more gen-

eral definition. If F W N !M is a smooth map and S �M is an embedded sub-
manifold, we say that F is transverse to S if for every x 2 F �1.S/, the spaces
TF.x/S and dFx.TxN/ together span TF.x/M . One special case is worth noting:
if F is a smooth submersion, then it is automatically transverse to every embedded
submanifold of M . Two embedded submanifolds intersect transversely if and only
if the inclusion of either one is transverse to the other.

The next result, a generalization of the regular level set theorem, shows why
transversality is desirable.
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Theorem 6.30. Suppose N and M are smooth manifolds and S �M is an embed-
ded submanifold.

(a) If F W N !M is a smooth map that is transverse to S , then F �1.S/ is an
embedded submanifold of N whose codimension is equal to the codimension of
S in M .

(b) If S 0 � M is an embedded submanifold that intersects S transversely, then
S \ S 0 is an embedded submanifold of M whose codimension is equal to the
sum of the codimensions of S and S 0.

Proof. The second statement follows easily from the first, simply by taking F to be
the inclusion map S 0 ,!M; and noting that a composition of smooth embeddings
S \ S 0 ,! S ,!M is again a smooth embedding.

To prove (a), let m denote the dimension of M and k the codimension of S
in M . Given x 2 F �1.S/, we can find a neighborhood U of F.x/ in M and a local
defining function ' W U ! Rk for S , with S \ U D '�1.0/. The theorem will be
proved if we can show that 0 is a regular value of ' ıF , because F �1.S/\F �1.U /
is the zero set of ' ıF jF�1.U /.

Given z 2 T0Rk and p 2 .' ı F /�1.0/, the fact that 0 is a regular value of '
means there is a vector y 2 TF.p/M such that d'F.p/.y/D z. The fact that F is
transverse to S means we can write y D y0 C dFp.v/ for some y0 2 TF.p/S and
some v 2 TpN . Because ' is constant on S \U , it follows that d'F.p/.y0/D 0, so

d.' ıF /p.v/D d'F.p/
�
dFp.v/

�
D d'F.p/

�
y0C dFp.v/

�
D d'F.p/.y/D z:

Thus F �1.S/ is an embedded submanifold of codimension k. �

For example, in R3, this theorem shows that a smooth curve and a smooth surface
intersecting transversely have only isolated points in their intersection, while two
smooth surfaces intersect transversely in a smooth curve. Two smooth curves in
R3 intersect transversely if and only if their intersection is empty, because at any
intersection point, the two one-dimensional tangent spaces to the curves would have
to span the tangent space to R3.

Because a submersion is transverse to every embedded submanifold, the next
corollary is immediate.

Corollary 6.31. Suppose N and M are smooth manifolds, S �M is an embedded
submanifold of codimension k, and F W N !M is a submersion. Then F �1.S/ is
an embedded codimension-k submanifold of N . �

Transversality also provides a convenient criterion for recognizing a submanifold
as a graph. The next theorem is a global version of the implicit function theorem.

Theorem 6.32 (Global Characterization of Graphs). Suppose M and N are
smooth manifolds and S �M �N is an immersed submanifold. Let �M and �N
denote the projections from M �N onto M and N , respectively. The following are
equivalent.

(a) S is the graph of a smooth map f W M !N .
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(b) �M
ˇ̌
S

is a diffeomorphism from S onto M .
(c) For each p 2M; the submanifolds S and fpg � N intersect transversely in

exactly one point.

If these conditions hold, then S is the graph of the map f W M ! N defined by
f D �N ı

�
�M

ˇ̌
S

�
�1.

Proof. Problem 6-15. �

Corollary 6.33 (Local Characterization of Graphs). Suppose M and N are
smooth manifolds, S �M �N is an immersed submanifold, and .p; q/ 2 S . If S
intersects the submanifold fpg �N transversely at .p; q/, then there exist a neigh-
borhood U of p inM and a neighborhood V of .p; q/ in S such that V is the graph
of a smooth map f W U !N .

Proof. The hypothesis guarantees that d.�M /.p;q/ W T.p;q/S ! TpM is an isomor-
phism, so �M

ˇ̌
S

restricts to a diffeomorphism from a neighborhood V of .p; q/ in S
to a neighborhood U of p. The result then follows from Theorem 6.32(b). �

The surprising thing about transversely intersecting submanifolds and transverse
maps is that they are “generic,” as we will soon see. To set the stage, we need to
consider families of maps that are somewhat more general than smooth homotopies.

Suppose N , M; and S are smooth manifolds, and for each s 2 S we are given
a map Fs W N !M . The collection fFs W s 2 Sg is called a smooth family of maps
if the map F W M � S ! N defined by F.x; s/ D Fs.x/ is smooth. You should
think of such a family as a higher-dimensional analogue of a homotopy. The next
proposition shows how such families are related to ordinary homotopies.

Proposition 6.34. If fFs W s 2 Sg is a smooth family of maps from N to M and S is
connected, then for any s1; s2 2 S , the maps Fs1 ;Fs2 W N !M are homotopic.

Proof. Because S is connected, it is path-connected. If � W Œ0; 1�! S is any path
from s1 to s2, then H.x; s/D F

�
x; �.s/

�
is a homotopy from Fs1 to Fs2 . �

The key to finding transverse maps is the following application of Sard’s theorem,
which gives a simple sufficient condition for a family of smooth maps to contain at
least one map that is transverse to a given submanifold. If S is a smooth manifold
and B � S is a subset whose complement has measure zero in S , we say that B
contains almost every element of S .

Theorem 6.35 (Parametric Transversality Theorem). Suppose N and M are
smooth manifolds, X � M is an embedded submanifold, and fFs W s 2 Sg is a
smooth family of maps from N to M . If the map F W N � S !M is transverse
to X , then for almost every s 2 S , the map Fs W N !M is transverse to X .

Proof. The hypothesis implies that W D F �1.X/ is an embedded submanifold of
N � S by Theorem 6.30. Let � W N � S ! S be the projection onto the second
factor. What we will actually show is that if s 2 S is a regular value of the restriction
�jW , then Fs is transverse to X . Since almost every s is a regular value by Sard’s
theorem, this proves the theorem.
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Suppose s 2 S is a regular value of �jW . Let p 2 F �1s .X/ be arbitrary, and set
q D Fs.p/ 2 X . We need to show that TqM D TqX C d.Fs/.TpN/. Here is what
we know. First, because of our hypothesis on F ,

TqM D TqX C dF
�
T.p;s/.N � S/

�
: (6.7)

Second, because s is a regular value and .p; s/ 2W ,

TsS D d�
�
T.p;s/W

�
: (6.8)

Third, by the result of Problem 6-10, we have T.p;s/W D
�
dF.p;s/

��1
.TqX/, which

implies

dF
�
T.p;s/W

�
D TqX: (6.9)

Now let w 2 TqM be arbitrary. We need to find v 2 TqX and y 2 TpN such that

wD vC d.Fs/.y/: (6.10)

Because of (6.7), there exist v1 2 TqX and .y1; z1/ 2 TpN � TsS Š T.p;s/.N � S/
such that

wD v1C dF.y1; z1/: (6.11)

By (6.8), there exists .y2; z2/ 2 T.p;s/W such that d�.y2; z2/ D z1. Since � is a
projection, this means z2 D z1. By linearity, we can write

dF.y1; z1/D dF.y2; z1/C dF.y1 � y2; 0/:

On the one hand, (6.9) implies dF.y2; z1/D dF.y2; z2/ 2 dF
�
T.p;s/W

�
D TqX .

On the other hand, if 	s W N ! N � S is the map 	s.p0/ D .p0; s/, then we have
Fs D F ı 	s and d.	s/.y1 � y2/ D .y1 � y2; 0/, and therefore dF.y1 � y2; 0/ D
dF ı d.	s/.y1 � y2/ D d.Fs/.y1 � y2/. By virtue of (6.11), therefore, (6.10) is
satisfied with vD v1C dF.y2; z1/ and y D y1 � y2, and the proof is complete. �

In order to make use of the parametric transversality theorem, we need to con-
struct a smooth family of maps satisfying the hypothesis. The proof of the next
theorem shows that it is always possible to do so.

Theorem 6.36 (Transversality Homotopy Theorem). Suppose M and N are
smooth manifolds and X �M is an embedded submanifold. Every smooth map
f W N !M is homotopic to a smooth map g W N !M that is transverse to X .

Proof. The crux of the proof is constructing a smooth map F W N � S !M that is
transverse to X , where S D Bk for some k and F0 D f . It then follows from the
parametric transversality theorem that there is some s 2 S such that Fs W N !M is
transverse to X , and from Proposition 6.34 that Fs is homotopic to f .

By the Whitney embedding theorem, we can assume thatM is a properly embed-
ded submanifold of Rk for some k. Let U be a tubular neighborhood of M in Rk ,
and let r W U !M be a smooth retraction that is also a smooth submersion. If we
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define ı W M !RC by (6.6), Corollary 6.22 shows that there exists a smooth func-
tion e W N ! RC that satisfies 0 < e.p/ < ı

�
f .p/

�
everywhere. Let S be the unit

ball in Rk , and define F W N � S!M by

F.p; s/D r
�
f .p/C e.p/s

�
:

Note that
ˇ̌
e.p/s

ˇ̌
< e.p/ < ı

�
f .p/

�
, which implies that f .p/C e.p/s 2 U , so F

is well defined. Clearly, F is smooth, and F0 D f because r is a retraction.
For each p 2 N , the restriction of F to fpg � S is the composition of the local

diffeomorphism s 7! f .p/C e.p/s followed by the smooth submersion r , so F is
a smooth submersion and hence transverse to X . �

Problems

6-1. Use Proposition 6.5 to give a simpler proof of Corollary 6.11 that does not
use Sard’s theorem. [Hint: given a smooth map F W M ! N , define a suit-
able map from M �Rk to N , where k D dimN � dimM .]

6-2. Prove Theorem 6.18 (the Whitney immersion theorem) in the special case
@M D ¿. [Hint: without loss of generality, assume that M is an embed-
ded n-dimensional submanifold of R2nC1. Let UM � TR2nC1 be the
unit tangent bundle of M (Problem 5-6), and let G W UM ! RP2n be
the map G.x; v/D Œv�. Use Sard’s theorem to conclude that there is some
v 2R2nC1 XR2n such that Œv� is not in the image of G, and show that the
projection from R2nC1 to R2n with kernel Rv restricts to an immersion of
M into R2n.]

6-3. LetM be a smooth manifold, letB �M be a closed subset, and let ı W M !
R be a positive continuous function. Show that there is a smooth function
zı W M !R that is zero on B , positive on M XB , and satisfies zı.x/ < ı.x/
everywhere. [Hint: consider f=.f C 1/, where f is a smooth nonnegative
function that vanishes exactly on B , and use Corollary 6.22.]

6-4. LetM be a smooth manifold, letB be a closed subset ofM; and let ı W M !
R be a positive continuous function.
(a) Given any continuous function f W M !Rk , show that there is a con-

tinuous function zf W M !Rk that is smooth on M XB , agrees with f
on B , and is ı-close to f . [Hint: use Problem 6-3.]

(b) Given a smooth manifold N and a continuous map F W M !N , show
that F is homotopic relative to B to a map that is smooth on M XB .

6-5. Let M � Rn be an embedded submanifold. Show that M has a tubular
neighborhood U with the following property: for each y 2 U , r.y/ is the
unique point inM closest to y, where r W U !M is the retraction defined in
Proposition 6.25. [Hint: first show that if y 2Rn has a closest point x 2M;
then .y�x/? TxM . Then, using the notation of the proof of Theorem 6.24,
show that for each x 2M; it is possible to choose ı > 0 such that every
y 2E

�
Vı.x/

�
has a closest point in M; and that point is equal to r.y/.]
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6-6. Suppose M � Rn is a compact embedded submanifold. For any " > 0, let
M" be the set of points in Rn whose distance from M is less than ". Show
that for sufficiently small ", @M" is a compact embedded hypersurface in
Rn, and SM" is a compact regular domain in Rn whose interior contains M .

6-7. By considering the map F W R!H2 given by F.t/D .t; jt j/ and the subset
A D Œ0;1/ � R, show that the conclusions of Theorem 6.26 and Corol-
lary 6.27 can be false when M has nonempty boundary.

6-8. Prove that every proper continuous map between smooth manifolds is ho-
motopic to a proper smooth map. [Hint: show that the map zF constructed in
the proof of Theorem 6.26 is proper if F is.]

6-9. Let F W R2!R3 be the map F.x;y/D
�
ey cosx; ey sinx; e�y

�
. For which

positive numbers r is F transverse to the sphere Sr .0/ � R3? For which
positive numbers r is F �1

�
Sr .0/

�
an embedded submanifold of R2?

6-10. Suppose F W N !M is a smooth map that is transverse to an embedded
submanifold X �M; and let W D F �1.X/. For each p 2 W , show that
TpW D .dFp/

�1
�
TF.p/X

�
. Conclude that if two embedded submanifolds

X;X 0 �M intersect transversely, then Tp.X\X 0/D TpX\TpX 0 for every
p 2X \X 0. (Used on p. 146.)

6-11. Suppose F W M ! N and G W N ! P are smooth maps, and G is trans-
verse to an embedded submanifold X � P . Show that F is transverse to the
submanifold G�1.X/ if and only if G ıF is transverse to X .

6-12. Let M be a compact smooth n-manifold. Prove that if N � 2n, every
smooth map from M to RN can be uniformly approximated by smooth
immersions.

6-13. Let M be a smooth manifold. In this chapter, we defined what it means for
two embedded submanifolds ofM to intersect transversely, and for a smooth
map into M to be transverse to an embedded submanifold. More generally,
if F W N !M and F 0 W N 0!M are smooth maps into M; we say that F
and F 0 are transverse to each other if for every x 2 N and x0 2 N 0 such
that F.x/D F 0.x0/, the spaces dFx.TxN/ and dF 0x0.Tx0N

0/ together span
TF.x/M . Prove the following statements.
(a) WithN;N 0;F;F 0 as above, F and F 0 are transverse to each other if and

only if the map F �F 0 W N �N 0!M �M is transverse to the diagonal
�M D f.x; x/ W x 2M g.

(b) If S is an embedded submanifold of M; a smooth map F W N !M is
transverse to S if and only if it is transverse to the inclusion 	 W S ,!M .

(c) If F W N !M and F 0 W N 0!M are smooth maps that are transverse
to each other, then F �1

�
F 0.N 0/

�
is an embedded submanifold of N of

dimension equal to dimN C dimN 0 � dimM .

6-14. This problem illustrates how badly Theorem 6.30 can fail if the transver-
sality hypothesis is removed. Let S D Rn � f0g � RnC1, and suppose A
is an arbitrary closed subset of S . Prove that there is a properly embedded
hypersurface S 0 �RnC1 such that S \ S 0 DA. [Hint: use Theorem 2.29.]
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6-15. Prove Theorem 6.32 (global characterization of graphs).

6-16. Suppose M and N are smooth manifolds. A class F of smooth maps
from N to M is said to be stable if it has the following property: when-
ever fFs W s 2 Sg is a smooth family of maps from N toM; and Fs0 2F for
some s0 2 S , then there is a neighborhood U of s0 in S such that Fs 2 F

for all s 2 U . (Roughly speaking, a property of smooth maps is stable if
it persists under small deformations.) Prove that if N is compact, then the
following classes of smooth maps from N to M are stable:
(a) immersions
(b) submersions
(c) embeddings
(d) diffeomorphisms
(e) local diffeomorphisms
(f) maps that are transverse to a given properly embedded submanifold

X �M

6-17. Let ' W R ! R be a compactly supported smooth function such that
'.0/ D 1. Use the family fFs W s 2 Rg of maps from R to R given by
Fs.x/D x'.sx/ to show that the classes of maps described in Problem 6-16
need not be stable when N is not compact.



Chapter 7
Lie Groups

In this chapter we introduce Lie groups, which are smooth manifolds that are also
groups in which multiplication and inversion are smooth maps. Besides providing
many examples of interesting manifolds themselves, they are essential tools in the
study of more general manifolds, primarily because of the role they play as groups
of symmetries of other manifolds.

Our aim in this chapter is to introduce Lie groups and some of the tools for
working with them, and to describe an abundant supply of examples. In subsequent
chapters (especially Chapters 8, 20, and 21), we will develop many more properties
and applications of Lie groups.

We begin with the definition of Lie groups and some of the basic structures asso-
ciated with them, and then present a number of examples. Next we study Lie group
homomorphisms, which are group homomorphisms that are also smooth maps. Then
we introduce Lie subgroups (subgroups that are also smooth submanifolds), which
lead to a number of new examples of Lie groups.

After explaining these basic ideas, we introduce actions of Lie groups on mani-
folds, which are the primary raison d’être of Lie groups. At the end of the chapter,
we briefly touch on group representations.

The study of Lie groups was initiated in the late nineteenth century by the Norwe-
gian mathematician Sophus Lie. Inspired by the way the French algebraist Évariste
Galois had invented group theory and used it to analyze polynomial equations, Lie
was interested in using symmetries, expressed in the form of group actions, to sim-
plify problems in partial differential equations and geometry. However, Lie could
not have conceived of the global objects that we now call Lie groups, for the sim-
ple reason that global topological notions such as manifolds (or even topological
spaces!) had not yet been formulated. What Lie studied was essentially a local-
coordinate version of Lie groups, now called local Lie groups. Despite the limita-
tions imposed by the era in which he lived, he was able to lay much of the ground-
work for our current understanding of Lie groups. We will describe his principal
results in Chapter 20 (see Theorem 20.16).

J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics 218,
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Basic Definitions

A Lie group is a smooth manifold G (without boundary) that is also a group in the
algebraic sense, with the property that the multiplication map m W G �G!G and
inversion map i W G!G, given by

m.g;h/D gh; i.g/D g�1;

are both smooth. A Lie group is, in particular, a topological group (a topological
space with a group structure such that the multiplication and inversion maps are
continuous).

The group operation in an arbitrary Lie group is denoted by juxtaposition, except
in certain abelian groups such as Rn in which the operation is usually written addi-
tively. It is traditional to denote the identity element of an arbitrary Lie group by the
symbol e (for German Einselement, “unit element”), and we follow this convention,
except in specific examples in which there are more common notations (such as In
for the identity matrix in a matrix group, or 0 for the identity element in Rn).

The following alternative characterization of the smoothness condition is some-
times useful. (See also Problem 7-3 for a stronger result.)

Proposition 7.1. If G is a smooth manifold with a group structure such that the
map G �G!G given by .g;h/ 7! gh�1 is smooth, then G is a Lie group.

I Exercise 7.2. Prove Proposition 7.1.

If G is a Lie group, any element g 2 G defines maps Lg ;Rg W G! G, called
left translation and right translation, respectively, by

Lg.h/D gh; Rg.h/D hg:

Because Lg can be expressed as the composition of smooth maps

G
�g
�!G �G

m
�!G;

where 	g.h/ D .g;h/ and m is multiplication, it follows that Lg is smooth. It is
actually a diffeomorphism of G, because Lg�1 is a smooth inverse for it. Similarly,
Rg W G ! G is a diffeomorphism. As we will see repeatedly below, many of the
important properties of Lie groups follow from the fact that we can systematically
map any point to any other by such a global diffeomorphism.

Example 7.3 (Lie Groups). Each of the following manifolds is a Lie group with
the indicated group operation.

(a) The general linear group GL.n;R/ is the set of invertible n� n matrices with
real entries. It is a group under matrix multiplication, and it is an open sub-
manifold of the vector space M.n;R/, as we observed in Example 1.27. Mul-
tiplication is smooth because the matrix entries of a product matrix AB are
polynomials in the entries of A and B . Inversion is smooth by Cramer’s rule.
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(b) Let GLC.n;R/ denote the subset of GL.n;R/ consisting of matrices with
positive determinant. Because det.AB/ D .detA/.detB/ and det

�
A�1

�
D

1=detA, it is a subgroup of GL.n;R/; and because it is the preimage of .0;1/
under the continuous determinant function, it is an open subset of GL.n;R/
and therefore an n2-dimensional manifold. The group operations are the re-
strictions of those of GL.n;R/, so they are smooth. Thus GLC.n;R/ is a Lie
group.

(c) Suppose G is an arbitrary Lie group and H �G is an open subgroup (a sub-
group that is also an open subset). By the same argument as in part (b), H is a
Lie group with the inherited group structure and smooth manifold structure.

(d) The complex general linear group GL.n;C/ is the group of invertible com-
plex n � n matrices under matrix multiplication. It is an open submanifold of
M.n;C/ and thus a 2n2-dimensional smooth manifold, and it is a Lie group be-
cause matrix products and inverses are smooth functions of the real and imagi-
nary parts of the matrix entries.

(e) If V is any real or complex vector space, GL.V / denotes the set of invert-
ible linear maps from V to itself. It is a group under composition. If V has
finite dimension n, any basis for V determines an isomorphism of GL.V / with
GL.n;R/ or GL.n;C/, so GL.V / is a Lie group. The transition map between
any two such isomorphisms is given by a map of the form A 7!BAB�1 (where
B is the transition matrix between the two bases), which is smooth. Thus, the
smooth manifold structure on GL.V / is independent of the choice of basis.

(f) The real number field R and Euclidean space Rn are Lie groups under addition,
because the coordinates of x � y are smooth (linear!) functions of .x; y/.

(g) Similarly, C and Cn are Lie groups under addition.
(h) The set R� of nonzero real numbers is a 1-dimensional Lie group under mul-

tiplication. (In fact, it is exactly GL.1;R/ if we identify a 1 � 1 matrix with
the corresponding real number.) The subset RC of positive real numbers is an
open subgroup, and is thus itself a 1-dimensional Lie group.

(i) The set C� of nonzero complex numbers is a 2-dimensional Lie group under
complex multiplication, which can be identified with GL.1;C/.

(j) The circle S1 �C� is a smooth manifold and a group under complex multipli-
cation. With appropriate angle functions as local coordinates on open subsets
of S1 (see Problem 1-8), multiplication and inversion have the smooth coor-
dinate expressions .�1; �2/ 7! �1 C �2 and � 7! �� , and therefore S1 is a Lie
group, called the circle group.

(k) Given Lie groups G1; : : : ;Gk , their direct product is the product manifold
G1 � � � � �Gk with the group structure given by componentwise multiplica-
tion:

.g1; : : : ; gk/
�
g01; : : : ; g

0
k

�
D
�
g1g

0
1; : : : ; gkg

0
k

�
:

It is a Lie group, as you can easily check.
(l) The n-torus Tn D S1 � � � � � S1 is an n-dimensional abelian Lie group.

(m) Any group with the discrete topology is a topological group, called a discrete
group. If in addition the group is finite or countably infinite, then it is a zero-
dimensional Lie group, called a discrete Lie group. //
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Lie Group Homomorphisms

If G and H are Lie groups, a Lie group homomorphism from G to H is a smooth
map F W G!H that is also a group homomorphism. It is called a Lie group iso-
morphism if it is also a diffeomorphism, which implies that it has an inverse that is
also a Lie group homomorphism. In this case we say that G and H are isomorphic
Lie groups.

Example 7.4 (Lie Group Homomorphisms).

(a) The inclusion map S1 ,!C� is a Lie group homomorphism.
(b) Considering R as a Lie group under addition, and R� as a Lie group under

multiplication, the map exp W R!R� given by exp.t/D et is smooth, and is a
Lie group homomorphism because e.sCt/ D eset . The image of exp is the open
subgroup RC consisting of positive real numbers, and exp W R! RC is a Lie
group isomorphism with inverse logW RC!R.

(c) Similarly, exp W C!C� given by exp.z/D ez is a Lie group homomorphism.
It is surjective but not injective, because its kernel consists of the complex num-
bers of the form 2�ik, where k is an integer.

(d) The map " W R! S1 defined by ".t/ D e2�it is a Lie group homomorphism
whose kernel is the set Z of integers. Similarly, the map "n W Rn! Tn defined
by "n

�
x1; : : : ; xn

�
D
�
e2�ix

1
; : : : ; e2�ix

n�
is a Lie group homomorphism whose

kernel is Zn.
(e) The determinant function det W GL.n;R/ ! R� is smooth because detA is

a polynomial in the matrix entries of A. It is a Lie group homomorphism
because det.AB/ D .detA/.detB/. Similarly, det W GL.n;C/! C� is a Lie
group homomorphism.

(f) If G is a Lie group and g 2G, conjugation by g is the map Cg W G!G given
by Cg.h/D ghg�1. Because group multiplication and inversion are smooth, Cg
is smooth, and a simple computation shows that it is a group homomorphism.
In fact, it is an isomorphism, because it has Cg�1 as an inverse. A subgroup
H �G is said to be normal if Cg.H/DH for every g 2G. //

The next theorem is important for understanding many of the properties of Lie
group homomorphisms.

Theorem 7.5. Every Lie group homomorphism has constant rank.

Proof. Let F W G!H be a Lie group homomorphism, and let e and ze denote the
identity elements of G and H , respectively. Suppose g0 is an arbitrary element
of G. We will show that dFg0 has the same rank as dFe . The fact that F is a
homomorphism means that for all g 2G,

F
�
Lg0.g/

�
D F.g0g/D F.g0/F.g/DLF.g0/

�
F.g/

�
;

or in other words, F ı Lg0 D LF.g0/ ı F . Taking differentials of both sides at the
identity and using Proposition 3.6(b), we find that

dFg0 ı d
�
Lg0

�
e
D d

�
LF.g0/

�
ze
ı dFe:
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Left multiplication by any element of a Lie group is a diffeomorphism, so both
d
�
Lg0

�
e

and d
�
LF.g0/

�
ze

are isomorphisms. Because composing with an isomor-
phism does not change the rank of a linear map, it follows that dFg0 and dFe have
the same rank. �
Corollary 7.6. A Lie group homomorphism is a Lie group isomorphism if and only
if it is bijective.

Proof. The global rank theorem shows that a bijective Lie group homomorphism is
a diffeomorphism. �

The Universal Covering Group

Covering space theory yields the following important result about Lie groups.

Theorem 7.7 (Existence of a Universal Covering Group). Let G be a connected
Lie group. There exists a simply connected Lie group zG, called the universal cover-
ing group of G , that admits a smooth covering map � W zG! G that is also a Lie
group homomorphism.

Proof. Let zG be the universal covering manifold of G and � W zG!G be the corre-
sponding smooth covering map. By Exercise 4.38, � � � W zG � zG!G �G is also
a smooth covering map.

Letm W G�G!G and i W G!G denote the multiplication and inversion maps
of G, respectively, and let ze be an arbitrary element of the fiber ��1.e/� zG. Since
zG is simply connected, the lifting criterion for covering maps (Proposition A.78)
guarantees that the map m ı .� � �/ W zG � zG ! G has a unique continuous lift
zm W zG � zG! zG satisfying zm

�
ze; ze
�
D ze and � ı zmDm ı .� � �/:

zG � zG
zm� zG

G �G

� � �
�

m
� G:

�
�

(7.1)

Because � is a local diffeomorphism and � ı zmDm ı .� ��/ is smooth, it follows
from Exercise 4.10(a) that zm is smooth. By the same reasoning, i ı � W zG!G has
a smooth lift Q{ W zG! zG satisfying Q{

�
ze
�
D ze and � ı Q{ D i ı � :

zG
Q{� zG

G

�
�

i
� G:

�
�

(7.2)

We define multiplication and inversion in zG by xy D zm.x;y/ and x�1 D Q{.x/
for all x;y 2 zG. Then (7.1) and (7.2) can be rewritten as

�.xy/D �.x/�.y/; (7.3)
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�
�
x�1

�
D �.x/�1: (7.4)

It remains only to show that zG is a group with these operations, for then it is a Lie
group because zm and Q{ are smooth, and (7.3) shows that � is a homomorphism.

First we show that ze is an identity for multiplication in zG. Consider the map
f W zG! zG defined by f .x/D zex. Then (7.3) implies that � ıf .x/D �

�
ze
�
�.x/D

e�.x/ D �.x/, so f is a lift of � W zG ! G. The identity map Id zG is another lift
of � , and it agrees with f at a point because f

�
ze
�
D zm

�
ze; ze
�
D ze, so the unique

lifting property of covering maps (Proposition A.77(a)) implies that f D Id zG , or
equivalently, zex D x for all x 2 zG. The same argument shows that xzeD x.

Next, to show that multiplication in zG is associative, consider the two maps
˛L; ˛R W zG � zG � zG! zG defined by

˛L.x; y; z/D .xy/z; ˛R.x; y; z/D x.yz/:

Then (7.3) applied repeatedly implies that

� ı ˛L.x; y; z/D
�
�.x/�.y/

�
�.z/D �.x/

�
�.y/�.z/

�
D � ı ˛R.x; y; z/;

so ˛L and ˛R are both lifts of the same map ˛.x;y; z/D �.x/�.y/�.z/. Because
˛L and ˛R agree at

�
ze; ze; ze

�
, they are equal. A similar argument shows that x�1x D

xx�1 D ze, so zG is a group. �

I Exercise 7.8. Complete the proof of the preceding theorem by showing that
x�1x D xx�1 D ze.

We also have the following uniqueness result.

Theorem 7.9 (Uniqueness of the Universal Covering Group). For any connected
Lie group G, the universal covering group is unique in the following sense: if zG and
zG0 are simply connected Lie groups that admit smooth covering maps � W zG! G

and � 0 W zG0! G that are also Lie group homomorphisms, then there exists a Lie
group isomorphism ˚ W zG! zG0 such that � 0 ı˚ D � .

Proof. See Problem 7-5. �

Example 7.10 (Universal Covering Groups).

(a) For each n, the map "n W Rn! Tn given by

"n
�
x1; : : : ; xn

�
D
�
e2�ix

1

; : : : ; e2�ix
n�

is a Lie group homomorphism and a smooth covering map (see Example 7.4(d)).
Since Rn is simply connected, this shows that the universal covering group of
Tn is the additive Lie group Rn.

(b) The Lie group homomorphism exp W C! C� described in Example 7.4(c) is
also a smooth covering map, so C is the universal covering group of C�. //
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Lie Subgroups

Suppose G is a Lie group. A Lie subgroup of G is a subgroup of G endowed
with a topology and smooth structure making it into a Lie group and an immersed
submanifold of G. The following proposition shows that embedded subgroups are
automatically Lie subgroups.

Proposition 7.11. Let G be a Lie group, and suppose H �G is a subgroup that is
also an embedded submanifold. Then H is a Lie subgroup.

Proof. We need only check that multiplicationH �H !H and inversionH !H

are smooth maps. Because multiplication is a smooth map from G �G into G, its
restriction is clearly smooth from H �H into G (this is true even if H is merely
immersed). BecauseH is a subgroup, multiplication takesH �H intoH , and since
H is embedded, this is a smooth map intoH by Corollary 5.30. A similar argument
applies to inversion. This proves that H is a Lie subgroup. �

The simplest examples of embedded Lie subgroups are the open subgroups. The
following lemma shows that the possibilities for open subgroups are limited.

Lemma 7.12. Suppose G is a Lie group and H �G is an open subgroup. Then H
is an embedded Lie subgroup. In addition,H is closed, so it is a union of connected
components of G.

Proof. If H is open in G, it is embedded by Proposition 5.1. In addition, every left
coset gH D fgh W h 2H g is open in G because it is the image of the open subset
H under the diffeomorphism Lg . Because G XH is the union of the cosets of H
other than H itself, it is open, and therefore H is closed in G. Because H is both
open and closed, it is a union of components. �

IfG is a group and S �G, the subgroup generated by S is the smallest subgroup
containing S (i.e., the intersection of all subgroups containing S ).

I Exercise 7.13. Given a group G and a subset S � G, show that the subgroup
generated by S is equal to the set of all elements of G that can be expressed as finite
products of elements of S and their inverses.

Proposition 7.14. Suppose G is a Lie group, and W � G is any neighborhood of
the identity.

(a) W generates an open subgroup of G.
(b) If W is connected, it generates a connected open subgroup of G.
(c) If G is connected, then W generates G.

Proof. Let W �G be any neighborhood of the identity, and let H be the subgroup
generated by W . As a matter of notation, if A and B are subsets of G, let us write

AB D fab W a 2A;b 2Bg; A�1 D
˚
a�1 W a 2A

�
: (7.5)

For each positive integer k, let Wk denote the set of all elements of G that can be
expressed as products of k or fewer elements of W [W �1. By Exercise 7.13, H is
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the union of all the setsWk as k ranges over the positive integers. Now,W �1 is open
because it is the image of W under the inversion map, which is a diffeomorphism.
Thus, W1 DW [W �1 is open, and for each k > 1 we have

Wk DW1Wk�1 D
[

g2W1

Lg.Wk�1/:

Because each Lg is a diffeomorphism, it follows by induction that eachWk is open,
and thus H is open.

Next suppose W is connected. Then W �1 is also connected because it is a dif-
feomorphic image of W , and W1 DW [W �1 is connected because it is a union
of connected sets with the identity in common. Therefore, W2 D m.W1 � W1/ is
connected because it is the image of a connected space under the continuous multi-
plication mapm, and it follows by induction thatWk Dm.W1�Wk�1/ is connected
for each k. Thus, H D

S
kWk is connected because it is a union of connected sub-

sets with the identity in common.
Finally, assumeG is connected. SinceH is an open subgroup, it is also closed by

Lemma 7.12, and it is not empty because it contains the identity. Thus H DG. �

If G is a Lie group, the connected component of G containing the identity is
called the identity component of G .

Proposition 7.15. Let G be a Lie group and let G0 be its identity component. Then
G0 is a normal subgroup of G, and is the only connected open subgroup. Every
connected component of G is diffeomorphic to G0.

Proof. Problem 7-7. �

Now we move beyond the open subgroups to more general Lie subgroups. The
following proposition shows how to produce many more examples of embedded Lie
subgroups.

Proposition 7.16. Let F W G!H be a Lie group homomorphism. The kernel of F
is a properly embedded Lie subgroup of G, whose codimension is equal to the rank
of F .

Proof. Because F has constant rank, its kernel F �1.e/ is a properly embedded
submanifold of codimension equal to rankF . It is thus a Lie subgroup by Proposi-
tion 7.11. �

Complementary to the preceding result about kernels is the following result about
images. (In Chapter 21, we will prove the analogous result for images of arbitrary
Lie group homomorphisms, not just injective ones; see Theorem 21.27.)

Proposition 7.17. If F W G!H is an injective Lie group homomorphism, the im-
age of F has a unique smooth manifold structure such that F.G/ is a Lie subgroup
of H and F W G! F.G/ is a Lie group isomorphism.

Proof. Since a Lie group homomorphism has constant rank, it follows from the
global rank theorem that F is a smooth immersion. Proposition 5.18 shows that
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F.G/ has a unique smooth manifold structure such that it is an immersed subman-
ifold of H and F is a diffeomorphism onto its image. It is a Lie group (because
G is), and it is a subgroup for algebraic reasons, so it is a Lie subgroup. Because
F W G ! F.G/ is a group isomorphism and a diffeomorphism, it is a Lie group
isomorphism. �
Example 7.18 (Embedded Lie Subgroups).

(a) The subgroup GLC.n;R/� GL.n;R/ described in Example 7.3(b) is an open
subgroup and thus an embedded Lie subgroup.

(b) The circle S1 is an embedded Lie subgroup of C� because it is a subgroup and
an embedded submanifold.

(c) The set SL.n;R/ of n � n real matrices with determinant equal to 1 is called
the special linear group of degree n. Because SL.n;R/ is the kernel of the Lie
group homomorphism det W GL.n;R/!R�, it is a properly embedded Lie sub-
group. Because the determinant function is surjective, it is a smooth submersion
by the global rank theorem, so SL.n;R/ has dimension n2 � 1.

(d) Let n be a positive integer, and define a map ˇ W GL.n;C/! GL.2n;R/ by
replacing each complex matrix entry aC ib with the 2� 2 block

�a �b
b a

�
:

ˇ

�

a11 C ib
1
1 : : : a

n
1 C ib

n
1

:::
:::

a1nC ib
1
n : : : a

n
n C ib

n
n

�

D

�
a11 �b

1
1

b11 a11
: : :
an1 �b

n
1

bn1 an1
:::

:::

a1n �b
1
n

b1n a1n
: : :
ann �b

n
n

bnn ann

�

:

It is straightforward to verify that ˇ is an injective Lie group homomor-
phism whose image is a properly embedded Lie subgroup of GL.2n;R/. Thus,
GL.n;C/ is isomorphic to this Lie subgroup of GL.2n;R/. (You can check
that ˇ arises naturally from the identification of

�
x1C iy1; : : : ; xnC iyn

�
2Cn

with
�
x1; y1; : : : ; xn; yn

�
2R2n.)

(e) The subgroup SL.n;C/ � GL.n;C/ consisting of complex matrices of deter-
minant 1 is called the complex special linear group of degree n. It is the kernel
of the Lie group homomorphism det W GL.n;C/!C�. This homomorphism is
surjective, so it is a smooth submersion by the global rank theorem. Therefore,
SL.n;C/DKer.det/ is a properly embedded Lie subgroup whose codimension
is equal to dimC� D 2 and whose dimension is therefore 2n2 � 2. //

Finally, here is an example of a Lie subgroup that is not embedded.

Example 7.19 (A Dense Lie Subgroup of the Torus). Let H � T2 be the dense
submanifold of the torus that is the image of the immersion � W R! T2 defined in
Example 4.20. It is easy to check that � is an injective Lie group homomorphism,
and thus H is an immersed Lie subgroup of T2 by Proposition 7.17. //

I Exercise 7.20. Let S � T3 be the image of the subgroup H of the preceding
example under the obvious embedding T2 ,! T3. Show that S is a Lie subgroup of
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Fig. 7.1 An embedded Lie subgroup is closed

T3 that is not closed, embedded, or dense; but its closure is a properly embedded Lie
subgroup of T3.

In Chapter 20, we will see that the subgroup S � T3 described in the preceding
exercise is typical of nonembedded Lie subgroups: they are all dense subgroups of
properly embedded Lie subgroups (see Problem 20-10).

In general, smooth submanifolds can be closed without being embedded (as is,
for example, the figure-eight curve of Example 5.19) or embedded without being
closed (as is the open unit ball in Rn). However, as the next theorem shows, Lie
subgroups have the remarkable property that closedness and embeddedness are not
independent. This means that every embedded Lie subgroup is properly embedded.

Theorem 7.21. Suppose G is a Lie group and H �G is a Lie subgroup. Then H
is closed in G if and only if it is embedded.

Proof. Assume first that H is embedded in G. To prove that H is closed, let g be
an arbitrary point of xH . Then there is a sequence .hi / of points in H converging to
g (Fig. 7.1). Let U be the domain of a slice chart for H containing the identity, and
let W be a smaller neighborhood of e such that SW � U . By Problem 7-6, there is a
neighborhood V of e with the property that g1g�12 2W whenever g1; g2 2 V .

Because hig�1! e, by discarding finitely many terms of the sequence we may
assume that hig�1 2 V for all i . This implies that

hih
�1
j D

�
hig
�1
� �
hjg
�1
��1
2W

for all i and j . Fixing j and letting i!1, we find that hih�1j ! gh�1j 2
SW � U .

Since H \ U is a slice, it is closed in U , and therefore gh�1j 2H , which implies
g 2H . Thus H is closed.

Conversely, assume H is a closed Lie subgroup, and let m D dimH and n D
dimG. We need to show that H is an embedded submanifold of G. If mD n, then
H is embedded by Proposition 5.21(a), so we may assume henceforth that m< n.

It suffices to show that for some h1 2H , there is a neighborhood U1 of h1 in G
such thatH \U1 is an embedded submanifold of U1; for then if h is any other point
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Fig. 7.2 Finding a slice chart

of H , right translation Rhh�1
1
W G! G is a diffeomorphism of G that takes H to

H , and takes U1 to a neighborhood U 01 of h such that U 01 \H is embedded in U 01,
so it follows from the local slice criterion thatH is an embedded submanifold of G.

Because every immersed submanifold is locally embedded (Proposition 5.22),
there exist a neighborhood V of e in H and a slice chart .U;'/ for V in G

centered at e. By shrinking U if necessary, we may assume that it is a coordi-
nate cube, and U \ V is the set of points whose coordinates are of the form�
x1; : : : ; xm; 0; : : : ; 0

�
. Let S � U be the set of points with coordinates of the form�

0; : : : ; 0; xmC1; : : : ; xn
�
; it is the slice “perpendicular” to U \ V in these coordi-

nates. Then S is an embedded submanifold of U and hence of G. Note that in these
coordinates, TeV is spanned by the first m coordinate vectors and TeS by the last
n�m, so TeG D TeV ˚ TeS (Fig. 7.2).

Now consider the map  W V � S!G obtained by restricting group multiplica-
tion: .v; s/D vs. Since .v; e/D v for v 2 V and .e; s/D s for s 2 S , it follows
easily that the differential of  at .e; e/ satisfies d .X;0/DX and d .0;Y /D Y
for X 2 TeV , Y 2 TeS , and therefore d .e;e/ is bijective. By the inverse function
theorem, there are connected neighborhoodsW0 of .e; e/ in V �S and U0 of e in G
such that  W W0! U0 is a diffeomorphism. Shrinking the neighborhoods if neces-
sary, we may assume that W0 D V0 � S0, where V0 and S0 are neighborhoods of e
in V and S , respectively.

Let K D S0 \H . There are two things we need to show about the set K:

(a)  .V0 �K/DH \U0.
(b) K is a discrete set in the topology of H .

To prove (a), let .v; s/ 2 V0�S0 be arbitrary. SinceH is a subgroup and V0 �H , it
follows that vs 2H if and only if s 2H , which is to say that  .v; s/ 2H \ U0
if and only if .v; s/ 2 V0 � K . To prove (b), suppose h 2 K . Right translation
Rh W H !H is a diffeomorphism of H taking e to h and taking V0 to a neighbor-
hood Vh of h inH . Note that Vh DRh.V0/D .V0�fhg/, whileK D .feg�K/.
Since  is injective on V0 � S0, it follows that

Vh \K D 
�
feg � fhg

�
D fhg:
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Thus each point h 2K is isolated in H , which implies that K is discrete.
Since K is a discrete subset of the manifold H , it is countable, and since H is

closed in G, it follows that K D S0 \H is closed in S0. Thus, by Corollary A.59,
there is a point h1 2K that is isolated in S0. (This step fails if H is not closed—for
example, if H were a dense subgroup of the torus, then K would be dense in S0.)
This means there is a neighborhood S1 of h1 in S0 such that S1 \H D fh1g. Then
U1 D .V0�S1/ is a neighborhood of h1 in G with the property that U1\H is the
slice  .V0 � fh1g/ in U1. As explained at the beginning of the proof, the existence
of such a neighborhood for one point of H implies that H is embedded. �

In Chapter 20, we will be able to prove a significantly strengthened form of this
theorem, called the closed subgroup theorem, which asserts that every subgroup of a
Lie group that is topologically a closed subset (but not assumed to be a submanifold)
is automatically a properly embedded Lie subgroup.

Group Actions and Equivariant Maps

The most important applications of Lie groups to smooth manifold theory involve
actions by Lie groups on other manifolds. If G is a group and M is a set, a left
action of G on M is a map G �M !M; often written as .g;p/ 7! g � p, that
satisfies

g1 � .g2 � p/D .g1g2/ � p for all g1; g2 2G and p 2M I

e � pD p for all p 2M:
(7.6)

A right action is defined analogously as a map M �G!M with the appropriate
composition law:

.p � g1/ � g2 D p � .g1g2/ for all g1; g2 2G and p 2M I

p � e D p for all p 2M:

If M is a topological space and G is a topological group, an action of G on M is
said to be a continuous action if the defining map G �M !M or M �G!M is
continuous. In this case,M is said to be a (left or right)G -space. If in additionM is
a smooth manifold with or without boundary,G is a Lie group, and the defining map
is smooth, then the action is said to be a smooth action. We are primarily interested
in smooth actions of Lie groups on smooth manifolds.

Sometimes it is useful to give a name to an action, such as � W G �M !M; with
the action of a group element g on a point p usually written as �g.p/. In terms of
this notation, the conditions (7.6) for a left action read

�g1 ı �g2 D �g1g2 ;

�e D IdM ;
(7.7)
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while for a right action the first equation is replaced by

�g2 ı �g1 D �g1g2 :

For a smooth action, each map �g W M !M is a diffeomorphism, because �g�1 is
a smooth inverse for it.

For left actions, we generally use the notations g � p and �g.p/ interchangeably.
The latter notation contains a bit more information, and is useful when it is important
to specify the particular action under consideration, while the former is often more
convenient when the action is understood. For right actions, the notation p � g is
generally preferred because of the way composition works.

A right action can always be converted to a left action by the trick of defining g �p
to be p �g�1, and a left action can similarly be converted to a right action. Thus, any
results about left actions can be translated into results about right actions, and vice
versa. We usually focus our attention on left actions, because their group law (7.7)
has the property that multiplication of group elements corresponds to composition of
maps. However, there are some circumstances in which right actions arise naturally;
we will see several such actions later in the book.

Lie group actions typically arise in situations involving some kind of symmetry.
For example, if M is a vector space or smooth manifold endowed with a metric
or other geometric structure, the set of diffeomorphisms of M that preserve the
structure (called the symmetry group of the structure) frequently turns out to be a
Lie group acting smoothly on M .

Throughout the book, we use the following standard terminology regarding
group actions. Suppose � W G �M ! M is a left action of a group G on a set
M . (The definitions for right actions are similar. For these definitions, no continuity
or smoothness assumption is necessary.)

� For each p 2M; the orbit of p, denoted by G � p, is the set of all images of p
under the action by elements of G:

G � pD fg � p W g 2Gg:

� For each p 2M; the isotropy group or stabilizer of p, denoted by Gp , is the set
of elements of G that fix p:

Gp D fg 2G W g � pD pg:

The definition of a group action guarantees that Gp is a subgroup of G.
� The action is said to be transitive if for every pair of points p;q 2M; there exists
g 2G such that g � pD q, or equivalently if the only orbit is all of M .
� The action is said to be free if the only element of G that fixes any element of M

is the identity: g � pD p for some p 2M implies gD e, or equivalently if every
isotropy group is trivial.

Here are some examples of Lie group actions on manifolds. We will see more in
Chapter 21.
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Example 7.22 (Lie Group Actions).

(a) If G is any Lie group and M is any smooth manifold, the trivial action of G
on M is defined by g � p D p for all g 2G and p 2M . It is a smooth action,
for which each orbit is a single point and each isotropy group is all of G.

(b) The natural action of GL.n;R/ on Rn is the left action given by matrix mul-
tiplication: .A;x/ 7! Ax, considering x 2 Rn as a column matrix. This is an
action because Inx D x and matrix multiplication is associative: .AB/x D
A.Bx/. It is smooth because the components of Ax depend polynomially on
the matrix entries of A and the components of x. Because any nonzero vector
can be taken to any other by some invertible linear transformation, there are
exactly two orbits: f0g and Rn X f0g.

(c) Every Lie group G acts smoothly on itself by left translation. Given any two
points g1; g2 2G, there is a unique left translation ofG taking g1 to g2, namely
left translation by g2g�11 ; thus the action is both free and transitive. More gen-
erally, if H is a Lie subgroup of G, then the restriction of the multiplication
map to H �G!G defines a smooth and free (but generally not transitive) left
action of H on G. Similar observations apply to right translations.

(d) Every Lie group acts smoothly on itself by conjugation: g � hD ghg�1.
(e) An action of a discrete group � on a manifold M is smooth if and only if for

each g 2 � , the map p 7! g � p is a smooth map from M to itself. Thus, for
example, Zn acts smoothly and freely on Rn by left translation:

�
m1; : : : ;mn

�
�
�
x1; : : : ; xn

�
D
�
m1C x1; : : : ;mnC xn

�
: //

Another important class of Lie group actions arises from covering maps. Sup-
pose E and M are topological spaces, and � W E!M is a (topological) covering
map. An automorphism of � (also called a deck transformation or covering trans-
formation) is a homeomorphism ' W E!E such that � ı ' D � :

E
' � E

M:
���

� (7.8)

The set Aut�.E/ of all automorphisms of � , called the automorphism group of � ,
is a group under composition, acting on E on the left. It can be shown that Aut�.E/
acts transitively on each fiber of � if and only if � is a normal covering map, which
means that ��

�
�1.E; q/

�
is a normal subgroup of �1

�
M;�.q/

�
for every q 2 E

(see, for example, [LeeTM, Cor. 12.5]).

Proposition 7.23. Suppose E and M are smooth manifolds with or without bound-
ary, and � W E!M is a smooth covering map. With the discrete topology, the au-
tomorphism group Aut�.E/ is a zero-dimensional Lie group acting smoothly and
freely on E .
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Proof. Suppose ' 2Aut�.E/ is an automorphism that fixes a point p 2E . Simply
by rotating diagram (7.8), we can consider ' as a lift of � :

E

E
�
�

' �

M:

�
�

Since the identity map of E is another such lift that agrees with ' at p, the unique
lifting property of covering maps (Proposition A.77(a)) guarantees that ' D IdE .
Thus, the action of Aut�.E/ is free.

To show that Aut�.E/ is a Lie group, we need only verify that it is countable.
Let q 2 E be arbitrary, let p D �.q/ 2M; and let U �M be an evenly covered
neighborhood of p. Because E is second-countable, ��1.U / has countably many
components, and because each component contains exactly one point of ��1.p/, it
follows that ��1.p/ is countable. Let � .q/ W Aut�.E/! E be the map � .q/.'/D
'.q/. Then � .q/ maps Aut�.E/ into ��1.p/, and the fact that the action is free
implies that it is injective; thus Aut�.E/ is countable.

Smoothness of the action follows from Theorem 4.29. �

Equivariant Maps

For some manifolds with group actions, there is an easily verified sufficient condi-
tion for a smooth map to have constant rank. Suppose G is a Lie group, and M and
N are both smooth manifolds endowed with smooth left or right G-actions. A map
F W M !N is said to be equivariant with respect to the given G-actions if for each
g 2G,

F.g � p/D g �F.p/ (for left actions);

F .p � g/D F.p/ � g (for right actions):

Equivalently, if � and ' are the given actions on M and N , respectively, F is equi-
variant if the following diagram commutes for each g 2G:

M
F� N

M

�g �

F
� N:

'g�

This condition is also expressed by saying that F intertwines � and '.

Example 7.24. Let v D
�
v1; : : : ; vn

�
2 Rn be any fixed nonzero vector. Define

smooth left actions of R on Rn and Tn by

t �
�
x1; : : : ; xn

�
D
�
x1C tv1; : : : ; xnC tvn

�
;

t �
�
z1; : : : ; zn

�
D
	
e2�itv

1

z1; : : : ; e2�itv
n

zn


;
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Fig. 7.3 The equivariant rank theorem

for t 2 R,
�
x1; : : : ; xn

�
2 Rn, and

�
z1; : : : ; zn

�
2 Tn. The smooth map "n W Rn!

Tn given by "n
�
x1; : : : ; xn

�
D
�
e2�ix

1
; : : : ; e2�ix

n�
is equivariant with respect to

these actions. //

The following generalization of Theorem 7.5 is an extremely useful tool for prov-
ing that certain maps have constant rank.

Theorem 7.25 (Equivariant Rank Theorem). Let M and N be smooth manifolds
and let G be a Lie group. Suppose F W M !N is a smooth map that is equivariant
with respect to a transitive smooth G-action on M and any smooth G-action on N .
Then F has constant rank. Thus, if F is surjective, it is a smooth submersion; if it is
injective, it is a smooth immersion; and if it is bijective, it is a diffeomorphism.

Proof. Let � and ' denote the G-actions on M and N , respectively, and let p and
q be arbitrary points in M . Choose g 2 G such that �g.p/ D q. (Such a g exists
because we are assuming that G acts transitively on M .) Because 'g ıF D F ı �g ,
the following diagram commutes (see Fig. 7.3):

TpM
dFp� TF.p/N

TqM

d.�g/p
�

dFq
� TF.q/N:

d.'g/F.p/
�

Because the vertical linear maps in this diagram are isomorphisms, the horizontal
ones have the same rank. In other words, the rank of F is the same at any two
arbitrary points p;q 2M; so F has constant rank. The final statement follows from
the global rank theorem. �

Here is an important application of the equivariant rank theorem. Suppose G is
a Lie group, M is a smooth manifold, and � W G �M !M is a smooth left action.
(The definitions for right actions are analogous.) For each p 2M; define a map
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� .p/ W G!M by

� .p/.g/D g � p: (7.9)

This is often called the orbit map, because its image is the orbit G � p. In addition,
the preimage

�
� .p/

�
�1.p/ is the isotropy group Gp .

Proposition 7.26 (Properties of the Orbit Map). Suppose � is a smooth left
action of a Lie group G on a smooth manifold M . For each p 2 M; the or-
bit map � .p/ W G ! M is smooth and has constant rank, so the isotropy group
Gp D

�
� .p/

�
�1.p/ is a properly embedded Lie subgroup of G. If Gp D feg, then

� .p/ is an injective smooth immersion, so the orbit G � p is an immersed submani-
fold of M .

Remark. It is a fact that every orbit is an immersed submanifold of M; not just the
ones corresponding to trivial isotropy groups; but the proof of that fact will have to
wait until Chapter 21 (see Problem 21-17).

Proof. The orbit map is smooth because it is equal to the composition

G �G � fpg ,!G �M
�
!M:

It follows from the definition of a group action that � .p/ is equivariant with respect
to the action of G on itself by left translation and the given action on M :

� .p/.g0g/D .g0g/ � pD g0 � .g � p/D g0 � � .p/.g/:

Since G acts transitively on itself, the equivariant rank theorem shows that � .p/ has
constant rank. Thus, Gp is a properly embedded submanifold by Theorem 5.12, and
a Lie subgroup by Proposition 7.11.

Now suppose Gp D feg. If � .p/.g0/D � .p/.g/, then

g0 � pD g � p )
�
g�1g0

�
� pD p ) g�1g0 D e ) gD g0;

showing that � .p/ is injective. By the equivariant rank theorem, it is a smooth im-
mersion, and thus the orbit (endowed with a suitable topology and smooth structure)
is an immersed submanifold by Proposition 5.18. �

Next we use the equivariant rank theorem to identify some important Lie sub-
groups of the general linear groups.

Example 7.27 (The Orthogonal Group). A real n � n matrix A is said to be
orthogonal if as a linear map A W Rn ! Rn it preserves the Euclidean dot prod-
uct:

.Ax/ � .Ay/D x � y for all x;y 2Rn:

The set O.n/ of all orthogonal n� n matrices is a subgroup of GL.n;R/, called the
orthogonal group of degree n. It is easy to check that a matrixA is orthogonal if and
only if it takes the standard basis of Rn to an orthonormal basis, which is equivalent
to the columns of A being orthonormal. Since the .i; j /-entry of the matrix ATA
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(where AT represents the transpose of A) is the dot product of the i th and j th
columns of A, this condition is also equivalent to the requirement that ATAD In.

Define a smooth map ˚ W GL.n;R/!M.n;R/ by ˚.A/DATA. Then O.n/ is
equal to the level set ˚�1.In/. To show that ˚ has constant rank and therefore that
O.n/ is an embedded Lie subgroup, we show that ˚ is equivariant with respect to
suitable right actions of GL.n;R/. Let GL.n;R/ act on itself by right multiplication,
and define a right action of GL.n;R/ on M.n;R/ by

X �B DBTXB for X 2M.n;R/;B 2GL.n;R/:

It is easy to check that this is a smooth action, and ˚ is equivariant because

˚.AB/D .AB/T .AB/DBTATAB DBT˚.A/B D˚.A/ �B:

Thus, O.n/ is a properly embedded Lie subgroup of GL.n;R/. It is compact because
it is closed and bounded in M.n;R/Š Rn

2
: closed because it is a level set of ˚ ,

and bounded because every A 2O.n/ has columns of norm 1, and therefore satisfies
jAj D

p
n.

To determine the dimension of O.n/, we need to compute the rank of ˚ . Because
the rank is constant, it suffices to compute it at the identity In 2GL.n;R/. Thus for
any B 2 TIn GL.n;R/DM.n;R/, let � W .�"; "/! GL.n;R/ be the curve �.t/D
InC tB , and compute

d˚In.B/D
d

dt

ˇ̌
ˇ̌
tD0

˚ ı �.t/D
d

dt

ˇ̌
ˇ̌
tD0

.InC tB/
T .InC tB/DB

T CB:

From this formula, it is evident that the image of d˚In is contained in the vector
space of symmetric matrices. Conversely, if B 2M.n;R/ is an arbitrary symmetric
n � n matrix, then d˚In

�
1
2
B
�
D B . It follows that the image of d˚In is exactly

the space of symmetric matrices. This is a linear subspace of M.n;R/ of dimension
n.nC 1/=2, because each symmetric matrix is uniquely determined by its values on
and above the main diagonal. It follows that O.n/ is an embedded Lie subgroup of
dimension n2 � n.nC 1/=2D n.n� 1/=2. //

Example 7.28 (The Special Orthogonal Group). The special orthogonal group
of degree n is defined as SO.n/ D O.n/ \ SL.n;R/ � GL.n;R/. Because every
matrix A 2O.n/ satisfies

1D detIn D det
�
ATA

�
D .detA/

�
detAT

�
D .detA/2;

it follows that detAD˙1 for all A 2O.n/. Therefore, SO.n/ is the open subgroup
of O.n/ consisting of matrices of positive determinant, and is therefore also an em-
bedded Lie subgroup of dimension n.n� 1/=2 in GL.n;R/. It is a compact group
because it is a closed subset of O.n/. //

Example 7.29 (The Unitary Group). For any complex matrix A, the adjoint of A
is the matrix A� formed by conjugating the entries of A and taking the transpose:

A� D xAT . Observe that .AB/� D
�
xA xB
�T
D xBT xAT D B�A�. For any positive in-

teger n, the unitary group of degree n is the subgroup U.n/�GL.n;C/ consisting
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of complex n � n matrices whose columns form an orthonormal basis for Cn with
respect to the Hermitian dot product z �wD

P
i z
iwi . It is straightforward to check

that U.n/ consists of those matrices A such that A�A D In. Problem 7-13 shows
that it is a properly embedded Lie subgroup of GL.n;C/ of dimension n2. //

Example 7.30 (The Special Unitary Group). The group SU.n/ D U.n/ \
SL.n;C/ is called the complex special unitary group of degree n. Problem 7-14
shows that it is a properly embedded .n2 � 1/-dimensional Lie subgroup of U.n/.
Since the composition of smooth embeddings SU.n/ ,!U.n/ ,!GL.n;C/ is again
a smooth embedding, this implies that SU.n/ is also embedded in GL.n;C/. //

Semidirect Products

Group actions give us a powerful new way to construct Lie groups. Suppose H and
N are Lie groups, and � W H � N ! N is a smooth left action of H on N . It is
said to be an action by automorphisms if for each h 2H , the map �h W N !N is
a group automorphism of N (i.e., an isomorphism from N to itself). Given such an
action, we define a new Lie group N Ì� H , called a semidirect product of H and
N , as follows. As a smooth manifold, N Ì� H is just the Cartesian product N �H ;
but the group multiplication is defined by

.n;h/.n0; h0/D
�
n�h.n

0/; hh0
�
: (7.10)

Sometimes, if the action of H on N is understood or irrelevant, the semidirect
product is denoted simply by N ÌH .

I Exercise 7.31. Verify that (7.10) does indeed define a Lie group structure on the
manifold N �H , with .e; e/ as identity and .n;h/�1 D

�
�h�1.n

�1/; h�1
�
.

Example 7.32 (The Euclidean Group). If we consider Rn as a Lie group under
addition, then the natural action of O.n/ on Rn is an action by automorphisms. The
resulting semidirect product E.n/D Rn Ì O.n/ is called the Euclidean group; its
multiplication is given by .b;A/.b0;A0/D .bCAb0;AA0/. It acts on Rn via

.b;A/ � x D bCAx:

This action preserves lines, distances, and angle measures, and thus all of the rela-
tionships of Euclidean geometry. //

The next proposition details some basic properties of the semidirect product.
Recall the notation AB defined in (7.5) for subsets A;B of a group G.

Proposition 7.33 (Properties of Semidirect Products). SupposeN andH are Lie
groups, and � is a smooth action ofH on N by automorphisms. Let G DN Ì� H .

(a) The subsets zN D N � feg and zH D feg �H are closed Lie subgroups of G
isomorphic to N and H , respectively.
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(b) zN is a normal subgroup of zG.
(c) zN \ zH D f.e; e/g and zN zH DG.

I Exercise 7.34. Prove the preceding proposition.

Thanks to the next theorem, many Lie groups can be realized as semidirect prod-
ucts of suitable subgroups.

Theorem 7.35 (Characterization of Semidirect Products). Suppose G is a Lie
group, and N;H � G are closed Lie subgroups such that N is normal, N \H D
feg, and NH DG. Then the map .n;h/ 7! nh is a Lie group isomorphism between
N Ì� H and G, where � W H � N ! N is the action by conjugation: �h.n/ D
hnh�1.

Proof. Problem 7-18. �
Under the hypotheses of Theorem (7.35), we say thatG is the internal semidirect

product of N and H . Some examples are described in Problem 7-20.

Representations

Most of the Lie groups we have seen so far can be realized as Lie subgroups of
GL.n;R/ or GL.n;C/. It is natural to ask whether all Lie groups are of this form.
The key to studying this question is the theory of group representations.

Recall that if V is a finite-dimensional real or complex vector space, GL.V /
denotes the group of invertible linear transformations of V , which is a Lie group
isomorphic to GL.n;R/ or GL.n;C/ for nD dimV . If G is a Lie group, a (finite-
dimensional) representation of G is a Lie group homomorphism fromG to GL.V /
for some V . (Although it is useful for many applications to consider also the case
in which V is infinite-dimensional, in this book we consider only finite-dimensional
representations.)

If a representation � W G! GL.V / is injective, it is said to be faithful. In that
case, it follows from Proposition 7.17 that the image of � is a Lie subgroup of
GL.V /, and � gives a Lie group isomorphism between G and �.G/ � GL.V / Š
GL.n;R/ or GL.n;C/. Thus, a Lie group admits a faithful representation if and
only if it is isomorphic to a Lie subgroup of GL.n;R/ or GL.n;C/ for some n. Not
every Lie group admits such a representation. We do not yet have the technology to
construct a counterexample, but Problem 21-26 asks you to prove that the univer-
sal covering group of SL.2;R/ has no faithful representation and therefore is not
isomorphic to any matrix group.

Representation theory is a vast subject, with applications to fields as diverse
as differential geometry, differential equations, harmonic analysis, number theory,
quantum physics, and engineering; we can do no more than touch on it here.

Example 7.36 (Lie Group Representations).

(a) If G is any Lie subgroup of GL.n;R/, the inclusion map G ,! GL.n;R/ D
GL.Rn/ is a faithful representation, called the defining representation of G .
The defining representation of a Lie subgroup of GL.n;C/ is defined similarly.
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(b) The inclusion map S1 ,! C� Š GL.1;C/ is a faithful representation of the
circle group. More generally, the map � W Tn!GL.n;C/ given by

�
�
z1; : : : ; zn

�
D

˙

z1 0 : : : 0

0 z2 : : : 0
:::
:::
: : :

:::

0 0 : : : zn

�

is a faithful representation of Tn.
(c) Let � W Rn! GL.nC 1;R/ be the map that sends x 2 Rn to the matrix �.x/

defined in block form by

�.x/D

�
In x

0 1

�
;

where In is the n � n identity matrix and x is regarded as an n � 1 column
matrix. A straightforward computation shows that � is a faithful representation
of the additive Lie group Rn.

(d) Another faithful representation of Rn is the map Rn ! GL.n;R/ that sends�
x1; : : : ; xn

�
to the diagonal matrix whose diagonal entries are

�
ex
1
; : : : ; ex

n�
.

(e) Yet another representation of Rn is the map Rn ! GL.n;C/ sending x to
the diagonal matrix with diagonal entries

�
e2�ix

1
; : : : ; e2�ix

n�
. This one is not

faithful, because its kernel is the subgroup Zn �Rn.
(f) Let E.n/ be the Euclidean group (Example 7.32). A faithful representation of

E.n/ is given by the map � W E.n/!GL.nC 1;R/ defined in block form by

�.b;A/D

�
A b

0 1

�
;

where b is considered as a column matrix.
(g) For positive integers n and d , let P n

d
denote the vector space of real-valued

polynomial functions p W Rn ! R of degree at most d . For any matrix A 2
GL.n;R/, define a linear map �n

d
.A/ W P n

d
!P n

d
by

�nd .A/pD p ıA
�1:

Problem 7-24 shows that the map �n
d
W GL.n;R/! GL

�
P n
d

�
is a faithful rep-

resentation. //

There is a close connection between representations and group actions. Let G
be a Lie group and V be a finite-dimensional vector space. An action of G on V
is said to be a linear action if for each g 2 G, the map from V to itself given by
x 7! g � x is linear. For example, if � W G! GL.V / is a representation of G, there
is an associated smooth linear action of G on V given by g � x D �.g/x. The next
proposition shows that every linear action is of this type.

Proposition 7.37. LetG be a Lie group and V be a finite-dimensional vector space.
A smooth left action of G on V is linear if and only if it is of the form g � x D �.g/x
for some representation � of G.
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Proof. Every action induced by a representation is evidently linear. To prove the
converse, assume that we are given a linear action of G on V . The hypothe-
sis implies that for each g 2 G there is a linear map �.g/ 2 GL.V / such that
g � x D �.g/x for all x 2 V . The fact that the action satisfies (7.6) translates to
�.g1g2/ D �.g1/�.g2/, so � W G ! GL.V / is a group homomorphism. Thus, to
show that it is a Lie group representation, we need only show that it is smooth.
Choose a basis .Ei / for V , and for each i let � i W V !R be the projection onto the
i th coordinate with respect to this basis: � i

�
xjEj

�
D xi . If we let �ij .g/ denote the

matrix entries of �.g/ with respect to this basis, it follows that �ij .g/D �
i .g �Ei /,

so each function �ij is a composition of smooth functions. Because the matrix entries
form global smooth coordinates for GL.V /, this implies that � is smooth. �

Problems

7-1. Show that for any Lie group G, the multiplication map m W G �G!G is a
smooth submersion. [Hint: use local sections.]

7-2. Let G be a Lie group.
(a) Let m W G � G ! G denote the multiplication map. Using Proposi-

tion 3.14 to identify T.e;e/.G �G/ with TeG ˚ TeG, show that the dif-
ferential dm.e;e/ W TeG ˚ TeG! TeG is given by

dm.e;e/.X;Y /DX C Y:

[Hint: compute dm.e;e/.X; 0/ and dm.e;e/.0;Y / separately.]
(b) Let i W G!G denote the inversion map. Show that die W TeG! TeG is

given by die.X/D�X .
(Used on pp. 203, 522.)

7-3. Our definition of Lie groups includes the requirement that both the multipli-
cation map and the inversion map are smooth. Show that smoothness of the
inversion map is redundant: if G is a smooth manifold with a group struc-
ture such that the multiplication map m W G � G ! G is smooth, then G
is a Lie group. [Hint: show that the map F W G � G ! G � G defined by
F.g;h/D .g;gh/ is a bijective local diffeomorphism.]

7-4. Let det W GL.n;R/!R denote the determinant function. Use Corollary 3.25
to compute the differential of det, as follows.
(a) For any A 2M.n;R/, show that

d

dt

ˇ̌
ˇ̌
tD0

det.InC tA/D trA;

where tr
�
Aij
�
D
P
i A

i
i is the trace of A. [Hint: the defining equation

(B.3) expresses det.In C tA/ as a polynomial in t . What is the linear
term?]
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(b) For X 2GL.n;R/ and B 2 TX GL.n;R/ŠM.n;R/, show that

d.det/X .B/D .detX/ tr
�
X�1B

�
: (7.11)

[Hint: det.X C tB/D det.X/det
�
InC tX

�1B
�
.]

(Used on p. 203.)

7-5. Prove Theorem 7.9 (uniqueness of the universal covering group).

7-6. Suppose G is a Lie group and U is any neighborhood of the identity. Show
that there exists a neighborhood V of the identity such that V � U and
gh�1 2U whenever g;h 2 V . (Used on pp. 159, 556.)

7-7. Prove Proposition 7.15 (properties of the identity component of a Lie group).

7-8. Suppose a connected topological group G acts continuously on a discrete
space K . Show that the action is trivial. (Used on p. 562.)

7-9. Show that the formula

A � Œx�D ŒAx�
defines a smooth, transitive left action of GL.nC 1;R/ on RPn.

7-10. Repeat Problem 7-9 for GL.nC1;C/ and CPn (see Problems 1-9 and 4-5).

7-11. Considering S2nC1 as the unit sphere in CnC1, define an action of S1 on
S2nC1, called the Hopf action, by

z �
�
w1; : : : ;wnC1

�
D
�
zw1; : : : ; zwnC1

�
:

Show that this action is smooth and its orbits are disjoint unit circles in CnC1

whose union is S2nC1. (Used on p. 560.)

7-12. Use the equivariant rank theorem to give another proof of Theorem 7.5 by
showing that every Lie group homomorphism F W G!H is equivariant with
respect to suitable smooth G-actions on G and H .

7-13. For each n� 1, prove that U.n/ is a properly embedded n2-dimensional Lie
subgroup of GL.n;C/. (See Example 7.29.)

7-14. For each n � 1, prove that SU.n/ is a properly embedded .n2 � 1/-dimen-
sional Lie subgroup of U.n/. (See Example 7.30.)

7-15. Show that SO.2/, U.1/, and S1 are all isomorphic as Lie groups.

7-16. Prove that SU.2/ is diffeomorphic to S3. (Used on pp. 179, 563.)

7-17. Determine which of the following Lie groups are compact:

GL.n;R/; SL.n;R/; GL.n;C/; SL.n;C/; U.n/; SU.n/:

7-18. Prove Theorem 7.35 (characterization of semidirect products).

7-19. Suppose G, N , and H are Lie groups. Prove that G is isomorphic to a
semidirect productN ÌH if and only if there are Lie group homomorphisms
' W G!H and  W H !G such that ' ı D IdH and Ker' ŠN .

7-20. Prove that the following Lie groups are isomorphic to semidirect products as
shown. [Hint: Use Problem 7-19.]
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(a) O.n/Š SO.n/ÌO.1/.
(b) U.n/Š SU.n/ÌU.1/.
(c) GL.n;R/Š SL.n;R/ÌR�.
(d) GL.n;C/Š SL.n;C/ÌC�.

7-21. Prove that when n > 1, none of the groups in Problem 7-20 are isomorphic
to direct products of the indicated groups. [Hint: the center of a group G
is the set of all elements that commute with every element of G. Show that
isomorphic groups have isomorphic centers.]

7-22. Let H D C � C (considered as a real vector space), and define a bilinear
product H�H!H by

.a; b/.c; d/D
�
ac � d xb; xad C cb

�
; for a; b; c; d 2C:

With this product, H is a 4-dimensional algebra over R, called the algebra
of quaternions. For each p D .a; b/ 2H, define p� D .xa;�b/. It is useful
to work with the basis .1; i;j;k/ for H defined by

1D .1; 0/; iD .i; 0/; jD .0; 1/; kD .0;�i/:

It is straightforward to verify that this basis satisfies

i2 D j2 D k2 D�1; 1q D q1D q for all q 2H;

ijD�jiD k; jkD�kjD i; kiD�ikD j;

1� D 1; i� D�i; j� D�j; k� D�k:

A quaternion p is said to be real if p� D p, and imaginary if p� D �p.
Real quaternions can be identified with real numbers via the correspondence
x$ x1.
(a) Show that quaternionic multiplication is associative but not commu-

tative.
(b) Show that .pq/� D q�p� for all p;q 2H.
(c) Show that hp;qi D 1

2
.p�q C q�p/ is an inner product on H, whose

associated norm satisfies jpqj D jpj jqj.
(d) Show that every nonzero quaternion has a two-sided multiplicative in-

verse given by p�1 D jpj�2p�.
(e) Show that the set H� of nonzero quaternions is a Lie group under quater-

nionic multiplication.
(Used on pp. 200, 200, 562.)

7-23. Let H� be the Lie group of nonzero quaternions (Problem 7-22), and let
� �H� be the set of unit quaternions. Show that � is a properly embedded
Lie subgroup of H�, isomorphic to SU.2/. (Used on pp. 200, 562.)

7-24. Prove that each of the maps �n
d
W GL.n;R/! GL

�
P n
d

�
described in Exam-

ple 7.36(g) is a faithful representation of GL.n;R/.



Chapter 8
Vector Fields

Vector fields are familiar objects of study in multivariable calculus. In that setting,
a vector field on an open subset U �Rn is simply a continuous map from U to Rn,
which can be visualized as attaching an “arrow” to each point of U . In this chapter
we show how to extend this idea to smooth manifolds.

We think of a vector field on an abstract smooth manifold M as a particular kind
of continuous map X from M to its tangent bundle—one that assigns to each point
p 2M a tangent vector Xp 2 TpM . After introducing the definitions, we explore
the ways that vector fields behave under differentials of smooth maps.

In the next section we introduce the Lie bracket operation, which is a way of
combining two smooth vector fields to obtain another. Then we describe the most
important application of Lie brackets: the set of all smooth vector fields on a Lie
group that are invariant under left multiplication is closed under Lie brackets, and
thus forms an algebraic object naturally associated with the group, called the Lie
algebra of the Lie group. We describe a few basic properties of Lie algebras, and
compute the Lie algebras of some familiar groups. Then we show how Lie group
homomorphisms induce homomorphisms of their Lie algebras, from which it fol-
lows that isomorphic Lie groups have isomorphic Lie algebras. Finally, at the end
of the chapter we show how to identify Lie algebras of Lie subgroups.

Vector Fields on Manifolds

If M is a smooth manifold with or without boundary, a vector field on M is a
section of the map � W TM !M . More concretely, a vector field is a continuous
map X W M ! TM; usually written p 7!Xp , with the property that

� ıX D IdM ; (8.1)

or equivalently, Xp 2 TpM for each p 2 M . (We write the value of X at p as
Xp instead of X.p/ to be consistent with our notation for elements of the tangent
bundle, as well as to avoid conflict with the notation v.f / for the action of a vector
on a function.) You should visualize a vector field on M in the same way as you

J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics 218,
DOI 10.1007/978-1-4419-9982-5_8, © Springer Science+Business Media New York 2013
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Fig. 8.1 A vector field

visualize vector fields in Euclidean space: as an arrow attached to each point of M;
chosen to be tangent to M and to vary continuously from point to point (Fig. 8.1).

We are primarily interested in smooth vector fields, the ones that are smooth as
maps fromM to TM;when TM is given the smooth manifold structure described in
Proposition 3.18. In addition, for some purposes it is useful to consider maps from
M to TM that would be vector fields except that they might not be continuous.
A rough vector field on M is a (not necessarily continuous) map X W M ! TM

satisfying (8.1). Just as for functions, if X is a vector field on M; the support of X
is defined to be the closure of the set fp 2M WXp ¤ 0g. A vector field is said to be
compactly supported if its support is a compact set.

SupposeM is a smooth n-manifold (with or without boundary). IfX W M ! TM

is a rough vector field and
�
U;
�
xi
��

is any smooth coordinate chart for M; we can
write the value of X at any point p 2U in terms of the coordinate basis vectors:

Xp DX
i .p/

@

@xi

ˇ̌
ˇ̌
p

: (8.2)

This defines n functions X i W U !R, called the component functions of X in the
given chart.

Proposition 8.1 (Smoothness Criterion for Vector Fields). Let M be a smooth
manifold with or without boundary, and let X W M ! TM be a rough vector field.
If
�
U;
�
xi
��

is any smooth coordinate chart on M; then the restriction of X to U is
smooth if and only if its component functions with respect to this chart are smooth.

Proof. Let
�
xi ; vi

�
be the natural coordinates on ��1.U /� TM associated with the

chart
�
U;
�
xi
��

. By definition of natural coordinates, the coordinate representation
of X W M ! TM on U is

yX.x/D
�
x1; : : : ; xn;X1.x/; : : : ;Xn.x/

�
;

where X i is the i th component function of X in xi -coordinates. It follows imme-
diately that smoothness of X in U is equivalent to smoothness of its component
functions. �
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Example 8.2 (Coordinate Vector Fields). If
�
U;
�
xi
��

is any smooth chart on M;
the assignment

p 7!
@

@xi

ˇ̌
ˇ̌
p

determines a vector field on U , called the i th coordinate vector field and denoted
by @=@xi . It is smooth because its component functions are constants. //

Example 8.3 (The Euler Vector Field). The vector field V on Rn whose value at
x 2Rn is

Vx D x
1 @

@x1

ˇ̌
ˇ̌
x

C � � � C xn
@

@xn

ˇ̌
ˇ̌
x

is smooth because its coordinate functions are linear. It vanishes at the origin, and
points radially outward everywhere else. It is called the Euler vector field because
of its appearance in Euler’s homogeneous function theorem (see Problem 8-2). //

Example 8.4 (The Angle Coordinate Vector Field on the Circle). Let � be any
angle coordinate on a proper open subset U � S1 (see Problem 1-8), and let d=d�
denote the corresponding coordinate vector field. Because any other angle coordi-
nate z� differs from � by an additive constant in a neighborhood of each point, the
transformation law for coordinate vector fields (3.11) shows that d=d� D d=d z� on
their common domain. For this reason, there is a globally defined vector field on S1

whose coordinate representation is d=d� with respect to any angle coordinate. It is
a smooth vector field because its component function is constant in any such chart.
We denote this global vector field by d=d� , even though, strictly speaking, it cannot
be considered as a coordinate vector field on the entire circle at once. //

Example 8.5 (Angle Coordinate Vector Fields on Tori). On the n-dimensional
torus Tn, choosing an angle function � i for the i th circle factor, i D 1; : : : ; n, yields
local coordinates

�
�1; : : : ; �n

�
for Tn. An analysis similar to that of the previous

example shows that the coordinate vector fields @=@�1; : : : ; @=@�n are smooth and
globally defined on Tn. //

If U �M is open, the fact that TpU is naturally identified with TpM for each
p 2 U (Proposition 3.9) allows us to identify T U with the open subset ��1.U /�
TM . Therefore, a vector field on U can be thought of either as a map from U to
T U or as a map from U to TM; whichever is more convenient. If X is a vector field
on M; its restriction X jU is a vector field on U , which is smooth if X is.

The next lemma is a generalization of Lemma 2.26 to vector fields, and is proved
in much the same way. If M is a smooth manifold with or without boundary and
A�M is an arbitrary subset, a vector field along A is a continuous map X W A!
TM satisfying � ıX D IdA (or in other words Xp 2 TpM for each p 2A). We call
it a smooth vector field along A if for each p 2A, there is a neighborhood V of p
in M and a smooth vector field zX on V that agrees with X on V \A.

Lemma 8.6 (Extension Lemma for Vector Fields). Let M be a smooth manifold
with or without boundary, and let A�M be a closed subset. SupposeX is a smooth
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vector field along A. Given any open subset U containing A, there exists a smooth
global vector field zX on M such that zX jA DX and supp zX � U .

Proof. See Problem 8-1. �
As an important special case, any vector at a point can be extended to a smooth

vector field on the entire manifold.

Proposition 8.7. Let M be a smooth manifold with or without boundary. Given
p 2M and v 2 TpM; there is a smooth global vector field X on M such that
Xp D v.

Proof. The assignment p 7! v is an example of a vector field along the set fpg as
defined above. It is smooth because it can be extended, say, to a constant-coefficient
vector field in a coordinate neighborhood of p. Thus, the proposition follows from
the extension lemma with AD fpg and U DM . �

If M is a smooth manifold with or without boundary, it is standard to use the
notation X.M/ to denote the set of all smooth vector fields on M . It is a vector
space under pointwise addition and scalar multiplication:

.aX C bY /p D aXp C bYp:

The zero element of this vector space is the zero vector field, whose value at each
p 2M is 0 2 TpM . In addition, smooth vector fields can be multiplied by smooth
real-valued functions: if f 2 C1.M/ and X 2 X.M/, we define fX W M ! TM

by

.fX/p D f .p/Xp:

The next proposition shows that these operations yield smooth vector fields.

Proposition 8.8. Let M be a smooth manifold with or without boundary.

(a) If X and Y are smooth vector fields on M and f;g 2 C1.M/, then fX C gY
is a smooth vector field.

(b) X.M/ is a module over the ring C1.M/.

I Exercise 8.9. Prove Proposition 8.8.

For example, the basis expression (8.2) for a vector field X can also be written as
an equation between vector fields instead of an equation between vectors at a point:

X DX i
@

@xi
;

where X i is the i th component function of X in the given coordinates.

Local and Global Frames

Coordinate vector fields in a smooth chart provide a convenient way of representing
vector fields, because their values form a basis for the tangent space at each point.
However, they are not the only choices.
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Suppose M is a smooth n-manifold with or without boundary. An ordered k-
tuple .X1; : : : ;Xk/ of vector fields defined on some subset A�M is said to be lin-
early independent if

�
X1jp; : : : ;Xk jp

�
is a linearly independent k-tuple in TpM for

each p 2A, and is said to span the tangent bundle if the k-tuple
�
X1jp; : : : ;Xk jp

�

spans TpM at each p 2 A. A local frame for M is an ordered n-tuple of vector
fields .E1; : : : ;En/ defined on an open subset U �M that is linearly independent
and spans the tangent bundle; thus the vectors .E1jp; : : : ;Enjp/ form a basis for
TpM at each p 2 U . It is called a global frame if U DM; and a smooth frame if
each of the vector fields Ei is smooth. We often use the shorthand notation .Ei / to
denote a frame .E1; : : : ;En/. If M has dimension n, then to check that an ordered
n-tuple of vector fields .E1; : : : ;En/ is a local frame, it suffices to check either that
it is linearly independent or that it spans the tangent bundle.

Example 8.10 (Local and Global Frames).

(a) The standard coordinate vector fields form a smooth global frame for Rn.
(b) If

�
U;
�
xi
��

is any smooth coordinate chart for a smooth manifold M (possibly
with boundary), then the coordinate vector fields form a smooth local frame�
@=@xi

�
on U , called a coordinate frame. Every point of M is in the domain of

such a local frame.
(c) The vector field d=d� defined in Example 8.4 constitutes a smooth global frame

for the circle.
(d) The n-tuple of vector fields

�
@=@�1; : : : ; @=@�n

�
on the n-torus, defined in Ex-

ample 8.4, is a smooth global frame for Tn. //

The next proposition shows that local frames are easy to come by.

Proposition 8.11 (Completion of Local Frames). Let M be a smooth n-manifold
with or without boundary.

(a) If .X1; : : : ;Xk/ is a linearly independent k-tuple of smooth vector fields on an
open subset U �M; with 1 � k < n, then for each p 2 U there exist smooth
vector fields XkC1; : : : ;Xn in a neighborhood V of p such that .X1; : : : ;Xn/ is
a smooth local frame for M on U \ V .

(b) If .v1; : : : ; vk/ is a linearly independent k-tuple of vectors in TpM for some
p 2M; with 1� k � n, then there exists a smooth local frame .Xi / on a neigh-
borhood of p such that Xi jp D vi for i D 1; : : : ; k.

(c) If .X1; : : : ;Xn/ is a linearly independent n-tuple of smooth vector fields along
a closed subset A�M; then there exists a smooth local frame . zX1; : : : ; zXn/ on
some neighborhood of A such that zXi jA DXi for i D 1; : : : ; n.

Proof. See Problem 8-5. �
For subsets of Rn, there is a special type of frame that is often more useful for

geometric problems than arbitrary frames. A k-tuple of vector fields .E1; : : : ;Ek/
defined on some subset A � Rn is said to be orthonormal if for each p 2 A, the
vectors

�
E1jp; : : : ;Ekjp

�
are orthonormal with respect to the Euclidean dot product

(where we identify TpRn with Rn in the usual way). A (local or global) frame
consisting of orthonormal vector fields is called an orthonormal frame.



Vector Fields on Manifolds 179

Example 8.12. The standard coordinate frame is a global orthonormal frame on Rn.
For a less obvious example, consider the smooth vector fields defined on R2 X f0g
by

E1 D
x

r

@

@x
C
y

r

@

@y
; E2 D�

y

r

@

@x
C
x

r

@

@y
; (8.3)

where r D
p
x2C y2. A straightforward computation shows that .E1;E2/ is an

orthonormal frame for R2 over the open subset R2 X f0g. Geometrically, E1 and
E2 are unit vector fields tangent to radial lines and circles centered at the origin,
respectively. //

The next lemma describes a useful method for creating orthonormal frames.

Lemma 8.13 (Gram–Schmidt Algorithm for Frames). Suppose .Xj / is a smooth
local frame for TRn over an open subset U �Rn. Then there is a smooth orthonor-
mal frame .Ej / over U such that span

�
E1jp; : : : ;Ej jp

�
D span

�
X1jp; : : : ;Xj jp

�

for each j D 1; : : : ; n and each p 2 U .

Proof. Applying the Gram–Schmidt algorithm to the vectors
�
Xj jp

�
at each p 2U ,

we obtain an n-tuple of rough vector fields .E1; : : : ;En/ given inductively by

Ej D
Xj �

Pj�1
iD1 .Xj �Ei /Eiˇ̌

Xj �
Pj�1
iD1 .Xj �Ei /Ei

ˇ̌ :

For each j D 1; : : : ; n and each p 2 U , Xj jp … span
�
E1jp; : : : ;Ej�1jp

�
(which is

equal to span
�
X1jp; : : : ;Xj�1jp

�
), so the denominator above is a nowhere-vanishing

smooth function on U . Therefore, this formula defines .Ej / as a smooth orthonor-
mal frame on U that satisfies the conclusion of the lemma. �

Although smooth local frames are plentiful, global ones are not. A smooth mani-
fold with or without boundary is said to be parallelizable if it admits a smooth global
frame. Example 8.10 shows that Rn, S1, and Tn are all parallelizable. Problems 8-6
and 8-7 show that S3 and S7 are parallelizable. Later in this chapter, we will see that
all Lie groups are parallelizable (see Corollary 8.39 below). However, despite the
evidence of these examples, most smooth manifolds are not parallelizable. (As we
will see in Chapter 10, parallelizability ofM is intimately connected to the question
of whether its tangent bundle is diffeomorphic to the product M �Rn.)

The simplest example of a nonparallelizable manifold is S2, but the proof of this
fact will have to wait until we have developed more machinery (see Problem 16-6).
In fact, using more advanced methods from algebraic topology, it was shown in
1958 by Raoul Bott and John Milnor [MB58] and independently by Michel Ker-
vaire [Ker58] that S1, S3, and S7 are the only spheres that are parallelizable. Thus
these are the only positive-dimensional spheres that can possibly admit Lie group
structures. The first two do (see Example 7.3(j) and Problem 7-16), but it turns out
that S7 has no Lie group structure (see [Bre93, p. 301]).
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Vector Fields as Derivations of C1.M/

An essential property of vector fields is that they define operators on the space of
smooth real-valued functions. If X 2X.M/ and f is a smooth real-valued function
defined on an open subset U �M; we obtain a new function Xf W U !R, defined
by

.Xf /.p/DXpf:

(Be careful not to confuse the notations fX and Xf : the former is the smooth
vector field on U obtained by multiplyingX by f , while the latter is the real-valued
function on U obtained by applying the vector field X to the smooth function f .)
Because the action of a tangent vector on a function is determined by the values
of the function in an arbitrarily small neighborhood, it follows that Xf is locally
determined. In particular, for any open subset V � U ,

.Xf /jV DX .f jV / : (8.4)

This construction yields another useful smoothness criterion for vector fields.

Proposition 8.14. Let M be a smooth manifold with or without boundary, and let
X W M ! TM be a rough vector field. The following are equivalent:

(a) X is smooth.
(b) For every f 2 C1.M/, the function Xf is smooth on M .
(c) For every open subset U � M and every f 2 C1.U /, the function Xf is

smooth on U .

Proof. We will prove that (a)) (b)) (c)) (a).
To prove (a)) (b), assume X is smooth, and let f 2 C1.M/. For any p 2M;

we can choose smooth coordinates
�
xi
�

on a neighborhood U of p. Then for x 2U ,
we can write

Xf .x/D

�
X i .x/

@

@xi

ˇ̌
ˇ̌
x

�
f DX i .x/

@f

@xi
.x/:

Since the component functions X i are smooth on U by Proposition 8.1, it follows
that Xf is smooth in U . Since the same is true in a neighborhood of each point, Xf
is smooth on M .

To prove (b)) (c), suppose U �M is open and f 2 C1.U /. For any p 2 U ,
let  be a smooth bump function that is equal to 1 in a neighborhood of p and
supported in U , and define zf D f , extended to be zero onM X supp . Then X zf
is smooth by assumption, and is equal to Xf in a neighborhood of p by (8.4). This
shows that Xf is smooth in a neighborhood of each point of U .

Finally, to prove (c) ) (a), suppose Xf is smooth whenever f is smooth on
an open subset of M . If

�
xi
�

are any smooth local coordinates on U �M; we can
think of each coordinate xi as a smooth function on U . Applying X to one of these
functions, we obtain

Xxi DXj
@

@xj

�
xi
�
DX i :
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Because Xxi is smooth by assumption, it follows that the component functions of
X are smooth, so X is smooth. �

One consequence of the preceding proposition is that a smooth vector field
X 2 X.M/ defines a map from C1.M/ to itself by f 7!Xf . This map is clearly
linear over R. Moreover, the product rule (3.4) for tangent vectors translates into the
following product rule for vector fields:

X.fg/D f XgC gXf; (8.5)

as you can easily check by evaluating both sides at an arbitrary point p 2M . In
general, a map X W C1.M/! C1.M/ is called a derivation (as distinct from a
derivation at p, defined in Chapter 3) if it is linear over R and satisfies (8.5) for all
f;g 2 C1.M/.

The next proposition shows that derivations of C1.M/ can be identified with
smooth vector fields.

Proposition 8.15. Let M be a smooth manifold with or without boundary. A map
D W C1.M/! C1.M/ is a derivation if and only if it is of the formDf DXf for
some smooth vector field X 2X.M/.

Proof. We just showed that every smooth vector field induces a derivation. Con-
versely, suppose D W C1.M/! C1.M/ is a derivation. We need to concoct a
vector field X such that Df DXf for all f . From the discussion above, it is clear
that if there is such a vector field, its value at p 2M must be the derivation at p
whose action on any smooth real-valued function f is given by

Xpf D .Df /.p/:

The linearity of D guarantees that this expression depends linearly on f , and the
fact thatD is a derivation yields the product rule (3.4) for tangent vectors. Thus, the
map Xp W C1.M/!R so defined is indeed a tangent vector, that is, a derivation of
C1.M/ at p. This defines X as a rough vector field. Because Xf DDf is smooth
whenever f 2 C1.M/, this vector field is smooth by Proposition 8.14. �

Because of this result, we sometimes identify smooth vector fields on M with
derivations of C1.M/, using the same letter for both the vector field (thought of as
a smooth map from M to TM ) and the derivation (thought of as a linear map from
C1.M/ to itself).

Vector Fields and Smooth Maps

If F W M ! N is a smooth map and X is a vector field on M; then for each point
p 2M; we obtain a vector dFp.Xp/ 2 TF.p/N by applying the differential of F
to Xp . However, this does not in general define a vector field on N . For example,
if F is not surjective, there is no way to decide what vector to assign to a point
q 2 N X F.M/ (Fig. 8.2). If F is not injective, then for some points of N there



182 8 Vector Fields

Fig. 8.2 The differential might not take vector fields to vector fields

may be several different vectors obtained by applying dF to X at different points
of M .

Suppose F W M ! N is smooth and X is a vector field on M; and suppose
there happens to be a vector field Y on N with the property that for each p 2M;
dFp.Xp/D YF.p/. In this case, we say the vector fieldsX and Y are F -related (see
Fig. 8.3). The next proposition shows how F -related vector fields act on smooth
functions.

Proposition 8.16. Suppose F W M ! N is a smooth map between manifolds with
or without boundary, X 2 X.M/, and Y 2 X.N /. Then X and Y are F -related
if and only if for every smooth real-valued function f defined on an open subset
of N ,

X.f ıF /D .Yf / ıF: (8.6)

Proof. For any p 2M and any smooth real-valued f defined in a neighborhood of
F.p/,

X.f ıF /.p/DXp.f ıF /D dFp.Xp/f;

while

.Yf / ıF.p/D .Yf /
�
F.p/

�
D YF.p/f:

Thus, (8.6) is true for all f if and only if dFp.Xp/D YF.p/ for all p, i.e., if and
only if X and Y are F -related. �

Example 8.17. Let F W R! R2 be the smooth map F.t/ D .cos t; sin t/. Then
d=dt 2X.R/ is F -related to the vector field Y 2X

�
R2
�

defined by

Y D x
@

@y
� y

@

@x
: //

I Exercise 8.18. Prove the claim in the preceding example in two ways: directly
from the definition, and by using Proposition 8.16.

It is important to remember that for a given smooth map F W M !N and vector
field X 2 X.M/, there may not be any vector field on N that is F -related to X .
There is one special case, however, in which there is always such a vector field, as
the next proposition shows.
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Fig. 8.3 F -related vector fields

Proposition 8.19. SupposeM andN are smooth manifolds with or without bound-
ary, and F W M !N is a diffeomorphism. For every X 2 X.M/, there is a unique
smooth vector field on N that is F -related to X .

Proof. For Y 2X.N / to be F -related to X means that dFp.Xp/D YF.p/ for every
p 2M . If F is a diffeomorphism, therefore, we define Y by

Yq D dFF�1.q/
�
XF�1.q/

�
:

It is clear that Y , so defined, is the unique (rough) vector field that is F -related toX .
Note that Y W N ! TN is the composition of the following smooth maps:

N
F�1� M

X� TM
dF� TN:

It follows that Y is smooth. �

In the situation of the preceding proposition we denote the unique vector field that
is F -related to X by F�X , and call it the pushforward of X by F . Remember, it is
only when F is a diffeomorphism that F�X is defined. The proof of Proposition 8.19
shows that F�X is defined explicitly by the formula

.F�X/q D dFF�1.q/
�
XF�1.q/

�
: (8.7)

As long as the inverse map F �1 can be computed explicitly, the pushforward of a
vector field can be computed directly from this formula.

Example 8.20 (Computing the Pushforward of a Vector Field). Let M and N
be the following open submanifolds of R2:

M D
˚
.x; y/ W y > 0 and xC y > 0

�
;

N D
˚
.u; v/ W u > 0 and v > 0

�
;

and define F W M ! N by F.x;y/D .x C y; x=y C 1/. Then F is a diffeomor-
phism because its inverse is easily computed: just solve .u; v/D .xC y; x=y C 1/
for x and y to obtain the formula .x; y/ D F �1.u; v/ D .u � u=v; u=v/. Let us
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compute the pushforward F�X , whereX is the following smooth vector field onM :

X.x;y/ D y2
@

@x

ˇ
ˇ̌
ˇ
.x;y/

:

The differential of F at a point .x; y/ 2M is represented by its Jacobian matrix,

DF.x;y/D

�

1 1
1

y
�
x

y2

�

;

and thus dFF�1.u;v/ is represented by the matrix

DF
	
u�

u

v
;
u

v



D

�

1 1

v

u

v � v2

u

�

:

For any .u; v/ 2N ,

XF�1.u;v/ D
u2

v2
@

@x

ˇ̌
ˇ̌
F�1.u;v/

:

Therefore, applying (8.7) with pD .u; v/ yields the formula for F�X :

.F�X/.u;v/ D
u2

v2
@

@u

ˇ
ˇ̌
ˇ
.u;v/

C
u

v

@

@v

ˇ
ˇ̌
ˇ
.u;v/

: //

The next corollary follows directly from Proposition 8.16.

Corollary 8.21. Suppose F W M !N is a diffeomorphism andX 2X.M/. For any
f 2 C1.N /,

�
.F�X/f

�
ıF DX.f ıF /: �

Vector Fields and Submanifolds

If S �M is an immersed or embedded submanifold (with or without boundary),
a vector field X on M does not necessarily restrict to a vector field on S , because
Xp may not lie in the subspace TpS � TpM at a point p 2 S . Given a point p 2 S ,
a vector field X on M is said to be tangent to S at p if Xp 2 TpS � TpM . It is
tangent to S if it is tangent to S at every point of S (Fig. 8.4).

Proposition 8.22. Let M be a smooth manifold, S �M be an embedded subman-
ifold with or without boundary, and X be a smooth vector field on M . Then X is
tangent to S if and only if .Xf /jS D 0 for every f 2 C1.M/ such that f jS � 0.

Proof. This is an immediate consequence of Proposition 5.37. �
Suppose S �M is an immersed submanifold with or without boundary, and Y

is a smooth vector field on M . If there is a vector field X 2X.S/ that is 	-related to
Y , where 	 W S ,!M is the inclusion map, then clearly Y is tangent to S , because
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Fig. 8.4 A vector field tangent to a submanifold

Yp D d	p.Xp/ is in the image of d	p for each p 2 S . The next proposition shows
that the converse is true.

Proposition 8.23 (Restricting Vector Fields to Submanifolds). Let M be a
smooth manifold, let S �M be an immersed submanifold with or without bound-
ary, and let 	 W S ,!M denote the inclusion map. If Y 2X.M/ is tangent to S , then
there is a unique smooth vector field on S , denoted by Y jS , that is 	-related to Y .

Proof. The fact that Y is tangent to S means by definition that Yp is in the image of
d	p for each p. Thus, for each p there is a vectorXp 2 TpS such that Yp D d	p.Xp/.
Since d	p is injective, Xp is unique, so this defines X as a rough vector field on S .
If we can show that X is smooth, it is the unique vector field that is 	-related to Y .
It suffices to show that it is smooth in a neighborhood of each point.

Let p be any point in S . Since an immersed submanifold (with or without
boundary) is locally embedded, there is a neighborhood V of p in S that is em-
bedded in M . Let

�
U; .xi /

�
be a slice chart (or boundary slice chart) for V in

M centered at p, so that V \ U is the subset where xkC1 D � � � D xn D 0 (and
xk � 0 if p 2 @S ), and

�
x1; : : : ; xk

�
form local coordinates for S in V \ U . If

Y D Y 1@=@x1C � � � C Y n@=@xn in these coordinates, it follows from our construc-
tion that X has the coordinate representation Y 1@=@x1 C � � � C Y k@=@xk , which is
clearly smooth on V \U . �

Lie Brackets

In this section we introduce an important way of combining two smooth vector fields
to obtain another vector field.

Let X and Y be smooth vector fields on a smooth manifold M . Given a smooth
function f W M ! R, we can apply X to f and obtain another smooth function
Xf (see Proposition 8.14). In turn, we can apply Y to this function, and obtain
yet another smooth function YXf D Y.Xf /. The operation f 7! YXf , however,
does not in general satisfy the product rule and thus cannot be a vector field, as the
following example shows.
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Example 8.24. Define vector fields X D @=@x and Y D x@=@y on R2, and let
f .x;y/ D x, g.x;y/ D y. Then direct computation shows that XY.fg/ D 2x,
while f XYgC gXYf D x, so XY is not a derivation of C1

�
R2
�
. //

We can also apply the same two vector fields in the opposite order, obtaining a
(usually different) function XYf . Applying both of these operators to f and sub-
tracting, we obtain an operator ŒX;Y � W C1.M/! C1.M/, called the Lie bracket
of X and Y , defined by

ŒX;Y �f DXYf � YXf:

The key fact is that this operator is a vector field.

Lemma 8.25. The Lie bracket of any pair of smooth vector fields is a smooth vector
field.

Proof. By Proposition 8.15, it suffices to show that ŒX;Y � is a derivation of
C1.M/. For arbitrary f;g 2 C1.M/, we compute

ŒX;Y �.fg/D X
�
Y.fg/

�
� Y

�
X.fg/

�

D X.f YgC g Yf /� Y.f XgC gXf /

D Xf YgC f XYgCXgYf C gXYf

� Yf Xg � f YXg � YgXf � g YXf

D f XYgC gXYf � f YXg � g YXf

D f ŒX;Y �gC gŒX;Y �f: �

We will describe one significant application of Lie brackets later in this chapter,
and we will see many others in later chapters. Unfortunately, we are not yet in a po-
sition to give Lie brackets a geometric interpretation, but we will do so in Chapter 9.
For now, we develop some of their basic properties.

The value of the vector field ŒX;Y � at a point p 2M is the derivation at p given
by the formula

ŒX;Y �pf DXp.Yf /� Yp.Xf /:

However, this formula is of limited usefulness for computations, because it requires
one to compute terms involving second derivatives of f that will always cancel each
other out. The next proposition gives an extremely useful coordinate formula for the
Lie bracket, in which the cancellations have already been accounted for.

Proposition 8.26 (Coordinate Formula for the Lie Bracket). Let X;Y be smooth
vector fields on a smooth manifold M with or without boundary, and let X D
X i@=@xi and Y D Y j @=@xj be the coordinate expressions for X and Y in terms of
some smooth local coordinates

�
xi
�

for M . Then ŒX;Y � has the following coordi-
nate expression:

ŒX;Y �D

�
X i
@Y j

@xi
� Y i

@Xj

@xi

�
@

@xj
; (8.8)
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or more concisely,

ŒX;Y �D
�
XY j � YXj

� @

@xj
: (8.9)

Proof. Because we know already that ŒX;Y � is a smooth vector field, its action on
a function is determined locally: .ŒX;Y �f /jU D ŒX;Y �.f jU /. Thus it suffices to
compute in a single smooth chart, where we have

ŒX;Y �f D X i
@

@xi

�
Y j

@f

@xj

�
� Y j

@

@xj

�
X i

@f

@xi

�

D X i
@Y j

@xi
@f

@xj
CX iY j

@2f

@xi@xj
� Y j

@X i

@xj
@f

@xi
� Y jX i

@2f

@xj @xi

D X i
@Y j

@xi
@f

@xj
� Y j

@X i

@xj
@f

@xi
;

where in the last step we have used the fact that mixed partial derivatives of a smooth
function can be taken in any order. Interchanging the roles of the dummy indices i
and j in the second term, we obtain (8.8). �

One trivial application of (8.8) is to compute the Lie brackets of the coordinate
vector fields

�
@=@xi

�
in any smooth chart: because the component functions of the

coordinate vector fields are all constants, it follows that
�
@

@xi
;
@

@xj


� 0 for all i and j: (8.10)

(This also follows from the definition of the Lie bracket, and is essentially a restate-
ment of the fact that mixed partial derivatives of smooth functions commute.) Here
is a slightly less trivial computation.

Example 8.27. Define smooth vector fields X;Y 2X
�
R3
�

by

X D x
@

@x
C

@

@y
C x.y C 1/

@

@z
;

Y D
@

@x
C y

@

@z
:

Then (8.9) yields

ŒX;Y �DX.1/
@

@x
CX.y/

@

@z
� Y.x/

@

@x
� Y.1/

@

@y
� Y

�
x.y C 1/

� @
@z

D 0
@

@x
C 1

@

@z
� 1

@

@x
� 0

@

@y
� .y C 1/

@

@z

D�
@

@x
� y

@

@z
: //

Proposition 8.28 (Properties of the Lie Bracket). The Lie bracket satisfies the
following identities for all X;Y;Z 2X.M/:
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(a) BILINEARITY: For a; b 2R,

ŒaX C bY;Z�D aŒX;Z�C bŒY;Z�;

ŒZ;aX C bY �D aŒZ;X�C bŒZ;Y �:

(b) ANTISYMMETRY:

ŒX;Y �D�ŒY;X�:

(c) JACOBI IDENTITY:

ŒX; ŒY;Z��C ŒY; ŒZ;X��C ŒZ; ŒX;Y ��D 0:

(d) For f;g 2 C1.M/,

ŒfX;gY �D fgŒX;Y �C .fXg/Y � .gYf /X: (8.11)

Proof. Bilinearity and antisymmetry are obvious consequences of the definition.
The proof of the Jacobi identity is just a computation:

ŒX; ŒY;Z��f C ŒY; ŒZ;X��f C ŒZ; ŒX;Y ��f

DXŒY;Z�f � ŒY;Z�Xf C Y ŒZ;X�f

� ŒZ;X�Yf CZŒX;Y �f � ŒX;Y �Zf

DXYZf �XZYf � YZXf CZYXf C YZXf � YXZf

�ZXYf CXZYf CZXYf �ZYXf �XYZf C YXZf:

In this last expression all the terms cancel in pairs. Part (d) is a direct computation
from the definition of the Lie bracket, and is left as an exercise. �

I Exercise 8.29. Prove part (d) of the preceding proposition.

The significance of part (d) of this proposition might not be evident at this point,
but it will become clearer in the next chapter, where we will see that it expresses the
fact that the Lie bracket satisfies product rules with respect to both of its arguments
(see Corollary 9.39).

Proposition 8.30 (Naturality of the Lie Bracket). Let F W M ! N be a smooth
map between manifolds with or without boundary, and let X1;X2 2 X.M/ and
Y1; Y2 2 X.N / be vector fields such that Xi is F -related to Yi for i D 1; 2. Then
ŒX1;X2� is F -related to ŒY1; Y2�.

Proof. Using Proposition 8.16 and the fact that Xi and Yi are F -related,

X1X2.f ıF /DX1
�
.Y2f / ıF

�
D .Y1Y2f / ıF:

Similarly,

X2X1.f ıF /D .Y2Y1f / ıF:

Therefore,

ŒX1;X2�.f ıF /D X1X2.f ıF /�X2X1.f ıF /
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D .Y1Y2f / ıF � .Y2Y1f / ıF

D
�
ŒY1; Y2�f

�
ıF: �

See Problem 11-18 for an indication of why this property is called “naturality.”
When applied in special cases, this result has the following important corollaries.
First we consider the case in which the map is a diffeomorphism.

Corollary 8.31 (Pushforwards of Lie Brackets). Suppose F W M ! N is a dif-
feomorphism and X1;X2 2X.M/. Then F�ŒX1;X2�D ŒF�X1;F�X2�.

Proof. This is just the special case of Proposition 8.30 in which F is a diffeomor-
phism and Yi D F�Xi . �

The second special case is that of the inclusion of a submanifold.

Corollary 8.32 (Brackets of Vector Fields Tangent to Submanifolds). Let M be
a smooth manifold and let S be an immersed submanifold with or without boundary
inM . If Y1 and Y2 are smooth vector fields onM that are tangent to S , then ŒY1; Y2�
is also tangent to S .

Proof. By Proposition 8.23, there exist smooth vector fields X1 and X2 on S such
that Xi is 	-related to Yi for i D 1; 2 (where 	 W S!M is the inclusion). By Propo-
sition 8.30, ŒX1;X2� is 	-related to ŒY1; Y2�, which is therefore tangent to S . �

The Lie Algebra of a Lie Group

One of the most important applications of Lie brackets occurs in the context of Lie
groups. Suppose G is a Lie group. Recall that G acts smoothly and transitively on
itself by left translation: Lg.h/D gh. (See Example 7.22(c).) A vector field X on
G is said to be left-invariant if it is invariant under all left translations, in the sense
that it is Lg -related to itself for every g 2G. More explicitly, this means

d.Lg/g0.Xg0/DXgg0 ; for all g;g0 2G: (8.12)

Since Lg is a diffeomorphism, this can be abbreviated by writing .Lg/�X DX for
every g 2G.

Because .Lg/�.aX C bY /D a.Lg/�X C b.Lg/�Y , the set of all smooth left-
invariant vector fields on G is a linear subspace of X.G/. But it is much more than
that. The central fact is that it is closed under Lie brackets.

Proposition 8.33. Let G be a Lie group, and suppose X and Y are smooth left-
invariant vector fields on G. Then ŒX;Y � is also left-invariant.

Proof. Let g 2G be arbitrary. Since .Lg/�X DX and .Lg/�Y D Y by definition
of left-invariance, it follows from Corollary 8.31 that

.Lg/�ŒX;Y �D Œ.Lg/�X; .Lg/�Y �D ŒX;Y �:

Thus, ŒX;Y � is Lg -related to itself for each g, which is to say it is left-invariant. �
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A Lie algebra (over R) is a real vector space g endowed with a map called the
bracket from g � g to g, usually denoted by .X;Y / 7! ŒX;Y �, that satisfies the
following properties for all X;Y;Z 2 g:

(i) BILINEARITY: For a; b 2R,

ŒaX C bY;Z�D aŒX;Z�C bŒY;Z�;

ŒZ;aX C bY �D aŒZ;X�C bŒZ;Y �:

(ii) ANTISYMMETRY:

ŒX;Y �D�ŒY;X�:

(iii) JACOBI IDENTITY:

ŒX; ŒY;Z��C ŒY; ŒZ;X��C ŒZ; ŒX;Y ��D 0:

Notice that the Jacobi identity is a substitute for associativity, which does not hold
in general for brackets in a Lie algebra. It is useful in some circumstances to define
Lie algebras over C or other fields, but we do not have any reason to consider such
Lie algebras; thus all of our Lie algebras are assumed without further comment to
be real.

If g is a Lie algebra, a linear subspace h� g is called a Lie subalgebra of g if it
is closed under brackets. In this case h is itself a Lie algebra with the restriction of
the same bracket.

If g and h are Lie algebras, a linear map A W g! h is called a Lie algebra homo-
morphism if it preserves brackets: AŒX;Y �D ŒAX;AY �. An invertible Lie algebra
homomorphism is called a Lie algebra isomorphism. If there exists a Lie algebra
isomorphism from g to h, we say that they are isomorphic as Lie algebras.

I Exercise 8.34. Verify that the kernel and image of a Lie algebra homomorphism
are Lie subalgebras.

I Exercise 8.35. Suppose g and h are finite-dimensional Lie algebras and A W g! h

is a linear map. Show thatA is a Lie algebra homomorphism if and only ifAŒEi ;Ej �D
ŒAEi ;AEj � for some basis .E1; : : : ;En/ of g.

Example 8.36 (Lie Algebras).

(a) The space X.M/ of all smooth vector fields on a smooth manifold M is a Lie
algebra under the Lie bracket by Proposition 8.28.

(b) If G is a Lie group, the set of all smooth left-invariant vector fields on G is a
Lie subalgebra of X.G/ and is therefore a Lie algebra.

(c) The vector space M.n;R/ of n � n real matrices becomes an n2-dimensional
Lie algebra under the commutator bracket:

ŒA;B�DAB �BA:

Bilinearity and antisymmetry are obvious from the definition, and the Jacobi
identity follows from a straightforward calculation. When we are regarding
M.n;R/ as a Lie algebra with this bracket, we denote it by gl.n;R/.
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Fig. 8.5 Defining a left-invariant vector field

(d) Similarly, gl.n;C/ is the 2n2-dimensional (real) Lie algebra obtained by en-
dowing M.n;C/ with the commutator bracket.

(e) If V is a vector space, the vector space of all linear maps from V to itself be-
comes a Lie algebra, which we denote by gl.V /, with the commutator bracket:

ŒA;B�DA ıB �B ıA:

Under our usual identification of n � n matrices with linear maps from Rn to
itself, gl .Rn/ is the same as gl.n;R/.

(f) Any vector space V becomes a Lie algebra if we define all brackets to be zero.
Such a Lie algebra is said to be abelian. (The name reflects the fact that brackets
in most Lie algebras, as in the preceding examples, are defined as commutators
in terms of underlying associative products, so all brackets are zero precisely
when the underlying product is commutative; it also reflects the connection be-
tween abelian Lie algebras and abelian Lie groups, which you will explore in
Problems 8-25 and 20-7.) //

Example (b) is the most important one. The Lie algebra of all smooth left-
invariant vector fields on a Lie group G is called the Lie algebra of G , and is
denoted by Lie.G/. (We will see below that the assumption of smoothness is redun-
dant; see Corollary 8.38.) The fundamental fact is that Lie.G/ is finite-dimensional,
and in fact has the same dimension as G itself, as the following theorem shows.

Theorem 8.37. LetG be a Lie group. The evaluation map " W Lie.G/! TeG, given
by ".X/D Xe , is a vector space isomorphism. Thus, Lie.G/ is finite-dimensional,
with dimension equal to dimG.

Proof. It is clear from the definition that " is linear over R. It is easy to prove that
it is injective: if ".X/ D Xe D 0 for some X 2 Lie.G/, then left-invariance of X
implies that Xg D d.Lg/e.Xe/D 0 for every g 2G, so X D 0.

To show that " is surjective, let v 2 TeG be arbitrary, and define a (rough) vector
field vL on G by

vL
ˇ̌
g
D d.Lg/e.v/: (8.13)

(See Fig. 8.5.) If there is a left-invariant vector field onG whose value at the identity
is v, clearly it has to be given by this formula.
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First we need to check that vL is smooth. By Proposition 8.14, it suffices to show
that vLf is smooth whenever f 2 C1.G/. Choose a smooth curve � W .�ı; ı/!G

such that �.0/D e and � 0.0/D v. Then for all g 2G,

�
vLf

�
.g/D vL

ˇ̌
g
f D d.Lg/e.v/f D v.f ıLg/D �

0.0/.f ıLg/

D
d

dt

ˇ̌
ˇ̌
tD0

.f ıLg ı �/.t/:

If we define ' W .�ı; ı/�G!R by '.t; g/D f ıLg ı �.t/D f
�
g�.t/

�
, the com-

putation above shows that
�
vLf

�
.g/D @'=@t.0; g/. Because ' is a composition of

group multiplication, f , and � , it is smooth. It follows that @'=@t.0; g/ depends
smoothly on g, so vLf is smooth.

Next we show that vL is left-invariant, which is to say that d.Lh/g
�
vLjg

�
D

vLjhg for all g;h 2G. This follows from the definition of vL and the fact that Lh ı
Lg DLhg :

d.Lh/g
�
vL
ˇ̌
g

�
D d.Lh/g ı d.Lg/e.v/D d.Lh ıLg/e.v/D d.Lhg/e.v/D v

L
ˇ̌
hg
:

Thus vL 2 Lie.G/. Since Le (left translation by the identity) is the identity map
of G, it follows that "

�
vL
�
D vLje D v, so " is surjective. �

Given any vector v 2 TeG, we continue to use the notation vL to denote the
smooth left-invariant vector field defined by (8.13).

It is worth observing that the preceding proof also shows that the assumption of
smoothness in the definition of Lie.G/ is unnecessary.

Corollary 8.38. Every left-invariant rough vector field on a Lie group is smooth.

Proof. LetX be a left-invariant rough vector field on a Lie groupG, and let vDXe .
The fact that X is left-invariant implies that X D vL, which is smooth. �

The existence of global left-invariant vector fields also yields the following im-
portant property of Lie groups. Recall that a smooth manifold is said to be paral-
lelizable if it admits a smooth global frame. If G is a Lie group, a local or global
frame consisting of left-invariant vector fields is called a left-invariant frame.

Corollary 8.39. Every Lie group admits a left-invariant smooth global frame, and
therefore every Lie group is parallelizable.

Proof. If G is a Lie group, every basis for Lie.G/ is a left-invariant smooth global
frame for G. �

Example 8.40. Let us determine the Lie algebras of some familiar Lie groups.

(a) EUCLIDEAN SPACE Rn: If we consider Rn as a Lie group under addition, left
translation by an element b 2 Rn is given by the affine map Lb.x/ D b C x,
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whose differential d.Lb/ is represented by the identity matrix in standard co-
ordinates. Thus a vector field X i@=@xi is left-invariant if and only if its coef-
ficients X i are constants. Because the Lie bracket of two constant-coefficient
vector fields is zero by (8.8), the Lie algebra of Rn is abelian, and is isomorphic
to Rn itself with the trivial bracket. In brief, Lie .Rn/ŠRn.

(b) THE CIRCLE GROUP S1: In terms of appropriate angle coordinates, each left
translation has a local coordinate representation of the form � 7! � C c. Since
the differential of this map is the 1� 1 identity matrix, it follows that the vector
field d=d� defined in Example 8.4 is left-invariant, and is therefore a basis
for the Lie algebra of S1. This Lie algebra is 1-dimensional and abelian, and
therefore Lie.S1/ŠR.

(c) THE n-TORUS Tn D S1 � � � � �S1: An analysis similar to the one above shows
that

�
@=@�1; : : : ; @=@�n

�
is a basis for Lie.Tn/, where @=@� i is the angle coordi-

nate vector field on the i th S1 factor. Since the Lie brackets of these coordinate
vector fields are all zero, Lie.Tn/ŠRn. //

The Lie groups Rn, S1, and Tn are abelian, and as the discussion above shows,
their Lie algebras turn out also to be abelian. This is no accident: every abelian Lie
group has an abelian Lie algebra (see Problem 8-25). Later, we will see that the
converse is true provided that the group is connected (Problem 20-7).

Just as we can view the tangent space as a “linear model” of a smooth mani-
fold near a point, the Lie algebra of a Lie group provides a “linear model” of the
group, which reflects many of the properties of the group. Because Lie groups have
more structure than ordinary smooth manifolds, it should come as no surprise that
their linear models have more structure than ordinary vector spaces. Since a finite-
dimensional Lie algebra is a purely linear-algebraic object, it is in many ways sim-
pler to understand than the group itself. Much of the progress in the theory of Lie
groups has come from a careful analysis of Lie algebras.

We conclude this section by analyzing the Lie algebra of the most important non-
abelian Lie group of all, the general linear group. Theorem 8.37 gives a vector space
isomorphism between Lie

�
GL.n;R/

�
and the tangent space to GL.n;R/ at the

identity matrix In. Because GL.n;R/ is an open subset of the vector space gl.n;R/,
its tangent space is naturally isomorphic to gl.n;R/ itself. The composition of these
two isomorphisms gives a vector space isomorphism Lie

�
GL.n;R/

�
Š gl.n;R/.

The vector spaces Lie
�

GL.n;R/
�

and gl.n;R/ have independently defined Lie
algebra structures—the first coming from Lie brackets of vector fields, and the sec-
ond from commutator brackets of matrices. The next proposition shows that the
natural vector space isomorphism between these spaces is in fact a Lie algebra
isomorphism.

Proposition 8.41 (Lie Algebra of the General Linear Group). The composition
of the natural maps

Lie
�

GL.n;R/
�
! TIn GL.n;R/! gl.n;R/ (8.14)

gives a Lie algebra isomorphism between Lie
�

GL.n;R/
�

and the matrix algebra
gl.n;R/.
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Proof. Using the matrix entries X ij as global coordinates on GL.n;R/� gl.n;R/,
the natural isomorphism TIn GL.n;R/ ! gl.n;R/ takes the form

Aij
@

@X ij

ˇ̌
ˇ̌
In

 !
�
Aij
�
:

(Because of the dual role of the indices i; j as coordinate indices and matrix row
and column indices, in this case it is impossible to maintain our convention that all
coordinates have upper indices. However, we continue to observe the summation
convention and the other index conventions associated with it. In particular, in the
expression above, an upper index “in the denominator” is to be regarded as a lower
index, and vice versa.)

Let g denote the Lie algebra of GL.n;R/. Any matrix A D
�
Aij
�
2 gl.n;R/

determines a left-invariant vector field AL 2 g defined by (8.13), which in this case
becomes

AL
ˇ
ˇ
X
D d.LX /In.A/D d.LX /In

�
Aij

@

@X ij

ˇ̌
ˇ̌
In

�
:

Since LX is the restriction to GL.n;R/ of the linear map A 7!XA on gl.n;R/, its
differential is represented in coordinates by exactly the same linear map. In other
words, the left-invariant vector field AL determined by A is the one whose value at
X 2GL.n;R/ is

AL
ˇ̌
X
DX ijA

j

k

@

@X i
k

ˇ̌
ˇ̌
X

: (8.15)

Given two matrices A;B 2 gl.n;R/, the Lie bracket of the corresponding left-
invariant vector fields is given by

�
AL;BL

�
D

�
X ijA

j

k

@

@X i
k

;Xpq B
q
r

@

@X
p
r



D X ijA
j

k

@

@X i
k

	
Xpq B

q
r


 @

@X
p
r

�Xpq B
q
r

@

@X
p
r

	
X ijA

j

k


 @

@X i
k

D X ijA
j

k
Bkr

@

@X ir
�Xpq B

q
r A

r
k

@

@X
p

k

D
	
X ijA

j

k
Bkr �X

i
jB

j

k
Akr


 @

@X ir
;

where we have used the fact that @Xpq =@X ik is equal to 1 if p D i and q D k, and 0
otherwise, and Aij and B ij are constants. Evaluating this last expression when X is
equal to the identity matrix, we get

�
AL;BL

�
In
D
	
AikB

k
r �B

i
kA

k
r


 @

@X ir

ˇ̌
ˇ̌
In

:
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This is the vector corresponding to the matrix commutator bracket ŒA;B�. Since the
left-invariant vector field

�
AL;BL

�
is determined by its value at the identity, this

implies that
�
AL;BL

�
D ŒA;B�L;

which is precisely the statement that the composite map (8.14) is a Lie algebra
isomorphism. �

There is an analogue of this result for abstract vector spaces. If V is any finite-
dimensional real vector space, recall that we have defined GL.V / as the Lie group
of invertible linear transformations of V , and gl.V / as the Lie algebra of all linear
transformations. Just as in the case of GL.n;R/, we can regard GL.V / as an open
submanifold of gl.V /, and thus there are canonical vector space isomorphisms

Lie
�

GL.V /
�
! TId GL.V /! gl.V /: (8.16)

Corollary 8.42. If V is any finite-dimensional real vector space, the composition
of the canonical isomorphisms in (8.16) yields a Lie algebra isomorphism between
Lie

�
GL.V /

�
and gl.V /.

I Exercise 8.43. Prove the preceding corollary by choosing a basis for V and ap-
plying Proposition 8.41.

Induced Lie Algebra Homomorphisms

The importance of the Lie algebra of a Lie group stems, in large part, from the fact
that each Lie group homomorphism induces a Lie algebra homomorphism, as the
next theorem shows.

Theorem 8.44 (Induced Lie Algebra Homomorphisms). Let G and H be Lie
groups, and let g and h be their Lie algebras. Suppose F W G!H is a Lie group
homomorphism. For everyX 2 g, there is a unique vector field in h that is F -related
to X . With this vector field denoted by F�X , the map F� W g! h so defined is a Lie
algebra homomorphism.

Proof. If there is any vector field Y 2 h that is F -related to X , it must satisfy Ye D
dFe.Xe/, and thus it must be uniquely determined by

Y D
�
dFe.Xe/

�L
:

To show that this Y is F -related to X , we note that the fact that F is a homomor-
phism implies

F.gg0/D F.g/F.g0/) F.Lgg
0/DLF.g/F.g

0/

) F ıLg DLF.g/ ıF

) dF ı d.Lg/D d.LF.g// ı dF:
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Fig. 8.6 The induced Lie algebra homomorphism

Thus,

dF.Xg/D dF
�
d.Lg/.Xe/

�
D d

�
LF.g/

� �
dF.Xe/

�
D d

�
LF.g/

�
.Ye/D YF.g/:

(See Fig. 8.6.) This says precisely that X and Y are F -related.
For each X 2 g, let F�X denote the unique vector field in h that is F -related

to X . It then follows immediately from the naturality of Lie brackets that
F�ŒX;Y �D ŒF�X;F�Y �, so F� is a Lie algebra homomorphism. �

The map F� W g! h whose existence is asserted in this theorem is called the
induced Lie algebra homomorphism. Note that the theorem implies that for any
left-invariant vector field X 2 g, F�X is a well-defined smooth vector field on H ,
even though F may not be a diffeomorphism.

Proposition 8.45 (Properties of Induced Homomorphisms).

(a) The homomorphism .IdG/� W Lie.G/! Lie.G/ induced by the identity map of
G is the identity of Lie.G/.

(b) If F1 W G!H and F2 W H !K are Lie group homomorphisms, then

.F2 ıF1/� D .F2/� ı .F1/� W Lie.G/! Lie.K/:

(c) Isomorphic Lie groups have isomorphic Lie algebras.

Proof. Both of the relations d.IdG/e D IdTeG and d.F2 ı F1/e D d.F2/e ı d.F1/e
hold for differentials. Since the induced homomorphism is determined by the differ-
ential at the identity, this proves (a) and (b). If F W G!H is an isomorphism, (a)
and (b) together imply that F� ı

�
F �1

�
� D

�
F ıF �1

�
� D IdD

�
F �1

�
� ı F�, so

F� W Lie.G/! Lie.H/ is an isomorphism. �
The preceding proposition has a categorical interpretation, as you might have

guessed. Let Lie denote the category whose objects are Lie groups and whose mor-
phisms are Lie group homomorphisms, and lie the one whose objects are finite-
dimensional Lie algebras and whose morphisms are Lie algebra homomorphisms.
Proposition 8.45 can be interpreted as showing that the assignments G 7! Lie.G/,
F 7! F� define a covariant functor from Lie to lie.
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The Lie Algebra of a Lie Subgroup

If G is a Lie group and H � G is a Lie subgroup, we might hope that the Lie
algebra of H would be a Lie subalgebra of that of G. However, elements of Lie.H/
are vector fields on H , not G, and so, strictly speaking, are not elements of Lie.G/.
Nonetheless, the next proposition gives us a way to view Lie.H/ as a subalgebra of
Lie.G/.

Theorem 8.46 (The Lie Algebra of a Lie Subgroup). Suppose H � G is a Lie
subgroup, and 	 W H ,! G is the inclusion map. There is a Lie subalgebra h �
Lie.G/ that is canonically isomorphic to Lie.H/, characterized by either of the
following descriptions:

hD 	�
�
Lie.H/

�

D
˚
X 2 Lie.G/ WXe 2 TeH

�
: (8.17)

Proof. Because the inclusion map 	 W H ,! G is a Lie group homomorphism,
	�
�

Lie.H/
�

is a Lie subalgebra of Lie.G/. By the way we defined the induced Lie
algebra homomorphism, this subalgebra is precisely the set of left-invariant vector
fields on G whose values at the identity are of the form d	e.v/ for some v 2 TeH .
Since the differential d	e W TeH ! TeG is the inclusion of TeH as a subspace in
TeG, the two characterizations of h given in (8.17) are equal. Since d	e is injective
on TeH , it follows that 	� is injective on Lie.H/; since it is surjective by definition
of h, it is an isomorphism between Lie.H/ and h. �

Using this proposition, whenever H is a Lie subgroup of G, we often identify
Lie.H/ as a subalgebra of Lie.G/. As we mentioned above, elements of Lie.H/
are not themselves left-invariant vector fields on G. But the preceding proposition
shows that every element of Lie.H/ corresponds to a unique element of Lie.G/,
determined by its value at the identity, and the injection of Lie.H/ into Lie.G/
thus determined respects Lie brackets; so by thinking of Lie.H/ as a subalgebra of
Lie.G/ we are not committing a grave error.

This identification is especially illuminating in the case of Lie subgroups of
GL.n;R/.

Example 8.47 (The Lie Algebra of O.n/). The orthogonal group O.n/ is a Lie
subgroup of GL.n;R/. By Example 7.27, it is equal to the level set ˚�1.In/, where
˚ W GL.n;R/!M.n;R/ is the map ˚.A/DATA. By the result of Exercise 5.40,
TIn O.n/ is equal to the kernel of d˚In W TIn GL.n;R/! TIn M.n;R/. By the com-
putation in Example 7.27, this differential is d˚In.B/DB

T CB , so

TIn O.n/D
˚
B 2 gl.n;R/ WBT CB D 0

�

D fskew-symmetric n� n matricesg:

We denote this subspace of gl.n;R/ by o.n/. Theorem 8.46 then implies that o.n/
is a Lie subalgebra of gl.n;R/ that is canonically isomorphic to Lie

�
O.n/

�
. Notice

that we did not even have to verify directly that o.n/ is a subalgebra. //
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We showed above that the Lie algebra of GL.n;R/ is naturally isomorphic to the
matrix algebra gl.n;R/. We can now prove a similar result for GL.n;C/. Just as
in the real case, our usual identification of GL.n;C/ as an open subset of gl.n;C/
yields a sequence of vector space isomorphisms

Lie
�

GL.n;C/
� "
�! TIn GL.n;C/

'
�! gl.n;C/; (8.18)

where " is the evaluation map and ' is the usual identification between the tangent
space to an open subset of a vector space and the vector space itself. (Note that we
are considering these as real vector spaces, not complex ones.)

Proposition 8.48 (The Lie Algebra of GL.n;C/). The composition of the maps
in (8.18) yields a Lie algebra isomorphism between Lie

�
GL.n;C/

�
and the matrix

algebra gl.n;C/.

Proof. The Lie group homomorphism ˇ W GL.n;C/! GL.2n;R/ that we con-
structed in Example 7.18(d) induces a Lie algebra homomorphism

ˇ� W Lie
�

GL.n;C/
�
! Lie

�
GL.2n;R/

�
:

Composing ˇ� with our canonical isomorphisms yields a commutative diagram

Lie
�

GL.n;C/
� "� TIn GL.n;C/

'� gl.n;C/

Lie
�

GL.2n;R/
�

ˇ�
�

"� TI2n GL.2n;R/

dˇIn
� '� gl.2n;R/;

˛
�

(8.19)

in which ˛ D ' ı dˇIn ı '
�1. Proposition 8.41 showed that the composition of the

isomorphisms in the bottom row is a Lie algebra isomorphism; we need to show the
same thing for the top row.

It is easy to see from the formula in Example 7.18(d) that ˇ is (the restriction
of) a linear map. It follows that dˇIn W TIn GL.n;C/! TI2n GL.2n;R/ is given by
exactly the same formula as ˇ, as is ˛ W gl.n;C/! gl.2n;R/. Because ˇ.AB/D
ˇ.A/ˇ.B/, it follows that ˛ preserves matrix commutators:

˛ŒA;B�D ˛.AB �BA/D ˛.A/˛.B/� ˛.B/˛.A/D Œ˛.A/;˛.B/�:

Thus ˛ is an injective Lie algebra homomorphism from gl.n;C/ to gl.2n;R/
(considering both as matrix algebras). Replacing the bottom row in (8.19) by the
images of the vertical maps, we obtain a commutative diagram of vector space
isomorphisms

Lie
�

GL.n;C/
� Š� gl.n;C/

ˇ�
�

Lie
�

GL.n;C/
��

ˇ�
�

Š� ˛
�
gl.n;C/

�
;

˛
�
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in which the bottom map and the two vertical maps are Lie algebra isomorphisms;
it follows that the top map is also a Lie algebra isomorphism. �

Parallel to the notion of representations of Lie groups, there is also a notion of
representations of Lie algebras. If g is a finite-dimensional Lie algebra, a (finite-
dimensional) representation of g is a Lie algebra homomorphism ' W g! gl.V /

for some finite-dimensional vector space V , where gl.V / denotes the Lie algebra of
linear maps from V to itself. If ' is injective, it is said to be faithful, in which case
g is isomorphic to the Lie subalgebra '.g/� gl.V /Š gl.n;R/.

There is a close connection between representations of Lie groups and represen-
tations of their Lie algebras. Suppose G is a Lie group and g is its Lie algebra. If
� W G!GL.V / is any representation of G, then �� W g! gl.V / is easily seen to be
a representation of g.

We close this section by stating a deep algebraic result about Lie algebras, which
we will use in Chapter 20. The proof of the following theorem requires far more
algebra than we have at our disposal, so we refer the interested reader to the proof
in [Var84].

Theorem 8.49 (Ado’s Theorem). Every finite-dimensional real Lie algebra admits
a faithful finite-dimensional representation.

Corollary 8.50. Every finite-dimensional real Lie algebra is isomorphic to a Lie
subalgebra of some matrix algebra gl.n;R/ with the commutator bracket.

Proof. Let g be a finite-dimensional real Lie algebra. By Ado’s theorem, g has
a faithful representation � W g ! gl.V / for some finite-dimensional real vector
space V . Choosing a basis for V yields an isomorphism of gl.V / with gl.n;R/
for some n, and composing � with this isomorphism yields an injective Lie alge-
bra homomorphism from g into gl.n;R/. Its image is a Lie subalgebra isomorphic
to g. �

As we mentioned in the previous chapter, it is important to remember that the
analogous result for Lie groups is false: there are Lie groups that are not isomorphic
to Lie subgroups of GL.n;R/ (see Problem 21-26 for an example).

Problems

8-1. Prove Lemma 8.6 (the extension lemma for vector fields).

8-2. EULER’S HOMOGENEOUS FUNCTION THEOREM: Let c be a real num-
ber, and let f W Rn X f0g ! R be a smooth function that is positively ho-
mogeneous of degree c, meaning that f .
x/ D 
cf .x/ for all 
 > 0 and
x 2Rn Xf0g. Prove that Vf D cf , where V is the Euler vector field defined
in Example 8.3. (Used on p. 248.)

8-3. LetM be a nonempty positive-dimensional smooth manifold with or without
boundary. Show that X.M/ is infinite-dimensional.
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8-4. Let M be a smooth manifold with boundary. Show that there exists a global
smooth vector field on M whose restriction to @M is everywhere inward-
pointing, and one whose restriction to @M is everywhere outward-pointing.
(Used on pp. 223, 386.)

8-5. Prove Proposition 8.11 (completion of local frames).

8-6. Let H be the algebra of quaternions and let � � H be the group of unit
quaternions (see Problems 7-22 and 7-23).
(a) Show that if p 2H is imaginary, then qp is tangent to � at each q 2 � .

(Here we are identifying each tangent space to H with H itself in the
usual way.)

(b) Define vector fields X1;X2;X3 on H by

X1jq D qi; X2jq D qj; X3jq D qk:

Show that these vector fields restrict to a smooth left-invariant global
frame on � .

(c) Under the isomorphism
�
x1; x2; x3; x4

�
$ x11C x2iC x3jC x4k be-

tween R4 and H, show that these vector fields have the following coor-
dinate representations:

X1 D �x
2 @

@x1
C x1

@

@x2
C x4

@

@x3
� x3

@

@x4
;

X2 D �x
3 @

@x1
� x4

@

@x2
C x1

@

@x3
C x2

@

@x4
;

X3 D �x
4 @

@x1
C x3

@

@x2
� x2

@

@x3
C x1

@

@x4
:

(Used on pp. 179, 562.)

8-7. The algebra of octonions (also called Cayley numbers) is the 8-dimensional
real vector space O DH�H (where H is the space of quaternions defined
in Problem 7-22) with the following bilinear product:

.p; q/.r; s/D
�
pr � sq�; p�sC rq

�
; for p;q; r; s 2H: (8.20)

Show that O is a noncommutative, nonassociative algebra over R, and prove
that there exists a smooth global frame on S7 by imitating as much of Prob-
lem 8-6 as you can. [Hint: it might be helpful to prove that .PQ�/Q D
P.Q�Q/ for all P;Q 2O, where .p; q/� D .p�;�q/. For more about the
octonions, see [Bae02].] (Used on p. 179.)

8-8. The algebra of sedenions is the 16-dimensional real vector space SDO�O
with the product defined by (8.20), but with p, q, r , and s interpreted as ele-
ments of O. Why does sedenionic multiplication not yield a global frame for
S15? [Remark: the name “sedenion” comes from the Latin sedecim, mean-
ing sixteen. A division algebra is an algebra with a multiplicative identity
element and no zero divisors (i.e., ab D 0 if and only if a D 0 or b D 0).
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It follows from the work of Bott, Milnor, and Kervaire on parallelizability
of spheres [MB58, Ker58] that a finite-dimensional division algebra over R
must have dimension 1, 2, 4, or 8.]

8-9. Show by finding a counterexample that Proposition 8.19 is false if we replace
the assumption that F is a diffeomorphism by the weaker assumption that it
is smooth and bijective.

8-10. Let M be the open submanifold of R2 where both x and y are positive,
and let F W M !M be the map F.x;y/ D .xy;y=x/. Show that F is a
diffeomorphism, and compute F�X and F�Y , where

X D x
@

@x
C y

@

@y
; Y D y

@

@x
:

8-11. For each of the following vector fields on the plane, compute its coordinate
representation in polar coordinates on the right half-plane f.x; y/ W x > 0g.

(a) X D x
@

@x
C y

@

@y
.

(b) Y D x
@

@y
� y

@

@x
.

(c) Z D
�
x2C y2

� @
@x

.

8-12. Let F W R2 ! RP2 be the smooth map F.x;y/ D Œx; y; 1�, and let X 2
X
�
R2
�

be defined by X D x@=@y � y@=@x. Prove that there is a vector field
Y 2X

�
RP2

�
that is F -related to X , and compute its coordinate representa-

tion in terms of each of the charts defined in Example 1.5.

8-13. Show that there is a smooth vector field on S2 that vanishes at exactly one
point. [Hint: try using stereographic projection; see Problem 1-7.]

8-14. Let M be a smooth manifold with or without boundary, let N be a smooth
manifold, and let f W M !N be a smooth map. Define F W M !M �N by
F.x/D

�
x;f .x/

�
. Show that for every X 2X.M/, there is a smooth vector

field on M �N that is F -related to X .

8-15. EXTENSION LEMMA FOR VECTOR FIELDS ON SUBMANIFOLDS: Suppose
M is a smooth manifold and S �M is an embedded submanifold with or
without boundary. Given X 2X.S/, show that there is a smooth vector field
Y on a neighborhood of S in M such that X D Y jS . Show that every such
vector field extends to all of M if and only if S is properly embedded.

8-16. For each of the following pairs of vector fields X;Y defined on R3, compute
the Lie bracket ŒX;Y �.

(a) X D y
@

@z
� 2xy2

@

@y
I Y D

@

@y
.

(b) X D x
@

@y
� y

@

@x
I Y D y

@

@z
� z

@

@y
.
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(c) X D x
@

@y
� y

@

@x
I Y D x

@

@y
C y

@

@x
.

8-17. Let M and N be smooth manifolds. Given vector fields X 2 X.M/ and
Y 2X.N /, we can define a vector field X ˚ Y on M �N by

.X ˚ Y /.p;q/ D .Xp; Yq/;

where we think of the right-hand side as an element of TpM˚TqN , which is
naturally identified with Tp;q.M �N/ as in Proposition 3.14. Prove thatX˚
Y is smooth if X and Y are smooth, and ŒX1 ˚ Y1;X2 ˚ Y2�D ŒX1;X2�˚
ŒY1; Y2�. (Used on pp. 346, 527.)

8-18. Suppose F W M !N is a smooth submersion, where M and N are positive-
dimensional smooth manifolds. Given X 2 X.M/ and Y 2 X.N /, we say
that X is a lift of Y if X and Y are F -related. A vector field V 2 X.M/ is
said to be vertical if V is everywhere tangent to the fibers of F (or, equiva-
lently, if V is F -related to the zero vector field on N ).
(a) Show that if dimM D dimN , then every smooth vector field on N has

a unique lift.
(b) Show that if dimM ¤ dimN , then every smooth vector field on N has

a lift, but that it is not unique.
(c) Assume in addition that F is surjective. Given X 2X.M/, show that X

is a lift of a smooth vector field onN if and only if dFp.Xp/D dFq.Xq/
whenever F.p/D F.q/. Show that if this is the case, then X is a lift of
a unique smooth vector field.

(d) Assume in addition that F is surjective with connected fibers. Show that
a vector field X 2 X.M/ is a lift of a smooth vector field on N if and
only if ŒV;X� is vertical whenever V 2X.M/ is vertical.

(Used on p. 434.)

8-19. Show that R3 with the cross product is a Lie algebra.

8-20. Let A�X
�
R3
�

be the subspace spanned by fX;Y;Zg, where

X D y
@

@z
� z

@

@y
; Y D z

@

@x
� x

@

@z
; Z D x

@

@y
� y

@

@x
:

Show that A is a Lie subalgebra of X
�
R3
�
, which is isomorphic to R3 with

the cross product. (Used on p. 538.)

8-21. Prove that up to isomorphism, there are exactly one 1-dimensional Lie al-
gebra and two 2-dimensional Lie algebras. Show that all three algebras are
isomorphic to Lie subalgebras of gl.2;R/.

8-22. Let A be any algebra over R. A derivation of A is a linear map D W A!A

satisfying D.xy/D .Dx/y C x.Dy/ for all x;y 2 A. Show that if D1 and
D2 are derivations of A, then ŒD1;D2� D D1 ı D2 � D2 ı D1 is also a
derivation. Show that the set of derivations of A is a Lie algebra with this
bracket operation.
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8-23. (a) Given Lie algebras g and h, show that the direct sum g ˚ h is a Lie
algebra with the bracket defined by

�
.X;Y /;

�
X 0; Y 0

��
D
��
X;X 0

�
;
�
Y;Y 0

��
:

(b) Suppose G and H are Lie groups. Prove that Lie.G �H/ is isomorphic
to Lie.G/˚ Lie.H/.

8-24. Suppose G is a Lie group and g is its Lie algebra. A vector field X 2X.G/
is said to be right-invariant if it is invariant under all right translations.
(a) Show that the set xg of right-invariant vector fields on G is a Lie subalge-

bra of X.G/.
(b) Let i W G!G denote the inversion map i.g/D g�1. Show that the push-

forward i� W X.G/! X.G/ restricts to a Lie algebra isomorphism from
g to xg.

8-25. Prove that if G is an abelian Lie group, then Lie.G/ is abelian. [Hint: show
that the inversion map i W G!G is a group homomorphism, and use Prob-
lem 7-2.]

8-26. Suppose F W G!H is a Lie group homomorphism. Show that the kernel of
F� W Lie.G/! Lie.H/ is the Lie algebra of KerF (under the identification
of the Lie algebra of a subgroup with a Lie subalgebra as in Theorem 8.46).

8-27. Let G and H be Lie groups, and suppose F W G!H is a Lie group homo-
morphism that is also a local diffeomorphism. Show that the induced homo-
morphism F� W Lie.G/! Lie.H/ is an isomorphism of Lie algebras. (Used
on pp. 531, 557.)

8-28. Considering det W GL.n;R/!R� as a Lie group homomorphism, show that
its induced Lie algebra homomorphism is trW gl.n;R/!R. [Hint: see Prob-
lem 7-4.]

8-29. Theorem 8.46 implies that the Lie algebra of any Lie subgroup of GL.n;R/ is
canonically isomorphic to a subalgebra of gl.n;R/, with a similar statement
for Lie subgroups of GL.n;C/. Under this isomorphism, show that

Lie
�

SL.n;R/
�
Š sl.n;R/;

Lie
�

SO.n/
�
Š o.n/;

Lie
�

SL.n;C/
�
Š sl.n;C/;

Lie
�

U.n/
�
Š u.n/;

Lie
�

SU.n/
�
Š su.n/;

where

sl.n;R/D
˚
A 2 gl.n;R/ W trAD 0

�
;

o.n/D
˚
A 2 gl.n;R/ WAT CAD 0

�
;

sl.n;C/D
˚
A 2 gl.n;C/ W trAD 0

�
;
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u.n/D
˚
A 2 gl.n;C/ WA�CAD 0

�
;

su.n/D u.n/\ sl.n;C/:

8-30. Show by giving an explicit isomorphism that su.2/ and o.3/ are isomorphic
Lie algebras, and that both are isomorphic to R3 with the cross product.

8-31. Let g be a Lie algebra. A linear subspace h � g is called an ideal in g if
ŒX;Y � 2 h whenever X 2 h and Y 2 g.
(a) Show that if h is an ideal in g, then the quotient space g=h has a unique

Lie algebra structure such that the projection � W g! g=h is a Lie alge-
bra homomorphism.

(b) Show that a subspace h� g is an ideal if and only if it is the kernel of a
Lie algebra homomorphism.

(Used on p. 533.)



Chapter 9
Integral Curves and Flows

In this chapter we continue our study of vector fields. The primary geometric objects
associated with smooth vector fields are their integral curves, which are smooth
curves whose velocity at each point is equal to the value of the vector field there.
The collection of all integral curves of a given vector field on a manifold determines
a family of diffeomorphisms of (open subsets of) the manifold, called a flow. Any
smooth R-action is a flow, for example; but there are flows that are not R-actions
because the diffeomorphisms may not be defined on the whole manifold for every
t 2R.

The main theorem of the chapter, the fundamental theorem on flows, asserts that
every smooth vector field determines a unique maximal integral curve starting at
each point, and the collection of all such integral curves determines a unique maxi-
mal flow. The proof is an application of the existence, uniqueness, and smoothness
theorem for solutions of ordinary differential equations (see Appendix D).

After proving the fundamental theorem, we explore some of the properties of
vector fields and flows. First, we investigate conditions under which a vector field
generates a global flow. Then we show how “flowing out” from initial submanifolds
along vector fields can be used to create useful parametrizations of larger subman-
ifolds. Next we examine the local behavior of flows, and find that the behavior at
points where the vector field vanishes, which correspond to equilibrium points of the
flow, is very different from the behavior at points where it does not vanish, where
the flow looks locally like translation along parallel coordinate lines.

We then introduce the Lie derivative, which is a coordinate-independent way of
computing the rate of change of one vector field along the flow of another. It leads
to some deep connections among vector fields, their Lie brackets, and their flows. In
particular, we will prove that two vector fields have commuting flows if and only if
their Lie bracket is zero. Based on this fact, we can prove a necessary and sufficient
condition for a smooth local frame to be expressible as a coordinate frame. We then
discuss how some of the results of this chapter can be generalized to time-dependent
vector fields on manifolds.

In the last section of the chapter, we describe an important application of flows
to the study of first-order partial differential equations.

J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics 218,
DOI 10.1007/978-1-4419-9982-5_9, © Springer Science+Business Media New York 2013
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Fig. 9.1 An integral curve of a vector field

Integral Curves

Suppose M is a smooth manifold with or without boundary. If � W J !M is a
smooth curve, then for each t 2 J , the velocity vector � 0.t/ is a vector in T�.t/M .
In this section we describe a way to work backwards: given a tangent vector at each
point, we seek a curve whose velocity at each point is equal to the given vector there.

If V is a vector field on M; an integral curve of V is a differentiable curve
� W J !M whose velocity at each point is equal to the value of V at that point:

� 0.t/D V�.t/ for all t 2 J:

(See Fig. 9.1.) If 0 2 J , the point �.0/ is called the starting point of � . (The reason
for the term “integral curve” will be explained shortly. Note that this is one definition
that requires some differentiability hypothesis, because the definition of an integral
curve would make no sense for a curve that is merely continuous.)

Example 9.1 (Integral Curves).

(a) Let .x; y/ be standard coordinates on R2, and let V D @=@x be the first co-
ordinate vector field. It is easy to check that the integral curves of V are pre-
cisely the straight lines parallel to the x-axis, with parametrizations of the form
�.t/ D .a C t; b/ for constants a and b (Fig. 9.2(a)). Thus, there is a unique
integral curve starting at each point of the plane, and the images of different
integral curves are either identical or disjoint.

(b) Let W D x @=@y � y @=@x on R2 (Fig. 9.2(b)). If � W R! R2 is a smooth
curve, written in standard coordinates as �.t/ D .x.t/; y.t//, then the condi-
tion � 0.t/DW�.t/ for � to be an integral curve translates to

x0.t/
@

@x

ˇ̌
ˇ̌
�.t/

C y0.t/
@

@y

ˇ̌
ˇ̌
�.t/

D x.t/
@

@y

ˇ̌
ˇ̌
�.t/

� y.t/
@

@x

ˇ̌
ˇ̌
�.t/

:

Comparing the components of these vectors, we see that this is equivalent to the
system of ordinary differential equations

x0.t/D �y.t/;

y0.t/D x.t/:

These equations have the solutions

x.t/D a cos t � b sin t; y.t/D a sin t C b cos t;
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Fig. 9.2 Vector fields and their integral curves in the plane

for arbitrary constants a and b, and thus each curve of the form �.t/D .a cos t�
b sin t; a sin t C b cos t/ is an integral curve of W . When .a; b/D .0; 0/, this is
the constant curve �.t/� .0; 0/; otherwise, it is a circle traversed counterclock-
wise. Since �.0/D .a; b/, we see once again that there is a unique integral curve
starting at each point .a; b/ 2R2, and the images of the various integral curves
are either identical or disjoint. //

As the second example above illustrates, finding integral curves boils down
to solving a system of ordinary differential equations in a smooth chart. Sup-
pose V is a smooth vector field on M and � W J ! M is a smooth curve. On
a smooth coordinate domain U � M; we can write � in local coordinates as
�.t/D

�
�1.t/; : : : ; �n.t/

�
. Then the condition � 0.t/D V�.t/ for � to be an integral

curve of V can be written

P� i .t/
@

@xi

ˇ̌
ˇ̌
�.t/

D V i
�
�.t/

� @

@xi

ˇ̌
ˇ̌
�.t/

;

which reduces to the following autonomous system of ordinary differential equa-
tions (ODEs):

P�1.t/D V 1
�
�1.t/; : : : ; �n.t/

�
;

:::

P�n.t/D V n
�
�1.t/; : : : ; �n.t/

�
:

(9.1)

(We use a dot to denote an ordinary derivative with respect to t when there are
superscripts that would make primes hard to read.) The fundamental fact about such
systems is the existence, uniqueness, and smoothness theorem, Theorem D.1. (This
is the reason for the terminology “integral curves,” because solving a system of
ODEs is often referred to as “integrating” the system.) We will derive detailed con-
sequences of that theorem later; for now, we just note the following simple result.

Proposition 9.2. Let V be a smooth vector field on a smooth manifold M . For
each point p 2M; there exist " > 0 and a smooth curve � W .�"; "/!M that is an
integral curve of V starting at p.
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Fig. 9.3 Flows of F -related vector fields

Proof. This is just the existence statement of Theorem D.1 applied to the coordinate
representation of V . �

The next two lemmas show how affine reparametrizations affect integral curves.

Lemma 9.3 (Rescaling Lemma). Let V be a smooth vector field on a smooth man-
ifoldM; let J �R be an interval, and let � W J !M be an integral curve of V . For
any a 2R, the curve z� W zJ !M defined by z�.t/D �.at/ is an integral curve of the
vector field aV , where zJ D ft W at 2 J g.

Proof. One way to see this is as a straightforward application of the chain rule in
local coordinates. Somewhat more invariantly, we can examine the action of z� 0.t/
on a smooth real-valued function f defined in a neighborhood of a point z�.t0/. By
the chain rule and the fact that � is an integral curve of V ,

z� 0.t0/f D
d

dt

ˇ̌
ˇ̌
tDt0

.f ı z�/ .t/D
d

dt

ˇ̌
ˇ̌
tDt0

.f ı �/.at/

D a.f ı �/0.at0/D a�
0.at0/f D aVz�.t0/f: �

Lemma 9.4 (Translation Lemma). Let V , M; J , and � be as in the preceding
lemma. For any b 2R, the curve y� W yJ !M defined by y�.t/D �.t C b/ is also an
integral curve of V , where yJ D ft W t C b 2 J g.

I Exercise 9.5. Prove the translation lemma.

Proposition 9.6 (Naturality of Integral Curves). Suppose M and N are smooth
manifolds and F W M ! N is a smooth map. Then X 2 X.M/ and Y 2 X.N / are
F -related if and only if F takes integral curves of X to integral curves of Y , mean-
ing that for each integral curve � of X , F ı � is an integral curve of Y .

Proof. Suppose first that X and Y are F -related, and � W J !M is an integral
curve of X . If we define � W J !N by � D F ı � (see Fig. 9.3), then

� 0.t/D
�
F ı �

�0
.t/D dF�.t/

�
� 0.t/

�
D dF�.t/

�
X�.t/

�
D YF.�.t// D Y�.t/;

so � is an integral curve of Y .
Conversely, suppose F takes integral curves of X to integral curves of Y . Given

p 2M; let � W .�"; "/!M be an integral curve of X starting at p. Since F ı � is
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an integral curve of Y starting at F.p/, we have

YF.p/ D .F ı �/
0.0/D dFp

�
� 0.0/

�
D dFp.Xp/;

which shows that X and Y are F -related. �

Flows

Here is another way to visualize the family of integral curves associated with a
vector field. Let M be a smooth manifold and V 2 X.M/, and suppose that for
each point p 2M; V has a unique integral curve starting at p and defined for all
t 2R, which we denote by � .p/ W R!M . (It may not always be the case that every
integral curve is defined for all t , but for purposes of illustration let us assume so for
the time being.) For each t 2R, we can define a map �t W M !M by sending each
p 2M to the point obtained by following for time t the integral curve starting at p:

�t .p/D �
.p/.t/:

Each map �t “slides” the manifold along the integral curves for time t . The trans-
lation lemma implies that t 7! � .p/.t C s/ is an integral curve of V starting at q D
� .p/.s/; since we are assuming uniqueness of integral curves, � .q/.t/D � .p/.tC s/.
When we translate this into a statement about the maps �t , it becomes

�t ı �s.p/D �tCs.p/:

Together with the equation �0.p/ D � .p/.0/ D p, which holds by definition, this
implies that the map � W R�M !M is an action of the additive group R on M .

Motivated by these observations, we define a global flow on M (also called a
one-parameter group action) to be a continuous left R-action on M ; that is, a con-
tinuous map � W R�M !M satisfying the following properties for all s; t 2R and
p 2M :

�
�
t; �.s;p/

�
D �.t C s;p/; �.0;p/D p: (9.2)

Given a global flow � on M; we define two collections of maps as follows:

� For each t 2R, define a continuous map �t W M !M by

�t .p/D �.t;p/:

The defining properties (9.2) are equivalent to the group laws

�t ı �s D �tCs; �0 D IdM : (9.3)

As is the case for any continuous group action, each map �t W M !M is a home-
omorphism, and if the flow is smooth, �t is a diffeomorphism.
� For each p 2M; define a curve � .p/ W R!M by

� .p/.t/D �.t;p/:

The image of this curve is the orbit of p under the group action.
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Fig. 9.4 The infinitesimal generator of a global flow

The next proposition shows that every smooth global flow is derived from the
integral curves of some smooth vector field in precisely the way we described above.
If � W R �M !M is a smooth global flow, for each p 2M we define a tangent
vector Vp 2 TpM by

Vp D �
.p/0.0/:

The assignment p 7! Vp is a (rough) vector field onM; which is called the infinites-
imal generator of � , for reasons we will explain below.

Proposition 9.7. Let � W R �M !M be a smooth global flow on a smooth mani-
fold M . The infinitesimal generator V of � is a smooth vector field on M; and each
curve � .p/ is an integral curve of V .

Proof. To show that V is smooth, it suffices by Proposition 8.14 to show that Vf is
smooth for every smooth real-valued function f defined on an open subset U �M .
For any such f and any p 2U , just note that

Vf .p/D Vpf D �
.p/0.0/f D

d

dt

ˇ̌
ˇ̌
tD0

f
�
� .p/.t/

�
D

@

@t

ˇ̌
ˇ̌
.0;p/

f
�
�.t;p/

�
:

Because f .�.t;p// is a smooth function of .t;p/ by composition, so is its partial
derivative with respect to t . Thus, Vf .p/ depends smoothly on p, so V is smooth.

Next we need to show that � .p/ is an integral curve of V , which means that
� .p/0.t/ D V�.p/.t/ for all p 2M and all t 2 R. Let t0 2 R be arbitrary, and set
q D � .p/.t0/D �t0.p/, so what we have to show is � .p/0.t0/D Vq (see Fig. 9.4). By
the group law, for all t ,

� .q/.t/D �t .q/D �t
�
�t0.p/

�
D �tCt0.p/D �

.p/.t C t0/: (9.4)

Therefore, for any smooth real-valued function f defined in a neighborhood of q,

Vqf D �
.q/0.0/f D

d

dt

ˇ̌
ˇ̌
tD0

f
�
� .q/.t/

�
D

d

dt

ˇ̌
ˇ̌
tD0

f
�
� .p/.t C t0/

�

D � .p/0.t0/f; (9.5)

which was to be shown. �
Example 9.8 (Global Flows). The two vector fields on the plane described in Ex-
ample 9.1 both had integral curves defined for all t 2 R, so they generate global
flows. Using the results of that example, we can write down the flows explicitly.
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(a) The flow of V D @=@x in R2 is the map � W R�R2!R2 given by

�t .x; y/D .xC t; y/:

For each nonzero t 2R, �t translates the plane to the right (t > 0) or left (t < 0)
by a distance jt j.

(b) The flow of W D x @=@y � y @=@x is the map � W R�R2!R2 given by

�t .x; y/D .x cos t � y sin t; x sin t C y cos t/:

For each t 2R, �t rotates the plane through an angle t about the origin. //

The Fundamental Theorem on Flows

We have seen that every smooth global flow gives rise to a smooth vector field whose
integral curves are precisely the curves defined by the flow. Conversely, we would
like to be able to say that every smooth vector field is the infinitesimal generator of
a smooth global flow. However, it is easy to see that this cannot be the case, because
there are smooth vector fields whose integral curves are not defined for all t 2 R.
Here are two examples.

Example 9.9. LetM DR2Xf0g with standard coordinates .x; y/, and let V be the
vector field @=@x on M . The unique integral curve of V starting at .�1; 0/ 2M
is �.t/ D .t � 1; 0/. However, in this case, � cannot be extended continuously
past t D 1. This is intuitively evident because of the “hole” in M at the origin;
to prove it rigorously, suppose z� is any continuous extension of � past t D 1. Then
�.t/! z�.1/ 2 R2 X f0g as t % 1. But we can also consider � as a map into R2

by composing with the inclusion M ,!R2, and it is obvious from the formula that
�.t/! .0; 0/ as t% 1. Since limits in R2 are unique, this is a contradiction. //

Example 9.10. For a more subtle example, letM be all of R2 and letW D x2@=@x.
You can check easily that the unique integral curve of W starting at .1; 0/ is

�.t/D

�
1

1� t
; 0

�
:

This curve also cannot be extended past t D 1, because its x-coordinate is un-
bounded as t% 1. //

For this reason, we make the following definitions. If M is a manifold, a flow
domain forM is an open subset D �R�M with the property that for each p 2M;
the set D.p/ D ft 2 R W .t;p/ 2 Dg is an open interval containing 0 (Fig. 9.5).
A flow onM is a continuous map � W D!M; where D �R�M is a flow domain,
that satisfies the following group laws: for all p 2M;

�.0;p/D p; (9.6)

and for all s 2D.p/ and t 2D.�.s;p// such that sC t 2D.p/,

�
�
t; �.s;p/

�
D �.t C s;p/: (9.7)
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Fig. 9.5 A flow domain

We sometimes call � a local flow to distinguish it from a global flow as defined
earlier. The unwieldy term local one-parameter group action is also used.

If � is a flow, we define �t .p/D � .p/.t/D �.t;p/ whenever .t;p/ 2D , just as
for a global flow. For each t 2R, we also define

Mt D
˚
p 2M W .t;p/ 2D

�
; (9.8)

so that

p 2Mt, t 2D.p/, .t;p/ 2D :

If � is smooth, the infinitesimal generator of � is defined by Vp D � .p/0.0/.

Proposition 9.11. If � W D!M is a smooth flow, then the infinitesimal generator
V of � is a smooth vector field, and each curve � .p/ is an integral curve of V .

Proof. The proof is essentially identical to the analogous proof for global flows,
Proposition 9.7. In the proof that V is smooth, we need only note that for any
p0 2M , �.t;p/ is defined and smooth for all .t;p/ sufficiently close to .0;p0/
because D is open. In the proof that � .p/ is an integral curve, we need to verify
that all of the expressions in (9.4) and (9.5) make sense. Suppose t0 2D.p/. Be-
cause both D.p/ and D.�t0 .p// are open intervals containing 0, there is a positive
number " such that t C t0 2 D.p/ and t 2 D.�t0 .p// whenever jt j < ", and then
�t .�t0.p// D �tCt0.p/ by definition of a flow. The rest of the proof goes through
just as before. �

The next theorem is the main result of this section. A maximal integral curve is
one that cannot be extended to an integral curve on any larger open interval, and a
maximal flow is a flow that admits no extension to a flow on a larger flow domain.

Theorem 9.12 (Fundamental Theorem on Flows). Let V be a smooth vector
field on a smooth manifold M . There is a unique smooth maximal flow � W D!M

whose infinitesimal generator is V . This flow has the following properties:

(a) For each p 2M; the curve � .p/ W D.p/!M is the unique maximal integral
curve of V starting at p.

(b) If s 2D.p/, then D.�.s;p// is the interval D.p/ � s D
˚
t � s W t 2D.p/

�
.



Flows 213

(c) For each t 2 R, the set Mt is open in M; and �t W Mt !M�t is a diffeomor-
phism with inverse ��t .

Proof. Proposition 9.2 shows that there exists an integral curve starting at each point
p 2M . Suppose �; z� W J !M are two integral curves of V defined on the same
open interval J such that �.t0/D z�.t0/ for some t0 2 J . Let � be the set of t 2 J
such that �.t/D z�.t/. Clearly, � ¤¿, because t0 2 � by hypothesis, and � is closed
in J by continuity. On the other hand, suppose t1 2 � . Then in a smooth coordinate
neighborhood around the point pD �.t1/, � and z� are both solutions to same ODE
with the same initial condition �.t1/D z�.t1/D p. By the uniqueness part of The-
orem D.1, � � z� on an interval containing t1, which implies that � is open in J .
Since J is connected, � D J , which implies that � D z� on all of J . Thus, any two
integral curves that agree at one point agree on their common domain.

For each p 2M; let D.p/ be the union of all open intervals J � R containing
0 on which an integral curve starting at p is defined. Define � .p/ W D.p/!M by
letting � .p/.t/ D �.t/, where � is any integral curve starting at p and defined on
an open interval containing 0 and t . Since all such integral curves agree at t by the
argument above, � .p/ is well defined, and is obviously the unique maximal integral
curve starting at p.

Now let D D
˚
.t;p/ 2R�M W t 2D.p/

�
, and define � W D!M by �.t;p/D

� .p/.t/. As usual, we also write �t .p/D �.t;p/. By definition, � satisfies property
(a) in the statement of the fundamental theorem: for each p 2M; � .p/ is the unique
maximal integral curve of V starting at p. To verify the group laws, fix any p 2
M and s 2D.p/, and write q D �.s;p/D � .p/.s/. The curve � W D.p/ � s!M

defined by �.t/D � .p/.t C s/ starts at q, and the translation lemma shows that � is
an integral curve of V . By uniqueness of ODE solutions, � agrees with � .q/ on their
common domain, which is equivalent to the second group law (9.7), and the first
group law (9.6) is immediate from the definition. By maximality of � .q/, the domain
of � cannot be larger than D.q/, which means that D.p/�s �D.q/. Since 0 2D.p/,
this implies that �s 2D.q/, and the group law implies that � .q/.�s/D p. Applying
the same argument with .�s; q/ in place of .s;p/, we find that D.q/ C s �D.p/,
which is the same as D.q/ �D.p/ � s. This proves (b).

Next we show that D is open in R � M (so it is a flow domain), and that
� W D!M is smooth. Define a subset W �D as the set of all .t;p/ 2D such that
� is defined and smooth on a product neighborhood of .t;p/ of the form J �U �D ,
where J �R is an open interval containing 0 and t and U �M is a neighborhood
of p. Then W is open in R �M; and the restriction of � to W is smooth, so it
suffices to show that W DD . Suppose this is not the case. Then there exists some
point .�;p0/ 2 D X W . For simplicity, assume � > 0; the argument for � < 0 is
similar.

Let t0 D infft 2 R W .t;p0/ … W g (Fig. 9.6). By the ODE theorem (applied in
smooth coordinates around p0), � is defined and smooth in some product neighbor-
hood of .0;p0/, so t0 > 0. Since t0 � � and D.p0/ is an open interval containing 0
and � , it follows that t0 2D.p0/. Let q0 D � .p0/.t0/. By the ODE theorem again,
there exist " > 0 and a neighborhood U0 of q0 such that .�"; "/�U0 �W . We will
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Fig. 9.6 Proof that D is open

use the group law to show that � extends smoothly to a neighborhood of .t0; p0/,
which contradicts our choice of t0.

Choose some t1 < t0 such that t1 C " > t0 and � .p0/.t1/ 2 U0. Since t1 < t0, we
have .t1; p0/ 2W , and so there is a product neighborhood .t1�ı; t1Cı/�U1 �W .
By definition of W , this implies that � is defined and smooth on Œ0; t1 C ı/ � U1.
Because �.t1; p0/ 2 U0, we can choose U1 small enough that � maps ft1g � U1
into U0. Define z� W Œ0; t1C "/�U1!M by

z�.t;p/D

(
�t .p/; p 2U1; 0� t < t1;

�t�t1 ı �t1.p/; p 2U1; t1 � " < t < t1C ":

The group law for � guarantees that these definitions agree where they overlap, and
our choices of U1, t1, and " ensure that this defines a smooth map. By the translation
lemma, each map t 7! z�.t;p/ is an integral curve of V , so z� is a smooth extension
of � to a neighborhood of .t0; p0/, contradicting our choice of t0. This completes
the proof that W DD .

Finally, we prove (c). The fact that Mt is open is an immediate consequence of
the fact that D is open. From part (b) we deduce

p 2Mt ) t 2D.p/)D.�t .p// DD.p/ � t

)�t 2D.�t .p//) �t .p/ 2M�t ;

which shows that �t maps Mt to M�t . Moreover, the group laws then show that
��t ı �t is equal to the identity on Mt . Reversing the roles of t and �t shows that
�t ı ��t is the identity on M�t , which completes the proof. �

The flow whose existence and uniqueness are asserted in the fundamental theo-
rem is called the flow generated by V , or just the flow of V . The term “infinitesimal
generator” comes from the following picture: in a smooth chart, a good approxi-
mation to an integral curve can be obtained by composing many small straight-line
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motions, with the direction and length of each motion determined by the value of
the vector field at the point arrived at in the previous step. Intuitively, one can think
of a flow as a sequence of infinitely many infinitesimally small linear steps.

The naturality of integral curves (Proposition 9.6) translates into the following
naturality statement for flows.

Proposition 9.13 (Naturality of Flows). SupposeM andN are smooth manifolds,
F W M ! N is a smooth map, X 2 X.M/, and Y 2 X.N /. Let � be the flow of X
and � the flow of Y . If X and Y are F -related, then for each t 2 R, F.Mt /� Nt
and �t ıF D F ı �t on Mt :

Mt
F � Nt

M�t

�t �

F
� N�t :

�t�

Proof. By Proposition 9.6, for any p 2M; the curve F ı � .p/ is an integral curve of
Y starting at F ı � .p/.0/D F.p/. By uniqueness of integral curves, therefore, the
maximal integral curve �.F .p// must be defined at least on the interval D.p/, and
F ı � .p/ D �.F .p// on that interval. This means that

p 2Mt) t 2D.p/) t 2D.F .p//) F.p/ 2Nt ;

which is equivalent to F.Mt /�Nt , and

F
�
� .p/.t/

�
D �.F .p//.t/ for all t 2D.p/;

which is equivalent to �t ıF.p/D F ı �t .p/ for all p 2Mt . �
The next corollary is immediate.

Corollary 9.14 (Diffeomorphism Invariance of Flows). Let F W M ! N be a
diffeomorphism. If X 2 X.M/ and � is the flow of X , then the flow of F�X is
�t D F ı �t ıF

�1, with domain Nt D F.Mt / for each t 2R. �

Complete Vector Fields

As we observed earlier in this chapter, not every smooth vector field generates a
global flow. The ones that do are important enough to deserve a name. We say that
a smooth vector field is complete if it generates a global flow, or equivalently if
each of its maximal integral curves is defined for all t 2R. For example, both of the
vector fields on the plane whose flows we computed in Example 9.8 are complete,
whereas those of Examples 9.9 and 9.10 are not.

It is not always easy to determine by looking at a vector field whether it is com-
plete or not. If you can solve the ODE explicitly to find all of the integral curves,
and they all exist for all time, then the vector field is complete. On the other hand,
if you can find a single integral curve that cannot be extended to all of R, as we did
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for the vector fields of Examples 9.9 and 9.10, then it is not complete. However, it
is often impossible to solve the ODE explicitly, so it is useful to have some general
criteria for determining when a vector field is complete.

We will show below that all compactly supported smooth vector fields, and there-
fore all smooth vector fields on a compact manifold, are complete. The proof will
be based on the following lemma.

Lemma 9.15 (Uniform Time Lemma). Let V be a smooth vector field on a smooth
manifold M; and let � be its flow. Suppose there is a positive number " such that for
every p 2M; the domain of � .p/ contains .�"; "/. Then V is complete.

Proof. Suppose for the sake of contradiction that for some p 2M; the domain D.p/

of � .p/ is bounded above. (A similar proof works if it is bounded below.) Let b D
sup D.p/, let t0 be a positive number such that b � " < t0 < b, and let q D � .p/.t0/.
The hypothesis implies that � .q/.t/ is defined at least for t 2 .�"; "/. Define a curve
� W .�"; t0C "/!M by

�.t/D

(
� .p/.t/; �" < t < b;

� .q/.t � t0/; t0 � " < t < t0C ":

These two definitions agree where they overlap, because � .q/.t � t0/D �t�t0.q/D
�t�t0 ı �t0.p/D �t .p/D �

.p/.t/ by the group law for � . By the translation lemma,
� is an integral curve starting at p. Since t0C " > b, this is a contradiction. �

Theorem 9.16. Every compactly supported smooth vector field on a smooth mani-
fold is complete.

Proof. Suppose V is a compactly supported vector field on a smooth manifold M;
and letK D suppV . For each p 2K , there is a neighborhood Up of p and a positive
number "p such that the flow of V is defined at least on

�
�"p; "p

�
�Up . By compact-

ness, finitely many such sets Up1 ; : : : ;Upk cover K . With "Dmin
˚
"p1 ; : : : ; "pk

�
, it

follows that every maximal integral curve starting inK is defined at least on .�"; "/.
Since V � 0 outside of K , every integral curve starting in M XK is constant and
thus can be defined on all of R. Thus the hypotheses of the uniform time lemma are
satisfied, so V is complete. �

Corollary 9.17. On a compact smooth manifold, every smooth vector field is
complete. �

Left-invariant vector fields on Lie groups form another class of vector fields that
are always complete.

Theorem 9.18. Every left-invariant vector field on a Lie group is complete.

Proof. Let G be a Lie group, let X 2 Lie.G/, and let � W D ! G denote the flow
of X . There is some " > 0 such that � .e/ is defined on .�"; "/.

Let g 2G be arbitrary. Because X is Lg -related to itself, it follows from Propo-
sition 9.6 that the curveLg ı� .e/ is an integral curve ofX starting at g and therefore
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Fig. 9.7 A flowout

is equal to � .g/. This shows that for each g 2 G, the integral curve � .g/ is defined
at least on .�"; "/, so the uniform time lemma guarantees that X is complete. �

Here is another useful property of integral curves.

Lemma 9.19 (Escape Lemma). Suppose M is a smooth manifold and V 2X.M/.
If � W J !M is a maximal integral curve of V whose domain J has a finite least
upper bound b, then for any t0 2 J , �

�
Œt0; b/

�
is not contained in any compact subset

of M .

Proof. Problem 9-6. �

Flowouts

Flows provide the technical apparatus for many geometric constructions on man-
ifolds. Most of those constructions are based on the following general theorem,
which describes how flows behave in the vicinity of certain submanifolds.

Theorem 9.20 (Flowout Theorem). Suppose M is a smooth manifold, S �M is
an embedded k-dimensional submanifold, and V 2 X.M/ is a smooth vector field
that is nowhere tangent to S . Let � W D!M be the flow of V , let O D .R�S/\D ,
and let ˚ D � jO .

(a) ˚ W O!M is an immersion.
(b) @=@t 2X.O/ is ˚ -related to V .
(c) There exists a smooth positive function ı W S!R such that the restriction of ˚

to Oı is injective, where Oı �O is the flow domain

Oı D
˚
.t;p/ 2O W jt j< ı.p/

�
: (9.9)

Thus, ˚.Oı/ is an immersed submanifold of M containing S , and V is tangent
to this submanifold.

(d) If S has codimension 1, then ˚ jOı a diffeomorphism onto an open submanifold
of M .

Remark. The submanifold ˚.Oı/ �M is called a flowout from S along V (see
Fig. 9.7).



218 9 Integral Curves and Flows

Proof. First we prove (b). Fix p 2 S , and let � W D.p/!R�S be the curve �.t/D
.t;p/. Then ˚ ı �.t/ D �.t;p/ is an integral curve of V , so for any t0 2D.p/ it
follows that

d˚.t0;p/

�
@

@t

ˇ̌
ˇ̌
.t0;p/

�
D .˚ ı �/0.t0/D V˚.t0;p/: (9.10)

Next we prove (a). The restriction of ˚ to f0g � S is the composition of the dif-
feomorphism f0g�S � S with the embedding S ,!M; so it is an embedding. Thus,
the restriction of d˚.0;p/ to TpS (viewed as a subspace of T.0;p/O Š T0R˚ TpS )
is the inclusion TpS ,! TpM . If .E1; : : : ;Ek/ is any basis for TpS , it follows that
d˚.0;p/ maps the basis

�
@=@t j.0;p/;E1; : : : ;Ek

�
for T.0;p/O to .Vp;E1; : : : ;Ek/.

Since Vp is not tangent to S , this .k C 1/-tuple is linearly independent and thus
d˚.0;p/ is injective.

To show d˚ is injective at other points, we argue as in the proof of the equi-
variant rank theorem. Given .t0; p0/ 2 O, let �t0 W O ! R � S be the translation
�t0.t;p/ D .t C t0; p/. By the group law for � , the following diagram commutes
(where the horizontal maps might be defined only in open subsets containing .0;p0/
and p0, respectively):

O
�t0� O

M

˚ �

�t0

� M:
�̊

Both horizontal maps in the diagram above are local diffeomorphisms. Taking dif-
ferentials, we obtain

T.0;p0/O
d.�t0/.0;p0/� T.t0;p0/O

Tp0M

d˚.0;p0/
�

d.�t0/p0

� T˚.t0;p0/M:

d˚.t0;p0/
�

Because the horizontal maps are isomorphisms, the two vertical maps have the same
rank. Since we have already shown that d˚.0;p0/ has full rank, so does d˚.t0;p0/.
This completes the proof that ˚ is an immersion.

Next we prove (c). Given a point p0 2 S , choose a slice chart
�
U;
�
xi
��

for S
in M centered at p0, so that U \ S is the set where xkC1 D � � � D xn D 0 (where
nD dimM ). Because V is not tangent to S , one of the last n � k components of
Vp0 , say V j .p0/, must be nonzero. Shrinking U if necessary, we may assume that
there is a constant c > 0 such that

ˇ̌
V j .p/

ˇ̌
� c for all p 2U: (9.11)

Since ˚�1.U / is open in R � S , we may choose a number "p0 > 0 and
a neighborhood Wp0 of p0 in S such that

�
�"p0 ; "p0

�
� Wp0 � O and
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˚
��
�"p0 ; "p0

�
� Wp0

�
� U . Write the component functions of ˚ in these local

coordinates as

˚.t;p/D
�
˚1.t;p/; : : : ;˚n.t;p/

�
:

Because ˚ is the restriction of the flow, the component function ˚j satisfies

@˚j

@t
.t;p/D V j

�
˚.t;p/

�
; V j .0;p/D 0:

By (9.11) and the fundamental theorem of calculus,
ˇ̌
˚j .t;p/

ˇ̌
� c jt j, and thus for

.t;p/ 2 .�"p0 ; "p0/�Wp0 we conclude that ˚.t;p/ 2 S if and only if t D 0.
Choose a smooth partition of unity f p W p 2 Sg subordinate to the open cover

fWp W p 2 Sg of S , and define f W S!R by

f .q/D
X

p2S

"p p.q/: (9.12)

Then f is smooth and positive. For each q 2 S , there are finitely many p 2 S such
that  p.q/ > 0; if p0 is one of these points such that "p0 is maximum among all
such "p , then

f .q/� "p0

X

p2S

 p.q/D "p0 :

It follows that if .t; q/ 2O such that jt j< f .q/, then .t; q/ 2
�
�"p0 ; "p0

�
�Wp0 , so

˚.t; q/ 2 S if and only if t D 0.
Let ı D 1

2
f . We will show that ˚ jOı is injective, where Oı is defined by (9.9).

Suppose ˚.t; q/D˚.t 0; q0/ for some .t; q/; .t 0; q0/ 2Oı . By renaming the points if
necessary, we may arrange that f .q0/� f .q/. Our assumption means that �t .q/D
�t 0.q

0/, and the group law for � then implies that �t�t 0.q/D q0 2 S . The fact that
.t; q/ and .t 0; q0/ are in Oı implies that

jt � t 0j � jt j C jt 0j< 1
2
f .q/C 1

2
f .q0/� f .q/;

which forces t D t 0 and thus q D q0.
Only (d) remains. If S has codimension 1, then ˚ jOı is an injective smooth im-

mersion between manifolds of the same dimension, so it is an embedding (Proposi-
tion 4.22(d)) and a diffeomorphism onto an open submanifold (Proposition 5.1). �

Regular Points and Singular Points

If V is a vector field on M; a point p 2M is said to be a singular point of V if
Vp D 0, and a regular point otherwise. The next proposition shows that the inte-
gral curves starting at regular and singular points behave very differently from each
other.

Proposition 9.21. Let V be a smooth vector field on a smooth manifold M; and let
� W D !M be the flow generated by V . If p 2M is a singular point of V , then
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D.p/ DR and � .p/ is the constant curve � .p/.t/� p. If p is a regular point, then
� .p/ W D.p/!M is a smooth immersion.

Proof. If Vp D 0, then the constant curve � W R!M given by �.t/� p is clearly
an integral curve of V , so by uniqueness and maximality it must be equal to � .p/.

To verify the second statement, we prove its contrapositive: if � .p/ is not an
immersion, then p is a singular point. The assumption that � .p/ is not an immersion
means that � .p/0.s/D 0 for some s 2D.p/. Write q D � .p/.s/. Then the argument
in the preceding paragraph implies that D.q/ DR and � .q/.t/D q for all t 2R. It
follows from Theorem 9.12(b) that D.p/ D R as well, and for all t 2 R the group
law gives

� .p/.t/D �t .p/D �t�s
�
�s.p/

�
D �t�s.q/D q:

Setting t D 0 yields pD q, and thus � .p/.t/� p and Vp D � .p/0.0/D 0. �

If � W D !M is a flow, a point p 2M is called an equilibrium point of � if
�.t;p/D p for all t 2D.p/. Proposition 9.21 shows that the equilibrium points of
a smooth flow are precisely the singular points of its infinitesimal generator.

The next theorem completely describes, up to diffeomorphism, exactly what a
vector field looks like in a neighborhood of a regular point.

Theorem 9.22 (Canonical Form Near a Regular Point). Let V be a smooth vec-
tor field on a smooth manifold M; and let p 2M be a regular point of V . There
exist smooth coordinates

�
si
�

on some neighborhood of p in which V has the co-
ordinate representation @=@s1. If S �M is any embedded hypersurface with p 2 S
and Vp … TpS , then the coordinates can also be chosen so that s1 is a local defining
function for S .

Proof. If no hypersurface S is given, choose any smooth coordinates
�
U;
�
xi
��

cen-
tered at p, and let S � U be the hypersurface defined by xj D 0, where j is chosen
so that V j .p/¤ 0. (Recall that p is a regular point of V .)

Regardless of whether S was given or was constructed as above, since Vp … TpS ,
we can shrink S if necessary so that V is nowhere tangent to S . The flowout theorem
then says that there is a flow domain Oı � R � S such that the flow of V restricts
to a diffeomorphism ˚ from Oı onto an open subset W �M containing S . There
is a product neighborhood .�"; "/ � W0 of .0;p/ in Oı . Choose a smooth local
parametrization X W ˝! S whose image is contained in W0, where ˝ is an open
subset of Rn�1 with coordinates denoted by

�
s2; : : : ; sn

�
. It follows that the map

� W .�"; "/�˝!M given by

�
�
t; s2; : : : ; sn

�
D˚

�
t;X

�
s2; : : : ; sn

��

is a diffeomorphism onto a neighborhood of p in M . Because the diffeo-
morphism

�
t; s1; : : : ; sn

�
7!
�
t;X

�
s2; : : : ; sn

��
pushes @=@t forward to itself and

˚�
�
@=@t

�
D V , it follows that ��

�
@=@t

�
D V . Thus ��1 is a smooth coordinate

chart in which V has the coordinate representation @=@t . Renaming t to s1 com-
pletes the proof. �



Flowouts 221

Fig. 9.8 Examples of flows near equilibrium points

The proof of the canonical form theorem actually provides a technique for find-
ing coordinates that put a given vector field V in canonical form, at least when the
corresponding system of ODEs can be explicitly solved: begin with a hypersurface
S to which V is not tangent and a local parametrization X W ˝! S , and form the
composite map �.t; s/D �t

�
X.s/

�
, where � is the flow of V . The desired coordi-

nate map is then the inverse of � . The procedure is best illustrated by an example.

Example 9.23. Let W D x @=@y � y @=@x on R2. We computed the flow of W in
Example 9.8(b). The point .1; 0/ 2 R2 is a regular point of W , because W.1;0/ D
@=@yj.1;0/ ¤ 0. Because W has nonzero y-coordinate there, we can take S to be the
x-axis, parametrized by X.s/D .s; 0/. We define � W R2!R2 by

�.t; s/D �t .s; 0/D .s cos t; s sin t/;

and then solve locally for .t; s/ in terms of .x; y/ to obtain the following coordinate
map in a neighborhood of .1; 0/:

.t; s/D ��1.x; y/D
	

tan�1.y=x/;
p
x2C y2



: (9.13)

It is easy to check thatW D @=@t in these coordinates. (They are, as you might have
noticed, just polar coordinates with different names.) //
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Fig. 9.9 A collar neighborhood of the boundary

The canonical form theorem shows that a flow in a neighborhood of a regular
point behaves, up to diffeomorphism, just like translation along parallel coordinate
lines in Rn. Thus all of the interesting local behavior of the flow is concentrated
near its equilibrium points. The flow around equilibrium points can exhibit a wide
variety of behaviors, such as closed orbits surrounding the equilibrium point, orbits
converging to the equilibrium point as t !C1 or �1, and many more compli-
cated phenomena. Some typical 2-dimensional examples are illustrated in Fig. 9.8.
A systematic study of the local behavior of flows near equilibrium points in the
plane can be found in many ODE texts, such as [BD09]. The study of global and
long-time behaviors of flows on manifolds, called smooth dynamical systems theory,
is a deep subject with many applications both inside and outside of mathematics.

Flows and Flowouts on Manifolds with Boundary

In general, a smooth vector field on a manifold with boundary need not generate
a flow, because, for example, the integral curves starting at some boundary points
might be defined only on half-open intervals. But there is a variant of the flowout
theorem for manifolds with boundary, which has many important applications.

Suppose M is a smooth manifold with nonempty boundary. The next theorem
describes a sort of “one-sided flowout” from @M; determined by a vector field that
is inward pointing everywhere on @M .

Theorem 9.24 (Boundary Flowout Theorem). Let M be a smooth manifold with
nonempty boundary, and let N be a smooth vector field on M that is inward-
pointing at each point of @M . There exist a smooth function ı W @M ! RC and
a smooth embedding ˚ W Pı !M; where Pı D f.t;p/ W p 2 @M; 0� t < ı.p/g �

R� @M; such that ˚.Pı/ is a neighborhood of @M; and for each p 2 @M the map
t 7!˚.t;p/ is an integral curve of N starting at p.

Proof. Problem 9-11. �

Let M be a smooth manifold with boundary. A neighborhood of @M is called a
collar neighborhood if it is the image of a smooth embedding Œ0; 1/ � @M !M

that restricts to the obvious identification f0g � @M ! @M . (See Fig. 9.9.)

Theorem 9.25 (Collar Neighborhood Theorem). IfM is a smooth manifold with
nonempty boundary, then @M has a collar neighborhood.
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Proof. By the result of Problem 8-4, there exists a smooth vector field N 2 X.M/

whose restriction to @M is everywhere inward-pointing. Let ı W M ! RC and
˚ W Pı !M be as in Theorem 9.24, and define a map  W Œ0; 1/ � @M ! Pı by
 .t;p/D

�
tı.p/;p

�
. Then  is a diffeomorphism that restricts to the identity on

f0g � @M; and therefore the map ˚ ı  W Œ0; 1/ � @M !M is a smooth embed-
ding with open image that restricts to the usual identification f0g � @M ! @M . The
image of ˚ ı is a collar neighborhood of @M . �

Our first application of the collar neighborhood theorem shows (among other
things) that every smooth manifold with boundary is homotopy equivalent to its
interior.

Theorem 9.26. Let M be a smooth manifold with nonempty boundary, and let
	 W IntM ,!M denote inclusion. There exists a proper smooth embeddingR W M !
IntM such that both 	 ıR W M !M and R ı 	 W IntM ! IntM are smoothly ho-
motopic to identity maps. Therefore, 	 is a homotopy equivalence.

Proof. Theorem 9.25 shows that @M has a collar neighborhood C in M; which is
the image of a smooth embedding E W Œ0; 1/ � @M !M satisfying E.0;x/ D x
for all x 2 @M . To simplify notation, we will use this embedding to identify C
with Œ0; 1/ � @M; and denote a point in C as an ordered pair .s; x/, with s 2 Œ0; 1/
and x 2 @M ; thus .s; x/ 2 @M if and only if s D 0. For any a 2 .0; 1/, let C.a/D
f.s; x/ 2 C W 0� t < ag andM.a/DM XC.a/, which is a regular domain in IntM .

Let  W Œ0; 1/!
�
1
3
; 1
�

be an increasing diffeomorphism that satisfies  .s/D s
for 2

3
� s < 1, and define R W M ! IntM by

R.p/D

(
p; p 2 IntM

�
2
3

�
;

. .s/; x/; pD .s; x/ 2 C:

These definitions both give the identity map on the setC XC
�
2
3

�
where they overlap,

so R is smooth by the gluing lemma. It is a diffeomorphism onto the closed subset
M
�
1
3

�
, so it is a proper smooth embedding of M into IntM .

Define H W M � I !M by

H.p; t/D

(
p; p 2 IntM

�
2
3

�
;

.tsC .1� t/ .s/; x/; pD .s; x/ 2 C:

As before, H is smooth, and a straightforward verification shows that it is a ho-
motopy from 	 ıR to IdM . If p 2 IntM; then H.p; t/ 2 IntM for all t 2 I , so the
restriction of H to .IntM/� I is a smooth homotopy from R ı 	 to IdIntM . �

Theorem 9.26 is the main ingredient in the following generalization of the Whit-
ney approximation theorem.

Theorem 9.27 (Whitney Approximation for Manifolds with Boundary). If M
and N are smooth manifolds with boundary, then every continuous map from M to
N is homotopic to a smooth map.
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Fig. 9.10 Attaching manifolds along their boundaries

Proof. Theorem 6.26 takes care of the case in which @N D¿, so we may assume
that @N ¤¿. Let F W M !N be a continuous map, let 	 W IntN ,!N be inclusion,
and let R W N ! IntN be the map constructed in Theorem 9.26, so that 	 ıR W N !
N is smoothly homotopic to IdN . Theorem 6.26 shows that R ı F W M ! IntN is
homotopic to a smooth mapG. It follows that 	ıG ' 	ıRıF ' F , so 	ıG W M !
N is a smooth map homotopic to F . �

The next theorem generalizes the main result of Theorem 6.29 to the case of
maps into a manifold with boundary.

Theorem 9.28. SupposeM andN are smooth manifolds with or without boundary.
If F;G W M !N are homotopic smooth maps, then they are smoothly homotopic.

Proof. Theorem 6.29 takes care of the case @N D ¿, so we may assume that N
has nonempty boundary. Let 	 W IntN ,! N and R W N ! IntN be as in Theo-
rem 9.26. Then R ı F and R ı G are homotopic smooth maps from M to IntN ,
so Theorem 6.29 shows that they are smoothly homotopic to each other. Thus we
have smooth homotopies F ' 	 ıR ıF ' 	 ıR ıG 'G. By transitivity of smooth
homotopy (Lemma 6.28), it follows that F is smoothly homotopic to G. �

The following theorem is probably the most important application of the collar
neighborhood theorem.

Theorem 9.29 (Attaching Smooth Manifolds Along Their Boundaries). Let M
and N be smooth n-manifolds with nonempty boundaries, and suppose h W @N !
@M is a diffeomorphism (Fig. 9.10). LetM [hN be the adjunction space formed by
identifying each x 2 @N with h.x/ 2 @M . Then M [h N is a topological manifold
(without boundary), and has a smooth structure such that there are regular domains
M 0;N 0 �M [h N diffeomorphic to M and N , respectively, and satisfying

M 0 [N 0 DM [h N; M 0 \N 0 D @M 0 D @N 0: (9.14)

If M and N are both compact, then M [h N is compact, and if they are both
connected, then M [h N is connected.

Proof. For simplicity, let X D M [h N denote the quotient space and
� W M qN ! X the quotient map. Let V � M and W � N be collar neigh-
borhoods of @M and @N , respectively, and denote the corresponding diffeomor-
phisms by ˛ W Œ0; 1/� @M ! V and ˇ W Œ0; 1/� @N !W . Define a continuous map
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˚ W V qW ! .�1; 1/� @M by

˚.x/D

(
.�t; p/; x D ˛.t;p/ 2 V;

.t; h.q//; x D ˇ.t; q/ 2W:

Then the restriction of ˚ to V or W is a topological embedding with closed im-
age, from which it follows easily that ˚ is a closed map. Because ˚ is constant on
the fibers of � , it descends to a continuous map z̊ W �.V qW /! .�1; 1/ � @M .
This map is bijective, and it is a homeomorphism because it too is a closed map:
if K � �.V q W / is closed, then ��1.K/ is closed in V q W , and therefore
z̊.K/D ˚

�
��1.K/

�
is closed. Thus, �.V qW / is a topological n-manifold. On

the other hand, the restriction of � to the saturated open subset IntM q IntN is an
injective quotient map and thus a homeomorphism onto its image; this shows thatX
is locally Euclidean of dimension n. Since X is the union of the second-countable
open subsets �.IntM q IntN/ and �.V qW /, it is second-countable. Any two
fibers in M q N can be separated by saturated open subsets, so X is Hausdorff.
Thus it is a topological n-manifold.

We define a collection of charts on X as follows:
�
�.U /; ' ı ��1j�.U/

�
; for each smooth chart .U;'/ for IntM or IntN I

�
z̊�1.U /; ' ı z̊j z̊�1.U /

�
; for each smooth chart .U;'/ for .�1; 1/� @M:

These maps are compositions of homeomorphisms, so they define coordinate charts
on X , and it is straightforward to check that they are all smoothly compatible and
thus define a smooth structure onX . The restriction of � toM is continuous, closed,
and injective, and thus it is a proper embedding. In terms of any of the smooth charts
constructed above and corresponding charts onM; � has a coordinate representation
that is either an identity map or an inclusion map, so it is a smooth embedding, and
its imageM 0 is therefore a regular domain in X . Similar considerations apply to N ;
and the relations (9.14) follow immediately from the definitions.

If M and N are compact, then X is the union of the compact sets M 0 and N 0, so
it is compact; and if they are connected, then X is the union of the connected sets
M 0 and N 0 with points of @M 0 D @N 0 in common, so it is connected. �
I Exercise 9.30. Suppose M and N are smooth n-manifolds with boundary,
A � @M and B � @N are nonempty subsets that are unions of components of the
respective boundaries, and h W B ! A is a diffeomorphism. Verify that the proof of
Theorem 9.29 goes through with only trivial changes to show that M [h N is a topo-
logical manifold with boundary, and can be given a smooth structure such that M and
N are diffeomorphic to regular domains in M [h N .

Example 9.31 (Connected Sums). Let M1;M2 be connected smooth manifolds
of dimension n. For i D 1; 2, let Ui be a regular coordinate ball centered at some
point pi 2Mi , and let M 0i DMi X Ui (Fig. 9.11). Problem 5-8 shows that each
M 0i is a smooth manifold with boundary whose boundary is diffeomorphic to Sn�1.
A smooth connected sum of M1 and M2, denoted byM1 #M2, is a smooth mani-
fold formed by choosing a diffeomorphism from @M1 to @M2 and attachingM 01 and
M 02 along their boundaries. //
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Fig. 9.11 A smooth connected sum

If M is any smooth manifold with boundary, Theorem 9.26 shows that M can
be properly embedded into a smooth manifold without boundary (namely, a copy of
IntM ). The next example shows a different way that M can be so embedded; this
construction has the advantage of embedding M into a compact manifold when M
itself is compact.

Example 9.32 (The Double of a Smooth Manifold with Boundary). Let M be
a smooth manifold with boundary. The double of M is the manifold D.M/ D

M [Id M , where Id W @M ! @M is the identity map of @M ; it is obtained from
M q M by identifying each boundary point in one copy of M with the same
boundary point in the other. It is a smooth manifold without boundary, and contains
two regular domains diffeomorphic to M . It is easy to check that D.M/ is com-
pact if and only if M is compact, and connected if and only if M is connected.
(It is useful to extend the definition to manifolds without boundary by defining
D.M/DM qM when @M D¿.) //

Although vector fields on manifolds with boundary do not always generate flows,
there is one circumstance in which they do: when the vector field is everywhere
tangent to the boundary. To prove this, we begin with the following special case.

Lemma 9.33. Suppose M is a smooth manifold and D �M is a regular domain.
If V is a smooth vector field on M that is tangent to @D, then every integral curve
of V that starts in D remains in D as long as it is defined.

Proof. Suppose � W J !M is an integral curve of V with �.0/ 2D. Define T � J

by T D ft 2 J W �.t/ 2Dg. We will show that T is both open and closed in J ; since
J is an interval, this implies T D J and proves the lemma.

Since D is closed in M (by definition of a regular domain), T is closed in J by
continuity. To prove it is open, suppose t0 2 T . If �.t0/ 2 IntD, then a neighborhood
of t0 is contained in T by continuity, so we can assume �.t0/ 2 @D. Because V is
tangent to @D, Proposition 8.23 shows that there is a smooth vector fieldW D V j@D
that is 	-related to V , where 	 W @D ,!M is inclusion. Let z� W .t0 � "; t0 C "/!
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@D be an integral curve of W with z�.t0/D �.t0/. By naturality of integral curves
(Proposition 9.6), 	 ı z� is an integral curve of V with the same initial condition,
so by uniqueness it must be equal to � where both are defined. This shows that
�.t/ 2 @D �D for t in some neighborhood of t0, so T is open in J as claimed. �
Theorem 9.34 (Flows on Manifolds with Boundary). The conclusions of Theo-
rem 9.12 remain true if M is a smooth manifold with boundary and V is a smooth
vector field on M that is tangent to @M .

Proof. Example 9.32 shows that we can consider M as a regular domain in its
double D.M/. By the extension lemma for vector fields, we can extend V to a
smooth vector field zV on D.M/. Let z� W zD ! D.M/ be the flow of zV , and let
D D zD \ .R�M/ and � D z� jD . Then Lemma 9.33 guarantees that � maps D into
M; and the rest of the conclusions follow from Theorem 9.12 applied to zV . �

For manifolds with boundary, the canonical form theorem has the following
variant.

Theorem 9.35 (Canonical Form Near a Regular Point on the Boundary). Let
M be a smooth manifold with boundary and let V be a smooth vector field on M
that is tangent to @M . If p 2 @M is a regular point of V , there exist smooth bound-
ary coordinates

�
si
�

on some neighborhood of p in which V has the coordinate
representation @=@s1.

Proof. Problem 9-15. �

Lie Derivatives

We know how to make sense of directional derivatives of real-valued functions on
a manifold. Indeed, a tangent vector v 2 TpM is by definition an operator that acts
on a smooth function f to give a number vf that we interpret as a directional
derivative of f at p. In Chapter 3 we showed that this number can be interpreted as
the ordinary derivative of f along any curve whose initial velocity is v.

What about the directional derivative of a vector field? In Euclidean space, it
makes perfectly good sense to define the directional derivative of a smooth vector
field W in the direction of a vector v 2 TpRn. It is the vector

DvW.p/D
d

dt

ˇ̌
ˇ̌
tD0

WpCtv D lim
t!0

WpCtv �Wp

t
: (9.15)

An easy calculation shows that DvW.p/ can be evaluated by applying Dv to each
component of W separately:

DvW.p/DDvW
i .p/

@

@xi

ˇ̌
ˇ̌
p

:

Unfortunately, this definition is heavily dependent upon the fact that Rn is a vec-
tor space, so that the tangent vectorsWpCtv andWp can both be viewed as elements
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Fig. 9.12 The problem with directional derivatives of vector fields

of Rn. If we search for a way to make invariant sense of (9.15) on a manifold, we see
very quickly what the problem is. To begin with, we can replace pC tv by a curve
�.t/ that starts at p and whose initial velocity is v. But even with this substitution,
the difference quotient still makes no sense because W�.t/ and W�.0/ are elements
of the two different vector spaces T�.t/M and T�.0/M; respectively (see Fig. 9.12).
We got away with it in Euclidean space because there is a canonical identification
of each tangent space with Rn itself; but on a manifold there is no such identifica-
tion. Thus there is no coordinate-independent way to make sense of the directional
derivative of W in the direction of a vector v.

This problem can be circumvented if we replace the vector v 2 TpM with a
vector field V 2 X.M/, so we can use the flow of V to push values of W back to
p and then differentiate. Thus we make the following definition. Suppose M is a
smooth manifold, V is a smooth vector field on M; and � is the flow of V . For any
smooth vector field W on M; define a rough vector field on M; denoted by LVW

and called the Lie derivative of W with respect to V , by

.LVW /p D
d

dt

ˇ̌
ˇ̌
tD0

d.��t /�t .p/
�
W�t .p/

�

D lim
t!0

d.��t /�t .p/
�
W�t .p/

�
�Wp

t
; (9.16)

provided the derivative exists. For small t ¤ 0, at least the difference quotient makes
sense: �t is defined in a neighborhood of p, and ��t is the inverse of �t , so both
d.��t /�t .p/

�
W�t .p/

�
and Wp are elements of TpM (Fig. 9.13).

If M has nonempty boundary, this definition of LVW makes sense as long as
V is tangent to @M so that its flow exists by Theorem 9.34. (We will define Lie
derivatives on more general manifolds with boundary below; see the remark after
the proof of Theorem 9.38.)

Lemma 9.36. Suppose M is a smooth manifold with or without boundary, and
V;W 2 X.M/. If @M ¤ ¿, assume in addition that V is tangent to @M . Then
.LVW /p exists for every p 2M; and LVW is a smooth vector field.

Proof. Let � be the flow of V . For arbitrary p 2M; let
�
U;
�
xi
��

be a smooth chart
containing p. Choose an open interval J0 containing 0 and an open subset U0 � U
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Fig. 9.13 The Lie derivative of a vector field

containing p such that � maps J0 � U0 into U . For .t; x/ 2 J0 � U0, write the
component functions of � as

�
�1.t; x/; : : : ; �n.t; x/

�
. Then for any .t; x/ 2 J0 �U0,

the matrix of d.��t /�t .x/ W T�t .x/M ! TxM is
�
@� i

@xj

�
� t; �.t; x/

��
:

Therefore,

d.��t /�t .x/
�
W�t .x/

�
D
@� i

@xj

�
� t; �.t; x/

�
W j

�
�.t; x/

� @

@xi

ˇ̌
ˇ̌
x

:

Because � i and W j are smooth functions, the coefficient of @=@xi jx depends
smoothly on .t; x/. It follows that .LVW /x , which is obtained by taking the deriva-
tive of this expression with respect to t and setting t D 0, exists for each x 2U0 and
depends smoothly on x. �

I Exercise 9.37. Suppose v 2 Rn and W is a smooth vector field on an open sub-
set of Rn. Show that the directional derivative DvW.p/ defined by (9.15) is equal
to .LVW /p , where V is the vector field V D vi@=@xi with constant coefficients in
standard coordinates.

The definition of LVW is not very useful for computations, because typically
the flow is difficult or impossible to write down explicitly. Fortunately, there is a
simple formula for computing the Lie derivative without explicitly finding the flow.

Theorem 9.38. If M is a smooth manifold and V;W 2 X.M/, then LVW D

ŒV;W �.

Proof. Suppose V;W 2X.M/, and let R.V /�M be the set of regular points of V
(the set of points p 2M such that Vp ¤ 0). Note that R.V / is open in M by con-
tinuity, and its closure is the support of V . We will show that .LVW /p D ŒV;W �p
for all p 2M; by considering three cases.

CASE 1: p 2R.V /. In this case, we can choose smooth coordinates
�
ui
�

on a
neighborhood of p in which V has the coordinate representation V D @=@u1 (The-
orem 9.22). In these coordinates, the flow of V is �t .u/D

�
u1C t; u2; : : : ; un

�
. For
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each fixed t , the matrix of d.��t /�t .x/ in these coordinates (the Jacobian matrix of
��t ) is the identity at every point. Consequently, for any u 2U ,

d.��t /�t .u/.W�t .u//D d.��t /�t .x/

�
W j

�
u1C t; u2; : : : ; un

� @

@uj

ˇ̌
ˇ̌
�t .u/

�

DW j
�
u1C t; u2; : : : ; un

� @

@uj

ˇ̌
ˇ̌
u

:

Using the definition of the Lie derivative, we obtain

.LVW /u D
d

dt

ˇ̌
ˇ̌
tD0

W j
�
u1C t; u2; : : : ; un

� @

@uj

ˇ̌
ˇ̌
u

D
@W j

@u1

�
u1; : : : ; un

� @

@uj

ˇ̌
ˇ̌
u

:

On the other hand, by virtue of formula (8.8) for the Lie bracket in coordinates,
ŒV;W �u is easily seen to be equal to the same expression.

CASE 2: p 2 suppV . Because suppV is the closure of R.V /, it follows by con-
tinuity from Case that .LVW /p D ŒV;W �p for p 2 suppV .

CASE 3: p 2M X suppV . In this case, V � 0 on a neighborhood of p. On the
one hand, this implies that �t is equal to the identity map in a neighborhood of p
for all t , so d.��t /�t .p/.W�t .p//DWp , which implies .LVW /p D 0. On the other
hand, ŒV;W �p D 0 by formula (8.8). �

This theorem allows us to extend the definition of the Lie derivative to arbitrary
smooth vector fields on a smooth manifoldM with boundary. Given V;W 2X.M/,
we define .LVW /p for p 2 @M by embeddingM in a smooth manifold �M without
boundary (such as the double of M ), extending V and W to smooth vector fields
on �M , and computing the Lie derivative there. By virtue of the preceding theorem,
.LVW /p D ŒX;Y �p is independent of the choice of extension.

Theorem 9.38 also gives us a geometric interpretation of the Lie bracket of two
vector fields: it is the directional derivative of the second vector field along the
flow of the first. A number of nonobvious properties of the Lie derivative follow
immediately from things we already know about Lie brackets.

Corollary 9.39. Suppose M is a smooth manifold with or without boundary, and
V;W;X 2X.M/.

(a) LVW D�LW V .
(b) LV ŒW;X�D ŒLVW;X�C ŒW;LVX�.
(c) LŒV;W 	X DLVLWX �LWLVX .
(d) If g 2 C1.M/, then LV .gW /D .Vg/W C gLVW .
(e) If F W M !N is a diffeomorphism, then F�.LVX/DLF�V F�X .

I Exercise 9.40. Prove this corollary.

Part (d) of this corollary gives a meaning to the mysterious formula (8.11) for Lie
brackets of vector fields multiplied by functions: because the Lie bracket Œf V;gW �
can be thought of as the Lie derivative Lf V .gW /, it satisfies a product rule in g
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and W ; and because it can also be thought of as �LgW .f V /, it satisfies a product
rule in f and V as well. Expanding out these two product rules yields (8.11).

If V and W are vector fields on M and � is the flow of V , the Lie deriva-
tive .LVW /p , by definition, expresses the t -derivative of the time-dependent vector
d.��t /�t .p/

�
W�t .p/

�
2 TpM at t D 0. The next proposition shows how it can also

be used to compute the derivative of this expression at other times. We will use this
result in the proof of Theorem 9.42 below.

Proposition 9.41. Suppose M is a smooth manifold with or without boundary and
V;W 2X.M/. If @M ¤¿, assume also that V is tangent to @M . Let � be the flow
of V . For any .t0; p/ in the domain of � ,

d

dt

ˇ̌
ˇ̌
tDt0

d.��t /�t .p/
�
W�t .p/

�
D d

�
��t0

�	
.LVW /�t0 .p/



: (9.17)

Proof. Let p 2 M be arbitrary, let D.p/ � R denote the domain of the in-
tegral curve � .p/, and consider the map X W D.p/ ! TpM given by X.t/ D

d.��t /�t .p/
�
W�t .p/

�
. The argument in the proof of Lemma 9.36 shows that X is a

smooth curve in the vector space TpM . Making the change of variables t D t0C s,
we obtain

X 0.t0/D
d

ds

ˇ̌
ˇ̌
sD0

X.t0C s/D
d

ds

ˇ̌
ˇ̌
sD0

d
�
��t0�s

��
W�sCt0 .p/

�

D
d

ds

ˇ̌
ˇ̌
sD0

d
�
��t0

�
ı d.��s/

�
W�s.�t0 .p/

�

D d
�
��t0

�� d

ds

ˇ̌
ˇ̌
sD0

d.��s/
�
W�s.�t0 .p//

��
:

(The last equality follows because d
�
��t0

�
W T�t0 .p/M ! TpM is a linear map that

is independent of s. See Fig. 9.14.) By definition of the Lie derivative, this last
expression is equal to the right-hand side of (9.17). �

Commuting Vector Fields

Let M be a smooth manifold and V;W 2 X.M/. We say that V and W commute
if V Wf DW Vf for every smooth function f , or equivalently if ŒV;W �� 0. If �
is a smooth flow, a vector field W is said to be invariant under � if W is �t -related
to itself for each t ; more precisely, this means that W jMt is �t -related to W jM�t for
each t , or equivalently that d.�t /p.Wp/DW�t .p/ for all .t;p/ in the domain of � .
The next proposition shows that these two concepts are intimately related.

Theorem 9.42. For smooth vector fields V and W on a smooth manifold M; the
following are equivalent:

(a) V and W commute.
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Fig. 9.14 Proof of Proposition 9.41

(b) W is invariant under the flow of V .
(c) V is invariant under the flow of W .

Proof. Suppose V;W 2 X.M/, and let � denote the flow of V . If (b) holds, then
W�t .p/ D d.�t /p.Wp/ whenever .t;p/ is in the domain of � . Applying d.��t /�t .p/
to both sides, we conclude that d.��t /�t .p/

�
W�t .p/

�
DWp , which obviously implies

ŒV;W � D LVW D 0 directly from the definition of the Lie derivative. The same
argument shows that (c) implies (a).

To prove that (a) implies (b), assume that ŒV;W �D LVW D 0. Let p 2M be
arbitrary, and let X.t/D d.��t /�t .p/

�
W�t .p/

�
for t 2D .p/. Proposition 9.41 shows

that X 0.t/� 0. Since X.0/DWp , this implies that X.t/DWp for all t 2D.p/, and
applying d.�t /p to both sides yields the identity that says W is invariant under � .
The same proof also shows that (a) implies (c). �

Corollary 9.43. Every smooth vector field is invariant under its own flow.

Proof. Use the preceding proposition together with the fact that ŒV;V �� 0. �

The deepest characterization of commuting vector fields is in terms of the rela-
tionship between their respective flows. The next theorem says that two vector fields
commute if and only if their flows commute. But before we state the theorem for-
mally, we need to examine exactly what this means. Suppose V and W are smooth
vector fields on M; and let � and  denote their respective flows. If V and W are
complete, it is clear what we should mean by saying their flows commute: simply
that �t ı s D s ı�t for all s; t 2R. However, if either V orW is not complete, the
most we can hope for is that this equation holds for all s and t such that both sides
are defined. Unfortunately, even when the vector fields commute, their flows might
not commute in this naive sense, because there are examples of commuting vector
fields V and W and particular choices of t , s, and p for which both �t ı  s.p/
and  s ı �t .p/ are defined, but they are not equal (see Problem 9-19 for one such
example). Here is the problem: if �t ı  s.p/ is defined for t D t0 and s D s0, then
by the properties of flow domains, it must be defined for all t in some open interval
containing 0 and t0, but the analogous statement need not be true of s—there might
be values of s between 0 and s0 for which the integral curve of V starting at  s.p/
does not extend all the way to t D t0.
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Thus we make the following definition. If � and  are flows on M; we say that
� and  commute if the following condition holds for every p 2M : whenever J
and K are open intervals containing 0 such that one of the expressions �t ı  s.p/
or  s ı �t .p/ is defined for all .s; t/ 2 J �K , both are defined and they are equal.
For global flows, this is the same as saying that �t ı s D s ı �t for all s and t .

Theorem 9.44. Smooth vector fields commute if and only if their flows commute.

Proof. Let V and W be smooth vector fields on a smooth manifold M; and let �
and  denote their respective flows. Assume first that V and W commute. Suppose
that p 2 M; and J and K are open intervals containing 0 such that  s ı �t .p/
is defined for all .s; t/ 2 J � K . (The same proof with V and W reversed works
under the assumption that the other expression is defined on such a rectangle.) By
Theorem 9.42, the hypothesis implies that V is invariant under  . Fix any s 2 J ,
and consider the curve � W K !M defined by �.t/ D  s ı �t .p/ D  s

�
� .p/.t/

�
.

This curve satisfies �.0/D s.p/, and its velocity at t 2K is

� 0.t/D
d

dt

�
 s
�
� .p/.t/

��
D d. s/

�
� .p/0.t/

�
D d. s/

�
V�.p/.t/

�
D V�.t/:

Thus, � is an integral curve of V starting at  s.p/. By uniqueness, therefore,

�.t/D � s.p/.t/D �t
�
 s.p/

�
:

This proves that � and  commute.
Conversely, assume that the flows commute, and let p 2M . If " > 0 is chosen

small enough that  s ı �t .p/ is defined whenever jsj < " and jt j < ", then the hy-
pothesis guarantees that  s ı �t .p/D �t ı  s.p/ for all such s and t . This can be
rewritten in the form

 �t .p/.s/D �t
�
 .p/.s/

�
:

Differentiating this relation with respect to s, we get

W�t .p/ D
d

ds

ˇ̌
ˇ̌
sD0

 �t .p/.s/D
d

ds

ˇ̌
ˇ̌
sD0

�t
�
 .p/.s/

�
D d.�t /p.Wp/:

Applying d.��t /�t .p/ to both sides, we conclude

d.��t /�t .p/.W�t .p//DWp:

Differentiating with respect to t and applying the definition of the Lie derivative
shows that .LVW /p D 0. �

Commuting Frames

Suppose M is a smooth n-manifold. Recall that a local frame for M is an n-tuple
.Ei / of vector fields defined on an open subset U �M such that

�
Ei jp

�
forms

a basis for TpM at each p 2 U . A smooth local frame .Ei / for M is called a
commuting frame if ŒEi ;Ej � D 0 for all i and j . (Commuting frames are called
holonomic frames by some authors.)
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Example 9.45 (Commuting and Noncommuting Frames).

(a) The simplest examples of commuting frames are the coordinate frames. Given
any smooth coordinate chart

�
U;
�
xi
��

for a smooth manifold M; (8.10) shows
that the coordinate frame

�
@=@xi

�
is a commuting frame.

(b) The frame .E1;E2/ for R2 over R2 X f0g defined by (8.3) is not a commuting
frame, because a straightforward computation shows that

ŒE1;E2�D
y

r2
@

@x
�
x

r2
@

@y
¤ 0: //

Because every coordinate frame is a commuting frame, and because Lie brackets
are invariantly defined, it follows that a necessary condition for a smooth frame to
be expressible as a coordinate frame in some smooth chart is that it be a commuting
frame. Thus, the computation above shows that .E1;E2/ cannot be expressed as a
coordinate frame for R2 with respect to any choice of smooth local coordinates.

The next theorem shows that commuting is also a sufficient condition for a
smooth frame to be locally expressible as a coordinate frame.

Theorem 9.46 (Canonical Form for Commuting Vector Fields). Let M be a
smooth n-manifold, and let .V1; : : : ; Vk/ be a linearly independent k-tuple of smooth
commuting vector fields on an open subset W �M . For each p 2 W , there ex-
ists a smooth coordinate chart

�
U;
�
si
��

centered at p such that Vi D @=@si for
i D 1; : : : ; k. If S �W is an embedded codimension-k submanifold and p is a point
of S such that TpS is complementary to the span of

�
V1jp; : : : ; Vkjp

�
, then the coor-

dinates can also be chosen such that S \U is the slice defined by s1 D � � � D sk D 0.

Proof. Let p 2 W be arbitrary. If no submanifold S is given, just let S be any
smooth embedded codimension-k submanifold S whose tangent space at p is com-
plementary to the span of

�
V1jp; : : : ; Vkjp

�
(e.g., an appropriate coordinate slice).

Let
�
U;
�
xi
��

be a slice chart for S centered at p, with U � W , and with S \ U
equal to the slice fx 2 U W x1 D � � � D xk D 0g. Our assumptions ensure that the
vectors

˚
V1jp; : : : ; Vkjp; @=@x

kC1jp; : : : ; @=@x
njp
�

span TpM . Since the theorem is
purely local, we may as well consider V1; : : : ; Vk as vector fields on U � Rn, and
consider S to be the subset of U where the first k coordinates vanish. The basic idea
of this proof is similar to that of the flowout theorem, except that we have to do a bit
of extra work to make use of the hypothesis that the vector fields commute.

Let �i denote the flow of Vi for i D 1; : : : ; k. There exist " > 0 and a neighbor-
hood Y of p in U such that the composition .�1/t1 ı .�2/t2 ı � � � ı .�k/tk is defined
on Y and maps Y into U whenever jt1j; : : : ; jtkj are all less than ". (To see this,
just choose "k > 0 and Uk � U such that �k maps .�"k ; "k/�Uk into U , and then
inductively choose "i and Ui such that �i maps .�"i ; "i / � Ui into UiC1. Taking
"Dminf"ig and Y D U1 does the trick.)

Define ˝ �Rn�k by

˝ D
˚�
skC1; : : : ; sn

�
2Rn�k W

�
0; : : : ; 0; skC1; : : : ; sn

�
2 Y

�
;
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and define ˚ W .�"; "/k �˝!U by

˚
�
s1; : : : ; sk ; skC1; : : : ; sn

�
D .�1/s1 ı � � � ı .�k/sk

�
0; : : : ; 0; skC1; : : : ; sn

�
:

By construction, ˚.f0g �˝/D S \ Y .
We show next that @=@si is ˚ -related to Vi for i D 1; : : : ; k. Because the flows

�i commute, for any i 2 f1; : : : ; kg and any s0 2 .�"; "/k �˝ we have

d˚s0

�
@

@si

ˇ̌
ˇ̌
s0

�
f D

@

@si

ˇ̌
ˇ̌
s0

f
�
˚
�
s1; : : : ; sn

��

D
@

@si

ˇ̌
ˇ̌
s0

f
	
.�1/s1 ı � � � ı .�k/sk

�
0; : : : ; 0; skC1; : : : ; sn

�


D
@

@si

ˇ̌
ˇ̌
s0

f
	
.�i /si ı .�1/s1 ı � � � ı .�i�1/si�1 ı .�iC1/siC1

ı � � � ı .�k/sk
�
0; : : : ; 0; skC1; : : : ; sn

�

:

For any q 2M; t 7! .�i /t .q/ is an integral curve of Vi , so this last expression is
equal to Vi j˚.s0/ f , which proves the claim.

Next we show that d˚0 is invertible. The computation above shows that

d˚0

�
@

@si

ˇ̌
ˇ̌
0

�
D Vi jp; i D 1; : : : ; k:

On the other hand, since ˚
�
0; : : : ; 0; skC1; : : : ; sn

�
D
�
0; : : : ; 0; skC1; : : : ; sn

�
, it fol-

lows immediately that

d˚0

�
@

@si

ˇ̌
ˇ̌
0

�
D

@

@xi

ˇ̌
ˇ̌
p

; i D kC 1; : : : ; n:

It follows that d˚0 takes the basis
�
@=@s1j0; : : : ; @=@s

nj0
�

for T0Rn to the basis�
V1jp; : : : ; Vkjp; @=@x

kC1jp; : : : ; @=@x
njp
�

for TpM . By the inverse function theo-
rem, ˚ is a diffeomorphism in a neighborhood of 0, and ' D ˚�1 is a smooth
coordinate map that takes @=@si to Vi for i D 1; : : : ; k, and takes S to the slice
s1 D � � � D sk D 0. �

Just as in the case of a single vector field, the proof of Theorem 9.46 suggests a
technique for finding explicit coordinates that put a set of commuting vector fields
into canonical form, as long as their flows can be found explicitly. The method can
be summarized as follows: Begin with an .n�k/-dimensional submanifold S whose
tangent space at p is complementary to the span of

�
V1jp; : : : ; Vkjp

�
. Then define ˚

by starting at an arbitrary point in S and following the k flows successively for k
arbitrary times. Because the flows commute, it does not matter in which order they
are applied. An example will help to clarify the procedure.
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Example 9.47. Consider the following two vector fields on R2:

V D x
@

@y
� y

@

@x
; W D x

@

@x
C y

@

@y
:

A computation shows that ŒV;W �D 0. Example 9.8 showed that the flow of V is

�t .x; y/D .x cos t � y sin t; x sin t C y cos t/;

and an easy verification shows that the flow of W is

�t .x; y/D
�
etx; ety

�
:

At pD .1; 0/, Vp and Wp are linearly independent. Because k D nD 2 in this case,
we can take the subset S to be the single point f.1; 0/g, and define ˚ W R2!R2 by

˚.s; t/D �t ı �s.1; 0/D
�
et cos s; et sin s

�
:

In this case, we can solve for .s; t/ D ˚�1.x; y/ explicitly in a neighborhood of
.1; 0/ to obtain the coordinate map

.s; t/D
	

tan�1.y=x/; log
p
x2C y2



: //

Time-Dependent Vector Fields

All of the systems of differential equations we have encountered so far have been au-
tonomous ones, meaning that when they are written in the form (9.1), the functions
V i on the right-hand sides do not depend explicitly on the independent variable t
(see Appendix D). However, nonautonomous ODEs do arise in manifold theory, so
it is worth exploring how the results of this chapter can be extended to cover this
case. We will use this theory only in Chapter 22.

Let M be a smooth manifold. A time-dependent vector field on M is a continu-
ous map V W J �M ! TM; where J �R is an interval, such that V.t;p/ 2 TpM
for each .t;p/ 2 J �M . This means that for each t 2 J , the map Vt W M ! TM

defined by Vt .p/D V.t;p/ is a vector field on M . If V is a time-dependent vector
field on M; an integral curve of V is a differentiable curve � W J0!M; where J0
is an interval contained in J , such that

� 0.t/D V
�
t; �.t/

�
for all t 2 J0.

Every ordinary vector field X 2 X.M/ determines a time-dependent vector field
defined on R�M; just by setting V.t;p/DXp . (It is occasionally useful to consider
time-dependent vector fields defined on more general open subsets of R�M ; but for
simplicity we restrict attention to a product set J �M; and leave it to the interested
reader to figure out how the results need to be modified for the more general case.)

A time-dependent vector field might not generate a flow, because two integral
curves starting at the same point but at different times might follow different paths,
whereas all integral curves of a flow through a given point have the same image. As
a substitute for the fundamental theorem on flows, we have the following theorem.
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Theorem 9.48 (Fundamental Theorem on Time-Dependent Flows). Let M be
a smooth manifold, let J � R be an open interval, and let V W J �M ! TM be
a smooth time-dependent vector field on M . There exist an open subset E � J �

J �M and a smooth map  W E!M called the time-dependent flow of V , with
the following properties:

(a) For each t0 2 J and p 2M; the set E.t0;p/ D ft 2 J W .t; t0; p/ 2 Eg is an open
interval containing t0, and the smooth curve  .t0;p/ W E.t0;p/!M defined by
 .t0;p/.t/D  .t; t0; p/ is the unique maximal integral curve of V with initial
condition  .t0;p/.t0/D p.

(b) If t1 2 E.t0;p/ and q D .t0;p/.t1/, then E.t1;q/ D E.t0;p/ and  .t1;q/ D .t0;p/.
(c) For each .t1; t0/ 2 J � J , the set Mt1;t0 D fp 2M W .t1; t0; p/ 2 Eg is open in

M; and the map  t1;t0 W Mt1;t0 !M defined by  t1;t0.p/ D  .t1; t0; p/ is a
diffeomorphism from Mt1;t0 onto Mt0;t1 with inverse  t0;t1 .

(d) If p 2Mt1;t0 and  t1;t0.p/ 2Mt2;t1 , then p 2Mt2;t0 and

 t2;t1 ı t1;t0.p/D t2;t0.p/: (9.18)

Proof. This can be proved by following the outline of the proof of Theorem 9.12,
using Theorem D.6 in place of Theorem D.1. However, it is much quicker to use the
following trick to reduce it to the time-independent case.

Consider the smooth vector field zV on J �M defined by

zV.s;p/ D

�
@

@s

ˇ̌
ˇ̌
s

; V .s;p/

�
;

where s is the standard coordinate on J �R, and we identify T.s;p/.J �M/ with

TsJ ˚ TpM as usual (see Proposition 3.14). Let z� W �D ! J �M denote the flow
of zV . If we write the component functions of z� as

z�
�
t; .s;p/

�
D
�
˛
�
t; .s;p/

�
; ˇ
�
t; .s;p/

��
;

then ˛ W �D! J and ˇ W �D!M satisfy

@˛

@t

�
t; .s;p/

�
D 1; ˛

�
0; .s;p/

�
D s;

@ˇ

@t

�
t; .s;p/

�
D V

�
˛
�
t; .s;p/

�
; ˇ
�
t; .s;p/

��
; ˇ

�
0; .s;p/

�
D p:

It follows immediately that ˛.t; .s;p//D t C s, and therefore ˇ satisfies

@ˇ

@t

�
t; .s;p/

�
D V

�
t C s;ˇ

�
t; .s;p/

��
: (9.19)

Let E be the subset of R� J �M defined by

E D
˚
.t; t0; p/ W

�
t � t0; .t0; p/

�
2 �D

�
:

Clearly, E is open in R� J �M because �D is. Moreover, since ˛ maps �D into J ,
if .t; t0; p/ 2 E , then t D ˛

�
t � t0; .t0; p/

�
2 J , which implies that E � J � J �M .
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The fact that each set Mt1;t0 D fp 2M W .t1; t0; p/ 2 Eg is open in M follows im-
mediately from the fact that E is open.

Now define  W E!M by

 .t; t0; p/D ˇ
�
t � t0; .t0; p/

�
:

Then  is smooth because ˇ is, and it follows from (9.19) that  .t0;p/.t/ D
 .t; t0; p/ is an integral curve of V with initial condition  .t0;p/.t0/D p.

To prove uniqueness, suppose t0 2 J and � W J0!M is any integral curve of
V defined on some open interval J0 � J containing t0 and satisfying �.t0/ D p.
Define a smooth curve z� W J0! J �M by z�.t/D

�
t; �.t/

�
. Then z� is easily seen

to be an integral curve of zV with initial condition z�.t0/D .t0; p/. By uniqueness
and maximality of integral curves of zV , we must have z�.t/D z�

�
t � t0; .t0; p/

�
on

its whole domain, which implies that the domain of � is contained in that of  .t0;p/,
and � D  .t0;p/ on that domain. It follows that  .t0;p/ is the unique maximal inte-
gral curve of V passing through p at t D t0. This completes the proof of (a).

To prove (b), suppose t1 2 E.t0;p/ and q D  .t0;p/.t1/. Then both  .t1;q/ and
 .t0;p/ are integral curves of V that pass through q when t D t1, so by uniqueness
and maximality they must have the same domain and be equal on that domain.

Next, we prove (d). Suppose p 2Mt1;t0 and  t1;t0.p/ 2Mt2;t1 , and set q D
 t1;t0.p/D 

.t0;p/.t1/. Then (b) implies that  .t1;q/.t2/D .t0;p/.t2/. Unwinding
the definitions yields (9.18).

Finally, we prove (c). Suppose .t1; t0/ 2 J � J . We have already noted that
Mt1;t0 is open in M . To show that  t1;t0

�
Mt1;t0

�
� Mt0;t1 , let p be a point of

Mt1;t0 , and set q D  t1;t0.p/. Part (b) implies that E.t0;p/ D E.t1;q/, and thus
t0 2 E.t0;p/ D E.t1;q/. This is equivalent to .t0; t1; q/ 2 E , which in turn means
q 2Mt0;t1 as claimed. To see that  t1;t0 W Mt1;t0!Mt0;t1 is a diffeomorphism, just
note that the same argument as above implies that  t0;t1

�
Mt0;t1

�
�Mt1;t0 , and then

(d) implies that  t1;t0 ı t0;t1.p/D  t1;t1.p/D p for all p 2Mt0;t1 , and similarly
that  t0;t1 ı t1;t0.q/D q for q 2Mt1;t0 . �
I Exercise 9.49. Let M be a smooth manifold. Suppose X is a (time-independent)
smooth vector field on M; and � W D !M is its flow. Let V be the time-dependent
vector field defined by V.t;p/DXp . Show that the time-dependent flow of V is given
by  .t; t0; p/D �.t � t0; p/, with domain E D f.t; t0; p/ W .t � t0; p/ 2Dg.

Example 9.50. Define a time-dependent vector field V on Rn by

V.t; x/D
1

t
xi

@

@xi

ˇ̌
ˇ̌
x

; .t; x/ 2 .0;1/�Rn:

Suppose t0 2 .0;1/ and x0 2 Rn are arbitrary, and let �.t/ D
�
x1.t/; : : : ; xn.t/

�

denote the integral curve of V with initial condition �.t0/D x0. Then the compo-
nents of � satisfy the following nonautonomous system of differential equations:

Pxi .t/D
1

t
xi .t/;

xi .t0/D x
i
0:
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The maximal solution to this system, as you can easily check, is xi .t/D txi0=t0, de-
fined for all t > 0. Therefore, the time-dependent flow of V is given by  .t; t0; x/D
tx=t0 for .t; t0; x/ 2 .0;1/� .0;1/�Rn. //

First-Order Partial Differential Equations

One of the most powerful applications of the theory of flows is to partial differential
equations. In its most general form, a partial differential equation (PDE) is any
equation that relates an unknown function of two or more variables with its partial
derivatives up to some order and with the independent variables. The order of the
PDE is the highest-order derivative of the unknown function that appears.

The number of specialized techniques that have been developed to solve partial
differential equations is staggering. (For an introduction to the general theory, you
can consult one of the many excellent introductory books on the subject, such as
[Eva98, Fol95, Joh91].) However, it is a remarkable fact that real-valued first-order
PDEs can be reduced to ordinary differential equations by means of the theory of
flows, and thus can be solved using only ODEs and a little differential-geometric in-
sight but no specialized PDE theory. In this section, we describe how this is done for
two special classes of first-order equations: first, linear equations; and then, some-
what more generally, quasilinear equations (which we define below). A PDE that
is not quasilinear is said to be fully nonlinear; we will show how to treat fully
nonlinear first-order equations in Chapter 22.

In coordinates, any first-order PDE for a single unknown function can be written

F

�
x1; : : : ; xn; u.x/;

@u

@x1
.x/; : : : ;

@u

@xn
.x/

�
D 0; (9.20)

where u is an unknown function of n variables and F is a given smooth function of
2nC1 variables. (Smoothness is not strictly necessary, but we assume it throughout
for simplicity.) The theory we will describe applies only when F and u are real-
valued, so we assume that as well. (There is also a fascinating theory of complex-
valued first-order PDEs, but it requires entirely different methods.)

Without further restrictions, most PDEs have a multitude of solutions—for ex-
ample, the PDE @u=@x D 0 in the plane is solved by any smooth function u that
depends on y alone—so in order to get a unique solution one generally stipulates
that the solution should satisfy some extra conditions. For first-order equations, the
appropriate condition is to specify “initial values” on a hypersurface: given a smooth
hypersurface S �Rn and a smooth function ' W S!R, we seek a smooth function
u that solves the PDE and also satisfies the initial condition

ujS D ': (9.21)

The problem of finding a solution to (9.20) in a neighborhood of S subject to the
initial condition (9.21) is called a Cauchy problem.
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Not every Cauchy problem has a solution: for example, in R2, the equation
@u=@x D 1 has no solution with u D 0 on the x-axis, because the equation and
the initial condition contradict each other. To avoid such difficulties, one usually
assumes that the Cauchy problem (9.20)–(9.21) is noncharacteristic, meaning that
there is a certain geometric relationship between the equation and the initial data,
which is sufficient to guarantee the existence of a solution near S . As we study
the Cauchy problem in increasing generality, we will describe the noncharacteristic
condition separately for each type of equation we treat. The most general form of
the condition is given at the end of Chapter 22.

Linear Equations

The first type of equation we will treat is a first-order linear PDE, which is one
that depends linearly or affinely on the unknown function and its derivatives. In
coordinate form, the most general such equation can be written

a1.x/
@u

@x1
.x/C � � � C an.x/

@u

@xn
.x/C b.x/u.x/D f .x/; (9.22)

where a1; : : : ; an, b, and f are smooth, real-valued functions defined on some open
subset ˝ �Rn, and u is an unknown smooth function on ˝ .

It should come as no surprise that flows of vector fields play a role in the solution
of (9.22), because the first n terms on the left-hand side represent the action on u of
a smooth vector field A 2X.˝/:

Ax D a
1.x/

@

@x1

ˇ̌
ˇ̌
x

C � � � C an.x/
@

@xn

ˇ̌
ˇ̌
x

: (9.23)

In terms of A, we can rewrite (9.22) in the simple form AuC buD f . In this form,
it makes sense on any smooth manifold, and is no more difficult to solve in that
generality, so we state our first theorem in that context. The Cauchy problem for
AuC bu D f with initial hypersurface S is said to be noncharacteristic if A is
nowhere tangent to S .

Theorem 9.51 (The Linear First-Order Cauchy Problem). Let M be a smooth
manifold. Suppose we are given an embedded hypersurface S �M; a smooth vector
fieldA 2X.M/ that is nowhere tangent to S , and functions b;f 2 C1.M/ and ' 2
C1.S/. Then for some neighborhood U of S in M; there exists a unique solution
u 2 C1.U / to the noncharacteristic Cauchy problem

AuC buD f; (9.24)

ujS D ': (9.25)

Proof. The flowout theorem gives us a neighborhood Oı of f0g � S in R � S ,
a neighborhood U of S in M; and a diffeomorphism ˚ W Oı ! U that satisfies
˚.0;p/ D p for p 2 S and ˚�.@=@t/ D A. Let us write yu D u ı ˚ , yf D f ı ˚ ,
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and yb D b ı˚ . Proposition 8.16 shows that @yu=@t D .Au/ ı˚ . Thus, u 2 C1.U /
satisfies (9.24)–(9.25) if and only if yu satisfies

@yu

@t
.t;p/D yf .t;p/� yb.t;p/yu.t;p/; .t;p/ 2Oı ;

yu.0;p/D '.p/; p 2 S:

(9.26)

For each fixed p 2 S , this is a linear first-order ODE initial value problem for yu on
the interval �ı.p/ < t < ı.p/. As is shown in ODE texts, such a problem always
has a unique solution on the whole interval, which can be written explicitly as

yu.t;p/D e�B.t;p/
�
'.p/C

Z t

0

yf .�;p/eB.
;p/ d�

�
; where

B.�;p/D

Z 


0

yb.�;p/d�:

This is a smooth function of .t;p/ (as can be seen by choosing local coordinates for
S and differentiating under the integral signs). Therefore, uD yuı˚�1 is the unique
solution on U to (9.24)–(9.25). �

This proof shows how to write down an explicit solution to the Cauchy problem,
provided the flow of the vector field A can be found explicitly. The computations
are usually easiest if we first choose a (local or global) parametrization X W ˝! S ,
and substitute X.s/ for p in (9.26). This amounts to using the canonical coordinates
of Theorem 9.22 to transform the Cauchy problem to an ODE.

Example 9.52 (A Linear Cauchy Problem). Suppose we wish to solve the follow-
ing Cauchy problem for a smooth function u.x;y/ in the plane:

x
@u

@y
� y

@u

@x
D x; (9.27)

u.x; 0/D x when x > 0: (9.28)

The vector field acting on u on the left-hand side of (9.27) is the vector field W of
Example 9.23. The initial hypersurface S is the positive x-axis, and this problem
is noncharacteristic because W is nowhere tangent to S . (Notice that this would
not be the case if we took S to be the entire x-axis.) Using the computations of
Example 9.23, we find that the transformation .x; y/ D �.t; s/ D .s cos t; s sin t/
pushes @=@t forward to W , and thus transforms (9.27)–(9.28) to the ODE initial
value problem

@yu

@t
.t; s/D s cos t;

yu.0; s/D s:

This is solved by yu.t; s/D s sin t C s. Substituting for .t; s/ in terms of .x; y/ using
(9.13), we obtain the solution u.x;y/D y C

p
x2C y2 to the original problem. //
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Quasilinear Equations

The preceding results extend easily to certain nonlinear partial differential equa-
tions. A PDE is called quasilinear if it can be written as an affine equation in the
highest-order derivatives of the unknown function, with coefficients that may de-
pend on the function itself and its derivatives of lower order. Thus, in coordinates, a
quasilinear first-order PDE is a differential equation of the form

a1
�
x;u.x/

� @u
@x1
C � � � C an

�
x;u.x/

� @u
@xn
D f

�
x;u.x/

�
(9.29)

for an unknown real-valued function u.x1; : : : ; xn/, where a1; : : : ; an and f are
smooth real-valued functions defined on some open subset W � RnC1. (For sim-
plicity, this time we concentrate only on the local problem, and restrict our attention
to open subsets of Euclidean space.)

We wish to solve a Cauchy problem for this equation with initial condition

ujS D '; (9.30)

where S � Rn is a smooth, embedded hypersurface, and ' W S ! R is a smooth
function whose graph is contained in W . A quasilinear Cauchy problem is said to
be noncharacteristic if the vector field A' along S defined by

A'
ˇ̌
x
D a1

�
x;'.x/

� @

@x1

ˇ̌
ˇ̌
x

C � � � C an
�
x;'.x/

� @

@xn

ˇ̌
ˇ̌
x

(9.31)

is nowhere tangent to S . (Notice that in this case the noncharacteristic condition de-
pends on the initial value ', not just on the initial hypersurface.) We will show that
a noncharacteristic Cauchy problem always has local solutions. (As we will see be-
low, finding global solutions can be problematic because of the lack of uniqueness.)

Theorem 9.53 (The Quasilinear Cauchy Problem). If the Cauchy problem
(9.29)–(9.30) is noncharacteristic, then for each p 2 S there exists a neighborhood
U of p in M on which there exists a unique solution u to (9.29)–(9.30).

Proof. The key is to convert the dependent variable u to an additional independent
variable. (This is a trick that is useful in many different contexts.) Define the char-
acteristic vector field for (9.29) to be the vector field � on W �RnC1 given by

�.x;z/ D a
1.x; z/

@

@x1

ˇ̌
ˇ̌
.x;z/

C � � � C an.x; z/
@

@xn

ˇ̌
ˇ̌
.x;z/

C f .x; z/
@

@z

ˇ̌
ˇ̌
.x;z/

; (9.32)

where we write .x; z/ D
�
x1; : : : ; xn; z

�
. Suppose u is a smooth function defined

on an open subset V � Rn whose graph �.u/D
˚�
x;u.x/

�
W x 2 V

�
is contained

in W . Then (9.29) holds if and only if �
�
z � u.x/

�
D 0 at all points of �.u/. Since

z�u.x/ is a defining function for �.u/, it follows from Corollary 5.39 that u solves
(9.29) if and only if � is tangent to �.u/. The idea is to construct the graph of u as
the flowout by � from a suitable initial submanifold.



First-Order Partial Differential Equations 243

Let �.'/ D
˚�
x;'.x/

�
W x 2 S

�
denote the graph of '; it is an .n � 1/-

dimensional embedded submanifold of W . The projection � W W ! Rn onto the
first n variables maps �.'/ diffeomorphically onto S , so if � were tangent to �.'/
at some point

�
x;'.x/

�
, then d�

�
�.x;'.x//

�
would be tangent to S at x. However, a

direct computation using (9.32) and (9.31) shows that

d�
�
�.x;'.x//

�
DA'

ˇ̌
x
;

so the noncharacteristic assumption guarantees that � is nowhere tangent to �.'/.
We can apply the flowout theorem to the vector field � starting on �.'/ � W

to obtain an immersed n-dimensional submanifold � � W containing �.'/, such
that � is everywhere tangent to � . If we can show that � is the graph of a smooth
function u, at least locally near �.'/, then u will be a solution to our problem.

Let p 2 S be arbitrary. At
�
p;'.p/

�
2 �.'/ � � , the tangent space to � is

spanned by the vector �.p;'.p// together with T.p;'.p//�.'/. The restriction of �
to �.'/ is a diffeomorphism onto S , so d� maps T.p;'.p//�.'/ isomorphically
onto TpS . On the other hand, as we noted above, d� takes �.p;'.p// to A' jp . By
the noncharacteristic assumption, A' jp … TpS , so d� is injective on T.p;'.p//� ,
and thus for dimensional reasons T.p;'.p//RnC1 D T.p;'.p//�˚Kerd�.p;'.p//. Be-
cause Kerd�.p;'.p// is the tangent space to fpg � R, it follows that � intersects
fpg �R transversely at

�
p;'.p/

�
. By Corollary 6.33, there exist a neighborhood V

of
�
p;'.p/

�
in � and a neighborhood U of p in Rn such that V is the graph of a

smooth function u W U !R. This function solves the Cauchy problem in U .
To prove uniqueness, we might need to shrink U . Because � is a flowout, it is

the image of some open subset Oı �R��.'/ under the flow of � . Choose V small
enough that it is the image under the flow of a set of the form .�"; "/� Y �Oı , for
some " > 0 and some neighborhood Y of

�
p;'.p/

�
in �.'/. With this assumption,

�.u/ is exactly the union of the images of the integral curves of � starting at points of
Y and flowing for time jt j< ". Suppose zu is any other solution to the same Cauchy
problem on the same open subset U . As we noted above, this means that � is tangent
to the graph of zu, and the initial condition ensures that Y D �.'/\U � �

�
zu
�
. Since

the graph of zu is a properly embedded submanifold of U �R, Problem 9-2 shows
that each integral curve of � in U �R starting at a point of Y must lie entirely in the
graph of zu. Thus �

�
zu
�

 �.u/. But then �

�
zu
�

cannot contain any points that are
not in �.u/ and still be the graph of a function, so zuD u on U . �

To find an explicit solution to a quasilinear Cauchy problem, we begin by choos-
ing a smooth local parametrization of S , written as s 7!X.s/ for s D

�
s2; : : : ; sn

�
2

˝ � Rn�1. Then the map zX W ˝ ! RnC1 given by zX.s/ D
�
X.s/; '

�
X.s/

��
is a

local parametrization of �.'/, and a local parametrization of � is given by

�.t; s/D �t
�
zX.s/

�
;

where � is the flow of � . To rewrite � as a graph, just invert the map � ı� W ˝!Rn

locally by solving for
�
x1; : : : ; xn

�
in terms of

�
t; s2; : : : ; sn

�
; then the z-component

of � , written as a function of
�
x1; : : : ; xn

�
, is a solution to the Cauchy problem.
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Example 9.54 (A Quasilinear Cauchy Problem). Suppose we wish to solve the
following quasilinear Cauchy problem in the plane:

.uC 1/
@u

@x
C
@u

@y
D 0;

u.x; 0/D x:

The initial hypersurface S is the x-axis, and the initial value is '.x; 0/ D x. The
vector field A' is .x C 1/@=@x C @=@y, which is nowhere tangent to the x-axis, so
this problem is noncharacteristic.

The characteristic vector field is the following vector field on R3:

� D .zC 1/
@

@x
C

@

@y
:

We wish to find the flowout of � starting from �.'/. We can parametrize S by
X.s/D .s; 0/ for s 2R, and then �.'/ is parametrized by zX.s/D .s; 0; s/. Solving
the system of ODEs associated to � with initial conditions .x; y; z/D .s; 0; s/, we
find that the flowout of � starting from zX.s/ is parametrized by

�.t; s/D .sC t C st; t; s/:

The image of this map is the graph of our solution. To reparametrize the graph in
terms of x and y, we invert the map � ı� ; that is, we solve .x; y/D .sC t C st; t/
(locally) for t and s, yielding

.t; s/D

�
y;
x � y

1C y

�
;

and therefore on the flowout manifold we have z D s D .x � y/=.1C y/. The so-
lution to our Cauchy problem is u.x;y/D .x � y/=.1C y/. Note that it is defined
only in a neighborhood of S (the set where y >�1), not on the whole plane. //

The integral curves of � in RnC1 are called the characteristic curves (or char-
acteristics) of the PDE (9.29). This solution technique, which boils down to con-
structing the graph of u as a union of characteristic curves, is called the method of
characteristics. (For linear equations, the term characteristic curves is also some-
times applied to the integral curves of the vector fieldA defined by (9.23). Of course,
the method described above for quasilinear equations can be applied to linear ones
as well, but the technique of Example 9.52 is usually easier in the linear case.)

Theorems 9.51 and 9.53 only assert existence and uniqueness of a solution in
a neighborhood of the initial submanifold. Cauchy problems do not always ad-
mit global solutions, and when global solutions do exist, they might not be unique
(see Problem 9-23 for some examples). The basic problem is that the characteris-
tic curves passing through the initial hypersurface might not reach all points of the
manifold. Also, quasilinear problems have the added complication that the charac-
teristic curves in RnC1 might cease to be transverse to the fibers of the projection



Problems 245

RnC1!Rn, or even if they are transverse, their projections into Rn starting at dif-
ferent points of �.'/ might cross each other, even though the characteristic curves
themselves do not. At any point in the image of two or more characteristic curves,
the procedure above would produce two different values for u. Nevertheless, in spe-
cific cases, it is often possible to identify a neighborhood of S on which a unique so-
lution exists by analyzing the behavior of the characteristics. For instance, consider
the solution u that we produced on the set U D f.x; y/ W y >�1g in Example 9.54.
Its graph contains the entire maximal integral curve starting at each point of �.'/.
Because of this, the argument we used to prove local uniqueness in Theorem 9.53
actually proves that the solution is globally unique in this case.

Problems

9-1. Suppose M is a smooth manifold, X 2 X.M/, and � is a maximal integral
curve of X .
(a) We say � is periodic if there is a number T > 0 such that �.t C T /D

�.t/ for all t 2R. Show that exactly one of the following holds:

� � is constant.
� � is injective.
� � is periodic and nonconstant.

(b) Show that if � is periodic and nonconstant, then there exists a unique
positive number T (called the period of �) such that �.t/D �.t 0/ if and
only if t � t 0 D kT for some k 2Z.

(c) Show that the image of � is an immersed submanifold ofM; diffeomor-
phic to R, S1, or R0.

(Used on pp. 398, 560.)

9-2. Suppose M is a smooth manifold, S �M is an immersed submanifold, and
V is a smooth vector field on M that is tangent to S .
(a) Show that for any integral curve � of V such that �.t0/ 2 S , there exists

" > 0 such that �
�
.t0 � "; t0C "/

�
� S .

(b) Now assume S is properly embedded. Show that every integral curve
that intersects S is contained in S .

(c) Give a counterexample to (b) if S is not closed.
(Used on pp. 243, 491.)

9-3. Compute the flow of each of the following vector fields on R2:

(a) V D y
@

@x
C

@

@y
.

(b) W D x
@

@x
C 2y

@

@y
.

(c) X D x
@

@x
� y

@

@y
.

(d) Y D x
@

@y
C y

@

@x
.
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9-4. For any integer n � 1, define a flow on the odd-dimensional sphere
S2n�1 �Cn by �.t; z/D ei tz. Show that the infinitesimal generator of � is
a smooth nonvanishing vector field on S2n�1. [Remark: in the case nD 2,
the integral curves of X are the curves �z of Problem 3-6, so this provides a
simpler proof that each �z is smooth.] (Used on p. 435.)

9-5. SupposeM is a smooth, compact manifold that admits a nowhere vanishing
smooth vector field. Show that there exists a smooth map F W M !M that
is homotopic to the identity and has no fixed points.

9-6. Prove Lemma 9.19 (the escape lemma).

9-7. Let M be a connected smooth manifold. Show that the group of diffeomor-
phisms of M acts transitively on M : that is, for any p;q 2M; there is a
diffeomorphism F W M !M such that F.p/D q. [Hint: first prove that if
p;q 2 Bn (the open unit ball in Rn), there is a compactly supported smooth
vector field on Bn whose flow � satisfies �1.p/D q.]

9-8. Let M be a smooth manifold and let S �M be a compact embedded sub-
manifold. Suppose V 2 X.M/ is a smooth vector field that is nowhere tan-
gent to S . Show that there exists " > 0 such that the flow of V restricts to a
smooth embedding ˚ W .�"; "/� S!M .

9-9. Suppose M is a smooth manifold and S �M is an embedded hypersurface
(not necessarily compact). Suppose further that there is a smooth vector field
V defined on a neighborhood of S and nowhere tangent to S . Show that S
has a neighborhood in M diffeomorphic to .�1; 1/� S , under a diffeomor-
phism that restricts to the obvious identification f0g � S � S . [Hint: using
the notation of the flowout theorem, show that Oı �O1.]

9-10. For each vector field in Problem 9-3, find smooth coordinates in a neighbor-
hood of .1; 0/ for which the given vector field is a coordinate vector field.

9-11. Prove Theorem 9.24 (the boundary flowout theorem). [Hint: define ˚ first
in boundary coordinates and use uniqueness to glue together the local defi-
nitions. To obtain an embedding, make sure ı.p/ is no more than half of the
first time the integral curve starting at p hits the boundary (if it ever does).]

9-12. Suppose M1 and M2 are connected smooth n-manifolds and M1 # M2 is
their smooth connected sum (see Example 9.31). Show that the smooth
structure onM1 #M2 can be chosen in such a way that there are open subsets
�M1; �M2 �M1 #M2 that are diffeomorphic to M1 X fp1g and M2 X fp2g,

respectively, such that �M1[ �M2 DM1 #M2 and �M1\ �M2 is diffeomorphic
to .�1; 1/� Sn�1. (Used on p. 465.)

9-13. Prove that the conclusions of Theorems 5.29 and 5.53(b) (restricting the
codomain of a smooth map to a submanifold or submanifold with boundary)
remain true if M is allowed to be a smooth manifold with boundary.

9-14. Use the double to prove Theorem 6.18 (the Whitney immersion theorem) in
the case that M has nonempty boundary.
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9-15. Prove Theorem 9.35 (canonical form near a regular point on the boundary).
[Hint: consider M as a regular domain in its double, and start with coordi-
nates in which xn is a local defining function for @M in D.M/.]

9-16. Give an example of smooth vector fields V , zV , and W on R2 such that
V D zV D @=@x along the x-axis but LVW ¤L zVW at the origin. [Remark:
this shows that it is really necessary to know the vector field V to compute
.LVW /p ; it is not sufficient just to know the vector Vp , or even to know the
values of V along an integral curve of V .]

9-17. For each k-tuple of vector fields on R3 shown below, either find smooth
coordinates

�
s1; s2; s3

�
in a neighborhood of .1; 0; 0/ such that Vi D @=@si

for i D 1; : : : ; k, or explain why there are none.

(a) k D 2I V1 D
@

@x
; V2 D

@

@x
C

@

@y
.

(b) k D 2I V1 D .xC 1/
@

@x
� .y C 1/

@

@y
; V2 D .xC 1/

@

@x
C .y C 1/

@

@y
.

(c) k D 3I V1 D x
@

@y
� y

@

@x
; V2 D y

@

@z
� z

@

@y
; V3 D z

@

@x
� x

@

@z
.

9-18. Define vector fields X and Y on the plane by

X D x
@

@x
� y

@

@y
; Y D x

@

@y
C y

@

@x
:

Compute the flows �; of X and Y , and verify that the flows do not com-
mute by finding explicit open intervals J and K containing 0 such that
�s ı  t and  t ı �s are both defined for all .s; t/ 2 J � K , but they are
unequal for some such .s; t/.

9-19. Let M be R3 with the z-axis removed. Define V;W 2X.M/ by

V D
@

@x
�

y

x2C y2
@

@z
; W D

@

@y
C

x

x2C y2
@

@z
;

and let � and  be the flows of V and W , respectively. Prove that V and
W commute, but there exist p 2M and s; t 2 R such that �t ı  s.p/ and
 s ı �t .p/ are both defined but are not equal.

9-20. Suppose M is a compact smooth manifold and V W J �M ! TM is a
smooth time-dependent vector field on M . Show that the domain of the
time-dependent flow of V is all of J � J �M .

9-21. Let M be a smooth manifold. A smooth isotopy of M is a smooth map
H W M � J !M; where J �R is an interval, such that for each t 2 J , the
map Ht W M !M defined by Ht .p/ D H.p; t/ is a diffeomorphism. (In
particular, if J is the unit interval, then H is a homotopy from H0 to H1
through diffeomorphisms.) This problem shows that smooth isotopies are
closely related to time-dependent flows.
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(a) Suppose J � R is an open interval and H W M � J !M is a smooth
isotopy. Show that the map V W J �M ! TM defined by

V.t;p/D
@

@t
H.p; t/

is a smooth time-dependent vector field on M; whose time-dependent
flow is given by  .t; t0; p/DHt ıH

�1
t0
.p/ with domain J � J �M .

(b) Conversely, suppose J is an open interval and V W J �M !M is a
smooth time-dependent vector field on M whose time-dependent flow
is defined on J � J �M . For any t0 2 J , show that the map H W M �
J !M defined by H.t;p/D .t; t0; p/ is a smooth isotopy of M .

9-22. Here are three Cauchy problems in R2. For each one, find an explicit solu-
tion u.x;y/ in a neighborhood of the initial submanifold:

(a) y
@u

@x
C
@u

@y
D x; u.x; 0/D sinx.

(b)
@u

@x
C y

@u

@y
D 0; u.x; 1/D e�x .

(c)
@u

@x
C u

@u

@y
D y; u.0;y/D 0.

9-23. Consider again the Cauchy problems in Problem 9-22. Show that (a) has a
unique global solution; (b) has a global solution, but it is not unique; and (c)
has no global solutions. [Hint: consider which characteristic curves intersect
the initial submanifold and which do not.]

9-24. Prove the converse to Euler’s homogeneous function theorem (Problem 8-2):
if f 2 C1 .Rn X f0g/ satisfies Vf D cf , where V is the Euler vector field
and c 2R, then f is positively homogeneous of degree c.



Chapter 10
Vector Bundles

In Chapter 3, we saw that the tangent bundle of a smooth manifold has a natural
structure as a smooth manifold in its own right. The natural coordinates we con-
structed on TM make it look, locally, like the Cartesian product of an open subset
of M with Rn. This kind of structure arises quite frequently—a collection of vector
spaces, one for each point in M; glued together in a way that looks locally like the
Cartesian product ofM with Rn, but globally may be “twisted.” Such structures are
called vector bundles, and are the main subject of this chapter.

The chapter begins with the definition of vector bundles and descriptions of a few
examples. The most notable example, of course, is the tangent bundle of a smooth
manifold. We then go on to discuss local and global sections of vector bundles
(which correspond to vector fields in the case of the tangent bundle). The chap-
ter continues with a discussion of the natural notions of maps between bundles,
called bundle homomorphisms, and subsets of vector bundles that are themselves
vector bundles, called subbundles. At the end of the chapter, we briefly introduce an
important generalization of vector bundles, called fiber bundles.

There is a deep and extensive body of theory about vector bundles and fiber
bundles on manifolds, which we cannot even touch. We introduce them primarily
in order to have a convenient language for talking about the tangent bundle and
structures like it; as you will see in the next few chapters, such structures exist in
profusion on smooth manifolds.

Vector Bundles

Let M be a topological space. A (real) vector bundle of rank k over M is a topo-
logical space E together with a surjective continuous map � W E !M satisfying
the following conditions:

(i) For each p 2M; the fiber Ep D ��1.p/ over p is endowed with the structure
of a k-dimensional real vector space.

J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics 218,
DOI 10.1007/978-1-4419-9982-5_10, © Springer Science+Business Media New York 2013
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Fig. 10.1 A local trivialization of a vector bundle

(ii) For each p 2M; there exist a neighborhood U of p in M and a homeomor-
phism ˚ W ��1.U /! U �Rk (called a local trivialization of E over U ), sat-
isfying the following conditions (Fig. 10.1):

� �U ı˚ D � (where �U W U �Rk! U is the projection);
� for each q 2U , the restriction of˚ toEq is a vector space isomorphism from
Eq to fqg �Rk ŠRk .

If M and E are smooth manifolds with or without boundary, � is a smooth map,
and the local trivializations can be chosen to be diffeomorphisms, then E is called
a smooth vector bundle. In this case, we call any local trivialization that is a diffeo-
morphism onto its image a smooth local trivialization.

A rank-1 vector bundle is often called a (real) line bundle. Complex vector bun-
dles are defined similarly, with “real vector space” replaced by “complex vector
space” and Rk replaced by Ck in the definition. We have no need to treat complex
vector bundles in this book, so all of our vector bundles are understood without
further comment to be real.

The space E is called the total space of the bundle, M is called its base, and
� is its projection. Depending on what we wish to emphasize, we sometimes omit
some of the ingredients from the notation, and write “E is a vector bundle overM;”
or “E!M is a vector bundle,” or “� W E!M is a vector bundle.”

I Exercise 10.1. Suppose E is a smooth vector bundle over M . Show that the pro-
jection map � W E!M is a surjective smooth submersion.

If there exists a local trivialization of E over all of M (called a global trivial-
ization of E ), then E is said to be a trivial bundle. In this case, E itself is homeo-
morphic to the product space M �Rk . If E!M is a smooth bundle that admits a
smooth global trivialization, then we say that E is smoothly trivial. In this case E
is diffeomorphic to M �Rk , not just homeomorphic. For brevity, when we say that
a smooth bundle is trivial, we always understand this to mean smoothly trivial, not
just trivial in the topological sense.
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Fig. 10.2 Part of the Möbius bundle

Example 10.2 (Product Bundles). One particularly simple example of a rank-
k vector bundle over any space M is the product space E D M � Rk with
� D �1 W M �Rk!M as its projection. Any such bundle, called a product bundle,
is trivial (with the identity map as a global trivialization). IfM is a smooth manifold
with or without boundary, then M �Rk is smoothly trivial. //

Although there are many vector bundles that are not trivial, the only one that is
easy to visualize is the following.

Example 10.3 (The Möbius Bundle). Define an equivalence relation on R2 by
declaring that .x; y/ 	 .x0; y0/ if and only if .x0; y0/D

�
x C n; .�1/ny

�
for some

n 2Z. LetE DR2=	 denote the quotient space, and let q W R2!E be the quotient
map.

To visualize E , let S denote the strip Œ0; 1� �R�R2. The restriction of q to S
is surjective and closed, so it is a quotient map. The only nontrivial identifications
made by qjS are on the two boundary lines, so we can think of E as the space
obtained from S by giving the right-hand edge a half-twist to turn it upside-down,
and then pasting it to the left-hand edge (Fig. 10.2). For any r > 0, the image under
the quotient map q of the rectangle Œ0; 1� � Œ�r; r� is a smooth compact manifold
with boundary called a Möbius band; you can make a paper model of this space by
pasting the ends of a strip of paper together with a half-twist.

Consider the following commutative diagram:

R2
q� E

R

�1 �

"
� S1;

��

where �1 is the projection onto the first factor and " W R! S1 is the smooth covering
map ".x/D e2�ix . Because "ı�1 is constant on each equivalence class, it descends
to a continuous map � W E! S1. A straightforward (if tedious) verification shows
that E has a unique smooth manifold structure such that q is a smooth covering map
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and � W E! S1 is a smooth real line bundle over S1, called the Möbius bundle. (If
U � S1 is an open subset that is evenly covered by ", and zU �R is a component of
"�1.U /, then q restricts to a homeomorphism from zU �R to ��1.U /. Using this,
one can construct a homeomorphism from ��1.U / to U � R, which serves as a
local trivialization of E . These local trivializations can be interpreted as coordinate
charts defining the smooth structure on E . Problem 10-1 asks you to work out the
details. Problem 21-9 suggests a more powerful approach.) //

The most important examples of vector bundles are tangent bundles.

Proposition 10.4 (The Tangent Bundle as a Vector Bundle). Let M be a smooth
n-manifold with or without boundary, and let TM be its tangent bundle. With its
standard projection map, its natural vector space structure on each fiber, and the
topology and smooth structure constructed in Proposition 3.18, TM is a smooth
vector bundle of rank n over M .

Proof. Given any smooth chart .U;'/ for M with coordinate functions
�
xi
�
, define

a map ˚ W ��1.U /!U �Rn by

˚

�
vi

@

@xi

ˇ̌
ˇ
ˇ
p

�
D
�
p;
�
v1; : : : ; vn

��
: (10.1)

This is linear on fibers and satisfies �1 ı˚ D � . The composite map

��1.U /
˚
�!U �Rn

'�IdRn
�����! '.U /�Rn

is equal to the coordinate map z' constructed in Proposition 3.18. Since both z' and
' � IdRn are diffeomorphisms, so is ˚ . Thus, ˚ satisfies all the conditions for a
smooth local trivialization. �

Any bundle that is not trivial, of course, requires more than one local trivializa-
tion. The next lemma shows that the composition of two smooth local trivializations
has a simple form where they overlap.

Lemma 10.5. Let � W E!M be a smooth vector bundle of rank k over M . Sup-
pose ˚ W ��1.U /! U �Rk and � W ��1.V /! V �Rk are two smooth local trivi-
alizations of E with U \V ¤¿. There exists a smooth map � W U \V !GL.k;R/
such that the composition ˚ ı��1 W .U \ V /�Rk! .U \ V /�Rk has the form

˚ ı��1.p; v/D
�
p; �.p/v

�
;

where �.p/v denotes the usual action of the k�k matrix �.p/ on the vector v 2Rk .

Proof. The following diagram commutes:

.U \ V /�Rk �� ��1.U \ V / �̊ .U \ V /�Rk

U \ V;

�
� �1��1 �

(10.2)
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where the maps on top are to be interpreted as the restrictions of � and ˚ to
��1.U \ V /. It follows that �1 ı

�
˚ ı��1

�
D �1, which means that

˚ ı��1.p; v/D
�
p;�.p; v/

�

for some smooth map � W .U \V /�Rk!Rk . Moreover, for each fixed p 2U \V ,
the map v 7! �.p; v/ from Rk to itself is an invertible linear map, so there is a
nonsingular k � k matrix �.p/ such that �.p; v/D �.p/v. It remains only to show
that the map � W U \ V !GL.k;R/ is smooth. This is left to Problem 10-4. �

The smooth map � W U \ V ! GL.k;R/ described in this lemma is called the
transition function between the local trivializations ˚ and � . (This is one of the
few situations in smooth manifold theory in which it is traditional to use the word
“function” even though the codomain is not R or Rk .) For example, ifM is a smooth
manifold and ˚ and � are the local trivializations of TM associated with two dif-
ferent smooth charts, then (3.12) shows that the transition function between them is
the Jacobian matrix of the coordinate transition map.

Like the tangent bundle, vector bundles are often most easily described by giv-
ing a collection of vector spaces, one for each point of the base manifold. In order
to make such a set into a smooth vector bundle, we would first have to construct
a manifold topology and a smooth structure on the disjoint union of all the vector
spaces, and then construct the local trivializations and show that they have the req-
uisite properties. The next lemma provides a shortcut, by showing that it is sufficient
to construct the local trivializations, as long as they overlap with smooth transition
functions. (See also Problem 10-6 for a stronger form of this result.)

Lemma 10.6 (Vector Bundle Chart Lemma). Let M be a smooth manifold with
or without boundary, and suppose that for each p 2M we are given a real vector
space Ep of some fixed dimension k. Let E D

`
p2M Ep , and let � W E!M be the

map that takes each element of Ep to the point p. Suppose furthermore that we are
given the following data:

(i) an open cover fU˛g˛2A of M
(ii) for each ˛ 2A, a bijective map ˚˛ W ��1.U˛/! U˛ �Rk whose restriction to

each Ep is a vector space isomorphism from Ep to fpg �Rk ŠRk

(iii) for each ˛;ˇ 2 A with U˛ \ Uˇ ¤ ¿, a smooth map �˛ˇ W U˛ \ Uˇ !

GL.k;R/ such that the map ˚˛ ı˚�1ˇ from .U˛ \ Uˇ / �Rk to itself has the
form

˚˛ ı˚
�1
ˇ .p; v/D

�
p; �˛ˇ .p/v

�
(10.3)

Then E has a unique topology and smooth structure making it into a smooth mani-
fold with or without boundary and a smooth rank-k vector bundle over M; with �
as projection and f.U˛;˚˛/g as smooth local trivializations.

Proof. For each point p 2M; choose some U˛ containing p; choose a smooth chart
.Vp; 'p/ forM such that p 2 Vp � U˛ ; and let yVp D 'p.Vp/�Rn or Hn (where n is
the dimension ofM ). Define a map z'p W ��1.Vp/! yVp�Rk by z'p D .'p� IdRk /ı
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˚˛ :

��1.Vp/
˚˛
��! Vp �R

k
'p�IdRk
������! yVp �R

k :

We will show that the collection of all such charts
˚�
��1.Vp/; z'p

�
W p 2M

�
satisfies

the conditions of the smooth manifold chart lemma (Lemma 1.35) or its counterpart
for manifolds with boundary (Exercise 1.43), and therefore gives E the structure of
a smooth manifold with or without boundary.

As a composition of bijective maps, z'p is bijective onto an open subset of either
Rn �Rk DRnCk or Hn �Rk �HnCk . For any p;q 2M; it is easy to check that

z'p
�
��1.Vp/\ �

�1.Vq/
�
D 'p.Vp \ Vq/�R

k ;

which is open because 'p is a homeomorphism onto an open subset of Rn or Hn.
Wherever two such charts overlap, we have

z'p ı z'
�1
q D

�
'p � IdRk

�
ı˚˛ ı˚

�1
ˇ ı

�
'q � IdRk

��1
:

Since 'p � IdRk , 'q � IdRk , and ˚˛ ı˚�1ˇ are diffeomorphisms, the composition is
a diffeomorphism. Thus, conditions (i)–(iii) of Lemma 1.35 are satisfied. Because
the open cover fVp W p 2M g has a countable subcover, (iv) is satisfied as well.

To check the Hausdorff condition (v), just note that any two points in the same
space Ep lie in one of the charts we have constructed; while if � 2 Ep and � 2 Eq
with p ¤ q, we can choose Vp and Vq to be disjoint neighborhoods of p and q, so
that the sets ��1.Vp/ and ��1.Vq/ are disjoint coordinate neighborhoods contain-
ing � and �, respectively. Thus we have given E the structure of a smooth manifold
with or without boundary.

With respect to this structure, each of the maps ˚˛ is a diffeomorphism, because
in terms of the coordinate charts

�
��1.Vp/; z'p

�
for E and

�
Vp �Rk ; 'p � IdRk

�
for

Vp�Rk , the coordinate representation of˚˛ is the identity map. The coordinate rep-
resentation of � , with respect to the same chart for E and the chart .Vp; 'p/ for M;
is �.x; v/ D x, so � is smooth as well. Because each ˚˛ maps Ep to fpg � Rk ,
it is immediate that �1 ı ˚˛ D � , and ˚˛ is linear on fibers by hypothesis. Thus,
˚˛ satisfies all the conditions for a smooth local trivialization.

The fact that this is the unique such smooth structure follows easily from the re-
quirement that the maps ˚˛ be diffeomorphisms onto their images: any smooth
structure satisfying the same conditions must include all of the charts we con-
structed, so it is equal to this one. �

Here are some examples showing how the chart lemma can be used to construct
new vector bundles from old ones.

Example 10.7 (Whitney Sums). Given a smooth manifold M and smooth vector
bundles E 0!M and E 00!M of ranks k0 and k00, respectively, we will construct
a new vector bundle over M called the Whitney sum of E 0 and E 00, whose fiber at
each p 2M is the direct sum E 0p ˚ E

00
p . The total space is defined as E 0 ˚ E 00 D

`
p2M

�
E 0p˚E

00
p

�
, with the obvious projection � W E 0˚E 00!M . For each p 2M;
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choose a neighborhood U of p small enough that there exist local trivializations
.U;˚ 0/ of E 0 and .U;˚ 00/ of E 00, and define ˚ W ��1.U /! U �Rk

0Ck00 by

˚.v0; v00/D
�
� 0.v0/;

�
�Rk0 ı˚

0.v0/;�Rk00 ı˚
00.v00/

��
:

Suppose we are given another such pair of local trivializations
�
zU ; z̊ 0

�
and

�
zU ; z̊ 00

�
.

Let � 0 W
�
U \ zU

�
! GL.k0;R/ and � 00 W

�
U \ zU

�
! GL.k00;R/ be the correspond-

ing transition functions. Then the transition function for E 0˚E 00 has the form

z̊ ı˚�1
�
p; .v0; v00/

�
D
�
p; �.p/.v0; v00/

�
;

where �.p/D � 0.p/˚ � 00.p/ 2GL.k0C k00;R/ is the block diagonal matrix
�
� 0.p/ 0

0 � 00.p/

�
:

Because this depends smoothly on p, it follows from the chart lemma that E 0˚E 00

is a smooth vector bundle over M . //

Example 10.8 (Restriction of a Vector Bundle). Suppose � W E!M is a rank-k
vector bundle and S �M is any subset. We define the restriction of E to S to be
the set EjS D

S
p2S Ep , with the projection EjS ! S obtained by restricting � .

If ˚ W ��1.U /! U �Rk is a local trivialization of E over U �M; it restricts to
a bijective map ˚ jU W

�
�jS

��1
.U \ S/! .U \ S/ � Rk , and it is easy to check

that these form local trivializations for a vector bundle structure on EjS . If E is
a smooth vector bundle and S �M is an immersed or embedded submanifold, it
follows easily from the chart lemma that EjS is a smooth vector bundle. In particu-
lar, if S �M is a smooth (embedded or immersed) submanifold, then the restricted
bundle TM jS is called the ambient tangent bundle over M . //

Local and Global Sections of Vector Bundles

Let � W E ! M be a vector bundle. A section of E (sometimes called a cross
section) is a section of the map � , that is, a continuous map � W M !E satisfying
� ı � D IdM . This means that �.p/ is an element of the fiber Ep for each p 2M .

More generally, a local section of E is a continuous map � W U !E defined on
some open subset U �M and satisfying � ı� D IdU (see Fig. 10.3). To emphasize
the distinction, a section defined on all of M is sometimes called a global section.
Note that a local section of E over U �M is the same as a global section of the
restricted bundle EjU . If M is a smooth manifold with or without boundary and E
is a smooth vector bundle, a smooth (local or global) section of E is one that is a
smooth map from its domain to E .

Just as with vector fields, for some purposes it is useful also to consider maps
that would be sections except that they might not be continuous. Thus, we define a
rough (local or global) section of E over a set U �M to be a map � W U ! E



256 10 Vector Bundles

Fig. 10.3 A local section of a vector bundle

(not necessarily continuous) such that � ı � D IdU . A “section” without further
qualification always means a continuous section.

The zero section of E is the global section � W M !E defined by

�.p/D 0 2Ep for each p 2M:

As in the case of vector fields, the support of a section � is the closure of the set
fp 2M W �.p/¤ 0g.

I Exercise 10.9. Show that the zero section of every vector bundle is continuous,
and the zero section of every smooth vector bundle is smooth. [Hint: consider ˚ ı �,
where ˚ is a local trivialization.]

Example 10.10 (Sections of Vector Bundles). Suppose M is a smooth manifold
with or without boundary.

(a) Sections of TM are vector fields on M .
(b) Given an immersed submanifold S �M with or without boundary, a section of

the ambient tangent bundle TM jS ! S is called a vector field along S . It is
a continuous map X W S ! TM such that Xp 2 TpM for each p 2 S . This is
different from a vector field on S , which satisfies Xp 2 TpS at each point.

(c) If E DM � Rk is a product bundle, there is a natural one-to-one correspon-
dence between sections of E and continuous functions from M to Rk : a con-
tinuous function F W M ! Rk determines a section zF W M ! M � Rk by
zF .x/ D

�
x;F.x/

�
, and vice versa. If M is a smooth manifold with or with-

out boundary, then the section zF is smooth if and only if F is.
(d) The correspondence in the preceding paragraph yields a natural identification

between the space C1.M/ and the space of smooth sections of the trivial line
bundle M �R!M . //
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If E!M is a smooth vector bundle, the set of all smooth global sections of E
is a vector space under pointwise addition and scalar multiplication:

.c1�1C c2�2/.p/D c1�1.p/C c2�2.p/:

This vector space is usually denoted by �.E/. (For particular vector bundles, we
will often introduce specialized notations for their spaces of sections, such as the
notation X.M/ introduced in Chapter 8 for the space of smooth sections of TM .)

Just like smooth vector fields, smooth sections of a smooth bundle E!M can
be multiplied by smooth real-valued functions: if f 2 C1.M/ and � 2 �.E/, we
obtain a new section f� defined by

.f �/.p/D f .p/�.p/:

I Exercise 10.11. Let E!M be a smooth vector bundle.

(a) Show that if �; � 2 �.E/ and f;g 2 C1.M/, then f� C g� 2 �.E/.
(b) Show that �.E/ is a module over the ring C1.M/.

Lemma 10.12 (Extension Lemma for Vector Bundles). Let � W E ! M be a
smooth vector bundle over a smooth manifold M with or without boundary. Sup-
pose A is a closed subset of M; and � W A!E is a section of EjA that is smooth in
the sense that � extends to a smooth local section of E in a neighborhood of each
point. For each open subset U �M containing A, there exists a global smooth
section z� 2 �.E/ such that z� jA D � and supp z� � U .

I Exercise 10.13. Prove the preceding lemma.

I Exercise 10.14. Let � W E!M be a smooth vector bundle. Show that each ele-
ment of E is in the image of a smooth global section.

Local and Global Frames

The concept of local frames that we introduced in Chapter 8 extends readily to
vector bundles. Let E!M be a vector bundle. If U �M is an open subset, a k-
tuple of local sections .�1; : : : ; �k/ of E over U is said to be linearly independent
if their values

�
�1.p/; : : : ; �k.p/

�
form a linearly independent k-tuple in Ep for

each p 2 U . Similarly, they are said to span E if their values span Ep for each
p 2 U . A local frame for E over U is an ordered k-tuple .�1; : : : ; �k/ of linearly
independent local sections over U that span E; thus

�
�1.p/; : : : ; �k.p/

�
is a basis

for the fiber Ep for each p 2 U . It is called a global frame if U DM . If E!M

is a smooth vector bundle, a local or global frame is a smooth frame if each �i is a
smooth section. We often denote a frame .�1; : : : ; �k/ by .�i /.

The (local or global) frames for M that we defined in Chapter 8 are, in our
new terminology, frames for the tangent bundle. We use both terms interchangeably
depending on context: “frame for M ” and “frame for TM ” mean the same thing.

The next proposition is an analogue for vector bundles of Proposition 8.11.
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Proposition 10.15 (Completion of Local Frames for Vector Bundles). Suppose
� W E!M is a smooth vector bundle of rank k.

(a) If .�1; : : : ; �m/ is a linearly independent m-tuple of smooth local sections of E
over an open subset U �M; with 1 �m< k, then for each p 2 U there exist
smooth sections �mC1; : : : ; �k defined on some neighborhood V of p such that
.�1; : : : ; �k/ is a smooth local frame for E over U \ V .

(b) If .v1; : : : ; vm/ is a linearly independent m-tuple of elements of Ep for some
p 2M; with 1�m� k, then there exists a smooth local frame .�i / for E over
some neighborhood of p such that �i .p/D vi for i D 1; : : : ;m.

(c) If A�M is a closed subset and .�1; : : : ; �k/ is a linearly independent k-tuple
of sections of EjA that are smooth in the sense described in Lemma 10.12, then
there exists a smooth local frame .�1; : : : ; �k/ for E over some neighborhood
of A such that �i jA D �i for i D 1; : : : ; k.

I Exercise 10.16. Prove the preceding proposition.

Local frames for a vector bundle are intimately connected with local trivializa-
tions, as the next two examples show.

Example 10.17 (A Global Frame for a Product Bundle). If E DM �Rk!M

is a product bundle, the standard basis .e1; : : : ; ek/ for Rk yields a global frame
.zei / for E , defined by zei .p/D .p; ei /. If M is a smooth manifold with or without
boundary, then this global frame is smooth. //

Example 10.18 (Local Frames Associated with Local Trivializations). Suppose
� W E ! M is a smooth vector bundle. If ˚ W ��1.U /! U � Rk is a smooth
local trivialization of E , we can use the same idea as in the preceding example
to construct a local frame for E over U . Define maps �1; : : : ; �k W U ! E by
�i .p/D˚

�1.p; ei /D˚
�1 ı zei .p/:

Then �i is smooth because ˚ is a diffeomorphism, and the fact that �1 ı ˚ D �
implies that

� ı �i .p/D � ı˚
�1.p; ei /D �1.p; ei /D p;

so �i is a section. To see that
�
�i .p/

�
forms a basis for Ep , just note that ˚ re-

stricts to an isomorphism from Ep to fpg�Rk , and ˚
�
�i .p/

�
D .p; ei /, so ˚ takes�

�i .p/
�

to the standard basis for fpg �Rk ŠRk . We say that this local frame .�i /
is associated with ˚ . //

Proposition 10.19. Every smooth local frame for a smooth vector bundle is associ-
ated with a smooth local trivialization as in Example 10.18.



Local and Global Sections of Vector Bundles 259

Proof. Suppose E!M is a smooth vector bundle and .�i / is a smooth local frame
for E over an open subset U �M . We define a map � W U �Rk! ��1.U / by

�
�
p;
�
v1; : : : ; vk

��
D vi�i .p/: (10.4)

The fact that
�
�i .p/

�
forms a basis for Ep at each p 2 U implies that � is bijective,

and an easy computation shows that �i D � ı zei . Thus, if we can show that � is
a diffeomorphism, then ��1 will be a smooth local trivialization whose associated
local frame is .�i /.

Since � is bijective, to show that it is a diffeomorphism it suffices to show that it
is a local diffeomorphism. Given q 2U , we can choose a neighborhood V of q inM
over which there exists a smooth local trivialization ˚ W ��1.V /! V �Rk , and by
shrinking V if necessary we may assume that V � U . Since ˚ is a diffeomorphism,
if we can show that ˚ ı � jV�Rk is a diffeomorphism from V � Rk to itself, it
follows that � restricts to a diffeomorphism from V �Rk to ��1.V /:

V �Rk
� jV�Rk� ��1.V / �̊ V �Rk

V:

�
� �1�

�1 �

For each of our smooth sections �i , the composite map ˚ ı �i jV W V ! V �Rk

is smooth, and thus there are smooth functions �1i ; : : : ; �
k
i W V !R such that

˚ ı �i .p/D
�
p;
�
�1i .p/; : : : ; �

k
i .p/

��
:

On V �Rk , therefore,

˚ ı�
�
p;
�
v1; : : : ; vk

��
D
�
p;
�
vi�1i .p/; : : : ; v

i�ki .p/
��
;

which is clearly smooth.
To show that .˚ ı�/�1 is smooth, note that the matrix

�
�
j
i .p/

�
is invertible for

each p, because
�
�i .p/

�
is a basis for Ep . Let

�
�
j
i .p/

�
denote the inverse matrix.

Because matrix inversion is a smooth map from GL.k;R/ to itself, the functions �ji
are smooth. It follows from the computations in the preceding paragraph that

.˚ ı�/�1
�
p;
�
w1; : : : ;wk

��
D
�
p;
�
wi�1i .p/; : : : ;w

i�ki .p/
��
;

which is also smooth. �
Corollary 10.20. A smooth vector bundle is smoothly trivial if and only if it admits
a smooth global frame.

Proof. Example 10.18 and Proposition 10.19 show that there is a smooth local triv-
ialization over an open subset U �M if and only if there is a smooth local frame
over U . The corollary is just the special case of this statement when U DM . �

When applied to the tangent bundle of a smooth manifold M; this corollary says
that TM is trivial if and only if M is parallelizable. (Recall that in Chapter 8 we
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defined a parallelizable manifold to be one that admits a smooth global frame for
its tangent bundle.)

Corollary 10.21. Let � W E!M be a smooth vector bundle of rank k, let .V;'/
be a smooth chart on M with coordinate functions

�
xi
�
, and suppose there exists a

smooth local frame .�i / for E over V . Define z' W ��1.V /! '.V /�Rk by

z'
�
vi�i .p/

�
D
�
x1.p/; : : : ; xn.p/; v1; : : : ; vk

�
:

Then
�
��1.V /; z'

�
is a smooth coordinate chart for E .

Proof. Just check that z' is equal to the composition .' � IdRk / ı˚ , where ˚ is the
local trivialization associated with .�i /. As a composition of diffeomorphisms, it is
a diffeomorphism. �

Just as smoothness of vector fields can be characterized in terms of their compo-
nent functions in any smooth chart, smoothness of sections of vector bundles can be
characterized in terms of local frames. Suppose .�i / is a smooth local frame for E
over some open subset U �M . If � W M ! E is a rough section, the value of � at
an arbitrary point p 2 U can be written �.p/D � i .p/�i .p/ for some uniquely de-
termined numbers

�
�1.p/; : : : ; �n.p/

�
. This defines k functions � i W U !R, called

the component functions of � with respect to the given local frame.

Proposition 10.22 (Local Frame Criterion for Smoothness). Let � W E!M be
a smooth vector bundle, and let � W M ! E be a rough section. If .�i / is a smooth
local frame for E over an open subset U �M; then � is smooth on U if and only if
its component functions with respect to .�i / are smooth.

Proof. Let ˚ W ��1.U /! U � Rk be the local trivialization associated with the
local frame .�i /. Because ˚ is a diffeomorphism, � is smooth on U if and only
if the composite map ˚ ı � is smooth on U . It is straightforward to check that
˚ ı �.p/D

�
p;
�
�1.p/; : : : ; �k.p/

��
, where

�
� i
�

are the component functions of �
with respect to .�i /, so ˚ ı � is smooth if and only if the component functions � i

are smooth. �

I Exercise 10.23. Let E!M be a vector bundle. Show that a rough section of E
is continuous if and only if its component functions in each local frame are continuous.

Proposition 10.22 applies equally well to local sections, since a local section ofE
over an open subset V �M is a global section of the restricted bundle EjV .

The correspondence between local frames and local trivializations leads to the
following uniqueness result characterizing the smooth structure on the tangent bun-
dle of a smooth manifold.

Proposition 10.24 (Uniqueness of the Smooth Structure on TM ). Let M be a
smooth n-manifold with or without boundary. The topology and smooth structure
on TM constructed in Proposition 3.18 are the unique ones with respect to which
� W TM !M is a smooth vector bundle with the given vector space structure on
the fibers, and such that all coordinate vector fields are smooth local sections.
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Proof. Suppose TM is endowed with some topology and smooth structure making
it into a smooth vector bundle with the given properties. If .U;'/ is any smooth chart
forM; the corresponding coordinate frame

�
@=@xi

�
is a smooth local frame over U ,

so by Proposition 10.19 there is a smooth local trivialization˚ W ��1.U /! U �Rn

associated with this local frame. Referring back to the construction of Example
10.18, we see that this local trivialization is none other than the map ˚ constructed
in Proposition 10.4. It follows from Corollary 10.21 that the natural coordinate chart
z' D .' � IdRn/ ı˚ belongs to the given smooth structure. Thus, the given smooth
structure is equal to the one constructed in Proposition 3.18. �

Bundle Homomorphisms

If � W E!M and � 0 W E 0!M 0 are vector bundles, a continuous map F W E!E 0

is called a bundle homomorphism if there exists a map f W M !M 0 satisfying
� 0 ıF D f ı � ,

E
F� E 0

M

� �

f
� M 0;

� 0�

with the property that for each p 2M; the restricted map F jEp W Ep ! E 0
f .p/

is
linear. The relationship between F and f is expressed by saying that F covers f .

Proposition 10.25. Suppose � W E!M and � 0 W E!M 0 are vector bundles and
F W E!E 0 is a bundle homomorphism covering f W M !M 0. Then f is continu-
ous and is uniquely determined by F . If the bundles and F are all smooth, then f
is smooth as well.

Proof. All of the conclusions follow from the easily verified fact that f D � 0ıF ı�,
where � W M !E is the zero section. �

A bijective bundle homomorphism F W E ! E 0 whose inverse is also a bundle
homomorphism is called a bundle isomorphism; if F is also a diffeomorphism, it is
called a smooth bundle isomorphism. If there exists a (smooth) bundle isomorphism
between E and E 0, the two bundles are said to be (smoothly) isomorphic.

In the special case in which both E and E 0 are vector bundles over the same base
spaceM; a slightly more restrictive notion of bundle homomorphism is usually more
useful. A bundle homomorphism over M is a bundle homomorphism covering the
identity map of M; or in other words, a continuous map F W E ! E 0 such that
� 0 ıF D � ,

E
F � E 0

M;
� 0��

�

and whose restriction to each fiber is linear. If there exists a bundle homomorphism
F W E! E 0 over M that is also a (smooth) bundle isomorphism, then we say that
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E and E 0 are (smoothly) isomorphic over M . The next proposition shows that it is
not necessary to check smoothness of the inverse.

Proposition 10.26. Suppose E and E 0 are smooth vector bundles over a smooth
manifoldM with or without boundary, and F W E!E 0 is a bijective smooth bundle
homomorphism over M . Then F is a smooth bundle isomorphism.

Proof. Problem 10-11. �

I Exercise 10.27. Show that a smooth rank-k vector bundle over M is smoothly
trivial if and only if it is smoothly isomorphic over M to the product bundle M �Rk .

Example 10.28 (Bundle Homomorphisms).

(a) If F W M ! N is a smooth map, the global differential dF W TM ! TN is a
smooth bundle homomorphism covering F .

(b) If E!M is a smooth vector bundle and S �M is an immersed submanifold
with or without boundary, then the inclusion map EjS ,!E is a smooth bundle
homomorphism covering the inclusion of S into M . //

Suppose E!M and E 0!M are smooth vector bundles over a smooth man-
ifold M with or without boundary, and let �.E/, �.E 0/ denote their spaces of
smooth global sections. If F W E!E 0 is a smooth bundle homomorphism over M;
then composition with F induces a map zF W �.E/! �.E 0/ as follows:

zF .�/.p/D .F ı �/.p/D F
�
�.p/

�
: (10.5)

It is easy to check that zF .�/ is a section of E 0, and it is smooth by composition.
Because a bundle homomorphism is linear on fibers, the resulting map zF on

sections is linear over R. In fact, it satisfies a stronger linearity property. A map
F W �.E/! �.E 0/ is said to be linear over C1.M/ if for any smooth functions
u1; u2 2 C

1.M/ and smooth sections �1; �2 2 �.E/,

F .u1�1C u2�2/D u1F .�1/C u2F .�2/:

It follows easily from the definition (10.5) that the map on sections induced by a
smooth bundle homomorphism is linear over C1.M/. The next lemma shows that
the converse is true as well.

Lemma 10.29 (Bundle Homomorphism Characterization Lemma). Let � W E!
M and � 0 W E 0!M be smooth vector bundles over a smooth manifold M with or
without boundary, and let �.E/, �.E 0/ denote their spaces of smooth sections. A
map F W �.E/! �.E 0/ is linear over C1.M/ if and only if there is a smooth bun-
dle homomorphism F W E!E 0 over M such that F .�/D F ı � for all � 2 �.E/.

Proof. We noted above that the map on sections induced by a smooth bundle homo-
morphism is linear over C1.M/. Conversely, suppose F W �.E/! �.E 0/ is linear
over C1.M/. First, we show that F acts locally: if �1 � �2 in some open subset
U �M; then F .�1/� F .�2/ in U . Write � D �1 � �2; then by linearity of F , it
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suffices to assume that � vanishes in U and show that F .�/ does too. Given p 2U ,
let  2 C1.M/ be a smooth bump function supported in U and equal to 1 at p.
Because  � is identically zero onM; the fact that F is linear over C1.M/ implies

0D F . �/D F .�/:

Evaluating at p shows that F .�/.p/D  .p/F .�/.p/D 0; since the same is true
for every p 2U , the claim follows.

Next we show that F actually acts pointwise: if �1.p/ D �2.p/, then
F .�1/.p/D F .�2/.p/. Once again, it suffices to assume that �.p/D 0 and show
that F .�/.p/D 0. Let .�1; : : : ; �k/ be a smooth local frame forE in some neighbor-
hood U of p, and write � in terms of this frame as � D ui�i for some smooth func-
tions ui defined in U . The fact that �.p/D 0 means that u1.p/D � � � D uk.p/D 0.
By the extension lemmas for vector bundles and for functions, there exist smooth
global sections z�i 2 �.E/ that agree with �i in a neighborhood of p, and smooth
functions zui 2 C1.M/ that agree with ui in some neighborhood of p. Then since
� D zui z�i on a neighborhood of p, we have

F .�/.p/D F
�
zui z�i

�
.p/D zui .p/F .z�i / .p/D 0:

Define a bundle homomorphism F W E ! E 0 as follows. For any p 2M and
v 2 Ep , let F.v/ D F .zv/.p/ 2 E 0p , where zv is any global smooth section of E
such that zv.p/D v. The discussion above shows that the resulting element of E 0p is
independent of the choice of section. This map F clearly satisfies � 0 ı F D � , and
it is linear on each fiber because of the linearity of F . It also satisfies F ı �.p/D
F .�/.p/ for each � 2 �.E/ by definition. It remains only to show that F is smooth.
It suffices to show that it is smooth in a neighborhood of each point.

Given p 2M; let .�i / be a smooth local frame forE on some neighborhood of p.
By the extension lemma, there are global sections z�i that agree with �i in a (smaller)
neighborhood U of p. Shrinking U further if necessary, we may also assume that
there exists a smooth local frame .� 0j / for E 0 over U . Because F maps smooth
global sections of E to smooth global sections of E 0, there are smooth functions
A
j
i 2 C

1.U / such that F .z�i / jU DA
j
i �
0
j .

For any q 2 U and v 2 Eq , we can write v D vi�i .q/ for some real numbers�
v1; : : : ; vk

�
, and then

F
�
vi�i .q/

�
D F

�
vi z�i

�
.q/D viF .z�i / .q/D v

iA
j
i .q/�

0
j .q/;

because vi z�i is a global smooth section of E whose value at q is v. If ˚ and ˚ 0

denote the local trivializations ofE andE 0 associated with the frames .�i / and .� 0i /,
respectively, it follows that the composite map ˚ 0 ı F ı˚�1 W U �Rk! U �Rm

has the form

˚ 0 ıF ı˚�1
�
q;
�
v1; : : : ; vk

��
D
�
q;
�
A1i .q/v

i ; : : : ;Ami .q/v
i
��
;

which is smooth. Because ˚ and ˚ 0 are diffeomorphisms, this shows that F is
smooth on ��1.U /. �
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Later, after we have developed more tools, we will see many examples of smooth
bundle homomorphisms. For now, here are some elementary examples.

Example 10.30 (Bundle Homomorphisms Over Manifolds).

(a) If M is a smooth manifold and f 2 C1.M/, the map from X.M/ to itself
defined by X 7! fX is linear over C1.M/ because f .u1X1 C u2X2/ D

u1fX1 C u2fX2, and thus defines a smooth bundle homomorphism over M
from TM to itself.

(b) If Z is a smooth vector field on R3, the cross product with Z defines a map
from X

�
R3
�

to itself: X 7! X � Z. Since it is linear over C1
�
R3
�

in X , it
determines a smooth bundle homomorphism over R3 from TR3 to TR3.

(c) Given Z 2 X .Rn/, the Euclidean dot product defines a map X 7! X �Z from
X .Rn/ to C1 .Rn/, which is linear over C1 .Rn/ and thus determines a
smooth bundle homomorphism over Rn from TRn to the trivial line bundle
Rn �R. //

Because of Lemma 10.29, we usually dispense with the notation zF and use the
same symbol for both a bundle homomorphism F W E ! E 0 over M and the lin-
ear map F W �.E/! �.E 0/ that it induces on sections, and we refer to a map of
either of these types as a bundle homomorphism. Because the action on sections
is obtained simply by applying the bundle homomorphism pointwise, this should
cause no confusion. In fact, we have been doing the same thing all along in certain
circumstances. For example, if a 2R, we use the same notation X 7! aX to denote
both the operation of multiplying vectors in each tangent space TpM by a, and the
operation of multiplying vector fields by a. Because multiplying by a is a bundle
homomorphism from TM to itself, there is no ambiguity about what is meant.

It should be noted that most maps that involve differentiation are not bundle
homomorphism. For example, if X is a smooth vector field on a smooth manifold
M; the Lie derivative operator LX W X.M/!X.M/ is not a bundle homomorphism
from the tangent bundle to itself, because it is not linear over C1.M/. As a rule of
thumb, a linear map that takes smooth sections of one bundle to smooth sections
of another is likely to be a bundle homomorphism if it acts pointwise, but not if it
involves differentiation.

Subbundles

Given a vector bundle �E W E!M; a subbundle of E (see Fig. 10.4) is a vector
bundle �D W D !M; in which D is a topological subspace of E and �D is the
restriction of �E to D, such that for each p 2M; the subset Dp D D \ Ep is a
linear subspace of Ep , and the vector space structure on Dp is the one inherited
from Ep . Note that the condition that D be a vector bundle over M implies that all
of the fibers Dp must be nonempty and have the same dimension. If E!M is a
smooth bundle, then a subbundle of E is called a smooth subbundle if it is a smooth
vector bundle and an embedded submanifold with or without boundary in E .
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Fig. 10.4 A subbundle of a vector bundle

I Exercise 10.31. Given a smooth vector bundle E!M and a smooth subbundle
D � E , show that the inclusion map 	 W D ,! E is a smooth bundle homomorphism
over M .

The following lemma gives a convenient condition for checking that a union of
subspaces fDp �Ep W p 2M g is a smooth subbundle.

Lemma 10.32 (Local Frame Criterion for Subbundles). Let � W E ! M be
a smooth vector bundle, and suppose that for each p 2 M we are given an m-
dimensional linear subspace Dp �Ep . Then D D

S
p2M Dp �E is a smooth sub-

bundle of E if and only if the following condition is satisfied:

Each point of M has a neighborhood U on which there ex-
ist smooth local sections �1; : : : ; �m W U !E with the property
that �1.q/; : : : ; �m.q/ form a basis for Dq at each q 2 U .

(10.6)

Proof. If D is a smooth subbundle, then by definition each p 2M has a neigh-
borhood U over which there exists a smooth local trivialization of D, and Exam-
ple 10.18 shows that there exists a smooth local frame for D over each such set U .
Such a local frame is by definition a collection of smooth sections �1; : : : ; �m W U !
D whose images form a basis for Dp at each point p 2 U . The smooth sections
of E that we seek are obtained by composing with the inclusion map 	 W D ,! E:
�j D 	 ı �j .

Conversely, suppose E!M is a smooth bundle of rank k, and D �E satisfies
(10.6). Each set D \ Ep is a linear subspace of Ep by hypothesis, so we need to
show that D is an embedded submanifold with or without boundary in E and that
the restriction of � makes it into a smooth vector bundle over M .

To prove that D is an embedded submanifold with or without boundary, it suf-
fices to show that each p 2M has a neighborhood U such that D \ ��1.U / is an
embedded submanifold (possibly with boundary) in ��1.U /�E . Given p 2M; let
�1; : : : ; �m be smooth local sections of E satisfying (10.6) on a neighborhood of p.
By Proposition 10.15, we can complete these to a smooth local frame .�1; : : : ; �k/
for E over some neighborhood U of p. By Proposition 10.19, this local frame is
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associated with a smooth local trivialization ˚ W ��1.U /!U �Rk , defined by

˚
�
s1�1.q/C � � � C s

k�k.q/
�
D
�
q;
�
s1; : : : ; sk

��
:

This map˚ takesD\��1.U / to the subset
˚�
q;
�
s1; : : : ; sm; 0; : : : ; 0

���
� U �Rk ,

which is an embedded submanifold (with boundary if U has a boundary). Moreover,
the map � W D \ ��1.U /!U �Rm defined by

�
�
s1�1.q/C � � � C s

m�m.q/
�
D
�
q;
�
s1; : : : ; sm

��

is a smooth local trivialization of D, so D is itself a smooth vector bundle. �

Example 10.33 (Subbundles).

(a) If M is a smooth manifold and V is a nowhere-vanishing smooth vector field
on M; then the set D � TM whose fiber at each p 2M is the linear span of Vp
is a smooth 1-dimensional subbundle of TM .

(b) Suppose E ! M is any trivial bundle, and let .E1; : : : ;Ek/ be a smooth
global frame for E . If 0 � m � k, the subset D � E defined by Dp D

span
�
E1jp; : : : ;Emjp

�
for each p 2M is a smooth subbundle of E .

(c) Suppose M is a smooth manifold with or without boundary and S �M is an
immersed k-submanifold with or without boundary. Problem 10-14 asks you
to prove that TS is a smooth rank-k subbundle of the ambient tangent bundle
TM jS . //

The next theorem shows how to obtain many more subbundles. SupposeE!M

and E 0 ! M are vector bundles and F W E ! E 0 is a bundle homomorphism
over M . For each p 2M; the rank of the linear map F jEp is called the rank of
F at p. We say that F has constant rank if its rank is the same for all p 2M .

Theorem 10.34. Let E and E 0 be smooth vector bundles over a smooth manifold
M; and let F W E!E 0 be a smooth bundle homomorphism over M . Define subsets
KerF �E and ImF �E 0 by

KerF D
[

p2M

Ker
�
F jEp

�
; ImF D

[

p2M

Im
�
F jEp

�
:

Then KerF and ImF are smooth subbundles of E and E 0, respectively, if and only
if F has constant rank.

Proof. One direction is obvious: since the fibers of a bundle have the same dimen-
sion everywhere, the constant-rank condition is certainly necessary for KerF and
ImF to be subbundles. To prove sufficiency, suppose F has constant rank r , and let
k and k0 be the ranks of the bundles E and E 0, respectively. Let p 2M be arbitrary,
and choose a smooth local frame .�1; : : : ; �k/ for E over a neighborhood U of p.
For each i , the map F ı �i W U !E 0 is a smooth local section of E 0, and these sec-
tions span .ImF /jU . After rearranging the indices if necessary, we can assume that
the elements fF ı �1.p/; : : : ;F ı �r.p/g form a basis for Im

�
F jEp

�
, and by conti-

nuity they remain linearly independent in some neighborhood U0 of p. Since F has
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constant rank, this means that .F ı �1; : : : ;F ı �r/ forms a smooth local frame for
ImF over U0. Since we can do the same in a neighborhood of each point, the local
frame criterion shows that ImF is a smooth subbundle of E 0.

To prove that KerF is also a smooth subbundle, let U0 and .�i / be as above,
and let V � EjU0 be the smooth subbundle spanned by �1; : : : ; �r . The smooth
bundle homomorphism F jV W V ! .ImF /jU0 is bijective, and is thus a smooth
bundle isomorphism by Proposition 10.26. Define a smooth bundle homomorphism
� W EjU0!EjU0 by �.v/D v�.F jV /�1 ıF.v/. If v 2 V , then F.v/D .F jV /.v/,
so F

�
�.v/

�
D F.v/ � F ı .F jV /

�1 ı .F jV /.v/ D 0. On the other hand, if v 2
KerF , then �.v/ D v, so again F

�
�.v/

�
D F.v/ D 0. Since V and .KerF /jU0

together span EjU0 , it follows that � takes its values in .KerF /jU0 , and since it
restricts to the identity on .KerF /jU0 , its image is exactly .KerF /jU0 . Thus � has
constant rank, and by the argument in the preceding paragraph, .KerF /jU0 D Im�
is a smooth subbundle of EjU0 . Since we can do the same thing in a neighborhood
of each point, KerF is a smooth subbundle of E . �

The next proposition illustrates another method for constructing interesting sub-
bundles of the tangent bundle over submanifolds of Rn.

Lemma 10.35 (Orthogonal Complement Bundles). Let M be an immersed sub-
manifold with or without boundary in Rn, and D be a smooth rank-k subbundle of
TRnjM . For each p 2M; letD?p denote the orthogonal complement ofDp in TpRn

with respect to the Euclidean dot product, and let D? � TRnjM be the subset

D? D
˚
.p; v/ 2 TRn W p 2M; v 2D?p

�
:

Then D? is a smooth rank-.n� k/ subbundle of TRnjM . For each p 2M; there is
a smooth orthonormal frame for D? on a neighborhood of p.

Proof. Let p 2M be arbitrary, and let .X1; : : : ;Xk/ be a smooth local frame for
D over some neighborhood V of p in M . Because immersed submanifolds are
locally embedded, by shrinking V if necessary, we may assume that it is a single
slice in some coordinate ball or half-ball U � Rn. Since V is closed in U , Propo-
sition 8.11(c) shows that we can complete .X1; : : : ;Xk/ to a smooth local frame�
zX1; : : : ; zXn

�
for TRn over U , and then Lemma 8.13 yields a smooth orthonormal

frame .Ej / over U such that span.E1jp; : : : ;Ekjp/D span.X1jp; : : : ;Xkjp/DDp
for each p 2 U . It follows that .EkC1; : : : ;En/ restricts to a smooth orthonormal
frame for D? over V . Thus D? satisfies the local frame criterion, and is therefore
a smooth subbundle of TRnjM . �

Corollary 10.36 (The Normal Bundle to a Submanifold of Rn). IfM �Rn is an
immersed m-dimensional submanifold with or without boundary, its normal bundle
NM is a smooth rank-.n�m/ subbundle of TRnjM . For each p 2M; there exists
a smooth orthonormal frame for NM on a neighborhood of p.

Proof. Apply Lemma 10.35 to the smooth subbundle TM � TRnjM . �
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Fiber Bundles

We conclude this chapter by giving a brief introduction to an important generaliza-
tion of vector bundles, in which the fibers are allowed to be arbitrary topological
spaces instead of vector spaces. We can only touch on the subject here; but fiber
bundles appear in many applications of manifold theory, so it is important to be at
least familiar with the definitions.

Let M and F be topological spaces. A fiber bundle over M with model fiber
F is a topological space E together with a surjective continuous map � W E!M

with the property that for each x 2M; there exist a neighborhood U of x in M and
a homeomorphism ˚ W ��1.U /! U � F , called a local trivialization of E over
U , such that the following diagram commutes:

��1.U / �̊ U �F

U:
�1��

�

The space E is called the total space of the bundle, M is its base, and � is its
projection. If E , M; and F are smooth manifolds with or without boundary, � is a
smooth map, and the local trivializations can be chosen to be diffeomorphisms, then
it is called a smooth fiber bundle.

A trivial fiber bundle is one that admits a local trivialization over the entire base
space (a global trivialization). It is said to be smoothly trivial if it is a smooth bundle
and the global trivialization is a diffeomorphism.

Example 10.37 (Fiber Bundles).

(a) Every product spaceM �F is a fiber bundle with projection �1 W M �F !M;

called a product fiber bundle. It has a global trivialization given by the identity
map M �F !M �F , so every product bundle is trivial.

(b) Every rank-k vector bundle is a fiber bundle with model fiber Rk .
(c) If E! S1 is the Möbius bundle of Example 10.3, then the image of R� Œ�1; 1�

under the quotient map q W R2! E is a fiber bundle over S1 with model fiber
Œ�1; 1�. It is not a trivial bundle. (Can you prove it?)

(d) Every covering map � W E!M is a fiber bundle whose model fiber is discrete.
To construct local trivializations, let S be a discrete space with the same cardi-
nality as the fibers of � . For each evenly covered open subset U �M; define
a map ˚ W ��1.U /! U � S by choosing a bijection between the set of com-
ponents of ��1.U / and S , and letting ˚.x/D

�
�.x/; c.x/

�
, where c.x/ is the

element of S corresponding to the component containing x. //

We will see a few more examples of fiber bundles as we go along.

Problems

10-1. LetE be the total space of the Möbius bundle constructed in Example 10.3.
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(a) Show that E has a unique smooth structure such that the quotient map
q W R2!E is a smooth covering map.

(b) Show that � W E! S1 is a smooth rank-1 vector bundle.
(c) Show that it is not a trivial bundle.

10-2. Let E be a vector bundle over a topological space M . Show that the pro-
jection map � W E!M is a homotopy equivalence.

10-3. Let VB denote the category whose objects are smooth vector bundles
and whose morphisms are smooth bundle homomorphism, and let Diff de-
note the category whose objects are smooth manifolds and whose mor-
phisms are smooth maps. Show that the assignment M 7! TM; F 7! dF

defines a covariant functor from Diff to VB, called the tangent functor.
(Used on p. 303.)

10-4. Complete the proof of Lemma 10.5 by showing that � W U \V !GL.k;R/
is smooth. [Hint: use the same idea as in the proof of Proposition 7.37.]

10-5. Let � W E ! M be a smooth vector bundle of rank k over a smooth
manifold M with or without boundary. Suppose that fU˛g˛2A is an open
cover of M; and for each ˛ 2 A we are given a smooth local trivialization
˚˛ W �

�1.U˛/! U˛ �Rk of E . For each ˛;ˇ 2A such that U˛\Uˇ ¤¿,
let �˛ˇ W U˛ \Uˇ !GL.k;R/ be the transition function defined by (10.3).
Show that the following identity is satisfied for all ˛;ˇ; � 2A:

�˛ˇ .p/�ˇ� .p/D �˛� .p/; p 2U˛ \Uˇ \U� : (10.7)

(The juxtaposition on the left-hand side represents matrix multiplication.)

10-6. VECTOR BUNDLE CONSTRUCTION THEOREM: Let M be a smooth man-
ifold with or without boundary, and let fU˛g˛2A be an open cover of M .
Suppose for each ˛;ˇ 2 A we are given a smooth map �˛ˇ W U˛ \ Uˇ !
GL.k;R/ such that (10.7) is satisfied for all ˛;ˇ; � 2 A. Show that there
is a smooth rank-k vector bundle E!M with smooth local trivializations
˚˛ W �

�1.U˛/! U˛ � Rk whose transition functions are the given maps
�˛ˇ . [Hint: define an appropriate equivalence relation on

`
˛2A

�
U˛ �Rk

�
,

and use the vector bundle chart lemma.]

10-7. Compute the transition function for TS2 associated with the two local triv-
ializations determined by stereographic coordinates (Problem 1-7).

10-8. Let Vec1 be the category whose objects are finite-dimensional real vector
spaces and whose morphisms are linear isomorphisms. If F is a covari-
ant functor from Vec1 to itself, for each finite-dimensional vector space
V we get a map F W GL.V /! GL.F .V // sending each isomorphism
A W V ! V to the induced isomorphism F .A/ W F .V /!F .V /. We say F

is a smooth functor if this map is smooth for every V . Given a smooth vec-
tor bundle E!M and a smooth functor F W Vec1! Vec1, show that there
is a smooth vector bundle F .E/!M whose fiber at each point p 2M is
F .Ep/. (Used on p. 299.)
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10-9. EXTENSION LEMMA FOR SECTIONS OF RESTRICTED BUNDLES: Sup-
pose M is a smooth manifold, E !M is a smooth vector bundle, and
S �M is an embedded submanifold with or without boundary. For any
smooth section � of the restricted bundle EjS ! S , show that there exist
a neighborhood U of S in M and a smooth section z� of EjU such that
� D z� jS . If E has positive rank, show that every smooth section of EjS
extends smoothly to all of M if and only if S is properly embedded.

10-10. Suppose M is a compact smooth manifold and E!M is a smooth vector
bundle of rank k. Use transversality to prove thatE admits a smooth section
� with the following property: if k > dimM; then � is nowhere vanishing;
while if k � dimM; then the set of points where � vanishes is a smooth
compact codimension-k submanifold ofM . Use this to show thatM admits
a smooth vector field with only finitely many singular points.

10-11. Prove Proposition 10.26 (a bijective bundle homomorphism is a bundle
isomorphism).

10-12. Let � W E!M and z� W zE!M be two smooth rank-k vector bundles over
a smooth manifold M with or without boundary. Suppose fU˛g˛2A is an
open cover of M such that both E and zE admit smooth local trivializations
over each U˛ . Let f�˛ˇ g and fz�˛ˇ g denote the transition functions deter-
mined by the given local trivializations of E and zE , respectively. Show that
E and zE are smoothly isomorphic over M if and only if for each ˛ 2 A
there exists a smooth map �˛ W U˛!GL.k;R/ such that

z�˛ˇ .p/D �˛.p/�˛ˇ .p/�ˇ .p/
�1; p 2 U˛ \Uˇ :

10-13. Let U D S1 X f1g and V D S1 X f�1g, and define � W U \ V ! GL.1;R/
by

�.z/D

(
.1/; Im z > 0;

.�1/; Im z < 0:

By the result of Problem 10-6, there is a smooth real line bundle F ! S1

that is trivial over U and V , and has � as transition function. Show that F
is smoothly isomorphic over S1 to the Möbius bundle of Example 10.3.

10-14. Suppose M is a smooth manifold with or without boundary, and S �M
is an immersed submanifold with or without boundary. Identifying TpS as
a subspace of TpM for each p 2 S in the usual way, show that TS is a
smooth subbundle of TM jS . (See Example 10.33.)

10-15. Let V be a finite-dimensional real vector space, and let Gk.V / be the Grass-
mannian of k-dimensional subspaces of V (see Example 1.36). Let T be the
subset of Gk.V /� V defined by

T D
˚
.S; v/ 2Gk.V /� V W v 2 S

�
:

Show that T is a smooth rank-k subbundle of the product bundle Gk.V /�
V ! Gk.V /, and is thus a smooth rank-k vector bundle over Gk.V /.
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[Remark: T is called the tautological vector bundle over Gk.V /, because
the fiber over each point S 2Gk.V / is S itself.]

10-16. Show that the tautological vector bundle over G1
�
R2
�

is smoothly isomor-
phic to the Möbius bundle. (See Problems 10-1, 10-13, and 10-15.)

10-17. Suppose M �Rn is an immersed submanifold. Prove that the ambient tan-
gent bundle TRnjM is isomorphic to the Whitney sum TM ˚NM; where
NM !M is the normal bundle.

10-18. Suppose S is a properly embedded codimension-k submanifold of Rn.
Show that the following are equivalent:
(a) There exists a smooth defining function for S on some neighborhood

U of S in Rn, that is, a smooth function ˚ W U !Rk such that S is a
regular level set of ˚ .

(b) The normal bundle NS is a trivial vector bundle.

10-19. Suppose � W E!M is a fiber bundle with fiber F . Prove the following:
(a) � is an open quotient map.
(b) If the bundle is smooth, then � is a smooth submersion.
(c) � is a proper map if and only if F is compact.
(d) E is compact if and only if both M and F are compact.
(Used on p. 560.)



Chapter 11
The Cotangent Bundle

In this chapter we introduce a construction that is not typically seen in elementary
calculus: tangent covectors, which are linear functionals on the tangent space at a
point p 2M . The space of all covectors at p is a vector space called the cotangent
space at p; in linear-algebraic terms, it is the dual space to TpM . The union of all
cotangent spaces at all points of M is a vector bundle called the cotangent bundle.

Whereas tangent vectors give us a coordinate-free interpretation of derivatives of
curves, it turns out that derivatives of real-valued functions on a manifold are most
naturally interpreted as tangent covectors. Thus we define the differential of a real-
valued function as a covector field (a smooth section of the cotangent bundle); it is
a coordinate-independent analogue of the gradient. We then explore the behavior of
covector fields under smooth maps, and show that covector fields on the codomain
of a smooth map always pull back to covector fields on the domain.

In the second half of the chapter we introduce line integrals of covector fields,
which are the natural generalization of the line integrals of elementary calculus.
Then we explore the relationships among three closely related types of covector
fields: exact (those that are the differentials of functions), conservative (those whose
line integrals around closed curves are zero), and closed (those that satisfy a certain
differential equation in coordinates). This leads to a far-reaching generalization of
the fundamental theorem of calculus to line integrals on manifolds.

Covectors

Let V be a finite-dimensional vector space. (As usual, all of our vector spaces are
assumed to be real.) We define a covector on V to be a real-valued linear functional
on V , that is, a linear map ! W V ! R. The space of all covectors on V is itself
a real vector space under the obvious operations of pointwise addition and scalar
multiplication. It is denoted by V � and called the dual space of V .

The next proposition expresses the most important fact about V � in the finite-
dimensional case. Recall from Exercise B.13 that a linear map is uniquely deter-
mined by specifying its values on the elements of any basis.

J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics 218,
DOI 10.1007/978-1-4419-9982-5_11, © Springer Science+Business Media New York 2013
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Proposition 11.1. Let V be a finite-dimensional vector space. Given any basis
.E1; : : : ;En/ for V , let "1; : : : ; "n 2 V � be the covectors defined by

"i .Ej /D ı
i
j ;

where ıij is the Kronecker delta symbol defined by (4.4). Then
�
"1; : : : ; "n

�
is a basis

for V �, called the dual basis to .Ej /. Therefore, dimV � D dimV .

I Exercise 11.2. Prove Proposition 11.1.

For example, we can apply this to the standard basis .e1; : : : ; en/ for Rn. The dual
basis is denoted by

�
e1; : : : ; en

�
(note the upper indices), and is called the standard

dual basis. These basis covectors are the linear functionals on Rn given by

ei .v/D ei
�
v1; : : : ; vn

�
D vi :

In other words, ei is the linear functional that picks out the i th component of a
vector. In matrix notation, a linear map from Rn to R is represented by a 1 � n
matrix, called a row matrix. The basis covectors can therefore also be thought of as
the linear functionals represented by the row matrices

e1 D .1 0 : : : 0/; e2 D .0 1 0 : : : 0/; : : : ; en D .0 : : : 0 1/:

In general, if .Ej / is a basis for V and ."i / is its dual basis, then for any vector
vD vjEj 2 V , we have (using the summation convention)

"i .v/D vj "i .Ej /D v
j ıij D v

i :

Thus, just as in the case of Rn, the i th basis covector "i picks out the i th component
of a vector with respect to the basis .Ej /. More generally, Proposition 11.1 shows
that we can express an arbitrary covector ! 2 V � in terms of the dual basis as

! D !i"
i ; (11.1)

where the components are determined by !i D !.Ei /. The action of ! on a vector
vD vjEj is

!.v/D !iv
i : (11.2)

We always write basis covectors with upper indices, and components of a covec-
tor with lower indices, because this helps to ensure that mathematically meaningful
summations such as (11.1) and (11.2) always follow our index conventions.

Suppose V and W are vector spaces and A W V !W is a linear map. We define
a linear map A� W W �! V �, called the dual map or transpose of A, by

.A�!/.v/D !.Av/ for ! 2W �; v 2 V:

I Exercise 11.3. Show that A�! is actually a linear functional on V , and that A� is
a linear map.

Proposition 11.4. The dual map satisfies the following properties:
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(a) .A ıB/� DB� ıA�.
(b) .IdV /� W V �! V � is the identity map of V �.

I Exercise 11.5. Prove the preceding proposition.

Corollary 11.6. The assignment that sends a vector space to its dual space and a
linear map to its dual map is a contravariant functor from the category of real vector
spaces to itself. �

Apart from the fact that the dimension of V � is the same as that of V , the sec-
ond most important fact about dual spaces is the following characterization of the
second dual space V �� D .V �/�. For each vector space V there is a natural, basis-
independent map � W V ! V ��, defined as follows. For each vector v 2 V , define a
linear functional �.v/ W V �!R by

�.v/.!/D !.v/ for ! 2 V �: (11.3)

I Exercise 11.7. Let V be a vector space.

(a) For any v 2 V , show that �.v/.!/ depends linearly on !, so �.v/ 2 V ��.
(b) Show that the map � W V ! V �� is linear.

Proposition 11.8. For any finite-dimensional vector space V , the map � W V ! V ��

is an isomorphism.

Proof. Because dimV D dimV ��, it suffices to verify that � is injective (see Ex-
ercise B.22(c)). Suppose v 2 V is not zero. Extend v to a basis .v D E1; : : : ;En/
for V , and let

�
"1; : : : ; "n

�
denote the dual basis for V �. Then �.v/¤ 0 because

�.v/
�
"1
�
D "1.v/D "1.E1/D 1: �

The preceding proposition shows that when V is finite-dimensional, we can un-
ambiguously identify V �� with V itself, because the map � is canonically defined,
without reference to any basis. It is important to observe that although V � is also
isomorphic to V (for the simple reason that any two finite-dimensional vector spaces
of the same dimension are isomorphic), there is no canonical isomorphism V Š V �.
One way to make this statement precise is indicated in Problem 11-1. Note also that
the conclusion of Proposition 11.8 is always false when V is infinite-dimensional
(see Problem 11-2).

Because of Proposition 11.8, the real number !.v/ obtained by applying a covec-
tor ! to a vector v is sometimes denoted by either of the more symmetric-looking
notations h!;vi and hv;!i; both expressions can be thought of either as the action
of the covector ! 2 V � on the vector v 2 V , or as the action of the linear functional
�.v/ 2 V �� on the element ! 2 V �. There should be no cause for confusion with
the use of the same angle bracket notation for inner products: whenever one of the
arguments is a vector and the other a covector, the notation h!;vi is always to be
interpreted as the natural pairing between vectors and covectors, not as an inner
product. We typically omit any mention of the map � , and think of v 2 V either as a
vector or as a linear functional on V �, depending on the context.
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There is also a symmetry between bases and dual bases for a finite-dimensional
vector space V : any basis for V determines a dual basis for V �, and conversely, any
basis for V � determines a dual basis for V �� D V . If

�
"i
�

is the basis for V � dual
to a basis .Ej / for V , then .Ej / is the basis dual to

�
"i
�
, because both statements

are equivalent to the relation h"i ;Ej i D ıij .

Tangent Covectors on Manifolds

Now let M be a smooth manifold with or without boundary. For each p 2M; we
define the cotangent space at p, denoted by T �pM; to be the dual space to TpM :

T �pM D
�
TpM

��
:

Elements of T �pM are called tangent covectors at p, or just covectors at p.
Given smooth local coordinates

�
xi
�

on an open subset U �M; for each p 2 U
the coordinate basis

�
@=@xi jp

�
gives rise to a dual basis for T �pM; which we denote

for the moment by
�

i jp

�
. (In a short while, we will come up with a better notation.)

Any covector ! 2 T �pM can thus be written uniquely as ! D !i
i jp , where

!i D !

�
@

@xi

ˇ̌
ˇ̌
p

�
:

Suppose now that
�
zxj
�

is another set of smooth coordinates whose domain con-

tains p, and let
�
z
j jp

�
denote the basis for T �pM dual to

�
@=@zxj jp

�
. We can com-

pute the components of the same covector ! with respect to the new coordinate
system as follows. First observe that the computations in Chapter 3 show that the
coordinate vector fields transform as follows:

@

@xi

ˇ̌
ˇ̌
p

D
@zxj

@xi
.p/

@

@zxj

ˇ̌
ˇ̌
p

: (11.4)

(Here we use the same notation p to denote either a point in M or its coordinate
representation as appropriate.) Writing ! in both systems as ! D !i
i jp D z!j z
j jp ,
we can use (11.4) to compute the components !i in terms of z!j :

!i D !

�
@

@xi

ˇ̌
ˇ̌
p

�
D !

�
@zxj

@xi
.p/

@

@zxj

ˇ̌
ˇ̌
p

�
D
@zxj

@xi
.p/z!j : (11.5)

As we mentioned in Chapter 3, in the early days of smooth manifold theory,
before most of the abstract coordinate-free definitions we are using were developed,
mathematicians tended to think of a tangent vector at a point p as an assignment
of an n-tuple of real numbers to each smooth coordinate system, with the property
that the n-tuples

�
v1; : : : ; vn

�
and

�
zv1; : : : ; zvn

�
assigned to two different coordinate

systems
�
xi
�

and
�
zxj
�

were related by the transformation law that we derived in
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Chapter 3:

zvj D
@zxj

@xi
.p/vi : (11.6)

Similarly, a tangent covector was thought of as an n-tuple .!1; : : : ;!n/ that trans-
forms, by virtue of (11.5), according to the following slightly different rule:

!i D
@zxj

@xi
.p/z!j : (11.7)

Since the transformation law (11.4) for the coordinate partial derivatives follows
directly from the chain rule, it can be thought of as fundamental. Thus it became
customary to call tangent covectors covariant vectors because their components
transform in the same way as (“vary with”) the coordinate partial derivatives, with
the Jacobian matrix

�
@zxj =@xi

�
multiplying the objects associated with the “new”

coordinates
�
zxj
�

to obtain those associated with the “old” coordinates
�
xi
�
. Analo-

gously, tangent vectors were called contravariant vectors, because their components
transform in the opposite way. (Remember, it was the component n-tuples that were
thought of as the objects of interest.) Admittedly, these terms do not make a lot of
sense, but by now they are well entrenched, and we will see them again in Chap-
ter 12. Note that this use of the terms covariant and contravariant has nothing to do
with the covariant and contravariant functors of category theory!

Covector Fields

For any smooth manifold M with or without boundary, the disjoint union

T �M D
a

p2M

T �pM

is called the cotangent bundle of M . It has a natural projection map � W T �M !
M sending ! 2 T �pM to p 2M . As above, given any smooth local coordinates�
xi
�

on an open subset U �M; for each p 2 U we denote the basis for T �pM
dual to

�
@=@xi jp

�
by
�

i jp

�
. This defines n maps 
1; : : : ; 
n W U ! T �M; called

coordinate covector fields.

Proposition 11.9 (The Cotangent Bundle as a Vector Bundle). Let M be a
smooth n-manifold with or without boundary. With its standard projection map and
the natural vector space structure on each fiber, the cotangent bundle T �M has a
unique topology and smooth structure making it into a smooth rank-n vector bundle
over M for which all coordinate covector fields are smooth local sections.

Proof. The proof is just like that of Theorem 10.4. Given a smooth chart .U;'/ on
M; with coordinate functions

�
xi
�
, define ˚ W ��1.U /! U �Rn by

˚
�
�i


i
ˇ̌
p

�
D
�
p; .�1; : : : ; �n/

�
;
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where 
i is the i th coordinate covector field associated with
�
xi
�
. Suppose

�
zU ; z'

�

is another smooth chart with coordinate functions
�
zxj
�
, and let z̊ W ��1

�
zU
�
! zU �

Rn be defined analogously. On ��1
�
U \ zU

�
, it follows from (11.5) that

˚ ı z̊�1
�
p;
�
z�1; : : : ; z�n

��
D

�
p;

�
@zxj

@x1
.p/z�j ; : : : ;

@zxj

@xn
.p/z�j

��
:

The GL.n;R/-valued function
�
@zxj =@xi

�
is smooth, so it follows from the vector

bundle chart lemma that T �M has a smooth structure making it into a smooth vector
bundle for which the maps ˚ are smooth local trivializations. Uniqueness follows
as in the proof of Proposition 10.24. �

I Exercise 11.10. Suppose M is a smooth manifold and E!M is a smooth vec-
tor bundle over M . Define the dual bundle to E to be the bundle E�!M whose
total space is the disjoint union E� D

`
p2M E�p , where E�p is the dual space to

Ep , with the obvious projection. Show that E� ! M is a smooth vector bundle,
whose transition functions are given by ��.p/D

�
�.p/�1

�
T for any transition func-

tion � W U !GL.k;R/ of E .

As in the case of the tangent bundle, smooth local coordinates for M yield
smooth local coordinates for its cotangent bundle. If

�
xi
�

are smooth coordinates
on an open subset U �M; Corollary 10.21 shows that the map from ��1.U / to
R2n given by

�i

i
ˇ
ˇ
p
7!
�
x1.p/; : : : ; xn.p/; �1; : : : ; �n

�

is a smooth coordinate chart for T �M . We call
�
xi ; �i

�
the natural coordinates for

T �M associated with
�
xi
�
. (In this situation, we must forgo our insistence that co-

ordinate functions have upper indices, because the fiber coordinates �i are already
required by our index conventions to have lower indices. Nonetheless, the conven-
tion still holds that each index to be summed over in a given term appears once as a
superscript and once as a subscript.)

A (local or global) section of T �M is called a covector field or a (differential)
1-form. (The reason for the latter terminology will become clear in Chapter 14,
when we define differential k-forms for k > 1.) Like sections of other bundles,
covector fields without further qualification are assumed to be merely continuous;
when we make different assumptions, we use the terms rough covector field and
smooth covector field with the obvious meanings. As we did with vector fields,
we write the value of a covector field ! at a point p 2M as !p instead of !.p/,
to avoid conflict with the notation for the action of a covector on a vector. If !
itself has subscripts or superscripts, we usually use the notation !jp instead. In any
smooth local coordinates on an open subset U �M; a (rough) covector field ! can
be written in terms of the coordinate covector fields .
i / as ! D !i
i for n functions
!i W U !R called the component functions of !. They are characterized by

!i .p/D !p

�
@

@xi

ˇ̌
ˇ̌
p

�
:
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If ! is a (rough) covector field and X is a vector field on M; then we can form a
function !.X/ W M !R by

!.X/.p/D !p.Xp/; p 2M:

If we write ! D !i
i and X DXj @=@xj in terms of local coordinates, then !.X/
has the local coordinate representation !.X/D !iX i .

Just as in the case of vector fields, there are several ways to check for smoothness
of a covector field.

Proposition 11.11 (Smoothness Criteria for Covector Fields). Let M be a
smooth manifold with or without boundary, and let ! W M ! T �M be a rough
covector field. The following are equivalent:

(a) ! is smooth.
(b) In every smooth coordinate chart, the component functions of ! are smooth.
(c) Each point of M is contained in some coordinate chart in which ! has smooth

component functions.
(d) For every smooth vector field X 2X.M/, the function !.X/ is smooth on M .
(e) For every open subset U �M and every smooth vector field X on U , the func-

tion !.X/ W U !R is smooth on U .

I Exercise 11.12. Prove this proposition. [Suggestion: try proving (a)) (b)) (c)
) (a), and (c)) (d)) (e)) (b). The only tricky part is (d)) (e); look at the proof
of Proposition 8.14 for ideas.]

Of course, since any open subset of a smooth manifold (with boundary) is again
a smooth manifold (with boundary), the preceding proposition applies equally well
to covector fields defined only on some open subset of M .

Coframes

Let M be a smooth manifold with or without boundary, and let U �M be an open
subset. A local coframe for M over U is an ordered n-tuple of covector fields�
"1; : : : ; "n

�
defined on U such that

�
"i jp

�
forms a basis for T �pM at each point

p 2 U . If U DM; it is called a global coframe. (A local coframe for M is just a
local frame for the vector bundle T �M; in the terminology of Chapter 10.)

Example 11.13 (Coordinate Coframes). For any smooth chart
�
U;
�
xi
��

, the co-
ordinate covector fields

�

i
�

defined above constitute a local coframe over U , called
a coordinate coframe. By Proposition 11.11(c), every coordinate frame is smooth,
because its component functions in the given chart are constants. //

Given a local frame .E1; : : : ;En/ for TM over an open subset U , there is a
uniquely determined (rough) local coframe

�
"1; : : : ; "n

�
over U such that

�
"i jp

�
is

the dual basis to .Ei jp/ for each p 2 U , or equivalently "i .Ej /D ıij . This coframe

is called the coframe dual to .E i /. Conversely, if we start with a local coframe
�
"i
�
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over an open subset U �M; there is a uniquely determined local frame .Ei /, called
the frame dual to ."i /, determined by "i .Ej /D ıij . For example, in a smooth chart,

the coordinate frame .@=@xi / and the coordinate coframe
�

i
�

are dual to each other.

Lemma 11.14. Let M be a smooth manifold with or without boundary. If .Ei / is
a rough local frame over an open subset U �M and

�
"i
�

is its dual coframe, then
.Ei / is smooth if and only if

�
"i
�

is smooth.

Proof. It suffices to show that for each p 2U , the frame .Ei / is smooth in a neigh-
borhood of p if and only if

�
"i
�

is. Given p 2 U , let
�
V;
�
xi
��

be a smooth coordi-
nate chart such that p 2 V � U . In V , we can write

Ei D a
k
i

@

@xk
; "j D b

j

l

l ;

for some matrices of real-valued functions
�
aki
�

and
�
b
j

l

�
defined on V . By virtue

of Propositions 8.1 and 11.11, the vector fields Ei are smooth on V if and only if
the functions aki are smooth, and the covector fields "j are smooth on V if and only

if the functions bj
l

are smooth. The fact that "j .Ei /D ı
j
i implies that the matrices

�
aki
�

and
�
b
j

l

�
are inverses of each other. Because matrix inversion is a smooth map

from GL.n;R/ to itself, either one of these matrix-valued functions is smooth if and
only if the other one is smooth. �

Given a local coframe
�
"i
�

over an open subset U �M; every (rough) covec-
tor field ! on U can be expressed in terms of the coframe as ! D !i"i for some
functions !1; : : : ;!n W U ! R, called the component functions of ! with respect
to the given coframe. The component functions are determined by !i D !.Ei /,
where .Ei / is the frame dual to

�
"i
�
. This leads to another way of characterizing

smoothness of covector fields.

Proposition 11.15 (Coframe Criterion for Smoothness of Covector Fields). Let
M be a smooth manifold with or without boundary, and let ! be a rough covector
field onM . If

�
"i
�

is a smooth coframe on an open subset U �M; then ! is smooth
on U if and only if its component functions with respect to

�
"i
�

are smooth.

I Exercise 11.16. Prove the preceding proposition.

We denote the real vector space of all smooth covector fields on M by X�.M/.
As smooth sections of a vector bundle, elements of X�.M/ can be multiplied by
smooth real-valued functions: if f 2 C1.M/ and ! 2 X�.M/, the covector field
f! is defined by

.f!/p D f .p/!p: (11.8)

Because it is the space of smooth sections of a vector bundle, X�.M/ is a module
over C1.M/.

Geometrically, we think of a vector field on M as an arrow attached to each
point of M . What kind of geometric picture can we form of a covector field? The
key idea is that a nonzero linear functional !p 2 T �pM is completely determined by
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Fig. 11.1 A covector field

two pieces of data: its kernel, which is a linear hyperplane in TpM (a codimension-1
linear subspace); and the set of vectors v for which !p.v/D 1, which is an affine
hyperplane parallel to the kernel (Fig. 11.1). (Actually, the set where !p.v/ D 1
alone suffices, but it is useful to visualize the two parallel hyperplanes.) The value of
!p.v/ for any other vector v is then obtained by linear interpolation or extrapolation.

Thus, you can visualize a covector field as defining a pair of hyperplanes in each
tangent space, one through the origin and another parallel to it, and varying continu-
ously from point to point. Where the covector field is small, one of the hyperplanes
becomes very far from the kernel, eventually disappearing altogether at points where
the covector field takes the value zero.

The Differential of a Function

In elementary calculus, the gradient of a smooth real-valued function f on Rn is
defined as the vector field whose components are the partial derivatives of f . In our
notation, this would read

gradf D
nX

iD1

@f

@xi
@

@xi
: (11.9)

Unfortunately, in this form, the gradient does not make sense independently of co-
ordinates. (The fact that it violates our index conventions is a strong clue.)

I Exercise 11.17. Let f .x;y/D x2 on R2, and let X be the vector field

X D gradf D 2x
@

@x
:

Compute the coordinate expression for X in polar coordinates (on some open subset
on which they are defined) using (11.4) and show that it is not equal to

@f

@r

@

@r
C
@f

@�

@

@�
:

Although the partial derivatives of a smooth function cannot be interpreted in a
coordinate-independent way as the components of a vector field, it turns out that they
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can be interpreted as the components of a covector field. This is the most important
application of covector fields.

Let f be a smooth real-valued function on a smooth manifoldM with or without
boundary. (As usual, all of this discussion applies to functions defined on an open
subset U �M; simply by replacing M with U throughout.) We define a covector
field df , called the differential of f , by

dfp.v/D vf for v 2 TpM:

(We will discuss the relationship between this differential and the differential of a
smooth map below; see the paragraph just after Exercise 11.24.)

Proposition 11.18. The differential of a smooth function is a smooth covector field.

Proof. It is straightforward to verify that at each point p 2M; dfp.v/ depends lin-
early on v, so that dfp is indeed a covector at p. To see that df is smooth, we use
Proposition 11.11(d): for any smooth vector field X on M; the function df .X/ is
smooth because it is equal to Xf . �

To see what df looks like more concretely, we need to compute its coordinate
representation. Let

�
xi
�

be smooth coordinates on an open subset U �M; and let�

i
�

be the corresponding coordinate coframe on U . Write df in coordinates as
dfp DAi .p/


i jp for some functions Ai W U !R; then the definition of df implies

Ai .p/D dfp

�
@

@xi

ˇ̌
ˇ̌
p

�
D

@

@xi

ˇ̌
ˇ̌
p

f D
@f

@xi
.p/:

This yields the following formula for the coordinate representation of df :

dfp D
@f

@xi
.p/
i

ˇ̌
p
: (11.10)

Thus, the component functions of df in any smooth coordinate chart are the partial
derivatives of f with respect to those coordinates. Because of this, we can think
of df as an analogue of the classical gradient, reinterpreted in a way that makes
coordinate-independent sense on a manifold.

If we apply (11.10) to the special case in which f is one of the coordinate func-
tions xj W U !R, we obtain

dxj
ˇ̌
p
D
@xj

@xi
.p/
i

ˇ̌
p
D ı

j
i 


i
ˇ̌
p
D 
j

ˇ̌
p
:

In other words, the coordinate covector field 
j is none other than the differential
dxj ! Therefore, the formula (11.10) for dfp can be rewritten as

dfp D
@f

@xi
.p/dxi

ˇ̌
p
;

or as an equation between covector fields instead of covectors:

df D
@f

@xi
dxi : (11.11)
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In particular, in the 1-dimensional case, this reduces to

df D
df

dx
dx:

Thus, we have recovered the familiar classical expression for the differential of a
function f in coordinates. Henceforth, we abandon the notation 
i for the coordi-
nate coframe, and use dxi instead.

Example 11.19. If f .x;y/D x2y cosx on R2, then df is given by the formula

df D
@
�
x2y cosx

�

@x
dxC

@
�
x2y cosx

�

@y
dy

D
�
2xy cosx � x2y sinx

�
dxC x2 cosx dy: //

Proposition 11.20 (Properties of the Differential). Let M be a smooth manifold
with or without boundary, and let f;g 2 C1.M/.

(a) If a and b are constants, then d.af C bg/D adf C b dg.
(b) d.fg/D f dgC g df .
(c) d.f=g/D .g df � f dg/=g2 on the set where g¤ 0.
(d) If J �R is an interval containing the image of f , and h W J !R is a smooth

function, then d.h ı f /D .h0 ı f /df .
(e) If f is constant, then df D 0.

I Exercise 11.21. Prove Proposition 11.20.

One very important property of the differential is the following characterization
of smooth functions with vanishing differentials.

Proposition 11.22 (Functions with Vanishing Differentials). If f is a smooth
real-valued function on a smooth manifoldM with or without boundary, then df D
0 if and only if f is constant on each component of M .

Proof. It suffices to assume thatM is connected and show that df D 0 if and only if
f is constant. One direction is immediate: if f is constant, then df D 0 by Propo-
sition 11.20(e). Conversely, suppose df D 0, let p 2 M; and let C D fq 2 M W

f .q/D f .p/g. If q is any point in C , let U be a smooth coordinate ball (or half-
ball, in case q 2 @M ) centered at q. From (11.11) we see that @f=@xi � 0 in U for
each i , so by elementary calculus f is constant on U . This shows that C is open,
and since it is closed by continuity, it must be all ofM . Thus, f is everywhere equal
to the constant f .p/. �

In elementary calculus, one thinks of df as an approximation for the small
change in the value of f caused by small changes in the independent variables xi .
In our present context, df has the same meaning, provided we interpret everything
appropriately. Suppose M is a smooth manifold and f 2 C1.M/, and let p be
a point in M . By choosing smooth coordinates on a neighborhood of p, we can
think of f as a function on an open subset U � Rn. Recall that dxi jp is the lin-
ear functional that picks out the i th component of a tangent vector at p. Writing
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Fig. 11.2 The differential as an approximation to�f

�f D f .p C v/ � f .p/ for v 2 Rn, Taylor’s theorem shows that �f is well ap-
proximated when v is small by

�f �
@f

@xi
.p/vi D

@f

@xi
.p/dxi

ˇ̌
p
.v/D dfp.v/

(where now we are considering v as an element of TpRn via our usual identification
TpRn$ Rn). In other words, dfp is the linear functional that best approximates
�f near p (Fig. 11.2). The great power of the concept of the differential comes
from the fact that we can define df invariantly on any manifold, without resorting
to vague arguments involving infinitesimals.

The next result is an analogue of Proposition 3.24 for the differential.

Proposition 11.23 (Derivative of a Function Along a Curve). Suppose M is a
smooth manifold with or without boundary, � W J ! M is a smooth curve, and
f W M ! R is a smooth function. Then the derivative of the real-valued function
f ı � W J !R is given by

.f ı �/0.t/D df�.t/
�
� 0.t/

�
: (11.12)

Proof. See Fig. 11.3. Directly from the definitions, for any t0 2 J ,

df�.t0/
�
� 0.t0/

�
D � 0.t0/f .definition of df /

D d�t0

�
d

dt

ˇ̌
ˇ̌
t0

�
f .definition of � 0.t//

D
d

dt

ˇ̌
ˇ̌
t0

.f ı �/ .definition of d�/

D .f ı �/0.t0/ .definition of d=dt jt0/: �

I Exercise 11.24. For a smooth real-valued function f W M !R, show that p 2M
is a critical point of f if and only if dfp D 0.

You may have noticed that for a smooth real-valued function f W M ! R, we
now have two different definitions for the differential of f at a point p 2M . In
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Fig. 11.3 Derivative of a function along a curve

Chapter 3, we defined dfp as a linear map from TpM to Tf .p/R. In this chapter, we
defined dfp as a covector at p, which is to say a linear map from TpM to R. These
are really the same object, once we take into account the canonical identification
between R and Tf .p/R; one easy way to see this is to note that both are represented
in coordinates by the row matrix whose components are the partial derivatives of f .

Similarly, if � is a smooth curve in M; we have two different meanings for the
expression .f ı �/0.t/. On the one hand, f ı � can be interpreted as a smooth curve
in R, and thus .f ı�/0.t/ is its velocity at the point f ı�.t/, which is an element of
the tangent space Tf ı�.t/R. Proposition 3.24 shows that this tangent vector is equal
to df�.t/

�
� 0.t/

�
, thought of as an element of Tf ı�.t/R. On the other hand, f ı � can

also be considered simply as a real-valued function of one real variable, and then
.f ı�/0.t/ is just its ordinary derivative. Proposition 11.23 shows that this derivative
is equal to df�.t/

�
� 0.t/

�
, thought of as a real number. Which of these interpretations

we choose depends on the purpose we have in mind.

Pullbacks of Covector Fields

As we have seen, a smooth map yields a linear map on tangent vectors called the
differential. Dualizing this leads to a linear map on covectors going in the opposite
direction.

Let F W M ! N be a smooth map between smooth manifolds with or without
boundary, and let p 2M be arbitrary. The differential dFp W TpM ! TF.p/N yields
a dual linear map

dF �p W T
�
F.p/N ! T �pM;

called the (pointwise) pullback by F at p, or the cotangent map of F . Unraveling
the definitions, we see that dF �p is characterized by

dF �p .!/.v/D !
�
dFp.v/

�
; for ! 2 T �F.p/N; v 2 TpM:

Observe that the assignments .M;p/ 7! T �pM and F 7! dF �p yield a contravari-
ant functor from the category of pointed smooth manifolds to the category of real
vector spaces. Because of this, the convention of calling elements of T �M “covari-
ant vectors” is particularly unfortunate; but this terminology is so deeply entrenched
that one has no choice but to go along with it.
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When we discussed vector fields, we made a point of noting that pushforwards of
vector fields under smooth maps are defined only in the special cases of diffeomor-
phisms or Lie group homomorphisms. The surprising thing about covectors is that
covector fields always pull back to covector fields. Given a smooth map F W M !N

and a covector field ! on N , define a rough covector field F �! on M; called the
pullback of ! by F , by

.F �!/p D dF
�
p

�
!F.p/

�
: (11.13)

It acts on a vector v 2 TpM by

.F �!/p.v/D !F.p/
�
dFp.v/

�
:

In contrast to the vector field case, there is no ambiguity here about what point to
pull back from: the value of F �! at p is the pullback of ! at F.p/. We will prove in
Proposition 11.26 below that F �! is continuous, and is smooth when ! is smooth.
Before we do so, let us prove two important properties of the pullback.

Proposition 11.25. Let F W M ! N be a smooth map between smooth manifolds
with or without boundary. Suppose u is a continuous real-valued function on N ,
and ! is a covector field on N . Then

F �.u!/D .u ıF /F �!: (11.14)

If in addition u is smooth, then

F �duD d.u ıF /: (11.15)

Proof. To prove (11.14) we compute
�
F �.u!/

�
p
D dF �p

�
.u!/F.p/

�
.by (11.13)/

D dF �p
�
u
�
F.p/

�
!F.p/

�
.by (11.8)/

D u
�
F.p/

�
dF �p

�
!F.p/

�
.by linearity of dF �p /

D u
�
F.p/

�
.F �!/p .by (11.13)/

D
�
.u ıF /F �!

�
p

.by (11.8)/:

For (11.15), we let v 2 TpM be arbitrary, and compute

.F �du/p.v/D
�
dF �p

�
duF.p/

��
.v/ .by (11.13)/

D duF.p/
�
dFp.v/

�
.by definition of dF �p /

D dFp.v/u .by definition of du/

D v.u ıF / .by definition of dFp/

D d.u ıF /p.v/ .by definition of d.u ıF //: �

Proposition 11.26. Suppose F W M ! N is a smooth map between smooth mani-
folds with or without boundary, and let ! be a covector field on N . Then F �! is a
(continuous) covector field on M . If ! is smooth, then so is F �!.
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Proof. Let p 2M be arbitrary, and choose smooth coordinates
�
yj
�

for N in a
neighborhood V of F.p/. Let U D F �1.V /, which is a neighborhood of p. Writ-
ing ! in coordinates as ! D !jdyj for continuous functions !j on V and using
Proposition 11.25 twice (applied to F jU ), we have the following computation in U :

F �! D F �
�
!jdy

j
�
D .!j ıF /F

� dyj D .!j ıF /d
�
yj ıF

�
: (11.16)

This expression is continuous, and is smooth if ! is smooth. �
Formula (11.16) for the pullback of a covector field can also be written in the

following way:

F �! D
�
!j ıF

�
d
�
yj ıF

�
D
�
!j ıF

�
dF j ; (11.17)

where F j is the j th component function of F in these coordinates. Using either of
these formulas, the computation of pullbacks in coordinates is exceedingly simple,
as the next example shows.

Example 11.27. Let F W R3!R2 be the map given by

.u; v/D F.x;y; z/D
�
x2y;y sin z

�
;

and let ! 2X�
�
R2
�

be the covector field

! D udvC v du:

According to (11.16), the pullback F �! is given by

F �! D .u ıF /d.v ıF /C .v ıF /d.u ıF /

D
�
x2y

�
d.y sinz/C .y sinz/d

�
x2y

�

D x2y.sin z dy C y cosz dz/C y sin z
�
2xy dxC x2 dy

�

D 2xy2 sin z dxC 2x2y sin z dy C x2y2 cosz dz: //

In other words, to compute F �!, all you need to do is substitute the component
functions of F for the coordinate functions of N everywhere they appear in !!

This also yields an easy way to remember the transformation law for a covector
field under a change of coordinates. Again, an example will convey the idea better
than a general formula.

Example 11.28. Let .r; �/ be polar coordinates on, say, the right half-plane H D
f.x; y/ W x > 0g. We can think of the change of coordinates .x; y/D .r cos�; r sin�/
as the coordinate expression for the identity map of H , but using .r; �/ as coordi-
nates for the domain and .x; y/ for the codomain. Then the pullback formula (11.17)
tells us that we can compute the polar coordinate expression for a covector field sim-
ply by substituting x D r cos� , y D r sin� and expanding. For example,

x dy � y dx D Id�.x dy � y dx/

D .r cos�/d.r sin�/� .r sin�/d.r cos�/
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D .r cos�/.sin� dr C r cos� d�/� .r sin�/.cos� dr � r sin� d�/

D .r cos� sin� � r sin� cos�/dr C
�
r2 cos2 � C r2 sin2 �

�
d�

D r2 d�: //

Restricting Covector Fields to Submanifolds

In Chapter 8, we considered the conditions under which a vector field restricts to a
submanifold. The restriction of covector fields to submanifolds is much simpler.

Suppose M is a smooth manifold with or without boundary, S �M is an im-
mersed submanifold with or without boundary, and 	 W S ,!M is the inclusion map.
If ! is any smooth covector field on M; the pullback by 	 yields a smooth covector
field 	�! on S . To see what this means, let v 2 TpS be arbitrary, and compute

.	�!/p.v/D !p
�
d	p.v/

�
D !p.v/;

since d	p W TpS ! TpM is just the inclusion map, under our usual identification
of TpS with a subspace of TpM . Thus, 	�! is just the restriction of ! to vectors
tangent to S . For this reason, 	�! is often called the restriction of ! to S . Be
warned, however, that 	�! might equal zero at a given point of S , even though
considered as a covector field on M , ! might not vanish there. An example will
help to clarify this distinction.

Example 11.29. Let ! D dy on R2, and let S be the x-axis, considered as an
embedded submanifold of R2. As a covector field on R2, ! is nonzero everywhere,
because one of its component functions is always 1. However, the restriction 	�! is
identically zero, because y vanishes identically on S :

	�! D 	� dy D d.y ı 	/D 0: //

To distinguish the two ways in which we might interpret the statement “! van-
ishes on S ,” one usually says that ! vanishes along S or vanishes at points of S
if !p D 0 for every point p 2 S . The weaker condition that 	�! D 0 is expressed by
saying that the restriction of ! to S vanishes, or the pullback of ! to S vanishes.

I Exercise 11.30. Suppose M is a smooth manifold with or without boundary and
S �M is an immersed submanifold with or without boundary. For any f 2 C1.M/,
show that d

�
f jS

�
D 	�.df /. Conclude that the pullback of df to S is zero if and only

if f is constant on each component of S .

Line Integrals

Another important application of covector fields is to make coordinate-independent
sense of the notion of a line integral.

We begin with the simplest case: an interval in the real line. Suppose Œa; b��R
is a compact interval, and ! is a smooth covector field on Œa; b�. (This means that
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the component function of ! admits a smooth extension to some neighborhood of
Œa; b�.) If we let t denote the standard coordinate on R, then ! can be written !t D
f .t/dt for some smooth function f W Œa; b�! R. The similarity between this and
the usual notation

R
f .t/dt for an integral suggests that there might be a connection

between covector fields and integrals, and indeed there is. We define the integral of
! over Œa;b� to be

Z

Œa;b	

! D

Z b

a

f .t/dt:

The next proposition should convince you that this is more than just a trick of
notation.

Proposition 11.31 (Diffeomorphism Invariance of the Integral). Let ! be a
smooth covector field on the compact interval Œa; b� � R. If ' W Œc; d �! Œa; b� is
an increasing diffeomorphism (meaning that t1 < t2 implies '.t1/ < '.t2/), then

Z

Œc;d	

'�! D

Z

Œa;b	

!:

Proof. If we let s denote the standard coordinate on Œc; d � and t that on Œa; b�,
then (11.17) shows that the pullback '�! has the coordinate expression .'�!/s D
f
�
'.s/

�
'0.s/ds. Inserting this into the definition of the line integral and using the

change of variables formula for ordinary integrals, we obtain
Z

Œc;d	

'�! D

Z d

c

f
�
'.s/

�
'0.s/ds D

Z b

a

f .t/dt D

Z

Œa;b	

!: �

I Exercise 11.32. Prove that if ' W Œc; d �! Œa; b� is a decreasing diffeomorphism,
then

Z

Œc;d	
'�! D�

Z

Œa;b	
!:

Now let M be a smooth manifold with or without boundary. By a curve segment
in M we mean a continuous curve � W Œa; b�! M whose domain is a compact
interval. It is a smooth curve segment if it is smooth when Œa; b� is considered
as a manifold with boundary (or, equivalently, if � has an extension to a smooth
curve defined in a neighborhood of each endpoint). It is a piecewise smooth curve
segment if there exists a finite partition a D a0 < a1 < � � � < ak D b of Œa; b� such
that � jŒai�1;ai 	 is smooth for each i (Fig. 11.4). Continuity of � means that �.t/
approaches the same value as t approaches any of the points ai (other than a0 or
ak) from the left or the right. Smoothness of � on each subinterval means that � has
one-sided velocity vectors at each such ai when approaching from the left or the
right, but these one-sided velocities need not be equal.

Proposition 11.33. IfM is a connected smooth manifold with or without boundary,
any two points of M can be joined by a piecewise smooth curve segment.

Proof. Let p be an arbitrary point of M; and define a subset C �M by

C D fq 2M W there is a piecewise smooth curve segment in M from p to qg:
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Fig. 11.4 A piecewise smooth curve segment

Clearly, p 2 C , so C is nonempty. To show that C DM; we need to show that it is
open and closed in M .

Let q 2 C be arbitrary, which means that there is a piecewise smooth curve seg-
ment � going from p to q. Let U be a smooth coordinate ball (or half-ball) centered
at q. If q0 is any point in U , then it is easy to construct a piecewise smooth curve seg-
ment from p to q0 by first following � from p to q, and then following a straight-line
path in coordinates from q to q0. Thus U � C , which shows that C is open in M .
On the other hand, if q 2 @C , let U be a smooth coordinate ball or half-ball around
q as above. The fact that q is a boundary point of C means that there is some point
q0 2 C \U . In this case, we can construct a piecewise smooth curve from p to q by
first following one from p to q0 and then following a straight-line path in coordinates
from q0 to q. This shows that q 2 C , so C is also closed. �

If � W Œa; b�!M is a smooth curve segment and ! is a smooth covector field
on M; we define the line integral of ! over � to be the real number

Z

�

! D

Z

Œa;b	

��!:

Because ��! is a smooth covector field on Œa; b�, this definition makes sense. More
generally, if � is piecewise smooth, we define

Z

�

! D

kX

iD1

Z

Œai�1;ai 	

��!;

where Œai�1; ai �, i D 1; : : : ; k, are subintervals on which � is smooth.

Proposition 11.34 (Properties of Line Integrals). Let M be a smooth manifold
with or without boundary. Suppose � W Œa; b�!M is a piecewise smooth curve seg-
ment, and !;!1;!2 2X�.M/.

(a) For any c1; c2 2R,
Z

�

.c1!1C c2!2/D c1

Z

�

!1C c2

Z

�

!2:

(b) If � is a constant map, then
R
�
! D 0.
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(c) If �1 D � jŒa;c	 and �2 D � jŒc;b	 with a < c < b, then
Z

�

! D

Z

�1

! C

Z

�2

!:

(d) If F W M !N is any smooth map and � 2X�.N /, then
Z

�

F ��D

Z

F ı�

�:

I Exercise 11.35. Prove Proposition 11.34.

Example 11.36. Let M DR2 X f0g, let ! be the covector field on M given by

! D
x dy � y dx

x2C y2
;

and let � W Œ0; 2��!M be the curve segment defined by �.t/D .cos t; sin t/. Since
��! can be computed by substituting x D cos t and y D sin t everywhere in the
formula for !, we find that

Z

�

! D

Z

Œ0;2�	

cos t.cos t dt/� sin t.� sin t dt/

sin2 t C cos2 t
D

Z 2�

0

dt D 2�: //

One of the most significant features of line integrals is that they are indepen-
dent of parametrization, in a sense we now make precise. If � W Œa; b�!M and
z� W Œc; d �!M are piecewise smooth curve segments, we say that z� is a reparam-
etrization of � if z� D � ı ' for some diffeomorphism ' W Œc; d �! Œa; b�. If ' is
an increasing function, we say that z� is a forward reparametrization, and if '
is decreasing, it is a backward reparametrization. (More generally, with obvious
modifications one can allow ' to be piecewise smooth.)

Proposition 11.37 (Parameter Independence of Line Integrals). Suppose M is
a smooth manifold with or without boundary, ! 2 X�.M/, and � is a piecewise
smooth curve segment in M . For any reparametrization z� of � , we have

Z

z�

! D

‚
Z

�

! if z� is a forward reparametrization;

�

Z

�

! if z� is a backward reparametrization:

Proof. First assume that � W Œa; b�!M is smooth, and suppose z� D � ı ', where
' W Œc; d �! Œa; b� is an increasing diffeomorphism. Then Proposition 11.31 implies

Z

z�

! D

Z

Œc;d	

.� ı '/�! D

Z

Œc;d	

'���! D

Z

Œa;b	

��! D

Z

�

!:

When ' is decreasing, the analogous result follows from Exercise 11.32. If � is only
piecewise smooth, the result follows simply by applying the preceding argument on
each subinterval where � is smooth. �

The next proposition gives a useful alternative expression for a line integral.
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Proposition 11.38. If � W Œa; b�!M is a piecewise smooth curve segment, the line
integral of ! over � can also be expressed as the ordinary integral

Z

�

! D

Z b

a

!�.t/
�
� 0.t/

�
dt: (11.18)

Proof. First suppose that � is smooth and that its image is contained in the do-
main of a single smooth chart. Writing the coordinate representations of � and ! as�
�1.t/; : : : ; �n.t/

�
and !i dxi , respectively, we have

!�.t/
�
� 0.t/

�
D !i

�
�.t/

�
dxi

�
� 0.t/

�
D !i

�
�.t/

�
P� i .t/:

Combining this with the coordinate formula (11.17) for the pullback, we obtain

.��!/t D .!i ı �/.t/ d
�
� i
�
t
D !i

�
�.t/

�
P� i .t/ dt D !�.t/

�
� 0.t/

�
dt:

Therefore, by definition of the line integral,
Z

�

! D

Z

Œa;b	

��! D

Z b

a

!�.t/
�
� 0.t/

�
dt:

If � is an arbitrary smooth curve segment, by compactness there exists a finite
partition a D a0 < a1 < � � � < ak D b of Œa; b� such that �

�
Œai�1; ai �

�
is contained

in the domain of a single smooth chart for each i D 1; : : : ; k, so we can apply the
computation above on each such subinterval. Finally, if � is only piecewise smooth,
we simply apply the same argument on each subinterval on which � is smooth. �

There is one special case in which a line integral is trivial to compute: the line
integral of a differential.

Theorem 11.39 (Fundamental Theorem for Line Integrals). Let M be a smooth
manifold with or without boundary. Suppose f is a smooth real-valued function on
M and � W Œa; b�!M is a piecewise smooth curve segment in M . Then

Z

�

df D f
�
�.b/

�
� f

�
�.a/

�
:

Proof. Suppose first that � is smooth. By Propositions 11.23 and 11.38,
Z

�

df D

Z b

a

df�.t/
�
� 0.t/

�
dt D

Z b

a

.f ı �/0.t/ dt:

By the fundamental theorem of calculus, this is equal to f ı �.b/� f ı �.a/.
If � is merely piecewise smooth, let a D a0 < � � � < ak D b be the endpoints

of the subintervals on which � is smooth. Applying the above argument on each
subinterval and summing, we find that

Z

�

df D

kX

iD1

�
f
�
�.ai /

�
� f

�
�.ai�1/

��
D f

�
�.b/

�
� f

�
�.a/

�
;

because the contributions from all the interior points cancel. �
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Conservative Covector Fields

Theorem 11.39 shows that the line integral of any covector field that can be written
as the differential of a smooth function can be computed easily once the smooth
function is known. For this reason, there is a special term for covector fields with
this property. A smooth covector field ! on a smooth manifold M with or without
boundary is said to be exact (or an exact differential) onM if there is a function f 2
C1.M/ such that ! D df . In this case, the function f is called a potential for !.
The potential is not uniquely determined, but by Proposition 11.22, the difference
between any two potentials for ! must be constant on each component of M .

Because exact differentials are so easy to integrate, it is important to develop
criteria for deciding whether a covector field is exact. Theorem 11.39 provides an
important clue. It shows that the line integral of an exact covector field depends
only on the endpoints p D �.a/ and q D �.b/: any other curve segment from p to
q would give the same value for the line integral. In particular, if � is a closed curve
segment, meaning that �.a/D �.b/, then the integral of df over � is zero.

We say that a smooth covector field ! is conservative if the line integral of !
over every piecewise smooth closed curve segment is zero. This terminology comes
from physics, where a force field is called conservative if the change in energy
caused by the force acting along any closed path is zero (“energy is conserved”). (In
elementary physics, force fields are usually thought of as vector fields rather than
covector fields; see Problem 11-15 for the connection.)

Conservative covector fields can also be characterized by path independence.

Proposition 11.40. A smooth covector field ! is conservative if and only if its line
integrals are path-independent, in the sense that

R
�
! D

R
z�
! whenever � and z� are

piecewise smooth curve segments with the same starting and ending points.

I Exercise 11.41. Prove Proposition 11.40. [Remark: this would be harder to prove
if we defined conservative fields in terms of smooth curves instead of piecewise smooth
ones.]

Theorem 11.42. Let M be a smooth manifold with or without boundary. A smooth
covector field on M is conservative if and only if it is exact.

Proof. If ! 2 X�.M/ is exact, Theorem 11.39 shows that it is conservative, so we
need only prove the converse. Suppose ! is conservative, and assume for the mo-
ment that M is connected. Because the line integrals of ! are path-independent, we
can adopt the following notation: for any points p;q 2M; we use the notation

R q
p !

to denote the value of any line integral of the form
R
� !, where � is a piecewise

smooth curve segment from p to q. Because a backward reparametrization of a path
from p to q is a path from q to p, Proposition 11.37 implies

R p
q ! D�

R q
p !; and

for any three points p1; p2; p3 2M; Proposition 11.34(c) implies that
Z p2

p1

! C

Z p3

p2

! D

Z p3

p1

!: (11.19)
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Fig. 11.5 Proof that a conservative covector field is exact

Now choose any base point p0 2 M; and define a function f W M ! R by
f .q/D

R q
p0
!. We need to show that f is smooth and df D !. To accomplish this,

let q0 2M be arbitrary, let
�
U;
�
xi
��

be a smooth chart centered at q0, and write the
coordinate representation of ! in U as ! D !idxi . We need to show that

@f

@xj
.q0/D !j .q0/

for j D 1; : : : ; n, which implies dfq0 D !q0 .
First suppose q0 2 IntM . Fix j , and let � W Œ�"; "�! U be the smooth curve

segment defined in coordinates by �.t/D .0; : : : ; t; : : : ; 0/, with t in the j th place,
and with " chosen small enough that �Œ�"; "�� U (Fig. 11.5). Let p1 D �.�"/, and
define a new function zf W M !R by zf .q/D

R q
p1
!. Note that (11.19) implies that

for all q 2M;

f .q/� zf .q/D

Z q

p0

! �

Z q

p1

! D

Z q

p0

! C

Z p1

q

! D

Z p1

p0

!;

which does not depend on q. Thus zf and f differ by a constant, so it suffices to
show that @ zf =@xj .q0/D !j .q0/.

Now � 0.t/D @=@xj j�.t/ by construction, so

!�.t/
�
� 0.t/

�
D !i

�
�.t/

�
dxi

�
@

@xj

ˇ̌
ˇ̌
�.t/

�
D !j

�
�.t/

�
:

Since the restriction of � to Œ�"; t � is a smooth curve from p1 to �.t/, we have

zf ı �.t/D

Z �.t/

p1

! D

Z t

�"

!�.s/
�
� 0.s/

�
ds D

Z t

�"

!j
�
�.s/

�
ds:

Thus, by the fundamental theorem of calculus,

@ zf

@xj
.q0/D �

0.0/ zf D
d

dt

ˇ̌
ˇ̌
tD0

zf ı �.t/

D
d

dt

ˇ̌
ˇ̌
tD0

Z t

�"

!j
�
�.s/

�
ds D !j

�
�.0/

�
D !j .q0/:

This shows that dfq0 D !q0 when q0 2 IntM .
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For q0 2 @M; the chart
�
U;
�
xi
��

is a boundary chart centered at q0. The proof
above shows that @f=@xj .q0/ D !j .q0/ except in the case j D n D dimM ; but
that case requires a special argument because xn takes on only nonnegative values
in a boundary chart. In that case we simply set p1 D �.0/ instead of p1 D �.�"/,
and proceed as before. Then the same argument shows that dfq0 D !q0 in this case
as well. This completes the proof that df D ! when M is connected. Since the
component functions of ! are smooth and equal to the partial derivatives of f in
coordinates, this also shows that f is smooth.

Finally, if M is not connected, let fMig be the components of M . The argument
above shows that for each i there is a function fi 2 C1.Mi / such that dfi D !
on Mi . Letting f W M !R be the function that is equal to fi on Mi for each i , we
have df D !, thus completing the proof. �

It would be nice if every smooth covector field were exact, for then the evalua-
tion of any line integral would just be a matter of finding a potential function and
evaluating it at the endpoints, a process analogous to evaluating an ordinary integral
by finding an indefinite integral (also called a primitive or antiderivative). However,
this is too much to hope for.

Example 11.43. The covector field ! of Example 11.36 cannot be exact on
R2 X f0g, because it is not conservative: the computation in that example showed
that

R
�
! D 2� ¤ 0, where � is the unit circle traversed counterclockwise. //

Because exactness has such important consequences for the evaluation of line
integrals, we would like to have an easy way to check whether a given covector field
is exact. Fortunately, there is a very simple necessary condition, which follows from
the fact that partial derivatives of smooth functions can be taken in any order.

To see what this condition is, suppose ! 2 X�.M/ is exact. Let f be any po-
tential function for !, and let

�
U;
�
xi
��

be any smooth chart on M . Because f is
smooth, it satisfies the following identity on U :

@2f

@xi@xj
D

@2f

@xj @xi
: (11.20)

Writing ! D !idx
i in coordinates, we see that ! D df is equivalent to !i D

@f=@xi . Substituting this into (11.20), we find that the component functions of !
satisfy the following identity for each pair of indices i and j :

@!j

@xi
D
@!i

@xj
: (11.21)

We say that a smooth covector field ! is closed if its components in every smooth
chart satisfy (11.21). The following proposition summarizes the computation above.

Proposition 11.44. Every exact covector field is closed. �

One technical difficulty in checking directly from the definition that a covector
field is closed is that it would require checking that (11.21) holds in every coordinate
chart. The next proposition gives an alternative characterization of closed covector
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fields that is coordinate independent, and incidentally shows that it suffices to check
(11.21) in some coordinate chart around each point.

Proposition 11.45. Let ! be a smooth covector field on a smooth manifold M with
or without boundary. The following are equivalent:

(a) ! is closed.
(b) ! satisfies (11.21) in some smooth chart around every point.
(c) For any open subset U �M and smooth vector fields X;Y 2X.U /,

X
�
!.Y /

�
� Y

�
!.X/

�
D !

�
ŒX;Y �

�
: (11.22)

Proof. We will prove that (a) ) (b) ) (c) ) (a). The implication (a) ) (b) is
immediate from the definition of closed covector fields.

To prove (b) ) (c), assume (b) holds, and suppose U �M and X;Y 2 X.U /
as in the statement of (c). It suffices to verify that (11.22) holds in a neighborhood
of each point of U . In any coordinate chart

�
V;
�
xi
��

with V � U , we can write
! D !idx

i , X DXj @=@xj , and Y D Y k@=@xk , and compute

X
�
!.Y /

�
DX

�
!iY

i
�
D Y iX!i C!iXY

i D Y iXj
@!i

@xj
C!iXY

i :

If we repeat the same computation with X and Y reversed and subtract, the terms
involving derivatives of !i cancel by virtue of (11.21). Thus we get

X
�
!.Y /

�
� Y

�
!.X/

�
D !i

�
XY i � YX i

�
:

Formula (8.9) shows that this last expression is equal to !
�
ŒX;Y �

�
.

Finally, if ! satisfies (c), in any coordinate chart we can apply (11.22) with X D
@=@xi and Y D @=@xj , noting that ŒX;Y �D 0 in that case, to obtain (11.21). �

One consequence of this proposition is that closedness can be easily checked
using criterion (b), so many covector fields can be shown quickly not to be exact
because they are not closed. Another is the following corollary.

Corollary 11.46. Suppose F W M ! N is a local diffeomorphism. Then the pull-
back F � W X�.N /! X�.M/ takes closed covector fields to closed covector fields,
and exact ones to exact ones.

Proof. The result for exact covector fields follows immediately from (11.15). For
closed covector fields, if .U;'/ is any smooth chart for N , then ' ı F is a smooth
chart for M in a neighborhood of each point of F �1.U /. In these coordinates, the
coordinate representation of F is the identity, so if ! satisfies (11.21) in U , then
F �! satisfies (11.21) in F �1.U /. �
Example 11.47. Consider the following covector field on R2:

! D y cosxy dxC x cosxy dy:

It is easy to check that

@.y cosxy/

@y
D
@.x cosxy/

@x
D cosxy � xy sinxy;
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so ! is closed. In fact, you might guess that ! D d.sinxy/. On the other hand, the
covector field

�D x cosxy dxC y cosxy dy

is not closed, because

@.x cosxy/

@y
D�x2 sinxy;

@.y cosxy/

@x
D�y2 sinxy:

Thus � is not exact. //

The question then naturally arises whether the converse of Proposition 11.44 is
true: Is every closed covector field exact? The answer is almost yes, but there is an
important restriction. It turns out that the answer to the question depends in a subtle
way on the shape of the domain, as the next example illustrates.

Example 11.48. Look once again at the covector field ! of Example 11.36.
A straightforward computation shows that ! is closed; but as we observed above, it
is not exact on R2 X f0g. On the other hand, if we restrict the domain to the right
half-planeU D f.x; y/ W x > 0g, a computation shows that ! D d

�
tan�1 y=x

�
there.

This can be seen more clearly in polar coordinates, where ! D d� . The problem,
of course, is that there is no smooth (or even continuous) angle function on all of
R2 X f0g, which is a consequence of the “hole” in the center. //

This last example illustrates a key principle: the question of whether a particular
closed covector field is exact is a global one, depending on the shape of the domain
in question. This observation is the starting point for de Rham cohomology, which
expresses a deep relationship between smooth structures and topology. We will de-
fine de Rham cohomology and study this relationship in Chapter 17, but for now we
can prove the following result. If V is a finite-dimensional vector space, a subset
U � V is said to be star-shaped if there is a point c 2 U such that for every x 2U ,
the line segment from c to x is entirely contained in U (Fig. 11.6). For example,
every convex subset is star-shaped.

Theorem 11.49 (Poincaré Lemma for Covector Fields). If U is a star-shaped
open subset of Rn or Hn, then every closed covector field on U is exact.

Proof. Suppose U is star-shaped with respect to c 2 U , and let ! D !idxi be a
closed covector field on U . As in the proof of Theorem 11.42, we will construct a
potential function for ! by integrating along smooth curve segments from c. How-
ever, in this case we do not know a priori that the line integrals are path-independent,
so we must integrate along specific paths.

Because diffeomorphisms take closed forms to closed forms and exact ones to
exact ones, we can apply a translation to U to arrange that c D 0. For any point
x 2 U , let �x W Œ0; 1�! U denote the line segment from 0 to x, parametrized as
�x.t/D tx. The hypothesis guarantees that the image of �x lies entirely in U for
each x 2 U . Define a function f W U !R by

f .x/D

Z

�x

!: (11.23)
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Fig. 11.6 A star-shaped subset of R2

We need to show that f is a potential for !, or equivalently that @f=@xj D !j
for j D 1; : : : ; n. To begin, we compute

f .x/D

Z 1

0

!�x.t/
�
� 0x.t/

�
dt D

Z 1

0

!i .tx/x
i dt: (11.24)

(The summation convention is in effect.) To compute the partial derivatives of f , we
note that the integrand is smooth in all variables, so it is permissible to differentiate
under the integral sign to obtain

@f

@xj
.x/D

Z 1

0

�
t
@!i

@xj
.tx/xi C!j .tx/

�
dt:

Because ! is closed, this reduces to

@f

@xj
.x/D

Z 1

0

�
t
@!j

@xi
.tx/xi C!j .tx/

�
dt

D

Z 1

0

d

dt

�
t!j .tx/

�
dt D

h
t!j .tx/

itD1

tD0
D !j .x/: �

Corollary 11.50 (Local Exactness of Closed Covector Fields). Let ! be a closed
covector field on a smooth manifold M with or without boundary. Then every point
of M has a neighborhood on which ! is exact.

Proof. Let p 2M be arbitrary. The hypothesis implies that ! satisfies (11.21) in
some smooth coordinate ball or half-ball .U;'/ containing p. Because balls and
half-balls are convex, we can apply Theorem 11.49 to the coordinate representation
of ! and conclude that there is a function f 2 C1.U / such that !jU D df . �

The key to constructing a potential function in Theorem 11.49 is that we can
reach every point x 2M by a definite path from c to x, chosen to vary smoothly as
x varies. That is what fails in the case of the closed covector field ! on the punctured
plane (Example 11.43): because of the hole, it is impossible to choose a smoothly
varying family of paths starting at a fixed base point and reaching every point of the
domain exactly once. In Chapter 16 we will generalize Theorem 11.49 to show that
every closed covector field is exact on any simply connected manifold.

When you actually have to compute a potential function for a given covector
field that is known to be exact, there is a much simpler procedure that almost always
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works. It is a straightforward generalization of the method introduced in calculus
texts for computing a potential function for a vector field that is known to be a
gradient. Rather than describe it in complete generality, we illustrate it with an ex-
ample.

Example 11.51. Let ! be the following covector field on R3:

! D ey
2

dxC 2xyey
2

dy � 2z dz:

You can check that ! is closed. For f to be a potential for !, it must satisfy

@f

@x
D ey

2

;
@f

@y
D 2xyey

2

;
@f

@z
D�2z: (11.25)

Holding y and z fixed and integrating the first equation with respect to x, we obtain

f .x;y; z/D

Z
ey
2

dx D xey
2

CC1.y; z/;

where the “constant” of integration C1.y; z/ may depend on the choice of .y; z/.
Now the second equation of (11.25) implies

2xyey
2

D
@

@y

	
xey

2

CC1.y; z/


D 2xyey

2

C
@C1

@y
;

which forces @C1=@y D 0, so C1 is actually a function of z only. Finally, the third
equation implies

�2z D
@

@z

	
xey

2

CC1.z/


D
dC1

dz
;

from which we conclude that C1.z/D�z2 C C , where C is an arbitrary constant.
Thus a potential function for ! is given by f .x;y; z/D xey

2
� z2. Any other po-

tential differs from this one by a constant. //

You should convince yourself that the formal procedure we followed in this
example is equivalent to choosing an arbitrary base point c 2 R3 and defining
f .x;y; z/ by integrating ! along a path from c to .x; y; z/ consisting of three
straight line segments parallel to the axes. This works for any closed covector field
on an open rectangle in Rn (which we know must be exact, because a rectangle
is convex). In practice, once a formula is found for f on some open rectangle,
the same formula typically works for the entire domain. (This is because most
of the covector fields for which one can explicitly compute the integrals are real-
analytic, and real-analytic functions are determined by their behavior in any open
subset.)
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Problems

11-1. (a) Suppose V andW are finite-dimensional vector spaces andA W V !W

is any linear map. Show that the following diagram commutes:

V
A � W

V ��

�V �

.A�/
�
� W ��;

�W�

where �V and �W denote the isomorphisms defined by (11.3) for V and
W , respectively.

(b) Show that there does not exist a way to assign to each finite-dimensional
vector space V an isomorphism ˇV W V ! V � such that for every linear
map A W V !W , the following diagram commutes:

V
A� W

V �

ˇV �
�
A�

W �:

ˇW�

11-2. Suppose V is an infinite-dimensional real vector space, and let V � denote
the vector space of all linear functionals from V to R. (This is often called
the algebraic dual space of V to distinguish it from the space of continuous
linear functionals when V is endowed with a norm or a topology.)
(a) Prove that there is an injective linear map from V to V �. [Hint: see

Exercise B.5.]
(b) Prove that there is no injective linear map from V � to V . [Hint: if S is

a basis for V , prove that there is a linearly independent subset of V �

with the same cardinality as the power set of S .]
(c) Use (a) and (b) to prove there is no isomorphism between V and V ��.
(Used on p. 489.)

11-3. Let Vec1 be the category of finite-dimensional vector spaces and linear iso-
morphisms as in Problem 10-8. Define a functor F W Vec1! Vec1 by set-
ting F .V /D V � for a vector space V , and F .A/D .A�1/� for an isomor-
phism A. Show that F is a smooth covariant functor, and that for every M;
F .TM/ and T �M are canonically smoothly isomorphic vector bundles.

11-4. Let M be a smooth manifold with or without boundary and p be a point
of M . Let Ip denote the subspace of C1.M/ consisting of smooth func-
tions that vanish at p, and let I2p be the subspace of Ip spanned by functions
of the form fg for some f;g 2 Ip .
(a) Show that f 2 I2p if and only if in any smooth local coordinates, its

first-order Taylor polynomial at p is zero. (Because of this, a function
in I2p is said to vanish to second order.)
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(b) Define a map ˚ W Ip ! T �pM by setting ˚.f /D dfp . Show that the
restriction of ˚ to I2p is zero, and that ˚ descends to a vector space
isomorphism from Ip=I

2
p to T �pM .

[Remark: Problem 3-8 showed that tangent vectors at p can be viewed as
equivalence classes of smooth curves, which are smooth maps from (sub-
sets of) R to M . This problem shows that covectors at p can be viewed
dually as equivalence classes of smooth functions from M to R: a covector
is an equivalence class of smooth functions that vanish at p, with two such
functions considered equivalent if they differ by a function that vanishes to
second order. In some treatments of smooth manifold theory, T �pM is de-
fined first in this way, and then TpM is defined as the dual space .Ip=I2p/

�.]

11-5. For any smooth manifold M; show that T �M is a trivial vector bundle if
and only if TM is trivial.

11-6. Suppose M is a smooth n-manifold, p 2M; and y1; : : : ; yk are smooth
real-valued functions defined on a neighborhood of p in M . Prove the fol-
lowing statements.
(a) If k D n and

�
dy1jp; : : : ; dy

njp
�

is a basis for T �pM; then
�
y1; : : : ; yn

�

are smooth coordinates for M in some neighborhood of p.
(b) If

�
dy1jp; : : : ; dy

kjp
�

is a linearly independent k-tuple of covectors
and k < n, then there are smooth functions ykC1; : : : ; yn such that�
y1; : : : ; yn

�
are smooth coordinates for M in a neighborhood of p.

(c) If
�
dy1jp; : : : ; dy

k jp
�

span T �pM; there are indices i1; : : : ; in such that�
yi1 ; : : : ; yin

�
are smooth coordinates for M in a neighborhood of p.

(Used on p. 584.)

11-7. In the following problems,M and N are smooth manifolds, F W M !N is
a smooth map, and ! 2X�.N /. Compute F �! in each case.
(a) M DN DR2;

F.s; t/D .st; et /;
! D x dy � y dx.

(b) M DR2 and N DR3;
F.�;'/D

�
.cos' C 2/ cos�; .cos' C 2/ sin�; sin'

�
;

! D z2 dx.
(c) M D

˚
.s; t/ 2R2 W s2C t2 < 1

�
and N DR3 X f0g;

F.s; t/D
	
s; t;
p
1� s2 � t2



;

! D .1� x2 � y2/dz.

11-8. (a) Suppose F W M ! N is a diffeomorphism, and let dF � W T �N !
T �M be the map whose restriction to each cotangent space T �q N is
equal to dF �

F�1.q/
. Show that dF � is a smooth bundle homomorphism.

(b) Let Diff1 be the category whose objects are smooth manifolds, but
whose only morphisms are diffeomorphisms; and let VB be the cate-
gory whose objects are smooth vector bundles and whose morphisms
are smooth bundle homomorphisms. Show that the assignment M 7!
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T �M; F 7! dF � defines a contravariant functor from Diff1 to VB,
called the cotangent functor.

(Used on p. 592.)

11-9. Let f W R3 ! R be the function f .x;y; z/ D x2 C y2 C z2, and let
F W R2! R3 be the following map (the inverse of the stereographic pro-
jection):

F.u; v/D

�
2u

u2C v2C 1
;

2v

u2C v2C 1
;
u2C v2 � 1

u2C v2C 1

�
:

Compute F �df and d.f ıF / separately, and verify that they are equal.

11-10. In each of the cases below, M is a smooth manifold and f W M ! R is a
smooth function. Compute the coordinate representation for df , and deter-
mine the set of all points p 2M at which dfp D 0.
(a) M D

˚
.x; y/ 2R2 W x > 0

�
; f .x;y/D x=

�
x2C y2

�
. Use standard co-

ordinates .x; y/.
(b) M and f are as in (a); this time use polar coordinates .r; �/.
(c) M D S2 �R3; f .p/D z.p/ (the z-coordinate of p as a point in R3).

Use north and south stereographic coordinates (Problem 1-7).
(d) M DRn; f .x/D jxj2. Use standard coordinates.

11-11. Let M be a smooth manifold, and C �M be an embedded submanifold.
Let f 2 C1.M/, and suppose p 2 C is a point at which f attains a local
maximum or minimum value among points in C . Given a smooth local
defining function ˚ W U ! Rk for C on a neighborhood U of p in M;
show that there are real numbers 
1; : : : ; 
k (called Lagrange multipliers)
such that

dfp D 
1d˚
1
ˇ
ˇ
p
C � � � C 
kd˚

k
ˇ
ˇ
p
:

11-12. Show that any two points in a connected smooth manifold can be joined by
a smooth curve segment.

11-13. The length of a smooth curve segment � W Œa; b�!Rn is defined to be the
value of the (ordinary) integral

L.�/D
Z b

a

ˇ̌
� 0.t/

ˇ̌
dt:

Show that there is no smooth covector field ! 2X� .Rn/ with the property
that

R
� ! D L.�/ for every smooth curve � .

11-14. Consider the following two covector fields on R3:

! D �
4z dx

.x2C 1/
2
C
2y dy

y2C 1
C
2x dz

x2C 1
;

�D �
4xz dx

.x2C 1/
2
C
2y dy

y2C 1
C

2dz

x2C 1
:
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(a) Set up and evaluate the line integral of each covector field along the
straight line segment from .0; 0; 0/ to .1; 1; 1/.

(b) Determine whether either of these covector fields is exact.
(c) For each one that is exact, find a potential function and use it to recom-

pute the line integral.

11-15. LINE INTEGRALS OF VECTOR FIELDS: Let X be a smooth vector field
on an open subset U � Rn. Given a piecewise smooth curve segment
� W Œa; b�! U , define the line integral of X over � , denoted by

R
� X � ds,

as
Z

�

X � ds D
Z b

a

X�.t/ � � 0.t/ dt;

where the dot on the right-hand side denotes the Euclidean dot product be-
tween tangent vectors at �.t/, identified with elements of Rn. A conserva-
tive vector field is one whose line integral around every piecewise smooth
closed curve is zero.
(a) Show thatX is conservative if and only if there exists a smooth function

f 2 C1.U / such that X D gradf . [Hint: consider the covector field
! defined by !x.v/DXx � v.]

(b) Suppose nD 3. Show that if X is conservative, then curlX D 0, where

curlX D

�
@X3

@x2
�
@X2

@x3

�
@

@x1
C

�
@X1

@x3
�
@X3

@x1

�
@

@x2

C

�
@X2

@x1
�
@X1

@x2

�
@

@x3
: (11.26)

(c) Show that if U �R3 is star-shaped, then X is conservative on U if and
only if curlX D 0.

11-16. Let M be a compact manifold of positive dimension. Show that every ex-
act covector field on M vanishes at least at two points in each component
of M .

11-17. Let Tn D S1� � � � �S1 �Cn denote the n-torus. For each j D 1; : : : ; n, let
�j W Œ0; 1�!Tn be the curve segment

�j .t/D
�
1; : : : ; e2�it ; : : : ; 1

� �
with e2�it in the j th place

�
:

Show that a closed covector field ! on Tn is exact if and only if
R
�j
! D 0

for j D 1; : : : ; n. [Hint: consider first ."n/�!, where "n W Rn! Tn is the
smooth covering map "n

�
x1; : : : ; xn

�
D
�
e2�ix

1
; : : : ; e2�ix

n�
.]

11-18. This problem shows how to give a rigorous meaning to words like “natural”
and “canonical” that are so often used informally in mathematics. Suppose
C and D are categories, and F ;G are (covariant or contravariant) functors
from C to D. A natural transformation 
 from F to G is a rule that assigns
to each object X 2 Ob.C/ a morphism 
X 2 HomD

�
F .X/;G .X/

�
in such
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a way that for every pair of objects X;Y 2 Ob.C/ and every morphism
f 2HomC.X;Y /, the following diagram commutes:

F .X/
F .f /� F .Y /

G .X/


X �

G .f /
� G .Y /:


Y�

(If either F or G is contravariant, the corresponding horizontal arrow
should be reversed.)
(a) Let VecR denote the category of real vector spaces and linear maps, and

let D be the contravariant functor from VecR to itself that sends each
vector space to its dual space and each linear map to its dual map. Show
that the assignment V 7! �V , where �V W V ! V �� is the map defined
by �V .v/! D !.v/, is a natural transformation from the identity functor
of VecR to D ıD .

(b) Show that there does not exist a natural transformation from the identity
functor of VecR to D .

(c) Let Diff1 be the category of smooth manifolds and diffeomorphisms
and VB the category of smooth vector bundles and smooth bundle ho-
momorphisms, and let T;T � W Diff1! VB be the tangent and cotangent
functors, respectively (see Problems 10-3 and 11-8). Show that there
does not exist a natural transformation from T to T �.

(d) Let X W Diff1! VecR be the covariant functor given by M 7! X.M/,
F 7! F�; and let X � X W Diff1! VecR be the covariant functor given
by M 7!X.M/�X.M/, F 7! F� �F�. Show that the Lie bracket is a
natural transformation from X�X to X.

(Used on pp. 189, 347, 376.)



Chapter 12
Tensors

Much of the technology of smooth manifold theory is designed to allow the concepts
of linear algebra to be applied to smooth manifolds. Calculus tells us how to approx-
imate smooth objects by linear ones, and the abstract definitions of manifold theory
give a way to interpret these linear approximations in a coordinate-independent way.

In this chapter we carry this idea much further, by generalizing from linear maps
to multilinear ones—those that take several vectors as input and depend linearly
on each one separately. Although linear maps are paramount in differential geom-
etry, there are many situations in which multilinear maps play important geomet-
ric roles. We will introduce a unified language for talking about multilinear maps:
the language of tensors. This leads to the concepts of tensors and tensor fields on
manifolds.

We begin with tensors on a vector space, which are multilinear generalizations
of covectors; a covector is the special case of a tensor of rank one. We give two al-
ternative definitions of tensors on a vector space: on the one hand, they are elements
of the abstract “tensor product” of the dual vector space with itself; on the other
hand, they are real-valued multilinear functions of several vectors. Each definition
is useful in certain contexts. We deal primarily with covariant tensors, but we also
give a brief introduction to contravariant tensors and tensors of mixed variance.

Next we introduce two special classes of tensors: the symmetric tensors, whose
values are unchanged by permutations of their arguments, and the alternating ten-
sors, whose values change sign when two argument are interchanged.

We then move to smooth manifolds, where we define tensor fields and tensor
bundles. After describing the coordinate representations of tensor fields, we describe
how they can be pulled back by smooth maps. We also show how the Lie derivative
operator can be extended to tensors: the Lie derivative of a tensor field with respect
to a vector field is a measure of the rate of change of the tensor field along the flow
of the vector field.

Tensors will pervade the rest of the book, and we will see significant applica-
tions of them when we study Riemannian metrics, differential forms, orientations,
integration, de Rham cohomology, foliations, and symplectic structures.

J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics 218,
DOI 10.1007/978-1-4419-9982-5_12, © Springer Science+Business Media New York 2013
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Multilinear Algebra

We have seen some of the important roles played in manifold theory by covectors,
which are real-valued linear functions on a vector space. In their simplest form,
tensors are just real-valued multilinear functions of one or more variables; simple
examples include covectors, inner products, and determinants. To set the stage for
our study of tensors, in this section we develop some of the basic properties of
multilinear functions in a general setting.

Suppose V1; : : : ; Vk , and W are vector spaces. A map F W V1 � � � � � Vk!W is
said to be multilinear if it is linear as a function of each variable separately when
the others are held fixed: for each i ,

F
�
v1; : : : ; avi C a

0v0i ; : : : ; vk
�
D aF.v1; : : : ; vi ; : : : ; vk/C a

0F
�
v1; : : : ; v

0
i ; : : : ; vk

�
:

(A multilinear function of one variable is just a linear function, and a multilinear
function of two variables is generally called bilinear.) Let us write L.V1; : : : ; Vk IW /
for the set of all multilinear maps from V1� � � ��Vk toW . It is a vector space under
the usual operations of pointwise addition and scalar multiplication:

.F CF 0/.v1; : : : ; vk/D F.v1; : : : ; vk/CF
0.v1; : : : ; vk/;

.aF /.v1; : : : ; vk/D a
�
F.v1; : : : ; vk/

�
:

Here are a few examples to keep in mind.

Example 12.1 (Some Familiar Multilinear Functions).

(a) The dot product in Rn is a scalar-valued bilinear function of two vectors, used
to compute lengths of vectors and angles between them.

(b) The cross product in R3 is a vector-valued bilinear function of two vectors, used
to compute areas of parallelograms and to find a third vector orthogonal to two
given ones.

(c) The determinant is a real-valued multilinear function of n vectors in Rn, used
to detect linear independence and to compute the volume of the parallelepiped
spanned by the vectors.

(d) The bracket in a Lie algebra g is a g-valued bilinear function of two elements
of g. //

The next example is probably not as familiar, but it is extremely important.

Example 12.2 (Tensor Products of Covectors). Suppose V is a vector space, and
!;� 2 V �. Define a function ! ˝ � W V � V !R by

! ˝ �.v1; v2/D !.v1/�.v2/;

where the product on the right is just ordinary multiplication of real numbers. The
linearity of ! and � guarantees that !˝� is a bilinear function of v1 and v2, so it is
an element of L.V;V IR/. For example, if

�
e1; e2

�
denotes the standard dual basis

for
�
R2
��

, then e1˝ e2 W R2 �R2!R is the bilinear function

e1˝ e2
�
.w;x/; .y; z/

�
Dwz: //
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The last example can be generalized to arbitrary real-valued multilinear func-
tions as follows: let V1; : : : ; Vk ;W1; : : : ;Wl be real vector spaces, and suppose
F 2 L.V1; : : : ; Vk IR/ and G 2 L.W1; : : : ;Wl IR/. Define a function

F ˝G W V1 � � � � � Vk �W1 � � � � �Wl !R

by

F ˝G.v1; : : : ; vk ;w1; : : : ;wl/D F.v1; : : : ; vk/G.w1; : : : ;wl /: (12.1)

It follows from the multilinearity of F and G that F ˝ G.v1; : : : ; vk;w1; : : : ;wl /
depends linearly on each argument vi or wj separately, so F ˝G is an element of
L.V1; : : : ; Vk ;W1; : : : ;Wl IR/, called the tensor product of F and G .

I Exercise 12.3. Show that the tensor product operation is bilinear and associative:
F ˝G depends bilinearly on F and G, and .F ˝G/˝H D F ˝ .G ˝H/.

Because of the result of the preceding exercise, we can write tensor prod-
ucts of three or more multilinear functions unambiguously without parentheses. If
F1; : : : ;Fl are multilinear functions depending on k1; : : : ; kl variables, respectively,
their tensor product F1˝� � �˝Fl is a multilinear function of k D k1C� � �Ckl vari-
ables, whose action on k vectors is given by inserting the first k1 vectors into F1,
the next k2 vectors into F2, and so forth, and multiplying the results together. For
example, if F and G are multilinear functions of two vectors and H is a multilinear
function of three, then

F ˝G ˝H.v1; : : : ; v7/D F.v1; v2/G.v3; v4/H.v5; v6; v7/:

If !j 2 V �j for j D 1; : : : ; k, then !1˝ � � �˝!k 2 L.V1; : : : ; Vk IR/ is the multilin-
ear function given by

!1˝ � � � ˝!k.v1; : : : ; vk/D !
1.v1/ � � �!

k.vk/: (12.2)

The tensor product operation is important in part because of its role in the follow-
ing proposition. The notation in this proposition is ugly because of the profusion of
indices, but the underlying idea is simple: a basis for any space of multilinear func-
tions can be formed by taking all possible tensor products of basis covectors.

Proposition 12.4 (A Basis for the Space of Multilinear Functions). Let V1; : : : ; Vk
be real vector spaces of dimensions n1; : : : ; nk , respectively. For each j 2 f1; : : : ; kg,
let
�
E
.j /
1 ; : : : ;E

.j /
nj

�
be a basis for Vj , and let

�
"1
.j /
; : : : ; "

nj
.j /

�
be the corresponding

dual basis for V �j . Then the set

B D
n
"
i1
.1/
˝ � � � ˝ "

ik
.k/
W 1� i1 � n1; : : : ; 1� ik � nk

o

is a basis for L.V1; : : : ; Vk IR/, which therefore has dimension equal to n1 � � �nk .

Proof. We need to show that B is linearly independent and spans L.V1; : : : ; Vk IR/.
Suppose F 2 L.V1; : : : ; Vk IR/ is arbitrary. For each ordered k-tuple .i1; : : : ; ik/ of
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integers with 1� ij � nj , define a number Fi1:::ik by

Fi1:::ik D F
	
E
.1/
i1
; : : : ;E

.k/
ik



: (12.3)

We will show that

F D Fi1:::ik"
i1
.1/
˝ � � � ˝ "

ik
.k/

(with the summation convention in effect as usual), from which it follows that B
spans L.V1; : : : ; Vk IR/. For any k-tuple of vectors .v1; : : : ; vk/ 2 V1 � � � � � Vk ,
write v1 D v

i1
1 E

.1/
i1
; : : : ; vk D v

ik
k
E
.k/
ik

, and compute

Fi1:::ik"
i1
.1/
˝ � � � ˝ "

ik
.k/
.v1; : : : ; vk/D Fi1:::ik"

i1
.1/
.v1/ � � � "

ik
.k/
.vk/

D Fi1:::ikv
i1
1 � � �v

ik
k
;

while F.v1; : : : ; vk/ is equal to the same thing by multilinearity. This proves the
claim.

To show that B is linearly independent, suppose some linear combination equals
zero:

Fi1:::ik"
i1
.1/
˝ � � � ˝ "

ik
.k/
D 0:

Apply this to any ordered k-tuple of basis vectors,
�
E
.1/
j1
; : : : ;E

.k/
jk

�
. By the same

computation as above, this implies that each coefficient Fj1:::jk is zero. Thus, the
only linear combination of elements of B that sums to zero is the trivial one. �

This proof shows, by the way, that the components Fi1:::ik of a multilinear func-
tion F in terms of the basis elements in B are given by (12.3). Thus, F is completely
determined by its action on all possible sequences of basis vectors.

Abstract Tensor Products of Vector Spaces

The results of the previous section showed that the vector space of multilinear func-
tions L.V1; : : : ; Vk IR/ can be viewed as the set of all linear combinations of objects
of the form !1˝ � � �˝!k , where !1; : : : ;!k are covectors. In this section, we give
a construction that makes sense of such linear combinations of tensor products in a
more abstract setting. The construction is a bit involved, but the idea is simple: given
finite-dimensional vector spaces V1; : : : ; Vk , we will construct a new vector space
V1 ˝ � � � ˝ Vk whose dimension is the product of the dimensions of the Vi ’s, and
which consists of “formal linear combinations” of objects of the form v1˝ � � � ˝ vk
for vi 2 Vi , defined in such a way that v1˝� � �˝vk depends linearly on each vi sep-
arately. (Many of the concepts we introduce in this section—at least the parts that
do not refer explicitly to finite bases—work equally well in the infinite-dimensional
case; but we mostly restrict our attention to the finite-dimensional case in order to
keep things simple.)

To begin, we need to make sense of “formal linear combinations.” Let S be a
set. Roughly speaking, a formal linear combination of elements of S is an expres-
sion of the form

Pm
iD1 aixi , where a1; : : : ; am are real numbers and x1; : : : ; xm are
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elements of S . Of course, since we are not assuming that S has any algebraic struc-
ture, we cannot literally add elements of S together or multiply them by numbers.
But the essential feature of such an expression is that it is completely determined
by which elements of S appear in the sum, and what coefficients appear with them.
Thus, we make the following definition: for any set S , a formal linear combination
of elements of S is a function f W S ! R such that f .s/ D 0 for all but finitely
many s 2 S . The free (real) vector space on S , denoted by F .S/, is the set of all
formal linear combinations of elements of S . Under pointwise addition and scalar
multiplication, F .S/ becomes a vector space over R.

For each element x 2 S , there is a function ıx 2 F .S/ that takes the value 1
on x and zero on all other elements of S ; typically we identify this function with x
itself, and thus think of S as a subset of F .S/. Every element f 2 F .S/ can then
be written uniquely in the form f D

Pm
iD1 aixi , where x1; : : : ; xm are the elements

of S for which f .xi /¤ 0, and ai D f .xi /. Thus, S is a basis for F .S/, which is
therefore finite-dimensional if and only if S is a finite set.

Proposition 12.5 (Characteristic Property of the Free Vector Space). For any
set S and any vector space W , every map A W S !W has a unique extension to a
linear map xA W F .S/!W .

I Exercise 12.6. Prove the preceding proposition.

Now let V1; : : : ; Vk be real vector spaces. We begin by forming the free vector
space F .V1 � � � � � Vk/, which is the set of all finite formal linear combinations
of k-tuples .v1; : : : ; vk/ with vi 2 Vi for i D 1; : : : ; k. Let R be the subspace of
F .V1 � � � � � Vk/ spanned by all elements of the following forms:

.v1; : : : ; avi ; : : : ; vk/� a.v1; : : : ; vi ; : : : ; vk/;
�
v1; : : : ; vi C v

0
i ; : : : ; vk

�
� .v1; : : : ; vi ; : : : ; vk/�

�
v1; : : : ; v

0
i ; : : : ; vk

�
;

(12.4)

with vj ; v0j 2 Vj , i 2 f1; : : : ; kg, and a 2R.
Define the tensor product of the spaces V 1; : : : ;V k, denoted by V1˝ � � � ˝ Vk ,

to be the following quotient vector space:

V1˝ � � � ˝ Vk D F .V1 � � � � � Vk/=R;

and let ˘ W F .V1 � � � � � Vk/! V1˝ � � � ˝ Vk be the natural projection. The equiv-
alence class of an element .v1; : : : ; vk/ in V1˝ � � � ˝ Vk is denoted by

v1˝ � � � ˝ vk D˘.v1; : : : ; vk/; (12.5)

and is called the (abstract) tensor product of v1; : : : ;vk. It follows from the defi-
nition that abstract tensor products satisfy

v1˝ � � � ˝ avi ˝ � � � ˝ vk D a.v1˝ � � � ˝ vi ˝ � � � ˝ vk/;

v1˝ � � � ˝
�
vi C v

0
i

�
˝ � � � ˝ vk D .v1˝ � � � ˝ vi ˝ � � � ˝ vk/

C
�
v1˝ � � � ˝ v

0
i ˝ � � � ˝ vk

�
:
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Note that the definition implies that every element of V1˝� � �˝Vk can be expressed
as a linear combination of elements of the form v1 ˝ � � � ˝ vk for vi 2 Vi ; but it is
not true in general that every element of the tensor product space is of the form
v1˝ � � � ˝ vk (see Problem 12-1).

Proposition 12.7 (Characteristic Property of the Tensor Product Space). Let
V1; : : : ; Vk be finite-dimensional real vector spaces. If A W V1 � � � � � Vk ! X is
any multilinear map into a vector space X , then there is a unique linear map
zA W V1˝ � � � ˝ Vk!X such that the following diagram commutes:

V1 � � � � � Vk
A� X;

V1˝ � � � ˝ Vk

�
�

zA

�
(12.6)

where � is the map �.v1; : : : ; vk/D v1˝ � � � ˝ vk .

Proof. First note that any map A W V1 � � � � � Vk ! X extends uniquely to a lin-
ear map xA W F .V1 � � � � � Vk/! X by the characteristic property of the free vec-
tor space. This map is characterized by the fact that xA.v1; : : : ; vk/D A.v1; : : : ; vk/
whenever .v1; : : : ; vk/ 2 V1 � � � � �Vk � F .V1 � � � � �Vk/. The fact that A is multi-
linear means precisely that the subspace R is contained in the kernel of xA, because

xA.v1; : : : ; avi ; : : : ; vk/D A.v1; : : : ; avi ; : : : ; vk/D aA.v1; : : : ; vi ; : : : ; vk/

D a xA.v1; : : : ; vi ; : : : ; vk/D xA
�
a.v1; : : : ; vi ; : : : ; vk/

�
;

with a similar computation for the other expression in (12.4). Therefore, xA descends
to a linear map zA W V1˝� � �˝Vk D F .V1�� � ��Vk/=R!X satisfying zAı˘ D xA.
Since � is equal to the inclusion V1 � � � � �Vk ,!F .V1 � � � � �Vk/ followed by ˘ ,
this implies zAı� DA, which is (12.6). Uniqueness follows from the fact that every
element of V1 ˝ � � � ˝ Vk can be written as a linear combination of elements of the
form v1˝ � � � ˝ vk , and zA is uniquely determined on such elements by

zA.v1˝ � � � ˝ vk/D xA.v1; : : : ; vk/DA.v1; : : : ; vk/: �

The reason this is called the characteristic property is that it uniquely character-
izes the tensor product up to isomorphism; see Problem 12-3.

The next result is an analogue of Proposition 12.4 for abstract tensor product
spaces.

Proposition 12.8 (A Basis for the Tensor Product Space). Suppose V1; : : : ; Vk
are real vector spaces of dimensions n1; : : : ; nk , respectively. For each j D 1; : : : ; k,
suppose

�
E
.j /
1 ; : : : ;E

.j /
nj

�
is a basis for Vj . Then the set

C D
n
E
.1/
i1
˝ � � � ˝E

.k/
ik
W 1� i1 � n1; : : : ; 1� ik � nk

o

is a basis for V1˝ � � � ˝ Vk , which therefore has dimension equal to n1 � � �nk .
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Proof. Elements of the form v1 ˝ � � � ˝ vk span the tensor product space by defi-
nition; expanding each vi in such an expression in terms of its basis representation
shows that C spans V1˝ � � � ˝ Vk .

To prove that C is linearly independent, assume that some linear combination of
elements of C is equal to zero:

ai1:::ikE
.1/
i1
˝ � � � ˝E

.k/
ik
D 0:

For each ordered k-tuple of indices .m1; : : : ;mk/, define a multilinear function
�m1:::mk W V1 � � � � � Vk!R by

�m1:::mk .v1; : : : ; vk/D "
m1
.1/
.v1/ � � � "

mk
.k/
.vk/;

where
�
"i
.j /

�
is the basis for V �j dual to

�
E
.j /
i

�
. Because �m1:::mk is multilinear,

it descends to a linear function z�m1:::mk W V1 ˝ � � � ˝ Vk ! R by the characteristic
property of the tensor product. It follows that

0D z�m1:::mk
	
ai1:::ikE

.1/
i1
˝ � � � ˝E

.k/
ik




D ai1:::ik�m1:::mk
	
E
.1/
i1
; : : : ;E

.k/
ik



D am1:::mk ;

which shows that C is linearly independent. �

Proposition 12.9 (Associativity of Tensor Product Spaces). Let V1, V2, V3 be
finite-dimensional real vector spaces. There are unique isomorphisms

V1˝ .V2˝ V3/Š V1˝ V2˝ V3 Š .V1˝ V2/˝ V3;

under which elements of the forms v1˝ .v2˝ v3/, v1˝v2˝v3, and .v1˝v2/˝v3
all correspond.

Proof. We construct the isomorphism V1 ˝ V2 ˝ V3 Š .V1 ˝ V2/˝ V3; the other
one is constructed similarly. The map ˛ W V1 � V2 � V3! .V1 ˝ V2/˝ V3 defined
by

˛.v1; v2; v3/D .v1˝ v2/˝ v3

is obviously multilinear, and thus by the characteristic property of the tensor product
it descends uniquely to a linear map z̨ W V1˝ V2˝ V3! .V1˝ V2/˝ V3 satisfying
z̨.v1 ˝ v2 ˝ v3/D .v1 ˝ v2/˝ v3 for all v1 2 V1, v2 2 V2, and v3 2 V3. Because
.V1˝ V2/˝ V3 is spanned by elements of the form .v1˝ v2/˝ v3, z̨ is surjective,
and therefore it is an isomorphism for dimensional reasons. It is clearly the unique
such isomorphism, because any other would have to agree with z̨ on the set of all
elements of the form v1˝ v2˝ v3, which spans V1˝ V2˝ V3. �

The connection between tensor products in this abstract setting and the more
concrete tensor products of multilinear functionals that we defined earlier is based
on the following proposition.
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Proposition 12.10 (Abstract vs. Concrete Tensor Products). If V1; : : : ; Vk are
finite-dimensional vector spaces, there is a canonical isomorphism

V �1 ˝ � � � ˝ V
�
k Š L.V1; : : : ; Vk IR/;

under which the abstract tensor product defined by (12.5) corresponds to the tensor
product of covectors defined by (12.2).

Proof. First, define a map ˚ W V �1 � � � � � V
�
k
! L.V1; : : : ; Vk IR/ by

˚
�
!1; : : : ;!k

�
.v1; : : : ; vk/D !

1.v1/ � � �!
k.vk/:

(There is no implied summation in this formula.) The expression on the right
depends linearly on each vi , so ˚

�
!1; : : : ;!k

�
is indeed an element of the

space L.V1; : : : ; Vk IR/. It is easy to check that ˚ is multilinear as a function of
!1; : : : ;!k , so by the characteristic property it descends uniquely to a linear map z̊
from V �1 ˝ � � � ˝ V

�
k

to L.V1; : : : ; Vk IR/, which satisfies

z̊
�
!1˝ � � � ˝!k

�
.v1; : : : ; vk/D !

1.v1/ � � �!
k.vk/:

It follows immediately from the definition that z̊ takes abstract tensor products to
tensor products of covectors. It also takes the basis of V �1 ˝ � � � ˝ V

�
k

given by
Proposition 12.8 to the basis for L.V1; : : : ; Vk IR/ of Proposition 12.4, so it is an
isomorphism. (Although we used bases to prove that z̊ is an isomorphism, z̊ itself
is canonically defined without reference to any basis.) �

Using this canonical isomorphism, we henceforth use the notation V �1 ˝� � �˝V
�
k

to denote either the abstract tensor product space or the space L.V1; : : : ; Vk IR/,
focusing on whichever interpretation is more convenient for the problem at hand.
Since we are assuming the vector spaces are all finite-dimensional, we can also
identify each Vj with its second dual space V ��j , and thereby obtain another canon-
ical identification

V1˝ � � � ˝ Vk Š L
�
V �1 ; : : : ; V

�
k IR

�
:

Covariant and Contravariant Tensors on a Vector Space

Let V be a finite-dimensional real vector space. If k is a positive integer, a covariant
k-tensor on V is an element of the k-fold tensor product V �˝ � � � ˝ V �, which we
typically think of as a real-valued multilinear function of k elements of V :

˛ W V � � � � � V
™

k copies

!R:

The number k is called the rank of ˛. A 0-tensor is, by convention, just a real
number (a real-valued function depending multilinearly on no vectors!). We denote
the vector space of all covariant k-tensors on V by the shorthand notation

T k.V �/D V �˝ � � � ˝ V �
›

k copies

:
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Let us look at some examples.

Example 12.11 (Covariant Tensors). Let V be a finite-dimensional vector space.

(a) Every linear functional ! W V !R is multilinear, so a covariant 1-tensor is just
a covector. Thus, T 1.V �/ is equal to V �.

(b) A covariant 2-tensor on V is a real-valued bilinear function of two vectors, also
called a bilinear form. One example is the dot product on Rn. More generally,
every inner product is a covariant 2-tensor.

(c) The determinant, thought of as a function of n vectors, is a covariant n-tensor
on Rn. //

For some purposes, it is important to generalize the notion of covariant tensors
as follows. For any finite-dimensional real vector space V , we define the space of
contravariant tensors on V of rank k to be the vector space

T k.V /D V ˝ � � � ˝ V
š

k copies

:

In particular, T 1.V /D V , and by convention T 0.V /DR. Because we are assum-
ing that V is finite-dimensional, it is possible to identify this space with the set of
multilinear functionals of k covectors:

T k.V /Š
˚
multilinear functions ˛ W V � � � � � � V �

š

k copies

!R
�
:

But for most purposes, it is easier to think of contravariant tensors simply as ele-
ments of the abstract tensor product space.

Even more generally, for any nonnegative integers k; l , we define the space of
mixed tensors on V of type .k; l/ as

T .k;l/.V /D V ˝ � � � ˝ V
š

k copies

˝ V �˝ � � � ˝ V �
›

l copies

:

Some of these spaces are identical:

T .0;0/.V /D T 0.V �/D T 0.V /DR;

T .0;1/.V /D T 1.V �/D V �;

T .1;0/.V /D T 1.V /D V;

T .0;k/.V /D T k.V �/;

T .k;0/.V /D T k.V /:

(Be aware that the notation T .k;l/.V / is not universal. Another notation that is in
common use for this space is T k

l
.V /. To make matters worse, some books reverse

the roles of k and l in either of these notations; for example, the previous edition of
this text used the notation T l

k
.V / for the space we are here denoting by T .k;l/.V /.
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We have chosen the notation given here because it is common and nearly always
means the same thing. The moral, as usual, is that when you read any differen-
tial geometry book, you need to make sure you understand the author’s notational
conventions.)

When V is finite-dimensional, any choice of basis for V automatically yields
bases for all of the tensor spaces over V . The following corollary follows immedi-
ately from Proposition 12.8.

Corollary 12.12. Let V be an n-dimensional real vector space. Suppose .Ei / is
any basis for V and

�
"j
�

is the dual basis for V �. Then the following sets constitute
bases for the tensor spaces over V :

˚
"i1 ˝ � � � ˝ "ik W 1� i1; : : : ; ik � n

�
for T k.V �/I

˚
Ei1 ˝ � � � ˝Eik W 1� i1; : : : ; ik � n

�
for T k.V /I

˚
Ei1 ˝ � � � ˝Eik ˝ "

j1 ˝ � � � ˝ "jl W 1� i1; : : : ; ik ; j1; : : : ; jl � n
�

for T .k;l/.V /:

Therefore, dimT k.V �/D dimT k.V /D nk and dimT .k;l/.V /D nkCl . �

In particular, once a basis is chosen for V , every covariant k-tensor ˛ 2 T k.V �/
can be written uniquely in the form

˛D ˛i1:::ik"
i1 ˝ � � � ˝ "ik ;

where the nk coefficients ˛i1:::ik are determined by

˛i1:::ik D ˛
�
Ei1 ; : : : ;Eik

�
:

For example, T 2.V �/ is the space of bilinear forms on V , and every bilinear form
can be written as ˇD ˇij "i ˝ "j for some uniquely determined n� n matrix .ˇij /.

In this book we are concerned primarily with covariant tensors. Thus tensors will
always be understood to be covariant unless we explicitly specify otherwise. How-
ever, it is important to be aware that contravariant and mixed tensors play impor-
tant roles in more advanced parts of differential geometry, especially Riemannian
geometry.

Symmetric and Alternating Tensors

In general, rearranging the arguments of a covariant tensor need not have any
predictable effect on its value. However, some special tensors—the dot product,
for example—do not change their values when their arguments are rearranged.
Others—notably the determinant—change sign whenever two arguments are inter-
changed. In this section, we describe two classes of tensors that change in a simple
way when their arguments are rearranged: the symmetric ones and the alternating
ones.
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Symmetric Tensors

Let V be a finite-dimensional vector space. A covariant k-tensor ˛ on V is said to
be symmetric if its value is unchanged by interchanging any pair of arguments:

˛.v1; : : : ; vi ; : : : ; vj ; : : : ; vk/D ˛.v1; : : : ; vj ; : : : ; vi ; : : : ; vk/

whenever 1� i < j � k.

I Exercise 12.13. Show that the following are equivalent for a covariant k-tensor ˛:

(a) ˛ is symmetric.
(b) For any vectors v1; : : : ; vk 2 V , the value of ˛.v1; : : : ; vk/ is unchanged when

v1; : : : ; vk are rearranged in any order.
(c) The components ˛i1:::ik of ˛ with respect to any basis are unchanged by any

permutation of the indices.

The set of symmetric covariant k-tensors is a linear subspace of the space
T k.V �/ of all covariant k-tensors on V ; we denote this subspace by †k.V �/.
There is a natural projection from T k.V �/ to †k.V �/ defined as follows. First, let
Sk denote the symmetric group on k elements, that is, the group of permutations
of the set f1; : : : ; kg. Given a k-tensor ˛ and a permutation � 2 Sk , we define a new
k-tensor �˛ by

�˛.v1; : : : ; vk/D ˛
�
v�.1/; : : : ; v�.k/

�
:

Note that 
 . �˛/D 
�˛, where �� represents the composition of � and � , that is,
��.i/ D �

�
�.i/

�
. (This is the reason for putting � before ˛ in the notation �˛,

instead of after it.) We define a projection Sym W T k.V �/! †k.V �/ called sym-
metrization by

Sym ˛D
1

kŠ

X

�2Sk

�˛:

More explicitly, this means that

.Sym ˛/.v1; : : : ; vk/D
1

kŠ

X

�2Sk

˛
�
v�.1/; : : : ; v�.k/

�
:

Proposition 12.14 (Properties of Symmetrization). Let ˛ be a covariant tensor
on a finite-dimensional vector space.

(a) Sym ˛ is symmetric.
(b) Sym ˛D ˛ if and only if ˛ is symmetric.

Proof. Suppose ˛ 2 T k.V �/. If � 2 Sk is any permutation, then

.Sym ˛/
�
v
.1/; : : : ; v
.k/

�
D
1

kŠ

X

�2Sk

�˛
�
v
.1/; : : : ; v
.k/

�

D
1

kŠ

X

�2Sk


�˛.v1; : : : ; vk/
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D
1

kŠ

X

�2Sk

�˛.v1; : : : ; vk/

D .Sym ˛/.v1; : : : ; vk/;

where we have substituted �D �� in the second-to-last line and used the fact that �
runs over all of Sk as � does. This shows that Sym ˛ is symmetric.

If ˛ is symmetric, then it follows from Exercise 12.13(b) that �˛ D ˛ for every
� 2 Sk , so it follows immediately that Sym ˛D ˛. On the other hand, if Sym ˛D ˛,
then ˛ is symmetric because part (a) shows that Sym ˛ is. �

If ˛ and ˇ are symmetric tensors on V , then ˛˝ ˇ is not symmetric in general.
However, using the symmetrization operator, it is possible to define a new product
that takes a pair of symmetric tensors and yields another symmetric tensor. If ˛ 2
†k.V �/ and ˇ 2 †l .V �/, we define their symmetric product to be the .k C l/-
tensor ˛ˇ (denoted by juxtaposition with no intervening product symbol) given by

˛ˇD Sym.˛˝ ˇ/:

More explicitly, the action of ˛ˇ on vectors v1; : : : ; vkCl is given by

˛ˇ.v1; : : : ; vkCl/D
1

.kC l/Š

X

�2SkCl

˛
�
v�.1/; : : : ; v�.k/

�
ˇ
�
v�.kC1/; : : : ; v�.kCl/

�
:

Proposition 12.15 (Properties of the Symmetric Product).

(a) The symmetric product is symmetric and bilinear: for all symmetric tensors ˛,
ˇ, � and all a; b 2R,

˛ˇ D ˇ˛;

.a˛C bˇ/� D a˛� C bˇ� D �.a˛C bˇ/:

(b) If ˛ and ˇ are covectors, then

˛ˇD 1
2
.˛˝ ˇC ˇ˝ ˛/:

I Exercise 12.16. Prove Proposition 12.15.

Alternating Tensors

We continue to assume that V is a finite-dimensional real vector space. A covariant
k-tensor ˛ on V is said to be alternating (or antisymmetric or skew-symmetric) if
it changes sign whenever two of its arguments are interchanged. This means that for
all vectors v1; : : : ; vk 2 V and every pair of distinct indices i , j it satisfies

˛.v1; : : : ; vi ; : : : ; vj ; : : : ; vk/D�˛.v1; : : : ; vj ; : : : ; vi ; : : : ; vk/:

Alternating covariant k-tensors are also variously called exterior forms, multi-
covectors, or k-covectors. The subspace of all alternating covariant k-tensors on
V is denoted by ƒk.V �/� T k.V �/.



316 12 Tensors

Recall that for any permutation � 2 Sk , the sign of � , denoted by sgn� , is equal
to C1 if � is even (i.e., can be written as a composition of an even number of
transpositions), and �1 if � is odd (see Proposition B.26). The following exercise is
an analogue of Exercise 12.13.

I Exercise 12.17. Show that the following are equivalent for a covariant k-tensor ˛:

(a) ˛ is alternating.
(b) For any vectors v1; : : : ; vk and any permutation � 2 Sk ,

˛.v�.1/; : : : ; v�.k//D .sgn�/˛.v1; : : : ; vk/:

(c) With respect to any basis, the components ˛i1:::ik of ˛ change sign whenever two
indices are interchanged.

Every 0-tensor (which is just a real number) is both symmetric and alternating,
because there are no arguments to interchange. Similarly, every 1-tensor is both
symmetric and alternating. An alternating 2-tensor on V is a skew-symmetric bilin-
ear form. It is interesting to note that every covariant 2-tensor ˇ can be expressed as
a sum of an alternating tensor and a symmetric one, because

ˇ.v;w/D 1
2

�
ˇ.v;w/� ˇ.w;v/

�
C 1

2

�
ˇ.v;w/C ˇ.w;v/

�

D ˛.v;w/C �.v;w/;

where ˛.v;w/ D 1
2

�
ˇ.v;w/ � ˇ.w;v/

�
is an alternating tensor, and �.v;w/ D

1
2

�
ˇ.v;w/C ˇ.w;v/

�
is symmetric. This is not true for tensors of higher rank, as

Problem 12-7 shows.
There are analogues of symmetrization and symmetric products that apply to

alternating tensors, but we will put off introducing them until Chapter 14, where we
will study the properties of alternating tensors in much more detail.

Tensors and Tensor Fields on Manifolds

Now let M be a smooth manifold with or without boundary. We define the bundle
of covariant k-tensors on M by

T kT �M D
a

p2M

T k
�
T �pM

�
:

Analogously, we define the bundle of contravariant k-tensors by

T kTM D
a

p2M

T k
�
TpM

�
;

and the bundle of mixed tensors of type .k;l/ by

T .k;l/TM D
a

p2M

T .k;l/
�
TpM

�
:
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There are natural identifications

T .0;0/TM D T 0T �M D T 0TM DM �R;

T .0;1/TM D T 1T �M D T �M;

T .1;0/TM D T 1TM D TM;

T .0;k/TM D T kT �M;

T .k;0/TM D T kTM:

I Exercise 12.18. Show that T kT �M; T kTM; and T .k;l/TM have natural struc-
tures as smooth vector bundles over M; and determine their ranks.

Any one of these bundles is called a tensor bundle over M . (Thus, the tangent
and cotangent bundles are special cases of tensor bundles.) A section of a tensor
bundle is called a (covariant, contravariant, or mixed) tensor field onM . A smooth
tensor field is a section that is smooth in the usual sense of smooth sections of vector
bundles. Using the identifications above, we see that contravariant 1-tensor fields are
the same as vector fields, and covariant 1-tensor fields are covector fields. Because a
0-tensor is just a real number, a 0-tensor field is the same as a continuous real-valued
function.

The spaces of smooth sections of these tensor bundles, �
�
T kT �M

�
, �
�
T kTM

�
,

and �
�
T .k;l/TM

�
, are infinite-dimensional vector spaces over R, and modules over

C1.M/. In any smooth local coordinates
�
xi
�
, sections of these bundles can be

written (using the summation convention) as

AD

†

Ai1:::ik dx
i1 ˝ � � � ˝ dxik ; A 2 �

�
T kT �M

�
I

Ai1:::ik
@

@xi1
˝ � � � ˝

@

@xik
; A 2 �

�
T kTM

�
I

A
i1:::ik
j1:::il

@

@xi1
˝ � � � ˝

@

@xik
˝ dxj1 ˝ � � � ˝ dxjl ; A 2 �

�
T .k;l/TM

�
:

The functions Ai1:::ik , Ai1:::ik , or Ai1:::ikj1:::il
are called the component functions of A

in the chosen coordinates. Because smooth covariant tensor fields occupy most of
our attention, we adopt the following shorthand notation for the space of all smooth
covariant k-tensor fields:

T k.M/D �
�
T kT �M

�
:

Proposition 12.19 (Smoothness Criteria for Tensor Fields). Let M be a smooth
manifold with or without boundary, and let A W M ! T kT �M be a rough section.
The following are equivalent.

(a) A is smooth.
(b) In every smooth coordinate chart, the component functions of A are smooth.
(c) Each point of M is contained in some coordinate chart in which A has smooth

component functions.
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(d) If X1; : : : ;Xk 2X.M/, then the function A.X1; : : : ;Xk/ W M !R, defined by

A.X1; : : : ;Xk/.p/DAp
�
X1jp; : : : ;Xkjp

�
;

is smooth.
(e) Whenever X1; : : : ;Xk are smooth vector fields defined on some open subset

U �M; the function A.X1; : : : ;Xk/ is smooth on U .

I Exercise 12.20. Prove Proposition 12.19.

I Exercise 12.21. Formulate and prove smoothness criteria analogous to those of
Proposition 12.19 for contravariant and mixed tensor fields.

Proposition 12.22. Suppose M is a smooth manifold with or without boundary,
A 2 T k.M/, B 2 T l .M/, and f 2 C1.M/. Then fA and A˝B are also smooth
tensor fields, whose components in any smooth local coordinate chart are

.fA/i1:::ik D fAi1:::ik ;

.A˝B/i1:::ikCl D Ai1:::ikBikC1:::ikCl :

I Exercise 12.23. Prove Proposition 12.22.

Proposition 12.19(d) shows that if A is a smooth covariant k-tensor field on
M and X1; : : : ;Xk are smooth vector fields, then A.X1; : : : ;Xk/ is a smooth real-
valued function on M . Thus A induces a map

X.M/� � � � �X.M/
	

k copies

! C1.M/:

It is easy to see that this map is multilinear over R. In fact, more is true: it is
multilinear over C1.M/, which means that for f;f 0 2 C1.M/ and Xi ;X 0i 2
X.M/, we have

A
�
X1; : : : ; fXi C f

0X 0i ; : : : ;Xk
�

D fA.X1; : : : ;Xi ; : : : ;Xk/C f
0A
�
X1; : : : ;X

0
i ; : : : ;Xk

�
:

This property turns out to be characteristic of smooth tensor fields, as the next lemma
shows.

Lemma 12.24 (Tensor Characterization Lemma). A map

A W X.M/� � � � �X.M/
	

k copies

! C1.M/; (12.7)

is induced by a smooth covariant k-tensor field as above if and only if it is multi-
linear over C1.M/.

Proof. We already noted that if A is a smooth covariant k-tensor field, then the map
.X1; : : : ;Xk/ 7!A.X1; : : : ;Xk/ is multilinear over C1.M/. To prove the converse,
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we proceed as in the proof of the bundle homomorphism characterization lemma
(Lemma 10.29).

Suppose, therefore, that A is a map as in (12.7), and assume that A is multilinear
over C1.M/. We show first that A acts locally. If Xi is a smooth vector field that
vanishes on a neighborhood U of p, we can choose a bump function  supported
in U such that  .p/D 1; then because  Xi � 0 we have

0DA.X1; : : : ; Xi ; : : : ;Xk/.p/D .p/A.X1; : : : ;Xi ; : : : ;Xk/.p/:

It follows as in the proof of Lemma 10.29 that the value of A.X1; : : : ;Xk/ at p
depends only on the values of X1; : : : ;Xk in a neighborhood of p.

Next we show that A actually acts pointwise. If Xi jp D 0, then in any coordinate
chart centered at p we can write Xi D X

j
i @=@x

j , where the component functions

X
j
i all vanish at p. By the extension lemma for vector fields, we can find global

smooth vector fields Ej on M such that Ej D @=@xj in some neighborhood of p;
and similarly the locally defined functions Xji can be extended to global smooth

functions f ji on M that agree with Xji in a neighborhood of p. It follows from the

multilinearity of A over C1.M/ and the fact that f ji Ej D Xi in a neighborhood
of p that

A.X1; : : : ;Xi ; : : : ;Xk/.p/DA
�
X1; : : : ; f

j
i Ej ; : : : ;Xk

�
.p/

D f
j
i .p/A.X1; : : : ;Ej ; : : : ;Xk/.p/D 0:

It follows by linearity that A.X1; : : : ;Xk/ depends only on the value of Xi at p.
Now we define a rough tensor field A W M ! T kT �M by

Ap.v1; : : : ; vk/DA
�
V1; : : : ; Vk

�
.p/

for p 2M and v1; : : : ; vk 2 TpM;where V1; : : : ; Vk are any extensions of v1; : : : ; vk
to smooth global vector fields on M . The discussion above shows that this is inde-
pendent of the choices of extensions, and the resulting tensor field is smooth by
Proposition 12.19(d). �

A symmetric tensor field on a manifold (with or without boundary) is simply a
covariant tensor field whose value at each point is a symmetric tensor. The sym-
metric product of two or more tensor fields is defined pointwise, just like the tensor
product. Thus, for example, if A and B are smooth covector fields, their symmetric
product is the smooth 2-tensor field AB , which by Proposition 12.15(b) is given by

AB D 1
2
.A˝B CB ˝A/:

Alternating tensor fields are called differential forms; we will study them in
depth beginning in Chapter 14.

Pullbacks of Tensor Fields

Just like covector fields, covariant tensor fields can be pulled back by a smooth map
to yield tensor fields on the domain. (This construction works only for covariant ten-
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sor fields, which is one reason why we focus most of our attention on the covariant
case.)

Suppose F W M ! N is a smooth map. For any point p 2M and any k-tensor
˛ 2 T k

�
T �
F.p/

N
�
, we define a tensor dF �p .˛/ 2 T

k
�
T �pM

�
, called the pointwise

pullback of ˛ by F at p, by

dF �p .˛/.v1; : : : ; vk/D ˛
�
dFp.v1/; : : : ; dFp.vk/

�

for any v1; : : : ; vk 2 TpM . If A is a covariant k-tensor field onN , we define a rough
k-tensor field F �A on M; called the pullback of A by F , by

.F �A/p D dF
�
p

�
AF.p/

�
:

This tensor field acts on vectors v1; : : : ; vk 2 TpM by

.F �A/p.v1; : : : ; vk/DAF.p/
�
dFp.v1/; : : : ; dFp.vk/

�
:

Proposition 12.25 (Properties of Tensor Pullbacks). Suppose F W M ! N and
G W N ! P are smooth maps, A and B are covariant tensor fields on N , and f is
a real-valued function on N .

(a) F �.fB/D .f ıF /F �B .
(b) F �.A˝B/D F �A˝F �B .
(c) F �.ACB/D F �ACF �B .
(d) F �B is a (continuous) tensor field, and is smooth if B is smooth.
(e) .G ıF /�B D F �.G�B/.
(f) .IdN /�B DB .

I Exercise 12.26. Prove Proposition 12.25.

If f is a continuous real-valued function (i.e., a 0-tensor field) and B is a k-
tensor field, then it is consistent with our definitions to interpret f ˝B as fB , and
F �f as f ıF . With these interpretations, property (a) of the preceding proposition
is really just a special case of (b).

I Exercise 12.27. Suppose F W M ! N is a smooth map and A;B are symmet-
ric tensor fields on N . Show that F �A and F �B are symmetric, and F �.AB/ D
.F �A/.F �B/.

The following corollary is an immediate consequence of Proposition 12.25.

Corollary 12.28. Let F W M ! N be smooth, and let B be a covariant k-tensor
field on N . If p 2M and

�
yi
�

are smooth coordinates for N on a neighborhood of
F.p/, then F �B has the following expression in a neighborhood of p:

F �
�
Bi1:::ikdy

i1 ˝ � � � ˝ dyik
�

D
�
Bi1:::ik ıF

�
d
�
yi1 ıF

�
˝ � � � ˝ d

�
yik ıF

�
: �

In words, this corollary just says that F �B is computed by the same technique
we described in Chapter 11 for computing the pullback of a covector field: wherever
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you see yi in the expression for B , just substitute the i th component function of F
and expand.

Example 12.29 (Pullback of a Tensor Field). LetM D f.r; �/ W r > 0; j� j< �=2g
and N D f.x; y/ W x > 0g, and let F W M ! R2 be the smooth map F.r; �/ D
.r cos�; r sin�/. The pullback of the tensor field A D x�2dy ˝ dy by F can be
computed easily by substituting x D r cos� , y D r sin� and simplifying:

F �AD .r cos�/�2 d.r sin�/˝ d.r sin�/

D .r cos�/�2.sin� dr C r cos� d�/˝ .sin� dr C r cos� d�/

D r�2 tan2 � dr ˝ dr C r�1 tan�.d� ˝ dr C dr ˝ d�/C d� ˝ d�: //

In general, there is neither a pushforward nor a pullback operation for mixed
tensor fields. However, in the special case of a diffeomorphism, tensor fields of any
variance can be pushed forward and pulled back at will (see Problem 12-10).

Lie Derivatives of Tensor Fields

The Lie derivative operation can be extended to tensor fields of arbitrary rank.
As usual, we focus on covariant tensors; the analogous results for contravariant or
mixed tensors require only minor modifications.

Suppose M is a smooth manifold, V is a smooth vector field on M; and � is its
flow. (For simplicity, we discuss only the case @M D¿ here, but these definitions
and results carry over essentially unchanged to manifolds with boundary as long as
V is tangent to the boundary, so that its flow exists by Theorem 9.34.) For any p 2
M; if t is sufficiently close to zero, then �t is a diffeomorphism from a neighborhood
of p to a neighborhood of �t .p/, so d.�t /�p pulls back tensors at �t .p/ to ones at p
by the formula

d.�t /
�
p

�
A�t .p/

�
.v1; : : : ; vk/DA�t .p/

�
d.�t /p.v1/; : : : ; d.�t /p.vk/

�
:

Note that d.�t /�p
�
A�t .p/

�
is just the value of the pullback tensor field ��t A at p.

Given a smooth covariant tensor field A onM; we define the Lie derivative of A
with respect to V , denoted by LVA, by

.LVA/p D
d

dt

ˇ̌
ˇ̌
tD0

.��t A/p D lim
t!0

d.�t /
�
p

�
A�t .p/

�
�Ap

t
; (12.8)

provided the derivative exists (Fig. 12.1). Because the expression being differenti-
ated lies in T k

�
T �pM

�
for all t , .LVA/p makes sense as an element of T k.T �pM/.

The following lemma is an analogue of Lemma 9.36, and is proved in exactly the
same way.

Lemma 12.30. With M; V , and A as above, the derivative in (12.8) exists for every
p 2M and defines LVA as a smooth tensor field on M .

I Exercise 12.31. Prove the preceding lemma.
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Fig. 12.1 The Lie derivative of a tensor field

Proposition 12.32. Let M be a smooth manifold and let V 2 X.M/. Suppose f
is a smooth real-valued function (regarded as a 0-tensor field) on M; and A;B are
smooth covariant tensor fields on M .

(a) LV f D Vf .
(b) LV .fA/D .LV f /AC fLVA.
(c) LV .A˝B/D .LVA/˝B CA˝LVB .
(d) If X1; : : : ;Xk are smooth vector fields and A is a smooth k-tensor field,

LV

�
A.X1; : : : ;Xk/

�
D .LVA/.X1; : : : ;Xk/CA.LVX1; : : : ;Xk/

C � � � CA.X1; : : : ;LVXk/: (12.9)

Proof. Let � be the flow of V . For a real-valued function f , we can write

��t f .p/D f
�
�t .p/

�
D f ı � .p/.t/:

Thus the definition of LV f reduces to the ordinary derivative with respect to t of
the composite function f ı � .p/. Because � .p/ is an integral curve of V , it follows
from Proposition 3.24 that

.LV f /.p/D
d

dt

ˇ̌
ˇ̌
tD0

f ı � .p/ D dfp
�
� .p/0.0/

�
D dfp.Vp/D Vf .p/:

This proves (a).
The other assertions can be proved by the technique we used in Theorem 9.38:

in a neighborhood of a regular point for V , if
�
ui
�

are coordinates in which V D
@=@u1, then it follows immediately from the definition that LV acts on a tensor field
simply by taking the partial derivative of its coefficients with respect to u1, and (b)–
(d) all follow from the ordinary product rule. The same relations hold on the support
of V by continuity, and on the complement of the support because the flow of V is
trivial there. �

One consequence of this proposition is the following formula expressing the Lie
derivative of any smooth covariant tensor field in terms of Lie brackets and ordi-
nary directional derivatives of functions, which allows us to compute Lie derivatives
without first determining the flow.
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Corollary 12.33. If V is a smooth vector field and A is a smooth covariant k-tensor
field, then for any smooth vector fields X1; : : : ;Xk ,

.LVA/.X1; : : : ;Xk/DV
�
A.X1; : : : ;Xk/

�
�A

�
ŒV;X1�;X2; : : : ;Xk

�

� � � � �A
�
X1; : : : ;Xk�1; ŒV;Xk�

�
: (12.10)

Proof. Just solve (12.9) for .LVA/.X1; : : : ;Xk/, and replace LV f by Vf and
LVXi by ŒV;Xi �. �
Corollary 12.34. If f 2 C1.M/, then LV .df /D d.LV f /.

Proof. Using (12.10), for any X 2X.M/ we compute

.LV df /.X/D V
�
df .X/

�
� df

�
ŒV;X�

�
D VXf � ŒV;X�f

D VXf � .VXf �XVf /DXVf

D d.Vf /.X/D d.LV f /.X/: �
One drawback of formula (12.10) is that in order to calculate what LVA does

to vectors v1; : : : ; vk at a point p 2M; one must first extend them to vector fields
in a neighborhood of p. But Proposition 12.32 and Corollary 12.34 lead to an easy
method for computing Lie derivatives of smooth tensor fields in coordinates that
avoids this problem, since any tensor field can be written locally as a linear combina-
tion of functions multiplied by tensor products of exact 1-forms. The next example
illustrates the technique.

Example 12.35. Suppose A is an arbitrary smooth covariant 2-tensor field, and
V is a smooth vector field. We compute the Lie derivative LVA in smooth local
coordinates

�
xi
�
. First, we observe that LV dx

i D d
�
LV x

i
�
D d

�
Vxi

�
D dV i .

Therefore,

LVADLV

�
Aijdx

i ˝ dxj
�

DLV .Aij /dx
i ˝ dxj CAij

�
LV dx

i
�
˝ dxj CAij dx

i ˝
�
LV dx

j
�

D VAij dx
i ˝ dxj CAij dV

i ˝ dxj CAij dx
i ˝ dV j

D

�
VAij CAkj

@V k

@xi
CAik

@V k

@xj

�
dxi ˝ dxj : //

Recall that the Lie derivative of a vector field W with respect to V is zero if and
only if W is invariant under the flow of V (see Theorem 9.42). It turns out that the
Lie derivative of a covariant tensor field has exactly the same interpretation. If A is a
smooth tensor field on M and � is a flow on M; we say thatA is invariant under �
if for each t , the map �t pulls A back to itself wherever it is defined; more precisely,
this means

d.�t /
�
p

�
A�t .p/

�
DAp (12.11)

for all .t;p/ in the domain of � . If � is a global flow, this is equivalent to ��t ADA
for all t 2R.
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In order to prove the connection between Lie derivatives and invariance under
flows, we need the following proposition, which shows how the Lie derivative can
be used to compute t -derivatives at times other than t D 0. It is a generalization to
tensor fields of Proposition 9.41.

Proposition 12.36. SupposeM is a smooth manifold with or without boundary and
V 2 X.M/. If @M ¤¿, assume in addition that V is tangent to @M . Let � be the
flow of V . For any smooth covariant tensor field A and any .t0; p/ in the domain
of � ,

d

dt

ˇ̌
ˇ̌
tDt0

�
��t A

�
p
D
�
��t0.LVA/

�
p
: (12.12)

Proof. After expanding the definitions of the pullbacks in (12.12), we see that we
have to prove

d

dt

ˇ̌
ˇ̌
tDt0

d.�t /
�
p

�
A�t .p/

�
D d.�t0/

�
p

�
.LVA/�t0 .p/

�
:

Just as in the proof of Proposition 9.41, the change of variables t D sC t0 yields

d

dt

ˇ̌
ˇ̌
tDt0

d.�t /
�
p

�
A�t .p/

�
D

d

ds

ˇ̌
ˇ̌
sD0

d.�sCt0/
�
p

�
A�sCt0 .p/

�

D
d

ds

ˇ̌
ˇ̌
sD0

d.�t0/
�
pd.�s/

�
�t0 .p/

�
A�s.�t0 .p//

�

D d.�t0/
�
p

d

ds

ˇ̌
ˇ
ˇ
sD0

d.�s/
�
�t0 .p/

�
A�s.�t0 .p//

�

D d.�t0/
�
p

�
.LVA/�t0 .p/

�
: �

Theorem 12.37. LetM be a smooth manifold and let V 2X.M/. A smooth covari-
ant tensor field A is invariant under the flow of V if and only if LVAD 0.

I Exercise 12.38. Prove Theorem 12.37.

Problems

12-1. Give an example of finite-dimensional vector spaces V and W and a spe-
cific element ˛ 2 V ˝W that cannot be expressed as v˝w for v 2 V and
w 2W .

12-2. For any finite-dimensional real vector space V , prove that there are canon-
ical isomorphisms R˝ V Š V Š V ˝R.

12-3. Let V andW be finite-dimensional real vector spaces. Show that the tensor
product space V ˝W is uniquely determined up to canonical isomorphism
by its characteristic property (Proposition 12.7). More precisely, suppose
z� W V �W !Z is a bilinear map into a vector space Z with the following



Problems 325

property: for any bilinear map B W V �W ! Y , there is a unique linear
map zB W Z! Y such that the following diagram commutes:

V �W
B� Y:

Z

z�
�

zB

�

Then there is a unique isomorphism ˚ W V ˝ W ! Z such that z� D
˚ ı � , where � W V �W ! V ˝W is the canonical projection. [Remark:
this shows that the details of the construction used to define the tensor prod-
uct space are irrelevant, as long as the resulting space satisfies the charac-
teristic property.]

12-4. Let V1; : : : ; Vk and W be finite-dimensional real vector spaces. Prove that
there is a canonical (basis-independent) isomorphism

V �1 ˝ � � � ˝ V
�
k ˝W Š L.V1; : : : ; Vk IW /:

(In particular, this means that V � ˝ W is canonically isomorphic to the
space L.V IW / of linear maps from V to W .)

12-5. Let V be an n-dimensional real vector space. Show that

dim†k.V �/D

 
nC k � 1

k

!

D
.nC k � 1/Š

kŠ.n� 1/Š
:

12-6. (a) Let ˛ be a covariant k-tensor on a finite-dimensional real vector
space V . Show that Sym ˛ is the unique symmetric k-tensor satisfying

.Sym ˛/.v; : : : ; v/D ˛.v; : : : ; v/

for all v 2 V .
(b) Show that the symmetric product is associative: for all symmetric ten-

sors ˛, ˇ, � ,

.˛ˇ/� D ˛.ˇ�/:

[Hint: use part (a).]
(c) Let !1; : : : ;!k be covectors on a finite-dimensional vector space.

Show that their symmetric product satisfies

!1 � � �!k D
1

kŠ

X

�2Sk

!�.1/˝ � � � ˝!�.k/:

12-7. Let
�
e1; e2; e3

�
be the standard dual basis for

�
R3
��

. Show that
e1 ˝ e2 ˝ e3 is not equal to a sum of an alternating tensor and a sym-
metric tensor.
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12-8. Let M be a smooth n-manifold, and let A be a smooth covariant k-tensor
field on M . If

�
U;
�
xi
��

and
�
zU ;
�
zxj
��

are overlapping smooth charts on
M; we can write

ADAi1:::ik dx
i1 ˝ � � � ˝ dxik D zAj1:::jkd zx

j1 ˝ � � � ˝ d zxjk :

Compute a transformation law analogous to (11.7) expressing the compo-
nent functions Ai1:::ik in terms of zAj1:::jk .

12-9. Generalize the coordinate transformation law of Problem 12-8 to mixed
tensor fields of any rank.

12-10. Show that for every pair of nonnegative integers k, l and every diffeomor-
phism F W M !N , there are pushforward and pullback isomorphisms

F� W �
�
T .k;l/TM

�
! �

�
T .k;l/TN

�
;

F � W �
�
T .k;l/TN

�
! �

�
T .k;l/TM

�
;

such that F � agrees with the usual pullback on covariant tensor fields, F�
agrees with the usual pushforward on contravariant 1-tensor fields (i.e.,
vector fields), and the following conditions are satisfied:
(a) F� D .F �/�1.
(b) F �.A˝B/D F �A˝F �B .
(c) .F ıG/� D F� ıG�.
(d) .F ıG/� DG� ıF �.
(e) .IdM /� D .IdM /� D Id W �

�
T .k;l/TM

�
! �

�
T .k;l/TM

�
.

(f) F �
�
A.X1; : : : ;Xk/

�
D F �A

�
F �1� .X1/; : : : ;F

�1
� .Xk/

�
forA 2 T k.N /

and X1; : : : ;Xk 2X.N /.

12-11. Suppose M is a smooth manifold, A is a smooth covariant tensor field
on M; and V;W 2X.M/. Show that

LVLWA�LWLVADLŒV;W 	A:

[Hint: use induction on the rank of A, beginning with Corollary 12.33 for
1-tensor fields.]

12-12. Let M be a smooth manifold and V 2X.M/. Show that the Lie derivative
operators on covariant tensor fields, LV W T k.M/! T k.M/ for k � 0,
are uniquely characterized by the following properties:
(a) LV is linear over R.
(b) LV f D Vf for f 2 T 0.M/D C1.M/.
(c) LV .A˝B/DLVA˝B CA˝LVB for A 2 T k.M/, B 2 T l .M/.
(d) LV .!.X//D .LV !/.X/C! .ŒV;X�/ for ! 2 T 1.M/, X 2X.M/.
[Remark: the Lie derivative operators on tensor fields are sometimes de-
fined as the unique operators satisfying these properties. This definition
has the virtue of making sense on a manifold with boundary, where the
flow of V might not exist.]



Chapter 13
Riemannian Metrics

In this chapter, for the first time, we introduce geometry into smooth manifold the-
ory. As is so much of this subject, our approach to geometry is modeled on the
theory of finite-dimensional vector spaces. To define geometric concepts such as
lengths and angles on a vector space, one uses an inner product. For manifolds, the
appropriate structure is a Riemannian metric, which is essentially a choice of inner
product on each tangent space, varying smoothly from point to point. A choice of
Riemannian metric allows us to define geometric concepts such as lengths, angles,
and distances on smooth manifolds.

Riemannian geometry is a deep subject in its own right. To develop all of the
machinery needed for a complete treatment of it would require another whole book.
(If you want to dig more deeply into it than we can here, you might start with
[LeeRM], which gives a concise introduction to the subject, and for which you al-
ready have most of the necessary background.) But we can at least introduce the
main definitions and some important examples.

After defining Riemannian metrics and the main constructions associated with
them, we show how submanifolds of Riemannian manifolds inherit induced Rie-
mannian metrics. Then we show how a Riemannian metric leads to a distance func-
tion, which allows us to consider connected Riemannian manifolds as metric spaces.

At the end of the chapter, we briefly describe a generalization of Riemannian
metrics, called pseudo-Riemannian metrics, which play a central role in Einstein’s
general theory of relativity.

Riemannian Manifolds

The most important examples of symmetric tensors on a vector space are inner prod-
ucts. Any inner product allows us to define lengths of vectors and angles between
them, and thus to do Euclidean geometry.

Transferring these ideas to manifolds, we obtain one of the most important ap-
plications of tensors to differential geometry. Let M be a smooth manifold with or
without boundary. A Riemannian metric on M is a smooth symmetric covariant

J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics 218,
DOI 10.1007/978-1-4419-9982-5_13, © Springer Science+Business Media New York 2013
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2-tensor field on M that is positive definite at each point. A Riemannian mani-
fold is a pair .M;g/, where M is a smooth manifold and g is a Riemannian metric
on M . One sometimes simply says “M is a Riemannian manifold” if M is under-
stood to be endowed with a specific Riemannian metric. A Riemannian manifold
with boundary is defined similarly.

Note that a Riemannian metric is not the same thing as a metric in the sense of
metric spaces, although the two concepts are related, as we will see below. Because
of this ambiguity, we usually use the term “distance function” for a metric in the
metric space sense, and reserve “metric” for a Riemannian metric. In any event,
which type of metric is being considered should always be clear from the context.

If g is a Riemannian metric on M; then for each p 2M; the 2-tensor gp is an
inner product on TpM . Because of this, we often use the notation hv;wig to denote
the real number gp.v;w/ for v;w 2 TpM .

In any smooth local coordinates
�
xi
�
, a Riemannian metric can be written

gD gij dx
i ˝ dxj ;

where .gij / is a symmetric positive definite matrix of smooth functions. The sym-
metry of g allows us to write g also in terms of symmetric products as follows:

g D gij dx
i ˝ dxj

D 1
2

�
gij dx

i ˝ dxj C gj i dx
i ˝ dxj

�
.since gij D gj i /

D 1
2

�
gij dx

i ˝ dxj C gij dx
j ˝ dxi

�
.switch i$ j in the second term/

D gij dx
i dxj .by Proposition 12.15(b)/:

Example 13.1 (The Euclidean Metric). The simplest example of a Riemannian
metric is the Euclidean metric xg on Rn, given in standard coordinates by

xgD ıij dx
i dxj ;

where ıij is the Kronecker delta. It is common to abbreviate the symmetric product
of a tensor ˛ with itself by ˛2, so the Euclidean metric can also be written

xgD
�
dx1

�2
C � � � C

�
dxn

�2
:

Applied to vectors v;w 2 TpRn, this yields

xgp.v;w/D ıij v
iwj D

nX

iD1

viwi D v �w:

In other words, xg is the 2-tensor field whose value at each point is the Euclidean dot
product. (As you may recall, we warned in Chapter 1 that expressions involving the
Euclidean dot product are likely to violate our index conventions and therefore to
require explicit summation signs. This can usually be avoided by writing the metric
coefficients ıij explicitly, as in ıij viwj .) //
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Example 13.2 (Product Metrics). If .M;g/ and
� �M; zg

�
are Riemannian mani-

folds, we can define a Riemannian metric yg D g ˚ zg on the product manifold
M � �M , called the product metric, as follows:

yg
	�
v; zv

�
;
�
w; zw

�

D g.v;w/C zg

�
zv; zw

�
(13.1)

for any
�
v; zv

�
;
�
w; zw

�
2 TpM ˚ Tq �M Š T.p;q/

�
M � �M

�
. Given any local coor-

dinates
�
x1; : : : ; xn

�
for M and

�
y1; : : : ; ym

�
for �M , we obtain local coordinates

�
x1; : : : ; xn; y1; : : : ; ym

�
for M � �M , and you can check that the product metric is

represented locally by the block diagonal matrix

�
ygij
�
D

�
gij 0

0 zgij

�
:

For example, it is easy to verify that the Euclidean metric on RnCm is the same as
the product metric determined by the Euclidean metrics on Rn and Rm. //

One pleasant feature of Riemannian metrics is that they exist in great abundance.
(For another approach, see Problem 13-18.)

Proposition 13.3 (Existence of Riemannian Metrics). Every smooth manifold
with or without boundary admits a Riemannian metric.

Proof. Let M be a smooth manifold with or without boundary, and choose a cov-
ering of M by smooth coordinate charts .U˛; '˛/. In each coordinate domain, there
is a Riemannian metric g˛ D '�˛ xg, whose coordinate expression is ıij dxi dxj . Let
f ˛g be a smooth partition of unity subordinate to the cover fU˛g, and define

gD
X

˛

 ˛g˛;

with each term interpreted to be zero outside supp ˛ . By local finiteness, there are
only finitely many nonzero terms in a neighborhood of each point, so this expression
defines a smooth tensor field. It is obviously symmetric, so only positivity needs to
be checked. If v 2 TpM is any nonzero vector, then

gp.v; v/D
X

˛

 ˛.p/g˛jp.v; v/:

This sum is nonnegative, because each term is nonnegative. At least one of the func-
tions  ˛ is strictly positive at p (because they sum to 1). Because g˛jp.v; v/ > 0, it
follows that gp.v; v/ > 0. �

It is important to observe that there is an enormous amount of choice in the
construction of a metric g for a given manifold, so there is nothing canonical about
it. In particular, different metrics on the same manifold can have vastly different
geometric properties. For example, Problem 13-20 describes four metrics on R2

that behave in strikingly different ways.
Below are just a few of the geometric constructions that can be defined on a

Riemannian manifold .M;g/ with or without boundary.
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� The length or norm of a tangent vector v 2 TpM is defined to be

jvjg D hv; vi
1=2
g D gp.v; v/

1=2:

� The angle between two nonzero tangent vectors v;w 2 TpM is the unique � 2
Œ0;�� satisfying

cos� D
hv;wig

jvjg jwjg
:

� Tangent vectors v;w 2 TpM are said to be orthogonal if hv;wig D 0. This means
either one or both vectors are zero, or the angle between them is �=2.

One highly useful tool for the study of Riemannian manifolds is orthonormal
frames. Let .M;g/ be an n-dimensional Riemannian manifold with or without
boundary. Just as we did for the case of Rn in Chapter 8, we say that a local frame
.E1; : : : ;En/ for M on an open subset U �M is an orthonormal frame if the vec-
tors .E1jp; : : : ;Enjp/ form an orthonormal basis for TpM at each point p 2 U , or
equivalently if hEi ;Ej ig D ıij .

Example 13.4. The coordinate frame
�
@=@xi

�
is a global orthonormal frame for Rn

with the Euclidean metric. //

Example 13.5. The frame .E1;E2/ on R2 X f0g defined in Example 8.12 is a local
orthonormal frame for R2. As we observed in Example 9.45, it is not a coordinate
frame in any coordinates. //

The next proposition is proved in just the same way as Lemma 8.13, with the
Euclidean dot product replaced by the inner product h�; �ig .

Proposition 13.6. Suppose .M;g/ is a Riemannian manifold with or with-
out boundary, and .Xj / is a smooth local frame for M over an open subset
U � M . Then there is a smooth orthonormal frame .Ej / over U such that
span

�
E1jp; : : : ;Ej jp

�
D span

�
X1jp; : : : ;Xj jp

�
for each j D 1; : : : ; n and each

p 2 U .

I Exercise 13.7. Prove the preceding proposition.

Corollary 13.8 (Existence of Local Orthonormal Frames). Let .M;g/ be a Rie-
mannian manifold with or without boundary. For each p 2M; there is a smooth
orthonormal frame on a neighborhood of p.

Proof. Start with a smooth coordinate frame and apply Proposition 13.6. �
Observe that Corollary 13.8 does not show that there are smooth coordinates on

a neighborhood of p for which the coordinate frame is orthonormal. In fact, this is
rarely the case, as we will see below.

Pullback Metrics

Suppose M; N are smooth manifolds with or without boundary, g is a Riemannian
metric on N , and F W M ! N is smooth. The pullback F �g is a smooth 2-tensor
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Fig. 13.1 A helicoid

field on M . If it is positive definite, it is a Riemannian metric on M; called the
pullback metric determined by F . The next proposition shows when this is the
case.

Proposition 13.9 (Pullback Metric Criterion). Suppose F W M !N is a smooth
map and g is a Riemannian metric on N . Then F �g is a Riemannian metric on M
if and only if F is a smooth immersion.

I Exercise 13.10. Prove the preceding proposition.

If the coordinate representation for an immersion is known, then the pullback
metric is easy to compute using the usual algorithm for computing pullbacks.

Example 13.11. Consider the smooth map F W R2!R3 given by

F.u; v/D .u cosv;u sinv; v/:

It is a proper injective smooth immersion, and thus it is an embedding by Propo-
sition 4.22. Its image is a surface called a helicoid; it looks like an infinitely wide
spiral-shaped ramp (Fig. 13.1).The pullback metric F �xg can be computed by sub-
stituting the coordinate functions for F in place of x;y; z in the formula for xg:

F �xg D d.u cosv/2C d.u sinv/2C d.v/2

D .cosv du� u sinv dv/2C .sinv duC u cosv dv/2C dv2

D cos2 v du2 � 2u sinv cosv dudvC u2 sin2 v dv2

C sin2 v du2C 2u sinv cosv dudvC u2 cos2 v dv2C dv2

D du2C .u2C 1/dv2:

(By convention, when u is a real-valued function, the notation du2 means the sym-
metric product dudu, not d

�
u2
�
). //

To transform a Riemannian metric under a change of coordinates, we use the
same technique as we used for covector fields: think of the change of coordinates
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as the identity map expressed in terms of different coordinates for the domain and
codomain, and use the formula of Corollary 12.28 to compute the pullback. As
before, in practice this just amounts to substituting the formulas for one set of coor-
dinates in terms of the other.

Example 13.12. To illustrate, we compute the coordinate expression for the Eu-
clidean metric xgD dx2C dy2 on R2 in polar coordinates. Substituting x D r cos�
and y D r sin� and expanding, we obtain

xgD dx2C dy2 D d.r cos�/2C d.r sin�/2

D .cos� dr � r sin� d�/2C .sin� dr C r cos� d�/2

D
�
cos2 � C sin2 �

�
dr2C

�
r2 sin2 � C r2 cos2 �

�
d�2

C .�2r cos� sin� C 2r sin� cos�/dr d�

D dr2C r2 d�2: //

If .M;g/ and
� �M; zg

�
are both Riemannian manifolds, a smooth map F W M !

�M is called a (Riemannian) isometry if it is a diffeomorphism that satisfies
F �zg D g. More generally, F is called a local isometry if every point p 2M has a
neighborhood U such that F jU is an isometry of U onto an open subset of �M ; or
equivalently, if F is a local diffeomorphism satisfying F �zgD g.

If there exists a Riemannian isometry between .M;g/ and
� �M; zg

�
, we say that

they are isometric as Riemannian manifolds. If each point ofM has a neighborhood
that is isometric to an open subset of

� �M; zg
�
, then we say that .M;g/ is locally iso-

metric to
� �M; zg

�
. The study of properties of Riemannian manifolds that are invariant

under (local or global) isometries is called Riemannian geometry.
One such property is flatness. A Riemannian n-manifold .M;g/ is said to be a

flat Riemannian manifold, and g is a flat metric, if .M;g/ is locally isometric to
.Rn; xg/.

I Exercise 13.13. Suppose .M;g/ and
� �M; zg

�
are isometric Riemannian manifolds.

Show that g is flat if and only if zg is flat.

The next theorem is the key to deciding whether a Riemannian metric is flat.

Theorem 13.14. For a Riemannian manifold .M;g/, the following are equivalent:

(a) g is flat.
(b) Each point of M is contained in the domain of a smooth coordinate chart in

which g has the coordinate representation gD ıij dxi dxj .
(c) Each point of M is contained in the domain of a smooth coordinate chart in

which the coordinate frame is orthonormal.
(d) Each point ofM is contained in the domain of a commuting orthonormal frame.

Proof. The implications (a)) (b)) (c)) (d) are easy consequences of the def-
initions, and are left to the reader. The remaining implication, (d) ) (a), follows
from the canonical form theorem for commuting frames: if .Ei / is a commuting
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orthonormal frame for g on an open subset U �M; then Theorem 9.46 implies that
each p 2 V is contained in the domain of a smooth chart .U;'/ in which the co-
ordinate frame is equal to .Ei /. This means '�Ei D @=@xi , so the diffeomorphism
' W U ! '.U / satisfies

'�xg.Ei ;Ej /D xg.'�Ei ; '�Ej /D xg

�
@

@xi
;
@

@xj

�
D ıij D g.Ei ;Ej /:

Bilinearity then shows that '�xg D g, so ' is an isometry between .U;gjU / and
'.U / with the Euclidean metric. This shows that g is flat. �

I Exercise 13.15. Complete the preceding proof by showing (a) ) (b) ) (c) )
(d).

It is not at all obvious from the definitions that there exist Riemannian metrics
that are not flat. In fact, in the 1-dimensional case, every metric is flat, as Prob-
lem 13-6 shows. Later in this chapter, we will use Theorem 13.14 to show that most
surfaces of revolution in R3, including S2, are not flat.

Riemannian Submanifolds

Pullback metrics are especially important for submanifolds. If .M;g/ is a Riemann-
ian manifold with or without boundary, every submanifold S �M (immersed or
embedded, with or without boundary) automatically inherits a pullback metric 	�g,
where 	 W S ,!M is inclusion. In this setting, the pullback metric is also called the
induced metric on S . By definition, this means for v;w 2 TpS that

�
	�g

�
.v;w/D g

�
d	p.v/; d 	p.w/

�
D g.v;w/;

because d	p W TpS! TpM is our usual identification of TpS as a subspace of TpM .
Thus 	�g is just the restriction of g to pairs of vectors tangent to S . With this metric,
S is called a Riemannian submanifold (with or without boundary) of M .

Example 13.16. The metric VgD 	�xg induced on Sn by the usual inclusion 	 W Sn ,!
RnC1 is called the round metric (or the standard metric) on the sphere. //

If .M;g/ is a Riemannian manifold and 	 W S ,!M is a Riemannian submani-
fold, it is usually easiest to compute the induced metric 	�g in terms of a local pa-
rametrization; recall from Chapter 5 that this is an injective immersion X from an
open subset U �Rk intoM whose image is an open subset of S , and whose inverse
is a smooth coordinate map for S . Since 	 ıX D X , the coordinate representation
of 	�g is X� .	�g/DX�g. The next two examples illustrate the procedure.

Example 13.17 (Induced Metrics in Graph Coordinates). Let U � Rn be an
open subset, and let S � RnC1 be the graph of a smooth function f W U ! R.
The map X W U !RnC1 given by X

�
u1; : : : ; un

�
D
�
u1; : : : ; un; f .u/

�
is a smooth
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global parametrization of S and the induced metric on S is given in graph coordi-
nates by

X�xgDX�
	�
dx1

�2
C � � � C

�
dxnC1

�2

D
�
du1

�2
C � � � C .dun/

2
C df 2:

For example, the upper hemisphere of S2 is parametrized by the map X W B2!R3

given by

X.u;v/D
	
u;v;
p
1� u2 � v2



:

In these coordinates, the round metric can be written

VgDX�xgD du2C dv2C

�
uduC v dv
p
1� u2 � v2

�2

D

�
1� v2

�
du2C

�
1� u2

�
dv2C 2uv dudv

1� u2 � v2
: //

Example 13.18 (Induced Metrics on Surfaces of Revolution). Let C be an em-
bedded 1-dimensional submanifold of the half-plane f.r; z/ W r > 0g, and let SC be
the surface of revolution generated by C as described in Example 5.17. To com-
pute the induced metric on SC , choose any smooth local parametrization �.t/ D�
a.t/; b.t/

�
for C , and note that the map X.t; �/ D

�
a.t/ cos�; a.t/ sin�; b.t/

�

yields a smooth local parametrization of SC , provided that .t; �/ is restricted to
a sufficiently small open subset of the plane. Thus we can compute

X�xg D d
�
a.t/ cos�

�2
C d

�
a.t/ sin�

�2
C d

�
b.t/

�2

D
�
a0.t/ cos� dt � a.t/ sin� d�

�2

C
�
a0.t/ sin� dt C a.t/ cos� d�

�2
C
�
b0.t/ dt

�2

D
�
a0.t/2C b0.t/2

�
dt2C a.t/2 d�2:

In particular, if � is a unit-speed curve, meaning that j� 0.t/j2 D a0.t/2Cb0.t/2 D 1,
this reduces to the simple formula dt2C a.t/2 d�2.

Here are some familiar examples of surfaces of revolution.

(a) The embedded torus described in Example 5.17 is the surface of revolu-
tion generated by the circle .r � 2/2 C z2 D 1. Using the unit-speed pa-
rametrization �.t/ D .2 C cos t; sin t/ for the circle, we obtain the formula
dt2C .2C cos t/2 d�2 for the induced metric.

(b) The unit sphere (minus the north and south poles) is a surface of revolution
whose generating curve is the semicircle parametrized by �.t/ D .sin t; cos t/
for 0 < t < � . The induced metric is dt2C sin2 t d�2.

(c) The unit cylinder x2Cy2 D 1 is a surface of revolution whose generating curve
is the vertical line parametrized by �.t/D .1; t/ for t 2R. The induced metric
is dt2C d�2. //
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Look again at the last example above. It shows that for each local parametrization
of the cylinder given by X.t; �/ D .cos�; sin�; t/, the induced metric X�xg is the
Euclidean metric on the .t; �/-plane. To put it another way, for any point p in the
cylinder, a suitable restriction of X gives a Riemannian isometry between an open
subset of

�
R2; xg

�
and a neighborhood of p in the cylinder with its induced metric.

Thus the induced metric on the cylinder is flat. A two-dimensional being living
in the cylinder would not be able to distinguish its surroundings from the Euclidean
plane by local geometric measurements. This illustrates that the question of whether
a metric is flat or not can sometimes have an unexpected answer.

To develop adequate machinery to determine systematically which metrics are
flat and which are not would require techniques that are beyond the scope of this
book. Just as proving two topological spaces are not homeomorphic requires find-
ing topological invariants that distinguish them, in order to prove two Riemann-
ian manifolds are not locally isometric, one must introduce local invariants that
are preserved by Riemannian isometries, and show that different metrics have dif-
ferent invariants. The fundamental invariant of a Riemannian metric is called its
curvature; this is a quantitative measure of how far the metric deviates from flat-
ness. See, for example, [LeeRM] for an account of the theory of Riemannian curva-
ture.

For the present, we have to content ourselves with the next proposition,
which answers the question for surfaces of revolution using a rather ad hoc
method.

Proposition 13.19 (Flatness Criterion for Surfaces of Revolution). Let C �H
be a connected embedded 1-dimensional submanifold of the half-planeH D f.r; z/ W
r > 0g, and let SC be the surface of revolution generated by C . The induced metric
on SC is flat if and only if C is part of a straight line.

Proof. First assume C is part of a straight line. Then it has a parametrization of
the form �.t/ D .P t CK;Qt C L/ for some constants P , Q, K , L with P and
Q not both zero. By rescaling the t variable, we may assume that � is unit-speed.
If Q D 0, then SC is an open subset of the plane z D L and is therefore flat. If
P D 0, then SC is part of the cylinder x2 C y2 D K2, which can be shown to be
flat in the same way as we did for the unit cylinder in Example 13.18(c). On the
other hand, if neither P norQ is zero, then SC is part of a cone, and Example 13.18
shows that the induced metric is dt2 C .P t CK/2 d�2. In a neighborhood of any
point, the change of coordinates .u; v/D

�
.t CK=P / cosP�; .t CK=P / sinP�

�

pulls the Euclidean metric du2 C dv2 back to dt2 C .P t C K/2 d�2, so this
metric is flat. (Think of slitting a paper cone along one side and flattening it
out.)

Conversely, assuming that SC is flat, we will show that C is part of a straight
line. Let �.t/ D

�
a.t/; b.t/

�
be a local parametrization of C . Using the result of

Problem 13-5, we may assume that � is unit-speed, so that a0.t/2 C b0.t/2 D 1.
As in Example 13.18, the induced metric is dt2 C a2d�2. Thus the local frame
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.E1;E2/ given by

E1 D
@

@t
; E2 D

1

a

@

@�
;

is orthonormal. Any other orthonormal frame
�
zE1; zE2

�
can be written in the form

zE1 D uE1C vE2 D u
@

@t
C
v

a

@

@�
;

˙ zE2 D vE1 � uE2 D v
@

@t
�
u

a

@

@�
;

for some functions u and v depending smoothly on .t; �/ and satisfying
u2 C v2 D 1. Because the metric is flat, it is possible to choose u and v such that�
zE1; zE2

�
is a commuting orthonormal frame (Theorem 13.14). Using formula (8.8)

for Lie brackets in coordinates, this implies

0D˙
�
zE1; zE2

�
D

�
u
@v

@t
C
v

a

@v

@�

�
@

@t
�

�
u
@

@t

	u
a



C
v

a

@

@�

	u
a


� @

@�

�

�
v
@u

@t
�
u

a

@u

@�

�
@

@t
�

�
v
@

@t

	v
a



�
u

a

@

@�

	v
a


� @

@�
:

To simplify this expression, we use the shorthand notations f� D @f=@� and
ft D @f=@t for any function f . Note that u2C v2 D 1 implies uu� C vv� D uut C
vvt D 0, and the fact that a depends only on t implies a� D 0 and at D a0. Inserting
these relations into the formula above and simplifying, we obtain

0D .uvt � vut /
@

@t
C

�
a0 � vu� C uv�

a2

�
@

@�
;

which implies

uvt � vut D 0; (13.2)

vu� � uv� D a
0: (13.3)

Because u2 C v2 � 1, each point has a neighborhood on which either u or v is
nonzero. On any open subset where v ¤ 0, (13.2) implies that the t -derivative of
u=v is zero. Thus we can write uD f v, where f is some function of � alone. Then
u2 C v2 D 1 implies that v2

�
f 2 C 1

�
D 1, so v D˙1=

p
f 2C 1 is also a function

of � alone, and so is uD˙
p
1� v2. A similar argument applies where u¤ 0. But

then (13.3) implies that a0 is independent of t , so it is constant, and consequently so
is b0 D˙

p
1� .a0/2. It follows that a and b are affine functions of t , so each point

of C has a neighborhood contained in a straight line. Since we are assuming C is
connected, it follows that all of C is contained in a single straight line. �

Corollary 13.20. The round metric on S2 is not flat. �
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The Normal Bundle

Suppose .M;g/ is an n-dimensional Riemannian manifold with or without bound-
ary, and S �M is a k-dimensional Riemannian submanifold (also with or without
boundary). Just as we did for submanifolds of Rn, for any p 2 S we say that a vector
v 2 TpM is normal to S if v is orthogonal to every vector in TpS with respect to
the inner product h�; �ig . The normal space to S at p is the subspace NpS � TpM
consisting of all vectors that are normal to S at p, and the normal bundle of S is
the subsetNS � TM consisting of the union of all the normal spaces at points of S .
The projection �NS W NS! S is defined as the restriction to NS of � W TM !M .
The following proposition is proved in the same way as Corollary 10.36.

Proposition 13.21 (The Normal Bundle to a Riemannian Submanifold). Let
.M;g/ be a Riemannian n-manifold with or without boundary. For any immersed
k-dimensional submanifold S �M with or without boundary, the normal bundle
NS is a smooth rank-.n�k/ subbundle of TM jS . For each p 2 S , there is a smooth
frame for NS on a neighborhood of p that is orthonormal with respect to g.

I Exercise 13.22. Prove the preceding proposition.

The Riemannian Distance Function

One of the most important tools that a Riemannian metric gives us is the ability to
define lengths of curves. Suppose .M;g/ is a Riemannian manifold with or without
boundary. If � W Œa; b�!M is a piecewise smooth curve segment, the length of �
is

Lg.�/D
Z b

a

ˇ̌
� 0.t/

ˇ̌
g
dt:

Because j� 0.t/jg is continuous at all but finitely many values of t , and has well-
defined limits from the left and right at those points, the integral is well defined.

I Exercise 13.23. Suppose � W Œa; b�!M is a piecewise smooth curve segment and
a < c < b. Show that

Lg .�/D Lg
�
� jŒa;c	

�
C Lg

�
� jŒc;b	

�
:

I Exercise 13.24. Show that lengths of curves are local isometry invariants of Rie-
mannian manifolds. More precisely, suppose .M;g/ and

� �M; zg
�

are Riemannian man-

ifolds with or without boundary, and F W M ! �M is a local isometry. Show that
Lzg .F ı �/D Lg .�/ for every piecewise smooth curve segment � in M .

It is an extremely important fact that length is independent of parametrization in
the following sense. In Chapter 11 we defined a reparametrization of a piecewise
smooth curve segment � W Œa; b�!M to be a curve segment of the form z� D � ı ',
where ' W Œc; d �! Œa; b� is a diffeomorphism.
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Proposition 13.25 (Parameter Independence of Length). Let .M;g/ be a Rie-
mannian manifold with or without boundary, and let � W Œa; b�!M be a piecewise
smooth curve segment. If z� is a reparametrization of � , then Lg.z�/D Lg.�/.

Proof. First suppose that � is smooth, and ' W Œc; d �! Œa; b� is a diffeomorphism
such that z� D � ı '. The fact that ' is a diffeomorphism implies that either '0 > 0
or '0 < 0 everywhere. Let us assume first that '0 > 0. We have

Lg.z�/D
Z d

c

ˇ̌
z� 0.t/

ˇ̌
g
dt D

Z d

c

ˇ̌
ˇ̌ d
dt
.� ı '/.t/

ˇ̌
ˇ̌
g

dt

D

Z d

c

ˇ̌
'0.t/� 0

�
'.t/

�ˇ̌
g
dt D

Z d

c

ˇ̌
� 0
�
'.t/

�ˇ̌
g
'0.t/ dt

D

Z b

a

ˇ̌
� 0.s/

ˇ̌
g
ds D Lg.�/;

where the next-to-last equality uses the change of variables formula for integrals.
In the case '0 < 0, we just need to introduce two sign changes into the above

calculation. The sign changes once when '0.t/ is moved outside the absolute value
signs, because j'0.t/j D �'0.t/. Then it changes again when we change variables,
because ' reverses the direction of the integral. Since the two sign changes cancel
each other, the result is the same.

If � is only piecewise smooth, we just apply the same argument on each subin-
terval on which it is smooth. �

Using curve segments as “measuring tapes,” we can define distances between
points on a Riemannian manifold. Suppose .M;g/ is a connected Riemannian man-
ifold. (The theory is most straightforward when @M D¿, so we assume that for the
rest of this section.) For any p;q 2M; the (Riemannian) distance from p to q, de-
noted by dg.p; q/, is defined to be the infimum of Lg.�/ over all piecewise smooth
curve segments � from p to q. Because any pair of points in M can be joined by a
piecewise smooth curve segment (Proposition 11.33), this is well defined.

Example 13.26. In .Rn; xg/, Problem 13-10 shows that any straight line segment is
the shortest piecewise smooth curve segment between its endpoints. Therefore, the
distance function dxg is equal to the usual Euclidean distance:

dxg.x; y/D jx � yj: //

I Exercise 13.27. Suppose .M;g/ and
� �M; zg

�
are connected Riemannian mani-

folds and F W M ! �M is a Riemannian isometry. Show that dzg .F.p/;F.q// D
dg .p; q/ for all p;q 2M .

We will see below that the Riemannian distance function turns M into a metric
space whose topology is the same as the given manifold topology. The key is the
following technical lemma, which shows that every Riemannian metric is locally
comparable to the Euclidean metric in coordinates.
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Lemma 13.28. Let g be a Riemannian metric on an open subset U �Rn. Given a
compact subset K � U , there exist positive constants c;C such that for all x 2K
and all v 2 TxRn,

cjvjxg � jvjg � C jvjxg : (13.4)

Proof. For any compact subset K � U , let L� TRn be the set

LD
˚
.x; v/ 2 TRn W x 2K; jvjxg D 1

�
:

Under the canonical identification of TRn with Rn � Rn, L is just the product
set K � Sn�1 and therefore is compact. Because the norm jvjg is continuous and
strictly positive on L, there are positive constants c, C such that c � jvjg � C
whenever .x; v/ 2 L. If x 2 K and v is a nonzero vector in TxRn, let 
 D jvjxg .
Then

�
x;
�1v

�
2L, so by homogeneity of the norm,

jvjg D 

ˇ̌

�1v

ˇ̌
g
� 
C D C jvjxg :

A similar computation shows that jvjg � cjvjxg . The same inequalities are trivially
true when vD 0. �
Theorem 13.29 (Riemannian Manifolds as Metric Spaces). Let .M;g/ be a con-
nected Riemannian manifold. With the Riemannian distance function,M is a metric
space whose metric topology is the same as the original manifold topology.

Proof. It is immediate from the definition that dg.p; q/ � 0. Because every con-
stant curve segment has length zero, it follows that dg.p;p/D 0; and dg.p; q/D
dg.q;p/ follows from the fact that any curve segment from p to q can be reparam-
etrized to go from q to p. Suppose �1 and �2 are piecewise smooth curve segments
from p to q and q to r , respectively (Fig. 13.2), and let � be a piecewise smooth
curve segment that first follows �1 and then follows �2 (reparametrized if neces-
sary). Then

dg.p; r/� Lg.�/D Lg.�1/C Lg.�2/:

Taking the infimum over all such �1 and �2, we find that dg.p; r/ � dg.p; q/C
dg.q; r/. (This is one reason why it is important to define the distance function
using piecewise smooth curves instead of just smooth ones.)

To complete the proof that .M;dg/ is a metric space, we need only show that
dg.p; q/ > 0 if p ¤ q. For this purpose, let p;q 2M be distinct points, and let
U be a smooth coordinate domain containing p but not q. Use the coordinate map
as usual to identify U with an open subset in Rn, and let xg denote the Euclidean
metric in these coordinates. If V is a regular coordinate ball of radius " centered
at p such that xV � U , Lemma 13.28 shows that there are positive constants c;C
such that (13.4) is satisfied whenever x 2 xV and v 2 TxM . Then for any piecewise
smooth curve segment � lying entirely in xV , it follows that

cLxg.�/� Lg.�/� CLxg.�/:

Suppose � W Œa; b�!M is a piecewise smooth curve segment from p to q. Let
t0 be the infimum of all t 2 Œa; b� such that �.t/ … xV (Fig. 13.3). It follows that
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Fig. 13.2 The triangle inequality Fig. 13.3 Positivity of dg

�.t0/ 2 @V by continuity, and �.t/ 2 xV for a � t � t0. Thus,

Lg.�/� Lg
�
� jŒa;t0	

�
� cLxg

�
� jŒa;t0	

�
� cdxg

�
p;�.t0/

�
D c":

Taking the infimum over all such � , we conclude that dg.p; q/� c" > 0.
Finally, to show that the metric topology generated by dg is the same as the given

manifold topology on M; we need to show that the open subsets in the manifold
topology are open in the metric topology, and vice versa. Suppose, first, that U �M
is open in the manifold topology. Let p 2 U , and let V be a regular coordinate ball
of radius " around p such that xV � U as above. The argument in the previous
paragraph shows that dg.p; q/ � c" whenever q … xV . The contrapositive of this
statement is that dg.p; q/ < c" implies q 2 xV � U , or in other words, the metric
ball of radius c" around p is contained in U . This shows that U is open in the
metric topology.

Conversely, suppose thatW is open in the metric topology, and let p 2W . Let V
be a regular coordinate ball of radius r around p, let xg be the Euclidean metric on
xV determined by the given coordinates, and let c;C be positive constants such that
(13.4) is satisfied for v 2 TqM; q 2 xV . Let " < r be a positive number small enough
that the metric ball around p of radius C" is contained in W , and let V" be the set
of points in xV whose Euclidean distance from p is less than ". If q 2 V", let � be
the straight-line segment in coordinates from p to q. Using Lemma 13.28 as above,
we conclude that

dg.p; q/� Lg.�/� CLxg.�/ < C":

This shows that V" is contained in the metric ball of radius C" around p, and there-
fore in W . Since V" is a neighborhood of p in the manifold topology, this shows
that W is open in the manifold topology as well. �

As a consequence of this theorem, all of the terminology of metric spaces can
be carried over to connected Riemannian manifolds. Thus, a connected Riemannian
manifold .M;g/ is said to be complete, and g is said to be a complete Riemann-
ian metric, if .M;dg/ is a complete metric space (i.e., if every Cauchy sequence
in M converges to a point in M ); and a subset B �M is said to be bounded if
there exists a constant K such that dg.x; y/ �K for all x;y 2 B . Problems 13-17
and 13-18 outline two different proofs that every connected smooth manifold admits
a complete Riemannian metric.

Recall that a topological space is said to be metrizable if it admits a distance
function whose metric topology is the same as the given topology.
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Corollary 13.30. Every smooth manifold with or without boundary is metrizable.

Proof. First suppose M is a smooth manifold without boundary, and choose any
Riemannian metric g on M . If M is connected, Theorem 13.29 shows that M
is metrizable. More generally, let fMig be the connected components of M; and
choose a point pi 2Mi for each i . For x 2Mi and y 2Mj , define dg.x; y/ as in
Theorem 13.29 when i D j , and otherwise

dg.x; y/D dg.x;pi /C 1C dg.pj ; y/:

(Think of building a “bridge” of length 1 between each pair of chosen points pi ; pj
in different components, so to get from x to y, you have to go to pi , cross the
bridge to pj , and then go from pj to y.) It is straightforward to check that this is a
distance function that induces the given topology onM . Finally, ifM has nonempty
boundary, just embed M into its double (Example 9.32), and note that a subspace
of a metrizable topological space is always metrizable. �

The Tangent–Cotangent Isomorphism

Another convenient feature of every Riemannian metric is that it provides a natu-
ral isomorphism between the tangent and cotangent bundles. Given a Riemannian
metric g on a smooth manifold M with or without boundary, we define a bundle
homomorphism yg W TM ! T �M as follows. For each p 2M and each v 2 TpM;
we let yg.v/ 2 T �pM be the covector defined by

yg.v/.w/D gp.v;w/ for all w 2 TpM:

To see that this is a smooth bundle homomorphism, it is easiest to consider its action
on smooth vector fields:

yg.X/.Y /D g.X;Y / for X;Y 2X.M/:

Because yg.X/.Y / is linear over C1.M/ as a function of Y , it follows from the
tensor characterization lemma (Lemma 12.24) that yg.X/ is a smooth covector
field; and because yg.X/ is linear over C1.M/ as a function of X , this defines
yg as a smooth bundle homomorphism by the bundle homomorphism character-
ization lemma (Lemma 10.29). As usual, we use the same symbol for both the
pointwise bundle homomorphism yg W TM ! T �M and the linear map on sections
yg W X.M/!X�.M/.

Note that yg is injective at each point, because yg.v/D 0 for some v 2 TpM im-
plies

0D yg.v/.v/D hv; vig ;

which in turn implies vD 0. For dimensional reasons, therefore, yg is bijective, so it
is a bundle isomorphism (see Proposition 10.26).
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In any smooth coordinates
�
xi
�
, we can write g D gij dxi dxj . Thus, if X and

Y are smooth vector fields, we have

yg.X/.Y /D gijX
iY j ;

which implies that the covector field yg.X/ has the coordinate expression

yg.X/D gijX
i dxj :

In other words, yg is the bundle homomorphism whose matrix with respect to co-
ordinate frames for TM and T �M is the same as the matrix of g itself. (Actually,
it is the transpose of the matrix of g, but because .gij / is symmetric, these are the
same.)

It is customary to denote the components of the covector field yg.X/ by

yg.X/DXj dx
j ; where Xj D gijX

i :

Because of this, one says that yg.X/ is obtained from X by lowering an index. The
notation X [ is frequently used for yg.X/, because the symbol [ (“flat”) is used in
musical notation to indicate that a tone is to be lowered.

The matrix of the inverse map yg�1 W T �pM ! TpM is thus the inverse of .gij /.
(Because .gij / is the matrix of the isomorphism yg, it is invertible at each point.) We
let
�
gij
�

denote the matrix-valued function whose value at p 2M is the inverse of
the matrix

�
gij .p/

�
, so that

gijgjk D gkjg
j i D ıik :

Because gij is a symmetric matrix, so is gij , as you can easily check. Thus for a
covector field ! 2X�.M/, the vector field yg�1.!/ has the coordinate representation

yg�1.!/D !i
@

@xi
; where !i D gij!j :

We use the notation !] (“!-sharp”) for yg�1.!/, and say that !] is obtained from !

by raising an index. Because the symbols [ and ] are borrowed from musical no-
tation, these two inverse isomorphisms are frequently called the musical isomor-
phisms. A handy mnemonic device for keeping the flat and sharp operations straight
is to remember that the value of !] at each point is a vector, which we visualize as
a (sharp) arrow; while the value of X [ is a covector, which we visualize by means
of its (flat) level sets.

The most important use of the sharp operation is to reinstate the gradient as a
vector field on Riemannian manifolds. For any smooth real-valued function f on
a Riemannian manifold .M;g/ with or without boundary, we define a vector field
called the gradient of f by

gradf D .df /] D yg�1.df /:

Unraveling the definitions, we see that for any X 2X.M/, the gradient satisfies

hgradf;Xig D yg.gradf /.X/D df .X/DXf:
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Thus gradf is the unique vector field that satisfies

hgradf;Xig DXf for every vector field X;

or equivalently,

hgradf; �ig D df:
In smooth coordinates, gradf has the expression

gradf D gij
@f

@xi
@

@xj
:

In particular, this shows that gradf is smooth. On Rn with the Euclidean metric,
this reduces to

gradf D ıij
@f

@xi
@

@xj
D

nX

iD1

@f

@xi
@

@xi
:

Thus our new definition of the gradient in this case coincides with the gradient from
elementary calculus. In other coordinates, however, the gradient does not generally
have the same form.

Example 13.31. Let us compute the gradient of a function f 2 C1
�
R2
�

with re-
spect to the Euclidean metric in polar coordinates. From Example 13.12 we see

that the matrix of xg in polar coordinates is
�1 0
0 r2

�
, so its inverse matrix is

�1 0

0 1=r2

�
.

Inserting this into the formula for the gradient, we obtain

gradf D
@f

@r

@

@r
C
1

r2
@f

@�

@

@�
: //

Problem 13-21 shows that the gradient of a function f on a Riemannian manifold
has the same geometric interpretation as it has in Euclidean space: its direction is the
direction in which f is increasing fastest, and is orthogonal to the level sets of f ;
and its length is the maximum directional derivative of f in any direction.

Pseudo-Riemannian Metrics

An important generalization of Riemannian metrics is obtained by relaxing the pos-
itivity requirement. A symmetric 2-tensor g on a vector space V is said to be non-
degenerate if the linear map yg W V ! V � defined by yg.v/.w/D g.v;w/ is an iso-
morphism, or equivalently if for every nonzero v 2 V there exists w 2 V such that
g.v;w/¤ 0. Just as any inner product can be transformed to the Euclidean one by
switching to an orthonormal basis, every nondegenerate symmetric 2-tensor can be
transformed by a change of basis to one whose matrix is diagonal with all entries
equal to ˙1 (the proof is an adaptation of the Gram–Schmidt algorithm). The num-
bers r and s of positive and negative diagonal entries, respectively, are independent
of the choice of basis (a fact known as Sylvester’s law of inertia; see [FIS03] for a
proof). Thus the ordered pair .r; s/, called the signature of g, is an invariant of g.
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A pseudo-Riemannian metric on a smooth manifold M is a smooth symmetric
2-tensor field whose value is nondegenerate at each point, with the same signa-
ture everywhere on M . Pseudo-Riemannian metrics with signature .n � 1; 1/ (or
.1; n� 1/, depending on the convention used) are called Lorentz metrics; they play
a central role in physics, where they are used to model gravitation in Einstein’s
general theory of relativity.

We do not pursue the subject of pseudo-Riemannian metrics any further, except
to note that the proof of the existence of Riemannian metrics does not carry over to
the pseudo-Riemannian case, since it is not generally true that a linear combination
of nondegenerate 2-tensors with positive coefficients is necessarily nondegenerate.
Indeed, not every manifold admits a Lorentz metric (cf. [HE73, p. 39]).

Problems

13-1. If .M;g/ is a Riemannian n-manifold with or without boundary, let UM �
TM be the subsetUM D f.x; v/ 2 TM W jvjg D 1g, called the unit tangent
bundle of M . Show that UM is a smooth fiber bundle over M with model
fiber Sn�1.

13-2. In the proof of Proposition 13.3 we used a partition of unity to patch to-
gether locally defined Riemannian metrics to obtain a global one. A crucial
part of the proof was verifying that the global tensor field so obtained was
positive definite. The key to the success of this argument is the fact that
the set of inner products on a given tangent space is a convex subset of the
vector space of all symmetric 2-tensors. This problem outlines a general-
ization of this construction to arbitrary vector bundles. Suppose that E is a
smooth vector bundle over a smooth manifold M with or without bound-
ary, and V � E is an open subset with the property that for each p 2M;
the intersection of V with the fiber Ep is convex and nonempty. By a “sec-
tion of V ,” we mean a (local or global) section of E whose image lies in
V .
(a) Show that there exists a smooth global section of V .
(b) Suppose � W A! V is a smooth section of V defined on a closed subset

A �M . (This means that � extends to a smooth section of V in a
neighborhood of each point of A.) Show that there exists a smooth
global section z� of V whose restriction to A is equal to � . Show that
if V contains the image of the zero section of E , then z� can be chosen
to be supported in any predetermined neighborhood of A.

(Used on pp. 381, 430.)

13-3. Let M be a smooth manifold. Prove the following statements.
(a) If there exists a global nonvanishing vector field on M; then there

exists a global smooth nonvanishing vector field. [Hint: imitate the
proof of Theorem 6.21, with the constants F.xi / replaced by constant-
coefficient vector fields in coordinates, and with absolute values re-
placed by norms in some Riemannian metric.]
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(b) If there exists a linearly independent k-tuple of vector fields on M;
then there exists such a k-tuple of smooth vector fields.

13-4. Let Vg denote the round metric on Sn. Compute the coordinate representa-
tion of Vg in stereographic coordinates (see Problem 1-7).

13-5. Suppose .M;g/ is a Riemannian manifold. A smooth curve � W J !M

is said to be a unit-speed curve if j� 0.t/jg � 1. Prove that every smooth
curve with nowhere-vanishing velocity has a unit-speed reparametrization.
(Used on p. 335.)

13-6. Prove that every Riemannian 1-manifold is flat. [Hint: use Problem 13-5.
Note that this implies the round metric on S1 is flat!]

13-7. Show that a product of flat metrics is flat.

13-8. Let Tn D S1 � � � � �S1 �Cn, and let g be the metric on Tn induced from
the Euclidean metric on Cn (identified with R2n). Show that g is flat.

13-9. Let H �R3 be the helicoid (the image of the embedding F W R2!R3 of
Example 13.11), and let C � R3 be the catenoid, which is the surface of
revolution generated by the curve �.t/D .cosh t; t /. Show thatH is locally
isometric to C but not globally isometric.

13-10. Show that the shortest path between two points in Euclidean space is a
straight line segment. More precisely, for x;y 2Rn, let � W Œ0; 1�!Rn be
the curve segment �.t/D xC t.y � x/, and show that any other piecewise
smooth curve segment z� from x to y satisfies Lxg.z�/ > Lxg.�/ unless z� is a
reparametrization of � . [Hint: first, consider the case in which both x and
y lie on the x1-axis.] (Used on p. 338.)

13-11. Let M DR2 X f0g, and let g be the restriction to M of the Euclidean met-
ric xg. Show that there are points p;q 2M for which there is no piecewise
smooth curve segment � from p to q in M with Lg.�/D dg.p; q/.

13-12. Consider Rn as a Riemannian manifold with the Euclidean metric xg.
(a) Suppose U;V � Rn are connected open sets, '; W U ! V are Rie-

mannian isometries, and for some p 2 U they satisfy '.p/ D  .p/
and d'p D d p . Show that ' D  . [Hint: first, use Problem 13-10 to
show that ' and  take lines to lines.]

(b) Show that the set of maps from Rn to itself given by the action of
E.n/ on Rn described in Example 7.32 is the full group of Riemannian
isometries of .Rn; xg/.

13-13. Let .M;g/ be a Riemannian manifold. A smooth vector field V on M is
called a Killing vector field for g (named after the late nineteenth/early
twentieth-century German mathematician Wilhelm Killing) if the flow of
V acts by isometries of g.
(a) Show that the set of all Killing vector fields on M constitutes a Lie

subalgebra of X.M/. [Hint: see Corollary 9.39(c).]
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(b) Show that a smooth vector field V on M is a Killing vector field if and
only if it satisfies the following equation in each smooth local coordi-
nate chart:

V k
@gij

@xk
C gjk

@V k

@xi
C gik

@V k

@xj
D 0:

13-14. LetK �X .Rn/ denote the Lie algebra of Killing vector fields with respect
to the Euclidean metric (see Problem 13-13), and let K0 � K denote the
subspace consisting of fields that vanish at the origin.
(a) Show that the map

V 7!

�
@V i

@xj
.0/

�

is an injective linear map from K0 to o.n/. [Hint: If V is in the kernel
of this map and � is its flow, show that the linear map d.�t /0 W T0Rn!
T0Rn is independent of t , and use the result of Problem 13-12(a).]

(b) Show that the following vector fields form a basis for K:

@

@xi
; 1� i � nI xi

@

@xj
� xj

@

@xi
; 1� i < j � n:

13-15. Let .M;g/ be a Riemannian manifold, and let yg be the product metric on
M �R determined by g and the Euclidean metric on R. LetX D 0˚d=dt
be the product vector field onM �R determined by the zero vector field on
M and the standard coordinate vector field d=dt on R (see Problem 8-17).
Show that X is a Killing vector field for

�
M �R; yg

�
.

13-16. Suppose g D f .t/dt2 is a Riemannian metric on R. Show that g is com-
plete if and only if both of the following improper integrals diverge:

Z 1

0

p
f .t/dt;

Z 0

�1

p
f .t/ dt:

13-17. Let M be a connected noncompact smooth manifold and let g be a Rie-
mannian metric on M . Prove that there exists a positive function h 2

C1.M/ such that the Riemannian metric zgD hg is complete. Use this to
prove that every connected smooth manifold admits a complete Riemann-
ian metric. [Hint: let f W M !R be an exhaustion function, and show that
h can be chosen so that f is bounded on zg-bounded sets.]

13-18. Suppose .M;g/ is a connected Riemannian manifold, S �M is a con-
nected embedded submanifold, and zg is the induced Riemannian metric
on S .
(a) Prove that dzg.p; q/� dg.p; q/ for p;q 2 S .
(b) Prove that if .M;g/ is complete and S is properly embedded, then�

S; zg
�

is complete.
(c) Use (b) together with the Whitney embedding theorem to prove (with-

out quoting Proposition 13.3 or Problem 13-17) that every connected
smooth manifold admits a complete Riemannian metric.
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13-19. The following example shows that the converse of Problem 13-18(b) does
not hold. Define F W R! R2 by F.t/ D

��
et C 1

�
cos t;

�
et C 1

�
sin t

�
.

Show that F is an embedding that is not proper, yet R is complete in the
metric induced from the Euclidean metric on R2.

13-20. Consider the embeddings F1;F2;F3;F4 W R2!R3 defined as follows:

F1.u; v/D .u; v; 0/I

F2.u; v/D
�
u; ev; 0

�
I

F3.u; v/D
�
u;v;u2C v2

�
I

F4.u; v/D

�
2u

u2C v2C 1
;

2v

u2C v2C 1
;
u2C v2 � 1

u2C v2C 1

�
:

For each i , let gi D F �i xg. For each of the Riemannian manifolds
�
R2; g1

�

through
�
R2; g4

�
, answer the following questions: Is it bounded? Is it com-

plete? Is it flat? Prove your answers correct. [Hint: if you have trouble an-
alyzing g4, look at Problem 1-7.]

13-21. Let .M;g/ be a Riemannian manifold, let f 2 C1.M/, and let p 2M be
a regular point of f .
(a) Show that among all unit vectors v 2 TpM; the directional derivative

vf is greatest when v points in the same direction as gradf jp , and the
length of gradf jp is equal to the value of the directional derivative in
that direction.

(b) Show that gradf jp is normal to the level set of f through p.
(Used on p. 391.)

13-22. For any smooth manifold M with or without boundary, show that the vec-
tor bundles TM and T �M are smoothly isomorphic over M . [Remark:
Problem 11-18 shows that this isomorphism cannot be natural, in the sense
that there does not exist a rule that assigns to every smooth manifold M a
bundle isomorphism 
M W TM ! T �M in such a way that for every dif-
feomorphism F W M !N , the two bundle isomorphisms 
M and 
N are
related by 
M D dF � ı 
N ı dF .]

13-23. Is there a smooth covector field on S2 that vanishes at exactly one point?

13-24. Let M be a compact smooth n-manifold, and suppose f is a smooth
real-valued function on M that has only finitely many critical points
fp1; : : : ; pkg, with corresponding critical values fc1; : : : ; ckg labeled so
that c1 � � � � � ck . For any a < b 2 R, define Ma D f

�1.a/, MŒa;b	 D

f �1
�
Œa; b�

�
, and M.a;b/ D f �1

�
.a; b/

�
. If a and b are regular values,

note that Ma and Mb are embedded hypersurfaces in M; M.a;b/ is an
open submanifold, and MŒa;b	 is a regular domain by Proposition 5.47 (see
Fig. 13.4).
(a) Choose a Riemannian metric g on M; let X be the vector field X D

gradf=jgradf j2g onM Xfp1; : : : ; pkg, and let � denote the flow ofX .
Show that f

�
�t .p/

�
D f .p/C t whenever �t .p/ is defined.
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Fig. 13.4 The setup for Problem 13-24

(b) Let Œa; b��R be a compact interval containing no critical values of f .
Show that � restricts to a diffeomorphism from Œ0; b � a� �Ma to
MŒa;b	.

[Remark: this result shows that M can be decomposed as a union of sim-
pler “building blocks”—the product sets MŒciC";ciC1�"	 � I �MciC", and
the neighborhoods M.ci�";ciC"/ of the critical points. This is the starting
point of Morse theory, which is one of the deepest applications of differ-
ential geometry to topology. The next step would be to analyze the behav-
ior of f near each critical point, and use this analysis to determine exactly
how the level sets change topologically when crossing a critical level. See
[Mil63] for an excellent introduction.]

13-25. Suppose M is a smooth manifold that admits a proper smooth function
f W M !R with no critical points. Show thatM is diffeomorphic toN �R
for some compact smooth manifold N . [Hint: let X D gradf=jgradf j2g ,
defined with respect to some Riemannian metric on M . Show that X is
complete, and use its flowout to define the diffeomorphism.]



Chapter 14
Differential Forms

When we introduced tensors in Chapter 12, we observed that there are two special
classes of tensors whose values change predictably when their arguments are rear-
ranged: symmetric tensors and alternating tensors. We saw a significant application
of symmetric tensors in Chapter 13, in the form of Riemannian metrics. In this chap-
ter, we begin to develop the theory of alternating tensors, and especially differential
forms, which are alternating tensor fields on manifolds. It might come as a surprise,
but these innocent-sounding objects turn out to be considerably more important in
smooth manifold theory than symmetric tensor fields.

Much of the theory of differential forms can be viewed as a generalization of the
theory of covector fields—which are, after all, the simplest examples of differential
forms. Most fundamentally, covector fields are objects that can be integrated over
curves in a coordinate invariant way; similarly, it turns out that differential forms
are objects that can be integrated over higher-dimensional submanifolds. We will
develop the theory of integration of differential forms in Chapter 16; the first section
of that chapter gives a heuristic explanation of why alternating tensor fields make
sense as objects to integrate.

In addition to their role in integration, differential forms provide a framework for
generalizing such diverse concepts from multivariable calculus as the cross product,
curl, divergence, and Jacobian determinant. They are also essential to the theories
of orientations (Chapter 15), de Rham cohomology (Chapters 17–18), foliations
(Chapter 19), and symplectic manifolds (Chapter 22).

Because of the many uses of differential forms, differential geometers have de-
veloped an array of technical tools for manipulating them. The purpose of this chap-
ter is to describe those tools. If you have never been exposed to differential forms
before, you might find much of the theory in this chapter unmotivated the first time
through; but rest assured that your effort will be repaid many times over in the many
applications of differential forms throughout the rest of the book.

We begin the chapter by examining the algebra of alternating tensors on a finite-
dimensional vector space. After exploring the computational properties of these ten-
sors in a linear-algebraic setting, we transfer everything to smooth manifolds, and
begin to explore the properties of differential forms.

J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics 218,
DOI 10.1007/978-1-4419-9982-5_14, © Springer Science+Business Media New York 2013
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The heart of the chapter is the introduction of the most important operation on
differential forms, called the exterior derivative, which generalizes the differential
of a smooth function that we introduced in Chapter 11, as well as the gradient,
divergence, and curl operators of multivariable calculus. It acts on a differential
form and yields another differential form of one higher degree. It is remarkable in
that it is one of the very few differential operators that are naturally defined on every
smooth manifold without any arbitrary choices.

At the end of the chapter, we will see how the exterior derivative can be used to
simplify the computation of Lie derivatives of differential forms.

The Algebra of Alternating Tensors

Let V be a finite-dimensional (real) vector space. Recall that a covariant k-tensor
on V is said to be alternating if its value changes sign whenever two arguments are
interchanged, or equivalently if any permutation of the arguments causes its value
to be multiplied by the sign of the permutation (see Exercise 12.17). Alternating
covariant k-tensors are also called exterior forms, multicovectors, or k-covectors.
The vector space of all k-covectors on V is denoted by ƒk.V �/. As we noted in
Chapter 12, all 0-tensors and 1-tensors are alternating.

The next lemma gives two more useful characterizations of alternating tensors.

Lemma 14.1. Let ˛ be a covariant k-tensor on a finite-dimensional vector space
V . The following are equivalent:

(a) ˛ is alternating.
(b) ˛.v1; : : : ; vk/D 0 whenever the k-tuple .v1; : : : ; vk/ is linearly dependent.
(c) ˛ gives the value zero whenever two of its arguments are equal:

˛.v1; : : : ;w; : : : ;w; : : : ; vk/D 0:

Proof. The implications (a)) (c) and (b)) (c) are immediate. We complete the
proof by showing that (c) implies both (a) and (b).

Assume that ˛ satisfies (c). For any vectors v1; : : : ; vk , the hypothesis implies

0D ˛.v1; : : : ; vi C vj ; : : : ; vi C vj ; : : : ; vk/

D ˛.v1; : : : ; vi ; : : : ; vi ; : : : ; vk/C ˛.v1; : : : ; vi ; : : : ; vj ; : : : ; vk/

C ˛.v1; : : : ; vj ; : : : ; vi ; : : : ; vk/C ˛.v1; : : : ; vj ; : : : ; vj ; : : : ; vk/

D ˛.v1; : : : ; vi ; : : : ; vj ; : : : ; vk/C ˛.v1; : : : ; vj ; : : : ; vi ; : : : ; vk/:

Thus ˛ is alternating. On the other hand, if .v1; : : : ; vk/ is a linearly dependent k-
tuple, then one of the vi ’s can be written as a linear combination of the others. For
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simplicity, let us assume that vk D
Pk�1
jD1 a

j vj . Then multilinearity of ˛ implies

˛.v1; : : : ; vk/D

k�1X

jD1

aj˛.v1; : : : ; vk�1; vj /:

In each of these terms, ˛ has two identical arguments, so every term is zero. �

In Chapter 12, we defined a projection Sym W T k.V �/! †k.V �/ called sym-
metrization. We define a similar projection Alt W T k.V �/!ƒk.V �/, called alter-
nation, as follows:

Alt ˛D
1

kŠ

X

�2Sk

.sgn�/
�
�˛
�
;

where Sk is the symmetric group on k elements. More explicitly, this means

.Alt ˛/.v1; : : : ; vk/D
1

kŠ

X

�2Sk

.sgn�/˛
�
v�.1/; : : : ; v�.k/

�
:

Example 14.2. If ˛ is any 1-tensor, then Alt ˛D ˛. If ˇ is a 2-tensor, then

.Alt ˇ/.v;w/D 1
2

�
ˇ.v;w/� ˇ.w;v/

�
:

For a 3-tensor � ,

.Alt �/.v;w;x/D 1
6

�
�.v;w;x/C �.w;x; v/C �.x; v;w/

� �.w;v; x/� �.v; x;w/� �.x;w; v/
�
: //

The next proposition is the analogue for alternating tensors of Proposition 12.14.

Proposition 14.3 (Properties of Alternation). Let ˛ be a covariant tensor on a
finite-dimensional vector space.

(a) Alt ˛ is alternating.
(b) Alt ˛D ˛ if and only if ˛ is alternating.

I Exercise 14.4. Prove Proposition 14.3.

Elementary Alternating Tensors

For computations with alternating tensors, the following notation is exceedingly
useful. Given a positive integer k, an ordered k-tuple I D .i1; : : : ; ik/ of positive
integers is called a multi-index of length k. If I is such a multi-index and � 2 Sk
is a permutation of f1; : : : ; kg, we write I� for the following multi-index:

I� D
�
i�.1/; : : : ; i�.k/

�
:

Note that I�
 D .I� /
 for �; � 2 Sk .
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Let V be an n-dimensional vector space, and suppose
�
"1; : : : ; "n

�
is any basis

for V �. We now define a collection of k-covectors on V that generalize the deter-
minant function on Rn. For each multi-index I D .i1; : : : ; ik/ of length k such that
1� i1; : : : ; ik � n, define a covariant k-tensor "I D "i1:::ik by

"I .v1; : : : ; vk/D det

�

"i1.v1/ : : : "
i1.vk/

:::
: : :

:::

"ik .v1/ : : : "
ik .vk/

�

D det

�

v
i1
1 : : : v

i1
k

:::
: : :

:::

v
ik
1 : : : v

ik
k

�

: (14.1)

In other words, if v denotes the n� k matrix whose columns are the components of
the vectors v1; : : : ; vk with respect to the basis .Ei / dual to

�
"i
�
, then "I .v1; : : : ; vk/

is the determinant of the k�k submatrix consisting of rows i1; : : : ; ik of v . Because
the determinant changes sign whenever two columns are interchanged, it is clear
that "I is an alternating k-tensor. We call "I an elementary alternating tensor or
elementary k-covector.

Example 14.5. In terms of the standard dual basis
�
e1; e2; e3

�
for

�
R3
��

, we have

e13.v;w/D v1w3 �w1v3I

e123.v;w;x/D det.v;w;x/: //

In order to streamline computations with the elementary k-covectors, it is useful
to extend the Kronecker delta notation in the following way. If I and J are multi-
indices of length k, we define

ıIJ D det




ı
i1
j1
: : : ı

i1
jk

:::
: : :

:::

ı
ik
j1
: : : ı

ik
jk

˘

:

I Exercise 14.6. Show that

ıIJ D

(
sgn� if neither I nor J has a repeated index and J D I� for some � 2 Sk ;

0 if I or J has a repeated index or J is not a permutation of I:

Lemma 14.7 (Properties of Elementary k-Covectors). Let .Ei / be a basis for V ,
let
�
"i
�

be the dual basis for V �, and let "I be as defined above.

(a) If I has a repeated index, then "I D 0.
(b) If J D I� for some � 2 Sk , then "I D .sgn�/"J .
(c) The result of evaluating "I on a sequence of basis vectors is

"I
�
Ej1 ; : : : ;Ejk

�
D ıIJ :

Proof. If I has a repeated index, then for any vectors v1; : : : ; vk , the determinant in
(14.1) has two identical rows and thus is equal to zero, which proves (a). On the other
hand, if J is obtained from I by interchanging two indices, then the corresponding
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determinants have opposite signs; this implies (b). Finally, (c) follows immediately
from the definition of "I . �

The significance of the elementary k-covectors is that they provide a convenient
basis forƒk.V �/. Of course, the "I ’s are not all linearly independent, because some
of them are zero and the ones corresponding to different permutations of the same
multi-index are scalar multiples of each other. But as the next proposition shows,
we can get a basis by restricting attention to an appropriate subset of multi-indices.
A multi-index I D .i1; : : : ; ik/ is said to be increasing if i1 < � � � < ik . It is useful
to use a primed summation sign to denote a sum over only increasing multi-indices,
so that, for example,

X0

I

˛I "
I D

X

fI W i1<���<ikg

˛I "
I :

Proposition 14.8 (A Basis forƒk.V �/). Let V be an n-dimensional vector space.
If
�
"i
�

is any basis for V �, then for each positive integer k � n, the collection of
k-covectors

E D
˚
"I W I is an increasing multi-index of length k

�

is a basis for ƒk.V �/. Therefore,

dimƒk.V �/D

 
n

k

!

D
nŠ

kŠ.n� k/Š
:

If k > n, then dimƒk.V �/D 0.

Proof. The fact that ƒk.V �/ is the trivial vector space when k > n follows imme-
diately from Lemma 14.1(b), since every k-tuple of vectors is linearly dependent in
that case. For the case k � n, we need to show that the set E spans ƒk.V �/ and is
linearly independent. Let .Ei / be the basis for V dual to

�
"i
�
.

To show that E spansƒk.V �/, let ˛ 2ƒk.V �/ be arbitrary. For each multi-index
I D .i1; : : : ; ik/ (not necessarily increasing), define a real number ˛I by

˛I D ˛.Ei1 ; : : : ;Eik /:

The fact that ˛ is alternating implies that ˛I D 0 if I contains a repeated in-
dex, and ˛J D .sgn�/˛I if J D I� for � 2 Sk . For any multi-index J , therefore,
Lemma 14.7 gives

X0

I

˛I "
I .Ej1 ; : : : ;Ejk /D

X0

I

˛I ı
I
J D ˛J D ˛.Ej1 ; : : : ;Ejk /:

Thus
P0
I ˛I "

I D ˛, so E spans ƒk.V �/.
To show that E is a linearly independent set, suppose the identity

P0
I ˛I "

I D 0

holds for some coefficients ˛I . Let J be any increasing multi-index. Applying both



354 14 Differential Forms

sides of the identity to the vectors .Ej1 ; : : : ;Ejk / and using Lemma 14.7, we get

0D
X0

I

˛I "
I .Ej1 ; : : : ;Ejk /D ˛J :

Thus each coefficient ˛J is zero. �
In particular, for an n-dimensional vector space V , this proposition implies that

ƒn.V �/ is 1-dimensional and is spanned by "1:::n. By definition, this elementary n-
covector acts on vectors .v1; : : : ; vn/ by taking the determinant of their component
matrix v D

�
vij
�
. For example, on Rn with the standard basis, e1:::n is precisely the

determinant function.
One consequence of this is the following useful description of the behavior of an

n-covector on an n-dimensional space under linear maps. Recall that if T W V ! V

is a linear map, the determinant of T is defined to be the determinant of the matrix
representation of T with respect to any basis (see Appendix B, p. 633).

Proposition 14.9. Suppose V is an n-dimensional vector space and ! 2ƒn.V �/.
If T W V ! V is any linear map and v1; : : : ; vn are arbitrary vectors in V , then

!.T v1; : : : ; T vn/D .detT /!.v1; : : : ; vn/: (14.2)

Proof. Let .Ei / be any basis for V , and let
�
"i
�

be the dual basis. Let
�
T
j
i

�
denote

the matrix of T with respect to this basis, and let Ti D TEi D T
j
i Ej . By Proposi-

tion 14.8, we can write ! D c"1:::n for some real number c.
Since both sides of (14.2) are multilinear functions of v1; : : : ; vn, it suffices to

verify the identity when the vi ’s are basis vectors. Furthermore, since both sides
are alternating, we only need to check the case .v1; : : : ; vn/D .E1; : : : ;En/. In this
case, the right-hand side of (14.2) is

.detT /c"1:::n.E1; : : : ;En/D c detT:

On the other hand, the left-hand side reduces to

!.TE1; : : : ; TEn/D c"
1:::n.T1; : : : ; Tn/D c det

�
"j .Ti /

�
D c det

�
T
j
i

�
;

which is equal to the right-hand side. �

The Wedge Product

In Chapter 12, we defined the symmetric product, which takes a pair of symmetric
tensors ˛;ˇ and yields another symmetric tensor ˛ˇ D Sym.˛˝ ˇ/ whose rank is
the sum of the ranks of the original ones.

In this section we define a similar product operation for alternating tensors. One
way to define it would be to mimic what we did in the symmetric case and define
the product of alternating tensors ! and � to be Alt.! ˝ �/. However, we will use
a different definition that looks more complicated at first but turns out to be much
better suited to computation.
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We continue with the assumption that V is a finite-dimensional real vector space.
Given ! 2 ƒk.V �/ and � 2 ƒl.V �/, we define their wedge product or exterior
product to be the following .kC l/-covector:

! ^ �D
.kC l/Š

kŠlŠ
Alt.! ˝ �/: (14.3)

The mysterious coefficient is motivated by the simplicity of the statement of the
following lemma.

Lemma 14.10. Let V be an n-dimensional vector space and let
�
"1; : : : ; "n

�
be a

basis for V �. For any multi-indices I D .i1; : : : ; ik/ and J D .j1; : : : ; jl/,

"I ^ "J D "IJ ; (14.4)

where IJ D .i1; : : : ; ik ; j1; : : : ; jl / is obtained by concatenating I and J .

Proof. By multilinearity, it suffices to show that

"I ^ "J
�
Ep1 ; : : : ;EpkCl

�
D "IJ

�
Ep1 ; : : : ;EpkCl

�
(14.5)

for any sequence
�
Ep1 ; : : : ;EpkCl

�
of basis vectors. We consider several cases.

CASE 1: P D .p1; : : : ; pkCl / has a repeated index. In this case, both sides of
(14.5) are zero by Lemma 14.1(c).

CASE 2: P contains an index that does not appear in either I or J . In this case,
the right-hand side is zero by Lemma 14.7(c). Similarly, each term in the expansion
of the left-hand side involves either "I or "J evaluated on a sequence of basis vectors
that is not a permutation of I or J , respectively, so the left-hand side is also zero.

CASE 3: P D IJ and P has no repeated indices. In this case, the right-hand side
of (14.5) is equal to 1 by Lemma 14.7(c), so we need to show that the left-hand side
is also equal to 1. By definition,

"I ^ "J
�
Ep1 ; : : : ;EpkCl

�

D
.kC l/Š

kŠlŠ
Alt

�
"I ˝ "J

� �
Ep1 ; : : : ;EpkCl

�

D
1

kŠlŠ

X

�2SkCl

.sgn�/"I
�
Ep�.1/ ; : : : ;Ep�.k/

�
"J
�
Ep�.kC1/ ; : : : ;Ep�.kCl/

�
:

By Lemma 14.7 again, the only terms in the sum above that give nonzero val-
ues are those in which � permutes the first k indices and the last l indices of
P separately. In other words, � must be of the form � D ��, where � 2 Sk acts
by permuting f1; : : : ; kg and � 2 Sl acts by permuting fk C 1; : : : ; k C lg. Since
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sgn.��/D .sgn �/.sgn�/, we have

"I ^ "J
�
Ep1 ; : : : ;EpkCl

�

D
1

kŠlŠ

X


2Sk
�2Sl

.sgn �/.sgn�/"I
�
Ep�.1/ ; : : : ;Ep�.k/

�
"J
�
EpkC�.1/ ; : : : ;EpkC�.l/

�

D

�
1

kŠ

X


2Sk

.sgn �/"I
�
Ep�.1/ ; : : : ;Ep�.k/

��

�

�
1

lŠ

X

�2Sl

.sgn�/"J
�
EpkC�.1/ ; : : : ;EpkC�.l/

��

D
�
Alt "I

� �
Ep1 ; : : : ;Epk

� �
Alt "J

� �
EpkC1 ; : : : ;EpkCl

�

D "I
�
Ep1 ; : : : ;Epk

�
"J
�
EpkC1 ; : : : ;EpkCl

�
D 1:

CASE 4: P is a permutation of IJ and has no repeated indices. In this case,
applying a permutation to P brings us back to Case . Since the effect of the permu-
tation is to multiply both sides of (14.5) by the same sign, the result holds in this
case as well. �

Proposition 14.11 (Properties of the Wedge Product). Suppose !, !0, �, �0, and
� are multicovectors on a finite-dimensional vector space V .

(a) BILINEARITY: For a;a0 2R,

.a! C a0!0/^ �D a.! ^ �/C a0.!0 ^ �/;

�^ .a! C a0!0/D a.�^!/C a0.�^!0/:

(b) ASSOCIATIVITY:

! ^ .�^ �/D .! ^ �/^ �:

(c) ANTICOMMUTATIVITY: For ! 2ƒk.V �/ and � 2ƒl.V �/,

! ^ �D .�1/kl�^!: (14.6)

(d) If
�
"i
�

is any basis for V � and I D .i1; : : : ; ik/ is any multi-index, then

"i1 ^ � � � ^ "ik D "I : (14.7)

(e) For any covectors !1; : : : ;!k and vectors v1; : : : ; vk ,

!1 ^ � � � ^!k.v1; : : : ; vk/D det
�
!j .vi /

�
: (14.8)

Proof. Bilinearity follows immediately from the definition, because the tensor prod-
uct is bilinear and Alt is linear. To prove associativity, note that Lemma 14.10 gives

�
"I ^ "J

�
^ "K D "IJ ^ "K D "IJK D "I ^ "JK D "I ^

�
"J ^ "K

�
:
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The general case follows from bilinearity. Similarly, using Lemma 14.10 again, we
get

"I ^ "J D "IJ D .sgn �/"JI D .sgn �/"J ^ "I ;

where � is the permutation that sends IJ to JI . It is easy to check that sgn � D
.�1/kl , because � can be decomposed as a composition of kl transpositions (each
index of I must be moved past each of the indices of J ). Anticommutativity then
follows from bilinearity.

Part (d) is an immediate consequence of Lemma 14.10 and induction. To prove
(e), we note that the special case in which each !j is one of the basis covectors "ij

reduces to (14.7). Since both sides of (14.8) are multilinear in
�
!1; : : : ;!k

�
, this

suffices. �
Because of part (d) of this lemma, henceforth we generally use the notations "I

and "i1 ^ � � � ^ "ik interchangeably.
A k-covector � is said to be decomposable if it can be expressed in the form

�D !1 ^ � � � ^!k , where !1; : : : ;!k are covectors. It is important to be aware that
not every k-covector is decomposable when k > 1 (see Problem 14-2); however, it
follows from Propositions 14.8 and 14.11(d) that every k-covector can be written as
a linear combination of decomposable ones.

The definition and computational properties of the wedge product can seem
daunting at first sight. However, the only properties that you need to remember for
most practical purposes are the ones expressed in the preceding proposition. In fact,
these properties are more than enough to determine the wedge product uniquely, as
the following exercise shows.

I Exercise 14.12. Show that the wedge product is the unique associative, bilinear,
and anticommutative map ƒk.V �/�ƒl .V �/!ƒkCl .V �/ satisfying (14.7).

For any n-dimensional vector space V , define a vector space ƒ.V �/ by

ƒ.V �/D

nM

kD0

ƒk.V �/:

It follows from Proposition 14.8 that dimƒ.V �/ D 2n. Proposition 14.11 shows
that the wedge product turns ƒ.V �/ into an associative algebra, called the exterior
algebra (or Grassmann algebra) of V . This algebra is not commutative, but it has
a closely related property. An algebra A is said to be graded if it has a direct sum
decomposition A D

L
k2ZA

k such that the product satisfies
�
Ak
� �
Al
�
� AkCl

for each k and l . A graded algebra is anticommutative if the product satisfies
ab D .�1/klba for a 2 Ak , b 2 Al . Proposition 14.11(c) shows that ƒ.V �/ is an
anticommutative graded algebra (where we interpret Ak Dƒk.V �/ for 0� k � n,
and Ak D f0g otherwise).

As we observed at the beginning of this section, one could also define the wedge
product without the unwieldy coefficient of (14.3). Some authors choose this alter-
native definition of the wedge product. To avoid confusion, we denote it by Z:

! Z �DAlt.! ˝ �/: (14.9)
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With this definition, (14.4) is replaced by

"I Z "J D kŠlŠ

.kC l/Š
"IJ ;

and (14.8) is replaced by

!1 Z � � �Z!k.v1; : : : ; vk/D
1

kŠ
det
�
!i .vj /

�
(14.10)

whenever !1; : : : ;!k are covectors, as you can check.
Because of (14.8), we call definition (14.3) the determinant convention for the

wedge product, and (14.9) the Alt convention. The choice of which definition to use
is largely a matter of taste. Although the definition of the Alt convention is perhaps a
bit more natural, the computational advantages of the determinant convention make
it preferable for most applications, and we use it exclusively in this book. (But see
Problem 14-3 for an argument in favor of the Alt convention.) The determinant
convention is most common in introductory differential geometry texts, and is used,
for example, in [Boo86, Cha06, dC92, LeeJeff09, Pet06, Spi99]. The Alt convention
is used in [KN69] and is more common in complex differential geometry.

Interior Multiplication

There is an important operation that relates vectors with alternating tensors. Let
V be a finite-dimensional vector space. For each v 2 V , we define a linear map
iv W ƒ

k.V �/!ƒk�1.V �/, called interior multiplication by v, as follows:

iv!.w1; : : : ;wk�1/D !.v;w1; : : : ;wk�1/:

In other words, iv! is obtained from ! by inserting v into the first slot. By conven-
tion, we interpret iv! to be zero when ! is a 0-covector (i.e., a number). Another
common notation is

v ³! D iv!:

This is often read “v into !.”

Lemma 14.13. Let V be a finite-dimensional vector space and v 2 V .

(a) iv ı iv D 0.
(b) If ! 2ƒk.V �/ and � 2ƒl.V �/,

iv.! ^ �/D .iv!/^ �C .�1/
k! ^ .iv�/: (14.11)

Proof. On k-covectors for k � 2, part (a) is immediate from the definition, because
any alternating tensor gives zero when two of its arguments are identical. On 1-
covectors and 0-covectors, it follows from the fact that iv � 0 on 0-covectors.

To prove (b), it suffices to consider the case in which both ! and � are decom-
posable, since every alternating tensor of positive rank can be written as a linear



Differential Forms on Manifolds 359

combination of decomposable ones. It is straightforward to verify that (b) follows
in this special case from the following general formula for covectors !1; : : : ;!k :

v ³
�
!1 ^ � � � ^!k

�
D

kX

iD1

.�1/i�1!i .v/!1 ^ � � � ^ b!i ^ � � � ^!k ; (14.12)

where the hat indicates that !i is omitted.
To prove (14.12), let us write v1 D v and apply both sides to an arbitrary .k�1/-

tuple of vectors .v2; : : : ; vk/; then what we have to prove is
�
!1 ^ � � � ^!k

�
.v1; : : : ; vk/

D

kX

iD1

.�1/i�1!i .v1/
�
!1 ^ � � � ^ b!i ^ � � � ^!k

�
.v2; : : : ; vk/: (14.13)

The left-hand side of (14.13) is the determinant of the matrix v whose .i; j /-entry is
!i .vj /. To simplify the right-hand side, let v ij denote the .k�1/� .k�1/ submatrix
of v obtained by deleting the i th row and j th column. Then the right-hand side of
(14.13) is

kX

iD1

.�1/i�1!i .v1/detv i1:

This is just the expansion of detv by minors along the first column, and therefore is
equal to detv . �

When the wedge product is defined using the Alt convention, interior multiplica-
tion of a vector with a k-form has to be defined with an extra factor of k:

N{v!.w1; : : : ;wk�1/D k!.v;w1; : : : ;wk�1/:

This definition ensures that interior multiplication N{v still satisfies (14.11)—the fac-
tor of k compensates for the difference between the factors of 1=kŠ and 1=.k � 1/Š
that occur when the left-hand and right-hand sides of (14.13) are evaluated using the
Alt convention.

Differential Forms on Manifolds

Now we turn our attention to an n-dimensional smooth manifoldM (with or without
boundary). Recall that T kT �M is the bundle of covariant k-tensors on M . The
subset of T kT �M consisting of alternating tensors is denoted by ƒkT �M :

ƒkT �M D
a

p2M

ƒk.T �pM/:

I Exercise 14.14. Show that ƒkT �M is a smooth subbundle of T kT �M; and
therefore is a smooth vector bundle of rank

�n
k

�
over M .
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A section of ƒkT �M is called a differential k-form, or just a k-form; this is
a (continuous) tensor field whose value at each point is an alternating tensor. The
integer k is called the degree of the form. We denote the vector space of smooth
k-forms by

�k.M/D �
�
ƒkT �M

�
:

The wedge product of two differential forms is defined pointwise: .! ^ �/p D
!p ^ �p . Thus, the wedge product of a k-form with an l-form is a .k C l/-form. If
f is a 0-form and � is a k-form, we interpret the wedge product f ^ � to mean the
ordinary product f �. If we define

��.M/D

nM

kD0

�k.M/; (14.14)

then the wedge product turns ��.M/ into an associative, anticommutative graded
algebra.

In any smooth chart, a k-form ! can be written locally as

! D
X0

I

!I dx
i1 ^ � � � ^ dxik D

X0

I

!I dx
I ;

where the coefficients !I are continuous functions defined on the coordinate do-
main, and we use dxI as an abbreviation for dxi1 ^ � � � ^ dxik (not to be mistaken
for the differential of a real-valued function xI ). Proposition 10.22 shows that !
is smooth on U if and only if the component functions !I are smooth. In terms of
differential forms, the result of Lemma 14.7(c) translates to

dxi1 ^ � � � ^ dxik
�

@

@xj1
; : : : ;

@

@xjk

�
D ıIJ :

Thus the component functions !I of ! are determined by

!I D !

�
@

@xi1
; : : : ;

@

@xik

�
:

Example 14.15. A 0-form is just a continuous real-valued function, and a 1-form
is a covector field. On R3, some examples of smooth 2-forms are given by

! D .sinxy/dy ^ dzI

�D dx ^ dy C dx ^ dzC dy ^ dz:

Every 3-form on R3 is a continuous real-valued function times dx ^ dy ^ dz. //

If F W M !N is a smooth map and ! is a differential form on N , the pullback
F �! is a differential form on M; defined as for any covariant tensor field:

.F �!/p.v1; : : : ; vk/D !F.p/
�
dFp.v1/; : : : ; dFp.vk/

�
:
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Lemma 14.16. Suppose F W M !N is smooth.

(a) F � W �k.N /!�k.M/ is linear over R.
(b) F �.! ^ �/D .F �!/^ .F ��/.
(c) In any smooth chart,

F �
�X0

I

!I dy
i1 ^ � � � ^dyik

�
D
X0

I

.!I ıF /d
�
yi1 ıF

�
^ � � � ^d

�
yik ıF

�
:

I Exercise 14.17. Prove this lemma.

This lemma gives a computational rule for pullbacks of differential forms similar
to the ones we developed for covector fields and arbitrary tensor fields earlier.

Example 14.18. Define F W R2! R3 by F.u; v/D
�
u;v;u2 � v2

�
, and let ! be

the 2-form y dx^dzCx dy^dz on R3. The pullback F �! is computed as follows:

F �.y dx ^ dzC x dy ^ dz/D v du^ d
�
u2 � v2

�
C udv ^ d

�
u2 � v2

�

D v du^ .2udu� 2v dv/C udv ^ .2udu� 2v dv/

D�2v2 du^ dvC 2u2 dv ^ du;

where we have used the fact du^duD dv^dvD 0 by anticommutativity. Because
dv ^ duD�du^ dv, this simplifies to

F �! D�2
�
u2C v2

�
du^ dv: //

The same technique can also be used to compute the expression for a differential
form in another smooth chart.

Example 14.19. Let ! D dx ^ dy on R2. Thinking of the transformation to po-
lar coordinates x D r cos� , y D r sin� as an expression for the identity map with
respect to different coordinates on the domain and codomain, we obtain

dx ^ dy D d.r cos�/^ d.r sin�/

D .cos� dr � r sin� d�/^ .sin� dr C r cos� d�/

D r dr ^ d�: //

The similarity between this formula and the formula for changing a double in-
tegral from Cartesian to polar coordinates is striking. The following proposition
generalizes this.

Proposition 14.20 (Pullback Formula for Top-Degree Forms). Let F W M !N

be a smooth map between n-manifolds with or without boundary. If
�
xi
�

and
�
yj
�

are smooth coordinates on open subsets U �M and V �N , respectively, and u is
a continuous real-valued function on V , then the following holds on U \F �1.V /:

F �
�
udy1 ^ � � � ^ dyn

�
D .u ıF /.detDF /dx1 ^ � � � ^ dxn; (14.15)

where DF represents the Jacobian matrix of F in these coordinates.
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Proof. Because the fiber of ƒnT �M is spanned by dx1 ^ � � � ^ dxn at each point,
it suffices to show that both sides of (14.15) give the same result when evaluated on�
@=@x1; : : : ; @=@xn

�
. From Lemma 14.16,

F �
�
udy1 ^ � � � ^ dyn

�
D .u ıF /dF 1 ^ � � � ^ dF n:

Proposition 14.11(e) shows that

dF 1 ^ � � � ^ dF n
�
@

@x1
; : : : ;

@

@xn

�
D det

�
dF j

�
@

@xi

��
D det

�
@F j

@xi

�
:

Therefore, the left-hand side of (14.15) gives .u ı F /detDF when applied to�
@=@x1; : : : ; @=@xn

�
. On the other hand, the right-hand side gives the same thing,

because dx1 ^ � � � ^ dxn
�
@=@x1; : : : ; @=@xn

�
D 1. �

Corollary 14.21. If
�
U;
�
xi
��

and
�
zU ;
�
zxj
��

are overlapping smooth coordinate

charts on M; then the following identity holds on U \ zU :

d zx1 ^ � � � ^ d zxn D det

�
@zxj

@xi

�
dx1 ^ � � � ^ dxn: (14.16)

Proof. Apply the previous proposition with F equal to the identity map of U \ zU ,
but using coordinates

�
xi
�

in the domain and
�
zxj
�

in the codomain. �

Interior multiplication also extends naturally to vector fields and differential
forms, simply by letting it act pointwise: if X 2 X.M/ and ! 2 �k.M/, define
a .k � 1/-form X ³! D iX! by

.X ³!/p DXp ³!p:

I Exercise 14.22. Let X be a smooth vector field on M .

(a) Show that if ! is a smooth differential form, then iX! is smooth.
(b) Verify that iX W �

k.M/!�k�1.M/ is linear over C1.M/ and therefore corre-
sponds to a smooth bundle homomorphism iX W ƒ

kT �M !ƒk�1T �M .

Exterior Derivatives

In this section we define a natural differential operator on smooth forms, called the
exterior derivative. It is a generalization of the differential of a function.

To give some idea of where the motivation for the exterior derivative comes from,
let us look back at a question we addressed in Chapter 11. Recall that not all 1-forms
are differentials of functions: given a smooth 1-form !, a necessary condition for
the existence of a smooth function f such that ! D df is that ! be closed, which
means that it satisfies

@!j

@xi
�
@!i

@xj
D 0 (14.17)
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in every smooth coordinate chart. Since this is a coordinate-independent property
by Proposition 11.45, one might hope that the expression on the left side of (14.17)
would have a meaning of its own. The key is that it is antisymmetric in the indices
i and j , so it can be interpreted as the ij -component of an alternating tensor field,
i.e., a 2-form. We can define a 2-form d! locally in each smooth chart by

d! D
X

i<j

�
@!j

@xi
�
@!i

@xj

�
dxi ^ dxj ; (14.18)

so it follows that ! is closed if and only if d! D 0 in each chart.
It turns out that d! is actually well defined globally, independently of the choice

of coordinate chart, and this definition has a significant generalization to differential
forms of all degrees. For each smooth manifold M with or without boundary, we
will show that there is a differential operator d W �k.M/! �kC1.M/ satisfying
d.d!/D 0 for all !. Thus, it will follow that a necessary condition for a smooth
k-form ! to be equal to d� for some .k � 1/-form � is that d! D 0.

The definition of d on Euclidean space is straightforward: if ! D
P0
J !J dx

J is
a smooth k-form on an open subset U �Rn or Hn, we define its exterior derivative
d! to be the following .kC 1/-form:

d

�X0

J

!J dx
J

�
D
X0

J

d!J ^ dx
J ; (14.19)

where d!J is the differential of the function !J . In somewhat more detail, this is

d

�X0

J

!J dx
j1 ^ � � � ^ dxjk

�
D
X0

J

X

i

@!J

@xi
dxi ^ dxj1 ^ � � � ^ dxjk : (14.20)

Observe that when ! is a 1-form, this becomes

d
�
!j dx

j
�
D
X

i;j

@!j

@xi
dxi ^ dxj

D
X

i<j

@!j

@xi
dxi ^ dxj C

X

i>j

@!j

@xi
dxi ^ dxj

D
X

i<j

�
@!j

@xi
�
@!i

@xj

�
dxi ^ dxj

after we interchange i and j in the second sum and use the fact that dxj ^ dxi D
�dxi ^ dxj , so this is consistent with our earlier definition. For a smooth 0-form
f (a real-valued function), (14.20) reduces to

df D
@f

@xi
dxi ;

which is just the differential of f .
In order to transfer this definition to manifolds, we need to check that it satisfies

the following properties.
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Proposition 14.23 (Properties of the Exterior Derivative on Rn).

(a) d is linear over R.
(b) If ! is a smooth k-form and � is a smooth l-form on an open subset U �Rn or

Hn, then

d.! ^ �/D d! ^ �C .�1/k! ^ d�:

(c) d ı d � 0.
(d) d commutes with pullbacks: if U is an open subset of Rn or Hn, V is an open

subset of Rm or Hm, F W U ! V is a smooth map, and ! 2�k.V /, then

F �.d!/D d
�
F �!

�
: (14.21)

Proof. Linearity of d is an immediate consequence of the definition. To prove
(b), by linearity it suffices to consider terms of the form ! D udxI 2 �k.U /

and � D v dxJ 2 �l.U / for smooth real-valued functions u and v. First, though,
we need to know that d satisfies d.udxI / D du ^ dxI for any multi-index I ,
not just increasing ones. If I has repeated indices, then clearly d

�
udxI

�
D 0 D

du^dxI . If not, let � be the permutation sending I to an increasing multi-index J .
Then

d
�
udxI

�
D .sgn�/d

�
udxJ

�
D .sgn�/du^ dxJ D du^ dxI :

Using this, we compute

d.! ^ �/D d
��
udxI

�
^
�
v dxJ

��

D d
�
uv dxI ^ dxJ

�

D .v duC udv/^ dxI ^ dxJ

D
�
du^ dxI

�
^
�
v dxJ

�
C .�1/k

�
udxI

�
^
�
dv ^ dxJ

�

D d! ^ �C .�1/k! ^ d�;

where the .�1/k comes from the fact that dv ^ dxI D .�1/kdxI ^ dv because dv
is a 1-form and dxI is a k-form.

We prove (c) first for the special case of a 0-form, which is just a real-valued
function. In this case,

d.du/D d

�
@u

@xj
dxj

�
D

@2u

@xi@xj
dxi ^ dxj

D
X

i<j

�
@2u

@xi@xj
�

@2u

@xj @xi

�
dxi ^ dxj D 0:

For the general case, we use the k D 0 case together with (b) to compute
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d.d!/D d

�X0

J

d!J ^ dx
j1 ^ � � � ^ dxjk

�

D
X0

J

d.d!J /^ dx
j1 ^ � � � ^ dxjk

C
X0

J

kX

iD1

.�1/id!J ^ dx
j1 ^ � � � ^ d

�
dxji

�
^ � � � ^ dxjk D 0:

Finally, to prove (d), again it suffices to consider ! D udxi1 ^ � � � ^ dxik . For
such a form, the left-hand side of (14.21) is

F �
	
d
�
udxi1 ^ � � � ^ dxik

�

D F �

�
du^ dxi1 ^ � � � ^ dxik

�

D d.u ıF /^ d
�
xi1 ıF

�
^ � � � ^ d

�
xik ıF

�
;

and the right-hand side is

d
	
F �
�
udxi1 ^ � � � ^ dxik

�

D d

�
.u ıF /d

�
xi1 ıF

�
^ � � � ^ d

�
xik ıF

��

D d.u ıF /^ d
�
xi1 ıF

�
^ � � � ^ d

�
xik ıF

�
;

so they are equal. �

These results allow us to transplant the definition of the exterior derivative to
manifolds.

Theorem 14.24 (Existence and Uniqueness of Exterior Differentiation). Sup-
poseM is a smooth manifold with or without boundary. There are unique operators
d W �k.M/! �kC1.M/ for all k, called exterior differentiation, satisfying the
following four properties:

(i) d is linear over R.
(ii) If ! 2�k.M/ and � 2�l .M/, then

d.! ^ �/D d! ^ �C .�1/k! ^ d�:

(iii) d ı d � 0.
(iv) For f 2 �0.M/ D C1.M/, df is the differential of f , given by df .X/ D

Xf .

In any smooth coordinate chart, d is given by (14.19).

Proof. First, we prove existence. Suppose ! 2�k.M/. We wish to define d! by
means of the coordinate formula (14.19) in each chart; more precisely, this means
that for each smooth chart .U;'/ for M; we wish to set

d! D '�d
�
'�1�!

�
: (14.22)
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To see that this is well defined, we just note that for any other smooth chart .V; /,
the map ' ı �1 is a diffeomorphism between open subsets of Rn or Hn, so Propo-
sition 14.23(d) implies

�
' ı �1

��
d
�
'�1�!

�
D d

��
' ı �1

��
'�1�!

�
:

Together with the fact that .' ı  �1
��
D  �1� ı '�, this implies '�d

�
'�1�!

�
D

 �d
�
 �1�!

�
, so d! is well defined. It satisfies (i)–(iv) by virtue of Proposi-

tion 14.23.
To prove uniqueness, suppose that d is any operator satisfying (i)–(iv). First we

need to show that d! is determined locally: if !1 and !2 are k-forms that agree on
an open subset U �M; then d!1 D d!2 on U . To see this, let p 2 U be arbitrary,
let �D !1 � !2, and let  2 C1.M/ be a bump function that is identically 1 on
some neighborhood of p and supported in U . Then  � is identically zero, so (i)–
(iv) imply 0D d. �/D d ^ �C  d�. Evaluating this at p and using the facts
that  .p/D 1 and d p D 0, we conclude that d!1jp � d!2jp D d�p D 0.

Now let ! 2�k.M/ be arbitrary, and let .U;'/ be any smooth coordinate chart
onM . We can write ! in coordinates as

P0
I !I dx

I on U . For any p 2U , by means
of a bump function we can construct global smooth functions z!I and zxi on M that
agree with !I and xi in a neighborhood of p. By virtue of (i)–(iv) together with the
observation in the preceding paragraph, it follows that (14.19) holds at p. Since p
was arbitrary, this d must be equal to the one we defined above. �

If AD
L
k A

k is a graded algebra, a linear map T W A! A is said to be a map
of degreem if T

�
Ak
�
�AkCm for each k. It is said to be an antiderivation if it sat-

isfies T .xy/D .T x/yC .�1/kx.Ty/ whenever x 2Ak and y 2Al . The preceding
theorem can be summarized by saying that the differential on functions extends
uniquely to an antiderivation of ��.M/ of degree C1 whose square is zero.

I Exercise 14.25. Suppose M is a smooth manifold and X 2X.M/. Show that in-
terior multiplication iX W �

�.M/!��.M/ is an antiderivation of degree �1 whose
square is zero.

Another important feature of the exterior derivative is that it commutes with all
pullbacks.

Proposition 14.26 (Naturality of the Exterior Derivative). If F W M ! N is a
smooth map, then for each k the pullback map F � W �k.N /!�k.M/ commutes
with d : for all ! 2�k.N /,

F �.d!/D d.F �!/: (14.23)

Proof. If .U;'/ and .V; / are smooth charts for M and N , respectively, we can
apply Proposition 14.23(d) to the coordinate representation  ı F ı '�1. Using
(14.22) twice, we compute as follows on U \F �1.V /:

F �.d!/D F � �d
�
 �1�!

�

D '� ı
�
 ıF ı '�1

��
d
�
 �1�!

�
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D '�d
��
 ıF ı '�1

��
 �1�!

�

D '�d
�
'�1�F �!

�

D d.F �!/: �
Extending the terminology we introduced for covector fields in Chapter 11, we

say that a smooth differential form ! 2 �k.M/ is closed if d! D 0, and exact if
there exists a smooth .k � 1/-form � on M such that ! D d�. Because the exterior
derivative of a 1-form satisfies (14.18), this definition of closed 1-forms agrees with
the one we gave in Chapter 11.

The fact that d ıd D 0 implies that every exact form is closed. In Chapter 11, we
saw that the converse might not be true: the 1-form ! of Example 11.36 is closed
but not exact on R2 X f0g. On the other hand, we showed there that every closed
1-form is locally exact. We will return to these questions in Chapter 17, where we
will show that this behavior is typical: closed forms are always locally exact but not
necessarily globally, so the question of whether a given closed form is exact depends
on global properties of the manifold.

Exterior Derivatives and Vector Calculus in R3

Example 14.27. Let us work out the exterior derivatives of arbitrary 1-forms and
2-forms on R3. Any smooth 1-form can be written

! D P dxCQdy CRdz

for some smooth functions P;Q;R. Using (14.19) and the fact that the wedge prod-
uct of any 1-form with itself is zero, we compute

d! D dP ^ dxC dQ ^ dy C dR ^ dz

D

�
@P

@x
dxC

@P

@y
dy C

@P

@z
dz

�
^ dxC

�
@Q

@x
dxC

@Q

@y
dy C

@Q

@z
dz

�
^ dy

C

�
@R

@x
dxC

@R

@y
dy C

@R

@z
dz

�
^ dz

D

�
@Q

@x
�
@P

@y

�
dx ^ dy C

�
@R

@x
�
@P

@z

�
dx ^ dz

C

�
@R

@y
�
@Q

@z

�
dy ^ dz:

An arbitrary 2-form on R3 can be written

�D udx ^ dy C v dx ^ dzCwdy ^ dz:

A similar computation shows that

d�D

�
@u

@z
�
@v

@y
C
@w

@x

�
dx ^ dy ^ dz: //
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Recall the classical vector calculus operators on Rn: the (Euclidean) gradient of a
function f 2 C1 .Rn/ and the divergence of a vector field X 2X .Rn/ are defined
by

gradf D
nX

iD1

@f

@xi
@

@xi
; divX D

nX

iD1

@X i

@xi
: (14.24)

In addition, in the case n D 3, the curl of a vector field X 2 X
�
R3
�

is defined
by (11.26). It is interesting to note that the components of the 2-form d! in the
preceding example are exactly the components of the curl of the vector field with
components .P;Q;R/ (except perhaps in a different order and with different signs).
Similarly, but for signs and ordering of terms, there is a strong analogy between the
formula for d� and the divergence of a vector field. These analogies can be made
precise in the following way.

The Euclidean metric on R3 yields an index-lowering isomorphism [ W X
�
R3
�
!

�1
�
R3
�
. Interior multiplication yields another map ˇ W X

�
R3
�
! �2

�
R3
�

as
follows:

ˇ.X/DX ³ .dx ^ dy ^ dz/: (14.25)

It is easy to check that ˇ is linear over C1
�
R3
�
, so it corresponds to a smooth

bundle homomorphism from TM to ƒ2T �R3. It is a bundle isomorphism because
it is injective and both TM andƒ2T �R3 are bundles of rank 3. Similarly, we define
a smooth bundle isomorphism W C1

�
R3
�
!�3

�
R3
�

by

.f /D f dx ^ dy ^ dz: (14.26)

The relationships among all of these operators are summarized in the following
diagram:

C1
�
R3
� grad� X

�
R3
� curl� X

�
R3
� div� C1

�
R3
�

�0
�
R3
�

Id
�

d
� �1

�
R3
�

[
�

d
� �2

�
R3
�

ˇ
�

d
� �3

�
R3
�
:


�

(14.27)

I Exercise 14.28. Prove that diagram (14.27) commutes, and use it to give a quick
proof that curlıgrad� 0 and divı curl� 0 on R3. Prove also that the analogues of
the left-hand and right-hand squares commute when R3 is replaced by Rn for any n.

The desire to generalize these vector calculus operators from R3 to higher di-
mensions was one of the main motivations for developing the theory of differential
forms. The curl, in particular, makes sense as an operator on vector fields only in
dimension 3, whereas the exterior derivative expresses the same information but
makes sense in all dimensions.
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An Invariant Formula for the Exterior Derivative

In addition to the coordinate formula (14.19) that we used in the definition of d ,
there is another formula for d that is often useful, not least because it is manifestly
coordinate-independent. The formula for 1-forms is by far the most important, and
is the easiest to state and prove, so we begin with that. Note the similarity between
this and the formula of Proposition 11.45.

Proposition 14.29 (Exterior Derivative of a 1-Form). For any smooth 1-form !

and smooth vector fields X and Y ,

d!.X;Y /DX
�
!.Y /

�
� Y

�
!.X/

�
�!

�
ŒX;Y �

�
: (14.28)

Proof. Since any smooth 1-form can be expressed locally as a sum of terms of the
form udv for smooth functions u and v, it suffices to consider that case. Suppose
! D udv, and X;Y are smooth vector fields. Then the left-hand side of (14.28) is

d.udv/.X;Y /D du^ dv.X;Y /D du.X/dv.Y /� dv.X/du.Y /

D XuYv �XvYu:

The right-hand side is

X
�
udv.Y /

�
� Y

�
udv.X/

�
� udv

�
ŒX;Y �

�

DX.uYv/� Y.uXv/� u ŒX;Y �v

D .XuYvC uXYv/� .Y uXvC uYXv/� u.XYv � YXv/:

After the two uXYv terms and the two uYXv terms are canceled, this is equal to
the left-hand side. �

We will see some applications of (14.28) in later chapters. Here is our first one.
It shows that the exterior derivative is in a certain sense dual to the Lie bracket. In
particular, it shows that if we know all the Lie brackets of basis vector fields in a
smooth local frame, we can compute the exterior derivatives of the dual covector
fields, and vice versa.

Proposition 14.30. Let M be a smooth n-manifold with or without boundary, let
.Ei / be a smooth local frame for M; and let

�
"i
�

be the dual coframe. For each i ,
let bi

jk
denote the component functions of the exterior derivative of "i in this frame,

and for each j; k, let ci
jk

be the component functions of the Lie bracket ŒEj ;Ek�:

d"i D
X

j<k

bijk"
j ^ "k I ŒEj ;Ek�D c

i
jkEi :

Then bi
jk
D�ci

jk
.

I Exercise 14.31. Use (14.28) to prove the preceding proposition.

The generalization of (14.28) to higher-degree forms is more complicated.
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Proposition 14.32 (Invariant Formula for the Exterior Derivative). Let M be a
smooth manifold with or without boundary, and ! 2�k.M/. For any smooth vector
fields X1; : : : ;XkC1 on M;

d!.X1; : : : ;XkC1/

D
X

1�i�kC1

.�1/i�1Xi
�
!.X1; : : : ;cXi ; : : : ;XkC1/

�

C
X

1�i<j�kC1

.�1/iCj!
�
ŒXi ;Xj �;X1; : : : ;cXi ; : : : ;cXj ; : : : ;XkC1

�
; (14.29)

where the hats indicate omitted arguments.

Proof. For this proof, let us denote the entire expression on the right-hand side
of (14.29) by D!.X1; : : : ;XkC1/, and the two sums on the right-hand side by
I.X1; : : : ;XkC1/ and II .X1; : : : ;XkC1/, respectively. Note that D! is obviously
multilinear over R. We begin by showing that, like d!, it is actually multilinear
over C1.M/, which is to say that for 1� p � kC 1 and f 2 C1.M/,

D!.X1; : : : ; fXp; : : : ;XkC1/D fD!.X1; : : : ;Xp; : : : ;XkC1/:

In the expansion of I.X1; : : : ; fXp; : : : ;XkC1/, f obviously factors out of the
i D p term. The other terms expand as follows:

X

i¤p

.�1/i�1Xi
�
f!

�
X1; : : : ;cXi ; : : : ;XkC1

��

D
X

i¤p

.�1/i�1
	
fXi

�
!
�
X1; : : : ;cXi ; : : : ;XkC1

��

C .Xif /!
�
X1; : : : ;cXi ; : : : ;XkC1

�

:

Therefore,

I.X1; : : : ; fXp; : : : ;XkC1/

D f I.X1; : : : ;Xp; : : : ;XkC1/C
X

i¤p

.�1/i�1.Xif /!
�
X1; : : : ;cXi ; : : : ;XkC1

�
:

(14.30)
Consider next the expansion of II . Again, f factors out of all the terms in which

i ¤ p and j ¤ p. To expand the other terms, we use (8.11), which implies

ŒfXp;Xj �D f ŒXp;Xj �� .Xjf /Xp;

ŒXi ; fXp�D f ŒXi ;Xp�C .Xif /Xp:
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Inserting these formulas into the i D p and j D p terms, we obtain

II .X1; : : : ; fXp; : : : ;XkC1/

D f II .X1; : : : ;Xp; : : : ;XkC1/

C
X

p<j

.�1/pCjC1.Xjf /!
�
Xp;X1; : : : ;cXp; : : : ;cXj ; : : : ;XkC1

�

C
X

i<p

.�1/iCp.Xif /!
�
Xp;X1; : : : ;cXi ; : : : ;cXp; : : : ;XkC1

�
:

Rearranging the arguments in these two sums so as to put Xp into its original po-
sition, we see that they exactly cancel the sum in (14.30). This completes the proof
that D! is multilinear over C1.M/, so it defines a smooth .kC 1/-tensor field.

Since both D! and d! are smooth tensor fields, we can verify the equation
D! D d! in any frame that is convenient. By multilinearity, it suffices to show that
both sides give the same result when applied to an arbitrary sequence of basis vectors
in some chosen local frame in a neighborhood of each point. The computations are
greatly simplified by working in a coordinate frame, for which all the Lie brackets
vanish. Thus, let

�
U;
�
xi
��

be an arbitrary smooth chart on M . Because both d!
and D! depend linearly on !, we may assume that ! D udxI for some smooth
function u and some increasing multi-index I D .i1; : : : ; ik/, so

d! D du^ dxI D
X

m

@u

@xm
dxm ^ dxI :

If J D .j1; : : : ; jkC1/ is any multi-index of length kC 1, it follows that

d!

�
@

@xj1
; : : : ;

@

@xjkC1

�
D
X

m

@u

@xm
ımIJ :

The only terms in this sum that can possibly be nonzero are those for which m is
equal to one of the indices in J , say mD jp . In this case, it is easy to check that
ımIJ D .�1/

p�1ıI
yJp

, where yJp D
�
j1; : : : ; bjp ; : : : ; jkC1

�
, so

d!

�
@

@xj1
; : : : ;

@

@xjkC1

�
D

X

1�p�kC1

.�1/p�1
@u

@xjp
ıIyJp
: (14.31)

On the other hand, because all the Lie brackets are zero, we have

D!

�
@

@xj1
; : : : ;

@

@xjkC1

�

D
X

1�p�kC1

.�1/p�1
@

@xjp

 

udxI

 
@

@xj1
; : : : ;

1@

@xjp
; : : : ;

@

@xjkC1

!!

D
X

1�p�kC1

.�1/p�1
@u

@xjp
ıIyJp
;

which agrees with (14.31). �
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It is worth remarking that formula (14.29) can be used to give an invariant defini-
tion of d , as well as an alternative proof of Theorem 14.24 on the existence, unique-
ness, and properties of d . As the proof of Proposition 14.32 showed, the right-hand
side of (14.29) is multilinear over C1.M/ as a function of .X1; : : : ;XkC1/. By
the tensor characterization lemma (Lemma 12.24), therefore, it defines a smooth
covariant .k C 1/-tensor field. A straightforward (if slightly tedious) verification
shows that it changes sign whenever two of its arguments are interchanged, so in
fact it defines a smooth .k C 1/-form, which we could have used as a definition
of d!. The rest of the proof of Proposition 14.32 then shows that d! is actually
given locally by the coordinate formula (14.19), and so the properties asserted in
Theorem 14.24 follow just as before. We have chosen to define d by means of its
coordinate formula because that formula is generally much easier to remember and
to work with. Except in the k D 1 case, the invariant formula (14.29) is too com-
plicated to be of much use for computation; in addition, it has the serious flaw that
in order to compute the action of d! on vectors .v1; : : : ; vk/ at a point p 2M; one
must first extend them to vector fields in a neighborhood of p. Nonetheless, it does
have some important theoretical consequences, so it is useful to know that it exists.

Lie Derivatives of Differential Forms

In Chapter 12, we derived some formulas for computing Lie derivatives of smooth
tensor fields (see Corollary 12.33 and Example 12.35), which apply equally well to
differential forms. However, in the case of differential forms, the exterior derivative
yields a much more powerful formula for computing Lie derivatives, which also has
significant theoretical consequences. As we did in Chapter 12, we restrict attention
to the case of manifolds without boundary for simplicity; but these results extend
easily to manifolds with boundary and vector fields tangent to the boundary.

First, we note a simple fact that will be useful in both proofs and computations:
Lie differentiation satisfies a product rule with respect to wedge products.

Proposition 14.33. Suppose M is a smooth manifold, V 2 X.M/, and !;� 2

��.M/. Then

LV .! ^ �/D .LV !/^ �C! ^ .LV �/:

I Exercise 14.34. Prove the preceding proposition.

The next theorem is the main result of this section. It gives a remarkable formula
for Lie derivatives of differential forms, which dates back to Élie Cartan (1869–
1951), the French mathematician who invented the theory of differential forms.

Theorem 14.35 (Cartan’s Magic Formula). On a smooth manifold M; for any
smooth vector field V and any smooth differential form !,

LV ! D V ³ .d!/C d.V ³!/: (14.32)
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Proof. We prove that (14.32) holds for smooth k-forms by induction on k. We begin
with a smooth 0-form f , in which case

V ³ .df /C d.V ³ f /D V ³ df D df .V /D Vf DLV f;

which is (14.32).
Now let k � 1, and suppose (14.32) has been proved for forms of degree less

than k. Let ! be an arbitrary smooth k-form, written in smooth local coordinates as

! D
X0

I

!I dx
i1 ^ � � � ^ dxik :

Writing uD xi1 and ˇ D !I dxi2 ^ � � � ^ dxik , we see that each term in this sum
can be written in the form du ^ ˇ, where u is a smooth function and ˇ is a
smooth .k � 1/-form. Corollary 12.34 showed that LV du D d.LV u/ D d.V u/.
Thus Proposition 14.33 and the induction hypothesis imply

LV .du^ ˇ/D .LV du/^ ˇC du^ .LV ˇ/

D d.V u/^ ˇC du^
�
V ³ dˇC d.V ³ ˇ/

�
: (14.33)

On the other hand, using the facts that both d and interior multiplication by V are
antiderivations, and V ³ duD du.V /D V u, we compute

V ³ d.du^ ˇ/C d
�
V ³ .du^ ˇ/

�

D V ³ .�du^ dˇ/C d
�
.V u/ˇ � du^ .V ³ ˇ/

�

D�.V u/dˇC du^ .V ³ dˇ/C d.V u/^ ˇC .V u/dˇC du^ d.V ³ ˇ/:

After the .V u/dˇ terms are canceled, this is equal to (14.33). �

Corollary 14.36 (The Lie Derivative Commutes with d ). If V is a smooth vector
field and ! is a smooth differential form, then

LV .d!/D d.LV !/:

Proof. This follows from Cartan’s formula and the fact that d ı d D 0:

LV d! D V ³ d.d!/C d.V ³ d!/D d.V ³ d!/I

dLV ! D d.V ³ d!/C d
�
d.V ³!/

�
D d.V ³ d!/: �

Problems

14-1. Show that covectors !1; : : : ;!k on a finite-dimensional vector space are
linearly dependent if and only if !1 ^ � � � ^!k D 0.
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14-2. For what values of k and n is it true that every k-covector on Rn is decom-
posable? [Suggestion: first do the cases nD 3 and nD 4, and then see if you
can figure out how to generalize your results to other dimensions.]

14-3. We have two ways to think about covariant k-tensors on a finite-dimensional
vector space V : concretely, as k-multilinear functionals on V , and ab-
stractly, as elements of the abstract tensor product space V � ˝ � � � ˝ V �.
However, we have defined alternating and symmetric tensors only in
terms of the concrete definition. This problem outlines an abstract ap-
proach to alternating tensors. (Symmetric tensors can be handled similarly.)
Suppose V is a finite-dimensional real vector space. Let A denote the sub-
space of the k-fold abstract tensor product V � ˝ � � � ˝ V � spanned by all
elements of the form !1 ˝ � � � ˝ !k with !i D !j for some i ¤ j . (Thus
A is the trivial subspace if k < 2.) Let Ak.V �/ denote the quotient vector
space .V �˝ � � � ˝ V �/ =A.
(a) Show that there is a unique isomorphism F W Ak.V �/!ƒk.V �/ such

that the following diagram commutes:

V �˝ � � � ˝ V �
Š� T k.V �/

Ak.V �/

�
�

�
F

ƒk.V �/;

Alt
�

where � W V �˝ � � � ˝ V �!Ak.V �/ is the projection.
(b) Define a wedge product on

L
k Ak.V �/ by ! ^ �D �

�
z! ˝ z�

�
, where

z!, z� are arbitrary tensors such that �
�
z!
�
D !, �

�
z�
�
D �. Show that this

wedge product is well defined, and that F takes this wedge product to
the Alt convention wedge product on ƒ.V �/.

[Remark: this is one reason why some authors consider the Alt convention
for the wedge product to be more natural than the determinant convention.]

14-4. This chapter focused on alternating covariant tensors because of their many
important applications in differential geometry. Alternating contravariant
tensors have a few applications as well (one is described in Problem 21-14).
If V is a finite-dimensional vector space, we can define alternating con-
travariant k-tensors either as multilinear functionals from V � � � � � � V � to
R that change sign whenever two arguments are interchanged, or as elements
of a quotient space .V ˝ � � � ˝ V /=A analogous to the one defined in Prob-
lem 14-3. In the first case, the wedge product is defined just as in (14.3), but
with the roles of vectors and covectors interchanged. In the second case, the
wedge product is defined as the image of the tensor product in the quotient
space as in Problem 14-3. Whichever definition is used, alternating con-
travariant k-tensors are called multivectors or k-vectors. For this problem,
choose whichever of these definitions you prefer.
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(a) Show that an ordered k-tuple .v1; : : : ; vk/ of elements of V is linearly
dependent if and only if v1 ^ � � � ^ vk D 0.

(b) Show that two linearly independent ordered k-tuples .v1; : : : ; vk/ and
.w1; : : : ;wk/ have the same span if and only if

v1 ^ � � � ^ vk D c w1 ^ � � � ^wk

for some nonzero real number c.

14-5. CARTAN’S LEMMA: LetM be a smooth n-manifold with or without bound-
ary, and let

�
!1; : : : ;!k

�
be an ordered k-tuple of smooth 1-forms on an

open subset U �M such that
�
!1jp; : : : ;!

kjp
�

is linearly independent for
each p 2 U . Given smooth 1-forms ˛1; : : : ; ˛k on U such that

kX

iD1

˛i ^!i D 0;

show that each ˛i can be written as a linear combination of !1; : : : ;!k with
smooth coefficients.

14-6. Define a 2-form ! on R3 by

! D x dy ^ dzC y dz ^ dxC z dx ^ dy:

(a) Compute ! in spherical coordinates .�; '; �/ defined by .x; y; z/ D
.� sin' cos�; � sin' sin�; � cos'/.

(b) Compute d! in both Cartesian and spherical coordinates and verify that
both expressions represent the same 3-form.

(c) Compute the pullback 	�
S2
! to S2, using coordinates .'; �/ on the open

subset where these coordinates are defined.
(d) Show that 	�

S2
! is nowhere zero.

14-7. In each of the following cases,M andN are smooth manifolds; F W M !N

is a smooth map; and ! is a smooth differential form on N . In each case,
compute d! and F �!, and verify by direct computation that F �.d!/ D
d.F �!/. (Cf. Problem 11-7.)
(a) M DN DR2;

F.s; t/D .st; et /;
! D x dy.

(b) M DR2 and N DR3;
F.�;'/D

�
.cos' C 2/ cos�; .cos' C 2/ sin�; sin'

�
;

! D y dz ^ dx.
(c) M D f.u; v/ 2R2 W u2C v2 < 1g and N DR3 X f0g;

F.u; v/D
	
u;v;
p
1� u2 � v2



;

! D
x dy ^ dzC y dz ^ dxC z dx ^ dy

.x2C y2C z2/
3=2

.
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14-8. For each nonnegative integer k, show that there is a contravariant functor
�k W Diff! VecR, which to each smooth manifold M assigns the vector
space �k.M/ and to each smooth map F the pullback F �. Show that the
exterior derivative is a natural transformation from �k to �kC1. (See Prob-
lem 11-18.)

14-9. Let M; N be smooth manifolds, and suppose � W M ! N is a surjec-
tive smooth submersion with connected fibers. We say that a tangent vec-
tor v 2 TpM is vertical if d�p.v/ D 0. Suppose ! 2 �k.M/. Show that
there exists � 2 �k.N / such that ! D ��� if and only if v ³ !p D 0 and
v ³ d!p D 0 for every p 2M and every vertical vector v 2 TpM . [Hint:
first, do the case in which � W RnCm ! Rn is projection onto the first n
coordinates.]



Chapter 15
Orientations

The purpose of this chapter is to introduce a subtle but important property of smooth
manifolds called orientation. This word stems from the Latin oriens (“east”), and
originally meant “turning toward the east” or more generally “positioning with re-
spect to one’s surroundings.” Thus, an orientation of a line or curve is a simply a
choice of direction along it. As we saw in Chapter 11, the sign of a line integral
depends on a choice of preferred direction along the curve.

Mathematicians have extended the sense of the word “orientation” to higher-
dimensional manifolds, as a choice between two inequivalent ways in which objects
can be situated with respect to their surroundings. For 2-dimensional manifolds, an
orientation is essentially a choice of which rotational direction should be considered
“clockwise” and which “counterclockwise.” For 3-dimensional ones, it is a choice
between “left-handedness” and “right-handedness.” The general definition of an ori-
entation is an adaptation of these everyday concepts to arbitrary dimensions.

As we will see in this chapter, a vector space always has exactly two choices of
orientation. In Rn, there is a standard orientation that we can all agree on; but in
other vector spaces, an arbitrary choice has to be made. For manifolds, the situation
is much more complicated. On a sphere, it is possible to decide unambiguously
which rotational direction is counterclockwise, by looking at the surface from the
outside (Fig. 15.1). On the other hand, a Möbius band (Fig. 15.2) has the curious
property that a figure moving around on the surface can come back to its starting
point transformed into its mirror image, so it is impossible to decide consistently
which of the two possible rotational directions on the surface to call “clockwise”
and which “counterclockwise,” or which is the “front” side and which is the “back”
side. The analogous phenomenon in a 3-manifold would be a right-handed person
who takes a long trip and comes back left-handed. Manifolds like the sphere, in
which it is possible to choose a consistent orientation, are said to be orientable;
those like the Möbius band in which it is not possible are said to be nonorientable.

In this chapter we develop the theory of orientations of smooth manifolds. They
have numerous applications, most notably in the theory of integration on manifolds,
which we will study in Chapter 16.

J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics 218,
DOI 10.1007/978-1-4419-9982-5_15, © Springer Science+Business Media New York 2013
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Fig. 15.1 A sphere is orientable Fig. 15.2 A Möbius band is not orientable

We begin the chapter with an introduction to orientations of vector spaces, and
then show how this theory can be carried over to manifolds. Next, we explore the
ways in which orientations can be induced on hypersurfaces and on boundaries of
manifolds with boundary. Then we treat the special case of orientations on Rie-
mannian manifolds and Riemannian hypersurfaces. At the end of the chapter, we
explore the close relationship between orientability and covering maps.

Orientations of Vector Spaces

We begin with orientations of vector spaces. We are all familiar with certain infor-
mal rules for singling out preferred ordered bases of R1, R2, and R3 (see Fig. 15.3).
We usually choose a basis for R1 that points to the right (i.e., in the positive direc-
tion). A natural family of preferred ordered bases for R2 consists of those for which
the rotation from the first vector to the second is in the counterclockwise direction.
And every student of vector calculus encounters “right-handed” bases in R3: these
are the ordered bases .E1;E2;E3/ with the property that when the fingers of your
right hand curl from E1 to E2, your thumb points in the direction of E3.

Although “to the right,” “counterclockwise,” and “right-handed” are not mathe-
matical terms, it is easy to translate the rules for selecting preferred bases of R1, R2,
and R3 into rigorous mathematical language: you can check that in all three cases,
the preferred bases are the ones whose transition matrices from the standard basis
have positive determinants.

In an abstract vector space for which there is no canonical basis, we no longer
have any way to determine which bases are “correctly oriented.” For example, if V
is the vector space of polynomials in one real variable of degree at most 2, who is to
say which of the ordered bases

�
1;x; x2

�
and

�
x2; x; 1

�
is “right-handed”? All we

can say in general is what it means for two bases to have the “same orientation.”
Thus we are led to introduce the following definition. Let V be a real vector space

of dimension n� 1. We say that two ordered bases .E1; : : : ;En/ and
�
zE1; : : : ; zEn

�

for V are consistently oriented if the transition matrix
�
B
j
i

�
, defined by

Ei DB
j
i
zEj ; (15.1)

has positive determinant.
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I Exercise 15.1. Show that being consistently oriented is an equivalence relation on
the set of all ordered bases for V , and show that there are exactly two equivalence
classes.

If dimV D n � 1, we define an orientation for V as an equivalence class of
ordered bases. If .E1; : : : ;En/ is any ordered basis for V , we denote the orientation
that it determines by ŒE1; : : : ;En�, and the opposite orientation by �ŒE1; : : : ;En�.
A vector space together with a choice of orientation is called an oriented vector
space. If V is oriented, then any ordered basis .E1; : : : ;En/ that is in the given
orientation is said to be oriented or positively oriented. Any basis that is not in the
given orientation is said to be negatively oriented.

For the special case of a zero-dimensional vector space V , we define an orienta-
tion of V to be simply a choice of one of the numbers ˙1.

Example 15.2. The orientation Œe1; : : : ; en� of Rn determined by the standard basis
is called the standard orientation. You should convince yourself that, in our usual
way of representing the axes graphically, an oriented basis for R is one that points to
the right; an oriented basis for R2 is one for which the rotation from the first basis
vector to the second is counterclockwise; and an oriented basis for R3 is a right-
handed one. (These can be taken as mathematical definitions for the words “right,”
“counterclockwise,” and “right-handed.”) The standard orientation for R0 is defined
to be C1. //

There is an important connection between orientations and alternating tensors,
expressed in the following proposition.

Proposition 15.3. Let V be a vector space of dimension n. Each nonzero element
! 2ƒn.V �/ determines an orientation O! of V as follows: if n� 1, then O! is the
set of ordered bases .E1; : : : ;En/ such that !.E1; : : : ;En/ > 0; while if nD 0, then
O! is C1 if ! > 0, and �1 if ! < 0. Two nonzero n-covectors determine the same
orientation if and only if each is a positive multiple of the other.

Proof. The 0-dimensional case is immediate, since a nonzero element ofƒ0.V �/ is
just a nonzero real number. Thus we may assume n� 1. Let ! be a nonzero element
of ƒn.V �/, and let O! denote the set of ordered bases on which ! gives positive
values. We need to show that O! is exactly one equivalence class.

Suppose .Ei / and
�
zEj
�

are any two ordered bases for V , and let B W V ! V be

the linear map sending Ej to zEj . This means that zEj D BEj D B ijEi , so B is the
transition matrix between the two bases. By Proposition 14.9,

!
�
zE1; : : : ; zEn

�
D !.BE1; : : : ;BEn/D .detB/!.E1; : : : ;En/:

It follows that the basis
�
zEj
�

is consistently oriented with .Ei / if and only if

!.E1; : : : ;En/ and !
�
zE1; : : : ; zEn

�
have the same sign, which is the same as saying

that O! is one equivalence class. The last statement then follows easily. �

If V is an oriented n-dimensional vector space and ! is an n-covector that de-
termines the orientation of V as described in this proposition, we say that ! is a
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Fig. 15.3 Oriented bases for R1, R2, and R3

(positively) oriented n-covector. For example, the n-covector e1 ^ � � � ^ en is posi-
tively oriented for the standard orientation on Rn.

For any n-dimensional vector space V , the space ƒn.V �/ is 1-dimensional.
Proposition 15.3 shows that choosing an orientation for V is equivalent to choos-
ing one of the two components of ƒn.V �/ X f0g. This formulation also works for
0-dimensional vector spaces, and explains why we have defined an orientation of a
0-dimensional space in the way we did.

Orientations of Manifolds

Let M be a smooth manifold with or without boundary. We define a pointwise
orientation on M to be a choice of orientation of each tangent space. By itself, this
is not a very useful concept, because the orientations of nearby points may have
no relation to each other. For example, a pointwise orientation on Rn might switch
randomly from point to point between the standard orientation and its opposite.
In order for orientations to have some relationship with the smooth structure, we
need an extra condition to ensure that the orientations of nearby tangent spaces are
consistent with each other.

Let M be a smooth n-manifold with or without boundary, endowed with a point-
wise orientation. If .Ei / is a local frame for TM; we say that .Ei / is (positively)
oriented if .E1jp; : : : ;Enjp/ is a positively oriented basis for TpM at each point
p 2 U . A negatively oriented frame is defined analogously.

A pointwise orientation is said to be continuous if every point of M is in the
domain of an oriented local frame. (Recall that by definition the vector fields that
make up a local frame are continuous.) An orientation of M is a continuous point-
wise orientation. We say thatM is orientable if there exists an orientation for it, and
nonorientable if not. An oriented manifold is an ordered pair .M;O/, where M is
an orientable smooth manifold and O is a choice of orientation for M ; an oriented
manifold with boundary is defined similarly. For each p 2M; the orientation of
TpM determined by O is denoted by Op . When it is not important to name the ori-
entation explicitly, we use the usual shorthand expression “M is an oriented smooth
manifold” (or “manifold with boundary”).

If M is zero-dimensional, this definition just means that an orientation of M is a
choice of ˙1 attached to each of its points. The continuity condition is vacuous in



Orientations of Manifolds 381

this case, and the notion of oriented frames is not useful. Clearly, every 0-manifold
is orientable.

I Exercise 15.4. Suppose M is an oriented smooth n-manifold with or without
boundary, and n � 1. Show that every local frame with connected domain is either
positively oriented or negatively oriented. Show that the connectedness assumption is
necessary.

The next two propositions give ways of specifying orientations on manifolds that
are more practical to use than the definition.

Proposition 15.5 (The Orientation Determined by an n-Form). Let M be a
smooth n-manifold with or without boundary. Any nonvanishing n-form ! on M
determines a unique orientation of M for which ! is positively oriented at each
point. Conversely, if M is given an orientation, then there is a smooth nonvanishing
n-form on M that is positively oriented at each point.

Remark. Because of this proposition, if M is a smooth n-manifold with or without
boundary, any nonvanishing n-form on M is called an orientation form. If M is
oriented and ! is an orientation form determining the given orientation, we also say
that ! is (positively) oriented. It is easy to check that if ! and z! are two positively
oriented smooth forms on M; then z! D f! for some strictly positive smooth real-
valued function f . If M is a 0-manifold, a nonvanishing 0-form (i.e., real-valued
function) assigns the orientation C1 to points where it is positive and �1 to points
where it is negative.

Proof. Let ! be a nonvanishing n-form on M . Then ! defines a pointwise orien-
tation by Proposition 15.3, so all we need to check is that it is continuous. This
is trivially true when n D 0, so assume n � 1. Given p 2M; let .Ei / be any lo-
cal frame on a connected neighborhood U of p, and let

�
"i
�

be the dual coframe.
On U , the expression for ! in this frame is ! D f "1 ^ � � � ^ "n for some continu-
ous function f . The fact that ! is nonvanishing means that f is nonvanishing, and
therefore

! .E1; : : : ;En/D f ¤ 0

at all points of U . Since U is connected, it follows that this expression is either
always positive or always negative on U , and therefore the given frame is either
positively oriented or negatively oriented. If negatively, we can replace E1 by �E1
to obtain a new frame that is positively oriented. Thus, the pointwise orientation
determined by ! is continuous.

Conversely, suppose M is oriented, and let ƒnCT
�M � ƒnT �M be the open

subset consisting of positively oriented n-covectors at all points of M . At any point
p 2M; the intersection of ƒnCT

�M with the fiber ƒn.T �pM/ is an open half-line,
and therefore convex. By the usual partition-of-unity argument (see Problem 13-2),
there exists a smooth global section of ƒnCT

�M (i.e., a positively oriented smooth
global n-form). �

A smooth coordinate chart on an oriented smooth manifold with or without
boundary is said to be (positively) oriented if the coordinate frame

�
@=@xi

�
is pos-
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itively oriented, and negatively oriented if the coordinate frame is negatively ori-
ented. A smooth atlas f.U˛; '˛/g is said to be consistently oriented if for each ˛,
ˇ, the transition map 'ˇ ı '�1˛ has positive Jacobian determinant everywhere on
'˛.U˛ \Uˇ /.

Proposition 15.6 (The Orientation Determined by a Coordinate Atlas). Let M
be a smooth positive-dimensional manifold with or without boundary. Given any
consistently oriented smooth atlas for M; there is a unique orientation for M with
the property that each chart in the given atlas is positively oriented. Conversely, if
M is oriented and either @M D¿ or dimM > 1, then the collection of all oriented
smooth charts is a consistently oriented atlas for M .

Proof. First, suppose M has a consistently oriented smooth atlas. Each chart in
the atlas determines a pointwise orientation at each point of its domain. Wherever
two of the charts overlap, the transition matrix between their respective coordinate
frames is the Jacobian matrix of the transition map, which has positive determinant
by hypothesis, so they determine the same pointwise orientation at each point. The
orientation thus determined is continuous because each point is in the domain of an
oriented coordinate frame.

Conversely, assumeM is oriented and either @M D¿ or dimM > 1. Each point
is in the domain of a smooth chart, and if the chart is negatively oriented, we can
replace x1 by �x1 to obtain a new chart that is positively oriented. The fact that
these charts all are positively oriented guarantees that their transition maps have
positive Jacobian determinants, so they form a consistently oriented atlas. (This does
not work for boundary charts when dimM D 1 because of our convention that the
last coordinate is nonnegative in a boundary chart.) �

Proposition 15.7 (Product Orientations). Suppose M1; : : : ;Mk are orientable
smooth manifolds. There is a unique orientation on M1 � � � � �Mk , called the prod-
uct orientation, with the following property: if for each i D 1; : : : ; k, !i is an orien-
tation form for the given orientation onMi , then ��1!1^� � �^�

�
k
!k is an orientation

form for the product orientation.

I Exercise 15.8. Prove the preceding proposition.

Proposition 15.9. LetM be a connected, orientable, smooth manifold with or with-
out boundary. Then M has exactly two orientations. If two orientations of M agree
at one point, they are equal.

I Exercise 15.10. Prove the preceding proposition.

Proposition 15.11 (Orientations of Codimension-0 Submanifolds). Suppose M
is an oriented smooth manifold with or without boundary, and D �M is a smooth
codimension-0 submanifold with or without boundary. Then the orientation of M
restricts to an orientation of D. If ! is an orientation form for M; then 	�D! is an
orientation form for D.

I Exercise 15.12. Prove the preceding proposition.
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Let M and N be oriented smooth manifolds with or without boundary, and sup-
pose F W M !N is a local diffeomorphism. If M and N are positive-dimensional,
we say that F is orientation-preserving if for each p 2 M; the isomorphism
dFp takes oriented bases of TpM to oriented bases of TF.p/N , and orientation-
reversing if it takes oriented bases of TpM to negatively oriented bases of TF.p/N .
If M and N are 0-manifolds, then F is orientation-preserving if for every p 2M;
the points p and F.p/ have the same orientation; and it is orientation-reversing if
they have the opposite orientation.

I Exercise 15.13. Suppose M and N are oriented positive-dimensional smooth
manifolds with or without boundary, and F W M !N is a local diffeomorphism. Show
that the following are equivalent.

(a) F is orientation-preserving.
(b) With respect to any oriented smooth charts for M and N , the Jacobian matrix of

F has positive determinant.
(c) For any positively oriented orientation form ! for N , the form F �! is positively

oriented for M .

I Exercise 15.14. Show that a composition of orientation-preserving maps is
orientation-preserving.

Here is another important method for constructing orientations.

Proposition 15.15 (The Pullback Orientation). Suppose M and N are smooth
manifolds with or without boundary. If F W M !N is a local diffeomorphism and
N is oriented, then M has a unique orientation, called the pullback orientation
induced by F , such that F is orientation-preserving.

Proof. For each p 2M; there is a unique orientation on TpM that makes the iso-
morphism dFp W TpM ! TF.p/N orientation-preserving. This defines a pointwise
orientation on M; and provided it is continuous, it is the unique orientation on M
with respect to which F is orientation-preserving. To see that it is continuous, just
choose a smooth orientation form ! for N and note that F �! is a smooth orienta-
tion form for M . �

In the situation of the preceding proposition, if O denotes the given orientation
on N , the pullback orientation on M is denoted by F �O.

I Exercise 15.16. Suppose F W M !N and G W N ! P are local diffeomorphisms
and O is an orientation on P . Show that .G ıF /�O D F �.G�O/.

Recall that a smooth manifold is said to be parallelizable if it admits a smooth
global frame.

Proposition 15.17. Every parallelizable smooth manifold is orientable.

Proof. Suppose M is parallelizable, and let .E1; : : : ;En/ be a global smooth frame
forM . Define a pointwise orientation onM by declaring the basis

�
E1jp; : : : ;Enjp

�

to be positively oriented at each p 2M . This pointwise orientation is continuous,
because every point of M is in the domain of the (global) oriented frame .Ei /. �
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Fig. 15.4 A vector field along a submanifold

Example 15.18. The preceding proposition implies that Euclidean space Rn, the
n-torus Tn, the spheres S1, S3, and S7, and products of them are all orientable,
because they are all parallelizable. Therefore, any codimension-0 submanifold of
one of these manifolds is also orientable. Likewise, every Lie group is orientable
because it is parallelizable. //

In the case of Lie groups, we can say more. If G is a Lie group, an orientation
of G is said to be left-invariant if Lg is orientation-preserving for every g 2G.

Proposition 15.19. Every Lie group has precisely two left-invariant orientations,
corresponding to the two orientations of its Lie algebra.

I Exercise 15.20. Prove the preceding proposition.

Orientations of Hypersurfaces

If M is an oriented smooth manifold and S is a smooth submanifold of M (with or
without boundary), S might not inherit an orientation from M; even if S is embed-
ded. Clearly, it is not sufficient to restrict an orientation form from M to S , since
the restriction of an n-form to a manifold of lower dimension must necessarily be
zero. A useful example to consider is the Möbius band, which is not orientable (see
Example 15.38 below), even though it can be embedded in R3.

In this section we focus our attention on immersed or embedded hypersurfaces
(codimension-1 submanifolds). With one extra piece of information (a vector field
that is nowhere tangent to the hypersurface), we can use an orientation on M to
induce an orientation on a hypersurface in M .

Suppose M is a smooth manifold with or without boundary, and S �M is a
smooth submanifold (immersed or embedded, with or without boundary). Recall
(Example 10.10) that a vector field along S is a section of the ambient tangent
bundle TM jS , i.e., a continuous map N W S ! TM with the property that Np 2
TpM for each p 2 S (Fig. 15.4). For example, any vector field on M restricts to a
vector field along S , but in general, not every vector field along S is of this form
(see Problem 10-9).

Proposition 15.21. Suppose M is an oriented smooth n-manifold with or without
boundary, S is an immersed hypersurface with or without boundary in M; and N is
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Fig. 15.5 The orientation induced by a nowhere tangent vector field

a vector field along S that is nowhere tangent to S . Then S has a unique orientation
such that for each p 2 S , .E1; : : : ;En�1/ is an oriented basis for TpS if and only if
.Np;E1; : : : ;En�1/ is an oriented basis for TpM . If ! is an orientation form forM;
then 	�S .N ³ !/ is an orientation form for S with respect to this orientation, where
	S W S ,!M is inclusion.

Remark. See Fig. 15.5 for an illustration of the nD 3 case. When nD 1, since S is
a 0-manifold, this proposition should be interpreted as follows: at each point p 2 S ,
we assign the orientationC1 to p if Np is an oriented basis for TpM; and �1 if Np
is negatively oriented. With this understanding, the proof below goes through in the
nD 1 case without modification.

Proof. Let ! be an orientation form forM . Then � D 	�S .N ³!/ is an .n�1/-form
on S . (Recall that the pullback 	�S is really just restriction to vectors tangent to S .) It
will follow that � is an orientation form for S if we can show that it never vanishes.
Given any basis .E1; : : : ;En�1/ for TpS , the fact that N is nowhere tangent to S
implies that .Np;E1; : : : ;En�1/ is a basis for TpM . The fact that ! is nonvanishing
implies that

�p.E1; : : : ;En�1/D !p.Np;E1; : : : ;En�1/¤ 0:

Since �p.E1; : : : ;En�1/ > 0 if and only if !p.Np;E1; : : : ;En�1/ > 0, the orienta-
tion determined by � is the one defined in the statement of the proposition. �

Example 15.22. The sphere Sn is a hypersurface in RnC1, to which the vector field
N D xi@=@xi is nowhere tangent, so this vector field induces an orientation on Sn.
This shows that all spheres are orientable. We define the standard orientation of Sn

to be the orientation determined by N . Unless otherwise specified, we always use
this orientation. (The standard orientation on S0 is the one that assigns the orienta-
tion C1 to the point C1 2 S0 and �1 to �1 2 S0.) //

Not every hypersurface admits a nowhere tangent vector field. (See Prob-
lem 15-6.) However, the following proposition gives a sufficient condition that holds
in many cases.
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Proposition 15.23. Let M be an oriented smooth manifold, and suppose S �M is
a regular level set of a smooth function f W M !R. Then S is orientable.

Proof. Choose any Riemannian metric on M; and let N D gradf jS . The hypothe-
ses imply that N is a nowhere tangent vector field along S , so the result follows
from Proposition 15.21. �

Boundary Orientations

If M is a smooth manifold with boundary, then @M is an embedded hypersurface
in M (see Theorem 5.11), and Problem 8-4 showed that there is always a smooth
outward-pointing vector field along @M . Because an outward-pointing vector field
is nowhere tangent to @M; it determines an orientation on @M .

Proposition 15.24 (The Induced Orientation on a Boundary). Let M be an ori-
ented smooth n-manifold with boundary, n � 1. Then @M is orientable, and all
outward-pointing vector fields along @M determine the same orientation on @M .

Remark. The orientation on @M determined by any outward-pointing vector field
is called the induced orientation or the Stokes orientation on @M . (The second
term is chosen because of the role this orientation plays in Stokes’s theorem, to be
discussed in Chapter 16.)

Proof. Let nD dimM; let ! be an orientation form for M; and let N be a smooth
outward-pointing vector field along @M . The .n� 1/-form 	�

@M
.N ³!/ is an orien-

tation form for @M by Proposition 15.21, so @M is orientable.
To show that this orientation is independent of the choice of N , let p 2 @M

be arbitrary, and let
�
xi
�

be smooth boundary coordinates for M on a neighbor-

hood of p. If N and zN are two different outward-pointing vector fields along @M;
Proposition 5.41 shows that the last components N n.p/ and zN n.p/ are both neg-
ative. Both

�
Np; @=@x

1jp; : : : ; @=@x
n�1jp

�
and

�
zNp; @=@x

1jp; : : : ; @=@x
n�1jp

�
are

bases for TpM , and the transition matrix between them has determinant equal to
N n.p/= zN n.p/ > 0. Thus, both bases determine the same orientation for TpM; so
N and zN determine the same orientation for Tp@M . (When n D 1, the bases in
question are just .Np/ and

�
zNp
�
, which determine the same orientation because

they are both negative multiples of @=@x1jp .) �

Example 15.25. This proposition gives a simpler proof that Sn is orientable, be-
cause it is the boundary of the closed unit ball. The orientation thus induced on Sn

is the standard one, as you can check. //

Example 15.26. Let us determine the induced orientation on @Hn when Hn itself
has the standard orientation inherited from Rn. We can identify @Hn with Rn�1 un-
der the correspondence

�
x1; : : : ; xn�1; 0

�
$
�
x1; : : : ; xn�1

�
. Since the vector field

�@=@xn is outward-pointing along @Hn, the standard coordinate frame for Rn�1

is positively oriented for @Hn if and only if
�
�@=@xn; @=@x1; : : : ; @=@xn�1

�
is the
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Fig. 15.6 Orientation criterion for a boundary parametrization

standard orientation for Rn. This orientation satisfies
�
�@=@xn; @=@x1; : : : ; @=@xn�1

�
D �

�
@=@xn; @=@x1; : : : ; @=@xn�1

�

D .�1/n
�
@=@x1; : : : ; @=@xn�1; @=@xn

�
:

Thus, the induced orientation on @Hn is equal to the standard orientation on Rn�1

when n is even, but it is opposite to the standard orientation when n is odd. In
particular, the standard coordinates on @Hn � Rn�1 are positively oriented if and
only if n is even. (This fact will be important in the proof of Stokes’s theorem in
Chapter 16.) //

For many purposes, the most useful way of describing submanifolds is by means
of local parametrizations. The next lemma gives a useful criterion for checking
whether a local parametrization of a boundary is orientation-preserving.

Lemma 15.27. Let M be an oriented smooth n-manifold with boundary. Suppose
U � Rn�1 is open, a; b are real numbers with a < b, and F W .a; b� � U !M is
a smooth embedding that restricts to an embedding of fbg � U into @M . Then the
parametrization f W U ! @M given by f .x/ D F.b;x/ is orientation-preserving
for @M if and only if F is orientation-preserving for M .

Proof. Let x be an arbitrary point of U , and let p D f .x/ D F.b;x/ 2 @M

(Fig. 15.6). The hypothesis that F is an embedding means that the linear map
dF.b;x/ W

�
TbR˚ TxR

n�1
�
! TpM is bijective. Since the restriction of dF.b;x/ to

TxRn�1 is equal to dfx W TxRn�1! Tp@M; which is already injective, it follows
that dF

�
@=@sj.b;x/

�
… Tp@M (where s denotes the coordinate on .a; b�).

Define a smooth curve � W Œ0; "/!M by

�.t/D F.b � t; x/:

This curve satisfies �.0/ D p and � 0.0/ D �dF
�
@=@sj.b;x/

�
… Tp@M . It follows

that �dF
�
@=@sj.b;x/

�
is inward-pointing, and therefore dF

�
@=@sj.b;x/

�
is outward-

pointing.



388 15 Orientations

Fig. 15.7 Parametrizing the sphere via spherical coordinates

The definition of the induced orientation yields the following equivalences:

F is orientation-preserving for M

,
�
dF.@=@s/; dF.@=@x1/; : : : ; dF.@=@xn�1/

�
is oriented for TM

,
�
dF.@=@x1/; : : : ; dF.@=@xn�1/

�
is oriented for T @M

,
�
df .@=@x1/; : : : ; df .@=@xn�1/

�
is oriented for T @M

, f is orientation-preserving for @M: �

Here is an illustration of how the lemma can be used.

Example 15.28. Spherical coordinates (Example C.38) yield a smooth local param-
etrization of S2 as follows. Let U be the open rectangle .0;�/� .0; 2�/�R2, and
let X W U !R3 be the following map:

X.'; �/D .sin' cos�; sin' sin�; cos'/

(Fig. 15.7).We can check whether X preserves or reverses orientation by using the
fact that it is the restriction of the 3-dimensional spherical coordinate parametriza-
tion F W .0; 1��U ! xB3 defined by

F.�;'; �/D .� sin' cos�; � sin' sin�; � cos'/:

Because F.1;'; �/ D X.'; �/, the hypotheses of Lemma 15.27 are satisfied. By
direct computation, the Jacobian determinant of F is �2 sin', which is positive on
.0; 1��U . By virtue of Lemma 15.27, X is orientation-preserving. //

The Riemannian Volume Form

Let .M;g/ be an oriented Riemannian manifold of positive dimension. We know
from Proposition 13.6 that there is a smooth orthonormal frame .E1; : : : ;En/ in a
neighborhood of each point of M . By replacing E1 by �E1 if necessary, we can
find an oriented orthonormal frame in a neighborhood of each point.
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Proposition 15.29. Suppose .M;g/ is an oriented Riemannian n-manifold with
or without boundary, and n � 1. There is a unique smooth orientation form !g 2

�n.M/, called the Riemannian volume form, that satisfies

!g.E1; : : : ;En/D 1 (15.2)

for every local oriented orthonormal frame .Ei / for M .

Proof. Suppose first that such a form !g exists. If .E1; : : : ;En/ is any local oriented
orthonormal frame on an open subset U �M and

�
"1; : : : ; "n

�
is the dual coframe,

we can write !g D f "1^� � �^"n onU . The condition (15.2) then reduces to f D 1,
so

!g D "
1 ^ � � � ^ "n: (15.3)

This proves that such a form is uniquely determined.
To prove existence, we would like to define !g in a neighborhood of each point

by (15.3), so we need to check that this definition is independent of the choice of
oriented orthonormal frame. If

�
zE1; : : : ; zEn

�
is another oriented orthonormal frame,

with dual coframe
�
z"1; : : : ;z"n

�
, let

z!g D z"
1 ^ � � � ^ z"n:

We can write
zEi DA

j
i Ej

for some matrix
�
A
j
i

�
of smooth functions. The fact that both frames are orthonor-

mal means that
�
A
j
i .p/

�
2O.n/ for each p, so det

�
A
j
i

�
D˙1, and the fact that the

two frames are consistently oriented forces the positive sign. We compute

!g
�
zE1; : : : ; zEn

�
D det

�
"j
�
zEi
��
D det

�
A
j
i

�
D 1D z!g

�
zE1; : : : ; zEn

�
:

Thus !g D z!g , so defining !g in a neighborhood of each point by (15.3) with
respect to some smooth oriented orthonormal frame yields a global n-form. The
resulting form is clearly smooth and satisfies (15.2) for every oriented orthonormal
frame. �

I Exercise 15.30. Suppose .M;g/ and
� �M; zg

�
are positive-dimensional Riemann-

ian manifolds with or without boundary, and F W M ! �M is a local isometry. Show
that F �!zg D !g .

Although the expression for the Riemannian volume form with respect to an ori-
ented orthonormal frame is particularly simple, it is also useful to have an expression
for it in coordinates.

Proposition 15.31. Let .M;g/ be an oriented Riemannian n-manifold with or with-
out boundary, n� 1. In any oriented smooth coordinates

�
xi
�
, the Riemannian vol-

ume form has the local coordinate expression

!g D

q
det.gij /dx

1 ^ � � � ^ dxn;
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where gij are the components of g in these coordinates.

Proof. Let
�
U;
�
xi
��

be an oriented smooth chart, and let p 2M . In these coordi-
nates, !g D f dx1 ^ � � � ^ dxn for some positive coefficient function f . To com-
pute f , let .Ei / be any smooth oriented orthonormal frame defined on a neighbor-
hood of p, and let

�
"i
�

be the dual coframe. If we write the coordinate frame in
terms of the orthonormal frame as

@

@xi
DA

j
i Ej ;

then we can compute

f D !g

�
@

@x1
; : : : ;

@

@xn

�
D "1 ^ � � � ^ "n

�
@

@x1
; : : : ;

@

@xn

�

D det

�
"j
�
@

@xi

��
D det

�
A
j
i

�
:

On the other hand, observe that

gij D

�
@

@xi
;
@

@xj

�

g

D
D
Aki Ek ;A

l
jEl

E

g
DAki A

l
j hEk ;Elig D

X

k

Aki A
k
j :

This last expression is the .i; j /-entry of the matrix product ATA, where AD
�
A
j
i

�
.

Thus,

det.gij /D det
�
ATA

�
D detAT detAD .detA/2;

from which it follows that f D detA D ˙
p

det.gij /. Since both frames
�
@=@xi

�

and .Ej / are oriented, the sign must be positive. �

Hypersurfaces in Riemannian Manifolds

Let .M;g/ be an oriented Riemannian manifold with or without boundary, and sup-
pose S �M is an immersed hypersurface with or without boundary. Any unit nor-
mal vector field along S is nowhere tangent to S , so it determines an orientation of
S by Proposition 15.21. The next proposition gives a simple formula for the volume
form of the induced metric on S with respect to this orientation.

Proposition 15.32. Let .M;g/ be an oriented Riemannian manifold with or without
boundary, let S �M be an immersed hypersurface with or without boundary, and
let zg denote the induced metric on S . Suppose N is a smooth unit normal vector
field along S . With respect to the orientation of S determined by N , the volume
form of

�
S; zg

�
is given by

!zg D 	
�
S .N ³!g/:

Proof. By Proposition 15.21, the .n � 1/-form 	�S .N ³ !g/ is an orientation form
for S . To prove that it is the volume form for the induced Riemannian metric, we
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Fig. 15.8 A hypersurface in a Riemannian manifold

need only show that it gives the value 1 whenever it is applied to an oriented or-
thonormal frame for S . Thus, let .E1; : : : ;En�1/ be such a frame. At each point
p 2 S , the basis .Np;E1jp; : : : ;En�1jp/ is orthonormal (Fig. 15.8),and is oriented
for TpM (this is the definition of the orientation determined by N ). Thus

	�S .N ³!g/.E1; : : : ;En�1/D !g.N;E1; : : : ;En�1/D 1;

which proves the result. �

The result of Proposition 15.32 takes on particular importance in the case of a
Riemannian manifold with boundary, because of the following proposition.

Proposition 15.33. Suppose M is any Riemannian manifold with boundary. There
is a unique smooth outward-pointing unit normal vector field N along @M .

Proof. First, we prove uniqueness. At any point p 2 @M; the subspace .Tp@M/? �

TpM is 1-dimensional, so there are exactly two unit vectors at p that are normal
to @M . Since any unit normal vector N is nowhere tangent to @M; it must have
nonzero xn-component in any smooth boundary chart. Thus, exactly one of the two
choices of unit normal has negative xn-component, which is equivalent to being
outward-pointing.

To prove existence, let f W M ! R be a boundary defining function (Proposi-
tion 5.43), and let N be the restriction to @M of the unit vector field
�gradf=jgradf jg . Because df ¤ 0 at points of @M; N is well-defined and
smooth on @M . Then N is normal to @M by Problem 13-21, and outward
pointing by Exercise 5.44, because Nf D �hgradf;gradf ig=jgradf jg D
�jgradf jg < 0. �

The next corollary is immediate.

Corollary 15.34. If .M;g/ is an oriented Riemannian manifold with boundary and
zg is the induced Riemannian metric on @M; then the volume form of zg is

!zg D 	
�
@M .N ³!g/;

where N is the outward unit normal vector field along @M . �
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Orientations and Covering Maps

Although it is often easy to prove that a given smooth manifold is orientable by con-
structing an orientation for it, proving that a manifold is not orientable can be much
trickier. The theory of covering spaces provides one of the most useful techniques
for doing so. In this section, we explore the close relationship between orientability
and covering maps.

Our first result is a simple application of pullback orientations.

Proposition 15.35. If � W E!M is a smooth covering map and M is orientable,
then E is also orientable.

Proof. Because a covering map is a local diffeomorphism, this follows immediately
from Proposition 15.15. �

The next theorem is more interesting. If G is a Lie group acting smoothly on a
smooth manifold E (on the left, say), we say the action is an orientation-preserving
action if for each g 2G, the diffeomorphism x 7! g � x is orientation-preserving.

Theorem 15.36. Suppose E is a connected, oriented, smooth manifold with or
without boundary, and � W E ! M is a smooth normal covering map. Then M
is orientable if and only if the action of Aut�.E/ on E is orientation-preserving.

Proof. Let OE denote the given orientation onE . First supposeM is orientable, and
let q be an arbitrary point in E . Because M is connected, it has exactly two orien-
tations, and one of them has the property that d�q W TqE! T�.q/M is orientation-
preserving. Call that orientation OM . The pullback orientation ��OM agrees with
the given orientation at q, so it must be equal to OE by Proposition 15.9. Suppose
' 2Aut�.E/. The fact that � ı ' D � implies that

'�OE D '
�.��OM /D .� ı '/

�OM D �
�OM DOE :

Thus, ' is orientation-preserving.
Conversely, suppose the action of Aut�.E/ is orientation-preserving, and let

p 2M . If U �M is any evenly covered neighborhood of p, there is a smooth sec-
tion � W U !E , which induces an orientation ��OE on U . Suppose �1 W U !E is
any other smooth local section over U . Because � is a normal covering, Aut�.E/
acts transitively on each fiber of � , so there is a covering automorphism ' such
that �1.p/ D '

�
�.p/

�
. Then ' ı � is a local section of � that agrees with �1

at p, and thus �1 D ' ı � on all of U . Because ' is orientation-preserving,
��1OE D �

�'�OE D �
�OE , so the orientations induced by � and �1 are equal.

Thus, we can define a global orientation OM on M by defining it on each evenly
covered open subset to be the pullback orientation induced by any local section;
the argument above shows that the orientations so defined agree where they over-
lap. �

Here are two applications of the preceding theorem.
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Example 15.37 (Orientability of Projective Spaces). For n � 1, consider the
smooth covering map q W Sn!RPn of Example 4.35. The only nontrivial covering
automorphism of q is the antipodal map ˛.x/D�x. Problem 15-3 shows that ˛ is
orientation-preserving if and only if n is odd, so it follows that RPn is orientable if
and only if n is odd. //

Example 15.38 (The Möbius Bundle and the Möbius Band). Let E be the total
space of the Möbius bundle (Example 10.3). The quotient map q W R2!E used to
define E is a smooth normal covering map, and the covering automorphism group
is isomorphic to Z, acting on R2 by n � .x; y/D

�
x C n; .�1/ny

�
. (You can check

this directly from the definitions, or you can accept this for now and wait until we
have developed more machinery in Chapter 21, where a simpler proof is available;
see Problem 21-9.) For n odd, the diffeomorphism .x; y/ 7! n � .x; y/ of R2 pulls
back the orientation form dx ^ dy to �dx ^ dy, so the action of Aut�.E/ is not
orientation-preserving. Thus, Theorem 15.36 shows that E is not orientable.

For each r > 0, the image under q of the rectangle Œ0; 1� � Œ�r; r� is a Möbius
band Mr . Because q restricts to a smooth covering map from R� Œ�r; r� to Mr , the
same argument shows that a Möbius band is not orientable either. //

The Orientation Covering

Next we show that every nonorientable smooth manifold M has an orientable two-
sheeted covering manifold. The fiber over a point p 2M will correspond to the two
orientations of TpM .

In order to handle the orientable and nonorientable cases in a uniform way, it
is useful to expand our definition of covering maps slightly, by allowing “covering
spaces” that are not connected. If N and M are topological spaces, let us say that a
map � W N !M is a generalized covering map if it satisfies all of the requirements
for a covering map except that N might not be connected: this means that N is
locally path-connected, � is surjective and continuous, and each point p 2M has
a neighborhood that is evenly covered by � . If in addition N and M are smooth
manifolds with or without boundary and � is a local diffeomorphism, we say it is a
generalized smooth covering map.

Lemma 15.39. Suppose N and M are topological spaces and � W N !M is a
generalized covering map. If M is connected, then the restriction of � to each com-
ponent of N is a covering map.

Proof. Suppose W is a component of N . If U is any open subset of M that is
evenly covered by � , then each component of ��1.U / is connected and therefore
contained in a single component of N . It follows that

�
�jW

��1
.U /D ��1.U /\W

is either the empty set or a nonempty disjoint union of components of ��1.U /, each
of which is mapped homeomorphically onto U by �jW . In particular, this means
that each point in �.W / has a neighborhood that is evenly covered by �jW .

To complete the proof, we just need to show that �jW is surjective. Because �
is a local homeomorphism, �.W / is an open subset of M . On the other hand, if
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p 2M X�.W /, and U is a neighborhood of p that is evenly covered by � , then the
discussion in the preceding paragraph shows that

�
�jW

��1
.U /D¿, which implies

that U �M X �.W /. Therefore, �.W / is closed in M . Because W is not empty,
�.W / is all of M . �

Let M be a connected, smooth, positive-dimensional manifold with or without
boundary, and let �M denote the set of orientations of all tangent spaces to M :

�M D
˚
.p;Op/ W p 2M and Op is an orientation of TpM

�
:

Define the projection y� W �M !M by sending an orientation of TpM to the point
p itself: y�.p;Op/D p. Since each tangent space has exactly two orientations, each
fiber of this map has cardinality 2. The map y� W �M !M is called the orientation
covering of M .

Proposition 15.40 (Properties of the Orientation Covering). Suppose M is a
connected, smooth, positive-dimensional manifold with or without boundary, and
let y� W �M !M be its orientation covering. Then �M can be given the structure of a
smooth, oriented manifold with or without boundary, with the following properties:

(a) y� W �M !M is a generalized smooth covering map.
(b) A connected open subset U �M is evenly covered by y� if and only if U is

orientable.
(c) If U �M is an evenly covered open subset, then every orientation of U is the

pullback orientation induced by a local section of y� over U .

Proof. We first topologize �M by defining a basis for it. For each pair .U;O/, where
U is an open subset of M and O is an orientation on U , define a subset yUO � �M as
follows:

yUO D
˚
.p;Op/ 2 �M W p 2U and Op is the orientation of TpM determined by O

�
:

We will show that the collection of all subsets of the form yUO is a basis for a topol-
ogy on �M . Given an arbitrary point .p;Op/ 2 �M , let U be an orientable neigh-
borhood of p in M; and let O be an orientation on it. After replacing O by �O if
necessary, we may assume that the given orientation Op is same as the orientation
of TpM determined by O. It follows that .p;Op/ 2 yUO , so the collection of all sets
of the form yUO covers �M . If yUO and yU 0

O0
are two such sets and .p;Op/ is a point in

their intersection, then Op is the orientation of TpM determined by both O and O0.
If V is the component of U \U 0 containing p, then the restricted orientations OjV
and O0jV agree at p and therefore are identical by Proposition 15.9, so it follows
that yUO \ yU

0
O0

contains the basis set yVOjV . Thus, we have defined a topology on �M .
Note that for each orientable open subset U �M and each orientation O of U , y�
maps the basis set yUO bijectively onto U . Because the orientable open subsets form
a basis for the topology of M; this implies that y� restricts to a homeomorphism
from yUO to U . In particular, y� is a local homeomorphism.

Next we show that with this topology, y� is a generalized covering map. Sup-
pose U �M is an orientable connected open subset and O is an orientation for U .
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Then y��1.U / is the disjoint union of open subsets yUO and yU�O , and y� restricts to
a homeomorphism from each of these sets to U . Thus, each such set U is evenly
covered, and it follows that y� is a generalized covering map. By Lemma 15.39,
y� restricts to an ordinary covering map on each component of �M , and so Propo-
sition 4.40 shows that each such component is a topological n-manifold with or
without boundary and has a unique smooth structure making y� into a smooth cover-
ing map. These smooth structures combine to give a smooth structure on all of �M .
This completes the proof of (a).

Next we give �M an orientation. Let yp D .p;Op/ be a point in �M . By defini-
tion, Op is an orientation of TpM; so we can give T yp �M the unique orientation
yO yp such that d y� yp W T yp �M ! TpM is orientation-preserving. This defines a point-

wise orientation yO on �M . On each basis open subset yUO , the orientation yO agrees
with the pullback orientation induced from .U;O/ by (the restriction of) y� , so it is
continuous.

Next we prove (b). We showed earlier that every orientable connected open sub-
set of M is evenly covered by y� . Conversely, if U �M is any evenly covered open
subset, then there is a smooth local section � W U ! �M of y� by Proposition 4.36,
which pulls yO back to an orientation on U by Proposition 15.15.

Finally, to prove (c), assume U � M is evenly covered and therefore ori-
entable. Given any orientation O of U , define a section � W U ! �M by setting
�.p/D .p;Op/. To see that � is continuous, suppose yU 0

O0
is any basis open subset

of �M . Then for each component V of U \ U 0, the restricted orientations OjV and
O0jV must either agree or disagree on all of V , so ��1

�
yU 0
O0

�
is a union of such

components and therefore open. �
Theorem 15.41 (Orientation Covering Theorem). Suppose M is a connected
smooth manifold with or without boundary, and let y� W �M !M be its orientation
covering.

(a) If M is orientable, then �M has exactly two components, and the restriction of
y� to each component is a diffeomorphism onto M .

(b) If M is nonorientable, then �M is connected, and y� is a two-sheeted smooth
covering map.

Proof. IfM is orientable, then Proposition 15.40(b) shows thatM is evenly covered
by y� , which means that �M has two components, each mapped diffeomorphically
onto M .

Now assume M is nonorientable. We show first that �M is connected. Let W be
a component of �M . Lemma 15.39 shows that y�jW is a covering map, so its fibers
all have the same cardinality. Because the fibers of y� have cardinality 2 and W is
not empty, the fibers of y�jW must have cardinality 1 or 2. If the cardinality were 1,
then y�jW would be an injective smooth covering map and thus a diffeomorphism,
and its inverse would be a smooth section of y� , which would induce an orienta-
tion on M . Thus, the cardinality must be 2, which implies that W D �M . Because
�M is connected, y� is a covering map by Lemma 15.39, and because it is a local

diffeomorphism it is a smooth covering map. �
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Fig. 15.9 The nontrivial covering automorphism of �M

The orientation covering is sometimes called the oriented double covering of M .
There are other ways of constructing it besides the one we have given here, but as the
next theorem shows, the specific details of the construction do not matter, because
they all yield isomorphic covering manifolds.

Theorem 15.42 (Uniqueness of the Orientation Covering). Let M be a nonori-
entable connected smooth manifold with or without boundary, and let y� W �M !M

be its orientation covering. If �M is an oriented smooth manifold with or with-
out boundary that admits a two-sheeted smooth covering map z� W �M !M; then
there exists a unique orientation-preserving diffeomorphism ' W �M ! �M such that
y� ı ' D z� .

Proof. See Problem 15-11. �

By invoking a little more covering space theory, we obtain the following suf-
ficient topological condition for orientability. If G is a group and H � G is a
subgroup, the index of H in G is the cardinality of the set of left cosets of H
in G. (If H is a normal subgroup, it is just the cardinality of the quotient group
G=H .)

Theorem 15.43. LetM be a connected smooth manifold with or without boundary,
and suppose the fundamental group of M has no subgroup of index 2. Then M is
orientable. In particular, if M is simply connected then it is orientable.

Proof. Suppose M is not orientable, and let y� W �M !M be its orientation cover-
ing, which is an honest covering map in this case. Choose any point q 2 �M , and
let p D y�.q/ 2M . Let ˛ W �M ! �M be the map that interchanges the two points
in each fiber of y� (Fig. 15.9).To prove that ˛ is smooth, suppose U �M is any
evenly covered open subset and U0;U1 � �M are the two components of y��1.U /.
Since y� restricts to a diffeomorphism from each component onto U , we can write
˛jU0 D

�
y� jU1

��1
ı
�
y�jU0

�
, which is smooth. Similarly, ˛jU1 is also smooth. Since

the collection of all such sets U0;U1 is an open covering of �M , it follows that ˛ is
smooth, and it is a covering automorphism because it satisfies y� ı ˛ D y� . In fact,
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since a covering automorphism is determined by what it does to one point, ˛ is the
unique nontrivial element of the automorphism group Auty�

� �M
�
, which is there-

fore equal to the two-element group
˚
Id �M ; ˛

�
. Because the automorphism group

acts transitively on fibers, y� is a normal covering map. Let H denote the subgroup
y��
�
�1
� �M;q

��
of �1.M;p/. A fundamental result in the theory of covering spaces

(see, e.g., [LeeTM, Chap. 12]) is that the quotient group �1.M;p/=H is isomorphic
to Auty�

� �M
�
. Therefore, H has index 2 in �1.M;p/. �

Problems

15-1. Suppose M is a smooth manifold that is the union of two orientable open
submanifolds with connected intersection. Show that M is orientable. Use
this to give another proof that Sn is orientable.

15-2. Suppose M and N are oriented smooth manifolds with or without bound-
ary, and F W M ! N is a local diffeomorphism. Show that if M is con-
nected, then F is either orientation-preserving or orientation-reversing.

15-3. Suppose n � 1, and let ˛ W Sn ! Sn be the antipodal map: ˛.x/ D �x.
Show that ˛ is orientation-preserving if and only if n is odd. [Hint: consider
the map F W xBn ! xBn given by F.x/ D �x, and use Corollary 15.34.]
(Used on pp. 393, 435.)

15-4. Let � be a smooth flow on an oriented smooth manifold with or without
boundary. Show that for each t 2R, �t is orientation-preserving wherever
it is defined. (Used on p. 425.)

15-5. LetM be a smooth manifold with or without boundary. Show that the total
spaces of TM and T �M are orientable.

15-6. LetU �R3 be the open subset
˚
.x; y; z/ W

�p
x2C y2�2

�2
Cz2 < 1

�
(the

solid torus bounded by the torus of revolution of Example 5.17). Define a
map F W R2!U by

F.u; v/D
�
cos2�u.2C tanhv cos�u/;

sin2�u.2C tanhv cos�u/; tanhv sin�u
�
:

(a) Show that F descends to a smooth embedding of E into U , where E
is the total space of the Möbius bundle of Example 10.3.

(b) Let S be the image of F . Show that S is a properly embedded smooth
submanifold of U .

(c) Show that there is no unit normal vector field along S .
(d) Show that S has no global defining function in U .

15-7. SupposeM is an oriented Riemannian manifold with or without boundary,
and S �M is an oriented smooth hypersurface with or without boundary.
Show that there is a unique smooth unit normal vector field along S that
determines the given orientation of S .
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15-8. Suppose M is an orientable Riemannian manifold, and S �M is an im-
mersed or embedded submanifold with or without boundary. Prove the fol-
lowing statements.
(a) If S has trivial normal bundle, then S is orientable.
(b) If S is an orientable hypersurface, then S has trivial normal bundle.

15-9. Let S be an oriented, embedded, 2-dimensional submanifold with bound-
ary in R3, and let C D @S with the induced orientation. By Problem 15-7,
there is a unique smooth unit normal vector field N on S that determines
the orientation. Let T be the oriented unit tangent vector field on C , and let
V be the unique unit vector field tangent to S along C that is orthogonal to
T and inward-pointing. Show that .Tp; Vp;Np/ is an oriented orthonormal
basis for R3 at each p 2 C .

15-10. CHARACTERISTIC PROPERTY OF THE ORIENTATION COVERING: LetM
be a connected nonorientable smooth manifold with or without boundary,
and let y� W �M ! M be its orientation covering. Prove that if X is any
oriented smooth manifold with or without boundary, and F W X !M is
any local diffeomorphism, then there exists a unique orientation-preserving
local diffeomorphism yF W X! �M such that y� ı yF D F :

�M

X
F
�

yF �

M:

y�
�

15-11. Prove Theorem 15.42 (uniqueness of the orientation covering). [Hint: use
Problem 15-10.]

15-12. Show that every orientation-reversing diffeomorphism of R has a fixed
point.

15-13. CLASSIFICATION OF SMOOTH 1-MANIFOLDS: Let M be a connected
smooth 1-manifold. Show that M is diffeomorphic to either R or S1, as
follows:
(a) First, do the case in which M is orientable by showing that M admits

a nonvanishing smooth vector field and using Problem 9-1.
(b) Now let M be arbitrary, and prove that M is orientable by showing

that its universal covering manifold is diffeomorphic to R and using
the result of Problem 15-12.

Conclude that the smooth structures on both R and S1 are unique up to
diffeomorphism.

15-14. CLASSIFICATION OF SMOOTH 1-MANIFOLDS WITH BOUNDARY: Show
that every connected smooth 1-manifold with nonempty boundary is dif-
feomorphic to either Œ0; 1� or Œ0;1/. [Hint: use the double.]
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15-15. Let M be a nonorientable embedded hypersurface in Rn, and let NM be
its normal bundle with projection �NM W NM !M . Show that the set

W D
˚
.x; v/ 2NM W jvj D 1

�

is an embedded submanifold of NM; and the restriction of �NM to W is a
smooth covering map isomorphic to the orientation covering of M . [Hint:
consider the orientation determined by v ³

�
dx1 ^ � � � ^ dxn

�
.]

15-16. Let E be the total space of the Möbius bundle as in Example 15.38. Show
that the orientation covering of E is diffeomorphic to the cylinder S1�R.



Chapter 16
Integration on Manifolds

In Chapter 11, we introduced line integrals of covector fields, which generalize or-
dinary integrals to the setting of curves in manifolds. It is also useful to generalize
multiple integrals to manifolds. In this chapter, we carry out that generalization.

As we show in the beginning of this chapter, there is no way to define the inte-
gral of a function in a coordinate-independent way on a smooth manifold. On the
other hand, differential forms turn out to have just the right properties for defining
integrals intrinsically.

We begin the chapter with a heuristic discussion of the measurement of vol-
ume, to motivate the central role played by alternating tensors in integration the-
ory. We will see that a k-covector on a vector space can be interpreted as “signed
k-dimensional volume meter.” This suggests that a k-form on a smooth manifold
might be thought of as a way of assigning “signed volumes” to k-dimensional sub-
manifolds. The purpose of this chapter is to make this rigorous.

First, we define the integral of a differential form over a domain in Euclidean
space, and then we show how to use diffeomorphism invariance and partitions of
unity to extend this definition to n-forms on oriented n-manifolds. The key feature
of the definition is that it is invariant under orientation-preserving diffeomorphisms.

After developing the general theory of integration of differential forms, we prove
one of the most important theorems in differential geometry: Stokes’s theorem. It
is a generalization of the fundamental theorem of calculus and of the fundamental
theorem for line integrals, as well as of the three great classical theorems of vector
analysis: Green’s theorem for vector fields in the plane; the divergence theorem for
vector fields in space; and (the classical version of) Stokes’s theorem for surface
integrals in R3. Then we extend the theorem to manifolds with corners, which will
be useful in our treatment of de Rham cohomology in Chapters 17 and 18.

Next, we show how these ideas play out on a Riemannian manifold. We prove
Riemannian versions of the divergence theorem and of Stokes’s theorem for surface
integrals, of which the classical theorems are special cases.

At the end of the chapter, we show how to extend the theory of integration to
nonorientable manifolds by introducing densities, which are fields that can be inte-
grated on any manifold, not just oriented ones.

J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics 218,
DOI 10.1007/978-1-4419-9982-5_16, © Springer Science+Business Media New York 2013
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Fig. 16.1 A covector field as a “signed length meter”

The Geometry of Volume Measurement

How might we make coordinate-independent sense of multiple integrals? First,
observe that there is no way to integrate real-valued functions in a coordinate-
independent way on a manifold, at least without adding further structure such as a
Riemannian metric. It is easy to see why, even in the simplest case: suppose C �Rn

is a closed ball, and f W C !R is the constant function f .x/� 1. Then
Z

C

f dV DVol.C /;

which is clearly not invariant under coordinate transformations, even if we just re-
strict attention to linear ones.

On the other hand, in Chapter 11 we showed that covector fields could be inte-
grated in a natural way along curves. Let us think a bit more geometrically about
why this is so. A covector field on a manifold M assigns a number to each tangent
vector, in such a way that multiplying the tangent vector by a constant has the effect
of multiplying the resulting number by the same constant. Thus, a covector field can
be thought of as assigning a “signed length meter” to each 1-dimensional subspace
of each tangent space (Fig. 16.1), and it does so in a coordinate-independent way.
Computing the line integral of a covector field, in effect, assigns a “length” to a
curve by using this varying measuring scale along the points of the curve.

Now we wish to seek a kind of “field” that can be integrated in a coordinate-
independent way over submanifolds of dimension k > 1. Its value at each point
should be something that we can interpret as a “signed volume meter” on k-
dimensional subspaces of the tangent space, a machine ! that accepts any k tangent
vectors .v1; : : : ; vk/ at a point and returns a number !.v1; : : : ; vk/ that we might
think of as the “signed volume” of the parallelepiped spanned by those vectors,
measured according to a scale determined by !.

The most obvious example of such a machine is the determinant in Rn. For ex-
ample, it is shown in most linear algebra texts that for any two vectors v1; v2 2R2,
det.v1; v2/ is, up to a sign, the area of the parallelogram spanned by v1; v2. It is not
hard to show (see Problem 16-1) that the analogous fact is true in all dimensions.
The determinant, remember, is an example of an alternating tensor.

Let us consider what properties we might expect a general “signed k-dimensional
volume meter” ! to have. To be consistent with our intuition about volume, multi-
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Fig. 16.2 Scaling by a constant Fig. 16.3 Sum of two vectors

plying any one of the vectors by a constant should scale the volume by that same
constant (Fig. 16.2),

and the volume of a k-dimensional parallelepiped formed by adding together two
vectors in the i th place should be the sum of the volumes of the two parallelepipeds
with the original vectors in the i th place (Fig. 16.3):

!.v1; : : : ; cvi ; : : : ; vk/D c!.v1; : : : ; vi ; : : : ; vk/;

!
�
v1; : : : ; vi C v

0
i ; : : : ; vk

�
D !.v1; : : : ; vi ; : : : ; vk/C!

�
v1; : : : ; v

0
i ; : : : ; vk

�
:

(Note that the vectors in Fig. 16.3 are all assumed to lie in one plane.) This suggests
that ! should be multilinear, and thus should be a covariant k-tensor.

There is one more property that we should expect: since a linearly dependent k-
tuple of vectors spans a parallelepiped of zero k-dimensional volume, ! should give
zero whenever it is applied to a such a k-tuple. By Lemma 14.1, this forces ! to be
alternating. Thus, alternating tensor fields are promising objects for integrating in a
coordinate-independent way. In this chapter, we show how this is done.

Integration of Differential Forms

Just as we began our treatment of line integrals by first defining integrals of 1-forms
over intervals in R, we begin here by defining integrals of n-forms over suitable
subsets of Rn. For the time being, let us restrict attention to the case n � 1. You
should make sure that you are familiar with the basic properties of multiple integrals
in Rn, as summarized in Appendix C.

Recall that a domain of integration in Rn is a bounded subset whose boundary
has measure zero. Let D � Rn be a domain of integration, and let ! be a (contin-
uous) n-form on xD. Any such form can be written as ! D f dx1 ^ � � � ^ dxn for
some continuous function f W xD!R. We define the integral of ! over D to be

Z

D

! D

Z

D

f dV:

This can be written more suggestively as
Z

D

f dx1 ^ � � � ^ dxn D

Z

D

f dx1 � � �dxn:
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In simple terms, to compute the integral of a form such as f dx1 ^ � � � ^ dxn, just
“erase the wedges”!

Somewhat more generally, let U be an open subset of Rn or Hn, and suppose !
is a compactly supported n-form on U . We define

Z

U

! D

Z

D

!;

where D �Rn or Hn is any domain of integration (such as a rectangle) containing
supp !, and ! is extended to be zero on the complement of its support. It is easy to
check that this definition does not depend on what domain D is chosen.

Like the definition of the integral of a 1-form over an interval, our definition of
the integral of an n-form might look like a trick of notation. The next proposition
shows why it is natural.

Proposition 16.1. SupposeD and E are open domains of integration in Rn or Hn,
and G W xD ! xE is a smooth map that restricts to an orientation-preserving or
orientation-reversing diffeomorphism from D to E . If ! is an n-form on xE , then

Z

D

G�! D

‚ Z

E

! if G is orientation-preserving;

�

Z

E

! if G is orientation-reversing:

Proof. Let us use
�
y1; : : : ; yn

�
to denote standard coordinates onE , and

�
x1; : : : ; xn

�

to denote those on D. Suppose first that G is orientation-preserving. With ! D
f dy1 ^ � � � ^ dyn, the change of variables formula (Theorem C.26) together with
formula (14.15) for pullbacks of n-forms yields

Z

E

! D

Z

E

f dV D

Z

D

.f ıG/ jdetDGj dV D
Z

D

.f ıG/.detDG/dV

D

Z

D

.f ıG/.detDG/dx1 ^ � � � ^ dxn D
Z

D

G�!:

IfG is orientation-reversing, the same computation holds except that a negative sign
is introduced when the absolute value signs are removed. �

We would like to extend this theorem to compactly supported n-forms defined
on open subsets. However, since we cannot guarantee that arbitrary open subsets or
arbitrary compact subsets are domains of integration, we need the following lemma.

Lemma 16.2. Suppose U is an open subset of Rn or Hn, and K is a compact
subset of U . Then there is an open domain of integration D such that K � D �
xD � U .

Proof. For each p 2K , there is an open ball or half-ball containing p whose clo-
sure is contained in U . By compactness, finitely many such sets B1; : : : ;Bm cover
K (Fig. 16.4). Since the boundary of an open ball is a codimension-1 submani-
fold, and the boundary of an open half-ball is contained in a union of two such
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Fig. 16.4 A domain of integration containing a compact set

submanifolds, the boundary of each has measure zero by Corollary 6.12. The set
D DB1 [ � � � [Bm is the required domain of integration. �

Proposition 16.3. Suppose U , V are open subsets of Rn or Hn, and G W U !
V is an orientation-preserving or orientation-reversing diffeomorphism. If ! is a
compactly supported n-form on V , then

Z

V

! D˙

Z

U

G�!;

with the positive sign ifG is orientation-preserving, and the negative sign otherwise.

Proof. Let E be an open domain of integration such that supp ! � E � xE � V
(Fig. 16.5). Since diffeomorphisms take interiors to interiors, boundaries to bound-
aries, and sets of measure zero to sets of measure zero, D D G�1.E/ � U is an
open domain of integration containing supp G�!. The result follows from Proposi-
tion 16.1. �

Integration on Manifolds

Using the results of the previous section, we can now make sense of the integral
of a differential form over an oriented manifold. Let M be an oriented smooth n-
manifold with or without boundary, and let ! be an n-form on M . Suppose first
that ! is compactly supported in the domain of a single smooth chart .U;'/ that is
either positively or negatively oriented. We define the integral of ! over M to be

Z

M

! D˙

Z

'.U /

�
'�1

��
!; (16.1)

with the positive sign for a positively oriented chart, and the negative sign otherwise.
(See Fig. 16.6.) Since .'�1/�! is a compactly supported n-form on the open subset
'.U /�Rn or Hn, its integral is defined as discussed above.

Proposition 16.4. With ! as above,
R
M ! does not depend on the choice of smooth

chart whose domain contains supp !.
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Fig. 16.5 Diffeomorphism invariance of the integral of a form on an open subset

Proof. Suppose .U;'/ and
�
zU ; z'

�
are two smooth charts such that supp ! � U \ zU

(Fig. 16.7). If both charts are positively oriented or both are negatively oriented, then
z' ı'�1 is an orientation-preserving diffeomorphism from '

�
U \ zU

�
to z'

�
U \ zU

�
,

so Proposition 16.3 implies that
Z

z'. zU/

�
z'�1

��
! D

Z

z'.U\ zU/

�
z'�1

��
! D

Z

'.U\ zU/

�
z' ı '�1

�� �
z'�1

��
!

D

Z

'.U\ zU/

�
'�1

��
.z'/�

�
z'�1

��
! D

Z

'.U /

�
'�1

��
!:

If the charts are oppositely oriented, then the two definitions given by (16.1) have
opposite signs, but this is compensated by the fact that z' ı '�1 is orientation-
reversing, so Proposition 16.3 introduces an extra negative sign into the computation
above. In either case, the two definitions of

R
M
! agree. �

To integrate over an entire manifold, we combine this definition with a partition
of unity. Suppose M is an oriented smooth n-manifold with or without boundary,
and ! is a compactly supported n-form on M . Let fUig be a finite open cover of
supp ! by domains of positively or negatively oriented smooth charts, and let f ig
be a subordinate smooth partition of unity. Define the integral of ! over M to be

Z

M

! D
X

i

Z

M

 i!: (16.2)

(The reason we allow for negatively oriented charts is that it may not be possible
to find positively oriented boundary charts on a 1-manifold with boundary, as noted
in the proof of Proposition 15.6.) Since for each i , the n-form  i! is compactly
supported in Ui , each of the terms in this sum is well defined according to our
discussion above. To show that the integral is well defined, we need only examine
the dependence on the open cover and the partition of unity.

Proposition 16.5. The definition of
R
M ! given above does not depend on the choice

of open cover or partition of unity.

Proof. Suppose
˚
zUj
�

is another finite open cover of supp ! by domains of posi-

tively or negatively oriented smooth charts, and
˚
z j
�

is a subordinate smooth parti-
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Fig. 16.6 The integral of a form over a manifold

tion of unity. For each i , we compute
Z

M

 i! D

Z

M

�X

j

z j

�
 i! D

X

j

Z

M

z j i!:

Summing over i , we obtain

X

i

Z

M

 i! D
X

i;j

Z

M

z j i!:

Observe that each term in this last sum is the integral of a form that is compactly
supported in a single smooth chart (e.g., in Ui ), so by Proposition 16.4 each term is
well defined, regardless of which coordinate map we use to compute it. The same
argument, starting with

R
M
z j!, shows that

X

j

Z

M

z j! D
X

i;j

Z

M

z j i!:

Thus, both definitions yield the same value for
R
M !. �

As usual, we have a special definition in the zero-dimensional case. The integral
of a compactly supported 0-form (i.e., a real-valued function) f over an oriented
0-manifold M is defined to be the sum

Z

M

f D
X

p2M

˙f .p/;

where we take the positive sign at points where the orientation is positive and the
negative sign at points where it is negative. The assumption that f is compactly
supported implies that there are only finitely many nonzero terms in this sum.

If S �M is an oriented immersed k-dimensional submanifold (with or without
boundary), and ! is a k-form on M whose restriction to S is compactly supported,
we interpret

R
S ! to mean

R
S 	
�
S!, where 	S W S ,!M is inclusion. In particular, if

M is a compact, oriented, smooth n-manifold with boundary and ! is an .n � 1/-
form on M; we can interpret

R
@M ! unambiguously as the integral of 	�

@M
! over

@M; where @M is always understood to have the induced orientation.
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Fig. 16.7 Coordinate independence of the integral

It is worth remarking that it is possible to extend the definition of the integral
to some noncompactly supported forms, and such integrals are important in many
applications. However, in such cases the resulting multiple integrals are improper,
so one must pay close attention to convergence issues. For the purposes we have in
mind, the cases we have described here are quite sufficient.

Proposition 16.6 (Properties of Integrals of Forms). SupposeM and N are non-
empty oriented smooth n-manifolds with or without boundary, and !;� are com-
pactly supported n-forms on M .

(a) LINEARITY: If a; b 2R, then
Z

M

a! C b�D a

Z

M

! C b

Z

M

�:

(b) ORIENTATION REVERSAL: If �M denotes M with the opposite orientation,
then Z

�M

! D�

Z

M

!:

(c) POSITIVITY: If ! is a positively oriented orientation form, then
R
M
! > 0.

(d) DIFFEOMORPHISM INVARIANCE: If F W N !M is an orientation-preserving
or orientation-reversing diffeomorphism, then

Z

M

! D

‚ Z

N

F �! if F is orientation-preserving;

�

Z

N

F �! if F is orientation-reversing:
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Proof. Parts (a) and (b) are left as an exercise. Suppose ! is a positively oriented
orientation form for M . This means that if .U;'/ is a positively oriented smooth
chart, then

�
'�1

��
! is a positive function times dx1^� � �^dxn, and for a negatively

oriented chart it is a negative function times the same form. Therefore, each term in
the sum (16.2) defining

R
M ! is nonnegative, with at least one strictly positive term,

thus proving (c).
To prove (d), it suffices to assume that ! is compactly supported in a single posi-

tively or negatively oriented smooth chart, because any compactly supported n-form
on M can be written as a finite sum of such forms by means of a partition of unity.
Thus, suppose .U;'/ is a positively oriented smooth chart on M whose domain
contains the support of !. When F is orientation-preserving, it is easy to check that�
F �1.U /;' ıF

�
is an oriented smooth chart on N whose domain contains the sup-

port of F �!, and the result then follows immediately from Proposition 16.3. The
cases in which the chart is negatively oriented or F is orientation-reversing then
follow from this result together with (b). �

I Exercise 16.7. Prove parts (a) and (b) of the preceding proposition.

Although the definition of the integral of a form based on partitions of unity is
very convenient for theoretical purposes, it is useless for doing actual computations.
It is generally quite difficult to write down a smooth partition of unity explicitly, and
even when one can be written down, one would have to be exceptionally lucky to be
able to compute the resulting integrals (think of trying to integrate e�1=x).

For computational purposes, it is much more convenient to “chop up” the mani-
fold into a finite number of pieces whose boundaries are sets of measure zero, and
compute the integral on each piece separately by means of local parametrizations.
One way to do this is described below.

Proposition 16.8 (Integration Over Parametrizations). Let M be an oriented
smooth n-manifold with or without boundary, and let ! be a compactly supported
n-form on M . Suppose D1; : : : ;Dk are open domains of integration in Rn, and for
i D 1; : : : ; k, we are given smooth maps Fi W xDi !M satisfying

(i) Fi restricts to an orientation-preserving diffeomorphism fromDi onto an open
subset Wi �M ;

(ii) Wi \Wj D¿ when i ¤ j ;
(iii) supp ! � SW1 [ � � � [ SWk .

Then
Z

M

! D

kX

iD1

Z

Di

F �i !: (16.3)

Proof. As in the preceding proof, it suffices to assume that ! is supported in the do-
main of a single oriented smooth chart .U;'/. In fact, by restricting to sufficiently
nice charts, we may assume that U is precompact, Y D '.U / is a domain of inte-
gration in Rn or Hn, and ' extends to a diffeomorphism from xU to xY .



Integration of Differential Forms 409

Fig. 16.8 Integrating over parametrizations

For each i , define open subsets Ai �Di , Bi �Wi , and Ci � Y (Fig. 16.8) by

Ai D F
�1
i

�
U \Wi

�
; Bi D U \Wi D Fi .Ai /; Ci D '.Bi /D 'i ıFi .Ai /:

Because xDi is compact, it is straightforward to check that @Wi � Fi .@Di /, and
therefore @Wi has measure zero in M; and @Ci D '.@Bi / has measure zero in Rn.

The support of
�
'�1

��
! is contained in xC1 [ � � � [ xCk , and any two of these

sets intersect only on their boundaries, which have measure zero. Thus by Proposi-
tion C.23,

Z

M

! D

Z

Y

�
'�1

��
! D

kX

iD1

Z

Ci

�
'�1

��
!:

The proof is completed by applying Proposition 16.1 to each term above, using the
diffeomorphism ' ıFi W Ai ! Ci :

Z

Ci

�
'�1

��
! D

Z

Ai

.' ıFi /
�
�
'�1

��
! D

Z

Ai

F �i ! D

Z

Di

F �i !:

Summing over i , we obtain (16.3). �

Example 16.9. Let us use this technique to compute the integral of a 2-form
over S2, oriented as the boundary of xB3. Let ! be the following 2-form on R3:

! D x dy ^ dzC y dz ^ dxC z dx ^ dy:

Let D be the open rectangle .0;�/ � .0; 2�/, and let F W xD ! S2 be the spher-
ical coordinate parametrization F.'; �/ D .sin' cos�; sin' sin�; cos'/. Exam-
ple 15.28 showed that F jD is orientation-preserving, so it satisfies the hypotheses
of Proposition 16.8. Note that

F � dx D cos' cos� d' � sin' sin� d�;

F � dy D cos' sin� d' C sin' cos� d�;

F � dz D � sin' d':
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Therefore,
Z

S2
! D

Z

D

�
� sin3 ' cos2 � d� ^ d' C sin3 ' sin2 � d' ^ d�

C cos2 ' sin' cos2 � d' ^ d� � cos2 ' sin' sin2 � d� ^ d'
�

D

Z

D

sin' d' ^ d� D
Z 2�

0

Z �

0

sin' d' d� D 4�: //

It is worth remarking that the hypotheses of Proposition 16.8 can be relaxed
somewhat. The requirement that each map Fi be smooth on xDi is included to ensure
that the boundaries of the image sets Wi have measure zero and that the pullback
forms F �i ! are continuous on xDi . Provided the open subsets Wi together fill up
all of M except for a set of measure zero, we can allow maps Fi that do not ex-
tend smoothly to the boundary, by interpreting the resulting integrals of unbounded
forms either as improper Riemann integrals or as Lebesgue integrals. For example,
if the closed upper hemisphere of S2 is parametrized by the map F W xB2! S2 given
by F.u; v/D

�
u;v;
p
1� u2 � v2

�
, then F is continuous but not smooth up to the

boundary, but the conclusion of the proposition still holds. We leave it to the inter-
ested reader to work out reasonable conditions under which such a generalization of
Proposition 16.8 holds.

Integration on Lie Groups

Let G be a Lie group. A covariant tensor field A on G is said to be left-invariant if
L�gADA for all g 2G.

Proposition 16.10. Let G be a compact Lie group endowed with a left-invariant
orientation. Then G has a unique positively oriented left-invariant n-form !G with
the property that

R
G !G D 1.

Proof. If dimG D 0, we just let !G be the constant function 1=k, where k is the
cardinality of G. Otherwise, let E1; : : : ;En be a left-invariant global frame on G
(i.e., a basis for the Lie algebra of G). By replacing E1 with �E1 if necessary, we
may assume that this frame is positively oriented. Let "1; : : : ; "n be the dual coframe.
Left invariance of Ej implies that

�
L�g"

i
�
.Ej /D "

i .Lg�Ej /D "
i .Ej /D ı

i
j ;

which shows that L�g"
i D "i , so "i is left-invariant.

Let !G D "1 ^ � � � ^ "n. Then

L�g.!G/DL
�
g"
1 ^ � � � ^L�g"

n D "1 ^ � � � ^ "n D !G ;

so !G is left-invariant as well. Because !G.E1; : : : ;En/D 1 > 0, !G is an orien-
tation form for the given orientation. Clearly, any positive constant multiple of !G
is also a left-invariant orientation form. Conversely, if z!G is any other left-invariant
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Fig. 16.9 Proof of Stokes’s theorem

orientation form, we can write z!G je D c!G je for some positive number c. Using
left-invariance, we find that

z!G jg DL
�
g�1
z!G je D cL

�
g�1

!G je D c!G jg ;

which proves that z!G is a positive constant multiple of !G .
Since G is compact and oriented,

R
G
!G is a positive real number, so we can

define z!G D
�R
G
!G
�
�1!G . Clearly, z!G is the unique positively oriented left-

invariant orientation form with integral 1. �

Remark. The orientation form whose existence is asserted in this proposition is
called the Haar volume form on G . Similarly, the map f 7!

R
G f !G is called the

Haar integral. Observe that the proof above did not use the fact thatG was compact
until the last paragraph; thus every Lie group has a left-invariant orientation form
that is uniquely defined up to a constant multiple. It is only in the compact case,
however, that we can use the volume normalization to single out a unique one.

Stokes’s Theorem

In this section we state and prove the central result in the theory of integration on
manifolds, Stokes’s theorem. It is a far-reaching generalization of the fundamental
theorem of calculus and of the classical theorems of vector calculus.

Theorem 16.11 (Stokes’s Theorem). Let M be an oriented smooth n-manifold
with boundary, and let ! be a compactly supported smooth .n � 1/-form on M .
Then Z

M

d! D

Z

@M

!: (16.4)

Remark. The statement of this theorem is concise and elegant, but it requires a bit
of interpretation. First, as usual, @M is understood to have the induced (Stokes) ori-
entation, and the ! on the right-hand side is to be interpreted as 	�

@M
!. If @M D¿,

then the right-hand side is to be interpreted as zero. When M is 1-dimensional, the
right-hand integral is really just a finite sum.
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With these understandings, we proceed with the proof of the theorem. You should
check that it works correctly when nD 1 and when @M D¿.

Proof. We begin with a very special case: suppose M is the upper half-space Hn

itself. Then because ! has compact support, there is a number R > 0 such that
supp ! is contained in the rectangleAD Œ�R;R��� � �� Œ�R;R�� Œ0;R� (Fig. 16.9).
We can write ! in standard coordinates as

! D

nX

iD1

!i dx
1 ^ � � � ^bdxi ^ � � � ^ dxn;

where the hat means that dxi is omitted. Therefore,

d! D

nX

iD1

d!i ^ dx
1 ^ � � � ^bdxi ^ � � � ^ dxn

D

nX

i;jD1

@!i

@xj
dxj ^ dx1 ^ � � � ^bdxi ^ � � � ^ dxn

D

nX

iD1

.�1/i�1
@!i

@xi
dx1 ^ � � � ^ dxn:

Thus we compute

Z

Hn
d! D

nX

iD1

.�1/i�1
Z

A

@!i

@xi
dx1 ^ � � � ^ dxn

D

nX

iD1

.�1/i�1
Z R

0

Z R

�R

� � �

Z R

�R

@!i

@xi
.x/dx1 � � �dxn:

We can change the order of integration in each term so as to do the xi integration
first. By the fundamental theorem of calculus, the terms for which i ¤ n reduce to

n�1X

iD1

.�1/i�1
Z R

0

Z R

�R

� � �

Z R

�R

@!i

@xi
.x/dx1 � � �dxn

D

n�1X

iD1

.�1/i�1
Z R

0

Z R

�R

� � �

Z R

�R

@!i

@xi
.x/dxi dx1 � � �bdxi � � �dxn

D

n�1X

iD1

.�1/i�1
Z R

0

Z R

�R

� � �

Z R

�R

h
!i .x/

ixiDR

xiD�R
dx1 � � �bdxi � � �dxn D 0;



Stokes’s Theorem 413

because we have chosen R large enough that ! D 0 when xi D˙R. The only term
that might not be zero is the one for which i D n. For that term we have

Z

Hn
d! D .�1/n�1

Z R

�R

� � �

Z R

�R

Z R

0

@!n

@xn
.x/dxn dx1 � � �dxn�1

D .�1/n�1
Z R

�R

� � �

Z R

�R

h
!n.x/

ixnDR

xnD0
dx1 � � �dxn�1

D .�1/n
Z R

�R

� � �

Z R

�R

!n
�
x1; : : : ; xn�1; 0

�
dx1 � � �dxn�1; (16.5)

because !n D 0 when xn DR.
To compare this to the other side of (16.4), we compute as follows:
Z

@Hn
! D

X

i

Z

A\@Hn
!i
�
x1; : : : ; xn�1; 0

�
dx1 ^ � � � ^bdxi ^ � � � ^ dxn:

Because xn vanishes on @Hn, the pullback of dxn to the boundary is identically
zero (see Exercise 11.30). Thus, the only term above that is nonzero is the one for
which i D n, which becomes

Z

@Hn
! D

Z

A\@Hn
!n
�
x1; : : : ; xn�1; 0

�
dx1 ^ � � � ^ dxn�1:

Taking into account the fact that the coordinates
�
x1; : : : ; xn�1

�
are positively ori-

ented for @Hn when n is even and negatively oriented when n is odd (Exam-
ple 15.26), we find that this is equal to (16.5).

Next we consider another special case: M D Rn. In this case, the support of !
is contained in a cube of the form A D Œ�R;R�n. Exactly the same computation
goes through, except that in this case the i D n term vanishes like all the others, so
the left-hand side of (16.4) is zero. Since M has empty boundary in this case, the
right-hand side is zero as well.

Now let M be an arbitrary smooth manifold with boundary, but consider an
.n� 1/-form ! that is compactly supported in the domain of a single positively
or negatively oriented smooth chart .U;'/. Assuming that ' is a positively oriented
boundary chart, the definition yields

Z

M

d! D

Z

Hn

�
'�1

��
d! D

Z

Hn
d
	�
'�1

��
!


:

By the computation above, this is equal to
Z

@Hn

�
'�1

��
!; (16.6)

where @Hn is given the induced orientation. Since d' takes outward-pointing vec-
tors on @M to outward-pointing vectors on Hn (by Proposition 5.41), it follows
that 'jU\@M is an orientation-preserving diffeomorphism onto '.U / \ @Hn, and



414 16 Integration on Manifolds

thus (16.6) is equal to
R
@M
!. For a negatively oriented smooth boundary chart, the

same argument applies with an additional negative sign on each side of the equation.
For an interior chart, we get the same computations with Hn replaced by Rn. This
proves the theorem in this case.

Finally, let ! be an arbitrary compactly supported smooth .n� 1/-form. Choos-
ing a cover of supp ! by finitely many domains of positively or negatively oriented
smooth charts fUig, and choosing a subordinate smooth partition of unity f ig, we
can apply the preceding argument to  i! for each i and obtain

Z

@M

! D
X

i

Z

@M

 i! D
X

i

Z

M

d. i!/D
X

i

Z

M

d i ^! C i d!

D

Z

M

d

�X

i

 i

�
^! C

Z

M

�X

i

 i

�
d! D 0C

Z

M

d!;

because
P
i  i � 1. �

Example 16.12. Let M be a smooth manifold and suppose � W Œa; b� ! M is
a smooth embedding, so that S D �.Œa; b�/ is an embedded 1-submanifold with
boundary in M . If we give S the orientation such that � is orientation-preserving,
then for any smooth function f 2 C1.M/, Stokes’s theorem says that

Z

�

df D

Z

Œa;b	

�� df D

Z

S

df D

Z

@S

f D f
�
�.b/

�
� f

�
�.a/

�
:

Thus Stokes’s theorem reduces to the fundamental theorem for line integrals (Theo-
rem 11.39) in this case. In particular, when � W Œa; b�!R is the inclusion map, then
Stokes’s theorem is just the ordinary fundamental theorem of calculus. //

Two special cases of Stokes’s theorem arise so frequently that they are worthy of
special note. The proofs are immediate.

Corollary 16.13 (Integrals of Exact Forms). If M is a compact oriented smooth
manifold without boundary, then the integral of every exact form over M is zero:

Z

M

d! D 0 if @M D¿: �

Corollary 16.14 (Integrals of Closed Forms over Boundaries). Suppose M is a
compact oriented smooth manifold with boundary. If ! is a closed form on M; then
the integral of ! over @M is zero:

Z

@M

! D 0 if d! D 0 on M: �

These results have the following extremely useful applications to submanifolds.

Corollary 16.15. Suppose M is a smooth manifold with or without boundary,
S �M is an oriented compact smooth k-dimensional submanifold (without bound-
ary), and ! is a closed k-form on M . If

R
S ! ¤ 0, then both of the following are

true:
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(a) ! is not exact on M .
(b) S is not the boundary of an oriented compact smooth submanifold with bound-

ary in M . �

Example 16.16. It follows from the computation of Example 11.36 that the closed
1-form ! D .x dy � y dx/=

�
x2 C y2

�
has nonzero integral over S1. We already

observed that ! is not exact on R2Xf0g. The preceding corollary tells us in addition
that S1 is not the boundary of a compact regular domain in R2 X f0g. //

The following classical result is an easy application of Stokes’s theorem.

Theorem 16.17 (Green’s Theorem). Suppose D is a compact regular domain
in R2, and P , Q are smooth real-valued functions on D. Then

Z

D

�
@Q

@x
�
@P

@y

�
dx dy D

Z

@D

P dxCQdy:

Proof. This is just Stokes’s theorem applied to the 1-form P dxCQdy. �

Manifolds with Corners

In many applications of Stokes’s theorem it is necessary to deal with geometric ob-
jects such as triangles, squares, or cubes that are topological manifolds with bound-
ary, but are not smooth manifolds with boundary because they have “corners.” It is
easy to generalize Stokes’s theorem to this setting, and we do so in this section.

Let xRnC denote the subset of Rn where all of the coordinates are nonnegative:

xRnC D
˚�
x1; : : : ; xn

�
2Rn W x1 � 0; : : : ; xn � 0

�
:

This space is the model for the type of corners we are concerned with.

I Exercise 16.18. Prove that xRnC is homeomorphic to the upper half-space Hn.

Suppose M is a topological n-manifold with boundary. A chart with corners for
M is a pair .U;'/, where U �M is open and ' is a homeomorphism from U to
a (relatively) open subset yU � xRnC (Fig. 16.10). Two charts with corners .U;'/,
.V; / are smoothly compatible if the composite map ' ı  �1 W  .U \ V / !

'.U \ V / is smooth. (As usual, this means that it admits a smooth extension in
an open neighborhood of each point.)

A smooth structure with corners on a topological manifold with boundary is a
maximal collection of smoothly compatible interior charts and charts with corners
whose domains cover M . A topological manifold with boundary together with a
smooth structure with corners is called a smooth manifold with corners. Any chart
with corners in the given smooth structure with corners is called a smooth chart
with corners for M .

Example 16.19. Any closed rectangle in Rn is a smooth n-manifold with corners. //
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Fig. 16.10 A chart with corners

Because of the result of Exercise 16.18, charts with corners are topologically
indistinguishable from boundary charts. Thus, from the topological point of view
there is no difference between manifolds with boundary and manifolds with corners.
The difference is in the smooth structure, because in dimensions greater than 1, the
compatibility condition for charts with corners is different from that for boundary
charts. In the case nD 1, though, xR1C is actually equal to H1, so smooth 1-manifolds
with corners are no different from smooth manifolds with boundary.

The boundary of xRnC in Rn is the set of points at which at least one coordinate
vanishes. The points in xRnC at which more than one coordinate vanishes are called
its corner points. For example, the corner points of xR3C are the origin together with
all the points on the positive x-, y-, and z-axes.

Proposition 16.20 (Invariance of Corner Points). Let M be a smooth n-manifold
with corners, n � 2, and let p 2M . If '.p/ is a corner point for some smooth
chart with corners .U;'/, then the same is true for every such chart whose domain
contains p.

Proof. Suppose .U;'/ and .V; / are two smooth charts with corners such that
'.p/ is a corner point but  .p/ is not (Fig. 16.11). To simplify notation, let us
assume without loss of generality that '.p/ has coordinates

�
x1; : : : ; xk; 0; : : : ; 0

�

with k � n � 2. Then  .V / contains an open subset of some .n � 1/-dimensional
linear subspace S �Rn, with  .p/ 2 S . (If  .p/ 2 @xRnC, take S to be the unique
subspace defined by an equation of the form xi D 0 that contains  .p/. If  .p/ is
an interior point, any .n� 1/-dimensional subspace containing  .p/ will do.)

Let S 0 D S \ .U \V /, and let ˛ W S 0!Rn be the restriction of ' ı �1 to S 0.
Because ' ı  �1 is a diffeomorphism from  .U \ V / to '.U \ V /, it follows
that  ı '�1 ı ˛ is the identity of S 0, and therefore d˛ .p/ is an injective linear
map. Let T D d˛ .p/.T .p/S/ � Rn. Because T is .n � 1/-dimensional, it must
contain a vector v such that one of the last two components, vn�1 or vn, is nonzero
(otherwise, T would be contained in a codimension-2 subspace). Renumbering the
coordinates and replacing v by �v if necessary, we may assume that vn < 0.

Now let � W .�"; "/ ! S be a smooth curve such that �.0/ D p and
d˛
�
� 0.0/

�
D v. Then ˛ ı �.t/ has negative xn coordinate for small t > 0, which

contradicts the fact that ˛ takes its values in xRnC. �
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Fig. 16.11 Invariance of corner points

If M is a smooth manifold with corners, a point p 2M is called a corner point
if '.p/ is a corner point in xRnC with respect to some (and hence every) smooth chart
with corners .U;'/. Similarly, p is called a boundary point if '.p/ 2 @xRnC with
respect to some (hence every) such chart. For example, the set of corner points of
the unit cube Œ0; 1�3 �R3 is the union of its eight vertices and twelve edges.

Every smooth manifold with or without boundary is also a smooth manifold with
corners (but with no corner points). Conversely, a smooth manifold with corners is a
smooth manifold with boundary if and only if it has no corner points. The boundary
of a smooth manifold with corners, however, is in general not a smooth manifold
with corners (e.g., think of the boundary of a cube). In fact, even the boundary of
xRnC itself is not a smooth manifold with corners. It is, however, a union of finitely
many such: @xRnC DH1 [ � � � [Hn, where

Hi D
˚�
x1; : : : ; xn

�
2 xRnC W x

i D 0
�

(16.7)

is an .n� 1/-dimensional smooth manifold with corners contained in the subspace
defined by xi D 0.

The usual flora and fauna of smooth manifolds—smooth maps, partitions of
unity, tangent vectors, covectors, tensors, differential forms, orientations, and in-
tegrals of differential forms—can be defined on smooth manifolds with corners in
exactly the same way as we have done for smooth manifolds and smooth mani-
folds with boundary, using smooth charts with corners in place of smooth boundary
charts. The details are left to the reader.

In addition, for Stokes’s theorem we need to integrate a differential form over
the boundary of a smooth manifold with corners. Since the boundary is not itself
a smooth manifold with corners, this requires a separate (albeit routine) definition.
LetM be an oriented smooth n-manifold with corners, and suppose ! is an .n�1/-
form on @M that is compactly supported in the domain of a single oriented smooth
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Fig. 16.12 Parametrizing the boundary of the square

chart with corners .U;'/. We define the integral of ! over @M by

Z

@M

! D

nX

iD1

Z

Hi

�
'�1

��
!;

whereHi , defined by (16.7), is given the induced orientation as part of the boundary
of the set where xi � 0. In other words, we simply integrate ! in coordinates over
the codimension-1 portion of the boundary. Finally, if ! is an arbitrary compactly
supported .n � 1/-form on M; we define the integral of ! over @M by piecing
together with a partition of unity just as in the case of a manifold with boundary.

In practice, of course, one does not evaluate such integrals by using partitions
of unity. Instead, one “chops up” the boundary into pieces that can be parametrized
by domains of integration, just as for ordinary manifolds with or without boundary.
The following proposition is an analogue of Proposition 16.8.

Proposition 16.21. The statement of Proposition 16.8 is true if M is replaced by
the boundary of a compact, oriented, smooth n-manifold with corners.

I Exercise 16.22. Show how the proof of Proposition 16.8 needs to be adapted to
prove Proposition 16.21.

Example 16.23. Let I � I D Œ0; 1�� Œ0; 1� be the unit square in R2, and suppose !
is a 1-form on @.I � I /. Then it is not hard to check that the maps Fi W I ! I � I

given by
F1.t/D .t; 0/; F2.t/D .1; t/;

F3.t/D .1� t; 1/; F4.t/D .0; 1� t/;
(16.8)

satisfy the hypotheses of Proposition 16.21. (These four curve segments in sequence
traverse the boundary of I � I in the counterclockwise direction; see Fig. 16.12.)
Therefore,

Z

@.I�I/

! D

Z

F1

! C

Z

F2

! C

Z

F3

! C

Z

F4

!: //

I Exercise 16.24. Verify the claims of the preceding example.

The next theorem is the main result of this section.
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Fig. 16.13 Stokes’s theorem for manifolds with corners

Theorem 16.25 (Stokes’s Theorem on Manifolds with Corners). Let M be an
oriented smooth n-manifold with corners, and let ! be a compactly supported
smooth .n� 1/-form on M . Then

Z

M

d! D

Z

@M

!:

Proof. The proof is nearly identical to the proof of Stokes’s theorem proper, so we
just indicate where changes need to be made. By means of smooth charts and a
partition of unity, we may reduce the theorem to the case in which either M DRn

or M D xRnC. The Rn case yields zero on both sides of the equation, just as before.
In the case of a chart with corners, ! is supported in some cube Œ0;R�n (Fig. 16.13),
and we calculate exactly as in the proof of Theorem 16.11:

Z

xRn
C

d! D

nX

iD1

.�1/i�1
Z R

0

� � �

Z R

0

@!i

@xi
.x/dx1 � � �dxn

D

nX

iD1

.�1/i�1
Z R

0

� � �

Z R

0

@!i

@xi
.x/dxi dx1 � � �bdxi � � �dxn

D

nX

iD1

.�1/i�1
Z R

0

� � �

Z R

0

�
!i .x/

�xiDR
xiD0

dx1 � � �bdxi � � �dxn

D

nX

iD1

.�1/i
Z R

0

� � �

Z R

0

!i
�
x1; : : : ; 0; : : : ; xn

�
dx1 � � �bdxi � � �dxn

D

nX

iD1

Z

Hi

! D

Z

@xRn
C

!:

(The factor .�1/i disappeared because the induced orientation onHi is .�1/i times

that of the standard coordinates
�
x1; : : : ; bxi ; : : : ; xn

�
.) This completes the proof. �

The preceding theorem has the following important application.

Theorem 16.26. Suppose M is a smooth manifold and �0; �1 W Œa; b�! M are
path-homotopic piecewise smooth curve segments. For every closed 1-form ! onM;
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Fig. 16.14 Homotopic piecewise smooth curve segments

Z

�0

! D

Z

�1

!:

Proof. By means of an affine reparametrization, we may as well assume for simplic-
ity that Œa; b�D Œ0; 1�. Assume first that �0 and �1 are smooth. By Theorem 6.29,
�0 and �1 are smoothly homotopic relative to f0; 1g. Let H W I � I !M be such a
smooth homotopy. Since ! is closed, we have

Z

I�I

d.H�!/D

Z

I�I

H� d! D 0:

On the other hand, I � I is a smooth manifold with corners, so Stokes’s theorem
implies

0D

Z

I�I

d.H�!/D

Z

@.I�I/

H�!:

Using the parametrization of @.I � I / given in Example 16.23 together with Propo-
sition 11.34(d), we obtain

0D

Z

@.I�I/

H�! D

Z

F1

H�! C

Z

F2

H�! C

Z

F3

H�! C

Z

F4

H�!

D

Z

HıF1

! C

Z

HıF2

! C

Z

HıF3

! C

Z

HıF4

!;

where F1;F2;F3;F4 are defined by (16.8). The fact thatH is a homotopy relative to
f0; 1gmeans thatH ıF2 andH ıF4 are constant maps, and therefore the second and
fourth terms above are zero. The theorem then follows from the facts that H ıF1 D
�0 and H ıF3 is a backward reparametrization of �1.

Next we consider the general case of piecewise smooth curves. We cannot simply
apply the preceding result on each subinterval where �0 and �1 are smooth, because
the restricted curves may not start and end at the same points. Instead, we prove
the following more general claim: Let �0; �1 W I !M be piecewise smooth curve
segments (not necessarily with the same endpoints), and suppose H W I � I !M

is any homotopy between them (Fig. 16.14). Define curve segments �0; �1 W I !M

by

�0.t/DH.0; t/; �1.t/DH.1; t/;
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and let z�0; z�1 be any smooth curve segments that are path-homotopic to �0; �1
respectively. Then

Z

�1

! �

Z

�0

! D

Z

z�1

! �

Z

z�0

!: (16.9)

When specialized to the case in which �0 and �1 are path-homotopic, this implies
the theorem, because �0 and �1 are constant maps in that case.

Since �0 and �1 are piecewise smooth, there are only finitely many points
fa1; : : : ; amg in .0; 1/ at which either �0 or �1 is not smooth. We prove the claim by
induction on the number m of such points. When mD 0, both curves are smooth,
and by Theorem 6.29 we may replace the given homotopy H by a smooth ho-
motopy zH . Recall from the proof of Theorem 6.29 that the smooth homotopy zH
can actually be taken to be homotopic to H relative to I � f0g [ I � f1g. Thus, for
i D 0; 1, the curve z�i .t/D zH.i; t/ is a smooth curve segment that is path-homotopic
to �i . In this setting, (16.9) just reduces to the integration formula of Example 16.23.
Note that the integrals over z�0 and z�1 do not depend on which smooth curves path-
homotopic to �0 and �1 are chosen, by the smooth case proved above.

Now let �0; �1 be homotopic piecewise smooth curves with m nonsmooth points
fa1; : : : ; amg, and suppose the claim is true for curves with fewer thanm such points.
For i D 0; 1, let � 0i be the restriction of �i to Œ0; am�, and let � 00i be its restriction to
Œam; 1�. Let � W I !M be the curve segment �.t/ D H.am; t /, and let z� by any
smooth curve segment that is path-homotopic to � . Then, since � 0i and � 00i have
fewer than m nonsmooth points, the inductive hypothesis implies

Z

�1

! �

Z

�0

! D

�Z

� 0
1

! �

Z

� 0
0

!

�
C

�Z

� 00
1

! �

Z

� 00
0

!

�

D

�Z

z�

! �

Z

z�0

!

�
C

�Z

z�1

! �

Z

z�

!

�

D

Z

z�1

! �

Z

z�0

!: �

Corollary 16.27. On a simply connected smooth manifold, every closed 1-form is
exact.

Proof. SupposeM is simply connected and ! is a closed 1-form onM . Since every
piecewise smooth closed curve segment inM is path-homotopic to a constant curve,
the preceding theorem shows that the integral of ! over every such curve is equal
to 0. Thus, ! is conservative and therefore exact. �

Integration on Riemannian Manifolds

In this section we explore what happens when the theory of integration and Stokes’s
theorem are specialized to Riemannian manifolds.



422 16 Integration on Manifolds

Integration of Functions on Riemannian Manifolds

We noted at the beginning of the chapter that real-valued functions cannot be inte-
grated in a coordinate-independent way on an arbitrary manifold. However, with the
additional structures of a Riemannian metric and an orientation, we can recover the
notion of the integral of a real-valued function.

Suppose .M;g/ is an oriented Riemannian manifold with or without boundary,
and let !g denote its Riemannian volume form. If f is a compactly supported con-
tinuous real-valued function on M; then f!g is a compactly supported n-form, so
we can define the integral of f over M to be

R
M f!g . If M itself is compact, we

define the volume of M by Vol.M/D
R
M !g .

Because of these definitions, the Riemannian volume form is often denoted by
dVg (or dAg or dsg in the 2-dimensional or 1-dimensional case, respectively). Then
the integral of f over M is written

R
M
f dVg , and the volume of M as

R
M
dVg .

Be warned, however, that this notation is not meant to imply that the volume form
is the exterior derivative of an .n� 1/-form; in fact, as we will see when we study
de Rham cohomology, this is never the case on a compact manifold. You should just
interpret dVg as a notational convenience.

Proposition 16.28. Let .M;g/ be a nonempty oriented Riemannian manifold with
or without boundary, and suppose f is a compactly supported continuous real-
valued function on M satisfying f � 0. Then

R
M f dVg � 0, with equality if and

only if f � 0.

Proof. If f is supported in the domain of a single oriented smooth chart .U;'/,
then Proposition 15.31 shows that

Z

M

f dVg D

Z

'.U /

f .x/

q
det.gij / dx

1 � � �dxn � 0:

The same inequality holds in a negatively oriented chart because the negative sign
from the chart cancels the negative sign in the expression for dVg . The general
case follows from this one, because

R
M f dVg is equal to a sum of terms likeR

M
 if dVg , where each integrand  if is nonnegative and supported in a sin-

gle smooth chart. If in addition f is positive somewhere, then it is positive on a
nonempty open subset by continuity, so at least one of the integrals in this sum is
positive. On the other hand, if f is identically zero, then clearly

R
M
f dVg D 0. �

I Exercise 16.29. Suppose .M;g/ is an oriented Riemannian manifold and f W M !R
is continuous and compactly supported. Prove that

ˇ
ˇ R
M f dVg

ˇ
ˇ�

R
M jf jdVg .

The Divergence Theorem

Let .M;g/ be an oriented Riemannian n-manifold (with or without boundary). We
can generalize the classical divergence operator to this setting as follows. Multi-
plication by the Riemannian volume form defines a smooth bundle isomorphism
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W C1.M/!�n.M/:

f D f dVg : (16.10)

In addition, as we did in Chapter 14 in the case of R3, we define a smooth bundle
isomorphism ˇ W X.M/!�n�1.M/ as follows:

ˇ.X/DX ³ dVg : (16.11)

We need the following technical lemma.

Lemma 16.30. Let .M;g/ be an oriented Riemannian manifold with or without
boundary. Suppose S �M is an immersed hypersurface with the orientation deter-
mined by a unit normal vector field N , and zg is the induced metric on S . If X is any
vector field along S , then

	�S
�
ˇ.X/

�
D hX;N ig dVzg : (16.12)

Proof. Define two vector fields X> and X? along S by

X? D hX;N igN;

X> D X �X?:

Then X DX?CX>, where X? is normal to S and X> is tangent to it. Using this
decomposition,

ˇ.X/DX? ³ dVg CX
> ³ dVg :

Now pull back to S . Proposition 15.32 shows that the first term simplifies to

	�S
�
X? ³ dVg

�
D hX;N ig 	

�
S .N ³ dVg/D hX;N igdVzg :

Thus (16.12) will be proved if we can show that 	�S
�
X>³dVg

�
D 0. IfX1; : : : ;Xn�1

are any vectors tangent to S , then
�
X> ³ dVg

�
.X1; : : : ;Xn�1/D dVg

�
X>;X1; : : : ;Xn�1

�
D 0;

because any n-tuple of vectors in an .n � 1/-dimensional vector space is linearly
dependent. �

Define the divergence operator div W X.M/! C1.M/ by

divX D�1 d
�
ˇ.X/

�
;

or equivalently,

d.X ³ dVg/D .divX/dVg :

I Exercise 16.31. Show that divergence operator on an oriented Riemannian man-
ifold does not depend on the choice of orientation, and conclude that it is invariantly
defined on all Riemannian manifolds.



424 16 Integration on Manifolds

Fig. 16.15 Geometric interpretation of the divergence

The next theorem is a fundamental result about vector fields on Riemannian man-
ifolds. In the special case of a compact regular domain in R3, it is often referred to
as Gauss’s theorem. (Later in the chapter, we will show that this theorem holds on
nonorientable manifolds as well; see Theorem 16.48.)

Theorem 16.32 (The Divergence Theorem). Let .M;g/ be an oriented Riemann-
ian manifold with boundary. For any compactly supported smooth vector field X
on M;

Z

M

.divX/dVg D
Z

@M

hX;N ig dVzg ;

where N is the outward-pointing unit normal vector field along @M and zg is the
induced Riemannian metric on @M .

Proof. By Stokes’s theorem,
Z

M

.divX/dVg D
Z

M

d
�
ˇ.X/

�
D

Z

@M

	�Sˇ.X/:

The divergence theorem then follows from Lemma 16.30. �

The term “divergence” is used because of the following geometric interpretation.
A smooth flow � onM is said to be volume-preserving if for every compact regular
domain D, we have Vol

�
�t .D/

�
DVol.D/ whenever the domain of �t contains D.

It is called volume-increasing, volume-decreasing, volume-nonincreasing, or
volume-nondecreasing if for every such D, Vol

�
�t .D/

�
is strictly increasing,

strictly decreasing, nonincreasing, or nondecreasing, respectively, as a function of t .
Note that the properties of flow domains ensure that if D is contained in the domain
of �t for some t , then the same is true for all times between 0 and t .

The next proposition shows that the divergence of a vector field can be interpreted
as a measure of the tendency of its flow to “spread out,” or diverge (see Fig. 16.15).

Proposition 16.33 (Geometric Interpretation of the Divergence). Let M be an
oriented Riemannian manifold, let X 2 X.M/, and let � be the flow of X . Then �
is

(a) volume-preserving if and only if divX D 0 everywhere on M .
(b) volume-nondecreasing if and only if divX � 0 everywhere on M .
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(c) volume-nonincreasing if and only if divX � 0 everywhere on M .
(d) volume-increasing if and only if divX > 0 on a dense subset of M .
(e) volume-decreasing if and only if divX < 0 on a dense subset of M .

Proof. First we establish some preliminary results. For each t 2 R, let Mt be the
domain of �t . If D is a compact regular domain contained in Mt , then �t is an
orientation-preserving diffeomorphism from D to �t .D/ by the result of Prob-
lem 15-4, so

Vol
�
�t .D/

�
D

Z

�t .D/

dVg D

Z

D

��t dVg :

Because the integrand on the right depends smoothly on .t;p/ in the domain of � ,
we can differentiate this expression with respect to t by differentiating under the
integral sign. (Strictly speaking, we should use a partition of unity to express the
integral as a sum of integrals over domains in Rn, and then differentiate under the
integral signs there; but the result is the same. The details are left to you.)

Using Cartan’s magic formula for the Lie derivative of the Riemannian volume
form, we obtain

LXdVg DX ³ d.dVg/C d.X ³ dVg/D .divX/dVg ;

because d.dVg/ is an .n C 1/-form on an n-manifold. Then Proposition 12.36
implies

d

dt

ˇ̌
ˇ̌
tDt0

Vol
�
�t .D/

�
D

Z

D

@

@t

ˇ̌
ˇ̌
tDt0

.��t dVg/D

Z

D

��t0.LXdVg/

D

Z

D

��t0

�
.divX/dVg

�
D

Z

�t0 .D/

.divX/dVg : (16.13)

Now we can prove the “if” parts of all five equivalences. If divX � 0, then
it follows from (16.13) that Vol

�
�t .D/

�
is a constant function of t for every D,

and thus � is volume-preserving. Similarly, an inequality of the form divX � 0 or
divX � 0 implies that Vol

�
�t .D/

�
is nondecreasing or nonincreasing, respectively.

For part (d), suppose that divX > 0 on a dense subset ofM; and letD be a compact
regular domain in M . Then divX � 0 everywhere by continuity, so Vol

�
�t .D/

�
is

nondecreasing by the argument above. Because IntD is an open subset of M (by
Proposition 5.1), Int�t .D/ is open for each t such that D �Mt , and therefore by
density there is a point in Int�t .D/ where divX > 0. Proposition 16.28 then shows
that

R
�t .D/

.divX/dVg > 0, and thus Vol
�
�t .D/

�
is strictly increasing by (16.13).

A similar argument proves (e).
To prove the converses, we prove their contrapositives. We begin with (b). If there

is a point where divX < 0, then by continuity there is an open subset U �M on
which divX < 0. The argument in the first part of the proof shows that X generates
a volume-decreasing flow on U . In particular, for any regular coordinate ball B
such that xB � U and any t > 0 small enough to ensure that �t

�
xB
�
� U , we have

Vol
�
�t
�
xB
��
<Vol

�
xB
�
, which implies that � is not volume-nondecreasing. The same
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argument with inequalities reversed proves (c). If divX is not identically zero, then
there is an open subset on which it is either strictly positive or strictly negative, and
then the argument above shows that it is not volume-preserving on that set, thus
proving (a).

Next, consider (d). If the subset of M where divX > 0 is not dense, there is
an open subset U � M on which divX � 0. Then (c) shows that � is volume-
nonincreasing on U , so it cannot be volume-increasing on M . The argument for (e)
is similar. �

Surface Integrals

The original theorem that bears the name of Stokes concerned “surface integrals”
of vector fields over surfaces in R3. Using the version of Stokes’s theorem that we
have proved, we cam generalize this to surfaces in Riemannian 3-manifolds.

Let .M;g/ be an oriented Riemannian 3-manifold. Define the curl operator,
denoted by curl W X.M/!X.M/, by

curlX D ˇ�1d
�
X [
�
;

where ˇ W X.M/!�2.M/ is defined in (16.11). Unwinding the definitions, we see
that this is equivalent to

.curlX/ ³ dVg D d
�
X [
�
: (16.14)

The operators div, grad, and curl on an oriented Riemannian 3-manifold M are
related by the following commutative diagram analogous to (14.27):

C1.M/
grad� X.M/

curl� X.M/
div� C1.M/

�0.M/

Id
�

d
� �1.M/

[
�

d
� �2.M/

ˇ
�

d
� �3.M/:


�

(16.15)

The identities curlıgrad� 0 and divı curl� 0 follow from d ı d � 0 just as they
do in the Euclidean case. The curl operator is defined only in dimension 3 because
it is only in that case that ƒ2T �M is isomorphic to TM (via the map ˇ W X 7!
X ³ dVg ).

Now suppose S �M is a compact 2-dimensional submanifold with or without
boundary, and N is a smooth unit normal vector field along S . Let dA denote the
Riemannian volume form on S with respect to the induced metric 	�Sg and the ori-
entation determined by N , so that dAD 	�S .N ³ dVg/ by Proposition 15.32. (See
Fig. 16.16.) For any smooth vector field X defined onM; the surface integral of X
over S (with respect to the given choice of unit normal field) is defined as

Z

S

hX;N ig dA:
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Fig. 16.16 The setup for a surface integral

The next result, in the special case in which M D R3, is the theorem usually
referred to as Stokes’s theorem in multivariable calculus texts.

Theorem 16.34 (Stokes’s Theorem for Surface Integrals). Suppose M is an ori-
ented Riemannian 3-manifold with or without boundary, and S is a compact ori-
ented 2-dimensional smooth submanifold with boundary inM . For any smooth vec-
tor field X on M;

Z

S

hcurlX;N ig dAD
Z

@S

hX;T ig ds;

where N is the smooth unit normal vector field along S that determines its orien-
tation, ds is the Riemannian volume form for @S (with respect to the metric and
orientation induced from S ), and T is the unique positively oriented unit tangent
vector field on @S .

Proof. The general version of Stokes’s theorem applied to the 1-form X [ yields
Z

S

d
�
X [
�
D

Z

@S

X [:

Thus the theorem follows from the following two identities:

	�Sd
�
X [
�
D hcurlX;N ig dA; (16.16)

	�@SX
[ D hX;T ig ds: (16.17)

Equation (16.16) is just the defining equation (16.14) for the curl combined with
the result of Lemma 16.30. To prove (16.17), we note that 	�

@S
X [ is a smooth 1-form

on a 1-manifold, and thus must be equal to f ds for some smooth function f on
@S . To evaluate f , we note that ds.T /D 1, and so the definition of X [ yields

f D f ds.T /DX [.T /D hX;T ig :

This proves (16.17) and thus the theorem. �

Densities

Although differential forms are natural objects to integrate on manifolds, and are
essential for use in Stokes’s theorem, they have the disadvantage of requiring ori-
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ented manifolds in order for their integrals to be defined. There is a way to define
integration on nonorientable manifolds as well, which we describe in this section.

In the theory of integration of differential forms, the crucial place where orien-
tations entered the picture was in our proof of the diffeomorphism-invariance of
the integral (Proposition 16.1), because the transformation law for an n-form on
an n-manifold under a change of coordinates involves the Jacobian determinant of
the transition map, while the transformation law for integrals involves the abso-
lute value of the determinant. We had to restrict attention to orientation-preserving
diffeomorphisms so that we could freely remove the absolute value signs. In this
section we define objects whose transformation law involves the absolute value of
the determinant, so that we no longer have this sign problem.

We begin, as always, in the linear-algebraic setting. Let V be an n-dimensional
vector space. A density on V is a function

� W V � � � � � V
™

n copies

!R

satisfying the following condition: if T W V ! V is any linear map, then

�.T v1; : : : ; T vn/D jdetT j�.v1; : : : ; vn/: (16.18)

(Compare this with the corresponding formula (14.2) for n-forms.) Observe that a
density is not a tensor, because it is not linear over R in any of its arguments. Let
D.V / denote the set of all densities on V .

Proposition 16.35 (Properties of Densities). Let V be a vector space of dimension
n� 1.

(a) D.V / is a vector space under the obvious vector operations:

.c1�1C c2�2/.v1; : : : ; vn/D c1�1.v1; : : : ; vn/C c2�2.v1; : : : ; vn/:

(b) If �1;�2 2D.V / and �1.E1; : : : ;En/D �2.E1; : : : ;En/ for some basis .Ei /
of V , then �1 D �2.

(c) If ! 2ƒn.V �/, the map j!j W V � � � � � V !R defined by

j!j .v1; : : : ; vn/D j!.v1; : : : ; vn/j

is a density.
(d) D.V / is 1-dimensional, spanned by j!j for any nonzero ! 2ƒn.V �/.

Proof. Part (a) is immediate from the definition. For part (b), suppose �1 and �2
give the same value when applied to .E1; : : : ;En/. If v1; : : : ; vn are arbitrary vectors
in V , let T W V ! V be the unique linear map that takes Ei to vi for i D 1; : : : ; n. It
follows that

�1.v1; : : : ; vn/D �1.TE1; : : : ; TEn/

D jdetT j�1.E1; : : : ;En/

D jdetT j�2.E1; : : : ;En/
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D �2.TE1; : : : ; TEn/

D �2.v1; : : : ; vn/:

Part (c) follows from Proposition 14.9:

j!j.T v1; : : : ; T vn/D j!.T v1; : : : ; T vn/j

D j.detT /!.v1; : : : ; vn/j

D jdetT j j!j .v1; : : : ; vn/:

Finally, to prove (d), suppose ! is any nonzero element of ƒn.V �/. If � is an
arbitrary element of D.V /, it suffices to show that �D c j!j for some c 2 R. Let
.Ei / be a basis for V , and define a; b 2R by

a D j!j .E1; : : : ;En/D j!.E1; : : : ;En/j ;

b D �.E1; : : : ;En/:

Because ! ¤ 0, it follows that a ¤ 0. Thus, � and .b=a/j!j give the same result
when applied to .E1; : : : ;En/, so they are equal by part (b). �

A positive density on V is a density � satisfying �.v1; : : : ; vn/ > 0 whenever
.v1; : : : ; vn/ is a linearly independent n-tuple. A negative density is defined simi-
larly. If ! is a nonzero element of ƒn.V �/, then it is clear that j!j is a positive
density; more generally, a density c j!j is positive, negative, or zero if and only if c
has the same property. Thus, each density on V is either positive, negative, or zero,
and the set of positive densities is a convex subset of D.V / (namely, a half-line).

Now let M be a smooth manifold with or without boundary. The set

DM D
a

p2M

D.TpM/

is called the density bundle of M . Let � W DM !M be the natural projection map
taking each element of D.TpM/ to p.

Proposition 16.36. If M is a smooth manifold with or without boundary, its density
bundle is a smooth line bundle over M .

Proof. We will construct local trivializations and use the vector bundle chart lemma
(Lemma 10.6). Let

�
U;
�
xi
��

be any smooth coordinate chart on M; and let ! D
dx1 ^ � � � ^ dxn. Proposition 16.35 shows that j!pj is a basis for D.TpM/ at each
point p 2U . Therefore, the map ˚ W ��1.U /! U �R given by

˚
�
cj!pj

�
D .p; c/

is a bijection.
Now suppose

�
zU ;
�
zxj
��

is another smooth chart with U \ zU ¤ ¿. Let z! D

d zx1 ^ � � � ^ d zxn, and define z̊ W ��1
�
zU
�
! zU �R correspondingly:

z̊
�
cj z!pj

�
D .p; c/:
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It follows from the transformation law (14.16) for n-forms under changes of coor-
dinates that

˚ ı z̊�1.p; c/D˚
�
cj z!pj

�
D˚

�
c

ˇ
ˇ̌
ˇdet

�
@zxj

@xi

�ˇˇ̌
ˇ j!pj

�

D

�
p; c

ˇ̌
ˇ̌det

�
@zxj

@xi

�ˇ̌
ˇ̌
�
:

Thus, the hypotheses of Lemma 10.6 are satisfied, with the transition functions equal
to
ˇ̌
det
�
@zxj =@xi

�ˇ̌
. �

If M is a smooth n-manifold with or without boundary, a section of DM is
called a density on M . (One might choose to call such a section a “density field”
to distinguish it from a density on a vector space, but we do not do so.) If � is
a density and f is a continuous real-valued function, then f� is again a density,
which is smooth if both f and � are. A density on M is said to be positive or
negative if its value at each point has that property. Any nonvanishing n-form !

determines a positive density j!j, defined by j!jp D j!pj for each p 2M . If ! is
a nonvanishing n-form on an open subset U �M; then any density � on U can be
written �D f j!j for some real-valued function f .

One important fact about densities is that every smooth manifold admits a global
smooth positive density, without any orientability assumptions.

Proposition 16.37. If M is a smooth manifold with or without boundary, there
exists a smooth positive density on M .

Proof. Because the set of positive elements of DM is an open subset whose in-
tersection with each fiber is convex, the usual partition of unity argument (Prob-
lem 13-2) allows us to piece together local positive densities to obtain a global
smooth positive density. �

It is important to understand that this proposition works because positivity of a
density is a well-defined property, independent of any choices of coordinates or ori-
entations. There is no corresponding existence result for orientation forms because
without a choice of orientation, there is no way to decide which n-forms are positive.

Under smooth maps, densities pull back in the same way as differential forms. If
F W M !N is a smooth map between n-manifolds (with or without boundary) and
� is a density on N , we define a density F �� on M by

.F ��/p .v1; : : : ; vn/D �F.p/
�
dFp.v1/; : : : ; dFp.vn/

�
:

Proposition 16.38. Let G W P !M and F W M ! N be smooth maps between
n-manifolds with or without boundary, and let � be a density on N .

(a) For any f 2 C1.N /, F �.f�/D .f ıF /F ��.
(b) If ! is an n-form on N , then F �j!j D jF �!j.
(c) If � is smooth, then F �� is a smooth density on M .
(d) .F ıG/��DG�.F ��/.
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I Exercise 16.39. Prove the preceding proposition.

The next result shows how to compute the pullback of a density in coordinates.
It is an analogue for densities of Proposition 14.20.

Proposition 16.40. Suppose F W M ! N is a smooth map between n-manifolds
with or without boundary. If

�
xi
�

and
�
yj
�

are smooth coordinates on open subsets
U �M and V �N , respectively, and u is a continuous real-valued function on V ,
then the following holds on U \F �1.V /:

F �
�
u
ˇ̌
dy1 ^ � � � ^ dyn

ˇ̌�
D .u ıF / jdetDF j

ˇ̌
dx1 ^ � � � ^ dxn

ˇ̌
; (16.19)

where DF represents the matrix of partial derivatives of F in these coordinates.

Proof. Using Propositions 14.20 and 16.38, we obtain

F �
�
u
ˇ̌
dy1 ^ � � � ^ dyn

ˇ̌�
D .u ıF /F �

ˇ̌
dy1 ^ � � � ^ dyn

ˇ̌

D .u ıF /
ˇ
ˇF �

�
dy1 ^ � � � ^ dyn

�ˇˇ

D .u ıF /
ˇ̌
.detDF /dx1 ^ � � � ^ dxn

ˇ̌

D .u ıF / jdetDF j
ˇ
ˇdx1 ^ � � � ^ dxn

ˇ
ˇ : �

Now we turn to integration. As we did with forms, we begin by defining integrals
of densities on subsets of Rn. If D � Rn is a domain of integration and � is a
density on xD, we can write �D f

ˇ̌
dx1 ^ � � � ^ dxn

ˇ̌
for some uniquely determined

continuous function f W xD!R. We define the integral of � over D by
Z

D

�D

Z

D

f dV;

or more suggestively,
Z

D

f
ˇ̌
dx1 ^ � � � ^ dxn

ˇ̌
D

Z

D

f dx1 � � �dxn:

Similarly, if U is an open subset of Rn or Hn and � is compactly supported in U ,
we define Z

U

�D

Z

D

�;

where D is any domain of integration containing the support of �. The key fact is
that this is diffeomorphism-invariant.

Proposition 16.41. Suppose U and V are open subsets of Rn or Hn, and G W U !
V is a diffeomorphism. If � is a compactly supported density on V , then

Z

V

�D

Z

U

G��:

Proof. The proof is essentially identical to that of Proposition 16.3, using (16.19)
instead of (14.15). �
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Now let M be a smooth n-manifold (with or without boundary). If � is a density
on M whose support is contained in the domain of a single smooth chart .U;'/, the
integral of � over M is defined as

Z

M

�D

Z

'.U /

�
'�1

��
�:

This is extended to arbitrary densities � by setting
Z

M

�D
X

i

Z

M

 i�;

where f ig is a smooth partition of unity subordinate to an open cover of M by
smooth charts. The fact that this is independent of the choices of coordinates or
partition of unity follows just as in the case of forms.

The following proposition is proved in the same way as Proposition 16.6.

Proposition 16.42 (Properties of Integrals of Densities). Suppose M and N are
smooth n-manifolds with or without boundary, and �;� are compactly supported
densities on M .

(a) LINEARITY: If a; b 2R, then
Z

M

a�C b�D a

Z

M

�C b

Z

M

�:

(b) POSITIVITY: If � is a positive density, then
R
M �> 0.

(c) DIFFEOMORPHISM INVARIANCE: If F W N ! M is a diffeomorphism, thenR
M �D

R
N F

��.

I Exercise 16.43. Prove Proposition 16.42.

Just as for forms, integrals of densities are usually computed by cutting the mani-
fold into pieces and parametrizing each piece, just as in Proposition 16.8. The details
are left to the reader.

I Exercise 16.44. Formulate and prove an analogue of Proposition 16.8 for densi-
ties.

The Riemannian Density

Densities are particularly useful on Riemannian manifolds.

Proposition 16.45 (The Riemannian Density). Let .M;g/ be a Riemannian man-
ifold with or without boundary. There is a unique smooth positive density �g on M;
called the Riemannian density, with the property that

�g.E1; : : : ;En/D 1 (16.20)

for any local orthonormal frame .Ei /.
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Proof. Uniqueness is immediate, because any two densities that agree on a basis
must be equal. Given any point p 2M; let U be a connected smooth coordinate
neighborhood of p. Since U is diffeomorphic to an open subset of Euclidean space,
it is orientable. Any choice of orientation of U uniquely determines a Riemannian
volume form !g on U , with the property that !g.E1; : : : ;En/ D 1 for any ori-
ented orthonormal frame. If we put �g D j!g j, it follows easily that �g is a smooth
positive density on U satisfying (16.20). If U and V are two overlapping smooth
coordinate neighborhoods, the two definitions of �g agree where they overlap by
uniqueness, so this defines �g globally. �

I Exercise 16.46. Let .M;g/ be an oriented Riemannian manifold with or without
boundary and let !g be its Riemannian volume form.

(a) Show that the Riemannian density of M is given by �g D j!g j.
(b) For any compactly supported continuous function f W M !R, show that

Z

M
f�g D

Z

M
f!g :

I Exercise 16.47. Suppose .M;g/ and
� �M; zg

�
are Riemannian manifolds with or

without boundary, and F W M ! �M is a local isometry. Show that F ��zg D �g .

Because of Exercise 16.46(b), it is customary to denote the Riemannian density
simply by dVg , and to specify when necessary whether the notation refers to a
density or a form. If f W M ! R is a compactly supported continuous function,
the integral of f over M is defined to be

R
M
f dVg . Exercise 16.46 shows that

whenM is oriented, it does not matter whether we interpret dVg as the Riemannian
volume form or the Riemannian density. (If the orientation of M is changed, then
both the integral and dVg change signs, so the result is the same.) When M is not
orientable, however, we have no choice but to interpret it as a density.

One of the most useful applications of densities is that they enable us to general-
ize the divergence theorem to nonorientable manifolds. If X is a smooth vector field
on M; Exercise 16.31 shows that the divergence of X can be defined even when M
is not orientable. The next theorem shows that the divergence theorem holds in that
case as well.

Theorem 16.48 (The Divergence Theorem in the Nonorientable Case). Suppose
.M;g/ is a nonorientable Riemannian manifold with boundary. For any compactly
supported smooth vector field X on M;

Z

M

.divX/�g D
Z

@M

hX;N ig �zg ; (16.21)

whereN is the outward-pointing unit normal vector field along @M; zg is the induced
Riemannian metric on @M; and �g , �zg are the Riemannian densities of g and zg,
respectively.

Proof. Let y� W �M !M be the orientation covering of M . Problem 5-12 shows that
y� restricts to a smooth covering map from each component of @ �M to a component
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of @M; so in the terminology of Chapter 15, y� W @ �M ! @M is a generalized covering
map.

Define metrics yg D y��g on �M and xg D y��zg on @ �M . Denote the Riemannian
volume forms of yg and xg by !yg and !xg , respectively, and their Riemannian densities
by �yg and �xg . Because y� is a local isometry, it is easy to check that the outward unit

normal yN along @ �M is y�-related to N . Moreover, it follows from Problem 8-18(a)
that there is a unique smooth vector field yX on �M that is y�-related to X .

Since �M is an oriented smooth Riemannian manifold with boundary, we can
apply the usual divergence theorem to it to obtain

2

Z

M

.divX/�gD
Z

�M
y��
�
.divX/�g

�
.by Problem 16-3/

D

Z

�M

�
div yX

�
�yg .y� is a local isometry/

D

Z

�M

�
div yX

�
!yg .by Exercise 16.46(b)/

D

Z

@ �M

˝
yX; yN

˛
yg
!xg .divergence theorem on �M/

D

Z

@ �M

˝
yX; yN

˛
yg
�xg .by Exercise 16.46(b)/

D

Z

@ �M

�
y�j
@ �M

�� �
hX;N ig�zg

�
.y� j

@ �M is a local isometry/

D 2

Z

@M

hX;N ig �zg .by Problem 16-3/:

Dividing both sides by 2 yields (16.21). �

Problems

16-1. Let v1; : : : ; vn be any n linearly independent vectors in Rn, and let P be
the n-dimensional parallelepiped they span:

P D ft1v1C � � � C tnvn W 0� ti � 1g:

Show that Vol.P /D jdet.v1; : : : ; vn/j. (Used on p. 401.)

16-2. Let T2 D S1 � S1 � R4 denote the 2-torus, defined as the set of points
.w;x;y; z/ such that w2C x2 D y2C z2 D 1, with the product orientation
determined by the standard orientation on S1. Compute

R
T2 !, where ! is

the following 2-form on R4:

! D xyz dw ^ dy:

16-3. Suppose E and M are smooth n-manifolds with or without boundary, and
� W E !M is a smooth k-sheeted covering map or generalized covering
map.
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(a) Show that if E and M are oriented and � is orientation-preserving,
then

R
E �
�! D k

R
M ! for any compactly supported n-form ! on M .

(b) Show that
R
E �
�� D k

R
M � whenever � is a compactly supported

density on M .

16-4. Suppose M is an oriented compact smooth manifold with boundary. Show
that there does not exist a retraction of M onto its boundary. [Hint: if the
retraction is smooth, consider an orientation form on @M .]

16-5. Suppose M and N are oriented, compact, connected, smooth manifolds,
and F;G W M ! N are homotopic diffeomorphisms. Show that F and G
are either both orientation-preserving or both orientation-reversing. [Hint:
use Theorem 6.29 and Stokes’s theorem on M � I .]

16-6. THE HAIRY BALL THEOREM: There exists a nowhere-vanishing vector
field on Sn if and only if n is odd. (“You cannot comb the hair on a ball.”)
Prove this by showing that the following are equivalent:
(a) There exists a nowhere-vanishing vector field on Sn.
(b) There exists a continuous map V W Sn! Sn satisfying V.x/? x (with

respect to the Euclidean dot product on RnC1) for all x 2 Sn.
(c) The antipodal map ˛ W Sn! Sn is homotopic to IdSn .
(d) The antipodal map ˛ W Sn! Sn is orientation-preserving.
(e) n is odd.
[Hint: use Problems 9-4, 15-3, and 16-5.]

16-7. Show that any finite product M1 � � � � �Mk of smooth manifolds with cor-
ners is again a smooth manifold with corners. Give a counterexample to
show that a finite product of smooth manifolds with boundary need not be
a smooth manifold with boundary.

16-8. Suppose M is a smooth manifold with corners, and let C denote the set of
corner points ofM . Show thatM XC is a smooth manifold with boundary.

16-9. Let ! be the .n� 1/-form on Rn X f0g defined by

! D jxj�n
nX

iD1

.�1/i�1xi dx1 ^ � � � ^bdxi ^ � � � ^ dxn: (16.22)

(a) Show that 	�
Sn�1

! is the Riemannian volume form of Sn�1 with respect
to the round metric and the standard orientation.

(b) Show that ! is closed but not exact on Rn X f0g.

16-10. Let D denote the torus of revolution in R3 obtained by revolving the cir-
cle .r � 2/2 C z2 D 1 around the z-axis (Example 5.17), with its induced
Riemannian metric and with the orientation determined by the outward unit
normal.
(a) Compute the surface area of D.
(b) Compute the integral over D of the function f .x;y; z/D z2C 1.
(c) Compute the integral over D of the 2-form ! D z dx ^ dy.
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16-11. Let .M;g/ be a Riemannian n-manifold with or without boundary. In any
smooth local coordinates

�
xi
�
, show that

div

�
X i

@

@xi

�
D

1
p

detg

@

@xi

	
X i
p

detg


;

where detg D det.gkl / is the determinant of the component matrix of g in
these coordinates.

16-12. Let .M;g/ be a compact Riemannian manifold with boundary, let zg de-
note the induced Riemannian metric on @M; and let N be the outward unit
normal vector field along @M .
(a) Show that the divergence operator satisfies the following product rule

for f 2 C1.M/, X 2X.M/:

div.fX/D f divX C hgradf;Xig :

(b) Prove the following “integration by parts” formula:
Z

M

hgradf;Xig dVg D
Z

@M

f hX;N ig dVzg �

Z

M

.f divX/dVg :

(c) Explain what this has to do with integration by parts.

16-13. Let .M;g/ be a Riemannian n-manifold with or without boundary. The
linear operator � W C1.M/! C1.M/ defined by �uD�div.gradu/ is
called the (geometric) Laplacian. Show that the Laplacian is given in any
smooth local coordinates by

�uD�
1

p
detg

@

@xi

�
gij
p

detg
@u

@xj

�
:

Conclude that on Rn with the Euclidean metric and standard coordinates,

�uD�

nX

iD1

@2u

.@xi /2
:

[Remark: there is no general agreement about the sign convention for the
Laplacian on a Riemannian manifold, and many authors define � to be the
negative of the operator we have defined. Although the geometric Laplacian
defined here is the opposite of the traditional Laplacian on Rn, it has two
distinct advantages: our Laplacian has nonnegative eigenvalues (see Prob-
lem 16-15), and it agrees with the Laplace–Beltrami operator defined on
differential forms (see Problems 17-2 and 17-3). When reading any book
or article that mentions the Laplacian, you have to be careful to determine
which sign convention the author is using.] (Used on p. 465.)

16-14. Let .M;g/ be a Riemannian manifold with or without boundary. A function
u 2 C1.M/ is said to be harmonic if �uD 0 (see Problem 16-13).
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(a) Suppose M is compact, and prove Green’s identities:
Z

M

u�v dVg D

Z

M

hgradu;gradvig dVg �
Z

@M

uNv dVzg ;

Z

M

.u�v � v�u/dVg D

Z

@M

.vNu� uNv/dVzg ;

where N and zg are as in Problem 16-12.
(b) Show that if M is compact and connected and @M D¿, the only har-

monic functions on M are the constants.
(c) Show that if M is compact and connected, @M ¤¿, and u, v are har-

monic functions on M whose restrictions to @M agree, then u� v.

16-15. Let .M;g/ be a compact connected Riemannian manifold without bound-
ary, and let � be its geometric Laplacian. A real number 
 is called an
eigenvalue of 	 if there exists a smooth real-valued function u on M; not
identically zero, such that �uD 
u. In this case, u is called an eigenfunc-
tion corresponding to 
.
(a) Prove that 0 is an eigenvalue of �, and that all other eigenvalues are

strictly positive.
(b) Prove that if u and v are eigenfunctions corresponding to distinct eigen-

values, then
R
M
uv dVg D 0.

16-16. Let M be a compact connected Riemannian n-manifold with nonempty
boundary. A number 
 2R is called a Dirichlet eigenvalue for M if there
exists a smooth real-valued function u on M; not identically zero, such that
�uD 
u and uj@M D 0. Similarly, 
 is called a Neumann eigenvalue if
there exists such a u satisfying �uD 
u and Nuj@M D 0, where N is the
outward unit normal.
(a) Show that every Dirichlet eigenvalue is strictly positive.
(b) Show that 0 is a Neumann eigenvalue, and all other Neumann eigenval-

ues are strictly positive.

16-17. DIRICHLET’S PRINCIPLE: Suppose M is a compact connected Riemann-
ian n-manifold with nonempty boundary. Prove that a function u 2 C1.M/

is harmonic if and only if it minimizes
R
M
jgraduj2g dVg among all smooth

functions with the same boundary values. [Hint: for any function f 2

C1.M/ that vanishes on @M; expand
R
M
jgrad.u C "f /j2g dVg and use

Problem 16-12.]

16-18. Let .M;g/ be an oriented Riemannian n-manifold. This problem outlines
an important generalization of the operator W C1.M/!�n.M/ defined
in this chapter.
(a) For each k D 1; : : : ; n, show that g determines a unique inner product

on ƒk.T �pM/ (denoted by h�; �ig , just like the inner product on TpM )
satisfying

˝
!1 ^ � � � ^!k; �1 ^ � � � ^ �k

˛
g
D det

�˝
.!i /]; .�j /]

˛
g

�
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whenever !1; : : : ;!k ; �1; : : : ; �k are covectors at p. [Hint: define the
inner product locally by declaring

˚
"I jp W I is increasing

�
to be an

orthonormal basis for ƒk.T �pM/ whenever
�
"i
�

is the coframe dual
to a local orthonormal frame, and then prove that the resulting inner
product is independent of the choice of frame.]

(b) Show that the Riemannian volume form dVg is the unique positively
oriented n-form that has unit norm with respect to this inner product.

(c) For each k D 0; : : : ; n, show that there is a unique smooth bundle
homomorphism W ƒkT �M !ƒn�kT �M satisfying

! ^ �D h!;�ig dVg

for all smooth k-forms !, �. (For k D 0, interpret the inner product as
ordinary multiplication.) This map is called the Hodge star operator.
[Hint: first prove uniqueness, and then define  locally by setting


�
"i1 ^ � � � ^ "ik

�
D˙"j1 ^ � � � ^ "jn�k

in terms of an orthonormal coframe
�
"i
�
, where the indices j1; : : : ; jn�k

are chosen so that .i1; : : : ; ik ; j1; : : : ; jn�k/ is some permutation of
.1; : : : ; n/.]

(d) Show that W ƒ0T �M !ƒnT �M is given by f D f dVg .
(e) Show that ! D .�1/k.n�k/! if ! is a k-form.

16-19. Consider Rn as a Riemannian manifold with the Euclidean metric and the
standard orientation.
(a) Calculate dxi for i D 1; : : : ; n.
(b) Calculate 

�
dxi ^ dxj

�
in the case nD 4.

16-20. Let M be an oriented Riemannian 4-manifold. A 2-form ! on M is said to
be self-dual if ! D !, and anti-self-dual if ! D�!.
(a) Show that every 2-form ! on M can be written uniquely as a sum of a

self-dual form and an anti-self-dual form.
(b) On M D R4 with the Euclidean metric, determine the self-dual and

anti-self-dual forms in standard coordinates.

16-21. Let .M;g/ be an oriented Riemannian manifold and X 2X.M/. Show that

X ³ dVg D X
[;

divX D d X [;

and, when dimM D 3,

curlX D
�
dX [

�]
:

16-22. Let .M;g/ be a compact, oriented Riemannian n-manifold. For 1� k � n,
define a map d� W �k.M/!�k�1.M/ by d�! D .�1/n.kC1/C1 d !,
where  is the Hodge star operator defined in Problem 16-18. Extend this
definition to 0-forms by defining d�! D 0 for ! 2�0.M/.
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(a) Show that d� ı d� D 0.
(b) Show that the formula

.!; �/D

Z

M

h!;�ig dVg

defines an inner product on �k.M/ for each k, where h�; �ig is the
pointwise inner product on forms defined in Problem 16-18.

(c) Show that .d�!;�/D .!;d�/ for all ! 2�k.M/ and � 2�k�1.M/.
(Used on p. 464.)

16-23. This problem illustrates another approach to proving that certain Riemann-
ian metrics are not flat. Let B2 be the unit disk in R2, and let g be the
Riemannian metric on B2 given by

gD
dx2C dy2

1� x2 � y2
:

(a) Show that if g is flat, then for sufficiently small r > 0, the volume of
the g-metric ball xBgr .0/ satisfies Volg

�
xB
g
r .0/

�
D �r2.

(b) For any v 2 B2, by computing the g-length of the straight line from 0

to v, show that dg.0; v/� tanh�1 jvj (where tanh�1 denotes the inverse
hyperbolic tangent function). Conclude that for any r > 0, the g-metric
ball xBgr .0/ contains the Euclidean ball xBtanhr .0/D fv W jvj � tanh rg.

(c) Show that Volg
�
xB
g
r .0/

�
� � sinh2 r > �r2, and therefore g is not flat.



Chapter 17
De Rham Cohomology

In Chapter 14 we defined closed and exact forms: a smooth differential form !

is closed if d! D 0, and exact if it can be written ! D d�. Because d ı d D 0,
every exact form is closed. In this chapter, we explore the implications of the con-
verse question: Is every closed form exact? The answer, in general, is no: in Exam-
ple 11.48, for instance, we saw a 1-form on the punctured plane that is closed but
not exact; the failure of exactness seemed to be a consequence of the “hole” in the
center of the domain. For higher-degree forms, the question of which closed forms
are exact depends on subtle topological properties of the manifold, connected with
the existence of “holes” of higher dimensions. Making this dependence quantitative
leads to a new set of invariants of smooth manifolds, called the de Rham cohomology
groups, which are the subject of this chapter.

Knowledge of which closed forms are exact has many important consequences.
For example, Stokes’s theorem implies that if ! is exact, then the integral of ! over
any compact submanifold without boundary is zero. Proposition 11.42 showed that
a smooth 1-form is conservative if and only if it is exact.

We begin by defining the de Rham cohomology groups and proving some of
their basic properties, including diffeomorphism invariance. Then we prove an im-
portant generalization of this fact: the de Rham groups are in fact homotopy in-
variants, which implies in particular that they are topological invariants. Next, af-
ter computing the de Rham groups in some simple cases, we state a general the-
orem, called the Mayer–Vietoris theorem, that expresses the de Rham groups of
a manifold in terms of those of its open subsets. Using this, we compute all of
the de Rham groups of spheres and the top-degree groups of compact manifolds.
Then we give an important application of these ideas to topology: there is a homo-
topically invariant integer associated with any continuous map between connected,
compact, oriented, smooth manifolds of the same dimension, called the degree of
the map.

At the end of the chapter, we prove the Mayer–Vietoris theorem.

J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics 218,
DOI 10.1007/978-1-4419-9982-5_17, © Springer Science+Business Media New York 2013
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The de Rham Cohomology Groups

In Chapter 11, we studied the closed 1-form

! D
x dy � y dx

x2C y2
; (17.1)

and showed that it is not exact on R2 X f0g, but it is exact on some smaller do-
mains such as the right half-planeH D f.x; y/ W x > 0g, where it is equal to d� (see
Example 11.48).

As we will see in this chapter, that behavior is typical: closed forms are always
locally exact, so whether a given closed form is exact depends on the global shape
of the domain. To capture this dependence, we make the following definitions.

Let M be a smooth manifold with or without boundary, and let p be a nonneg-
ative integer. Because d W �p.M/!�pC1.M/ is linear, its kernel and image are
linear subspaces. We define

Zp.M/DKer
	
d W �p.M/!�pC1.M/



D fclosed p-forms on M g;

Bp.M/D Im
	
d W �p�1.M/!�p.M/



D fexact p-forms on M g:

By convention, we consider �p.M/ to be the zero vector space when p < 0 or
p > nD dimM; so that, for example, B0.M/D 0 and Zn.M/D�n.M/.

The fact that every exact form is closed implies that Bp.M/�Zp.M/. Thus, it
makes sense to define the de Rham cohomology group in degree p (or the pth de
Rham group) of M to be the quotient vector space

H
p
dR.M/D

Zp.M/

Bp.M/
:

(It is a real vector space, and thus in particular a group under vector addition. Per-
haps “de Rham cohomology space” would be a more appropriate term, but because
most other cohomology theories produce only groups it is traditional to use the
term group in this context as well, bearing in mind that these “groups” are actually
real vector spaces.) It is clear that Hp

dR.M/D 0 for p < 0 or p > dimM; because
�p.M/D 0 in those cases. For 0� p � n, the definition implies that Hp

dR.M/D 0

if and only if every closed p-form on M is exact.

Example 17.1. The fact that there is a closed 1-form on R2 X f0g that is not ex-
act means that H 1

dR

�
R2 X f0g

�
¤ 0 (see Example 11.48). On the other hand, the

Poincaré lemma for 1-forms (Theorem 11.49) implies that H 1
dR.U / D 0 for any

star-shaped open subset U �Rn. //

The first order of business is to show that the de Rham groups are diffeomorphism
invariants. For any closed p-form ! on M; we let Œ!� denote the equivalence class
of ! in Hp

dR.M/, called the cohomology class of !. If Œ!�D Œ!0� (that is, if ! and
!0 differ by an exact form), we say that ! and !0 are cohomologous.
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Proposition 17.2 (Induced Cohomology Maps). For any smooth map F W M !
N between smooth manifolds with or without boundary, the pullback F � W �p.N /!
�p.M/ carries Zp.N / into Zp.M/ and Bp.N / into Bp.M/. It thus descends to
a linear map, still denoted by F �, from H

p
dR.N / to Hp

dR.M/, called the induced
cohomology map. It has the following properties:

(a) If G W N ! P is another smooth map, then

.G ıF /� D F � ıG� W H
p
dR.P /!H

p
dR.M/:

(b) If Id denotes the identity map of M; then Id� is the identity map of Hp
dR.M/.

Proof. If ! is closed, then d.F �!/D F �.d!/D 0, so F �! is also closed. If ! D
d� is exact, then F �! D F �.d�/ D d.F ��/, which is also exact. Therefore, F �

maps Zp.N / into Zp.M/ and Bp.N / into Bp.M/. The induced cohomology map
F � W H

p
dR.N /!H

p
dR.M/ is defined in the obvious way: for a closed p-form !, let

F �Œ!�D ŒF �!�:

If !0 D ! C d�, then ŒF �!0� D ŒF �! C d.F ��/� D ŒF �!�, so this map is well
defined. Properties (a) and (b) follow immediately from the analogous properties of
the pullback map on forms. �

The next two corollaries are immediate.

Corollary 17.3 (Functoriality). For any integer p, the assignmentM 7!H
p
dR.M/,

F 7! F � is a contravariant functor from the category of smooth manifolds with
boundary to the category of real vector spaces. �

Corollary 17.4 (Diffeomorphism Invariance of de Rham Cohomology). Diffeo-
morphic smooth manifolds (with or without boundary) have isomorphic de Rham
cohomology groups. �

Elementary Computations

The direct computation of the de Rham groups is not easy in general. However, there
are a number of special cases that can be easily computed by various techniques. In
this section, we describe a few of those cases. We begin with disjoint unions.

Proposition 17.5 (Cohomology of Disjoint Unions). Let fMj g be a countable col-
lection of smooth n-manifolds with or without boundary, and let M D

`
j Mj . For

each p, the inclusion maps 	j W Mj ,!M induce an isomorphism from H
p
dR.M/ to

the direct product space
Q
j H

p
dR.Mj /.

Proof. The pullback maps 	�j W �
p.M/!�p.Mj / already induce an isomorphism

from �p.M/ to
Q
j �

p.Mj /, namely

! 7!
�
	�1!; 	

�
2!; : : :

�
D
�
!jM1 ;!jM2 ; : : :

�
:
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This map is injective because any smooth p-form whose restriction to each Mj
is zero must itself be zero, and it is surjective because giving an arbitrary smooth
p-form on each Mj defines one on M . �

Because of this proposition, each de Rham group of a disconnected manifold is
just the direct product of the corresponding groups of its components. Thus, we can
concentrate henceforth on computing the de Rham groups of connected manifolds.

Next we give an explicit characterization of de Rham cohomology in degree zero.

Proposition 17.6 (Cohomology in Degree Zero). If M is a connected smooth
manifold with or without boundary, then H 0

dR.M/ is equal to the space of constant
functions and is therefore 1-dimensional.

Proof. Because there are no .�1/-forms, B0.M/D 0. A closed 0-form is a smooth
real-valued function f such that df D 0, and since M is connected, this is true if
and only if f is constant. Therefore, H 0

dR.M/DZ0.M/D fconstantsg. �

Corollary 17.7 (Cohomology of Zero-Manifolds). Suppose M is a manifold of
dimension 0. Then H 0

dR.M/ is a direct product of 1-dimensional vector spaces, one
for each point of M; and all other de Rham cohomology groups of M are zero.

Proof. The statement about H 0
dR.M/ follows from Propositions 17.5 and 17.6, and

the cohomology groups in nonzero degrees vanish for dimensional reasons. �

Homotopy Invariance

In this section we present a profound generalization of Corollary 17.4, one sur-
prising consequence of which is that the de Rham cohomology groups are actually
topological invariants. In fact, they are something much more: they are homotopy
invariants, which means that homotopy equivalent manifolds have isomorphic de
Rham groups. (See p. 614 for the definition of homotopy equivalence.)

The underlying fact that allows us to prove the homotopy invariance of de Rham
cohomology is that homotopic smooth maps induce the same cohomology map. To
motivate the proof, suppose F;G W M !N are smooth maps, and let us think about
what it means to prove that F � D G�. Given a closed p-form ! on N , we need
somehow to produce a .p � 1/-form � on M such that

G�! �F �! D d�;

from which it follows that G�Œ!� � F �Œ!� D Œd�� D 0. One might hope to con-
struct � in a systematic way, resulting in a map h from closed p-forms on N to
.p � 1/-forms on M that satisfies

d.h!/DG�! �F �!: (17.2)

Instead of defining h! only when ! is closed, it turns out to be far simpler to
define a map h from the space of all smooth p-forms on N to the space of smooth
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.p � 1/-forms on M . Such a map cannot satisfy (17.2), but instead we will find a
family of such maps, one for each p, satisfying

d.h!/C h.d!/DG�! �F �!: (17.3)

This implies (17.2) when ! is closed.
In general, if F;G W M ! N are smooth maps, a collection of linear maps

h W �p.N /!�p�1.M/ such that (17.3) is satisfied for all ! is called a homotopy
operator between F � and G�. (The term cochain homotopy is used frequently in
the algebraic topology literature.) The next proposition follows immediately from
the argument in the preceding paragraph.

Proposition 17.8. SupposeM andN are smooth manifolds with or without bound-
ary. If F;G W M ! N are smooth maps and there exists a homotopy opera-
tor between the pullback maps F � and G�, then the induced cohomology maps
F �;G� W H

p
dR.N /!H

p
dR.M/ are equal. �

The key to our proof of homotopy invariance is to construct a homotopy operator
first in the following special case. Let M be a smooth manifold with or without
boundary, and for each t 2 I , let it W M !M � I be the map

it .x/D .x; t/:

If M has empty boundary, then M � I is a smooth manifold with boundary, and all
of the results above apply to it. But if @M ¤¿, then M � I has to be considered
as a smooth manifold with corners. It is straightforward to check that the definitions
of the de Rham groups and induced homomorphisms make perfectly good sense on
manifolds with corners, and Proposition 17.2 is valid in that context as well.

Lemma 17.9 (Existence of a Homotopy Operator). For any smooth manifold M
with or without boundary, there exists a homotopy operator between the two maps
i�0 ; i

�
1 W �

�.M � I /!��.M/.

Proof. For each p, we need to define a linear map h W �p.M � I /! �p�1.M/

such that

h.d!/C d.h!/D i�1! � i
�
0!: (17.4)

Let s denote the standard coordinate on R, and let S be the vector field on M �R
given by S.q;s/ D

�
0; @=@sjs

�
under the usual identification T.q;s/M $ TqM �TsR.

Given a smooth p-form ! on M � I , define h! 2�p�1.M/ by

h! D

Z 1

0

i�t .S ³!/dt:

More specifically, for any q 2M; this means

.h!/q D

Z 1

0

i�t
�
.S ³!/.q;t/

�
dt;

where the integrand is interpreted as a function of t with values in the vector space
ƒp�1.T �qM/. On any smooth coordinate domain U �M; the components of the
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integrand are smooth functions of .q; t/ 2 U � I , so the integral defines a smooth
.p � 1/-form on M . We can compute d.h!/ at any point by differentiating under
the integral sign in local coordinates, which yields

d.h!/D

Z 1

0

d
�
i�t .S ³!/

�
dt:

Therefore, using Cartan’s magic formula, we obtain

h.d!/C d.h!/D

Z 1

0

	
i�t .S ³ d!/C d

�
i�t .S ³!/

�

dt

D

Z 1

0

	
i�t .S ³ d!/C i

�
t d.S ³!/



dt

D

Z 1

0

i�t .LS!/dt: (17.5)

To simplify this last expression, we use the flow of S on M � R. (If M has
nonempty boundary, note that S is tangent to @.M �R/D @M �R, so Theorem 9.34
applies.) The flow is given explicitly by �t .q; s/D .q; t C s/, so S is complete. It
follows that we can write it D �t ı i0, and therefore by Proposition 12.36,

i�t .LS!/D i
�
0

�
��t .LS!/

�
D i�0

�
d

dt

�
��t !

��
D
d

dt
i�0
�
��t !

�
D
d

dt
i�t !:

Inserting this into (17.5) and applying the fundamental theorem of calculus, we
obtain (17.4). �

Proposition 17.10. Suppose M and N are smooth manifolds with or without
boundary, and F;G W M ! N are homotopic smooth maps. For every p, the
induced cohomology maps F �;G� W Hp

dR.N /!H
p
dR.M/ are equal.

Proof. The preceding lemma implies that the two cohomology maps i�0 and i�1 from
H
p
dR.M � I / to Hp

dR.M/ are equal. By Theorem 9.28, there is a smooth homo-
topy H W M � I ! N from F to G. Because F D H ı i0 and G D H ı i1 (see
Fig. 17.1),Proposition 17.2 implies

F � D .H ı i0/
� D i�0 ıH

� D i�1 ıH
� D .H ı i1/

� DG�: �

The next theorem is the main result of this section.

Theorem 17.11 (Homotopy Invariance of de Rham Cohomology). If M and
N are homotopy equivalent smooth manifolds with or without boundary, then
H
p
dR.M/ Š H

p
dR.N / for each p. The isomorphisms are induced by any smooth

homotopy equivalence F W M !N .

Proof. Suppose F W M ! N is a homotopy equivalence, with homotopy inverse
G W N !M . By the Whitney approximation theorem (Theorem 6.26 or 9.27), there
are smooth maps zF W M ! N homotopic to F and zG W N !M homotopic to G.
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Fig. 17.1 Homotopic maps

Because homotopy is preserved by composition, it follows that zF ı zG ' F ıG '
IdN and zG ı zF 'G ıF ' IdM ; so zF and zG are homotopy inverses of each other.

Proposition 17.10 shows that, on cohomology,

zF � ı zG� D
�
zG ı zF

��
D .IdM /

� D IdHpdR.M/ :

The same argument shows that zG� ı zF � is also the identity, so zF � W Hp
dR.N /!

H
p
dR.M/ is an isomorphism. �
Because every homeomorphism is a homotopy equivalence, the next corollary is

immediate.

Corollary 17.12 (Topological Invariance of de Rham Cohomology). The de
Rham cohomology groups are topological invariants: if M and N are homeomor-
phic smooth manifolds with or without boundary, then their de Rham cohomology
groups are isomorphic. �

This result is remarkable, because the definition of the de Rham groups of M
is intimately tied up with its smooth structure, and we had no reason to expect that
different differentiable structures on the same topological manifold should give rise
to the same de Rham groups.

Computations Using Homotopy Invariance

We can use homotopy invariance to compute a number of de Rham groups. We begin
with the simplest case of homotopy equivalence. A topological space X is said to
be contractible if the identity map of X is homotopic to a constant map.

Theorem 17.13 (Cohomology of Contractible Manifolds). If M is a contractible
smooth manifold with or without boundary, then Hp

dR.M/D 0 for p � 1.

Proof. The assumption means there is some point q 2 M such that the identity
map of M is homotopic to the constant map cq W M !M sending all of M to q.
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If 	q W fqg ,! M denotes the inclusion map, it follows that cq ı 	q D Idfqg and
	q ı cq ' IdM ; so 	q is a homotopy equivalence. The result then follows from the
homotopy invariance of Hp

dR together with the obvious fact that Hp
dR.fqg/D 0 for

p � 1 because fqg is a 0-manifold. �
In Theorem 11.49, we showed that every closed 1-form on a star-shaped open

subset of Rn is exact. (Recall that a subset U �Rn is said to be star-shaped if there
is a point c 2 U such that for every x 2 U , the line segment from c to x is entirely
contained in U .) The next theorem is a generalization of that result to forms of all
degrees. Despite the apparent specialness of star-shaped domains, this theorem is
one of the most important facts about de Rham cohomology.

Theorem 17.14 (The Poincaré Lemma). If U is a star-shaped open subset of Rn

or Hn, then Hp
dR.U /D 0 for p � 1.

Proof. If U is star-shaped with respect to c, then it is contractible by the following
straight-line homotopy:

H.x; t/D cC t.x � c/: �
Corollary 17.15 (Local Exactness of Closed Forms). LetM be a smooth manifold
with or without boundary. Each point of M has a neighborhood on which every
closed form is exact.

Proof. Every point of M has a neighborhood diffeomorphic to an open ball in Rn

or an open half-ball in Hn, each of which is star-shaped. The result follows from the
Poincaré lemma and the diffeomorphism invariance of de Rham cohomology. �
Corollary 17.16 (Cohomology of Euclidean Spaces and Half-Spaces). For any
integers n� 0 and p � 1, Hp

dR .R
n/D 0 and Hp

dR .H
n/D 0.

Proof. Both Rn and Hn are star-shaped. �
Another case in which we can say quite a lot about de Rham cohomology is in

degree 1. Suppose M is a connected smooth manifold and q is any point in M .
Let Hom

�
�1.M;q/;R

�
denote the set of group homomorphisms from �1.M;q/ to

the additive group R; it is a vector space under pointwise addition of homomor-
phisms and multiplication by constants. We define a linear map ˚ W H 1

dR.M/!

Hom
�
�1.M;q/;R

�
as follows: given a cohomology class Œ!� 2 H 1

dR.M/, define
˚Œ!� W �1.M;q/!R by

˚Œ!�Œ��D

Z

z�

!;

where Œ�� is any path homotopy class in �1.M;q/, and z� is any piecewise smooth
curve representing the same path class.

Theorem 17.17 (First Cohomology and the Fundamental Group). Suppose M
is a connected smooth manifold. For each q 2M; the linear map ˚ W H 1

dR.M/!

Hom
�
�1.M;q/;R

�
is well defined and injective.

Remark. It is actually the case that ˚ is an isomorphism, but we do not quite have
the tools to prove this. See Problem 18-2.
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Proof. Given Œ�� 2 �1.M;q/, it follows from the Whitney approximation theorem
that there is some smooth closed curve segment z� in the same path class as � , and
from Theorem 16.26 that

R
z� ! gives the same result for every piecewise smooth

curve z� in the given class. Moreover, if z! is another smooth 1-form in the same
cohomology class as !, then z! � ! D df for some smooth function f , which
implies

Z

z�

z! �

Z

z�

! D

Z

z�

df D f .q/� f .q/D 0:

Thus ˚ is well defined. It follows from Proposition 11.34(c) that ˚Œ!� is a group
homomorphism from �1.M;q/ to R, and from linearity of the line integral that ˚
itself is a linear map.

To see that ˚ is injective, suppose ˚Œ!� is the zero homomorphism. This means
that

R
z� ! D 0 for every piecewise smooth closed curve z� starting at q. If � is a

piecewise smooth closed curve starting at some other point q0 2M; we can choose
a piecewise smooth curve ˛ from q to q0, so that the path product ˛ �� � x̨ is a closed
curve based at q, where x̨ is a backward reparametrization of ˛. It then follows that

0D

Z

˛���x̨
! D

Z

˛

! C

Z

�

! �

Z

˛

! D

Z

�

!:

Thus, ! is conservative and therefore exact. �

It follows from Corollary 16.27 that H 1
dR.M/D 0 when M is simply connected.

The next corollary generalizes that result.

Corollary 17.18. If M is a connected smooth manifold with finite fundamental
group, then H 1

dR.M/D 0.

Proof. There are no nontrivial homomorphisms from a finite group to R. �

I Exercise 17.19. A group � is called a torsion group if for each g 2 � there exists
an integer k such that gk D 1. Show that if M is a connected smooth manifold whose
fundamental group is a torsion group, then H1

dR.M/D 0.

The Mayer–Vietoris Theorem

In this section we state a general theorem that can be used to compute the de Rham
cohomology groups of many manifolds, by expressing them as unions of open sub-
manifolds with simpler cohomology. We use the theorem here to compute all of the
de Rham cohomology groups of spheres and of punctured Euclidean spaces, and the
top-degree cohomology groups of compact manifolds. In the next chapter, we will
use it again as an essential ingredient in the proof of the de Rham theorem. Because
the proof of the Mayer–Vietoris theorem is fairly technical, we defer it to the end of
the chapter.

Here is the setup for the theorem. Suppose M is a smooth manifold with or
without boundary, and U , V are open subsets ofM such thatM D U [V . We have
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four inclusions,

U

U \ V

i �

M;

k
�

V

l

�

j �

(17.6)

which induce pullback maps on differential forms,

�p.U /

�p.M/

k� �
�p.U \ V /;

i�
�

�p.V /
j �
�

l�
�

as well as corresponding induced cohomology maps. Note that these pullback maps
are really just restrictions: for example, k�! D !jU . Consider the following se-
quence of maps:

0!�p.M/
k�˚l�

����!�p.U /˚�p.V /
i��j�

����!�p.U \ V /! 0; (17.7)

where

.k�˚ l�/! D .k�!; l�!/;

.i� � j �/.!; �/D i�! � j ��:
(17.8)

Because pullbacks commute with d , these maps descend to linear maps on the cor-
responding de Rham cohomology groups.

In the statement of the Mayer–Vietoris theorem, we will use the following stan-
dard algebraic terminology. Suppose we are given a sequence of vector spaces and
linear maps:

� � � ! V p�1
Fp�1
���! V p

Fp
��! V pC1

FpC1
���! V pC2! � � � : (17.9)

Such a sequence is said to be exact if the image of each map is equal to the kernel
of the next: for each p,

ImFp�1 DKerFp:

Theorem 17.20 (Mayer–Vietoris). Let M be a smooth manifold with or without
boundary, and let U , V be open subsets of M whose union is M . For each p, there
is a linear map ı W Hp

dR.U \ V /! H
pC1
dR .M/ such that the following sequence,

called the Mayer–Vietoris sequence for the open cover fU;V g, is exact:
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� � �
ı
�!H

p
dR.M/

k�˚l�

����!H
p
dR.U /˚H

p
dR.V /

i��j�

����!H
p
dR.U \ V /

ı
�!H

pC1
dR .M/

k�˚l�

����! � � � : (17.10)

Computations Using the Mayer–Vietoris Theorem

Using the Mayer–Vietoris theorem, it is a simple matter to compute all of the de
Rham cohomology groups of spheres.

Theorem 17.21 (Cohomology of Spheres). For n � 1, the de Rham cohomology
groups of Sn are

H
p
dR.S

n/Š

(
R if pD 0 or pD n;

0 if 0 < p < n:
(17.11)

The cohomology class of any smooth orientation form is a basis for Hn
dR.S

n/.

Proof. Proposition 17.6 shows that H 0
dR.S

n/Š R, so we need only prove (17.11)
for p � 1. We do so by induction on n. For n D 1, note first that any orienta-
tion form on S1 has nonzero integral, so it is not exact by Corollary 16.13; thus
dimH 1

dR

�
S1
�
� 1. On the other hand, Theorem 17.17 implies that there is an in-

jective linear map from H 1
dR.S

n/ into Hom
�
�1
�
S1; 1

�
;R
�
, which is 1-dimensional.

Thus, H 1
dR

�
S1
�

has dimension exactly 1, and is spanned by the cohomology class
of any orientation form.

Next, suppose n� 2 and assume by induction that the theorem is true for Sn�1.
Because Sn is simply connected, H 1

dR.S
n/D 0 by Corollary 17.18. For p > 1, we

use the Mayer–Vietoris theorem as follows. Let N and S be the north and south
poles in Sn, respectively, and let U D Sn X fSg, V D Sn X fN g. By stereographic
projection (Problem 1-7), both U and V are diffeomorphic to Rn (Fig. 17.2), and
thus U \ V is diffeomorphic to Rn X f0g.

Part of the Mayer–Vietoris sequence for fU;V g reads

H
p�1
dR .U /˚H

p�1
dR .V /!H

p�1
dR .U \ V /!H

p
dR .S

n/!H
p
dR.U /˚H

p
dR.V /:

Because U and V are diffeomorphic to Rn, the groups on both ends are trivial
when p > 1, which implies that Hp

dR.S
n/ŠH

p�1
dR .U \ V /. Moreover, U \ V is

diffeomorphic to Rn X f0g and therefore homotopy equivalent to Sn�1, so in the
end we conclude that Hp

dR .S
n/ŠH

p�1
dR

�
Sn�1

�
for p > 1, and (17.11) follows by

induction. As in the nD 1 case, any smooth orientation form on Sn determines a
nonzero cohomology class, which therefore spans Hn

dR.S
n/. �

I Exercise 17.22. Show that � 2�n.Sn/ is exact if and only if
R
Sn �D 0.

Corollary 17.23 (Cohomology of Punctured Euclidean Space). Suppose n � 2
and x 2Rn, and let M DRn X fxg. The only nontrivial de Rham groups of M are
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Fig. 17.2 Computing the de Rham cohomology of Sn

H 0
dR.M/ and Hn�1

dR .M/, both of which are 1-dimensional. A closed .n� 1/-form �

onM is exact if and only if
R
S
�D 0 for some (and hence every) .n�1/-dimensional

sphere S �M centered at x.

Proof. Let S �M be any .n� 1/-dimensional sphere centered at x. Because inclu-
sion 	 W S ,!M is a homotopy equivalence, 	� W Hp

dR.M/!H
p
dR.S/ is an isomor-

phism for each p, so the assertion about the dimension of Hp
dR.M/ follows from

Theorem 17.21. If � is a closed .n� 1/-form on M; it follows that � is exact if and
only if 	�� is exact on S , which in turn is true if and only if

R
S �D

R
S 	
��D 0 by

Exercise 17.22. �

I Exercise 17.24. Check that the statement and proof of Corollary 17.23 remain true
if Rn X fxg is replaced by Rn X xB for some closed ball xB �Rn.

Corollary 17.25. Suppose n � 2, U � Rn is any open subset, and x 2 U . Then
Hn�1

dR .U X fxg/¤ 0.

Proof. Because U is open, there is an .n� 1/-dimensional sphere S centered at x
such that S � U X fxg. Let 	 W S ,! U X fxg be inclusion and r W U X fxg ! S be
the radial projection onto S . Then r and 	 are smooth with r ı 	D IdS . This implies
	� ı r� D IdHn�1dR

.S/, and therefore r� W Hn�1
dR .S/!Hn�1

dR .U X fxg/ is injective.

Since Hn�1
dR .S/¤ 0 by Theorem 17.21, the result follows. �

Here is an important application of the topological invariance of the de Rham co-
homology groups. Recall the theorem on invariance of dimension (Theorem 1.2);
it is a surprising fact that this purely topological theorem can be proved using
de Rham cohomology. Before proving the theorem, we restate it here for conve-
nience.
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Theorem 17.26 (Topological Invariance of Dimension). A nonempty n-dimen-
sional topological manifold cannot be homeomorphic to an m-dimensional mani-
fold unless mD n.

Proof. If M is a topological n-manifold that is homeomorphic to an m-manifold,
thenM is itself both an n-manifold and anm-manifold. The case in whichm or n is
zero was already taken care of in Chapter 1, so assume that m> n� 1. Because M
is an m-manifold, there is an open subset V �M that is homeomorphic to Rm. Be-
cause an open subset of an n-manifold is itself an n-manifold, any point x 2 V has
a neighborhood U � V that is homeomorphic to Rn. On the one hand, because U
is homeomorphic to Rn, we can use the homeomorphism to define a smooth struc-
ture on U , and then Hm�1

dR .U X fxg/D 0 by Corollary 17.23. On the other hand,
because U is homeomorphic to an open subset of Rm, we can use that homeomor-
phism to define another smooth structure on U , and then Corollary 17.25 implies
that Hm�1

dR .U X fxg/¤ 0. This contradicts the topological invariance of de Rham
cohomology. �

As another application of Corollary 17.23, we prove a generalization of the
Poincaré lemma for compactly supported forms. We will use it below to compute
top-degree cohomology groups.

Lemma 17.27 (Poincaré Lemma with Compact Support). Let n � p � 1, and
suppose ! is a compactly supported closed p-form on Rn. If p D n, suppose in
addition that

R
Rn ! D 0. Then there exists a compactly supported smooth .p � 1/-

form � on Rn such that d�D !.

Remark. Of course, we know that ! is exact by the Poincaré lemma, so the novelty
here is the claim that it is the exterior derivative of a compactly supported form.

Proof. When n D p D 1, we can write ! D f dx for some smooth, compactly
supported function f 2 C1.R/. Define F W R!R by

F.x/D

Z x

�1

f .t/dt:

By the fundamental theorem of calculus, dF D F 0 dx D f dx D !. Choose R > 0
such that suppf � Œ�R;R�. When x < �R, F.x/D 0 by our choice of R. When
x >R, the fact that

R
R! D 0 translates to

F.x/D

Z x

�1

f .t/dt D

Z 1

�1

f .t/dt D 0;

so, in fact, suppF � Œ�R;R�. This completes the proof for the case nD pD 1.
Now assume n � 2, and let B;B 0 � Rn be open balls centered at the origin

such that supp! � B � xB � B 0. By the ordinary Poincaré lemma, there exists a
smooth (but not necessarily compactly supported) .p � 1/-form �0 on Rn such that
d�0 D !. This implies, in particular, that d�0 D 0 on Rn X xB . To complete the
proof, we consider three cases.
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CASE 1: p D 1. In this case �0 is a smooth function. Because Rn X xB is
connected when n � 2, it follows that �0 is equal to a constant c there. Let-
ting � D �0 � c, we find that � is compactly supported and satisfies d� D ! as
claimed.

CASE 2: 1 < p < n. Now the restriction of �0 to RnX xB is a closed .p�1/-form.
Because Hp�1

dR

�
Rn X xB

�
D 0 by Exercise 17.24, there is a smooth .p � 2/-form �

on Rn X xB such that d� D �0 there. If we let  be a smooth bump function that is
supported in Rn X xB and equal to 1 on Rn XB 0, then �D �0�d. �/ is smooth on
all of Rn and satisfies d�D d�0 D !. Because d. �/D d� D �0 on Rn XB 0, � is
compactly supported.

CASE 3: p D n. In this case, we cannot use the same argument as in Case 2
because Hn�1

dR

�
Rn X xB

�
¤ 0. However, it follows from Corollary 17.23 and Exer-

cise 17.24 that the restriction of �0 to Rn X xB is exact provided its integral is zero
over some sphere centered at the origin and contained in Rn X xB . Stokes’s theorem
implies that

0D

Z

Rn
! D

Z

xB0
! D

Z

xB0
d�0 D

Z

@B0
�0:

Thus �0 is exact on Rn X xB , and the proof proceeds exactly as in Case 2. �

For some purposes it is useful to define a generalization of the de Rham coho-
mology groups using only compactly supported forms. LetM be a smooth manifold
with or without boundary and let�pc .M/ denote the vector space of compactly sup-
ported smooth p-forms onM . The pth compactly supported de Rham cohomology
group of M is the quotient space

Hp
c .M/D

Ker
�
d W �

p
c .M/!�

pC1
c .M/

�

Im
�
d W �

p�1
c .M/!�

p
c .M/

� :

Of course, when M is compact, this just reduces to ordinary de Rham cohomology.
But for noncompact manifolds the two groups can be different, as the next theorem
illustrates.

Theorem 17.28 (Compactly Supported Cohomology of Rn). For n� 1, the com-
pactly supported de Rham cohomology groups of Rn are

Hp
c .R

n/Š

(
0 if 0� p < n;

R if pD n:

I Exercise 17.29. Prove this theorem.

In general, a smooth map need not pull back compactly supported forms to com-
pactly supported ones, so it does not induce a map on compactly supported coho-
mology. However, a proper map does pull back compactly supported forms to com-
pactly supported ones, so for a proper smooth map F W M !N there is an induced
cohomology map F � W Hp

c .N /!H
p
c .M/ for each p.
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Compactly supported cohomology has a number of important applications in al-
gebraic topology. One important application is the Poincaré duality theorem, which
is outlined in Problem 18-7.

Another application is to facilitate the computation of de Rham cohomology in
the top degree. Suppose first that M is an oriented smooth n-manifold. There is a
natural linear map I W �nc .M/!R given by integration over M :

I.!/D

Z

M

!:

Because the integral of the exterior derivative of a compactly supported .n�1/-form
is zero, I descends to a linear map, still denoted by the same symbol, from Hn

c .M/

to R. (Note that every smooth n-form on an n-manifold is closed.)

Theorem 17.30 (Top Cohomology, Orientable Compact Support Case). If M is
a connected oriented smooth n-manifold, then the integration map I W Hn

c .M/!R
is an isomorphism, so Hn

c .M/ is 1-dimensional.

Proof. Because a connected 0-manifold is a single point, the 0-dimensional case
is an immediate consequence of Corollary 17.7, so we may assume n � 1. Let�
U;
�
xi
��

be an oriented smooth coordinate chart on M; and let f be a smooth
bump function with compact support in U . Then the n-form defined by �0 D

f dx1 ^ � � � ^ dxn in U and 0 outside U is smooth and compactly supported on M;
and satisfies I.�0/ > 0. Thus, I is surjective, so we need only show that it is injec-
tive. In other words, we have to show the following: if ! is a smooth, compactly
supported n-form on M satisfying

R
M
! D 0, then there is a smooth, compactly

supported .n� 1/-form � such that ! D d�.
Let fUig be a countable cover ofM by open subsets that are diffeomorphic to Rn,

and let Mk D U1 [ � � � [ Uk for each k. Because M is connected, by renumbering
the sequence if necessary, we can arrange the Mk \ UkC1 ¤ ¿ for each k. Since
every compactly supported n-form is supported inMk for some finite k, it suffices to
prove that if ! 2�nc .Mk/ has zero integral, then ! D d� for some � 2�n�1c .Mk/,
and then we can extend � by zero to a compactly supported form on all of M . We
will prove this claim by induction on k.

For k D 1, since M1 D U1 is diffeomorphic to Rn, the claim reduces to
Lemma 17.27. So assume that the claim is true for some k � 1, and suppose !
is a compactly supported smooth n-form on MkC1 D Mk [ UkC1 that satisfiesR
MkC1

! D 0.
Let � 2 �nc .MkC1/ be an auxiliary form that is supported in Mk \ UkC1 and

satisfies
R
MkC1

� D 1. (Such a form is easily constructed by using a bump function
in coordinates as above.) Let f'; g be a smooth partition of unity for MkC1 sub-
ordinate to the cover fMk ;UkC1g (Fig. 17.3),and let c D

R
MkC1

'!. Observe that
'!�c� is compactly supported inMk , and its integral is equal to zero by our choice
of c. Therefore, by the induction hypothesis, there is a compactly supported smooth
.n� 1/-form ˛ on Mk such that d˛ D '! � c� . Similarly,  ! C c� is compactly
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Fig. 17.3 Computing the top-degree cohomology

supported in UkC1, and its integral is
Z

UkC1

. ! C c�/D

Z

MkC1

.1� '/! C c

Z

MkC1

�

D

Z

MkC1

! �

Z

MkC1

'! C c D 0:

Thus by Lemma 17.27, there exists another smooth .n� 1/-form ˇ, compactly sup-
ported in UkC1, such that dˇD !C c� . Both ˛ and ˇ can be extended by zero to
smooth compactly supported forms on MkC1. We compute

d.˛C ˇ/D .'! � c�/C . ! C c�/D .' C /! D !;

which completes the inductive step. �
Theorem 17.31 (Top Cohomology, Orientable Compact Case). If M is a com-
pact connected orientable smooth n-manifold, then Hn

dR.M/ is 1-dimensional, and
is spanned by the cohomology class of any smooth orientation form.

Proof. This follows from the preceding theorem, because Hp
dR.M/ D H

p
c .M/ in

that case, and the integral of any orientation form is nonzero. �
Theorem 17.32 (Top Cohomology, Orientable Noncompact Case). If M is a
noncompact connected orientable smooth n-manifold, then Hn

dR.M/D 0.

Proof. Choose an orientation onM . Let f 2 C1.M/ be a smooth exhaustion func-
tion. By adding a constant, we can arrange that infM f D 0, and then connectedness
and noncompactness of M imply that f .M/D Œ0;1/. For each positive integer i ,
let Vi D f �1

�
.i � 2; i/

�
. Thus, fVig1iD1 is a cover of M by nonempty precompact

open sets, with Vi \ Vj ¤ ¿ if and only if j D i � 1, i , or i C 1. Let f ig be a
smooth partition of unity subordinate to this cover, and for each i , let �i 2�nc .M/

be a smooth n-form compactly supported in Vi \ ViC1 with
R
M
�i D 1.

Suppose ! is any smooth n-form on M; and let !i D  i! for each i , so
!i 2�

n
c .Vi /. Let c1 D

R
V1
!1, so that !1 � c1�1 is compactly supported in V1 and

has zero integral. It follows from Theorem 17.30 that there exists �1 2�nc .V1/ such



456 17 De Rham Cohomology

that d�1 D !1� c1�1. Next, choose c2 2R such that
R
V2
.!2C c1�1� c2�2/D 0, so

there exists �2 2�nc .V2/ with d�2 D !2 C c1�1 � c2�2. Continuing by induction,
we can choose cj 2 R and �j 2 �nc .Vj / such that d�j D !j C cj�1�j�1 � cj �j .
Set � D

P1
jD1 �j , with each �j extended to be zero on M X Vj . Because at

most three terms in this sum are nonzero on each Vi , this is a smooth n-form
on M . When we take its exterior derivative, the cj �j terms all cancel, so d� DP
j !j D !. �

Next we consider the nonorientable case. If M is a nonorientable smooth man-
ifold, the key to analyzing its cohomology groups is the orientation covering
y� W �M !M (see Theorem 15.41). Because a finite-sheeted covering map is a proper
map by Exercise A.75, y� induces cohomology maps on both compactly supported
and ordinary de Rham cohomology. The next lemma shows that these maps are all
injective.

Lemma 17.33. Suppose M is a connected nonorientable smooth manifold and
y� W �M !M is its orientation covering. For each p, the induced cohomology maps
y�� W H

p
dR.M/!H

p
dR

� �M
�

and y�� W Hp
c .M/!H

p
c

� �M
�

are injective.

Proof. First, we prove the lemma for compactly supported cohomology. Suppose
! is a closed, compactly supported p-form on M such that y��Œ!�D 0 2Hp

c

� �M
�
.

Then there exists � 2�pc
� �M

�
such that d�D y��!. Let ˛ W �M ! �M be the unique

nontrivial covering automorphism of �M (see Fig. 15.9), and let z� D 1
2
.�C ˛��/,

which is also compactly supported. Using the fact that ˛ ı ˛ D Id �M , we com-
pute

˛�z�D 1
2

�
˛��C .˛ ı ˛/��

�
D z�:

Because y� ı ˛D y� , this implies

d z�D 1
2
.d�C d˛��/D 1

2
.d�C ˛�d�/D 1

2
.y��! C ˛�y��!/D y��!:

Let U �M be any evenly covered open subset. There are exactly two smooth
local sections �1; �2 W U ! �M over U , which are related by �2 D ˛ ı �1. Observe
that

��2 z�D .˛ ı �1/
�z�D ��1 ˛

�z�D ��1 z�:

Therefore, we can define a smooth global .p � 1/-form ˇ on M by setting ˇjU D
��z� for any smooth local section � W U ! �M ; the argument above guarantees that
the various definitions agree where they overlap. Because suppˇ D y�

�
supp z�

�
, it

follows that ˇ is compactly supported. To determine the exterior derivative of ˇ,
given p 2M; choose a smooth local section � defined on a neighborhood U of p,
and compute

dˇD d��z�D ��d z�D ��y��! D .y� ı �/�! D !;

because y� ı � D IdU .
The argument for ordinary de Rham cohomology is the same, but with all refer-

ences to compact support deleted. �
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Theorem 17.34 (Top Cohomology, Nonorientable Case). If M is a connected
nonorientable smooth n-manifold, then Hn

c .M/D 0 and Hn
dR.M/D 0.

Proof. First consider the case of compactly supported cohomology. By the preced-
ing lemma, it suffices to show that y�� W Hn

c .M/!Hn
c

� �M
�

is the zero map, where

y� W �M !M is the orientation covering of M . Let ˛ W �M ! �M be the nontrivial
covering automorphism as in the preceding proof. Now, ˛ cannot be orientation-
preserving: if it were, the entire covering automorphism group

˚
Id �M ; ˛

�
would

be orientation-preserving, and then M would be orientable by Theorem 15.36. By
connectedness of �M and the fact that ˛ is a diffeomorphism, it follows that ˛ is
orientation-reversing.

Suppose ! is any compactly supported smooth n-form on M; and let y! D y��!.
Because y� is proper, y! is compactly supported, and y� ı ˛D y� implies

˛� y! D ˛�y��! D .y� ı ˛/�! D y��! D y!:

Because ˛ is orientation-reversing, we conclude from Proposition 16.6(d) that
Z

�M
y! D�

Z

�M
˛� y! D�

Z

�M
y!:

This implies that
R
�M y! D 0, so Œy!� D 0 2Hn

c

� �M
�

by Theorem 17.31. This com-
pletes the proof that Hn

c .M/D 0.
It remains only to handle ordinary cohomology. If M is compact, it follows from

the argument above that Hn
dR.M/DHn

c .M/D 0. On the other hand, if M is non-
compact, then so is �M , and Theorem 17.32 shows that Hn

dR

� �M
�
D 0. It follows

from Lemma 17.33 that Hn
dR.M/D 0 as well. �

Degree Theory

Now that we know the top-degree cohomology groups of all compact smooth man-
ifolds, we can use them to draw a number of significant conclusions about smooth
maps between certain compact manifolds of the same dimension. They all follow
from the fact that we can associate an integer to each such map, called its degree, in
such a way that homotopic maps have the same degree.

Theorem 17.35 (Degree of a Smooth Map). Suppose M and N are compact,
connected, oriented, smooth manifolds of dimension n, and F W M !N is a smooth
map. There exists a unique integer k, called the degree of F , that satisfies both of
the following conditions.

(a) For every smooth n-form ! on N ,
Z

M

F �! D k

Z

N

!:
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(b) If q 2N is a regular value of F , then

k D
X

x2F�1.q/

sgn.x/;

where sgn.x/DC1 if dFx is orientation-preserving, and �1 if it is orientation-
reversing.

Proof. By Theorem 17.31, two smooth n-forms on either M or N are cohomolo-
gous if and only if they have the same integral. Let � be any smooth n-form on N
such that

R
N � D 1, and let k D

R
M F �� . If ! 2�n.N / is arbitrary, then ! is coho-

mologous to a� , where aD
R
N
!, and therefore F �! is cohomologous to aF �� . It

follows that Z

M

F �! D a

Z

M

F �� D ak D k

Z

N

!:

Thus k satisfies (a), and is clearly the only number that does so.
Next we show that k also has the characterization given in part (b), from which

it follows that it is an integer. Let q 2N be an arbitrary regular value of F . Because
F �1.q/ is a properly embedded 0-dimensional submanifold of M; it is finite. Sup-
pose first that F �1.q/ is not empty—say, F �1.q/D fx1; : : : ; xmg. By the inverse
function theorem, for each i there is a neighborhood Ui of xi such that F is a diffeo-
morphism from Ui to a neighborhood Wi of q, and by shrinking the Ui ’s if neces-
sary, we may assume that they are pairwise disjoint. ThenK DM X .U1[� � �[Um/
is closed inM and thus compact, so F.K/ is closed inN and disjoint from q. LetW
be the connected component of W1 \ � � � \Wm \

�
N XF.K/

�
containing q, and let

Vi D F
�1.W / \ Ui . It follows that W is a connected neighborhood of q whose

preimage under F is the disjoint union V1 q � � � q Vm, and F restricts to a diffeo-
morphism from each Vi to W . Since each Vi is connected, the restriction of F to Vi
must be either orientation-preserving or orientation-reversing.

Let ! be a smooth n-form on N that is compactly supported in W and satisfiesR
N
! D

R
W
! D 1. It follows from part (a) that

R
M
F �! D k. Since F �! is com-

pactly supported in F �1.W /, we have
R
M F �! D

Pm
iD1

R
Vi
F �!. From Proposi-

tion 16.6(d) we conclude that for each i ,
R
Vi
F �! D˙

R
W
! D˙1, with the posi-

tive sign if F is orientation-preserving on Vi and the negative sign otherwise. This
proves (b) when F �1.q/¤¿.

On the other hand, suppose F �1.q/D ¿. Then q has a neighborhood W con-
tained inN XF.M/ (because F.M/ is compact and thus closed). If ! is any smooth
n-form on N that is compactly supported in W , then

R
M
F �! D 0, so k D 0. This

proves (b). �

Much of the power of degree theory arises from the fact that the two different
characterizations of the degree can be played off against each other. For example, it
is often easy to compute the degree of a particular map simply by counting the points
in the preimage of a regular value, with appropriate signs. On the other hand, the
characterization in terms of differential forms makes it easy to prove many important
properties, such as the ones given in the next proposition.
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Proposition 17.36 (Properties of the Degree). Suppose M; N , and P are com-
pact, connected, oriented, smooth n-manifolds.

(a) If F W M ! N and G W N ! P are both smooth maps, then deg.G ı F / D
.degG/.degF /.

(b) If F W M ! N is a diffeomorphism, then degF D C1 if F is orientation-
preserving and �1 if it is orientation-reversing.

(c) If two smooth maps F0;F1 W M ! N are homotopic, then they have the same
degree.

I Exercise 17.37. Prove the preceding proposition.

This proposition allows us to define the degree of a continuous map F W M !N

between compact, connected, oriented, smooth n-manifolds, by letting degF be the
degree of any smooth map that is homotopic to F . The Whitney approximation the-
orem guarantees that there is such a map, and the preceding proposition guarantees
that the degree is the same for every map homotopic to F .

Here are some applications of degree theory.

Theorem 17.38. SupposeN is a compact, connected, oriented, smooth n-manifold,
and X is a compact, oriented, smooth .nC 1/-manifold with connected boundary.
If f W @X ! N is a continuous map that has a continuous extension to X , then
degf D 0.

Proof. Suppose f has an extension to a continuous map F W X!N . By the Whit-
ney approximation theorem, there is a smooth map zF W X ! N that is homotopic
to F . Replacing F by zF and f by zF j@X , we may assume that both f and F are
smooth.

Let ! be any smooth n-form on N . Then d! D 0 because it is an .nC 1/-form
on an n-manifold. From Stokes’s theorem, we obtain

Z

@X

f �! D

Z

@X

F �! D

Z

X

d.F �!/D

Z

X

F �d! D 0:

It follows from Theorem 17.35 that f has degree zero. �
Theorem 17.39 (Brouwer Fixed-Point Theorem). Every continuous map from xBn

to itself has a fixed point.

Proof. Suppose for the sake of contradiction that F W xBn! xBn is continuous and
has no fixed points. We can define a continuous map G W xBn! Sn�1 by

G.x/D
x �F.x/

jx �F.x/j
;

and let gDGjSn�1 W S
n�1! Sn�1. On the one hand, the previous theorem implies

that g has degree zero. On the other hand, consider the map H W Sn�1 � I ! Sn�1

defined by

H.x; t/D
x � tF .x/

jx � tF .x/j
:
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The denominator never vanishes when t D 1 because F has no fixed points, and
when t < 1 it cannot vanish because jxj D 1 while jtF .x/j � t < 1. Thus H is con-
tinuous, so it is a homotopy from the identity to g. It follows from Proposition 17.36
that g has degree 1, which is a contradiction. �

With a little more machinery from algebraic topology, it is possible to give many
more applications of degree theory. For example, it turns out that continuous maps
from Sn to itself (n � 1) are classified up to homotopy by degree (see [Hat02,
Cor. 4.25]). This is not true for other compact orientable manifolds, however; Prob-
lem 17-13 describes a counterexample.

Proof of the Mayer–Vietoris Theorem

In this section we give the proof of the Mayer–Vietoris theorem. For this purpose
we need to introduce some simple algebraic concepts. More details about the ideas
introduced here can be found in [LeeTM, Chap. 13] or in any textbook on algebraic
topology.

Let R be a commutative ring, and suppose we are given a sequence of R-
modules and R-linear maps:

� � � !Ap�1
d
�!Ap

d
�!ApC1! � � � : (17.12)

(In all of our applications, the ring will be either Z, in which case we are looking
at abelian groups and homomorphisms, or R, in which case we have vector spaces
and linear maps. The terminology of modules is just a convenient way to combine
the two cases.) Such a sequence is said to be a complex if the composition of any
two successive applications of d is the zero map:

d ı d D 0 W Ap!ApC2 for each p:

Just as in the case of vector spaces, such a sequence of modules is called an exact
sequence if the image of each d is equal to the kernel of the next. Clearly, every
exact sequence is a complex, but the converse need not be true.

Let us denote the sequence (17.12) by A�. If it is a complex, then the image of
each map d is contained in the kernel of the next, so we define the pth cohomology
group of A� to be the quotient module

Hp.A�/D
Ker.d W Ap!ApC1/

Im.d W Ap�1!Ap/
:

It can be thought of as a quantitative measure of the failure of exactness at Ap . The
obvious example is the de Rham complex of a smooth n-manifold M :

0!�0.M/
d
�! � � �

d
�!�p.M/

d
�!�pC1.M/

d
�! � � �

d
�!�n.M/! 0;

whose cohomology groups are the de Rham groups of M . (In algebraic topology, a
complex as we have defined it is usually called a cochain complex, while a chain
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complex is defined similarly except that the maps go in the direction of decreasing
indices:

� � � !ApC1
@
�!Ap

@
�!Ap�1! � � � :

In that case, the term homology is used in place of cohomology.)
If A� and B� are complexes, a cochain map from A� to B�, denoted by

F W A�! B�, is a collection of linear maps F W Ap ! Bp (it is easiest to use the
same symbol for all of the maps) such that the following diagram commutes for
each p:

� � � � Ap
d� ApC1 � � � �

� � � � Bp

F
�

d
� BpC1

F�
� � � � :

The fact that F ı d D d ı F means that any cochain map induces a linear map on
cohomology F � W Hp.A�/!Hp.B�/ for each p, just as in the case of de Rham
cohomology. (A map between chain complexes satisfying the analogous relations
is called a chain map; the same argument shows that a chain map induces a linear
map on homology.)

A short exact sequence of complexes consists of three complexes A�, B�, C �,
together with cochain maps

0!A�
F
�!B�

G
�! C �! 0

such that each sequence

0!Ap
F
�!Bp

G
�! Cp! 0

is exact. This means that F is injective, G is surjective, and ImF DKerG.

Lemma 17.40 (The Zigzag Lemma). Given a short exact sequence of complexes
as above, for each p there is a linear map

ı W Hp.C �/!HpC1.A�/;

called the connecting homomorphism, such that the following sequence is exact:

� � �
ı
�!Hp.A�/

F �

��!Hp.B�/
G�

��!Hp.C �/
ı
�!HpC1.A�/

F �

��! � � � : (17.13)

Proof. We sketch only the main idea; you can either carry out the details yourself
or look them up.
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The hypothesis means that the following diagram commutes and has exact hori-
zontal rows:

0 � Ap
F� Bp

G� Cp � 0

0 � ApC1

d�
F� BpC1

d�
G� CpC1

d�
� 0

0 � ApC2

d�
F� BpC2

d�
G� CpC2

d�
� 0:

Suppose cp 2 Cp represents a cohomology class; this means that dcp D 0. Since
G W Bp ! Cp is surjective, there is some element bp 2 Bp such that Gbp D
cp . Because the diagram commutes, Gdbp D dGbp D dcp D 0, and therefore
dbp 2KerG D ImF . Thus, there exists apC1 2 ApC1 satisfying FapC1 D dbp .
By commutativity of the diagram again, FdapC1 D dFapC1 D ddbp D 0. Since
F is injective, this implies dapC1 D 0, so apC1 represents a cohomology class in
HpC1.A�/. The connecting homomorphism ı is defined by setting ı Œcp�D

�
apC1

�

for any such apC1 2ApC1, that is, provided there exists bp 2Bp such that

Gbp D cp; FapC1 D dbp:

A number of facts have to be verified: that the cohomology class
�
apC1

�
is well

defined, independently of the choices made along the way; that the resulting map ı
is linear; and that the resulting sequence (17.13) is exact. Each of these verifications
is a routine “diagram chase” like the one we used to define ı; the details are left as
an exercise. �

I Exercise 17.41. Complete (or look up) the proof of the zigzag lemma.

Proof of the Mayer–Vietoris Theorem. Suppose M is a smooth manifold with or
without boundary, and U;V are open subsets of M whose union is M . The heart of
the proof is to show that the sequence (17.7) is exact for each p. Because pullback
maps commute with the exterior derivative, (17.7) therefore defines a short exact
sequence of cochain maps, and the Mayer–Vietoris theorem follows immediately
from the zigzag lemma.

We begin by proving exactness at �p.M/, which just means showing that
k�˚ l� is injective. Suppose that � 2�p.M/ satisfies .k�˚ l�/� D .� jU ; � jV /D
.0; 0/. This means that the restrictions of � to U and V are both zero. Since fU;V g
is an open cover of M; this implies that � is zero.

To prove exactness at �p.U /˚�p.V /, first observe that

.i� � j �/ ı .k�˚ l�/.�/D .i� � j �/.� jU ; � jV /D � jU\V � � jU\V D 0;

which shows that Im.k� ˚ l�/ � Ker.i� � j �/. Conversely, suppose we are given
.�; �0/ 2�p.U /˚�p.V / such that .i��j �/.�; �0/D 0. This means that �jU\V D
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Fig. 17.4 Surjectivity of i� � j�

�0jU\V , so there is a global smooth p-form � on M defined by

� D

(
� on U;

�0 on V:

Clearly, .�; �0/D .k�˚ l�/� , so Ker.i� � j �/� Im.k�˚ l�/.
Exactness at �p.U \ V / means that i� � j � is surjective. This is the only non-

trivial part of the proof, and the only part that really uses any properties of smooth
manifolds and differential forms.

Let ! 2�p.U \ V / be arbitrary. We need to show that there exist � 2�p.U /
and �0 2�p.V / such that

! D .i� � j �/.�; �0/D i��� j ��0 D �jU\V � �
0jU\V :

(See Fig. 17.4.) Let f'; g be a smooth partition of unity subordinate to the open
cover fU;V g of M; and define � 2�p.U / by

�D

(
 ! on U \ V;

0 on U X supp :
(17.14)

On the set .U \ V / X supp where these definitions overlap, they both give zero,
so this defines � as a smooth p-form on U .Similarly, define �0 2�p.V / by

�0 D

(
�'! on U \ V;

0 on V X supp':
(17.15)

Then we have

�jU\V � �
0jU\V D ! � .�'!/D . C '/! D !;

which was to be proved. �
For use in the next chapter, we record the following corollary to the proof, which

explicitly characterizes the connecting homomorphism ı.



464 17 De Rham Cohomology

Corollary 17.42. The connecting homomorphism in the Mayer–Vietoris sequence,
ı W H

p
dR.U \ V /! H

pC1
dR .M/, is defined as follows. For each ! 2 Zp.U \ V /,

there are p-forms � 2�p.U / and �0 2�p.V / such that ! D �jU\V ��0jU\V ; and
then ıŒ!�D Œ��, where � is the .p C 1/-form on M that is equal to d� on U and
to d�0 on V . If f'; g is a smooth partition of unity subordinate to fU;V g, we can
take �D  ! and �0 D�'!, both extended by zero outside the supports of  and
'.

Proof. A characterization of the connecting homomorphism was given in the proof
of the zigzag lemma. Specializing this characterization to the situation of the short
exact sequence (17.7), we find that ıŒ!� D Œ��, provided there exists .�; �0/ 2
�p.U /˚�p.V / such that

i��� j ��0 D !; .k��; l��/D .d�;d�0/: (17.16)

Just as in the proof of the Mayer–Vietoris theorem, if f'; g is a smooth partition
of unity subordinate to fU;V g, then formulas (17.14) and (17.15) define smooth
forms � 2 �p.U / and �0 2 �p.V / satisfying the first equation of (17.16). Given
such forms �, �0, the fact that ! is closed implies that d�D d�0 on U \ V . Thus
there is a smooth .pC 1/-form � on M that is equal to d� on U and d�0 on V , and
it satisfies the second equation of (17.16). �

Problems

17-1. Let M be a smooth manifold with or without boundary, and let ! 2
�p.M/, � 2�q.M/ be closed forms. Show that the de Rham cohomology
class of !^� depends only on the cohomology classes of ! and �, and thus
there is a well-defined bilinear mapYW Hp

dR.M/�H
q
dR.M/!H

pCq
dR .M/,

called the cup product, given by Œ!�Y Œ��D Œ! ^ ��.

17-2. Let .M;g/ be an oriented compact Riemannian n-manifold. For each 0�
p � n, the Laplace–Beltrami operator� W �p.M/!�p.M/ is the linear
map defined by

�! D d d�! C d� d!;

where d� is the operator defined in Problem 16-22. A smooth form ! 2

�p.M/ is said to be harmonic if �! D 0. Show that the following are
equivalent for any ! 2�p.M/.
(a) ! is harmonic.
(b) d! D 0 and d�! D 0.
(c) d! D 0 and ! is the unique smooth p-form in its de Rham cohomol-

ogy class with minimum norm k!k D .!;!/1=2. (Here .�; �/ is the
inner product on �p.M/ defined in Problem 16-22.)

[Hint: for (c), consider f .t/D k!Cd.td�!/k2.] [Remark: there is a deep
theorem called the Hodge theorem, which says that on every compact, ori-
ented Riemannian manifold, there is a unique harmonic form in every de
Rham cohomology class. See [Gil95] or [War83] for a proof.]
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17-3. Let .M;g/ be an oriented Riemannian manifold, and let � D dd� C

d�d be the Laplace–Beltrami operator on p-forms as in Problem 17-2.
When p D 0, show that � agrees with the geometric Laplacian �u D
�div.gradu/ defined on real-valued functions in Problem 16-13.

17-4. Suppose U � Rn is open and star-shaped with respect to 0, and ! DP0
!Idx

I is a closed p-form on U . Show either directly or by tracing
through the proof of the Poincaré lemma that the .p � 1/-form � given
explicitly by the formula

�D
X0

I

pX

qD1

.�1/q�1
�Z 1

0

tp�1!I .tx/dt

�
xiq dxi1 ^ � � � ^bdxiq ^ � � � ^ dxip

satisfies d�D !. In the case that ! is a smooth closed 1-form, show that �
is equal to the potential function f defined in Theorem 11.49.

17-5. For each n � 1, compute the de Rham cohomology groups of Rn X
fe1;�e1g; and for each nonzero cohomology group, give specific differ-
ential forms whose cohomology classes form a basis.

17-6. Let M be a connected smooth manifold of dimension n � 3. For any x 2
M and 0 � p � n � 2, prove that the map Hp

dR.M/! H
p
dR.M X fxg/

induced by inclusion M X fxg ,!M is an isomorphism. Prove that the
same is true for p D n� 1 if M is compact and orientable. [Hint: use the
Mayer–Vietoris theorem. The cases p D 0, p D 1, and p D n� 1 require
special handling.]

17-7. Let M1;M2 be connected smooth manifolds of dimension n � 3, and let
M1 #M2 denote their smooth connected sum (Example 9.31). Prove that
H
p
dR.M1 #M2/ŠH

p
dR.M1/˚H

p
dR.M2/ for 0 < p < n� 1. Prove that the

same is true for pD n� 1 if M1 and M2 are both compact and orientable.
[Hint: use Problems 9-12 and 17-6.]

17-8. Suppose M is a compact, connected, orientable, smooth n-manifold.
(a) Show that there is a one-to-one correspondence between orientations

of M and orientations of the vector space Hn
dR.M/, under which the

cohomology class of a smooth orientation form is an oriented basis for
Hn

dR.M/.
(b) Now suppose M and N are smooth n-manifolds with given orienta-

tions. Show that a diffeomorphism F W M !N is orientation preserv-
ing if and only if F � W Hn

dR.N /!Hn
dR.M/ is orientation preserving.

17-9. Prove Theorem 1.37 (topological invariance of the boundary).

17-10. Let p be a nonzero polynomial in one variable with complex coefficients,
and let zp W CP1!CP1 be the smooth map defined in Problem 2-9. Prove
that the degree of zp (as a smooth map between manifolds) is equal to the
degree of the polynomial p in the usual sense.

17-11. This problem shows that some parts of degree theory can be extended to
proper maps between noncompact manifolds. Suppose M and N are non-
compact, connected, oriented, smooth n-manifolds.
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(a) Suppose F W M ! N is a proper smooth map. Prove that there is a
unique integer k called the degree of F such that for each smooth,
compactly supported n-form ! on N ,

Z

M

F �! D k

Z

N

!;

and for each regular value q of F ,

k D
X

x2F�1.q/

sgn.dFx/;

where sgn.dFx/ is defined in Theorem 17.35.
(b) By considering the maps F;G W C ! C given by F.z/ D z and

G.z/ D z2, show that the degree of a proper map is not a homotopy
invariant.

17-12. SupposeM and N are compact, connected, oriented, smooth n-manifolds,
and F W M ! N is a smooth map. Prove that if

R
M
F �� ¤ 0 for some

� 2�n.N /, then F is surjective. Give an example to show that F can be
surjective even if

R
M
F ��D 0 for every � 2�n.N /.

17-13. Let T2 D S1 � S1 be the 2-torus. Consider the two maps f;g W T2! T2

given by f .w; z/D .w; z/ and g.w; z/D .z; xw/. Show that f and g have
the same degree, but are not homotopic. [Suggestion: consider the induced
homomorphisms on the first cohomology group or the fundamental group.]



Chapter 18
The de Rham Theorem

The topological invariance of the de Rham groups suggests that there should be
some purely topological way of computing them. There is indeed, and the connec-
tion between the de Rham groups and topology was first proved by Georges de
Rham himself in the 1930s. The theorem that bears his name is a major landmark in
the development of smooth manifold theory. The purpose of this chapter is to give a
proof of this theorem.

In the category of topological spaces, there are a number of functorial ways of
associating to each space an algebraic object such as a group or a vector space,
so that homeomorphic spaces have isomorphic objects. Most of these measure, in
a certain sense, the existence of “holes” in different dimensions. You are already
familiar with the simplest such functor: the fundamental group. In the beginning
of this chapter, we describe the next most straightforward ones, called the singular
homology groups and singular cohomology groups. Because a complete treatment
of singular theory would be far beyond the scope of this book, we can only sum-
marize the basic ideas here. For more details, you can consult a standard textbook
on algebraic topology, such as [Hat02], [Bre93], or [Mun84]. (See also [LeeTM,
Chap. 13] for a more concise treatment.) After introducing the basic definitions,
we prove that singular homology can be computed by restricting attention only to
smooth simplices.

At the end of the chapter we turn our attention to the de Rham theorem, which
shows that integration of differential forms over smooth simplices induces isomor-
phisms between the de Rham groups and the singular cohomology groups.

Singular Homology

We begin with a brief summary of singular homology theory. Suppose v0; : : : ; vp are
any pC 1 points in some Euclidean space Rn. They are said to be affinely indepen-
dent (or in general position) if they are not contained in any .p � 1/-dimensional

J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics 218,
DOI 10.1007/978-1-4419-9982-5_18, © Springer Science+Business Media New York 2013
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Fig. 18.1 Standard p-simplices for pD 0;1;2;3

affine subspace. A geometric p-simplex is a subset of Rn of the form

� pX

iD0

tivi W 0� ti � 1 and
pX

iD0

ti D 1

�
;

for some pC1 affinely independent points fv0; : : : ; vpg. The integer p (one less than
the number of vertices) is called the dimension of the simplex. The points v0; : : : ; vp
are called its vertices, and the geometric simplex with these vertices is denoted by
Œv0; : : : ; vp�. It is a compact convex set, in fact the smallest convex set containing
fv0; : : : ; vpg. The simplices whose vertices are nonempty subsets of fv0; : : : ; vpg are
called the faces of the simplex. The .p� 1/-dimensional faces are called its bound-
ary faces. There are precisely p C 1 boundary faces, obtained by omitting each of
the vertices in turn; the i th boundary face

�
v0; : : : ;bvi ; : : : ; vp

�
(with vi omitted) is

denoted by @i Œv0; : : : ; vp�, and is called the face opposite vi .

I Exercise 18.1. Show that a geometric p-simplex is a p-dimensional smooth man-
ifold with corners smoothly embedded in Rn.

The standard p-simplex is the simplex �p D Œe0; e1; : : : ; ep� � Rp , where
e0 D 0 and ei is the i th standard basis vector. For example, �0 D f0g, �1 D Œ0; 1�,
�2 is the triangle with vertices .0; 0/, .1; 0/, and .0; 1/ together with its interior, and
�3 is a solid tetrahedron (Fig. 18.1).

Let M be a topological space. A continuous map � W �p !M is called a sin-
gular p-simplex in M . The singular chain group of M in degree p, denoted by
Cp.M/, is the free abelian group generated by all singular p-simplices in M . An
element of this group, called a singular p-chain, is a finite formal linear combina-
tion of singular p-simplices in M with integer coefficients.

One special case that arises frequently is that in which the space M is a convex
subset of some Euclidean space Rm. In that case, for any ordered .p C 1/-tuple of
points .w0; : : : ;wp/ in M; not necessarily affinely independent, there is a unique
affine map from Rp to Rm that takes ei to wi for i D 0; : : : ; p. (The map is easily
constructed by first finding a linear map that takes ei to wi �w0 for i D 1; : : : ; p,
and then translating by w0.) The restriction of this affine map to �p is denoted by
A.w0; : : : ;wp/, and is called an affine singular simplex in M .
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Fig. 18.2 The singular boundary operator

For each i D 0; : : : ; p, we define the i th face map in	p to be the affine singular
.p � 1/-simplex Fi;p W �p�1!�p defined by

Fi;p DA
�
e0; : : : ;bei ; : : : ; ep

�
:

It maps �p�1 homeomorphically onto the boundary face @i�p . Explicitly, it is the
unique affine map sending e0 7! e0, . . . , ei�1 7! ei�1, ei 7! eiC1, . . . , ep�1 7! ep .

The boundary of a singular p-simplex � W �p!M is the singular .p�1/-chain
@� defined by

@� D

pX

iD0

.�1/i� ıFi;p:

For example, if � is a singular 2-simplex, its boundary is a formal sum of three
singular 1-simplices with coefficients ˙1, as indicated in Fig. 18.2. This extends
uniquely to a group homomorphism @ W Cp.M/! Cp�1.M/, called the singular
boundary operator. The basic fact about the boundary operator is the next lemma.

Lemma 18.2. If c is any singular chain, then @.@c/D 0.

Sketch of Proof. The starting point is the fact that

Fi;p ıFj;p�1 D Fj;p ıFi�1;p�1 (18.1)

when i > j , which can be verified by following what both compositions do to each
of the vertices of �p�2. Using this, the proof of the lemma is just a straightforward
computation. �

A singular p-chain c is called a cycle if @c D 0, and a boundary if c D @b for
some singular .p C 1/-chain b. Let Zp.M/ denote the set of singular p-cycles in
M; and Bp.M/ the set of singular p-boundaries. Because @ is a homomorphism,
Zp.M/ and Bp.M/ are subgroups of Cp.M/, and because @ ı @D 0, they satisfy
Bp.M/�Zp.M/. The pth singular homology group of M is the quotient group

Hp.M/D
Zp.M/

Bp.M/
:

To put it another way, the sequence of abelian groups and homomorphisms

� � � ! CpC1.M/
@
�! Cp.M/

@
�! Cp�1.M/! � � �
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Fig. 18.3 The homology homomorphism induced by a continuous map

is a complex, called the singular chain complex, and Hp.M/ is the pth homology
group of this complex. The equivalence class in Hp.M/ of a singular p-cycle c
is called its homology class, and is denoted by Œc�. We say that two p-cycles are
homologous if they differ by a boundary.

A continuous map F W M !N induces a homomorphism F] W Cp.M/! Cp.N /

on each singular chain group, defined by F].�/ D F ı � for any singular sim-
plex � (Fig. 18.3) and extended linearly to chains. An easy computation shows that
F] ı @D @ ı F], so F] is a chain map, and therefore induces a homomorphism on
the singular homology groups, denoted by F� W Hp.M/!Hp.N /. It is immediate
that .G ıF /� DG� ıF� and .IdM /� D IdHp.M/, so pth singular homology defines
a covariant functor from the category of topological spaces and continuous maps to
the category of abelian groups and homomorphisms. In particular, homeomorphic
spaces have isomorphic singular homology groups.

Intuitively, you will not go too far astray if you visualize a singular p-chain in
M as representing something like a compact p-dimensional submanifold ofM with
boundary (although, because there is no requirement that singular chains be smooth,
or topological embeddings, or even injective, a chain might not look at all like a
submanifold; hence the designation “singular”). A closed p-chain, then, is like a
compact submanifold without boundary, and it represents the trivial homology class
if and only if it is the boundary of a .p C 1/-chain. Thus a nontrivial element of
Hp.M/ is rather like a compact p-dimensional submanifold of M that does not
bound a compact .p C 1/-dimensional submanifold, and so must represent some
kind of p-dimensional “hole” in M . (See Problem 18-3, which introduces smooth
triangulations as a way of giving this intuition more substance.)

Proposition 18.3 (Properties of Singular Homology Groups).

(a) For any one-point space fqg, H0.fqg/ is the infinite cyclic group generated by
the homology class of the unique singular 0-simplex mapping �0 to q, and
Hp.fqg/D 0 for all p¤ 0.

(b) Let fMj g be any collection of topological spaces, and let M D
`
j Mj . The

inclusion maps 	j W Mj ,!M induce an isomorphism
L
j Hp.Mj /ŠHp.M/.

(c) Homotopy equivalent spaces have isomorphic singular homology groups.

Sketch of Proof. In a one-point space fqg, there is exactly one singular p-simplex
for each p, namely the constant map. The result of part (a) follows from an analysis
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of the boundary maps. Part (b) is immediate because the maps 	j already induce an
isomorphism on the chain level:

L
j Cp.Mj /Š Cp.M/.

The main step in the proof of homotopy invariance is the construction for any
space M of a linear map h W Cp.M/! CpC1.M � I / satisfying

h ı @C @ ı hD .i1/] � .i0/]; (18.2)

where ik W M !M � I is the injection ik.x/D .x; k/. From this it follows just as
in the proof of Proposition 17.10 that homotopic maps induce the same homology
homomorphism, and then in turn that homotopy equivalent spaces have isomorphic
singular homology groups. �

In addition to the properties above, singular homology satisfies the following
version of the Mayer–Vietoris theorem. Suppose M is a topological space and
U;V �M are open subsets whose union is M . The usual diagram (17.6) of in-
clusions induces homology homomorphisms:

Hp.U /

Hp.U \ V /

i� �

Hp.M/:

k��

Hp.V /

l�

�

j�
�

(18.3)

Theorem 18.4 (Mayer–Vietoris for Singular Homology). LetM be a topological
space and let U;V be open subsets of M whose union is M . For each p there is
a connecting homomorphism @� W Hp.M/!Hp�1.U \ V / such that the following
sequence is exact:

� � �
@�
�!Hp.U \ V /

˛
�!Hp.U /˚Hp.V /

ˇ
�!Hp.M/

@�
�!Hp�1.U \ V /

˛
�! � � � ; (18.4)

where

˛Œc�D
�
i�Œc�;�j�Œc�

�
; ˇ

�
Œc�; Œc0�

�
D k�Œc�C l�Œc

0�;

and @�Œe�D Œc�, provided there exist f 2 Cp.U / and f 0 2 Cp.V / such that k]f C
l]f
0 is homologous to e and .i]c;�j]c/D .@f; @f 0/.

Sketch of Proof. The basic idea, of course, is to construct a short exact sequence
of complexes and use the zigzag lemma. The hardest part of the proof is showing
that every homology class Œe� 2Hp.M/ can be represented in the form ˇ.Œc�; Œc0�/,
where c is a singular chain in U and c0 is a singular chain in V . This is accomplished
by systematically “subdividing” each chain into smaller ones, each of which maps
only into U or V , and keeping careful track of the boundary operators. �
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Note that the maps ˛ and ˇ in this Mayer–Vietoris sequence can be replaced by

z̨Œc�D
�
i�Œc�; j�Œc�

�
; ž

�
Œc�; Œc0�

�
D k�Œc�� l�Œc

0�;

and the same proof goes through. If you consult various algebraic topology texts,
you will find both definitions in use. We are using the definition given in the state-
ment of the theorem because it leads to a cohomology exact sequence that is com-
patible with the Mayer–Vietoris sequence for de Rham cohomology; see the proof
of the de Rham theorem below.

Singular Cohomology

In addition to the singular homology groups, for any topological space M and any
abelian group G one can define a closely related sequence of groups Hp.M IG/

called the singular cohomology groups with coefficients in G . The precise defini-
tion is unimportant for our purposes; we are only concerned with the special case
G DR, in which case it can be shown that Hp.M IR/ is a real vector space that is
naturally isomorphic to the space Hom

�
Hp.M/;R

�
of group homomorphisms from

Hp.M/ into R. (For simplicity, let us take this as our definition ofHp.M;R/.) Any
continuous map F W M !N induces a linear map F � W Hp.N IR/!Hp.M IR/,
defined by .F ��/Œc�D �.F�Œc�/ for each � 2Hp.N IR/Š Hom

�
Hp.N /;R

�
and

each singular p-chain c in M . The functorial properties of F� carry over to coho-
mology: .G ıF /� D F � ıG� and .IdM /� D IdHp.M IR/. It follows that pth singular
cohomology with coefficients in R defines a contravariant functor from the topolog-
ical category to the category of real vector spaces and linear maps.

There is an important theorem of algebraic topology called the universal coeffi-
cient theorem, which shows how the singular cohomology groups with coefficients
in an arbitrary group can be recovered from the singular homology groups. Thus,
the cohomology groups do not contain any new information that is not already en-
coded in the homology groups; but they organize it in a different way that is more
convenient for many purposes. In particular, the fact that the singular cohomology
groups, like the de Rham cohomology groups, define contravariant functors makes
it much easier to compare the two.

Proposition 18.5 (Properties of Singular Cohomology).

(a) For any one-point space fqg,Hp.fqgIR/ is trivial except when pD 0, in which
case it is 1-dimensional.

(b) If fMj g is any collection of topological spaces and M D
`
j Mj , then the

inclusion maps 	j W Mj ,! M induce an isomorphism from Hp.M IR/ toQ
j H

p.Mj IR/.
(c) Homotopy equivalent spaces have isomorphic singular cohomology groups.

Sketch of Proof. These properties follow easily from the definitions and Proposi-
tion 18.3. �

The key fact about the singular cohomology groups that we need is that they, too,
satisfy a Mayer–Vietoris theorem.
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Theorem 18.6 (Mayer–Vietoris for Singular Cohomology). Suppose M; U , and
V satisfy the hypotheses of Theorem 18.4. The following sequence is exact:

� � �
@�

�!Hp.M IR/
k�˚l�

����!Hp.U IR/˚Hp.V IR/
i��j�

����!Hp.U \ V IR/

@�

�!HpC1.M IR/
k�˚l�

����! � � � ; (18.5)

where the maps k� ˚ l� and i� � j � are defined as in (17.8), and @� is defined by
@�.�/D � ı @�, with @� as in Theorem 18.4.

Sketch of Proof. For any homomorphism F W A!B between abelian groups, there
is a dual homomorphism F � W Hom.B;R/!Hom.A;R/ given by F �.�/D � ıF .
Applying this to the Mayer–Vietoris sequence (18.4) for singular homology, we
obtain the cohomology sequence (18.5). Exactness of (18.5) is a consequence of the
fact that the assignments A 7! Hom.A;R/ and F 7! F � define an exact functor,
meaning that it takes exact sequences to exact sequences. This in turn follows from
the fact that R is an injective group: this means that whenever H is a subgroup of
an abelian group G, every homomorphism from H into R extends to all of G. �

Smooth Singular Homology

The connection between the singular and de Rham cohomology groups will be
established by integrating differential forms over singular chains. More precisely,
given a singular p-simplex � in a manifold M and a p-form ! on M; we would
like to pull ! back by � and integrate the resulting form over �p . However, there is
an immediate problem with this approach, because forms can be pulled back only
by smooth maps, while singular simplices are in general only continuous. (Actu-
ally, since only first derivatives of the map appear in the formula for the pullback,
it would be sufficient to consider C 1 maps, but merely continuous ones definitely
will not do.) In this section we overcome this problem by showing that singular
homology can be computed equally well with smooth simplices.

IfM is a smooth manifold, a smooth p-simplex inM is a map � W �p!M that
is smooth in the sense that it has a smooth extension to a neighborhood of each point.
The subgroup of Cp.M/ generated by smooth simplices is denoted by C1p .M/ and
called the smooth chain group in degree p. Elements of this group, which are finite
formal linear combinations of smooth simplices, are called smooth chains. Because
the boundary of a smooth simplex is a smooth chain, we can define the pth smooth
singular homology group of M to be the quotient group

H1p .M/D
Ker

�
@ W C1p .M/! C1p�1.M/

�

Im
�
@ W C1pC1.M/! C1p .M/

� :

The inclusion map 	 W C1p .M/ ,! Cp.M/ commutes with the boundary operator,
and so induces a map on homology: 	� W H1p .M/!Hp.M/ by 	�Œc�D Œ	.c/�.
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Fig. 18.4 The homotopy H�

Theorem 18.7 (Smooth Singular vs. Singular Homology). For any smooth man-
ifold M; the map 	� W H1p .M/!Hp.M/ induced by inclusion is an isomorphism.

The basic idea of the proof is to construct, with the help of the Whitney approx-
imation theorem, two operators: first, a smoothing operator s W Cp.M/! C1p .M/

such that s ı @ D @ ı s and s ı 	 is the identity on C1p .M/; and second, a homo-
topy operator that shows that 	 ı s induces the identity map on Hp.M/. The details
are highly technical, so unless algebraic topology is your primary interest, you may
wish to skim the rest of this section on first reading.

The key to the proof is a systematic construction of a homotopy from each contin-
uous simplex to a smooth one, in a way that respects the restriction to each boundary
face of �p . This is summarized in the following lemma.

Lemma 18.8. LetM be a smooth manifold. For each integer p � 0 and each singu-
lar p-simplex � W �p!M; there exists a continuous map H� W �p � I !M such
that the following properties hold:

(i) H� is a homotopy from �.x/ D H� .x; 0/ to a smooth p-simplex z�.x/ D
H� .x; 1/.

(ii) For each face map Fi;p W �p�1!�p ,

H�ıFi;p DH� ı
�
Fi;p � IdI

�
; (18.6)

or more explicitly,

H�ıFi;p .x; t/DH�
�
Fi;p.x/; t

�
; .x; t/ 2�p�1 � I: (18.7)

(iii) If � is a smooth p-simplex, then H� is the constant homotopy H� .x; t/ D
�.x/.

Proof. We will construct the homotopies H� (see Fig. 18.4) by induction on the
dimension of � . To get started, for each 0-simplex � W �0 !M; we just define
H� .x; t/D �.x/. Since each 0-simplex is smooth and there are no face maps, con-
ditions (i)–(iii) are automatically satisfied.

Now suppose by induction that for each p0 < p and for each p0-simplex � 0 we
have defined H� 0 in such a way that the primed analogues of (i)–(iii) are satisfied.
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Let � W �p!M be an arbitrary singular p-simplex inM . If � is smooth, we just let
H� .x; t/D �.x/, and (i)–(iii) are easily verified (using the fact that the restriction
of � to each boundary face is also smooth).

Assume that � is not smooth, and let S be the subset

S D
�
�p � f0g

�
[
�
@�p � I

�
��p � I

(the bottom and side faces of the “prism” �p � I ). Recall that @�p is the union of
the boundary faces @i�p for i D 0; : : : ; p, and for each i , the face map Fi;p is a
homeomorphism from �p�1 onto @i�p . Define H0 W S!M by

H0.x; t/D

(
�.x/; x 2�p; t D 0I

H�ıFi;p
�
F �1i;p .x/; t

�
; x 2 @i�p; t 2 I:

We need to check that the various definitions agree where they overlap, which im-
plies that H0 is continuous by the gluing lemma.

When t D 0, the inductive hypothesis (i) applied to the singular .p � 1/-simplex
� ıFi;p implies that H�ıFi;p .x; 0/D � ıFi;p.x/. It follows that

H�ıFi;p
�
F �1i;p .x/; 0

�
D �.x/;

so the different definitions of H0 agree at points where t D 0.
Suppose now that x is a point in the intersection of two boundary faces @i�p

and @j�p , and assume without loss of generality that i > j . Since Fi;p ıFj;p�1 is a
homeomorphism from�p�2 onto @i�p \@j�p , we can write x D Fi;p ıFj;p�1.y/
for some point y 2�p�2. Then (18.7) applied with � ıFi;p in place of � and Fj�1;p
in place of Fi;p implies that

H�ıFi;p
�
F �1i;p .x/; t

�
DH�ıFi;p

�
Fj;p�1.y/; t

�
DH�ıFi;pıFj;p�1.y; t/:

On the other hand, thanks to (18.1), we can also write x D Fj;p ı Fi�1;p�1.y/, and
then the same argument applied to � ıFj;p yields

H�ıFj;p
�
F �1j;p .x/; t

�
DH�ıFj;p

�
Fi�1;p�1.y/; t

�
DH�ıFj;pıFi�1;p�1.y; t/:

Because of (18.1), this shows that the two definitions of H0.x; t/ agree.
To extend H0 to all of �p � I , we use the fact that there is a retraction from

�p � I onto S . For example, if q0 is any point in the interior of �p , then the map
R W �p � I ! S obtained by radially projecting from the point .q0; 2/ 2Rp �R is
such a retraction (see Fig. 18.5). Extend H0 to a continuous map H W �p � I !M

by setting H.x; t/DH0
�
R.x; t/

�
. Because H agrees with H0 on S , it is a homo-

topy from � to some other (continuous) singular simplex � 0.x/DH.x;1/, and it
satisfies (18.7) by construction. Our only remaining task is to modify H so that it
becomes a homotopy from � to a smooth simplex.

Before we do so, we need to observe that the restriction of H to each boundary
face @i�p � f1g is smooth: since these faces lie in S , H agrees with H0 on each of
these sets, and hypothesis (i) applied to � ıFi;p shows that H0 is smooth there. By
virtue of Lemma 18.9 below, this implies that the restriction of H to the entire set
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Fig. 18.5 A retraction from�p � I onto S

@�p � f1g is smooth. Let � 00 be any continuous extension of � 0 to an open subset
U � Rp containing �p . (For example, � 00 could be defined by projecting points
outside�p to @�p along radial lines from some point in the interior of�p , and then
applying � 0.) By the Whitney approximation theorem, � 00 is homotopic relative to
@�p to a smooth map, and restricting the homotopy to�p�I we obtain a homotopy
G W � 0 ' z� from � 0 to some smooth singular p-simplex z� , again relative to @�p .

Now let u W �p!R be any continuous function that is equal to 1 on @�p and sat-
isfies 0 < u.x/ < 1 for u 2 Int�p . (For example, we could take u

�P
0�i�p tiei

�
D

1� t0t1 � � � tp , where
P
0�i�p ti D 1 and e0; : : : ; ep are the vertices of�p .) We com-

bine the two homotopies H and G into a single homotopy H� W �p � I !M by

H� .x; t/D

‚

H

�
x;

t

u.x/

�
; x 2�p; 0� t � u.x/;

G

�
x;
t � u.x/

1� u.x/

�
; x 2 Int�p; u.x/� t � 1:

BecauseH.x;1/D � 0.x/DG.x; 0/, the gluing lemma shows thatH� is continuous
in Int�p � I . Also, H� .x; t/DH

�
x; t=u.x/

�
in a neighborhood of @�p � Œ0; 1/,

and thus is continuous there. It remains only to show that H� is continuous on
@�p � f1g. Let x0 2 @�p be arbitrary, and let U � M be any neighborhood
of H� .x0; 1/ D H.x0; 1/. By continuity of H and u, there exists ı1 > 0 such
that H

�
x; t=u.x/

�
2 U whenever j.x; t/ � .x0; 1/j < ı1 and 0 � t � u.x/. Since

G.x0; t / D G.x0; 0/ D H.x0; 1/ D H� .x0; 1/ 2 U for all t 2 I , a simple com-
pactness argument shows that there exists ı2 > 0 such that jx � x0j < ı2 im-
plies G.x; t/ 2 U for all t 2 I . Thus, if j.x; t/ � .x0; 1/j < min.ı1; ı2/, we have
H� .x; t/ 2 U in both cases, showing that .x0; 1/ has a neighborhood mapped into
U by H� . Thus H� is continuous.
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Fig. 18.6 Showing that f is smooth on @�p

It follows from the definition that H� DH on @�p � I , so (ii) is satisfied. For
any x 2�p , H� .x; 0/DH.x;0/D �.x/. Moreover, when x 2 Int�p , H� .x; 1/D
G.x; 1/D z�.x/, and when x 2 @�p ,H� .x; 1/DH.x;1/D � 0.x/D z�.x/ (because
G is a homotopy relative to @�p). Thus, H� is a homotopy from � to the smooth
simplex z� , and (i) is satisfied as well. �

Here is the lemma used in the preceding proof.

Lemma 18.9. Let M be a smooth manifold, let � be a geometric p-simplex in Rn,
and let f W @�! M be a continuous map whose restriction to each individual
boundary face of � is smooth. Then f is smooth when considered as a map from
the entire boundary @� to M .

Proof. Let .v0; : : : ; vp/ denote the vertices of � in some order, and for each
i D 0; : : : ; p, let @i�D

�
v0; : : : ;bvi ; : : : ; vp

�
be the boundary face opposite vi . The

hypothesis means that for each i and each x 2 @i�, there exist an open subset
Ux � Rn and a smooth map zf W Ux !M whose restriction to Ux \ @i� agrees
with f . We need to show that a single smooth extension can be chosen simultane-
ously for all the boundary faces containing x.

Suppose x 2 @�. Note that x is in one or more boundary faces of�, but cannot be
in all of them. By reordering the vertices, we may assume that x 2 @1�\ � � � \ @k�
for some 1� k � p, but x … @0�. After composing with an affine diffeomorphism
that takes vi to ei for i D 0; : : : ; p, we may assume without loss of generality that
� D �p and x … @0�p . Then the boundary faces containing x are precisely the
intersections with �p of the coordinate hyperplanes x1 D 0; : : : ; xk D 0. For each
i , there are a neighborhood Ui of x in Rn (which can be chosen disjoint from @0�p)
and a smooth map zfi W Ui !M whose restriction to Ui \ @i�p agrees with f .

Let U D U1 \ � � � \ Uk (see Fig. 18.6). We show by induction on k that there
is a smooth map zf W U !M whose restriction to U \ @i�p agrees with f for
i D 1; : : : ; k. Because the argument is local from this point on, after shrinking U
if necessary we may replace M with a coordinate neighborhood of f .x/ that is
diffeomorphic to Rm; thus we henceforth identify M with Rm.

For k D 1 there is nothing to prove, because zf1 is already such an extension. So
suppose k � 2, and we have shown that there is a smooth map zf0 W U !M whose
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restriction to U \ @i�p agrees with f for i D 1; : : : ; k � 1. Define zf W U !M by

zf
�
x1; : : : ; xn

�
D zf0

�
x1; : : : ; xn

�
� zf0

�
x1; : : : ; xk�1; 0; xkC1; : : : ; xn

�

C zfk
�
x1; : : : ; xk�1; 0; xkC1; : : : ; xn

�
:

For i D 1; : : : ; k � 1, the restriction of zf to U \ @i�p is given by

zf
�
x1; : : : ; xi�1; 0; xiC1; : : : ; xn

�

D zf0
�
x1; : : : ; xi�1; 0; xiC1; : : : ; xn

�

� zf0
�
x1; : : : ; xi�1; 0; xiC1; : : : ; xk�1; 0; xkC1; : : : ; xn

�

C zfk
�
x1; : : : ; xi�1; 0; xiC1; : : : ; xk�1; 0; xkC1; : : : ; xn

�

D f
�
x1; : : : ; xi�1; 0; xiC1; : : : ; xn

�
;

since zf0 agrees with f when x 2 �p and xi D 0, as does zfk when x 2 �p and
xk D 0. Similarly, the restriction to U \ @k�p is

zf
�
x1; : : : ; xk�1; 0; xkC1; : : : ; xn

�
D zf0

�
x1; : : : ; xk�1; 0; xkC1; : : : ; xn

�

� zf0
�
x1; : : : ; xk�1; 0; xkC1; : : : ; xn

�

C zfk
�
x1; : : : ; xk�1; 0; xkC1; : : : ; xn

�

D f
�
x1; : : : ; xk�1; 0; xkC1; : : : ; xn

�
:

This completes the inductive step and thus the proof. �

Proof of Theorem 18.7. Let i0; i1 W �p ! �p � I be the smooth embeddings
i0.x/D .x; 0/, i1.x/D .x; 1/. Define a homomorphism s W Cp.M/! C1p .M/ by
setting

s� DH� ı i1

for each singular p-simplex � (where H� is the homotopy whose existence is
proved in Lemma 18.8) and extending linearly to p-chains. Because of property
(i) in Lemma 18.8, s� is a smooth p-simplex homotopic to � .

Using (18.6), we can verify that s is a chain map: for each singular p-simplex � ,

s@� D s

pX

iD0

.�1/i� ıFi;p D

pX

iD0

.�1/iH�ıFi;p ı i1

D

pX

iD0

.�1/iH� ı .Fi;p � IdI / ı i1 D
pX

iD0

.�1/iH� ı i1 ıFi;p

D @.H� ı i1/D @s�:
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(In the fourth equality we used the fact that .Fi;p � IdI / ı i1.x/D
�
Fi;p.x/; 1

�
D

i1 ı Fi;p.x/.) Therefore, s descends to a homomorphism s� W Hp.M/!H1p .M/.
We will show that s� is an inverse for 	� W H1p .M/!Hp.M/.

First, observe that condition (iii) in Lemma 18.8 guarantees that s ı 	 is the
identity map of C1p .M/, so clearly s� ı 	� is the identity on H1p .M/. To show
that 	� ı s� is also the identity, we construct for each p � 0 a homotopy operator
h W Cp.M/! CpC1.M/ satisfying

@ ı hC h ı @D 	 ı s � IdCp.M/ : (18.8)

Once the existence of such an operator is known, it follows just as in the proof of
Proposition 17.10 that 	� ı s� D IdHp.M/: for any cycle c 2 Cp.M/,

	� ı s�Œc�� Œc�D Œ	 ı s.c/� c�D
�
@.hc/C h.@c/

�
D 0;

because @c D 0 and @.hc/ is a boundary.
To define the homotopy operator h, we need to introduce a family of affine sin-

gular simplices in the convex set �p � I � Rp � R. For each i D 0; : : : ; p, let
Ei D .ei ; 0/ 2Rp �R and E 0i D .ei ; 1/ 2R

p �R, so that E0; : : : ;Ep are the ver-
tices of the geometric p-simplex�p�f0g, andE 00 : : : ;E

0
p are those of�p�f1g. For

each i D 0; : : : ; p, let Gi;p W �pC1!�p � I be the affine singular .pC 1/-simplex

Gi;p DA
�
E0; : : : ;Ei ;E

0
i ; : : : ;E

0
p

�
:

Thus, Gi;p is the unique affine map that sends e0 7! E0; : : : ; ei 7! Ei ; eiC1 7!

E 0i ; : : : , and epC1 7! E 0p . A routine computation shows that these maps compose
with the face maps as follows:

Gj;p ıFj;pC1 DGj�1;p ıFj;pC1 DA
�
E0; : : : ;Ej�1;E

0
j ; : : : ;E

0
p

�
: (18.9)

In particular, this implies that

Gp;p ıFpC1;pC1 D A.E0; : : : ;Ep/D i0; (18.10)

G0;p ıF0;pC1 D A.E
0
0; : : : ;E

0
p/D i1: (18.11)

A similar computation shows that

.Fj;p � IdI / ıGi;p�1 D

(
GiC1;p ıFj;pC1; i � j;

Gi;p ıFjC1;pC1; i < j:
(18.12)

We define h W Cp.M/! CpC1.M/ as follows:

h� D

pX

iD0

.�1/iH� ıGi;p:
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The proof that it satisfies the homotopy formula (18.8) is just a laborious computa-
tion using (18.7), (18.9), and (18.12):

h.@�/Dh

pX

jD0

.�1/j� ıFj;p D

p�1X

iD0

pX

jD0

.�1/iCjH�ıFj;p ıGi;p�1

D

p�1X

iD0

pX

jD0

.�1/iCjH� ı .Fj;p � IdI / ıGi;p�1

D
X

0�j�i�p�1

.�1/iCjH� ıGiC1;p ıFj;pC1

C
X

0�i<j�p

.�1/iCjH� ıGi;p ıFjC1;pC1; (18.13)

while

@.h�/D @

pX

iD0

.�1/iH� ıGi;p D

pC1X

jD0

pX

iD0

.�1/iCjH� ıGi;p ıFj;pC1:

Writing separately the terms in @.h�/ for which i < j � 1, i D j � 1, i D j , and
i > j , we get

@.h�/D
X

0�i<j�1
j�pC1

.�1/iCjH� ıGi;p ıFj;pC1 �
X

1�j�pC1

H� ıGj�1;p ıFj;pC1

C
X

0�j�p

H� ıGj;p ıFj;pC1C
X

0�j<i�p

.�1/iCjH� ıGi;p ıFj;pC1:

After substituting j D j 0 C 1 in the first of these four sums and i D i 0 C 1 in the
last, we see that the first and last sums exactly cancel the two sums in the expression
(18.13) for h.@�/. Using (18.9), all the terms in the middle two sums cancel each
other except those in which j D 0 and j D p C 1. Thanks to (18.10) and (18.11),
these two terms simplify to

h.@�/C @.h�/D�H� ıGp;p ıFpC1;pC1CH� ıG0;p ıF0;pC1

D�H� ı i0CH� ı i1 D�� C s�:

Since 	 is an inclusion map, s� D 	 ı s� for any singular p-simplex � , so this com-
pletes the proof. �

The de Rham Theorem

In this section we state and prove the de Rham theorem. Before getting to the the-
orem itself, we need one more algebraic lemma. Its proof is another diagram chase
like the proof of the zigzag lemma.
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Lemma 18.10 (The Five Lemma). Consider the following commutative diagram
of modules and linear maps:

A1
˛1� A2

˛2� A3
˛3� A4

˛4� A5

B1

f1� ˇ1� B2

f2� ˇ2� B3

f3� ˇ3� B4

f4� ˇ4� B5:

f5�

If the horizontal rows are exact and f1, f2, f4, and f5 are isomorphisms, then f3
is also an isomorphism.

I Exercise 18.11. Prove (or look up) the five lemma.

SupposeM is a smooth manifold, ! is a closed p-form on M; and � is a smooth
p-simplex in M . We define the integral of ! over � to be

Z

�

! D

Z

�p

��!:

This makes sense because �p is a smooth p-submanifold with corners embedded
in Rp , and it inherits the orientation of Rp . (Or we could just consider �p as a
domain of integration in Rp .) Observe that when pD 1, this is the same as the line
integral of ! over the smooth curve segment � W Œ0; 1�!M . If c D

Pk
iD1 ci�i is a

smooth p-chain, the integral of ! over c is defined as

Z

c

! D

kX

iD1

ci

Z

�i

!:

Theorem 18.12 (Stokes’s Theorem for Chains). If c is a smooth p-chain in a
smooth manifold M; and ! is a smooth .p � 1/-form on M; then

Z

@c

! D

Z

c

d!:

Proof. It suffices to prove the theorem when c is just a smooth simplex � . Since�p
is a manifold with corners, Stokes’s theorem says that

Z

�

d! D

Z

�p

��d! D

Z

�p

d��! D

Z

@�p

��!:

The maps fFi;p W 0 D 1; : : : ; pg are parametrizations of the boundary faces of �p
satisfying the conditions of Proposition 16.21, except possibly that they might not
be orientation-preserving. To check the orientations, note that Fi;p is the restric-
tion to �p \ @Hp of the affine diffeomorphism sending the simplex Œe0; : : : ; ep� to�
e0; : : : ;bei ; : : : ; ep; ei

�
. This is easily seen to be orientation-preserving if and only

if
�
e0; : : : ;bei ; : : : ; ep; ei

�
is an even permutation of .e0; : : : ; ep/, which is the case

if and only if p � i is even. Since the standard coordinates on @Hp are positively
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oriented if and only if p is even, the upshot is that Fi;p is orientation-preserving for
@�p if and only if i is even. Thus, by Proposition 16.21,

Z

@�p

��! D

pX

iD0

.�1/i
Z

�p�1

F �i;p�
�! D

pX

iD0

.�1/i
Z

�p�1

.� ıFi;p/
�!

D

pX

iD0

.�1/i
Z

�ıFi;p

!:

By definition of the singular boundary operator, this is equal to
R
@�
!. �

Using this theorem, we define a natural linear map I W H
p
dR.M/!Hp.M IR/,

called the de Rham homomorphism, as follows. For any Œ!� 2Hp
dR.M/ and Œc� 2

Hp.M/ŠH1p .M/, we define

IŒ!�Œc�D

Z

zc

!; (18.14)

where zc is any smooth p-cycle representing the homology class Œc�. This is well
defined, because if zc, zc0 are smooth cycles representing the same homology class,
then Theorem 18.7 guarantees that zc � zc0 D @zb for some smooth .p C 1/-chain zb,
which implies

Z

zc

! �

Z

zc0
! D

Z

@zb

! D

Z

zb

d! D 0;

while if ! D d� is exact, then
Z

zc

! D

Z

zc

d�D

Z

@zc

�D 0:

(Note that @zc D 0 because zc represents a homology class, and d! D 0 because !
represents a cohomology class.) Clearly, IŒ!�ŒcC c0�D IŒ!�Œc�C IŒ!�Œc0�, and the
resulting homomorphism IŒ!� W Hp.M/!R depends linearly on !. Thus, IŒ!� is
a well-defined element of Hom.Hp.M/;R/ŠHp.M IR/.

Proposition 18.13 (Naturality of the de Rham Homomorphism). For a smooth
manifold M and nonnegative integer p, let I W H

p
dR.M/!Hp.M IR/ denote the

de Rham homomorphism.

(a) If F W M !N is a smooth map, then the following diagram commutes:

H
p
dR.N /

F �� H
p
dR.M/

Hp.N IR/

I
�

F �
� Hp.M IR/:

I
�
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Fig. 18.7 Naturality of I with respect to connecting homomorphisms

(b) If M is a smooth manifold and U;V are open subsets of M whose union is M;
then the following diagram commutes:

H
p�1
dR .U \ V /

ı� H
p
dR.M/

Hp�1.U \ V IR/

I
�

@�
� Hp.M IR/;

I
�

(18.15)

where ı and @� are the connecting homomorphisms of the Mayer–Vietoris
sequences for de Rham and singular cohomology, respectively.

Proof. Directly from the definitions, if � is a smooth p-simplex in M and ! is a
smooth p-form on N ,

Z

�

F �! D

Z

�p

��F �! D

Z

�p

.F ı �/�! D

Z

F ı�

!:

This implies

I
�
F �Œ!�

�
Œ��D IŒ!�ŒF ı ��D IŒ!�

�
F�Œ��

�
D F �

�
IŒ!�

�
Œ��;

which proves (a).
Now consider (b). Commutativity of this diagram means

I
�
ıŒ!�

�
Œe�D

�
@�IŒ!�

�
Œe�
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for any Œ!� 2 Hp�1
dR .U \ V / and any Œe� 2 Hp.M/. Using our identification of

Hp.M IR/ with Hom.Hp.M/;R/, we can rewrite this as

I
�
ıŒ!�

�
Œe�D I

�
Œ!�
��
@�Œe�

�
:

If � is a smooth p-form representing ıŒ!� and c is a smooth .p � 1/-chain repre-
senting @�Œe�, this is the same as

R
e � D

R
c !. By the characterization of @� given

in Theorem 18.4, we can let c D @f , where f;f 0 are smooth p-chains in U and V ,
respectively, such that f C f 0 represents the same homology class as e (Fig. 18.7).
Similarly, by Corollary 17.42, we can choose � 2�p�1.U / and �0 2�p�1.V / such
that ! D �jU\V ��0jU\V , and then let � be the p-form that is equal to d� on U and
to d�0 on V . Then, because @f C @f 0 D @eD 0 and d�jU\V �d�0jU\V D d! D 0,
we have

Z

c

! D

Z

@f

! D

Z

@f

��

Z

@f

�0 D

Z

@f

�C

Z

@f 0
�0

D

Z

f

d�C

Z

f 0
d�0 D

Z

f

� C

Z

f 0
� D

Z

e

�:

Thus the diagram commutes. �

Theorem 18.14 (de Rham). For every smooth manifoldM and nonnegative integer
p, the de Rham homomorphism I W H

p
dR.M/!Hp.M IR/ is an isomorphism.

Proof. Let us say that a smooth manifold M is a de Rham manifold if the homo-
morphism I W H

p
dR.M/!Hp.M IR/ is an isomorphism for each p. Since I com-

mutes with the cohomology maps induced by smooth maps (Proposition 18.13), any
manifold that is diffeomorphic to a de Rham manifold is also de Rham. The theorem
will be proved once we show that every smooth manifold is de Rham.

If M is any smooth manifold, let us call an open cover fUig of M a de
Rham cover if each subset Ui is a de Rham manifold, and every finite intersection
Ui1 \ � � � \Uik is de Rham. A de Rham cover that is also a basis for the topology of
M is called a de Rham basis for M .

STEP 1: If fMj g is any countable collection of de Rham manifolds, then their
disjoint union is de Rham. By Propositions 17.5 and 18.5(b), for both de Rham
and singular cohomology the inclusions 	j W Mj ,!

`
j Mj induce isomorphisms

between the cohomology groups of the disjoint union and the direct product of the
cohomology groups of the manifolds Mj . By Proposition 18.13, I commutes with
these isomorphisms.

STEP 2: Every convex open subset of Rn is de Rham. Let U be such a subset. By
the Poincaré lemma,Hp

dR.U / is trivial when p¤ 0. Since U is homotopy equivalent
to a one-point space, Proposition 18.5 implies that the singular cohomology groups
ofU are also trivial for p¤ 0. In the pD 0 case,H 0

dR.U / is the 1-dimensional space
consisting of the constant functions, and H 0.U IR/D Hom

�
H0.U /;R

�
is also 1-

dimensional becauseH0.U / is generated by any singular 0-simplex. If � W �0!M

is a singular 0-simplex (which is smooth because any map from a 0-manifold is
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smooth), and f is the constant function equal to 1, then

IŒf �Œ��D

Z

�0

��f D .f ı �/.0/D 1:

Thus I W H 0
dR.U /!H 0.U IR/ is not the zero map, so it is an isomorphism.

STEP 3: If M has a finite de Rham cover, then M is de Rham. This is the heart of
the proof. Suppose M D U1 [ � � � [ Uk , where the open subsets Ui and their finite
intersections are de Rham. We prove the result by induction on k. For k D 1, the
result is obvious. Suppose next that M has a de Rham cover consisting of two sets
fU;V g. Putting together the Mayer–Vietoris sequences for de Rham and singular
cohomology, we obtain the following commutative diagram, in which the horizontal
rows are exact and the vertical maps are all de Rham homomorphisms:

H
p�1
dR .U /˚H

p�1
dR .V / � H

p�1
dR .U \ V / � H

p
dR.M/ �

Hp�1.U IR/˚Hp�1.V IR/
�

� Hp�1.U \ V IR/
�

� Hp.M IR/
�

�

H
p
dR.U /˚H

p
dR.V /

� H
p
dR.U \ V /

Hp.U IR/˚Hp.V IR/
�

� Hp.U \ V IR/:
�

The commutativity of the diagram is an immediate consequence of Proposi-
tion 18.13. By hypothesis the first, second, fourth, and fifth vertical maps are all iso-
morphisms, so by the five lemma the middle map is an isomorphism, which proves
that M is de Rham.

Now assume the claim is true for smooth manifolds admitting a de Rham cover
with k � 2 sets, and suppose fU1; : : : ;UkC1g is a de Rham cover of M . Define
U D U1 [ � � � [ Uk and V D UkC1. The hypothesis implies that U and V are de
Rham, and U \ V is also de Rham because it has a k-fold de Rham cover given
by fU1 \UkC1; : : : ;Uk \UkC1g. Therefore, M D U [ V is also de Rham by the
argument above.

STEP 4: If M has a de Rham basis, then M is de Rham. Suppose fU˛g is a
de Rham basis for M . Let f W M ! R be an exhaustion function (see Proposi-
tion 2.28). For each integer m, define subsets Am and A0m of M by

Am D
˚
q 2M Wm� f .q/�mC 1

�
;

A0m D
˚
q 2M Wm� 1

2
< f .q/ <mC 3

2

�
:

(See Fig. 18.8.) For each point q 2Am, there is a basis open subset containing q and
contained in A0m. The collection of all such basis sets is an open cover of Am. Since
f is an exhaustion function, Am is compact, and therefore it is covered by finitely
many of these basis sets. Let Bm be the union of this finite collection of sets. This
is a finite de Rham cover of Bm, so by Step 3, Bm is de Rham.
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Fig. 18.8 Proof of the de Rham theorem, Step 4

Observe that Bm � A0m, so Bm can have nonempty intersection with B zm only
when zmDm� 1, m, or mC 1. Therefore, if we define

U D
[

modd

Bm; V D
[

m even

Bm;

then U and V are disjoint unions of de Rham manifolds, and so they are both de
Rham by Step 1. Finally, U \ V is de Rham because it is the disjoint union of the
sets Bm \BmC1 for m 2Z, each of which has a finite de Rham cover consisting of
sets of the form U˛ \ Uˇ , where U˛ and Uˇ are basis sets used to define Bm and
BmC1, respectively. Thus M D U [ V is de Rham by Step 3.

STEP 5: Every open subset of Rn is de Rham. If U �Rn is such a subset, then U
has a basis consisting of Euclidean balls. Because each ball is convex, it is de Rham,
and because any finite intersection of balls is again convex, finite intersections are
also de Rham. Thus, U has a de Rham basis, so it is de Rham by Step 4.

STEP 6: Every smooth manifold is de Rham. Any smooth manifold has a basis
of smooth coordinate domains. Since every smooth coordinate domain is diffeomor-
phic to an open subset of Rn, as are their finite intersections, this is a de Rham basis.
The claim therefore follows from Step 4. �

This result expresses a deep connection between the topological and analytic
properties of a smooth manifold, and plays a central role in differential geometry.
If one has some information about the topology of a manifold M; the de Rham
theorem can be used to draw conclusions about solutions to differential equations
such as d�D ! on M . Conversely, if one can prove that such solutions do or do not
exist, then one can draw conclusions about the topology.

As befits so fundamental a theorem, the de Rham theorem has many and varied
proofs. The elegant proof given here is due to Glen E. Bredon [Bre93]. Another
common approach is via the theory of sheaves; for example, a proof using this tech-
nique can be found in [War83]. The sheaf-theoretic proof is extremely powerful and
lends itself to countless generalizations, but it has two significant disadvantages that
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prevent it from being useful for our purposes: it requires the entire technical ap-
paratus of sheaf theory and sheaf cohomology, which would take us too far afield;
and although it produces an isomorphism between de Rham and singular cohomol-
ogy, it is not easy to see that the isomorphism is given specifically by integration.
Nonetheless, because the technique leads to other important applications in such
fields as differential geometry, algebraic geometry, algebraic topology, and complex
analysis, it is worth taking some time and effort to study it if you get the opportunity.

Problems

18-1. SupposeM is an oriented smooth manifold and ! is a closed p-form onM .
(a) Show that ! is exact if and only if the integral of ! over every smooth

p-cycle is zero.
(b) Suppose Hp.M/ is generated by the homology classes of finitely many

smooth p-cycles fc1; : : : ; cmg. Define real numbers P1.!/; : : : ;Pm.!/,
called the periods of ! with respect to this set of generators, by Pi .!/DR
ci
!. Show that ! is exact if and only if all of its periods are zero.

[Remark: if you look back now at Problem 11-17, you will see that it is
essentially proving the same theorem in the special case of a 1-form on
Tn.]

18-2. If G is a group, the commutator subgroup of G , denoted by ŒG;G�, is the
smallest normal subgroup containing all elements of the form g1g2g

�1
1 g�12

for g1; g2 2 G; and the abelianization of G , denoted by Ab.G/, is the
quotient group G=ŒG;G�. Suppose M is a connected smooth manifold and
q 2M . It can be shown that there is a group homomorphism from �1.M;q/

to H1.M/ that sends the homotopy class of a loop � to the homology class
of the 1-cycle determined by � , and this map descends to an isomorphism
from Ab

�
�1.M;q/

�
to H1.M/ (see [LeeTM, Thm. 13.14]). Use this result

together with the de Rham theorem to prove that the map ˚ W H 1
dR.M/!

Hom
�
�1.M;q/;R

�
of Theorem 17.17 is an isomorphism.

18-3. Let M be a smooth n-manifold and suppose S �M is an oriented compact
embedded p-dimensional submanifold. A smooth triangulation of S is a
smooth p-chain c D

P
i �i in M with the following properties:

(i) Each �i W �p! S is a smooth orientation-preserving embedding.
(ii) If i ¤ j , then �i .Int�p/\ �j .Int�p/D¿.

(iii) S D
S
i �i .�p/.

(iv) @c D 0.
(It can be shown that every oriented compact embedded submanifold ad-
mits a smooth triangulation, but we will not use that fact; see [Mun66]
for a proof.) Two oriented compact embedded p-dimensional submanifolds
S;S 0 �M are said to be homologous if there exist smooth triangulations c
for S and c0 for S 0 such that c � c0 is a boundary.
(a) Show that for any smooth triangulation c of S and any smooth p-form

! on M; we have
R
c ! D

R
S !.
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(b) Show that if ! is closed and S;S 0 are homologous, then
R
S
! D

R
S 0
!.

18-4. Suppose .M;g/ is a Riemannian n-manifold. A smooth p-form ! on M
is called a calibration if ! is closed and !x.v1; : : : ; vp/ � 1 whenever
.v1; : : : ; vp/ are orthonormal vectors in some tangent space TxM . An ori-
ented embedded p-dimensional submanifold S �M is said to be calibrated
if there is a calibration ! such that the pullback 	�s! is the volume form for
the induced Riemannian metric on S . Suppose S �M is a smoothly trian-
gulated calibrated compact submanifold. Prove that the volume of S (with
respect to the induced Riemannian metric) is less than or equal to that of any
other submanifold homologous to S (see Problem 18-3). [Remark: calibra-
tions were invented in 1982 by Reese Harvey and Blaine Lawson [HL82];
they have become increasingly important in recent years because in many
situations a calibration is the only known way of proving that a given sub-
manifold is volume-minimizing in its homology class.]

18-5. Let D � R3 be the surface obtained by revolving the circle .r � 2/2 C
z2 D 1 around the z-axis, with the induced Riemannian metric (see Exam-
ple 13.18(a)), and let C �D be the “inner circle” defined by C D

˚
.x; y; z/ W

z D 0; x2Cy2 D 1
�
. Show that C is calibrated, and therefore is the shortest

curve in its homology class.
18-6. For any smooth manifold M; let Hp

c .M/ denote the pth compactly sup-
ported de Rham cohomology group of M .
(a) Given an open subset U �M; let 	 W U ,!M denote the inclusion map,

and define a linear map 	] W �
p
c .U /!�

p
c .M/ by extending each com-

pactly supported form to be zero on M X U . Show that d ı 	] D 	] ı d ,
and so 	] induces a linear map on compactly supported cohomology, de-
noted by 	� W H

p
c .U /!H

p
c .M/.

(b) MAYER–VIETORIS WITH COMPACT SUPPORTS: Suppose M is a
smooth manifold and U;V �M are open subsets whose union is M .
Prove that for each nonnegative integer p, there is a linear map
ı� W H

p
c .M/ ! H

pC1
c .U \ V / such that the following sequence is

exact:

� � �
ı�
�!Hp

c .U \ V /
i�˚.�j�/
������!Hp

c .U /˚H
p
c .V /

k�Cl�
����!Hp

c .M/
ı�
�!HpC1

c .U \ V /
i�˚.�j�/
������! � � � ;

where i; j; k; l are the inclusion maps as in (17.6).
(c) Let Hp

c .M/� denote the algebraic dual space to Hp
c .M/, that is, the

vector space of all linear maps from H
p
c .M/ to R. Show that the fol-

lowing sequence is also exact:

� � �
.ı�/
�

���!Hp
c .M/�

.k�/
�˚.l�/

�

��������!Hp
c .U /

�˚Hp
c .V /

�

.i�/
��.j�/

�

��������!Hp
c .U \ V /

� .ı�/
�

���!Hp�1
c .M/�

.k�/
�˚.l�/

�

��������! � � � :

(18.16)
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18-7. THE POINCARÉ DUALITY THEOREM: Let M be an oriented smooth n-
manifold. Define a map PD W �p.M/!�

n�p
c .M/� by

PD.!/.�/D
Z

M

! ^ �:

(a) Show that PD descends to a linear map (still denoted by the same sym-
bol) PD W Hp

dR.M/!H
n�p
c .M/�.

(b) Show that PD is an isomorphism for each p. [Hint: imitate the proof
of the de Rham theorem, with “de Rham manifold” replaced by “PD
manifold.” You will need Lemma 17.27 and Problem 18-6.]

18-8. Let M be a compact smooth n-manifold.
(a) Show that all de Rham groups of M are finite-dimensional. [Hint:

for the orientable case, use Poincaré duality to show that Hp
dR.M/ Š

H
p
dR.M/��, and use the result of Problem 11-2. For the nonorientable

case, use Lemma 17.33.]
(b) Show that if M is orientable, then dimHp

dR.M/ D dimHn�p
dR .M/ for

all p.

18-9. Let M be a smooth n-manifold all of whose de Rham groups are finite-
dimensional. (Problem 18-8 shows that this is always the case when M is
compact.) The Euler characteristic of M is the number

�.M/D

nX

pD0

.�1/p dimHp
dR.M/:

Show that �.M/ is a homotopy invariant of M; and �.M/D 0 when M is
compact, orientable, and odd-dimensional.



Chapter 19
Distributions and Foliations

Suppose V is a nonvanishing vector field on a smooth manifold M . The results
of Chapter 9 imply that each integral curve of V is a smooth immersion, and that
locally the images of the integral curves fit together nicely like parallel lines in
Euclidean space. The fundamental theorem on flows tells us that these curves are
determined by the knowledge of their velocity vectors.

In this chapter we explore an important generalization of this idea to higher-
dimensional submanifolds. The general setup is this: suppose M is a smooth man-
ifold, and we are given a k-dimensional subbundle of TM; called a distribution
on M . Is there a k-dimensional submanifold (called an integral manifold of the dis-
tribution) whose tangent space at each point is the given subspace? The answer in
this case is more complicated than in the case of vector fields: there is a nontrivial
necessary condition, called involutivity, that must be satisfied by the distribution.

In the first section of the chapter, we define involutivity and give examples of
both involutive and noninvolutive distributions. Next, we show how the involutivity
condition can be rephrased in terms of differential forms.

The main theorem of this chapter, the Frobenius theorem, tells us that involutivity
is also sufficient for the existence of an integral manifold through each point. We
prove the Frobenius theorem in two forms. First, we prove a local form, which
says that a neighborhood of every point is filled up with integral manifolds, fitting
together nicely like parallel affine subspaces of Rn. Then we prove a global form,
which says that associated with each involutive distribution is a partition of the
entire manifold into immersed integral manifolds fitting together nicely, called a
foliation.

In the next section, we apply the theory of foliations to prove an important re-
sult in the theory of Lie groups. We already know that to each Lie subgroup of a
Lie group G, there corresponds a Lie subalgebra of Lie.G/. Using the theory of
foliations, we prove that the correspondence also goes the other way: every Lie sub-
algebra of Lie.G/ corresponds to some Lie subgroup of G.

At the end of the chapter, we give a few applications of the Frobenius theorem to
partial differential equations.

J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics 218,
DOI 10.1007/978-1-4419-9982-5_19, © Springer Science+Business Media New York 2013
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Distributions and Involutivity

LetM be a smooth manifold. A distribution onM of rank k is a rank-k subbundle
of TM . It is called a smooth distribution if it is a smooth subbundle. Distributions
are also sometimes called tangent distributions (especially if there is any opportu-
nity for confusion with the use of the term distribution for generalized functions in
analysis), k-plane fields, or tangent subbundles.

Often a rank-k distribution is described by specifying for each p 2M a linear
subspace Dp � TpM of dimension k, and letting D D

S
p2M Dp . It then follows

from the local frame criterion for subbundles (Lemma 10.32) that D is a smooth
distribution if and only if each point of M has a neighborhood U on which there
are smooth vector fields X1; : : : ;Xk W U ! TM such that X1jq; : : : ;Xk jq form a
basis for Dq at each q 2 U . In this case, we say that D is the distribution (locally)
spanned by the vector fields X1; : : : ;Xk.

Integral Manifolds and Involutivity

Suppose D � TM is a smooth distribution. A nonempty immersed submanifold
N �M is called an integral manifold of D if TpN DDp at each point p 2 N .
The main question we want to address in this chapter is that of the existence of
integral manifolds.

Before we proceed with the general theory, let us describe some examples of
distributions and integral manifolds that you should keep in mind.

Example 19.1 (Distributions and Integral Manifolds).

(a) If V is a nowhere-vanishing smooth vector field on a manifoldM; then V spans
a smooth rank-1 distribution on M (see Example 10.33(a)). The image of any
integral curve of V is an integral manifold of D.

(b) In Rn, the vector fields @=@x1; : : : ; @=@xk span a smooth distribution of rank k.
The k-dimensional affine subspaces parallel to Rk are integral manifolds.

(c) Let R be the distribution on Rn X f0g spanned by the unit radial vector field
xi@=@xi , and let R? be its orthogonal complement bundle (see Lemma 10.35).
Then R? is a smooth rank-.n�1/ distribution on RnXf0g. Through each point
x 2Rn X f0g, the sphere of radius jxj around 0 is an integral manifold of R?.

(d) Let D be the smooth distribution on R3 spanned by the following vector fields:

X D
@

@x
C y

@

@z
; Y D

@

@y
:

(See Fig. 19.1.) It turns out that D has no integral manifolds. To get an idea
why, suppose N is an integral manifold through the origin. Because X and Y
are tangent to N , any integral curve of X or Y that starts in N has to stay in N ,
at least for a short time (Problem 9-2). Thus, N contains an open subset of the
x-axis (which is an integral curve of X ). It also contains, for each sufficiently
small x, an open subset of the line parallel to the y-axis and passing through
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Fig. 19.1 A smooth distribution with no integral manifolds

.x; 0; 0/ (which is an integral curve of Y ). Therefore,N contains an open subset
of the .x; y/-plane. However, the tangent plane to the .x; y/-plane at any point
p off of the x-axis is not equal to Dp . Therefore, no such integral manifold
exists. //

The last example shows that in general, integral manifolds may fail to exist. Sup-
pose D is a smooth distribution on M . We say that D is involutive if given any
pair of smooth local sections of D (i.e., smooth vector fields X , Y defined on an
open subset of M such that Xp; Yp 2 Dp for each p), their Lie bracket is also a
local section of D. The next proposition shows that the involutivity condition can
be expressed concisely in terms of lie algebras.

Proposition 19.2. Let D � TM be a smooth distribution, and let �.D/ � X.M/

denote the space of smooth global sections of D. Then D is involutive if and only if
�.D/ is a Lie subalgebra of X.M/.

Proof. IfD is involutive, the definition implies that �.D/ is closed under Lie brack-
ets. Because it is also a linear subspace of X.M/, it is a Lie subalgebra.

Conversely, suppose �.D/ is a Lie subalgebra of X.M/, and let X;Y be smooth
local sections of D over an open subset U �M . Given p 2M; let  2 C1.M/ be
a bump function that is identically 1 on a neighborhood of p and supported in U .
Then  X and  Y are smooth global sections of D, so their Lie bracket is also a
section ofD by hypothesis. This Lie bracket is Œ X; Y �D 2ŒX;Y �C .X /Y �
 .Y /X , which is equal to ŒX;Y � in a neighborhood of p. Thus, ŒX;Y �p 2Dp for
each p 2U , so D is involutive. �

A smooth distribution D on M is said to be integrable if each point of M is
contained in an integral manifold of D.

Proposition 19.3. Every integrable distribution is involutive.

Proof. Let D � TM be an integrable distribution. Suppose X and Y are smooth
local sections of D defined on some open subset U �M . Let p be any point in U ,
and let N be an integral manifold of D containing p. The fact that X and Y are
sections of D means that X and Y are tangent to N . By Corollary 8.32, ŒX;Y � is



Distributions and Involutivity 493

also tangent to N , and therefore ŒX;Y �p 2Dp . Since this is true at each p 2 U , it
follows that D is involutive. �

Note, for example, that the distribution D of Example 19.1(d) is not involutive,
because ŒX;Y �D�@=@z, which is not a section of D.

The next lemma shows that the involutivity condition does not have to be checked
for every pair of smooth vector fields, just those of a smooth local frame in a neigh-
borhood of each point.

Lemma 19.4 (Local Frame Criterion for Involutivity). Let D � TM be a distri-
bution. If in a neighborhood of every point of M there exists a smooth local frame
.V1; : : : ; Vk/ for D such that ŒVi ; Vj � is a section of D for each i; j D 1; : : : ; k, then
D is involutive.

Proof. Suppose the hypothesis holds, and suppose X and Y are smooth local sec-
tions of D over some open subset U � M . Given p 2 U , choose a smooth lo-
cal frame .V1; : : : ; Vk/ satisfying the hypothesis in a neighborhood of p, and write
X DX iVi and Y D Y iVi in that neighborhood. Then, using (8.11),

ŒX;Y �D
�
X iVi ; Y

jVj
�
DX iY j ŒVi ; Vj �CX

i
�
ViY

j
�
Vj � Y

j
�
VjX

i
�
Vi :

It follows from the hypothesis that this last expression is a section of D. �

Involutivity and Differential Forms

Differential forms yield an alternative way to describe distributions and involutivity.

Lemma 19.5 (1-Form Criterion for Smooth Distributions). Suppose M is a
smooth n-manifold and D � TM is a distribution of rank k. Then D is smooth if
and only if each point p 2M has a neighborhood U on which there are smooth
1-forms !1; : : : ;!n�k such that for each q 2U ,

Dq DKer!1
ˇ̌
q
\ � � � \Ker!n�k

ˇ̌
q
: (19.1)

Proof. First suppose that there exist such forms !1; : : : ;!n�k in a neighborhood of
each point. The assumption (19.1) together with the fact that D has rank k implies
that the forms !1; : : : ;!n�k are independent on U for dimensional reasons. By
Proposition 10.15, we can complete them to a smooth coframe

�
!1; : : : ;!n

�
on a

(possibly smaller) neighborhood of each point. If .E1; : : : ;En/ is the dual frame, it
is easy to check that D is locally spanned by En�kC1; : : : ;En, so it is smooth by
the local frame criterion.

Conversely, suppose D is smooth. In a neighborhood of any p 2M; there are
smooth vector fields Y1; : : : ; Yk spanning D. By Proposition 10.15 again, we can
complete these vector fields to a smooth local frame .Y1; : : : ; Yn/ for M in a neigh-
borhood of p. With the dual coframe denoted by

�
"1; : : : ; "n

�
, it follows easily that

D is characterized locally by

Dq DKer "kC1
ˇ̌
q
\ � � � \Ker "n

ˇ̌
q
: �
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If D is a rank-k distribution on a smooth n-manifold M; any n � k linearly
independent 1-forms !1; : : : ;!n�k defined on an open subset U �M and satisfy-
ing (19.1) for each q 2 U are called local defining forms for D. More generally, if
0� p � n, we say that a p-form ! 2�p.M/ annihilates D if !.X1; : : : ;Xp/D 0
whenever X1; : : : ;Xp are local sections of D. (In the case p D 0, only the zero
function annihilates D.)

Lemma 19.6. SupposeM is a smooth n-manifold andD is a smooth rank-k distri-
bution on M . Let !1; : : : ;!n�k be smooth local defining forms for D over an open
subset U �M . A smooth p-form � defined on U annihilates D if and only if it can
be expressed in the form

�D

n�kX

iD1

!i ^ ˇi (19.2)

for some smooth .p � 1/-forms ˇ1; : : : ; ˇn�k on U .

Remark. In the case pD 1, the ˇi ’s are smooth functions, and we interpret a wedge
product with a smooth function to be ordinary multiplication. Thus, in this case, the
lemma just says that � is a linear combination of the !i ’s with smooth coefficients.

Proof. It is easy to check that any form � that satisfies (19.2) in a neighborhood of
each point annihilatesD. Conversely, suppose � annihilatesD on U . In a neighbor-
hood of each point we can complete the .n� k/-tuple

�
!1; : : : ;!n�k

�
to a smooth

local coframe
�
!1; : : : ;!n

�
for M (Proposition 10.15). If .E1; : : : ;En/ is the dual

frame, then D is locally spanned by En�kC1; : : : ;En. In terms of this coframe, any
� 2�p.M/ can be written locally in a unique way as

�D
X0

I

�I!
i1 ^ � � � ^!ip ;

where the coefficients �I are determined by �I D �.Ei1 ; : : : ;Eip /. Thus, � annihi-
latesD in U if and only if �I D 0 whenever n�kC 1� i1 < � � �< ip � n, in which
case � can be written locally as

�D
X0

I Wi1�n�k

�I!
i1 ^ � � � ^!ip D

n�kX

i1D1

!i1 ^

�X0

I 0

�i1I 0!
i2 ^ � � � ^!ip

�
;

where we have written I 0 D .i2; : : : ; ip/. This holds in a neighborhood of each point
of U ; patching together with a partition of unity, we obtain a similar expression on
all of U . �

When expressed in terms of differential forms, the involutivity condition trans-
lates into a statement about exterior derivatives.

Theorem 19.7 (1-Form Criterion for Involutivity). Suppose D � TM is a
smooth distribution. Then D is involutive if and only if the following condition is
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satisfied:

If � is any smooth 1-form that annihilates D on an open subset
U �M; then d� also annihilates D on U .

(19.3)

Proof. First, assume that D is involutive, and suppose � is a smooth 1-form that
annihilates D on U � M . Then for any smooth local sections X;Y of D, for-
mula (14.28) for d� gives

d�.X;Y /DX
�
�.Y /

�
� Y

�
�.X/

�
� �

�
ŒX;Y �

�
:

The hypothesis implies that each of the terms on the right-hand side is zero on U .
Conversely, suppose D satisfies (19.3), and suppose X and Y are smooth local

sections of D. If !1; : : : ;!n�k are smooth local defining forms for D, then (14.28)
shows that for each i D 1; : : : ; n� k,

!i
�
ŒX;Y �

�
DX

�
!i .Y /

�
� Y

�
!i .X/

�
� d!i .X;Y /D 0;

which implies that ŒX;Y � takes its values in D. Thus D is involutive. �

Just like the Lie bracket condition for involutivity, the exterior derivative condi-
tion need only be checked for a particular set of smooth defining forms in a neigh-
borhood of each point, as the next proposition shows.

Proposition 19.8 (Local Coframe Criterion for Involutivity). Let D be a smooth
distribution of rank k on a smooth n-manifold M; and let !1; : : : ;!n�k be smooth
defining forms for D on an open subset U �M . The following are equivalent:

(a) D is involutive on U .
(b) d!1; : : : ; d!n�k annihilate D.
(c) There exist smooth 1-forms

˚
˛ij W i; j D 1; : : : ; n� k

�
such that

d!i D

n�kX

jD1

!j ^ ˛ij ; for each i D 1; : : : ; n� k:

I Exercise 19.9. Prove the preceding proposition.

With a bit more algebraic terminology, there is an elegant way to express the
involutivity condition in terms of differential forms. Recall that we have defined
the graded algebra of smooth differential forms on a smooth n-manifold M as
��.M/ D �0.M/ ˚ � � � ˚ �n.M/ (see p. 360). An ideal in 
�.M/ is a linear
subspace I ���.M/ that is closed under wedge products with arbitrary elements
of ��.M/; that is, ! 2 I implies �^! 2 I for every � 2��.M/.

Now suppose D is a smooth distribution on a smooth n-manifold M . Let
Ip.D/ � �p.M/ denote the space of smooth p-forms that annihilate D, and let
I.D/D I0.D/˚ � � � ˚ In.D/���.M/.

I Exercise 19.10. For any smooth distributionD � TM; show that I.D/ is an ideal
in ��.M/.
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Fig. 19.2 A flat chart for a distribution

Any ideal of the form I.D/ for some smooth distribution D is sometimes called
a Pfaffian system. An ideal I ���.M/ is said to be a differential ideal if d.I/� I,
that is, if ! 2 I implies d! 2 I.

Proposition 19.11 (Differential Ideal Criterion for Involutivity). Let M be a
smooth manifold. A smooth distribution D � TM is involutive if and only if I.D/

is a differential ideal in ��.M/.

Proof. Problem 19-1. �

The Frobenius Theorem

In Example 19.1, all of the distributions we defined except the last one had the prop-
erty that there was an integral manifold through each point. Moreover, locally these
submanifolds all “fit together” nicely like parallel affine subspaces of Rn. Given a
rank-k distribution D � TM; let us say that a smooth coordinate chart .U;'/ on
M is flat for D if '.U / is a cube in Rn, and at points of U , D is spanned by the
first k coordinate vector fields @=@x1; : : : ; @=@xk (Fig. 19.2). In any such chart, each
slice of the form xkC1 D ckC1, : : : , xn D cn for constants ckC1; : : : ; cn is an inte-
gral manifold ofD. This is the nicest possible local situation for integral manifolds.
We say that a distribution D � TM is completely integrable if there exists a flat
chart for D in a neighborhood of each point of M . Obviously, every completely
integrable distribution is integrable and therefore involutive. In summary,

completely integrable) integrable) involutive:

The next theorem is the main result of this chapter, and indeed one of the central
theorems in smooth manifold theory. It says that the implications above are actually
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equivalences:

completely integrable, integrable, involutive:

Theorem 19.12 (Frobenius). Every involutive distribution is completely integrable.

Proof. The canonical form theorem for commuting vector fields (Theorem 9.46)
implies that any distribution locally spanned by independent smooth commuting
vector fields is completely integrable, because the coordinate chart whose existence
is guaranteed by that theorem is flat (after shrinking the domain if necessary so the
image is a cube). Thus, it suffices to show that every involutive distribution is locally
spanned by independent smooth commuting vector fields.

Let D be an involutive distribution of rank k on an n-dimensional manifold M;
and let p 2 M . Since complete integrability is a local question, by passing to
a smooth coordinate neighborhood of p, we may replace M by an open subset
U � Rn, and choose a smooth local frame X1; : : : ;Xk for D. By reordering the
coordinates if necessary, we may assume that Dp is complementary to the subspace
of TpRn spanned by

�
@=@xkC1jp; : : : ; @=@x

njp
�
.

Let � W Rn!Rk be the projection onto the first k coordinates, �
�
x1; : : : ; xn

�
D�

x1; : : : ; xk
�

(Fig. 19.3). This induces a smooth bundle homomorphism d� W TRn!

TRk , which can be written

d�

� nX

iD1

vi
@

@xi

ˇ̌
ˇ
ˇ
q

�
D

kX

iD1

vi
@

@xi

ˇ̌
ˇ
ˇ
�.q/

:

(Notice that the summation on the right-hand side is only over i D 1; : : : ; k.) Be-
cause d�jD is the composition of the inclusion D ,! T U followed by d� , it is a
smooth bundle homomorphism. Thus, the matrix entries of d�jDq with respect to
the frames

�
Xi jq

�
and

�
@=@xj j�.q/

�
are smooth functions of q.

By our choice of coordinates, Dp � TpRn is complementary to the kernel of
d�p , so the restriction of d�p to Dp is bijective. By continuity, therefore, the
same is true of d�jDq for q in a neighborhood of p, and the matrix entries of�
d�jDq

�
�1 W T�.q/R

k !Dq are also smooth functions of q. Define a new smooth
local frame V1; : : : ; Vk for D in a neighborhood of p by

Vi
ˇ̌
q
D
�
d�
ˇ̌
Dq

��1 @

@xi

ˇ̌
ˇ̌
�.q/

: (19.4)

The theorem will be proved if we can show that ŒVi ; Vj �D 0 for all i , j .
First observe that Vi and @=@xi are �-related, because (19.4) implies that

@

@xi

ˇ̌
ˇ̌
�.q/

D
�
d�
ˇ̌
Dq

�
Vi
ˇ̌
q
D d�q

�
Vi
ˇ̌
q

�
:

Therefore, by the naturality of Lie brackets,

d�q
�
ŒVi ; Vj �q

�
D

�
@

@xi
;
@

@xj



�.q/

D 0:
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Fig. 19.3 Proof of the Frobenius theorem

Since involutivity ofD implies that ŒVi ; Vj � takes its values inD, and d� is injective
on each fiber of D, this implies that ŒVi ; Vj �q D 0 for each q, thus completing the
proof. �

For later use in our treatment of overdetermined partial differential equations, we
note the following easy corollary to the proof.

Corollary 19.13. Suppose M is a smooth manifold, D is an involutive rank-k dis-
tribution on M; and S �M is a codimension-k embedded submanifold. If p 2 S is
a point such that TpS is complementary to Dp , then there is a flat chart

�
U;
�
si
��

for D centered at p in which S \U is the slice s1 D � � � D sk D 0.

Proof. The proof of the theorem showed that locallyD is spanned by k commuting
vector fields, and then the corollary follows from Theorem 9.46. �

As is often the case, embedded in the proof of the Frobenius theorem is a tech-
nique for finding integral manifolds. The idea is to use a coordinate projection to find
commuting vector fields spanning the same distribution, and then use the technique
of Example 9.47 to find a flat chart. Here is an example.

Example 19.14. Let D � TR3 be the distribution spanned by the vector fields

X D x
@

@x
C

@

@y
C x.y C 1/

@

@z
;

Y D
@

@x
C y

@

@z
:

The computation of Example 8.27 showed that

ŒX;Y �D�
@

@x
� y

@

@z
D�Y;
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so D is involutive. Let us try to find a flat chart in a neighborhood of the origin.
Since D is complementary to the span of @=@z, the coordinate projection � W R3!
R2 given by �.x;y; z/D .x; y/ induces an isomorphism d�jD.x;y;z/ W D.x;y;z/!

T.x;y/R
2 for each .x; y; z/ 2R3. The proof of the Frobenius theorem shows that if

we can find smooth local sections V , W of D that are �-related to @=@x and @=@y,
respectively, they will be commuting vector fields spanning D. It is easy to check
that V , W have this property if and only if they take their values in D and are of the
form

V D
@

@x
C u.x;y; z/

@

@z
;

W D
@

@y
C v.x;y; z/

@

@z
;

for some smooth real-valued functions u;v. A bit of linear algebra shows that the
vector fields

V D Y D
@

@x
C y

@

@z
;

W DX � xY D
@

@y
C x

@

@z
;

do the trick. The flows of these vector fields are easily found by solving the two
systems of ODEs. Sparing the details, we find that the flow of V is

˛t .x; y; z/D .xC t; y; zC ty/; (19.5)

and that of W is

ˇt .x; y; z/D .x; y C t; zC tx/: (19.6)

Thus, by the procedure of Example 9.47, we can define the inverse ˚ of our co-
ordinate map by starting on the z-axis and flowing out along these two flows in
succession:

˚.u;v;w/D ˛u ı ˇv.0; 0;w/D ˛u.0; v;w/D .u; v;wC uv/:

The flat coordinates we seek are given by inverting the map .x; y; z/D˚.u;v;w/D
.u; v;wC uv/, to yield

.u; v;w/D˚�1.x; y; z/D .x; y; z � xy/:

It follows that the integral manifolds of D are the level sets of w.x;y; z/D z � xy.
(Since the flat chart we have constructed is actually a global chart in this case, this
describes all of the integral manifolds, not just the ones near the origin.) //

I Exercise 19.15. Verify that the flows of V and W are given by (19.5) and (19.6),
respectively, and that the level sets of z � xy are integral manifolds of D.

The next proposition is one of the most important consequences of the Frobenius
theorem.
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Fig. 19.4 The local structure of an integral manifold

Proposition 19.16 (Local Structure of Integral Manifolds). Let D be an involu-
tive distribution of rank k on a smooth manifold M; and let

�
U;
�
xi
��

be a flat chart
forD. IfH is any integral manifold ofD, thenH \U is a union of countably many
disjoint open subsets of parallel k-dimensional slices of U , each of which is open
in H and embedded in M .

Proof. Let H be an integral manifold of D. Because the inclusion map 	 W H ,!M

is continuous, H \ U D 	�1.U / is open in H , and thus consists of a countable
disjoint union of connected components, each of which is open in H .

Let V be any component ofH \U (Fig. 19.4). We show first that V is contained
in a single slice. Since dxkC1; : : : ; dxn are local defining forms forD, it follows that
the pullbacks of these 1-forms to V are identically zero. Because V is connected,
this implies that xkC1; : : : ; xn are all constant on V , so V lies in a single slice S .

Because S is embedded in M; the inclusion map V ,!M is also smooth as a
map into S by Corollary 5.30. The inclusion V ,! S is thus an injective smooth
immersion between manifolds of the same dimension, and therefore a local diffeo-
morphism, an open map, and a homeomorphism onto an open subset of S . The
inclusion map V ,!M is a composition of the smooth embeddings V ,! S ,!M;

so it is a smooth embedding. �

The preceding proposition implies the following important result about integral
manifolds, which we will use in our study of Lie subgroups at the end of this chapter.
Recall that a smooth submanifold H �M is said to be weakly embedded in M if
every smooth map F W N !M whose image lies in H is smooth as a map from N

to H . (See Chapter 5.)

Theorem 19.17. Every integral manifold of an involutive distribution is weakly
embedded.

Proof. Let M be a smooth n-manifold, let H � M be an integral manifold of
an involutive rank-k distribution D on M; and suppose F W N !M is a smooth
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map such that F.N/ � H . Let p 2 N be arbitrary, and set q D F.p/ 2 H . Let�
y1; : : : ; yn

�
be flat coordinates for D on a neighborhood U of q, and let

�
xi
�

be smooth coordinates for N on a connected neighborhood B of p such that
F.B/� U . With the coordinate representation of F written as

�
y1; : : : ; yn

�
D
�
F 1.x/; : : : ;F n.x/

�
;

the fact that F.B/�H \U means that the coordinate functions F kC1; : : : ;F n take
on only countably many values. Because B is connected, the intermediate value
theorem implies that these coordinate functions are constant, and thus F.B/ lies in
a single slice S � U . Because S \H is an open subset of H that is embedded in
M; it follows that F jB is smooth from B into S \H , and thus by composition,
F jB W B! .S \H/ ,!H is smooth into H . �

Foliations

When we put together all of the maximal integral manifolds of an involutive rank-k
distribution on a smooth manifoldM;we obtain a partition ofM into k-dimensional
submanifolds that “fit together” locally like the slices in a flat chart.

To express more precisely what we mean by “fitting together,” we need to extend
our notion of a flat chart slightly. Let M be a smooth n-manifold, and let F be
any collection of k-dimensional submanifolds of M . A smooth chart .U;'/ for
M is said to be flat for F if '.U / is a cube in Rn, and each submanifold in F

intersects U in either the empty set or a countable union of k-dimensional slices
of the form xkC1 D ckC1, : : : , xn D cn. We define a foliation of dimension k on
M to be a collection F of disjoint, connected, nonempty, immersed k-dimensional
submanifolds of M (called the leaves of the foliation), whose union is M; and such
that in a neighborhood of each point p 2M there exists a flat chart for F .

Example 19.18 (Foliations).

(a) The collection of all k-dimensional affine subspaces of Rn parallel to Rk � f0g
is a k-dimensional foliation of Rn.

(b) The collection of open rays of the form f
x W 
 > 0g as x ranges over Rn X f0g
is a 1-dimensional foliation of Rn X f0g.

(c) The collection of all spheres centered at 0 is an .n� 1/-dimensional foliation of
Rn X f0g.

(d) If M and N are connected smooth manifolds, the collection of subsets of the
form M � fqg as q ranges over points in N forms a foliation of M �N , each
of whose leaves is diffeomorphic to M . For example, the collection of all cir-
cles of the form S1 � fqg � T2 for q 2 S1 yields a foliation of the torus T2

(Fig. 19.5(a)). A different foliation of T2 is given by the collection of circles of
the form fpg � S1 (Fig. 19.5(b)).
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Fig. 19.5 Foliations of the torus

(e) If ˛ is a fixed real number, the images of all curves of the form

�� .t/D
�
ei t ; ei.˛tC�/

�

as � ranges over R form a 1-dimensional foliation of the torus (Fig. 19.5(c)).
If ˛ is rational, each leaf is an embedded circle; whereas if ˛ is irrational, each
leaf is dense (see Example 4.20 and Problem 4-4).

(f) The collection of connected components of the curves in the .y; z/-plane de-
fined by the following equations is a foliation of R2 (Fig. 19.6(a)):

z D secy C c; c 2RI

y D
�
kC 1

2

�
�; k 2Z:

(g) If we revolve the curves of the previous example around the z-axis, we obtain a
2-dimensional foliation of R3 in which some of the leaves are diffeomorphic to
disks and some are diffeomorphic to cylinders (Fig. 19.6(b)). //

The main fact about foliations is that they are in one-to-one correspondence with
involutive distributions. One direction, expressed in the next proposition, is an easy
consequence of the definition.

Proposition 19.19. Let F be a foliation on a smooth manifold M . The collection
of tangent spaces to the leaves of F forms an involutive distribution on M .

I Exercise 19.20. Prove Proposition 19.19.

The Frobenius theorem allows us to conclude the following converse, which is
much more profound. By the way, it is worth noting that this result is one of the two
primary reasons why the notion of immersed submanifold has been defined. (The
other is for the study of Lie subgroups.)

Theorem 19.21 (Global Frobenius Theorem). LetD be an involutive distribution
on a smooth manifold M . The collection of all maximal connected integral mani-
folds of D forms a foliation of M .

The theorem will be an easy consequence of the following lemma.

Lemma 19.22. SupposeD � TM is an involutive distribution, and let fN˛g˛2A be
any collection of connected integral manifolds of D with a point in common. Then
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Fig. 19.6 Foliations of R2 and R3

N D
S
˛N˛ has a unique smooth manifold structure making it into a connected

integral manifold of D.

Proof. If we can construct a topology and smooth manifold structure making N
into an integral manifold of D, then Theorem 5.33 shows that the topology and
smooth structure are uniquely determined, because integral manifolds are weakly
embedded.

To construct the topology, first we need to show that N˛ \ Nˇ is open in N˛
and in Nˇ for each ˛;ˇ 2 A. Let q 2N˛ \Nˇ be arbitrary, and choose a flat chart
for D on a neighborhood W of q (Fig. 19.7). Let V˛ , Vˇ denote the components
of N˛ \W and Nˇ \W , respectively, containing q. By Proposition 19.16, V˛ and
Vˇ are open subsets of single slices with the subspace topology, and since both
contain q, they both must lie in the same slice S . Thus V˛ \ Vˇ is open in S and
also in both N˛ and Nˇ , so q has a neighborhood in N˛ and a neighborhood in Nˇ
contained in N˛ \Nˇ .

Define a topology on N by declaring a subset U � N to be open if and only if
U \N˛ is open in N˛ for each ˛. Using the result of the previous paragraph, it is
easy to check that this is a topology and that each N˛ is an open subspace of N .
With this topology, N is locally Euclidean of dimension k, because each q 2N has
a coordinate neighborhood V in some N˛ , and V is an open subset of N because
N˛ is open in N . Moreover, the inclusion map N ,!M is continuous: for any open
subset U �M; U \N is open in N because U \N˛ is open in N˛ for each ˛.

To see that N is Hausdorff, let q; q0 be distinct points of N . There are disjoint
open subsets U;U 0 �M containing q and q0, respectively, and because inclusion
N ,!M is continuous, N \U and N \U 0 are disjoint open subsets of N contain-
ing q and q0.

Next we show thatN is second-countable. We can coverM with countably many
flat charts for D, say fWig. It suffices to show that N \Wi is contained in a count-
able union of slices for each i , because any open subset of a single slice is second-
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Fig. 19.7 A union of integral manifolds

countable, and thus N can be expressed as a union of countably many subsets, each
of which is second-countable and open in N .

Let p0 be a point contained in N˛ for every ˛. Let us say that a slice S of
some Wk is accessible from p0 if there is a finite sequence of indices i1; : : : ; im
and for each ij a slice Sij � Wij with the properties that p 2 Si1 , Sim D S , and
Sij \ SijC1 ¤¿ for each j D 1; : : : ;m� 1 (Fig. 19.8).

Let Wk be one of our countable collection of flat charts, and suppose S � Wk
is a slice that contains a point q 2 N . Then q is contained in one of the integral
manifolds N˛ . Because p0 is also in N˛ , there is a continuous path � W Œ0; 1�!N˛
connecting p0 and q. Since �.Œ0; 1�/ is compact, there exist finitely many numbers
0D t0 < t1 < � � � < tm D 1 such that for each j D 1; : : : ;m, the set �.Œtj�1; tj �/ is
contained in one of the flat charts Wij . Since �.Œtj�1; tj �/ is connected, it is con-
tained in a single component of Wij \N˛ and therefore in a single slice Sij �Wij .
For each j D 1; : : : ;m�1, the slices Sij and SijC1 have the point �.tj / in common,
so it follows that the slice S is accessible from p0.

This shows that every slice of some Wk containing a point of N is accessible
from p0. To complete the proof of second-countability, we just note that each Sij is
itself an integral manifold, and therefore it meets at most countably many slices of
WijC1 by Proposition 19.16; thus, there are only countably many slices accessible
from p0. Therefore, N is a topological manifold of dimension k. It is connected
because it is a union of connected subspaces with a point in common.

To construct a smooth structure on N , we define an atlas consisting of all charts
of the form .S \N; /, where S is a single slice of some flat chart, and  W S!Rk

is the map whose coordinate representation in the flat chart is projection onto the
first k coordinates:  

�
x1; : : : ; xk; xkC1; : : : ; xn

�
D
�
x1; : : : ; xk

�
. Because any slice

is an embedded submanifold, its smooth structure is uniquely determined, and thus
whenever two such slices S , S 0 overlap the transition map  0 ı �1 is smooth. With
respect to this smooth structure, the inclusion map N ,!M is a smooth immersion
(because it is a smooth embedding on each slice), and the tangent space toN at each
point q 2N is equal to Dq (because this is true for slices). �



Lie Subalgebras and Lie Subgroups 505

Fig. 19.8 A slice S accessible from p0

Proof of the global Frobenius theorem. For each p 2M; let Lp be the union of all
connected integral manifolds of D containing p. By the preceding lemma, Lp is
a connected integral manifold of D containing p, and it is clearly maximal. If any
two such maximal integral manifolds Lp and Lp0 intersect, their union Lp [Lp0 is
an integral manifold containing both p and p0, so by maximality Lp D Lp0 . Thus,
the various maximal connected integral manifolds are either disjoint or identical.

If .U;'/ is any flat chart forD, then Lp\U is a countable union of open subsets
of slices by Proposition 19.16. For any such slice S , if Lp \ S is neither empty nor
all of S , thenLp[S is a connected integral manifold properly containingLp , which
contradicts the maximality of Lp . Therefore, Lp \U is precisely a countable union
of slices, so the collection fLp W p 2M g is the desired foliation. �

Suppose M is a smooth manifold and ˚ W M !M is a diffeomorphism. A dis-
tribution D on M is said to be ˚-invariant if d˚.D/ DD; or more precisely if
for each x 2M; d˚x.Dx/ DD˚.x/. Similarly, a foliation F on M is said to be
˚-invariant if for each leaf L of F , the submanifold ˚.L/ is also a leaf of F .

Proposition 19.23. Let M be a smooth manifold and ˚ W M !M be a diffeo-
morphism. Suppose D is an involutive distribution on M and F is the foliation it
determines. Then D is ˚ -invariant if and only if F is ˚ -invariant.

Proof. Problem 19-9. �

Lie Subalgebras and Lie Subgroups

Foliations have profound applications to the theory of Lie groups. Here we present
two such applications; we will see many more in the next two chapters. Both rely on
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the following simple relationship between Lie subalgebras and distributions. A dis-
tributionD on a Lie group G is said to be left-invariant if it is invariant under every
left translation. (Recall that this means d.Lg/.D/DD for each g 2G.)

Lemma 19.24. Let G be a Lie group. If h is a Lie subalgebra of Lie.G/, then the
subset D D

S
g2GDg � TG, where

Dg D fXg WX 2 hg � TgG; (19.7)

is a left-invariant involutive distribution on G.

Proof. Each X 2 h is a left-invariant vector field on G. Thus, for any g;g0 2 G,
the differential d

�
Lg0g�1

�
restricts to an isomorphism from Dg to Dg0 . It follows

that Dg has the same dimension for each g, and D is left-invariant. Any basis
.X1; : : : ;Xk/ for h is a global smooth frame for D, so D is smooth. Moreover,
because ŒXi ;Xj � 2 h for all i; j 2 f1; : : : ; kg, it follows from Lemma 19.4 that D is
involutive. �
Theorem 19.25 (Lie Subgroups Are Weakly Embedded). Every Lie subgroup is
an integral manifold of an involutive distribution, and therefore is a weakly embed-
ded submanifold.

Proof. Suppose G is a Lie group and H � G is a Lie subgroup. Theorem 8.46
shows that the Lie algebra of H is canonically isomorphic to the Lie subalgebra
h D 	�

�
Lie.H/

�
� Lie.G/, where 	 W H ,! G is inclusion. Let D � TG be the

involutive distribution determined by h as in Lemma 19.24. It follows from the
definitions that at each point h 2H , the tangent space ThH is equal to Dh, so H
is an integral manifold of D. It then follows from Theorem 19.17 that H is weakly
embedded in G. �
Theorem 19.26 (The Lie Subgroup Associated with a Lie Subalgebra). Suppose
G is a Lie group and g is its Lie algebra. If h is any Lie subalgebra of g, then there
is a unique connected Lie subgroup of G whose Lie algebra is h.

Proof. Suppose h is a Lie subalgebra of g. Let D � TG be the involutive distri-
bution defined by (19.7). Let H denote the foliation determined by D, and for any
g 2 G, let Hg denote the leaf of H containing g (Fig. 19.9). Because D is left-
invariant, it follows from Proposition 19.23 that each left translation takes leaves to
leaves: for any g;g0 2G, we have Lg.Hg0/DHgg0 .

Define H D He , the leaf containing the identity. We will show that H is the
desired Lie subgroup.

First, to see that H is a subgroup, observe that for any h;h0 2H ,

hh0 DLh.h
0/ 2Lh.H/DLh.He/DHh DH:

Similarly,

h�1 D h�1e 2Lh�1.He/DLh�1.Hh/DHh�1h DH:

To show thatH is a Lie group, we need to show that the map � W .h; h0/ 7! hh0
�1

is smooth as a map from H �H to H . Because H �H is a submanifold of G �G,
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Fig. 19.9 Finding a subgroup whose Lie algebra is h

it is immediate that � W H �H !G is smooth. Since H is an integral manifold of
an involutive distribution, Theorem 19.17 shows that it is weakly embedded, so � is
also smooth as a map into H .

The fact that H is a leaf of H implies that the Lie algebra of H is h, because the
tangent space toH at the identity isDe D fXe WX 2 hg. To see thatH is the unique
connected subgroup with Lie algebra h, suppose zH is any other connected subgroup
with the same Lie algebra. Any such Lie subgroup is easily seen to be an integral
manifold of D, so by maximality of H DHe , we must have zH �H . On the other
hand, if U is the domain of a flat chart for D containing the identity, then by Propo-
sition 19.16, zH \U is a union of open subsets of slices. Since the slice containing e
is an open subset of H , this implies that zH contains a neighborhood of the identity
in H . Since any neighborhood of the identity generates H (Proposition 7.14), this
implies that zH DH . �

Overdetermined Systems of Partial Differential Equations

The partial differential equations we considered in Chapter 9 were all single equa-
tions for one unknown function. In some applications, it is necessary to consider
systems of PDEs that are overdetermined, which means that there are more equa-
tions than unknown functions. In general, overdetermined systems have solutions
only if they satisfy certain compatibility conditions. For some first-order systems,
the compatibility condition can be interpreted as a statement about involutivity of
a distribution, and the Frobenius theorem can be used to prove local existence and
uniqueness of solutions.

First, we consider certain linear systems. Suppose W is an open subset of Rn

and m is a positive integer less than or equal to n. Consider the following system of
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m linear partial differential equations for a single unknown function u 2 C1.W /:

a11.x/
@u

@x1
.x/C � � � C an1.x/

@u

@xn
.x/D f1.x/;

:::

a1m.x/
@u

@x1
.x/C � � � C anm.x/

@u

@xn
.x/D fm.x/;

(19.8)

where
�
a
j
i

�
is an n �m matrix of smooth real-valued functions and f1; : : : ; fm are

smooth real-valued functions on W . The case mD 1 is covered by Theorem 9.51,
so this discussion is useful primarily when m> 1.

If we let Ai denote the vector field aji @=@x
j , the system (19.8) can be written

more succinctly as A1uD f1, : : : , AmuD fm. To avoid redundant or degenerate
systems of equations, we assume that the matrix

�
a
j
i

�
has rank m at each point

of W , or equivalently that the vector fields A1; : : : ;Am are linearly independent.
The following theorem is an analogue of Theorem 9.51 for the overdetermined case.

Theorem 19.27. Let W � Rn be an open subset and let m be an integer such
that 1 � m � n. Suppose we are given an embedded codimension-m submanifold
S �W , a linearly independent m-tuple of smooth vector fields .A1; : : : ;Am/ on W
whose span is complementary to TpS at each p 2 S , and functions f1; : : : ; fm 2
C1.W /. Suppose also that there are smooth functions ckij 2 C

1.W / for i; j; k D
1; : : : ;m such that the following compatibility conditions are satisfied:

ŒAi ;Aj �D c
k
ijAk ; (19.9)

Aifj �Ajfi D c
k
ijfk : (19.10)

(In these expressions, k is implicitly summed from 1 to m.) Then for each p 2 S ,
there is a neighborhood U of p such that for every ' 2 C1.S \U /, there exists a
unique solution u 2 C1.U / to the following overdetermined Cauchy problem:

AiuD fi for i D 1; : : : ;m; (19.11)

u
ˇ
ˇ
S\U
D ': (19.12)

Proof. Let D be the distribution on W spanned by A1; : : : ;Am, and let p 2 S be
arbitrary. It follows from (19.9) thatD is involutive, so by Corollary 19.13, on some
neighborhood U of p there is a flat chart forD centered at p that is also a slice chart
for S . Label the coordinates in this chart as .v;w/D

�
v1; : : : ; vm;w1; : : : ;wn�m

�
,

so that S \U is the slice where v1 D � � � D vm D 0, and each w D constant slice is
an integral manifold of D in U , which we denote by Hw . Because (19.11)–(19.12)
is a coordinate-independent statement, we can replace Ai and fi by their coordinate
representations in U , solve the equation there, and then use the inverse coordinate
transformation to convert the solution back to the original coordinates.

Because span
�
A1jq; : : : ;Amjq

�
D span

�
@=@v1jq; : : : ; @=@v

mjq
�

for each q 2 U ,
the n-tuple

�
A1; : : : ;Am; @=@w

1; : : : ; @=@wn�m
�

is a smooth local frame for U . Let
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�
˛1; : : : ; ˛m; ˇ1; : : : ; ˇn�m

�
denote the dual coframe, and define a smooth 1-form

! 2�1.U / by ! D fk˛k (with the implied summation from 1 tom). The system of
equations (19.11) is satisfied if and only if du.Ai /D !.Ai / for i D 1; : : : ;m, which
is equivalent to saying that the pullback of du�! to each Hw is equal to zero.

Using formula (14.28) for the exterior derivative together with (19.9), we obtain

d˛k.Ai ;Aj /DAi
�
˛k.Aj /

�
�Aj

�
˛k.Ai /

�
� ˛k

�
ŒAi ;Aj �

�
D�ckij

for each i; j; k D 1; : : : ;m. It then follows from (19.10) that

d!.Ai ;Aj /D
�
dfk ^ ˛

k C fkd˛
k
�
.Ai ;Aj /

D .Aifk/ı
k
j � .Ajfk/ı

k
i � fkc

k
ij DAifj �Ajfi � fkc

k
ij D 0:

Since .A1; : : : ;Am/ restricts to a frame on each integral manifold Hw , this shows
that the pullback of ! to each Hw is closed.

Given ' 2 C1.U \S/, let uD u0Cu1, where u0; u1 2 C1.U / are defined by

u0.v;w/D '.0;w/;

u1.v;w/D

Z 1

0

!k.tv;w/v
k dt;

and !kdvk is the coordinate expression for !.
Recall that a flat chart is cubical by definition, and thus star-shaped, so the in-

tegral is well defined for all .v;w/ 2 U , and differentiation under the integral sign
shows that u1 is a smooth function of .v;w/. Because u0jS\U D ' and u1jS\U D 0,
it follows that u satisfies the initial condition (19.12).

The function u0 satisfies A1u0 D � � � D Amu0 D 0 because it is independent of
the v-coordinates. On the other hand, for each fixed w, u1 is the potential function
on Hw for 	�Hw! given by formula (11.24). The proof of Theorem 11.49 shows
that 	�HwduD 	

�
Hw
! for each w. It follows that AkuD Ak.u1/D fk for each k D

1; : : : ;m, so u is a solution to (19.11) as well.
To prove uniqueness, suppose zu is any other solution to (19.11)–(19.12) on U ,

and let  D u� zu. Then Ak D 0 for each k, so  is independent of v. It follows
that  .v;w/D .0;w/, which is zero because u and zu satisfy (19.12). �

Next we apply the Frobenius theorem to a class of nonlinear overdetermined
PDEs. These are equations for a vector-valued function uD .u1; : : : ; um/ that ex-
press all first partial derivatives of u in terms of the independent variables and the
values of u. We explain it first in the case of a single real-valued function u of two
independent variables .x; y/, in which case the notation is considerably simpler.

Suppose we seek a solution u to the system

@u

@x
.x;y/D ˛

�
x;y;u.x;y/

�
;

@u

@y
.x;y/D ˇ

�
x;y;u.x;y/

�
;

(19.13)
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where ˛ and ˇ are smooth real-valued functions defined on some open subset
W �R3. This is an overdetermined system of (possibly nonlinear) first-order PDEs.
(In fact, almost any pair of smooth first-order partial differential equations for one
unknown function of two variables can be put into this form, at least locally, sim-
ply by solving the two equations for @u=@x and @u=@y. Whether this can be done in
principle is a question that is completely answered by the implicit function theorem;
whether it can be done in practice depends on the specific equations and how clever
you are.)

To determine the compatibility conditions that ˛ and ˇ must satisfy for solvabil-
ity of (19.13), assume u is a smooth solution on some open subset of R2. Because
@2u=@x@y D @2u=@y@x, (19.13) implies

@

@y

�
˛
�
x;y;u.x;y/

��
D

@

@x

�
ˇ
�
x;y;u.x;y/

��

and therefore by the chain rule

@˛

@y
C ˇ

@˛

@z
D
@ˇ

@x
C ˛

@ˇ

@z
: (19.14)

This is true at a point .x; y; z/ 2 W provided there is a smooth solution u with
u.x;y/ D z. In particular, (19.14) is a necessary condition for (19.13) to have a
solution in a neighborhood of each point .x0; y0/ with freely specified initial value
u.x0; y0/ D z0. Using the Frobenius theorem, we can show that this condition is
sufficient.

Proposition 19.28. Suppose ˛ and ˇ are smooth real-valued functions defined on
some open subset W � R3 and satisfying (19.14) there. For each .x0; y0; z0/ 2
W , there exist a neighborhood U of .x0; y0/ in R2 and a unique smooth function
u W U !R satisfying (19.13) and u.x0; y0/D z0.

Proof. The idea of the proof is that the system (19.13) determines the partial deriva-
tives of u in terms of its values, and therefore determines the tangent plane to the
graph of u at each point in terms of the coordinates of the point on the graph. This
collection of tangent planes defines a smooth rank-2 distribution on W (Fig. 19.10),
and (19.14) is equivalent to the involutivity condition for this distribution.

If there is a solution u on an open subset U �R2, the map F W U !W given by

F.x;y/D
�
x;y;u.x;y/

�

is a smooth global parametrization of the graph �.u/ � U �R. At any point p D
F.x;y/, the tangent space Tp�.u/ is spanned by the vectors

dF

�
@

@x

ˇ̌
ˇ̌
.x;y/

�
D

@

@x

ˇ̌
ˇ̌
p

C
@u

@x
.x;y/

@

@z

ˇ̌
ˇ̌
p

;

dF

�
@

@y

ˇ̌
ˇ̌
.x;y/

�
D

@

@y

ˇ̌
ˇ̌
p

C
@u

@y
.x;y/

@

@z

ˇ̌
ˇ̌
p

:
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Fig. 19.10 Solving for u by finding its graph

The system (19.13) is satisfied if and only if

dF

�
@

@x

ˇ̌
ˇ̌
.x;y/

�
D

@

@x

ˇ̌
ˇ̌
p

C ˛
�
x;y;u.x;y/

� @
@z

ˇ̌
ˇ̌
p

;

dF

�
@

@y

ˇ̌
ˇ̌
.x;y/

�
D

@

@y

ˇ̌
ˇ̌
p

C ˇ
�
x;y;u.x;y/

� @
@z

ˇ̌
ˇ̌
p

:

(19.15)

Let X and Y be the vector fields

X D
@

@x
C ˛.x;y; z/

@

@z
;

Y D
@

@y
C ˇ.x;y; z/

@

@z

(19.16)

on W , and let D be the distribution on W spanned by X and Y . Because (19.15)
says that Tp�.u/ is spanned by Xp and Yp , a necessary condition for the sys-
tem (19.13) to be satisfied is that �.u/ be an integral manifold of D. On the other
hand, this condition is also sufficient: if �.u/ is an integral manifold, then dF.@=@x/
and dF.@=@y/ must both be linear combinations of X and Y , and comparing @=@x
and @=@y components shows that this can happen only if (19.15) holds.

A straightforward computation using (19.14) shows that ŒX;Y � � 0, so given
any point pD .x0; y0; z0/ 2W , there is an integral manifold N of D containing p.
Let ˚ W V ! R be a defining function for N on some neighborhood V of p; for
example, we could take ˚ to be the third coordinate function in a flat chart. The
tangent space to N at each point p 2 N (namely Dp) is equal to the kernel of
d p̊ . Since @=@zjp …Dp at any point p, this implies that @˚=@z ¤ 0 at p, so by
the implicit function theorem N is the graph of a smooth function z D u.x;y/ in
some neighborhood of p. You can verify easily that u is a solution to the problem.
Uniqueness follows immediately from Proposition 19.16. �

As in several cases we have seen before, the proof of Proposition 19.28 actually
contains a procedure for finding solutions to (19.13): find flat coordinates .u; v;w/
for the distribution spanned by the vector fields X and Y defined by (19.16), and
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solve the equation wD constant for z D u.x;y/. Some examples are given in Prob-
lem 19-13.

There is a straightforward generalization of this result to higher dimensions. The
general statement of the theorem is a bit complicated, but verifying the necessary
conditions in specific examples usually just amounts to computing mixed partial
derivatives and applying the chain rule.

Proposition 19.29. SupposeW is an open subset of Rn�Rm, and ˛D
�
˛ij
�
W W !

M.m� n;R/ is a smooth matrix-valued function satisfying

@˛ij

@xk
C ˛lk

@˛ij

@zl
D
@˛i
k

@xj
C ˛lj

@˛i
k

@zl
for all i; j; k;

where we denote a point in Rn �Rm by .x; z/D
�
x1; : : : ; xn; z1; : : : ; zm

�
. For any

.x0; z0/ 2W , there is a neighborhood U of x0 in Rn and a unique smooth function
u W U !Rm such that u.x0/D z0 and the Jacobian of u satisfies

@ui

@xj

�
x1; : : : ; xn

�
D ˛ij

�
x1; : : : ; xn; u1.x/; : : : ; um.x/

�
:

I Exercise 19.30. Prove Proposition 19.29.

Problems

19-1. Prove Proposition 19.11 (a smooth distribution is involutive if and only if
it determines a differential ideal).

19-2. Let D be a smooth distribution of rank k on a smooth n-manifold M; and
suppose !1; : : : ;!n�k are smooth local defining forms for D on an open
subset U �M . Show thatD is involutive on U if and only if the following
identity holds for each i D 1; : : : ; n� k:

d!i ^!1 ^ � � � ^!n�k D 0:

(Used on p. 582.)

19-3. Let ! be a smooth 1-form on a smooth manifold M . A smooth positive
function � on some open subset U �M is called an integrating factor for
! if �! is exact on U . Prove the following statements:
(a) If ! is nowhere-vanishing, then ! admits an integrating factor in a

neighborhood of each point if and only if d! ^! � 0.
(b) If dimM D 2, then every nonvanishing smooth 1-form admits an inte-

grating factor in a neighborhood of each point.

19-4. Let U �R3 be the subset where all three coordinates are positive, and let
D be the distribution on U spanned by the vector fields

X D y
@

@z
� z

@

@y
; Y D z

@

@x
� x

@

@z
:

Find an explicit global flat chart for D on U .
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19-5. Let D be the distribution on R3 spanned by

X D
@

@x
C yz

@

@z
; Y D

@

@y
:

(a) Find an integral submanifold of D passing through the origin.
(b) Is D involutive? Explain your answer in light of part (a).

19-6. Let D be an involutive distribution on a smooth manifold M; and let
� W J !M be a smooth curve. Prove the following statements.
(a) If H is an integral manifold of D, and the image of � is contained in

H , then � 0.t/ is in T�.t/H � T�.t/M for all t 2 J .
(b) Conversely, if � 0.t/ lies inD for all t , then the image of � is contained

in a single leaf of the foliation determined by D.
[Remark: compare this to the result of Problem 5-19.]

19-7. Let D be an involutive distribution on a smooth manifold M; and let N be
a connected integral manifold of D. Show that if N is a closed subset of
M; then it is a maximal connected integral manifold and is therefore a leaf
of the foliation determined by D. (Used on p. 545.)

19-8. Suppose M and N are smooth manifolds and F W M ! N is a smooth
submersion. Show that the connected components of the nonempty level
sets of F form a foliation of M .

19-9. Prove Proposition 19.23 (invariant distributions vs. invariant foliations).

19-10. Let M and N be smooth manifolds. Suppose F is a foliation on M of
codimension k, and ' W N !M is a smooth map. Show that if ' is trans-
verse to each leaf of F , then there is a unique codimension-k foliation
'�F on N , called the pullback of F , such that ' maps each leaf of '�F
into a single leaf of F .

19-11. Consider the following system of PDEs for u 2 C1
�
R3
�
:

x
@u

@x
C
@u

@y
C x.y C 1/

@u

@z
D xy;

@u

@x
C y

@u

@z
D y � 1:

Find a solution u to this system satisfying u.0; 0; z/ D z. [Hint: look at
Example 19.14.]

19-12. Consider the following system of PDEs for u 2 C1
�
R4
�
:

@u

@w
C x

@u

@y
C 2 .wC xy/

@u

@z
D 0;

@u

@x
�w

@u

@y
C 2 .x �wy/

@u

@z
D 0:

(a) Show that there do not exist two solutions u1, u2 with linearly inde-
pendent differentials on any open subset of R4.
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(b) Show that in a neighborhood of each point, there exists a solution with
nonvanishing differential.

19-13. Of the systems of partial differential equations below, determine which
ones have solutions z.x;y/ (or, for part (c), z.x;y/ and w.x;y/) in a
neighborhood of the origin for arbitrary positive values of z.0; 0/ (respec-
tively, z.0; 0/ and w.0; 0/).

(a)
@z

@x
D z cosyI

@z

@y
D�z logz tany.

(b)
@z

@x
D exz I

@z

@y
D xeyz .

(c)
@z

@x
D zI

@z

@y
DwI

@w

@x
DwI

@w

@y
D z.



Chapter 20
The Exponential Map

In this chapter we apply the tools of flows, Lie derivatives, and foliations to delve
deeper into the relationships between Lie groups and Lie algebras.

In the first section we define one-parameter subgroups of a Lie group G, which
are just Lie group homomorphisms from R to G, and show that there is a one-
to-one correspondence between elements of Lie.G/ and one-parameter subgroups
of G.

Next we introduce the focal point of our study, which is a canonical smooth map
from the Lie algebra into the group called the exponential map. It maps lines through
the origin in Lie.G/ to one-parameter subgroups of G.

As our first major application of the exponential map, we prove the closed sub-
group theorem, which says that every topologically closed subgroup of a Lie group
is actually an embedded Lie subgroup.

Next we prove a higher-dimensional generalization of the fundamental theorem
on flows. Instead of a single smooth vector field generating an action of R, we
consider a finite-dimensional family of vector fields and ask when they generate an
action of some Lie group. The main theorem is that if G is a simply connected Lie
group, then any Lie algebra homomorphism from Lie.G/ into the set of complete
vector fields on M generates a smooth action of G on M .

Finally, in the last two sections, we bring together all of these results to deepen
our understanding of the correspondence between Lie groups and Lie algebras.
First, we prove that there is a one-to-one correspondence between isomorphism
classes of finite-dimensional Lie algebras and isomorphism classes of simply con-
nected Lie groups; and then we show that for any Lie group G, connected nor-
mal subgroups of G correspond to ideals in the Lie algebra of G, which are sub-
spaces that are stable under bracketing with arbitrary elements of the algebra. This
is an excellent illustration of the fundamental philosophy of Lie theory: as much
as possible, we use the Lie group/Lie algebra correspondence to translate group-
theoretic questions about a Lie group into linear-algebraic questions about its Lie
algebra.

J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics 218,
DOI 10.1007/978-1-4419-9982-5_20, © Springer Science+Business Media New York 2013
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One-Parameter Subgroups and the Exponential Map

Suppose G is a Lie group. Since left-invariant vector fields are naturally defined
in terms of the group structure of G, one might reasonably expect to find some
relationship between the group law for the flow of a left-invariant vector field and
group multiplication in G. We begin by exploring this relationship.

One-Parameter Subgroups

A one-parameter subgroup of G is defined to be a Lie group homomorphism
� W R! G, with R considered as a Lie group under addition. By this definition,
a one-parameter subgroup is not a Lie subgroup of G, but rather a homomorphism
into G. (However, the image of a one-parameter subgroup is a Lie subgroup when
endowed with a suitable smooth manifold structure; see Problem 20-1.)

Theorem 20.1 (Characterization of One-Parameter Subgroups). Let G be a Lie
group. The one-parameter subgroups ofG are precisely the maximal integral curves
of left-invariant vector fields starting at the identity.

Proof. First suppose � is the maximal integral curve of some left-invariant vector
field X 2 Lie.G/ starting at the identity. Because left-invariant vector fields are
complete (Theorem 9.18), � is defined on all of R. Left-invariance means that X
is Lg -related to itself for every g 2 G, so Proposition 9.6 implies that Lg takes
integral curves of X to integral curves of X . Applying this with gD �.s/ for some
s 2 R, we conclude that the curve t 7! L�.s/

�
�.t/

�
is an integral curve starting at

�.s/. But the translation lemma (Lemma 9.4) implies that t 7! �.s C t/ is also an
integral curve with the same initial point, so they are equal:

�.s/�.t/D �.sC t/:

This says precisely that � W R!G is a one-parameter subgroup.
Conversely, suppose � W R ! G is a one-parameter subgroup, and let X D

��.d=dt/ 2 Lie.G/, treating d=dt as a left-invariant vector field on R. Since
�.0/D e, we just have to show that � is an integral curve ofX . Recall that ��.d=dt/
is defined as the unique left-invariant vector field onG that is � -related to d=dt (see
Theorem 8.44). Therefore, for any t0 2R,

� 0.t0/D d�t0

�
d

dt

ˇ̌
ˇ̌
t0

�
DX�.t0/;

so � is an integral curve of X . �
Given X 2 Lie.G/, the one-parameter subgroup determined by X in this way is

called the one-parameter subgroup generated by X . Because left-invariant vector
fields are uniquely determined by their values at the identity, it follows that each
one-parameter subgroup is uniquely determined by its initial velocity in TeG, and
thus there are one-to-one correspondences

fone-parameter subgroups of Gg ! Lie.G/ ! TeG:
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The one-parameter subgroups of GL.n;R/ are not hard to compute explicitly.

Proposition 20.2. For any A 2 gl.n;R/, let

eA D

1X

kD0

1

kŠ
Ak D InCAC

1

2
A2C � � � : (20.1)

This series converges to an invertible matrix eA 2GL.n;R/, and the one-parameter
subgroup of GL.n;R/ generated by A 2 gl.n;R/ is �.t/D etA.

Proof. First, we verify convergence. From Exercise B.48, matrix multiplication sat-
isfies jABj � jAjjBj, where the norm is the Frobenius norm on gl.n;R/. It follows
by induction that

ˇ̌
Ak
ˇ̌
� jAjk . The Weierstrass M -test then shows that (20.1) con-

verges uniformly on any bounded subset of gl.n;R/, by comparison with the seriesP
k.1=kŠ/c

k D ec .
Fix A 2 gl.n;R/. Under our identification of gl.n;R/ with Lie

�
GL.n;R/

�
, the

matrix A corresponds to the left-invariant vector field AL given by (8.15). Thus, the
one-parameter subgroup generated by A is an integral curve of AL on GL.n;R/,
and therefore satisfies the ODE initial value problem

� 0.t/DAL
ˇ̌
�.t/
; �.0/D In:

Using (8.15), the condition for � to be an integral curve can be rewritten as

P� ik.t/D �
i
j .t/A

j

k
;

or in matrix notation

� 0.t/D �.t/A:

We will show that �.t/D etA satisfies this equation. Since �.0/D In, this implies
that � is the unique integral curve of AL starting at the identity and is therefore the
desired one-parameter subgroup.

To see that � is differentiable, we note that differentiating the series (20.1) for-
mally term by term yields the result

� 0.t/D

1X

kD1

k

kŠ
tk�1Ak D

� 1X

kD1

1

.k � 1/Š
tk�1Ak�1

�
AD �.t/A:

Since the differentiated series converges uniformly on bounded sets (because apart
from the additional factor of A, it is the same series!), the term-by-term differenti-
ation is justified. A similar computation shows that � 0.t/D A�.t/. By smoothness
of solutions to ODEs, � is a smooth curve.

It remains only to show that �.t/ is invertible for all t , so that � actually takes
its values in GL.n;R/. If we let �.t/D �.t/�.�t/D etAe�tA, then � is a smooth
curve in gl.n;R/, and by the previous computation and the product rule it satisfies

� 0.t/D
�
�.t/A

�
�.�t/� �.t/

�
A�.�t/

�
D 0:
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It follows that � is the constant curve �.t/ � �.0/ D In, which is to say that
�.t/�.�t/ D In. Substituting �t for t , we obtain �.�t/�.t/ D In, which shows
that �.t/ is invertible and �.t/�1 D �.�t/. �

Next we would like to compute the one-parameter subgroups of GL.n;R/, such
as O.n/. To do so, we need the following result.

Proposition 20.3. Suppose G is a Lie group and H � G is a Lie subgroup. The
one-parameter subgroups of H are precisely those one-parameter subgroups of G
whose initial velocities lie in TeH .

Proof. Let � W R!H be a one-parameter subgroup. Then the composite map

R
�
�!H ,!G

is a Lie group homomorphism and thus a one-parameter subgroup of G, which
clearly satisfies � 0.0/ 2 TeH .

Conversely, suppose � W R! G is a one-parameter subgroup whose initial ve-
locity lies in TeH . Let z� W R!H be the one-parameter subgroup of H with the
same initial velocity z� 0.0/D � 0.0/ 2 TeH � TeG. As in the preceding paragraph,
by composing with the inclusion map, we can also consider z� as a one-parameter
subgroup ofG. Since � and z� are both one-parameter subgroups ofG with the same
initial velocity, they must be equal. �
Example 20.4. If H is a Lie subgroup of GL.n;R/, the preceding proposition
shows that the one-parameter subgroups of H are precisely the maps of the form
�.t/ D etA for A 2 h, where h � gl.n;R/ is the subalgebra corresponding to
Lie.H/ as in Theorem 8.46. For example, taking H D O.n/, this shows that the
one-parameter subgroups of O.n/ are the maps of the form �.t/D etA for an arbi-
trary skew-symmetric matrix A. In particular, this shows that the exponential of any
skew-symmetric matrix is orthogonal. //

The Exponential Map

In the preceding section we saw that the matrix exponential maps gl.n;R/ to
GL.n;R/ and takes each line through the origin to a one-parameter subgroup. This
has a powerful generalization to arbitrary Lie groups.

Given a Lie group G with Lie algebra g, we define a map exp W g! G, called
the exponential map of G , as follows: for any X 2 g, we set

expX D �.1/;

where � is the one-parameter subgroup generated by X , or equivalently the integral
curve of X starting at the identity (Fig. 20.1). The following proposition shows that,
like the matrix exponential, this map sends the line through X to the one-parameter
subgroup generated by X .

Proposition 20.5. Let G be a Lie group. For any X 2 Lie.G/, �.s/D exp sX is the
one-parameter subgroup of G generated by X .
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Fig. 20.1 The exponential map

Proof. Let � W R!G be the one-parameter subgroup generated by X , which is the
integral curve of X starting at e. For any fixed s 2R, it follows from the rescaling
lemma (Lemma 9.3) that z�.t/D �.st/ is the integral curve of sX starting at e, so

exp sX D z�.1/D �.s/: �

Here are two simple but important examples.

Example 20.6. The results of the preceding section show that the exponential map
of GL.n;R/ (or any Lie subgroup of it) is given by expAD eA. This, obviously, is
the reason for the term exponential map. //

Example 20.7. If V is a finite-dimensional real vector space, a choice of basis for
V yields isomorphisms GL.V /ŠGL.n;R/ and gl.V /Š gl.n;R/. The analysis of
the GL.n;R/ case then shows that the exponential map of GL.V / can be written in
the form

expAD
1X

kD0

1

kŠ
Ak ; (20.2)

where we consider A 2 gl.V / as a linear map from V to itself, and Ak DA ı � � � ıA
is the k-fold composition of A with itself. //

Proposition 20.8 (Properties of the Exponential Map). Let G be a Lie group and
let g be its Lie algebra.

(a) The exponential map is a smooth map from g to G.
(b) For any X 2 g and s; t 2R, exp.sC t/X D exp sX exp tX .
(c) For any X 2 g, .expX/�1 D exp.�X/.
(d) For any X 2 g and n 2Z, .expX/n D exp.nX/.
(e) The differential .d exp/0 W T0g! TeG is the identity map, under the canonical

identifications of both T0g and TeG with g itself.
(f) The exponential map restricts to a diffeomorphism from some neighborhood of

0 in g to a neighborhood of e in G.
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(g) If H is another Lie group, h is its Lie algebra, and ˚ W G!H is a Lie group
homomorphism, the following diagram commutes:

g
˚�� h

G

exp
�

˚
� H:

exp
�

(20.3)

(h) The flow � of a left-invariant vector field X is given by �t D Rexp tX (right
multiplication by exp tX ).

Proof. In this proof, for any X 2 g we let �.X/ denote the flow of X . To prove (a),

we need to show that the expression �
.e/

.X/
.1/ depends smoothly on X , which

amounts to showing that the flow varies smoothly as the vector field varies. This
is a situation not covered by the fundamental theorem on flows, but we can reduce it
to that theorem by the following simple trick. Define a vector field � on the product
manifold G � g by

�.g;X/ D .Xg ; 0/ 2 TgG ˚ TXgŠ T.g;X/.G � g/:

(See Fig. 20.2.) To see that � is a smooth vector field, choose any basis
.X1; : : : ;Xk/ for g, and let

�
xi
�

be the corresponding global coordinates for g,
defined by

�
xi
�
$ xiXi . Let

�
wi
�

be any smooth local coordinates for G. If
f 2 C1.G � g/ is arbitrary, then locally we can write

�f
�
wi ; xi

�
D xjXjf

�
wi ; xi

�
;

where each vector field Xj differentiates f only in the wi -directions. Since this
depends smoothly on

�
wi ; xi

�
, it follows from Proposition 8.14 that � is smooth. It

is easy to verify that the flow  of � is given by

t .g;X/D
�
�.X/.t; g/;X

�
:

By the fundamental theorem on flows,  is smooth. Since expX D �G
�
1.e;X/

�
,

where �G W G � g!G is the projection, it follows that exp is smooth.
Next, (b) and (c) follow immediately from Proposition 20.5, because t 7! exp tX

is a group homomorphism from R toG. Then (d) for nonnegative n follows from (b)
by induction, and for negative n it follows from (c).

To prove (e), let X 2 g be arbitrary, and let � W R! g be the curve �.t/D tX .
Then � 0.0/DX , and Proposition 20.5 implies

.d exp/0.X/D .d exp/0
�
� 0.0/

�
D .expı�/0.0/D

d

dt

ˇ̌
ˇ̌
tD0

exp tX DX:

Part (f) then follows immediately from (e) and the inverse function theorem.
Next, to prove (g) we need to show that exp.˚�X/D˚.expX/ for every X 2 g.

In fact, we will show that for all t 2R,

exp.t˚�X/D˚.exp tX/:
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Fig. 20.2 Proof that the exponential map is smooth

The left-hand side is, by Proposition 20.5, the one-parameter subgroup generated by
˚�X . Thus, if we put �.t/D˚.exp tX/, it suffices to show that � W R!H is a Lie
group homomorphism satisfying � 0.0/D .˚�X/e . It is a Lie group homomorphism
because it is the composition of the homomorphisms ˚ and t 7! exp tX . The initial
velocity is computed as follows:

� 0.0/D
d

dt

ˇ̌
ˇ̌
tD0

˚.exp tX/D d˚0

�
d

dt

ˇ̌
ˇ̌
tD0

exp tX

�
D d˚0.Xe/D .˚�X/e:

Finally, to show that
�
�.X/

�
t
D Rexp tX , we use the fact that for any g 2 G, the

left multiplication map Lg takes integral curves of X to integral curves of X . Thus,
the map t 7!Lg.exp tX/ is the integral curve starting at g, which means it is equal

to � .g/
.X/
.t/. It follows that

Rexp tX .g/D g exp tX DLg.exp tX/D � .g/
.X/
.t/D

�
�.X/

�
t
.g/: �

It is important to notice that Proposition 20.8(b) does not imply exp.X C Y /D
.expX/.expY / for arbitrary X;Y in the Lie algebra. In fact, for connected groups,
this is true only when the group is abelian (see Problem 20-8).

The exponential map yields the following alternative characterization of the Lie
subalgebra of a subgroup. We will use this later in the chapter when we study normal
subgroups.

Proposition 20.9. Let G be a Lie group, and let H � G be a Lie subgroup. With
Lie.H/ considered as a subalgebra of Lie.G/ in the usual way, the exponential map
of H is the restriction to Lie.H/ of the exponential map of G, and

Lie.H/D
˚
X 2 Lie.G/ W exp tX 2H for all t 2R

�
:
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Proof. The fact that the exponential map of H is the restriction of that of G is an
immediate consequence of Proposition 20.3. To prove the second assertion, by the
way we have identified Lie.H/ as a subalgebra of Lie.G/, we need to establish the
following equivalence for every X 2 Lie.G/:

exp tX 2H for all t 2R , Xe 2 TeH:

Assume first that exp tX 2H for all t . Since H is weakly embedded in G by
Theorem 19.25, it follows that the curve t 7! exp tX is smooth as a map intoH , and
thus Xe D � 0.0/ 2 TeH . Conversely, if Xe 2 TeH , then Proposition 20.3 implies
that exp tX 2H for all t . �

The Closed Subgroup Theorem

Recall that in Theorem 7.21 we showed that a Lie subgroup is embedded if and only
if it is closed. In this section, we use the exponential map to prove a much stronger
form of that theorem, showing that if a subgroup of a Lie group is topologically a
closed subset, then it is actually an embedded Lie subgroup.

We begin with a simple result that shows how group multiplication in G is re-
flected “to first order” in the vector space structure of its Lie algebra.

Proposition 20.10. Let G be a Lie group and let g be its Lie algebra. For any
X;Y 2 g, there is a smooth function Z W .�"; "/! g for some " > 0 such that the
following identity holds for all t 2 .�"; "/:

.exp tX/.exp tY /D exp
�
t.X C Y /C t2Z.t/

�
: (20.4)

Proof. Since the exponential map is a diffeomorphism on some neighborhood of
the origin in g, there is some " > 0 such that the map ' W .�"; "/! g defined by

'.t/D exp�1.exp tX exp tY /

is smooth. It obviously satisfies '.0/D 0 and

exp tX exp tY D exp'.t/:

Observe that we can write ' as the composition

R
eX�eY
����!G �G

m
�!G

exp�1

���! g;

where eX .t/D exp tX and eY .t/D exp tY . The result of Problem 7-2 shows that
dm.e;e/.X;Y /DX C Y for X;Y 2 TeG, which implies

'0.0/D
�
.d exp/0

��1 �
e0X .0/C e

0
Y .0/

�
DX C Y:

Therefore, Taylor’s theorem yields

'.t/D t.X C Y /C t2Z.t/

for some smooth function Z. �
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Corollary 20.11. Under the hypotheses of the preceding proposition,

lim
n!1

��
exp

t

n
X

��
exp

t

n
Y

��n
D exp t.X C Y /: (20.5)

Proof. Formula (20.4) implies that for any t 2R and any sufficiently large n 2Z,
�

exp
t

n
X

��
exp

t

n
Y

�
D exp

�
t

n
.X C Y /C

t2

n2
Z

�
t

n

��
;

and then Proposition 20.8(d) yields
��

exp
t

n
X

��
exp

t

n
Y

��n
D

�
exp

�
t

n
.X C Y /C

t2

n2
Z

�
t

n

���n

D exp

�
t.X C Y /C

t2

n
Z

�
t

n

��
:

Fixing t and taking the limit as n!1, we obtain (20.5). �
Theorem 20.12 (Closed Subgroup Theorem). Suppose G is a Lie group and
H � G is a subgroup that is also a closed subset of G. Then H is an embedded
Lie subgroup.

Proof. By Proposition 7.11, it suffices to show that H is an embedded submanifold
of G. We begin by identifying a subspace of Lie.G/ that will turn out to be the Lie
algebra of H .

Let gD Lie.G/, and define a subset h� g by

hD fX 2 g W exp tX 2H for all t 2Rg:

We need to show that h is a linear subspace of g. It is obvious from the definition
that h is closed under scalar multiplication: if X 2 h, then tX 2 h for all t 2 R.
Suppose X;Y 2 h, and let t 2R be arbitrary. Then exp

�
.t=n/X

�
and exp

�
.t=n/Y

�

are in H for each positive integer n, and because H is a closed subgroup of G,
(20.5) implies that exp t.X C Y / 2H . Thus X C Y 2 h, so h is a subspace.

Next we show that there is a neighborhood U of the origin in g on which the
exponential map of G is a diffeomorphism, and which has the property that

exp.U \ h/D .expU /\H: (20.6)

(See Fig. 20.3.) This will enable us to construct a slice chart for H in a neighbor-
hood of the identity, and we will then use left translation to get a slice chart in a
neighborhood of any point of H .

If U � g is any neighborhood of 0 on which exp is a diffeomorphism, then
exp.U \ h/ � .expU / \ H by definition of h. So to find a neighborhood satis-
fying (20.6), all we need to do is to show that U can be chosen small enough that
.expU /\H � exp.U \ h/. Assume this is not possible.

Choose a linear subspace b � g that is complementary to h, so that gD h˚ b
as vector spaces. By the result of Problem 20-3, the map ˚ W h ˚ b! G given
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Fig. 20.3 A neighborhood used to construct a slice chart forH

by ˚.X;Y / D expX expY is a diffeomorphism in some neighborhood of .0; 0/.
Choose neighborhoods U0 of 0 in g and zU0 of .0; 0/ in h˚b such that both exp jU0
and ˚ j zU0 are diffeomorphisms onto their images. Let fUig be a countable neigh-
borhood basis for g at 0 (e.g., a countable sequence of coordinate balls whose radii
approach zero). If we set Vi D exp.Ui / and zUi D ˚�1.Vi /, then fVig and

˚
zUi
�

are neighborhood bases for G at e and h˚ b at .0; 0/, respectively. By discarding
finitely many terms at the beginning of the sequence, we may assume that Ui � U0
and zUi � zU0 for each i .

Our assumption implies that for each i , there exists hi 2 .expUi /\H such that
hi … exp.Ui \ h/. This means hi D expZi for some Zi 2 Ui . Because exp.Ui /D
˚
�
zUi
�
, we can also write

hi D expXi expYi

for some .Xi ; Yi / 2 zUi . If Yi were zero, then we would have expZi D expXi 2
exp.h/; but because exp is injective on U0, this implies Xi D Zi 2 Ui \ h, which
contradicts our assumption that hi … exp.Ui \ h/ (Fig. 20.4). Since

˚
zUi
�

is a neigh-
borhood basis, Yi ! 0 as i!1. Observe that expXi 2H by definition of h, so it
follows that expYi D .expXi /�1hi 2H as well.

Choose an inner product on b and let j � j denote the norm associated with this
inner product. If we define ci D jYi j, then we have ci ! 0 as i!1. The sequence�
c�1i Yi

�
lies on the unit sphere in b, so replacing it by a subsequence we may assume

that c�1i Yi ! Y 2 b, with jY j D 1 by continuity. In particular, Y ¤ 0. We will show
that exp tY 2H for all t 2R, which implies that Y 2 h. Since h\bD f0g, this is a
contradiction.

Let t 2 R be arbitrary, and for each i , let ni be the greatest integer less than or
equal to t=ci . Then

ˇ̌
ˇ̌ni �

t

ci

ˇ̌
ˇ̌� 1;

which implies

jnici � t j � ci ! 0;
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Fig. 20.4 Proof of the closed subgroup theorem

so nici ! t . Thus,

niYi D .nici /
�
c�1i Yi

�
! tY;

which implies expniYi ! exp tY by continuity. But expniYi D .expYi /ni 2 H ,
so the fact that H is closed implies exp tY 2H . This completes the proof of the
existence of U satisfying (20.6).

Choose any linear isomorphism E W g! Rm that sends h to Rk . The com-
posite map ' D E ı exp�1 W expU ! Rm is then a smooth chart for G, and
'
�
.expU / \H

�
D E.U \ h/ is the slice obtained by setting the last m � k co-

ordinates equal to zero. Moreover, if h 2H is arbitrary, the left translation map Lh
is a diffeomorphism from expU to a neighborhood of h. Since H is a subgroup,
Lh.H/DH , and so

Lh
�
.expU /\H

�
DLh.expU /\H;

and ' ıL�1
h

is easily seen to be a slice chart for H in a neighborhood of h. Thus,
H is an embedded submanifold of G, hence a Lie subgroup. �

The following corollary summarizes the results of the closed subgroup theorem,
Proposition 7.11, and Theorem 7.21.

Corollary 20.13. If G is a Lie group and H is any subgroup of G, the following
are equivalent:

(a) H is closed in G.
(b) H is an embedded submanifold of G.
(c) H is an embedded Lie subgroup of G. �

Infinitesimal Generators of Group Actions

In Chapter 9, we showed that a complete vector field on a manifold generates an
action of R on the manifold. In this section, using the Frobenius theorem and prop-
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erties of the exponential map, we show how to generalize this notion to actions of
higher-dimensional groups.

To begin, we need to specify what we mean by an “infinitesimal generator” of
a Lie group action. For reasons that will become apparent, in this section we work
primarily with right actions. Afterwards, we will show how the theory has to be
modified in the case of left actions (see Theorem 20.18). Because R is abelian,
global flows can be considered either as left actions or as right actions, so everything
in this section applies to global flows without modification.

Suppose we are given a smooth right action of a Lie group G on a smooth mani-
foldM;which we denote either by � W M �G!M or by .p;g/ 7! p �g, depending
on context. Each element X 2 Lie.G/ determines a smooth global flow on M :

.t;p/ 7! p � exp tX:

(It is a flow because exp.0X/D e and .exp sX/.exp tX/D exp.s C t/X .) Let yX 2
X.M/ be the infinitesimal generator of this flow, so for each p 2M;

yXp D
d

dt

ˇ̌
ˇ̌
tD0

p � exp tX: (20.7)

Thus we obtain a map y� W Lie.G/!X.M/, defined by y�.X/D yX .
There is a useful alternative characterization of yX in terms of the orbit map

� .p/ W G!M defined by � .p/.g/D p � g. Since �.t/D exp tX is a smooth curve
in G whose initial velocity is � 0.0/ D Xe , it follows from Corollary 3.25 that for
each p 2M we have

d
�
� .p/

�
e
.Xe/D

�
� .p/ ı �

�0
.0/D

d

dt

ˇ̌
ˇ̌
tD0

p � exp tX D yXp: (20.8)

Lemma 20.14. Suppose G is a Lie group and � is a smooth right action of G on a
smooth manifoldM . For any X 2 Lie.G/ and p 2M; the vector fields X and y�.X/
are � .p/-related.

Proof. Let X 2 Lie.G/ and p 2M be arbitrary, and write yX D y�.X/. Note that the
group law p � gg0 D .p � g/ � g0 translates to

� .p/ ıLg.g
0/D � .p�g/.g0/: (20.9)

Let g 2 G be arbitrary, and write q D p � g D � .p/.g/. Then (20.9) yields
� .p/ ıLg D �

.q/. Using this together with (20.8) and the fact thatX is left-invariant,
we obtain

yXq D d
�
� .q/

�
e
.Xe/D d

�
� .p/

�
g
ı d.Lg/e.Xe/D d

�
� .p/

�
g
.Xg/;

which proves the claim. �

Theorem 20.15. Suppose G is a Lie group and � is a smooth right action of G on
a smooth manifold M . Then the map y� W Lie.G/! X.M/ defined above is a Lie
algebra homomorphism.
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Proof. For each p 2M; it follows from (20.8) that yXp depends linearly on X , so y�
is a linear map. Given p 2M; Lemma 20.14 together with the naturality of Lie
brackets implies that ŒX;Y � is � .p/-related to

�
yX; yY

�
. This means, in particular, that

�
yX; yY

�
p
D d

�
� .p/

�
e

�
ŒX;Y �e

�
D1ŒX;Y �p:

Since every point of M is in the image of some orbit map, we conclude that�
y�.X/; y�.Y /

�
D y�

�
ŒX;Y �

�
as claimed. �

The Lie algebra homomorphism y� W Lie.G/! X.M/ defined above is known
as the infinitesimal generator of � . More generally, if g is an arbitrary finite-
dimensional Lie algebra, any Lie algebra homomorphism y� W g!X.M/ is called a
(right) g-action on M . A g-action y� is said to be complete if for every X 2 g, the
vector field y�.X/ is complete.

Just as every complete vector field generates an R-action, the next theorem shows
that, at least for simply connected groups, every complete Lie algebra action gener-
ates a Lie group action.

Theorem 20.16 (Fundamental Theorem on Lie Algebra Actions). Let M be a
smooth manifold, let G be a simply connected Lie group, and let gD Lie.G/. Sup-
pose y� W g! X.M/ is a complete g-action on M . Then there is a unique smooth
right G-action on M whose infinitesimal generator is y� .

Proof. We begin by defining a distribution D on G �M ; we will show that D
is involutive, and then each leaf will turn out to be the graph of an orbit map
� .p/ W G!M . For brevity, given X 2 g, we use the notation yX for y�.X/ 2X.M/.

Define D as follows: for each X 2 g, define a smooth vector field zX on G �M
by

zX.g;p/ D
�
Xg ; yXp

�
2 TgG ˚ TpM Š T.g;p/.G �M/:

In the notation of Problem 8-17, this is zX DX ˚ yX . Then for each .g;p/ 2G �M;
let D.g;p/ be the set of all vectors of the form zX.g;p/ as X ranges over g. If
X1; : : : ;Xk is a basis for g, then the smooth vector fields zX1; : : : ; zXk are indepen-
dent and spanD, soD is a smooth distribution whose rank is equal to the dimension
of G. To see that it is involutive, note that Problem 8-17 and the fact that y� is a Lie
algebra homomorphism imply

�
zXi ; zXj

�
D ŒXi ;Xj �˚

�
yXi ; yXj

�
D ŒXi ;Xj �˚ 2ŒXi ;Xj �D BŒXi ;Xj �:

Let S denote the foliation determined by D, and for each .g;p/ 2G �M; let S.g;p/
denote the leaf of S containing .g;p/.

Next we show thatD is invariant under a certainG-action onG�M . Combining
the natural action of G on itself by left translation with the trivial action of G onM;
we get a left action of G on G �M given by

 g.g
0; p/D .gg0; p/:
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A straightforward computation shows

d. g/.g0;p/
�
zX.g0;p/

�
D d. g/.g0;p/

�
Xg0 ; yXp

�
D
�
d.Lg/g0.Xg0/; yXp

�

D
�
Xgg0 ; yXp

�
D zX.gg0;p/;

so D is invariant under  g for each g 2 G. It follows that  g takes leaves of S to
leaves of S (Proposition 19.23).

Let �G W G�M !G and �M W G�M !M denote the projections. Let p 2M
be arbitrary, let Sp D S.e;p/ � G �M denote the leaf containing .e;p/, and let
p̆ D �G jSp W Sp!G. We will show that p̆ is a smooth covering map. To begin

with, at each point .g; q/ 2 Sp , d. p̆/.g;p/
�
zX.g;p/

�
DXg for all X 2 g, so p̆ is a

smooth submersion, and for dimensional reasons it is a local diffeomorphism.
To show that p̆ is a covering map, choose a connected neighborhood U of e

in G small enough that the exponential map of G is a diffeomorphism from some
neighborhood V of 0 in g onto U , and for any g 2 G, consider the neighborhood
gU D fgh W h 2 U g of g. We will show that gU is evenly covered by constructing
local sections. For each q 2M such that .g; q/ is in the fiber ˘�1p .g/, define a map
�q W gU !G �M by

�q.g expX/D
	
g expX;�

. yX/
.1; q/



;

where X 2 V and �
. yX/

denotes the flow of yX . It follows immediately from the
definition that �q is smooth and satisfies �G ı �q D IdgU , so to show that �q is a
local section of p̆ , it suffices to show that it takes its values in Sp . A straightfor-
ward computation shows that �.t/D

�
g exp tX; �

. yX/
.t; q/

�
is an integral curve of zX

starting at .g; q/, from which it follows easily that �q.g expX/D �.1/ 2 Sp . It is
smooth because it is a local section of the local diffeomorphism p̆ .

For each .g; q/ 2 ˘�1p .g/, the set �q.gU / is a connected open subset of Sp ,
which is mapped diffeomorphically onto gU by p̆ . To complete the proof that p̆

is a covering map, we need only prove that every point in ˘�1p .gU / is in exactly
one such set. First suppose .g0; q0/ 2˘�1p .gU /. Then p̆.g

0; q0/ 2 gU means that
g0 D g expX for some X 2 V . If we let q D �

. yX/
.�1; q0/, then the group law for

�
. yX/

implies that q0 D �
. yX/
.1; q/ and therefore .g0; q0/D �q.g expX/. On the other

hand, suppose two such sets �q.gU / and �q0.gU / intersect nontrivially. Then for
some X;X 0 2 V , we have

�
g expX;�

. yX/
.1; q/

�
D
�
g expX 0; �

. yX 0/
.1; q0/

�
, which

implies thatX DX 0 and therefore �
. yX/
.1; q/D �

. yX/
.1; q0/; then flowing back along

the integral curve of yX for time �1 shows that q D q0. This completes the proof that
p̆ is a smooth covering map. Because we are assuming G is simply connected, p̆

is actually a diffeomorphism.
Now for each p 2 M; define � .p/ W G ! M by � .p/ D �M ı ˘�1p (so Sp is

the graph of � .p/), and define an action of G on M by p � g D � .p/.g/. This is
equivalent to declaring that p �gD q if and only if S.e;p/ D S.g;q/. To show that this
is an action, assuming p � g D q and q � g0 D r , we need to show that p � gg0 D r .
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Equivalently, assuming that S.e;p/ D S.g;q/ and S.e;q/ D S.g0;r/, we need to show
that S.e;p/ D S.gg0;r/. This follows from  -invariance:

S.e;p/ D S.g;q/ D g
�
S.e;q/

�
D g

�
S.g0;r/

�
D S.gg0;r/:

It remains to show that the action is smooth, that y� is its infinitesimal generator,
and that it is the unique such action. For gD expX near the identity, the discussion
above shows that the action can be expressed as

p � gD � .p/.expX/D �M ı �p.expX/D �
. yX/
.1;p/: (20.10)

An argument analogous to the one we used to prove smoothness of the exponential
map (with �.p;X/ D

�
yXg ; 0

�
on M � g) shows that this depends smoothly on X

and p and thus on g and p. But since any neighborhood of the identity generates
G (Proposition 7.14), every element of G can be expressed as a finite product of
elements of the form expX for X 2 V , so it follows that .p;g/ 7! p �g can be writ-
ten as a finite composition of smooth maps. The fact that the infinitesimal generator
of the action is y� is an immediate consequence of (20.10). Uniqueness is left as an
exercise. �

I Exercise 20.17. Prove that the action constructed in the previous proof is the
unique one that has y� as its infinitesimal generator.

Left Actions

The situation for left actions is similar, but with a slight twist. Let G be a Lie group
and M be a smooth manifold. If � W G �M !M is a smooth left action of G on
M; define the infinitesimal generator of � as the map y� W Lie.G/! X.M/ given
by y�.X/D yX , where

yXp D
d

dt

ˇ̌
ˇ̌
tD0

�
.exp tX/ � p

�
D d

�
� .p/

�
e
.Xe/; (20.11)

and � .p/ W G!M is the orbit map � .p/.g/D g � p.
We have the following analogue of Theorems 20.15 and 20.16 for left actions.

Theorem 20.18. Suppose G is a Lie group and M is a smooth manifold.

(a) If � is a smooth left action of G on M; the map y� W Lie.G/! X.M/ de-
fined by (20.11) is an antihomomorphism (a linear map satisfying y�

�
ŒX;Y �

�
D

�
�
y�.X/; y�.Y /

�
for all X;Y 2 Lie.G/).

(b) Conversely, if G is simply connected, every antihomomorphism y� W Lie.G/!
X.M/ such that y�.X/ is complete for each X 2 Lie.G/ is the infinitesimal
generator of a unique left G-action.

Proof. Problem 20-15. �
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Because of this theorem, for a finite-dimensional Lie algebra g and a smooth
manifold M; a left g-action on M is defined as an antihomomorphism from g

to X.M/.

The Lie Correspondence

Many of our results about Lie groups show how essential properties of a Lie group
are reflected in its Lie algebra, and vice versa. This raises a natural question: To
what extent is the correspondence between Lie groups and Lie algebras (or at least
between their isomorphism classes) one-to-one?

We have already seen in Chapter 8 that the assignment that sends a Lie group
to its Lie algebra and a Lie group homomorphism to its induced Lie algebra ho-
momorphism is a functor from the category of Lie groups to the category of finite-
dimensional Lie algebras. Because functors take isomorphisms to isomorphisms, it
follows that isomorphic Lie groups have isomorphic Lie algebras. The converse
is easily seen to be false: both Rn and Tn have n-dimensional abelian Lie al-
gebras, which are obviously isomorphic to each other, but Rn and Tn are cer-
tainly not isomorphic Lie groups. However, as we will see in this section, if we
restrict our attention to simply connected Lie groups, then we do obtain a one-to-
one correspondence.

In order to prove this correspondence, we need a way to construct an isomor-
phism between simply connected Lie groups when we are given an isomorphism
between their algebras. Theorem 8.44 showed that every Lie group homomorphism
gives rise to a Lie algebra homomorphism. Using the fundamental theorem on Lie
algebra actions, we can prove the following partial converse.

Theorem 20.19. Suppose G and H are Lie groups with G simply connected, and
let g and h be their Lie algebras. For any Lie algebra homomorphism ' W g! h,
there is a unique Lie group homomorphism ˚ W G!H such that ˚� D '.

Proof. The Lie algebra homomorphism ' W g! h�X.H/ is, in particular, a com-
plete g-action on H (since every left-invariant vector field is complete). Thus,
by Theorem 20.16, there is a unique smooth right G-action � W H � G ! H for
which ' is the infinitesimal generator. Let us use the notation yX D '.X/ for X 2 g,
and the notation h � g D �.h;g/ for h 2 H and g 2 G. Define a smooth map
˚ W G ! H by ˚.g/ D e � g (where e is the identity in H ). We will show that
˚ is the desired homomorphism.

Lemma 20.14 shows that for each h 2H and eachX 2 g, the vector fieldsX and
yX are � .h/-related. By Proposition 9.6, � .h/ takes integral curves of X to integral

curves of yX . Therefore, t 7! h � exp tX is the integral curve of yX starting at h.
On the other hand, because yX is a left-invariant vector field onH , left translation

in H takes integral curves of yX to integral curves of yX . For any h 2H and X 2 g,
therefore,

Lh.e � exp tX/D h � exp tX: (20.12)
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Applying this with hD e � g for some g 2G, we get

.e � g/.e � exp tX/D .e � g/ � exp tX D e � g exp tX:

(The last equality follows from the fact that � is an action.) Rewritten in terms of ˚ ,
this says

˚.g/˚.exp tX/D˚.g exp tX/:

Since G is connected, it is generated by the image of the exponential map by Propo-
sition 7.14, so this implies that ˚ is a homomorphism.

To see that ˚� D ', let X 2 g be arbitrary. The fact that ' is the infinitesimal
generator of � means

'.X/
ˇ̌
e
D

d

dt

ˇ
ˇ̌
ˇ
tD0

.e � exp tX/D
d

dt

ˇ
ˇ̌
ˇ
tD0

˚.exp tX/D d˚e.Xe/:

Since ˚� is determined by the action of d˚e , this implies ˚�X D '.X/.
The proof is completed by invoking Problem 20-17, which shows that ˚ is the

unique homomorphism with this property. �

Corollary 20.20. If G andH are simply connected Lie groups with isomorphic Lie
algebras, then G and H are isomorphic.

Proof. Let g, h be the Lie algebras of G and H , respectively, and let ' W g! h
be a Lie algebra isomorphism between them. By the preceding theorem, there are
Lie group homomorphisms ˚ W G ! H and � W H ! G satisfying ˚� D ' and
�� D '

�1. Both the identity map of G and the composition � ı ˚ are Lie group
homomorphisms from G to itself whose induced Lie algebra homomorphisms are
equal to the identity, so the uniqueness part of Theorem 20.19 implies that � ı˚ D
IdG . Similarly, ˚ ı� D IdH , so ˚ is a Lie group isomorphism. �

Now we are ready for our main theorem.

Theorem 20.21 (The Lie Correspondence). There is a one-to-one correspon-
dence between isomorphism classes of finite-dimensional Lie algebras and isomor-
phism classes of simply connected Lie groups, given by associating each simply
connected Lie group with its Lie algebra.

Proof. We need to show that the functor that sends a simply connected Lie group
to its Lie algebra is both surjective and injective up to isomorphism. Injectivity is
precisely the content of Corollary 20.20.

To prove surjectivity, suppose g is any finite-dimensional Lie algebra. By Corol-
lary 8.50 to Ado’s theorem, we may replace g by an isomorphic Lie subalgebra g0 �
gl.n;R/. By Theorem 19.26, there is a connected Lie subgroupG0 �GL.n;R/ that
has g0 as its Lie algebra. If G is the universal covering group of G0, Problem 8-27
shows that Lie.G/Š Lie.G0/Š g0 Š g. �

In the next chapter, we will see what happens when we remove the restriction to
simply connected groups (see Theorem 21.32).
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Lie’s Fundamental Theorems

As the name of the previous theorem suggests, a version of the Lie correspondence
theorem was proved in the nineteenth century by Sophus Lie. However, since global
topological notions such as manifolds and simple connectivity had not yet been
formulated, what he was able to prove was essentially a local version of the theorem.

Instead of considering Lie groups as abstract objects, Lie worked with vector
fields on open subsets of Euclidean space, and the (local) group actions they gen-
erate. Define a local Lie group to be an open subset U in some finite-dimensional
vector space V , together with an element e 2 U and smooth maps m W U �U ! V

(multiplication) and i W U ! V (inversion), satisfying the following identities for all
g;h; k sufficiently close to e that both sides are defined:

m
�
g;m.h;k/

�
Dm

�
m.g;h/; k

�
.associativity/I

m.e;g/D gDm.g; e/ .identity/I

m
�
i.g/; g

�
D eDm

�
g; i.g/

�
.inverses/:

The left translation map Lg W U ! V is defined just as for ordinary Lie groups, and
a vector field X 2 X.U / is said to be left-invariant if d.Lg/g0.Xg0/ D Xm.g;g0/
for all g;g0 2 U such that m.g;g0/ 2 U . Two local Lie groups .U; e;m; i/ and
.U 0; e0;m0; i 0/ are said to be locally isomorphic if there is a diffeomorphism from a
neighborhood of e in U to a neighborhood of e0 in U 0 that takes e to e0,m tom0, and
i to i 0, whenever the respective operations are defined. A local (left or right) action
of a local Lie group on an open subset W �Rn is defined like an ordinary action,
except that g �x (or x �g) is required to be defined only for .g; x/ in a neighborhood
of feg �W in U �W . A coordinate neighborhood of the identity in any Lie group
is a local Lie group, and any smooth action of a Lie group on a smooth manifold
restricts to a local action on any sufficiently small coordinate neighborhood.

Theorem 20.22 (The Fundamental Theorems of Sophus Lie).

(i) FIRST FUNDAMENTAL THEOREM: The set of left-invariant vector fields on a
local Lie group is a finite-dimensional Lie algebra under Lie bracket, and two
local Lie groups with isomorphic Lie algebras are locally isomorphic.

(ii) SECOND FUNDAMENTAL THEOREM: Given an open subset W �Rn, there is
a one-to-one correspondence between smooth right actions of local Lie groups
on W and finite-dimensional Lie subalgebras of X.W /.

(iii) THIRD FUNDAMENTAL THEOREM: Given any finite-dimensional abstract Lie
algebra g, there exists a local Lie group whose algebra of left-invariant vector
fields is isomorphic to g.

It is an interesting exercise to see if you can adapt the techniques of this chapter
to prove these theorems. (See Problem 20-19.)



Normal Subgroups 533

Normal Subgroups

Normal subgroups (those that are invariant under conjugation) play a central role
in abstract group theory: they are the only subgroups whose quotients have group
structures, and the only subgroups that are kernels of group homomorphisms.

For Lie groups, the following criterion for normality is useful. It says that for a
connected Lie group, normality need only be checked for elements that are in the
image of the exponential map, because such elements generate the group.

Lemma 20.23. Let G be a connected Lie group, and let H �G be a connected Lie
subgroup. Let g and h denote the Lie algebras of G and H , respectively. Then H is
normal in G if and only if

.expX/.expY /
�
exp.�X/

�
2H for all X 2 g and Y 2 h: (20.13)

Proof. Note that exp.�X/D .expX/�1. Thus if H is normal, then (20.13) holds
by definition. Conversely, suppose (20.13) holds, and choose open subsets V � g

containing 0 and U � G containing the identity such that expW V ! U is a dif-
feomorphism. Since the exponential map of H is the restriction of that of G, after
shrinking V if necessary, we may assume that the restriction of exp to V \ h is a
diffeomorphism from V \ h to a neighborhood U0 of the identity in H . Shrinking
V still further, we may assume also thatX 2 V if and only if �X 2 V . Then (20.13)
implies that ghg�1 2H whenever g 2U and h 2 U0.

Since every element of H can be written as a finite product hD h1 � � �hm with
h1; : : : ; hm 2 U0 (Proposition 7.14), it follows that for any g 2 U and h 2 H we
have

ghg�1 D gh1 � � �hmg
�1 D

�
gh1g

�1
�
� � �
�
ghmg

�1
�
2H: (20.14)

Similarly, any g 2G can be written gD g1 � � �gk with g1; : : : ; gk 2U , so it follows
by induction on k that ghg�1 2H for all g 2G and h 2H . �

Our next goal is a theorem that expresses a deep relationship between Lie groups
and their Lie algebras. If g is a Lie algebra, a linear subspace h � g is called an
ideal in g if ŒX;Y � 2 h whenever X 2 g and Y 2 h (see Problem 8-31). Because
ideals are kernels of Lie algebra homomorphisms and normal subgroups are kernels
of Lie group homomorphisms, it should not be surprising that there is a connection
between ideals and normal subgroups. The key to analyzing this connection is the
adjoint representation, which we study next.

The Adjoint Representation

Let G be a Lie group and g be its Lie algebra. For any g 2 G, the conjugation
map Cg W G ! G given by Cg.h/ D ghg�1 is a Lie group homomorphism (see
Example 7.4(f)). We let Ad.g/ D .Cg/� W g! g denote its induced Lie algebra
homomorphism.
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Proposition 20.24 (The Adjoint Representation). If G is a Lie group with Lie al-
gebra g, the map Ad W G!GL.g/ is a Lie group representation, called the adjoint
representation of G .

Proof. Because Cg1g2 D Cg1 ıCg2 for any g1; g2 2G, it follows immediately that
Ad.g1g2/DAd.g1/ ıAd.g2/, and Ad.g/ is invertible with inverse Ad

�
g�1

�
.

To see that Ad is smooth, let C W G � G ! G be the smooth map defined by
C.g;h/ D ghg�1. Let X 2 g and g 2 G be arbitrary. Then Ad.g/X is the left-
invariant vector field whose value at e 2G is

�
.Cg/�X

�
e
D

d

dt

ˇ̌
ˇ̌
tD0

Cg.exp tX/D
d

dt

ˇ̌
ˇ̌
tD0

C.g; exp tX/D dC.g;e/.0;Xe/;

where we are regarding .0;Xe/ as an element of T.g;e/.G � G/ Š TgG ˚ TeG.
Because dC W T .G � G/! TG is a smooth bundle homomorphism by Exam-
ple 10.28(a), this expression depends smoothly on g and X . Smooth coordinates
on GL.g/ are obtained by choosing a basis .Ei / for g and using matrix entries
with respect to this basis as coordinates. If ."j / is the dual basis, the matrix entries

of Ad.g/ W g! g are given by
�
Ad.g/

�j
i
D "j

�
Ad.g/Ei

�
. The computation above

with X DEi shows that these are smooth functions of g. �

There is also an adjoint representation for Lie algebras. Given a finite-dimen-
sional Lie algebra g, for each X 2 g, define a map ad.X/ W g! g by ad.X/Y D
ŒX;Y �.

Proposition 20.25. For any Lie algebra g, the map ad W g! gl.g/ is a Lie algebra
representation, called the adjoint representation of g.

I Exercise 20.26. Prove the preceding proposition.

Using the exponential map, we can show that these two representations are inti-
mately related.

Theorem 20.27. Let G be a Lie group, let g be its Lie algebra, and let Ad W G!
GL.g/ be the adjoint representation of G. The induced Lie algebra representation
Ad� W g! gl.g/ is given by Ad� D ad.

Proof. LetX 2 g be arbitrary. Then Ad�X is determined by its value at the identity,
which we can interpret as an element of gl.g/, the set of all linear maps from g to
itself. Because t 7! exp tX is a smooth curve in G whose velocity vector at t D 0
is Xe , we can compute the action of Ad�X on an element Y 2 g by

.Ad�X/Y D

�
d

dt

ˇ̌
ˇ̌
tD0

Ad.exp tX/

�
Y D

d

dt

ˇ̌
ˇ̌
tD0

�
Ad.exp tX/Y

�
:

As an element of g, Ad.exp tX/Y is a left-invariant vector field on G, and thus
is itself determined by its value at the identity. Using the fact that Ad.g/D .Cg/� D
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.Rg�1/� ı .Lg/�, its value at e 2G can be computed as
�
Ad.exp tX/Y

�
e
D d.Rexp.�tX// ı d.Lexp tX /.Ye/

D d.Rexp.�tX//.Yexp tX /:
(20.15)

Recall from Proposition 20.8(h) that the flow of X is given by �t .g/ D

Rexp tX .g/. Therefore, (20.15) can be rewritten as
�
Ad.exp tX/Y

�
e
D d.��t /.Y�t .e//:

Taking the derivative with respect to t and setting t D 0, we obtain

�
.Ad�X/Y

�
e
D

d

dt

ˇ̌
ˇ̌
tD0

d.��t /.Y�t .e//D .LXY /e D ŒX;Y �e:

Since .Ad�X/Y is determined by its value at e, this completes the proof. �

Ideals and Normal Subgroups

Now we are in a position to prove the main theorem of this section.

Theorem 20.28 (Ideals and Normal Subgroups). LetG be a connected Lie group,
and suppose H �G is a connected Lie subgroup. Then H is a normal subgroup of
G if and only if Lie.H/ is an ideal in Lie.G/.

Proof. Write gD Lie.G/ and hD Lie.H/, considering h as a Lie subalgebra of g.
For any g 2G, the commutative diagram (20.3) applied to the Lie group homomor-
phism Cg.h/D ghg

�1 yields

g
Ad.g/� g

G

exp
�

Cg
� G:

exp
�

(20.16)

Suppose that h is an ideal. Applying (20.16) to Y 2 h with gD expX , we obtain

exp
�
Ad.expX/Y

�
D CexpX .expY /D .expX/.expY /

�
exp.�X/

�
: (20.17)

On the other hand, applying (20.3) to the homomorphism Ad W G ! GL.g/ and
noting that Ad� D ad by Theorem 20.27, we obtain

Ad.expX/D exp.adX/: (20.18)

Formula (20.2) for the exponential map of the group GL.g/ reads

Ad.expX/Y D
�
exp.adX/

�
Y D

1X

kD0

1

kŠ
.adX/kY: (20.19)
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Whenever X 2 g and Y 2 h, we have .adX/Y D ŒX;Y � 2 h, and by induc-
tion .adX/kY 2 h for all k. Therefore, (20.19) implies that Ad.expX/Y 2 h, and
so (20.17) implies that .expX/.expY /

�
exp.�X/

�
2 exp h�H . By Lemma 20.23,

H is normal.
Conversely, suppose H is normal. Given X 2 g and Y 2 h, note that (20.16)

applied to sY with gD exp tX implies

exp
�
Ad.exp tX/sY

�
D .exp tX/.exp sY /.exp tX/�1 2H:

Since Ad.exp tX/ is linear over R, it follows that

exp
�
sAd.exp tX/Y

�
D exp

�
Ad.exp tX/sY

�
;

which we have just shown to be in H for all s, so Ad.exp tX/Y 2 h by Proposi-
tion 20.9. From the proof of Theorem 20.27, we have

d

dt

ˇ̌
ˇ̌
tD0

Ad.exp tX/Y D ŒX;Y �;

and therefore ŒX;Y � 2 h, so h is an ideal. �

Problems

20-1. Let G be a Lie group.
(a) Show that the images of one-parameter subgroups in G are precisely

the connected Lie subgroups of dimension less than or equal to 1.
(b) Show that the image of every one-parameter subgroup is isomorphic

as a Lie group to one of the following: R, S1, or the trivial group feg.

20-2. Compute the exponential maps of the abelian Lie groups Rn and Tn.

20-3. Let G be a Lie group, and suppose A;B � g are complementary linear
subspaces of Lie.G/. Show that the map A˚B!G given by .X;Y / 7!
expX expY is a diffeomorphism from some neighborhood of .0; 0/ in
A˚B to a neighborhood of e in G. (Used on p. 523.)

20-4. Show that the matrix exponential satisfies the identity

det eA D etrA:

[Hint: apply Proposition 20.8(g) to det W GL.n;R/!R�.]

20-5. Let a, b, c be real numbers, and let A, B , and C be the following elements
of gl.3;R/:

AD

�

a 0 0

0 b 0

0 0 c

�

I B D

�

0 a b

0 0 c

0 0 0

�

I C D

�

0 1 0

�1 0 0

0 0 0

�

:

Give explicit formulas (not infinite series) for the one-parameter subgroups
of GL.3;R/ generated by A, B , and C .
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20-6. This problem shows that the exponential map of a connected Lie group
need not be surjective.
(a) Suppose A 2 SL.n;R/ is of the form eB for some B 2 gl.n;R/. Show

that A has a square root in SL.n;R/, i.e., a matrix C 2 SL.n;R/ such
that C 2 DA.

(b) Let

AD

�
�1
2

0

0 �2

�
:

Show that exp W sl.2;R/! SL.2;R/ is not surjective, by showing that
A is not in its image. [Remark: in the next chapter, Problem 21-25 will
show that SL.2;R/ is connected.]

20-7. Let G be a connected Lie group and let g be its Lie algebra.
(a) For any X;Y 2 g, show that ŒX;Y �D 0 if and only if

exp tX exp sY D exp sY exp tX for all s; t 2R:

(b) Show that G is abelian if and only if g is abelian.
(c) Give a counterexample to (b) when G is not connected.

20-8. SupposeG is a Lie group. Prove that exp.XCY /D .expX/.expY / for all
X;Y 2 Lie.G/ if and only if the identity component of G is abelian. [Hint:
for the “if” direction, prove that t 7! .exp tX/.exp tY / is a 1-parameter
subgroup. For the “only if” direction, use Problem 20-7.]

20-9. Extend the result of Proposition 20.10 by showing that under the same
hypotheses there is a smooth function yZ W .�"; "/! g such that

.exp tX/.exp tY /D exp
�
t.X C Y /C 1

2
t2ŒX;Y �C t3 yZ.t/

�
: (20.20)

[Remark: there is an explicit formula, known as the Baker–Campbell–
Hausdorff formula, for all of the terms in the Taylor series of the map
' W .�"; "/! g that satisfies exp tX exp tY D exp'.t/. Formula (20.20)
gives the first two terms in this series. See [Var84] for the full formula.]

20-10. Suppose G is a Lie group and S is a Lie subgroup of G. Show that the
closure of S is also a Lie subgroup. Conclude that every Lie subgroup
of G is either a properly embedded submanifold of G, or a dense subset
of a properly embedded submanifold. [Remark: this shows that the sub-
group S �T3 of Exercise 7.20—a dense subgroup of a properly embedded
subgroup—is typical of nonembedded Lie subgroups.]

20-11. Let G and H be Lie groups.
(a) Show that every continuous homomorphism � W R! H is smooth.

[Hint: let V � Lie.H/ be a neighborhood of 0 such that the exponen-
tial map is a diffeomorphism from 2V D f2X W X 2 V g to exp.2V /.
Choose t0 small enough that �.t/ 2 exp.V / whenever jt j � t0, and
let X0 be the element of V such that �.t0/ D expX0. Show that
�.qt0/D exp.qX0/ whenever q is a dyadic rational, i.e., a number of
the form m=2n for m;n 2Z.]
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(b) Show that every continuous homomorphism F W G ! H is smooth.
[Hint: show that there is a map ' W Lie.G/! Lie.H/ such that the
following diagram commutes:

Lie.G/
'� Lie.H/

G

exp
�

�
F

H:

exp
�

Then use Corollary 20.11 to show that ' is linear.]
(c) Show that with the given topology on G, there is only one smooth

structure that makes G into a Lie group.
(Used on p. 556.)

20-12. Let G be a Lie group. Show that the infinitesimal generator of the action
of G on itself by right translation is the inclusion map Lie.G/ ,!X.G/.

20-13. Let g be a finite-dimensional Lie algebra and let M be a smooth manifold.
A Lie algebra action y� W g! X.M/ is said to be transitive if for every
p 2M; the vectors of the form yXp for yX 2 y�.g/ span TpM . Show that
a smooth right action of a Lie group G on a connected smooth manifold
M is transitive if and only if its infinitesimal generator is transitive. [Hint:
show that if the Lie algebra action is transitive, then every orbit is open.]

20-14. Let M be a smooth manifold, and suppose g is a finite-dimensional Lie
subalgebra of X.M/ consisting only of complete vector fields. Show that
there is a smooth right action of a Lie group G on M such that g is the
image of its infinitesimal generator. Determine such an action for the Lie
subalgebra of X

�
R3
�

described in Problem 8-20.

20-15. Prove Theorem 20.18 (the fundamental theorem on left Lie algebra ac-
tions). [Hint: use the one-to-one correspondence between left actions and
right actions given by g � pD p � g�1.]

20-16. Let G be a simply connected Lie group and let g be its Lie algebra. Show
that every representation of g is of the form �� W g! gl.V / for some rep-
resentation � W G!GL.V / of G.

20-17. Suppose G is a connected Lie group, H is any Lie group, and ˚;� W G!
H are Lie group homomorphisms such that ˚� D �� W Lie.G/! Lie.H/.
Prove that ˚ D � . (Used on p. 531.)

20-18. If C and D are categories, a covariant functor F W C! D is called an equiv-
alence of categories if every object of D is isomorphic to F .X/ for some
X 2 Ob.C/, and the map F W HomC.X;Y /! HomD.F .X/;F .Y // is bi-
jective for each pair of objects X;Y 2 Ob.C/. Show that the assignment
G 7! Lie.G/, ' 7! '� is an equivalence of categories between the cate-
gory SLie of simply connected Lie groups and the category lie of finite-
dimensional Lie algebras.
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20-19. Prove Theorem 20.22 (Lie’s fundamental theorems).

20-20. Let G be a connected Lie group and let g be its Lie algebra. Prove that the
kernel of Ad W G! GL.g/ is the center of G , that is, the set of elements
of G that commute with every element of G.

20-21. Show that the adjoint representation of GL.n;R/ is given by Ad.A/Y D
AYA�1 for A 2GL.n;R/ and Y 2 gl.n;R/. Show that it is not faithful.

20-22. If g is a Lie algebra, the center of g is the set of all X 2 g such that
ŒX;Y �D 0 for all Y 2 g. Suppose G is a connected Lie group. Show that
the center of Lie.G/ is the Lie algebra of the center of G.



Chapter 21
Quotient Manifolds

In Chapter 4, we showed that surjective smooth submersions play a role in smooth
manifold theory that is strongly parallel to the role of quotient maps in topology. But
one question we did not address there was which quotients of smooth manifolds are
themselves smooth manifolds.

In general, the class of all quotient spaces is far too broad to admit a good general
theory. But there is one class of quotients about which quite a lot can be said: those
resulting from smooth Lie group actions. This is one of the most useful applications
of Lie groups to smooth manifold theory.

There are many examples of smooth Lie group actions whose quotients are not
manifolds, so the class of all smooth Lie group actions is still too broad; we need
to impose some additional conditions on an action to ensure that we get a nice
quotient space. In this chapter, we explore a pair of conditions that, taken together,
ensure that a group action has a well-behaved quotient space. The first condition
is that the action be free (meaning that the group acts without fixed points); the
second condition is that it be proper (which means roughly that each compact subset
is moved away from itself by most elements of the group). The main theorem of
the chapter is the quotient manifold theorem, which asserts that a Lie group acting
smoothly, freely, and properly on a smooth manifold yields a quotient space with a
natural smooth manifold structure.

In the first section of the chapter, we explore what freeness and properness mean
for group actions, and study some examples to help understand why these are rea-
sonable conditions to require. Then in the second section, we prove the quotient
manifold theorem.

After the proof, we explore two significant special classes of Lie group actions.
First we study actions by discrete groups, which under suitable conditions yield
covering maps. Then we study homogeneous spaces, which are smooth manifolds
endowed with smooth transitive Lie group actions; we show that they are equiva-
lent to Lie groups modulo closed subgroups. Finally, at the end of the chapter we
describe a number of applications to the theory of Lie groups.

J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics 218,
DOI 10.1007/978-1-4419-9982-5_21, © Springer Science+Business Media New York 2013
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Quotients of Manifolds by Group Actions

Suppose we are given an action of a group G on a topological space M; which we
write either as � W G�M !M or as .g;p/ 7! g �p. (For definiteness, let us assume
that G acts on the left; similar considerations apply to right actions.) Recall that the
orbit of a point p 2M is the set of images of p under all elements of the group:

G � pD fg � p W g 2Gg:

Define a relation onM by setting p 	 q if there exists g 2G such that g �pD q.
This is an equivalence relation, whose equivalence classes are exactly the orbits of
G inM . The set of orbits is denoted byM=G; with the quotient topology it is called
the orbit space of the action. It is of great importance to determine conditions under
which an orbit space is a smooth manifold.

It is important to be aware that some authors use the notation GnM for an orbit
space determined by a left action of G on M; reserving M=G for one determined
by a right action. We use only the latter notation, relying on the context, not the
notation, to distinguish between the two cases.

Here is a simple but important property of orbit spaces.

Lemma 21.1. For any continuous action of a topological group G on a topological
space M; the quotient map � W M !M=G is an open map.

Proof. For any g 2G and any subset U �M; we define a set g �U �M by

g �U D fg � x W x 2 U g:

If U �M is open, then ��1
�
�.U /

�
is equal to the union of all sets of the form g �U

as g ranges over G. Since p 7! g � p is a homeomorphism, each such set is open,
and therefore ��1

�
�.U /

�
is open in M . Because � is a quotient map, this implies

that �.U / is open in M=G, and therefore � is an open map. �

It is easy to construct smooth actions by Lie groups on smooth manifolds whose
orbit spaces are themselves manifolds, and others whose orbit spaces are not. Here
are a few examples.

Example 21.2 (Orbit Spaces of Smooth Lie Group Actions).

(a) LetG be any group and letM be any smooth manifold. The trivial action (given
by g �pD p for all g 2G and p 2M ) has one-point sets as orbits andM=G D
M; so the orbit space is a smooth manifold for silly reasons.

(b) The simplest nontrivial example to keep in mind is the action of Rk on Rk �Rn

by translation in the Rk factor: v � .x; y/D .vC x;y/. The orbits are the affine
subspaces parallel to Rk , and the orbit space

�
Rk �Rn

�
=Rk is homeomorphic

to Rn. The quotient map � W Rk �Rn!Rn is a smooth submersion.
(c) The circle group S1 acts on the plane C by complex multiplication: z �wD zw.

The orbits are circles centered at the origin and the singleton f0g. The orbit space
is homeomorphic to Œ0;1/, as you can see by applying Theorem A.31 to the
continuous map f W C! Œ0;1/ given by f .z/D jzj, which is a quotient map
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that makes the same identifications as the projection � W C!C=S1. Thus, the
orbit space is not a manifold.

(d) An even more dramatic example of how an orbit space can fail to be a manifold
is given by the natural action of GL.n;R/ on Rn by matrix multiplication. In
this case, there are two orbits, f0g and Rn X f0g, and the only open subsets
in the quotient topology are the empty set, the whole set, and the singleton
fŒRn X f0g�g. This orbit space is not even Hausdorff, let alone a manifold.

(e) The restriction of the natural action of GL.n;R/ on Rn to O.n/ � Rn! Rn

defines a smooth left action of O.n/ on Rn. In this case, the orbits are the origin
and the spheres centered at the origin. To see why, note that any orthogonal
linear transformation preserves norms, so O.n/ takes the sphere of radius R to
itself; on the other hand, any nonzero vector of length R can be taken to any
other by an orthogonal matrix. (If v and v0 are such vectors, complete v=jvj and
v0=jv0j to orthonormal bases and let A and A0 be the orthogonal matrices whose
columns are these orthonormal bases; then it is easy to check that A0A�1 takes
v to v0.) As in (c), the orbit space is homeomorphic to Œ0;1/.

(f) If we delete the origin from each of the three preceding examples, we obtain
orbit spaces that are manifolds: the quotient of CXf0g by S1 is homeomorphic
to RC, as is the quotient of Rn X f0g by O.n/; and the quotient of Rn X f0g by
GL.n;R/ is a single point.

(g) Further restricting the natural action to O.n/ � Sn�1 ! Sn�1, we obtain an
action of O.n/ on Sn�1. It is smooth by Corollary 5.30, because Sn�1 is an
embedded submanifold of Rn. This action is transitive (recall that this means
the only orbit is Sn�1 itself), so the quotient space is a singleton. //

In (c), (d), and (e) above, the problematic point is the origin. In each case, the
origin is the only point that is fixed by every element of the group. Recall that in
Chapter 7, we defined a free action to be one for which every isotropy group is
trivial. In Example 21.2, the action of Rk on Rn in part (b) is free, as is the action
of S1 on C X f0g described in (f); the other examples are not. Of course, freeness is
not necessary for an action to have a smooth manifold quotient, as Example 21.2(a)
shows. Nor is it sufficient by itself, as the next example shows.

Example 21.3. Let ˛ be an irrational number, and let R act on T2 D S1 � S1 by

t � .w; z/D
�
e2�itw;e2�i˛tz

�
:

This is a smooth action, and the arguments of Example 4.20 and Problem 4-4 can be
adapted easily to show that it is free and has dense orbits. This means that the only
saturated open subsets of T2 are ¿ and T2, so the orbit space T2=R has the trivial
topology. In particular, it is not Hausdorff and therefore not a manifold. //

To avoid pathological cases such as these, we need to introduce one more re-
striction on our group actions. A continuous left action of a Lie group G on a
manifold M is said to be a proper action if the map G �M !M �M given
by .g;p/ 7! .g � p;p/ is a proper map. Note that this is generally a weaker condi-
tion than requiring that the map G �M !M defining the action be a proper map
(see Problem 21-1).
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Proposition 21.4. If a Lie group acts continuously and properly on a manifold, then
the orbit space is Hausdorff.

Proof. Suppose G is a Lie group acting continuously and properly on a manifold
M . Let  W G �M !M �M be the proper map .g;p/ D .g � p;p/, and let
� W M !M=G be the quotient map. Define the orbit relation O �M �M by

O D.G �M/D
˚
.g � p;p/ 2M �M W p 2M; g 2G

�
:

(It is called the orbit relation because .q;p/ 2 O if and only if p and q are in the
same G-orbit.) Since proper continuous maps are closed (Theorem A.57), it follows
that O is a closed subset of M �M . Because � is an open map by Lemma 21.1, the
result of Exercise A.36 shows that M=G is Hausdorff. �

It is not always easy to tell whether a given action is proper. The next proposition
gives two alternative characterizations of proper actions that are often useful.

Proposition 21.5 (Characterizations of Proper Actions). Let M be a manifold,
and let G be a Lie group acting continuously on M . The following are equivalent.

(a) The action is proper.
(b) If .pi / is a sequence in M and .gi / is a sequence in G such that both .pi / and

.gi � pi / converge, then a subsequence of .gi / converges.
(c) For every compact subset K �M; the set GK D fg 2G W .g �K/\K ¤¿g is

compact.

Proof. Throughout this proof, let W G�M !M �M denote the map.g;p/D
.g � p;p/; thus, the action is proper if and only if  is a proper map. We will prove
(a)) (b)) (c)) (a).

Assume first that  is proper, and let .pi /, .gi / be sequences satisfying the
hypotheses of (b). Let U and V be precompact neighborhoods of the points p D
limi pi and q D limi .gi � pi /, respectively. The assumption means that the points
.gi ; pi / all lie in the compact set xV � xU when i is large enough, so a subsequence
of
�
.gi ; pi /

�
converges in G �M . In particular, this means that a subsequence of

.gi / converges in G, and therefore (b) holds.
Assume next that (b) holds, and let K be a compact subset of M . To show that

GK is compact, suppose .gi / is any sequence of points in GK . This means that
for each i , there exists pi 2 .gi � K/ \K , which is to say that pi 2 K and g�1i �
pi 2K . After passing to a subsequence, we may assume that .pi / converges, and
then passing to a subsequence of that, we may assume also that

�
g�1i �pi

�
converges.

By (b), there is a subsequence .gik / such that
�
g�1ik

�
converges, which implies that

.gik / also converges. Since each subsequence of GK has a convergent subsequence,
GK is compact.

Finally, assume that (c) holds. Suppose L �M �M is compact, and let K D
�1.L/[�2.L/�M; where �1; �2 W M �M !M are the projections onto the first
and second factors, respectively. Then

�1.L/��1.K �K/D
˚
.g;p/ W g � p 2K and p 2K

�
�GK �K:
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Since �1.L/ is closed by continuity, it is a closed subset of the compact set
GK �K and is therefore compact. This shows that the action is proper. �

Corollary 21.6. Every continuous action by a compact Lie group on a manifold is
proper.

Proof. If .pi / and .gi / are sequences satisfying the hypotheses of Proposi-
tion 21.5(b), then a subsequence of .gi / converges, for the simple reason that every
sequence in G has a convergent subsequence. �

Proposition 21.7 (Orbits of Proper Actions). Suppose � is a proper smooth action
of a Lie group G on a smooth manifold M . For any point p 2M; the orbit map
� .p/ W G!M is a proper map, and thus the orbit G � pD � .p/.G/ is closed in M .
If in additionGp D feg, then � .p/ is a smooth embedding, and the orbit is a properly
embedded submanifold.

Proof. If K �M is compact, then
�
� .p/

�
�1.K/ is closed in G by continuity, and

since it is contained in GK[fpg, it is compact by Proposition 21.5. Therefore, � .p/

is a proper map, which implies that G � p D � .p/.G/ is closed by Theorem A.57.
The final statement of the theorem then follows from Propositions 7.26 and 4.22.�

The preceding results yield some simple necessary conditions for an action to be
proper.

Corollary 21.8. If a Lie group G acts properly on a manifold M; then each orbit is
a closed subset of M; and each isotropy group is compact.

Proof. The first statement follows immediately from Proposition 21.7, and the sec-
ond from Proposition 21.5, using the fact that the isotropy group of a point p 2M
is the set GK for K D fpg. �

Example 21.9. We can see in two ways that the action of RC on Rn given by

t �
�
x1; : : : ; xn

�
D
�
tx1; : : : ; txn

�
(21.1)

is not proper: the isotropy group of the origin is all of RC, which is not compact;
and the orbits of other points are open rays, which are not closed in Rn. //

The Quotient Manifold Theorem

In this section, we prove that smooth, free, and proper group actions always yield
smooth manifolds as orbit spaces. The basic idea of the proof is that if G acts
smoothly, freely, and properly on M; the set of orbits forms a foliation of M whose
leaves are embedded submanifolds diffeomorphic to G. Flat charts for the foliation
can then be used to construct coordinates on the orbit space.

Theorem 21.10 (Quotient Manifold Theorem). Suppose G is a Lie group acting
smoothly, freely, and properly on a smooth manifold M . Then the orbit space M=G
is a topological manifold of dimension equal to dimM � dimG, and has a unique
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smooth structure with the property that the quotient map � W M !M=G is a smooth
submersion.

Proof. Before we get started, let us establish some notation. Throughout the proof,
we assume without loss of generality that G acts on the left. Let g denote the Lie al-
gebra ofG, and write k D dimG,mD dimM; and nDm�k. Let � W G�M !M

denote the action and  W G �M !M �M the proper map .g;p/D .g � p;p/.
First, we take care of the easy part: the uniqueness of the smooth structure.

Suppose M=G has two different smooth structures such that � W M !M=G is a
smooth submersion. Let .M=G/1 and .M=G/2 denote M=G with the first and sec-
ond smooth structures, respectively. By Theorem 4.29, the identity map is smooth
from .M=G/1 to .M=G/2:

M

.M=G/1

�
�

Id
� .M=G/2:

�
�

The same argument shows that it is also smooth in the opposite direction, so the two
smooth structures are identical; this proves uniqueness.

Now we have to show thatM=G is a topological manifold and construct a smooth
structure for it. The main tools are certain special coordinate charts forM . Let us say
that a smooth chart .U;'/ for M is adapted to the G -action if it is a cubical chart
with coordinate functions .x; y/D

�
x1; : : : ; xk ; y1; : : : ; yn

�
, such that each G-orbit

intersects U either in the empty set or in a single slice of the form
�
y1; : : : ; yn

�
D�

c1; : : : ; cn
�
. The heart of the proof is the following claim: For each p 2M; there

exists an adapted chart centered at p.
To prove the claim, note first that the G-orbits are properly embedded submani-

folds of M diffeomorphic to G by Proposition 21.7. In fact, we will show that the
orbits are integral manifolds of a smooth distribution on M .

Define a subset D � TM by

D D
[

p2M

Dp; where Dp D Tp.G � p/:

Because every point is contained in exactly one orbit, and the orbits are subman-
ifolds of dimension k, each Dp has dimension k. To see that D is a smooth dis-
tribution, for each X 2 g let yX be the vector field on M defined by (20.11) (the
infinitesimal generator of the flow .t;p/ 7! .exp tX/ � p). If .X1; : : : ;Xk/ is a basis
for g, then

�
yX1; : : : ; yXk

�
is a global frame forD, soD is smooth. Each point is con-

tained in a G-orbit, which is an integral manifold of D, so D is involutive. Because
the G-orbits are closed, Problem 19-7 implies that each connected component of an
orbit is a leaf of the foliation determined by D.

Let p 2M be arbitrary, and let .U;'/ be a smooth chart forM centered at p that
is flat forD with coordinate functions .x; y/D

�
x1; : : : ; xk ; y1; : : : ; yn

�
, so eachG-

orbit intersects U either in the empty set or in a countable union of y D constant
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slices. To complete the proof of the claim, we need to show that we can find a cubical
subset U0 � U centered at p that intersects each G-orbit in at most a single slice.

Assume there is no such subset U0. For each positive integer i , let Ui be the
cubical subset of U consisting of points whose coordinates are all less than 1=i in
absolute value. Let Y be the n-dimensional submanifold of M consisting of points
in U whose coordinate representations are of the form .0; y/, and for each i let Yi D
Ui \ Y . Since each k-slice of Ui intersects Yi in exactly one point, our assumption
implies that for each i there exist distinct points pi ; p0i 2 Yi that are in the same
orbit, which is to say that gi � pi D p0i for some gi 2 G. By our choice of fYig,
both sequences .pi / and .p0i D gi � pi / converge to p. Because G acts properly,
Proposition 21.5(b) shows that we may pass to a subsequence and assume that gi !
g 2G. By continuity, therefore,

g � pD lim
i!1

gi � pi D lim
i!1

p0i D p:

Since G acts freely, this implies gD e.
Let �Y W G�Y !M be the restriction of theG-action toG�Y . Note thatG�Y

and M both have dimension kC nDm. The restriction of �Y to feg � Y is just the
inclusion map Y ,!M; and its restriction to G � fpg is the orbit map � .p/ (if we
make the obvious identifications feg � Y � Y and G � fpg � G). Since both of
these are embeddings, and TpM D Tp.G � p/˚ TpY , it follows that d

�
�Y
�
.e;p/ is

an isomorphism. Thus, there is a neighborhoodW of .e;p/ inG�Y such that �Y jW
is a diffeomorphism onto its image and hence injective. However, this contradicts
the fact that �Y .gi ; pi /D p0i D �

Y .e;p0i / as soon as i is large enough that .gi ; pi /
and .e;p0i / are in W , because we are assuming pi ¤ p0i . This completes the proof
of the claim that for each p 2M there exists an adapted chart centered at p.

Now we prove that M=G, with the quotient topology, is a topological n-
manifold. It is Hausdorff by Proposition 21.4. If fBig is a countable basis for the
topology ofM; then f�.Bi /g is a countable collection of open subsets ofM=G (be-
cause � is an open map), and it is easy to check that it is a basis for the topology of
M=G. Thus, M=G is second-countable.

To show that M=G is locally Euclidean, let q D �.p/ be an arbitrary point of
M=G, and let .U;'/ be an adapted chart for M centered at p, with '.U / equal
to an open cube in Rk � Rn, which we write as '.U /D U 0 � U 00, where U 0 and
U 00 are open cubes in Rk and Rn, respectively. Let V D �.U / (Fig. 21.1), which is
an open subset of M=G because � is an open map. With the coordinate functions
of ' denoted by

�
x1; : : : ; xk ; y1; : : : ; yn

�
as before, let Y � U be the submani-

fold
˚
x1 D � � � D xk D 0

�
. Note that � W Y ! V is bijective by the definition of an

adapted chart. Moreover, if W is an open subset of Y , then

�.W /D �
�˚
.x; y/ W .0; y/ 2W

��
;

which is open in M=G, and thus �jY W Y ! V is a homeomorphism. Let � W V !
Y � U be the map � D .�jY /�1; it is a local section of � .

Define a map � W V !U 00 by sending the equivalence class of a point .x; y/ to y;
this is well defined by the definition of an adapted chart. Formally, �D � 00 ı ' ı � ,
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Fig. 21.1 A coordinate chart for M=G

where � 00 W U 0�U 00!U 00 �Rn is the projection onto the second factor. Because �
is a homeomorphism from V to Y and � 00 ı ' is a homeomorphism from Y to U 00,
it follows that � is a homeomorphism. This shows that M=G is locally Euclidean,
and thus completes the proof that it is a topological n-manifold.

Finally, we need to show that M=G has a smooth structure such that � is a
smooth submersion. We use the atlas consisting of all charts .V; �/ as constructed
in the preceding paragraph. With respect to any such chart for M=G and the cor-
responding adapted chart for M; � has the coordinate representation �.x;y/D y,
which is certainly a smooth submersion. Thus we need only show that any two such
charts for M=G are smoothly compatible.

Let .U;'/ and
�
zU ; z'

�
be two adapted charts for M; and let .V; �/ and

�
zV ; z�

�
be

the corresponding charts for M=G. First consider the case in which the two adapted
charts are both centered at the same point p 2M . Write the adapted coordinates as
.x; y/ and

�
zx; zy

�
. The fact that the coordinates are adapted to the G-action means

that two points with the same y-coordinate are in the same orbit, and therefore
also have the same zy-coordinate. This means that the transition map between these
coordinates can be written

�
zx; zy

�
D
�
A.x;y/;B.y/

�
, where A and B are smooth

maps defined on some neighborhood of the origin. The transition map z� ı ��1 is
just zy DB.y/, which is clearly smooth.

In the general case, suppose .U;'/ and
�
zU ; z'

�
are adapted charts for M; and

p 2 U , zp 2 zU are points such that �.p/ D � . zp/. After modifying both charts
by adding constant vectors, we can assume that they are centered at p and zp,
respectively. Since p and zp are in the same orbit, there is an element g 2 G
such that g � p D zp. Because �g W M ! M is a diffeomorphism taking orbits
to orbits, it follows that z'0 D z' ı �g is another adapted chart centered at p.
Moreover, z� 0 D ��1g ı z� is the local section corresponding to z'0, and therefore
z�0 D � 00 ı z'0 ı z� 0 D � 00 ı z' ı �g ı �

�1
g ı z� D �

00 ı z' ı z� D z�. Thus we are back in
the situation of the preceding paragraph, and the two charts are smoothly compati-
ble. �
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Covering Manifolds

Proposition 4.40 showed that any covering space of a smooth manifold is itself a
smooth manifold. It is often important to know when a space covered by a smooth
manifold is itself a smooth manifold. To understand the answer to this question,
we need to study the action on a covering space by the automorphism group of
the covering. We saw in Chapter 7 (Proposition 7.23) that for any smooth covering
� W E !M; the automorphism group is a discrete Lie group acting smoothly and
freely on the covering space E . Below, we will show that the action is also proper.
Before proceeding, it is useful to have an alternative characterization of properness
for free actions of discrete Lie groups.

Lemma 21.11. Suppose a discrete Lie group � acts continuously and freely on a
manifold E . The action is proper if and only if the following conditions both hold:

(i) Every point p 2E has a neighborhood U such that for each g 2 � , .g � U /\
U D¿ unless gD e.

(ii) If p;p0 2E are not in the same � -orbit, there exist neighborhoods V of p and
V 0 of p0 such that .g � V /\ V 0 D¿ for all g 2 � .

Proof. First, suppose that the action is free and proper, and let � W E!E=� denote
the quotient map. By Proposition 21.4, E=� is Hausdorff. If p;p0 2 E are not in
the same orbit, we can choose disjoint neighborhoods W of �.p/ and W 0 of �.p0/,
and then V D ��1.W / and V 0 D ��1.W 0/ satisfy the conclusion of condition (ii).

To prove (i), let p 2E , and let V be a precompact neighborhood of p. By Propo-
sition 21.5, the set � xV is a compact subset of � , and hence finite because � is dis-
crete. Write � xV D fe; g1; : : : ; gmg. Shrinking V if necessary, we may assume that
g�1i � p … xV (which implies p … gi � xV ) for i D 1; : : : ;m. Then the open subset

U D V X
�
g1 � xV [ � � � [ gm � xV

�

satisfies the conclusion of (i).
Conversely, assume that (i) and (ii) hold. Suppose .gi / is a sequence in � and

.pi / is a sequence in E such that pi ! p and gi � pi ! p0. If p and p0 are in
different orbits, there exist neighborhoods V of p and V 0 of p0 as in (ii); but for
large enough i , we have pi 2 V and gi � pi 2 V 0, which contradicts the fact that
.gi � V / \ V 0 D ¿. Thus, p and p0 are in the same orbit, so there exists g 2 �
such that g � pD p0. This implies g�1gi � pi ! p. Choose a neighborhood U of p
as in (i), and let i be large enough that pi and g�1gi � pi are both in U . Because�
g�1gi �U

�
\U ¤¿, it follows that g�1gi D e. So gi D g when i is large enough,

which certainly converges. By Proposition 21.5(b), the action is proper. �
In the literature, a continuous discrete group action satisfying condition (i) of this

lemma (or conditions (i) and (ii), or something closely related to them) has tradi-
tionally been called properly discontinuous. We avoid this terminology, because its
meaning is not universally agreed upon, and because it leads to such oxymoronic ex-
pressions as “continuous properly discontinuous actions.” Instead, following Allan
Hatcher [Hat02], we call a continuous action satisfying (i) a covering space action,
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and simply refer to actions satisfying (i) and (ii) as “free and proper actions.” It
can be shown that any covering space action on a topological space yields a cov-
ering map, though the quotient space need not be Hausdorff (see, e.g., [LeeTM,
Chap. 12]).

Proposition 21.12. Let M be a smooth manifold, and let � W E!M be a smooth
covering map. With the discrete topology, the automorphism group Aut�.E/ acts
smoothly, freely, and properly on E .

Proof. We already showed in Proposition 7.23 that the action is smooth and free.
To show it is proper, we will show that it satisfies conditions (i) and (ii) of
Lemma 21.11. First, if p 2 E is arbitrary, choose W �M to be an evenly cov-
ered neighborhood of �.p/. If U is the component of ��1.W / containing p, then
it is easy to check that U satisfies (i). Second, if p;p0 2 E are in different orbits,
then just as in the proof Lemma 21.11, we can choose disjoint neighborhoods W
of �.p/ and W 0 of �.p0/, and it follows that V D ��1.W / and V 0 D ��1.W 0/
satisfy (ii). �

The quotient manifold theorem yields an important partial converse to the pre-
ceding proposition.

Theorem 21.13. Suppose E is a connected smooth manifold and � is a discrete
Lie group acting smoothly, freely, and properly on E . Then the orbit space E=� is
a topological manifold and has a unique smooth structure such that � W E!E=�

is a smooth normal covering map.

Proof. It follows from the quotient manifold theorem thatE=� has a unique smooth
manifold structure such that � is a smooth submersion. Because a smooth cover-
ing map is in particular a smooth submersion, any other smooth manifold structure
on E making � into a smooth covering map must be equal to this one. Because
dimE=� D dimE � dim� D dimE , � is a local diffeomorphism. Thus, to prove
the theorem, it suffices to show that � is a normal covering map.

Let p 2E . By Lemma 21.11, p has a neighborhood U in E satisfying

.g �U /\U D¿ for all g 2 � except gD e: (21.2)

Shrinking U if necessary, we may assume it is connected. Let V D �.U /, which
is open in E=� by Lemma 21.1. Because ��1.V / is the union of the disjoint con-
nected open subsets g �U for g 2 � , to show that � is a covering map we need only
show that � is a homeomorphism from each such set onto V . For each g 2 � , the
following diagram commutes:

U
g� g �U

V:
���

�

Since g W U ! g � U is a homeomorphism (in fact, a diffeomorphism), it suffices
to show that � W U ! V is a homeomorphism. We already know that it is surjec-
tive, continuous, and open. To see that it is injective, suppose �.q/ D �.q0/ for
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q; q0 2 U , which means that q0 D g � q for some g 2 � . By (21.2), this can happen
only if g D e, which is to say that q D q0. This completes the proof that � is a
smooth covering map. Because elements of � act as automorphisms of � , and �
acts transitively on fibers by definition, the covering is normal. �
Example 21.14 (Proper Discrete Group Actions).

(a) The discrete Lie group Zn acts smoothly and freely on Rn by translations (Ex-
ample 7.22(e)). If .xi / and .mi / are sequences in Rn and Zn, respectively, such
that xi ! x and mi C xi ! y, then mi ! y � x, so the action is proper by
Proposition 21.5(b). The orbit space Rn=Zn is homeomorphic to the n-torus
Tn, and Theorem 21.13 says that there is a unique smooth structure on Tn

making the quotient map into a smooth covering map. To verify that this smooth
structure on Tn is the same as the one we defined previously (thinking of Tn

as the product manifold S1 � � � � � S1), we just check that the covering map
Rn! Tn given by

�
x1; : : : ; xn

�
7!
�
e2�ix

1
; : : : ; e2�ix

n�
is a local diffeomor-

phism with respect to the product smooth structure on Tn, and makes the same
identifications as the quotient map Rn! Rn=Zn; thus Theorem 4.31 implies
that Rn=Zn is diffeomorphic to Tn.

(b) The two-element group f˙1g acts on Sn by multiplication. This action is
smooth and free, and it is proper because the group is compact. This defines
a smooth structure on Sn=f˙1g. In fact, this orbit space is diffeomorphic to
RPn with the smooth structure we defined in Chapter 1, which can be seen
as follows. Let q W Sn! RPn be the smooth covering map defined in Exam-
ple 2.13(f) (see also Problem 4-10). This map makes the same identifications as
the quotient map � W Sn! Sn=f˙1g. By Theorem 4.31, therefore, Sn=f˙1g is
diffeomorphic to RPn. //

Homogeneous Spaces

Some of the most interesting group action are transitive ones. A smooth manifold
endowed with a transitive smooth action by a Lie group G is called a homogeneous
G -space (or a homogeneous space or homogeneous manifold if it is not important
to specify the group).

In most examples of homogeneous spaces, the group action preserves some extra
structure on the manifold (such as a Riemannian metric, a distribution, a vector field,
a differential form, or a foliation), and the fact that the action is transitive means that
this structure “looks the same” everywhere on the manifold. Often, homogeneous
spaces are models for various kinds of geometries, and as such they play a central
role in many areas of differential geometry.

Here are some important examples of homogeneous spaces.

Example 21.15 (Homogeneous Spaces).

(a) The natural action of O.n/ on Sn�1 is transitive, as we observed in Exam-
ple 21.2(g). Thus, Sn�1 is a homogeneous space of O.n/.
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(b) The natural action of O.n/ restricts to a smooth action of SO.n/ on Sn�1. When
nD 1, this action is trivial because SO.1/ is the trivial group. But if n > 1, then
SO.n/ acts transitively on Sn�1. To see this, it suffices to show that for any
v 2 Sn�1, there is a matrix A 2 SO.n/ taking the first standard basis vector e1
to v. Since O.n/ acts transitively, there is a matrix A 2 O.n/ taking e1 to v.
Either detAD 1, in which case A 2 SO.n/, or detAD �1, in which case the
matrix obtained by multiplying the second column of A by �1 is in SO.n/ and
takes e1 to v. Thus for n� 2, Sn�1 is also a homogeneous space of SO.n/.

(c) The Euclidean group E.n/ defined in Example 7.32 acts on Rn by rigid motions.
Because any point in Rn can be taken to any other by a translation, E.n/ acts
transitively on Rn, so Rn is a homogeneous E.n/-space.

(d) The group SL.2;R/ acts smoothly and transitively on the upper half-plane U D
fz 2C W Im z > 0g by the formula

�
a b

c d

�

� z D
azC b

czC d
:

The resulting complex-analytic diffeomorphisms from U to itself are called
Möbius transformations.

(e) For n � 1, the natural action of GL.n;C/ on Cn restricts to natural smooth
actions of both U.n/ and SU.n/ on S2n�1, identified with the set of unit vectors
in Cn. The next exercise shows when these actions are transitive. //

I Exercise 21.16. Show that the natural action of U.n/ on S2n�1 is transitive for
all n� 1, and that of SU.n/ is transitive for all n� 2.

Next we describe a construction that can be used to generate a great number of
homogeneous spaces, as quotients of Lie groups by closed subgroups. Let G be a
Lie group and H �G be a Lie subgroup. A subset of G of the form

gH D fgh W h 2H g

for some g 2 G is called a left coset of H . The left cosets form a partition of G,
and the quotient space determined by this partition (i.e., the set of left cosets with
the quotient topology) is called the left coset space of G moduloH , and is denoted
by G=H . Two elements g1; g2 2 G are in the same left coset of H if and only
if g�11 g2 2 H ; in this case we write g1 � g2 .mod H/ and say g1 and g2 are
congruent modulo H .

Theorem 21.17 (Homogeneous Space Construction Theorem). Let G be a Lie
group and let H be a closed subgroup of G. The left coset space G=H is a topo-
logical manifold of dimension equal to dimG � dimH , and has a unique smooth
structure such that the quotient map � W G!G=H is a smooth submersion. The left
action of G on G=H given by

g1 � .g2H/D .g1g2/H (21.3)

turns G=H into a homogeneous G-space.
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Proof. If we let H act on G by right translation, then g1; g2 2 G are in the same
H -orbit if and only if g1hD g2 for some h 2H , which is the same as saying that
g1 and g2 are in the same coset of H . In other words, the orbit space determined by
the right action of H on G is precisely the left coset space G=H .

The subgroup H is a properly embedded Lie subgroup of G by the closed sub-
group theorem, and theH -action on G is smooth because it is simply the restriction
of the multiplication map of G. It is a free action because ghD g implies hD e.
To see that it is proper, we use Proposition 21.5(b). Suppose .gi / is a convergent
sequence in G and .hi / is a sequence in H such that .gihi / converges in G. By
continuity, hi D g�1i .gihi / converges to a point in G, and since H is closed in G
and has the subspace topology, it follows that .hi / converges in H .

The quotient manifold theorem now implies thatG=H has a unique smooth man-
ifold structure such that the quotient map � W G! G=H is a smooth submersion.
Since a product of smooth submersions is a smooth submersion, it follows that
IdG �� W G � G ! G � G=H is also a smooth submersion. Consider the follow-
ing diagram:

G �G
m� G

G �G=H

IdG ��
�

�
� G=H;

�
�

where m is group multiplication and � is the action of G on G=H given by (21.3).
It is straightforward to check that � ı m is constant on the fibers of IdG �� , and
therefore � is well defined and smooth by Theorem 4.30. It is immediate from the
definition that � satisfies the conditions for a group action. Finally, given any two
points g1H;g2H 2G=H , the element g2g�11 2G satisfies

�
g2g

�1
1

�
�g1H D g2H ,

so the action is transitive. �
The homogeneous spaces constructed in this theorem turn out to be of central

importance because, as the next theorem shows, every homogeneous space is equiv-
alent to one of this type.

Theorem 21.18 (Homogeneous Space Characterization Theorem). Let G be a
Lie group, let M be a homogeneous G-space, and let p be any point of M . The
isotropy group Gp is a closed subgroup of G, and the map F W G=Gp!M defined
by F.gGp/D g � p is an equivariant diffeomorphism.

Proof. For simplicity, let us write H D Gp . Note that H is closed by continuity,
because H D

�
� .p/

�
�1.p/, where � .p/ W G!M is the orbit map.

To see that F is well defined, assume that g1H D g2H , which means that g2 D
g1h for some h 2H . Then

F.g2H/D g2 � pD g1h � pD g1 � pD F.g1H/:

Also, F is equivariant, because

F.g0gH/D .g0g/ � pD g0 � F.gH/:
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It is smooth because it is obtained from the orbit map � .p/ W G!M by passing to
the quotient (see Theorem 4.30).

Next, we show that F is bijective. Given any point q 2M; by transitivity there is
a group element g 2G such that g �pD q, and thus F.gH/D q. On the other hand,
if F.g1H/D F.g2H/, then g1 �pD g2 �p implies g�11 g2 �pD p, so g�11 g2 2H ,
which implies g1H D g2H . Thus, F is an equivariant smooth bijection, so it is a
diffeomorphism by the equivariant rank theorem. �

This theorem shows that the study of homogeneous spaces can be reduced to the
largely algebraic problem of understanding quotients of Lie groups by closed sub-
groups. If we are given a smooth manifold M together with a transitive action by a
Lie group G, we can always use the preceding theorem to identify M equivariantly
with a coset space of the form G=H , and thus use all of the machinery that is avail-
able for analyzing quotient spaces, such as Theorems 4.29–4.31 about surjective
smooth submersions.

Because of this identification, some authors define a homogeneous space to be
a quotient manifold of the form G=H , where G is a Lie group and H is a closed
subgroup ofG. One advantage of that definition is that it makes explicit the intimate
relationship between the homogeneous space and the Lie group that acts transitively
on it. However, a disadvantage is that it suggests there is something special about the
identity coset of H (the image of e 2G under the quotient map), while the essence
of homogeneous spaces is that every point “looks the same” as every other.

Applying the characterization theorem to the examples of transitive group actions
we discussed earlier, we see that some familiar spaces are diffeomorphic to quotients
of Lie groups by closed subgroups.

Example 21.19 (Homogeneous Spaces Revisited).

(a) Consider again the natural action of O.n/ on Sn�1. If we choose our base point
in Sn�1 to be the north pole N D .0; : : : ; 0; 1/, then it is easy to check that
the isotropy group is O.n� 1/, thought of as orthogonal transformations of Rn

that fix the last variable. Thus Sn�1 is diffeomorphic to the quotient manifold
O.n/=O.n� 1/.

(b) For the action of SO.n/ on Sn�1, the isotropy group is SO.n � 1/, so Sn�1 is
also diffeomorphic to SO.n/=SO.n� 1/ when n� 2.

(c) Because the Euclidean group E.n/ acts smoothly and transitively on Rn, and the
isotropy group of the origin is the subgroup O.n/� E.n/, Rn is diffeomorphic
to E.n/=O.n/.

(d) Next, consider the transitive action of SL.2;R/ on the upper half-plane by
Möbius transformations. Direct computation shows that the isotropy group of
the point i 2U consists of matrices of the form

� a b
�b a

�
with a2 C b2 D 1. This

subgroup is exactly SO.2/ � SL.2;R/, so the characterization theorem gives
rise to a diffeomorphism U � SL.2;R/=SO.2/.

(e) By virtue of the result of Exercise 21.16, we obtain diffeomorphisms S2n�1 �
U.n/=U.n� 1/ for all n� 1 and S2n�1 � SU.n/=SU.n� 1/ for all n� 2. //
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Because homogeneous spaces have such rich structures, it is natural to wonder
whether every smooth manifold can be realized as a quotient of a Lie group mod-
ulo a closed subgroup, or equivalently, whether every smooth manifold admits a
transitive Lie group action. The answer is emphatically no, because there are strong
topological restrictions. In the first place, a simple necessary condition for a discon-
nected manifold is that all of its connected components be diffeomorphic to each
other (see Problem 21-11). Much more significantly, a remarkable 2005 theorem
by G.D. Mostow [Mos05] shows that a compact homogeneous space must have
nonnegative Euler characteristic (see Problem 18-9 for the definition of the Euler
characteristic).

Sets with Transitive Group Actions

A highly useful application of the homogeneous space characterization theorem is
to put smooth manifold structures on sets that admit transitive Lie group actions.

Theorem 21.20. Suppose X is a set, and we are given a transitive action of a Lie
group G on X such that for some point p 2 X , the isotropy group Gp is closed
in G. Then X has a unique smooth manifold structure with respect to which the
given action is smooth. With this structure, dimX D dimG � dimGp .

Proof. Theorem 21.17 shows that G=Gp is a smooth manifold of dimension equal
to dimG � dimGp . The map F W G=Gp ! X defined by F.gGp/ D g � p is an
equivariant bijection by exactly the same argument as we used in the proof of the
characterization theorem, Theorem 21.18. (That part of the proof did not use the
assumption that M was a manifold or that the action was smooth.) If we define
a topology and smooth structure on X by declaring F to be a diffeomorphism,
then the given action of G on X is smooth because it can be written .g; x/ 7!
F
�
g � F �1.x/

�
.

If zX denotes the set X with any smooth manifold structure such that the given
action is smooth, then the homogeneous space characterization theorem shows that
the map F is also an equivariant diffeomorphism from G=Gp to zX , so the topology
and smooth structure of zX are equal to those constructed above. �
Example 21.21 (Grassmannians). Let Gk .Rn/ denote the Grassmannian of k-
dimensional subspaces of Rn as in Example 1.36. The general linear group
GL.n;R/ acts transitively on Gk .Rn/: given two subspaces A and A0, choose bases
for both subspaces and extend them to bases for Rn, and then the linear transforma-
tion taking the first basis to the second also takes A to A0. The isotropy group of the
subspace Rk �Rn is

H D

��
A B

0 D

�
WA 2GL.k;R/; D 2GL.n� k;R/;B 2M.k � .n� k/;R/

�
;

which is easily seen to be closed in GL.n;R/ (why?). Therefore, Gk .Rn/ has
a unique smooth manifold structure making the natural GL.n;R/ action smooth.
Problem 21-12 shows that this is the same structure we defined in Example 1.36. //
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Example 21.22 (Flag Manifolds). Let V be a real vector space of dimension n > 1,
and let K D .k1; : : : ; km/ be a finite sequence of integers satisfying 0 < k1 < � � �<
km < n. A flag in V of type K is a nested sequence of linear subspaces S1 � S2 �
� � � � Sm � V , with dimSi D ki for each i . The set of all flags of type K in V
is denoted by FK.V /. (For example, if K D .k/, then FK.V / is the Grassmannian
Gk.V /.) It is not hard to show that GL.V / acts transitively on FK.V / with a closed
subgroup as isotropy group (see Problem 21-16), so FK.V / has a unique smooth
manifold structure making it into a homogeneous GL.V /-space. With this structure,
FK.V / is called a flag manifold. //

Applications to Lie Theory

The quotient manifold theorem has a wealth of applications to the theory of Lie
groups. In this section we describe a few of them.

Quotient Groups

There are two reasons why normal subgroups are important in abstract group theory:
on the one hand, they are the only subgroups whose quotients have group structures;
and on the other hand, they are the only subgroups that can occur as kernels of group
homomorphisms. These facts are summarized in the following two fundamental
results from group theory.

Theorem 21.23 (Quotient Theorem for Abstract Groups). Suppose G is any
group and K � G is a normal subgroup. Then the set G=K of left cosets is a
group with multiplication given by .g1K/.g2K/ D .g1g2/K , and the projection
� W G!G=K sending each element of G to its coset is a surjective homomorphism
whose kernel is K .

Theorem 21.24 (First Isomorphism Theorem for Abstract Groups). If G and
H are groups and F W G!H is a group homomorphism, then the kernel of F is
a normal subgroup of G, the image of F is a subgroup of H , and F descends to
a group isomorphism zF W G=KerF ! ImF . If F is surjective, then G=KerF is
isomorphic to H .

I Exercise 21.25. Prove these two theorems (or look them up in any abstract algebra
text such as [Hun97] or [Her75]).

For Lie groups, we have the following smooth analogues of these results.

Theorem 21.26 (Quotient Theorem for Lie Groups). Suppose G is a Lie group
andK �G is a closed normal subgroup. ThenG=K is a Lie group, and the quotient
map � W G!G=K is a surjective Lie group homomorphism whose kernel is K .

Proof. By the homogeneous space construction theorem, G=K is a smooth mani-
fold and � is a smooth submersion; and by Theorem 21.23, G=K is a group and
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� W G! G=K is a surjective homomorphism with kernel K . Thus, the only thing
that needs to be verified is that multiplication and inversion in G=K are smooth,
both of which follow easily from Theorem 4.30. �

Theorem 21.27 (First Isomorphism Theorem for Lie Groups). If F W G!H is
a Lie group homomorphism, then the kernel of F is a closed normal Lie subgroup
of G, the image of F has a unique smooth manifold structure making it into a Lie
subgroup ofH , and F descends to a Lie group isomorphism zF W G=KerF ! ImF .
If F is surjective, then G=KerF is smoothly isomorphic to H .

Proof. By Theorem 21.24, KerF is a normal subgroup, ImF is a subgroup, and
F descends to a group isomorphism zF W G=KerF ! ImF . By continuity, KerF is
closed in G, so it follows from Theorem 21.26 that G=KerF is a Lie group and the
projection � W G!G=KerF is a surjective Lie group homomorphism. Because �
is surjective and has constant rank, it is a smooth submersion by the global rank theo-
rem, so the characteristic property of surjective smooth submersions (Theorem 4.29)
guarantees that zF is smooth. Since ImF is the image of the injective Lie group ho-
momorphism zF , Proposition 7.17 shows that it has a smooth manifold structure
with respect to which it is a Lie subgroup of H and zF W G=KerF ! ImF is a
Lie group isomorphism. The uniqueness of the smooth structure on ImF follows
from Problem 20-11. The last statement follows immediately just by substituting
H D ImF . �

These results are particularly significant when we apply them to a discrete sub-
group, that is, a subgroup that is a discrete space in the subspace topology.

Proposition 21.28. Every discrete subgroup of a Lie group is a closed Lie subgroup
of dimension zero.

Proof. Let G be a Lie group and � �G be a discrete subgroup. With the subspace
topology, � is a countable discrete space and thus a zero-dimensional Lie group.
By the closed subgroup theorem, � is a closed Lie subgroup of G if and only if it
is a closed subset. A discrete subset is closed if and only if it has no limit points
in G, so assume for the sake of contradiction that g is a limit point of � in G. By
discreteness, there is a neighborhood U of e in G such that U \ � D feg, and then
Problem 7-6 shows that there is a smaller neighborhood V of e such that g1g�12 2U
whenever g1; g2 2 V . Then VgD fhg W h 2 V g is a neighborhood of g, and because
G is Hausdorff, Vg contains infinitely many points of � . Let �1; �2 be two distinct
points in � \ Vg. Then �1g�1; �2g�1 2 V , which implies

�1�
�1
2 D

�
�1g
�1
��
�2g
�1
��1
2U:

Since U \� D feg, this implies �1��12 D e, so �1 D �2, contradicting our assump-
tion that �1 and �2 are distinct. �

Theorem 21.29 (Quotients of Lie Groups by Discrete Subgroups). If G is a con-
nected Lie group and � �G is a discrete subgroup, thenG=� is a smooth manifold
and the quotient map � W G!G=� is a smooth normal covering map.
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Proof. The proof of Theorem 21.17 showed that � acts smoothly, freely, and prop-
erly onG on the right, and its quotient—which is the coset spaceG=�—is a smooth
manifold. The theorem is then an immediate consequence of Theorem 21.13. �

Example 21.30. LetC be a cube centered at the origin in R3. The set of orientation-
preserving orthogonal transformations of R3 that take C to itself is a finite subgroup
� � SO.3/, and SO.3/=� is a connected smooth 3-manifold with finite fundamen-
tal group and with S3 as its universal covering space (see Problem 21-21). Similar
examples are obtained from the symmetry groups of other regular polyhedra, such
as a regular tetrahedron, octahedron, dodecahedron, or icosahedron. //

Combining the results of Theorems 21.27 and 21.29, we obtain the following
important characterization of homomorphisms with discrete kernels.

Theorem 21.31 (Homomorphisms with Discrete Kernels). Let G and H be con-
nected Lie groups. For any Lie group homomorphism F W G!H , the following are
equivalent:

(a) F is surjective and has discrete kernel.
(b) F is a smooth covering map.
(c) F is a local diffeomorphism.
(d) The induced homomorphism F� W Lie.G/! Lie.H/ is an isomorphism.

Proof. We will show that (a) ) (b) ) (c) ) (a) and (c) , (d). First, assume
that F is surjective with discrete kernel � � G. Then Theorem 21.29 implies that
the quotient map � W G ! G=� is a smooth covering map, and Theorem 21.27
shows that F descends to a Lie group isomorphism zF W G=� ! H . This means
that F D zF ı � , which is a composition of a smooth covering map followed by
a diffeomorphism and therefore is itself a smooth covering map. This proves that
(a)) (b). The next implication, (b)) (c), follows from Proposition 4.33.

Under the assumption that F is a local diffeomorphism, each level set is an em-
bedded 0-dimensional submanifold by the submersion level set theorem, so KerF
is discrete. Since a local diffeomorphism is an open map, F.G/ is an open subgroup
of H , and thus by Proposition 7.15, it is all of H . This shows that (c)) (a).

The implication (c)) (d) is the content of Problem 8-27. Conversely, if F� is
an isomorphism, the inverse function theorem implies F is a local diffeomorphism
in a neighborhood of e 2 G. Because Lie group homomorphisms have constant
rank, this means that rankF D dimG D dimH , which implies that F is a local
diffeomorphism everywhere, and thus (d)) (c). �

This theory allows us to give a precise description of all the connected Lie groups
with a given Lie algebra. (For the disconnected case, see Problem 21-22.)

Theorem 21.32. Let g be a finite-dimensional Lie algebra. The connected Lie
groups whose Lie algebras are isomorphic to g are (up to isomorphism) precisely
those of the form G=� , where G is the simply connected Lie group with Lie alge-
bra g, and � is a discrete normal subgroup of G.
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Proof. Given g, by Theorem 20.21 there exists a simply connected Lie group G
with Lie algebra isomorphic to g. Suppose H is any other connected Lie group
whose Lie algebra is isomorphic to g, and let ' W Lie.G/! Lie.H/ be a Lie algebra
isomorphism. Theorem 20.19 guarantees that there is a Lie group homomorphism
˚ W G!H such that ˚� D '. Because ' is an isomorphism, Theorem 21.31 im-
plies that ˚ is surjective and its kernel is a discrete normal subgroup ofG. It follows
that H is isomorphic to G=Ker˚ by Theorem 21.27. �

Connectivity of Lie Groups

Another application of homogeneous space theory is to identify the connected com-
ponents of many familiar Lie groups. The key result is the following proposition.

Proposition 21.33. Suppose a topological group G acts continuously, freely, and
properly on a topological space M . If G and M=G are connected, then M is
connected.

Proof. Assume for the sake of contradiction that G and M=G are connected but M
is not. Then there are disjoint nonempty open subsets U;V �M whose union isM .
Each G-orbit in M is the image of G under an orbit map � .p/ W G!M ; since G is
connected, each orbit must lie entirely in one set U or V .

By Lemma 21.1, �.U / and �.V / are both open in M=G. If �.U /\ �.V / were
not empty, some G-orbit in M would contain points of both U and V , which we
have just shown is impossible. Thus, �.U / and �.V / are disjoint nonempty open
subsets of M=G whose union is M=G, contradicting the assumption that M=G is
connected. �
Proposition 21.34. For each n � 1, the Lie groups SO.n/, U.n/, and SU.n/ are
connected. The group O.n/ has exactly two components, one of which is SO.n/.

Proof. First, we prove by induction on n that SO.n/ is connected. For n D 1

this is obvious, because SO.1/ is the trivial group. Now suppose we have shown
that SO.n � 1/ is connected for some n � 2. Because the homogeneous space
SO.n/=SO.n � 1/ is diffeomorphic to Sn�1 and therefore is connected, Proposi-
tion 21.33 and the induction hypothesis imply that SO.n/ is connected. A simi-
lar argument applies to U.n/ and SU.n/, using the facts that U.n/=U.n � 1/ �
SU.n/=SU.n� 1/� S2n�1.

As we noted in Example 7.28, O.n/ is equal to the union of the two open sub-
sets OC.n/ and O�.n/ consisting of orthogonal matrices with determinant C1 and
�1, respectively. By the argument in the preceding paragraph, OC.n/D SO.n/ is
connected. On the other hand, if A is any orthogonal matrix whose determinant is
�1, then left translation LA is a diffeomorphism from OC.n/ to O�.n/, so O�.n/
is connected as well. Therefore, the components of O.n/ are OC.n/ and O�.n/. �

Determining the components of the general linear groups is a bit more involved.
Let GLC.n;R/ and GL�.n;R/ denote the open subsets of GL.n;R/ consisting of
matrices with positive determinant and negative determinant, respectively.
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Fig. 21.2 Proof that GLC.n;R/ is connected

Proposition 21.35. The connected components of GL.n;R/ are GLC.n;R/ and
GL�.n;R/.

Proof. By continuity of the determinant function, GLC.n;R/ and GL�.n;R/ are
nonempty, disjoint, open subsets of GL.n;R/ whose union is GL.n;R/, so all
we need to prove is that both subsets are connected. We begin by showing that
GLC.n;R/ is connected. It suffices to show that it is path-connected, which will
follow once we show that for any A 2 GLC.n;R/, there is a continuous path in
GLC.n;R/ from A to the identity matrix In.

Let A 2 GLC.n;R/ be arbitrary, and let .A1; : : : ;An/ denote the columns of A,
considered as vectors in Rn. The Gram–Schmidt algorithm (Proposition B.40)
shows that there is an orthonormal basis .Q1; : : : ;Qn/ for Rn with the property that
span.Q1; : : : ;Qk/D span.A1; : : : ;Ak/ for each k D 1; : : : ; n. Thus, we can write

A1 DR
1
1Q1;

A2 DR
1
2Q1CR

2
2Q2;

:::

An DR
1
nQ1CR

2
nQ2C � � � CR

n
nQn;

for some constants Rji . Replacing each Qi by �Qi if necessary, we may assume
that each number Rii (no summation) is positive. In matrix notation, this is equiv-
alent to A DQR, where Q is orthogonal and R is upper triangular with positive
entries on the diagonal. Since the determinant of R is the product of its diagonal
entries and .detQ/.detR/ D detA > 0, it follows that Q 2 SO.n/. (This QR de-
composition plays an important role in numerical linear algebra.)

Let Rt D tIn C .1 � t/R for t 2 Œ0; 1�. It is immediate that each matrix Rt
is upper triangular with positive diagonal entries, so Rt 2 GLC.n;R/. Therefore,
the path � W Œ0; 1� ! GLC.n;R/ given by �.t/ D QRt satisfies �.0/ D A and
�.1/DQ 2 SO.n/ (Fig. 21.2). Because SO.n/ is connected, there is a path in SO.n/
from Q to the identity matrix. This shows that GLC.n;R/ is path-connected. Any
matrix B with detB < 0 yields a diffeomorphism LB W GLC.n;R/! GL�.n;R/,
so GL�.n;R/ is connected as well. This completes the proof. �
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Problems

21-1. Suppose a Lie groupG acts continuously on a manifoldM . Show that if the
map G �M !M defining the action is proper, then the action is a proper
action. Give a counterexample to show that the converse need not be true.

21-2. LetX be the orbit space Rn=RC, where the action of RC is given by (21.1).
Show that X has an open subset homeomorphic to Sn�1, and a point that
belongs to every nonempty closed subset.

21-3. Show that the Hopf action of S1 on S2nC1 (see Problem 7-11) is free and
proper, and that the orbit space S2nC1=S1 is diffeomorphic to CPn. [Hint:
consider the restriction of the natural quotient map CnC1 X f0g!CPn to
S2nC1. The quotient map S2nC1!CPn is known as the Hopf map.]

21-4. Let M be a smooth n-manifold, and suppose V is a smooth vector field
on M such that every integral curve of V is periodic with the same period
(see Problem 9-1). Define an equivalence relation on M by saying p 	 q
if p and q are in the image of the same integral curve of V . Let M=	 be
the quotient space, and let � W M !M=	 be the quotient map. Show that
M=	 is a topological .n� 1/-manifold and has a unique smooth structure
such that � is a smooth submersion.

21-5. Prove the following partial converse to the quotient manifold theorem: if a
Lie group G acts smoothly and freely on a smooth manifold M; and the
orbit space M=G has a smooth manifold structure such that the quotient
map � W M !M=G is a smooth submersion, then G acts properly. [Hint:
first show that for any smooth local section � W U ! M of � , the map
.g; x/ 7! g � �.x/ is a diffeomorphism from G �U to ��1.U /.]

21-6. Suppose a Lie group G acts smoothly, freely, and properly on a smooth
manifold M . Show that M is the total space of a smooth fiber bundle
with base M=G, model fiber G, and projection equal to the quotient map
� W M !M=G. [Hint: see the hint for Problem 21-5.] Conclude from Prob-
lem 10-19 that M is compact if and only if both G and M=G are compact.
[Remark: any fiber bundle obtained in this way is called a principal G -
bundle.]

21-7. Let � be a discrete Lie group acting smoothly, freely, and properly on a
connected smooth manifold M . Show that a Riemannian metric g on M is
the pullback of a metric on M=� by the quotient map � W M !M=� if
and only if � acts by isometries of g (i.e., x 7! � �x is an isometry for each
� 2 � ).

21-8. LetM be a smooth manifold, and let � W E!M be a smooth vector bundle
over M . Suppose � is a discrete Lie group acting smoothly, freely, and
properly on bothE andM . Suppose further that � is � -equivariant, and for
each p 2M and each g 2 � , the map from Ep to Eg�p given by v 7! g � v
is linear. Show that E=� can be given the structure of a smooth vector
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bundle over M=� in such a way that the following diagram commutes:

E � E=�

M
�

� M=�:
�

(The horizontal maps are quotient maps, and the vertical ones are bundle
projections.)

21-9. Show that the action of Z on R2 given by n � .x; y/D
�
x C n; .�1/ny

�
is

smooth, free, and proper. Use this together with the result of Problem 21-8
to give a simple proof that the Möbius bundle of Example 10.3 is a non-
trivial smooth rank-1 vector bundle over S1, and to prove that the quotient
map q W R2!E used to define E is a smooth normal covering map whose
covering automorphism group is the given Z-action on R2.

21-10. Let CPn denote n-dimensional complex projective space (Problem 1-9).
Show that the natural action of U.n C 1/ on CnC1 X f0g descends to a
smooth, transitive action on CPn, so CPn is a homogeneous U.nC 1/-
space. Choose a point and identify the isotropy group.

21-11. This problem shows that a disconnected smooth manifold is homogeneous
if and only if its components are all diffeomorphic to one another and one
of them is homogeneous.
(a) Suppose M is a homogeneous G-space. Show that all of its compo-

nents are diffeomorphic to one another, and there is an open subgroup
G0 �G such that each component is a homogeneous G0-space.

(b) Conversely, suppose M is a smooth manifold all of whose components
are diffeomorphic to each other, and there is a Lie group G0 that acts
smoothly and transitively on one of its components M0. Show that the
direct product group G0 � Z acts smoothly and transitively on M .
[Hint: first, show that M is diffeomorphic to a product of M0 with a
countable discrete space.]

21-12. Show that the smooth structure on the Grassmannian Gk .Rn/ defined in
Example 21.21 is the same as the one defined in Example 1.36.

21-13. Let V be a finite-dimensional real vector space. Prove that the Grassman-
nian Gk.V / is compact for each k. [Hint: show that it is a quotient space of
a compact Lie group.]

21-14. Let V be an n-dimensional real vector space, and let Gk.V / be the Grass-
mannian of k-dimensional subspaces of V for some integer k with 0 <
k < n. Let P

�
ƒk.V /

�
denote the projectivization of ƒk.V / (see Prob-

lem 2-11). Define a map � W Gk.V /! P
�
ƒk.V /

�
by

�.S/D Œv1 ^ � � � ^ vk� if S D span.v1; : : : ; vk/:

Show that � is well defined, and is a smooth embedding whose image is the
set of all equivalence classes of nonzero decomposable elements ofƒk.V /.
(It is called the Plücker embedding.)
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21-15. The set of k-dimensional complex-linear subspaces of Cn is denoted by
Gk.Cn/. Show that Gk.Cn/ has a unique smooth manifold structure mak-
ing it into a homogeneous GL.n;C/-space, with the action of GL.n;C/
induced from its usual action on Cn. Show that Gk.Cn/ is compact, and
determine its dimension.

21-16. Let FK.V / be the set of flags of typeK in a finite-dimensional vector space
V as in Example 21.22. Show that GL.V / acts transitively on FK.V /, and
that the isotropy group of a particular flag is a closed subgroup of GL.V /,
and conclude that FK.V / has a unique smooth manifold structure such that
the action is smooth. What is dim FK.V /? For whichK is FK.V / compact?

21-17. Suppose a Lie group acts smoothly (but not necessarily properly or freely)
on a smooth manifoldM . Show that each orbit is an immersed submanifold
of M; which is embedded if the action is proper.

21-18. The center of a group G is the set of all elements that commute with every
element of G; a subgroup of G is said to be central if it is contained in the
center of G. Show that every discrete normal subgroup of a connected Lie
group is central. [Hint: use the result of Problem 7-8.]

21-19. Use the results of Theorem 7.7 and Problem 21-18 to show that the funda-
mental group of every Lie group is abelian. You may use without proof the
fact that if � W zG!G is a universal covering map, then the automorphism
group Aut�

�
zG
�

is isomorphic to �1.G; e/ (see [LeeTM, Chap. 12]).

21-20. (a) LetG be a connected abelian Lie group. Prove that the exponential map
ofG is a surjective Lie group homomorphism from Lie.G/ (considered
as a Lie group under vector addition) to G.

(b) Show that every connected abelian Lie group is isomorphic to Rk �T l

for some nonnegative integers k and l .

21-21. Show that SO.3/ is isomorphic to SU.2/=f˙I2g and diffeomorphic to RP3,
as follows:
(a) Let � � H denote the group of unit quaternions, and let E � H

be the subspace of imaginary quaternions (see Problems 7-22, 7-23,
and 8-6). For any q 2 � , show that the linear map H!H given by
v 7! qvq� takes E to itself and preserves the inner product hv;wi D
1
2
.v�wCw�v/ on E .

(b) For each q 2 � , let �.q/ be the matrix representation of the map v 7!
qvq� with respect to the basis .i;j;k/ for E . Show that �.q/ 2 SO.3/
and that the map � W � ! SO.3/ is a surjective Lie group homomor-
phism whose kernel is f˙1g.

(c) Prove the result.

21-22. If G and H are Lie groups, and there exists a surjective Lie group homo-
morphism from G to H with kernel G0, we say that G is an extension of
G0 by H . Let g be any finite-dimensional Lie algebra, and show that the
disconnected Lie groups whose Lie algebras are isomorphic to g are pre-
cisely the extensions of the connected ones by discrete Lie groups. [Hint:
see Proposition 7.15.] (Used on p. 557.)
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21-23. Show that GLC.n;R/ is diffeomorphic to SO.n/ � Rn.nC1/=2. [Hint: use
the QR decomposition introduced in Proposition 21.35 to construct a dif-
feomorphism SO.n/� TC.n;R/�GLC.n;R/, where TC.n;R/ is the Lie
group of n�n upper triangular real matrices with positive diagonal entries.]

21-24. Show that GL.n;C/ is diffeomorphic to U.n/�Rn
2
, and thus is connected.

[Hint: argue as in Problem 21-23, but use the Hermitian dot product z �wDP
i z
iwi in place of the Euclidean dot product.]

21-25. Show that SL.n;R/ and SL.n;C/ are diffeomorphic to SO.n/ �
Rn.nC1/=2�1 and SU.n/�Rn

2�1 respectively. Conclude that SL.n;R/ and
SL.n;C/ are connected and SL.2;C/ is simply connected. (See Proposi-
tion 21.34 and Problem 7-16.)

21-26. By the result of Problem 21-25, SL.2;R/ is diffeomorphic to SO.2/�R2 �
S1 � R2, and therefore its fundamental group is isomorphic to Z. Let
CSL.2;R/ denote the universal covering group of SL.2;R/ (see Theo-

rem 7.7). Show that CSL.2;R/ does not admit a faithful representation, as

follows. Suppose � W CSL.2;R/! GL.V / is any representation. By choos-
ing a basis for V over R, we might as well replace GL.V / with GL.n;R/
for some n. Then � induces a Lie algebra homomorphism �� W sl.2;R/!
gl.n;R/. Define a map ' W sl.2;C/! gl.n;C/ by

'.AC iB/D ��AC i��B; A;B 2 sl.2;R/:

(a) Show that ' is a Lie algebra homomorphism.
(b) Show there is a Lie group homomorphism ˚ W SL.2;C/! GL.n;C/

such that ˚� D ' and the following diagram commutes:

CSL.2;R/
�� GL.n;R/

SL.2;R/
�

SL.2;C/
�
\

˚
� GL.n;C/:

�

\

[Hint: use Problem 21-25.]
(c) Show that � is not faithful.
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Symplectic Manifolds

In this final chapter we introduce a new kind of geometric structure on manifolds,
called a symplectic structure, which is superficially similar to a Riemannian met-
ric but turns out to have profoundly different properties. It is simply a choice of a
closed, nondegenerate 2-form. The motivation for the definition may not be evident
at first, but it will emerge gradually as we see how these properties are used. For
now, suffice it to say that nondegeneracy is important because it yields a tangent-
cotangent isomorphism like that provided by a Riemannian metric, and closedness
is important because it leads to a deep relationship between smooth functions and
flows (see the discussions of Hamiltonian vector fields and Poisson brackets later in
this chapter). Symplectic structures have surprisingly varied applications in math-
ematics and physics, including partial differential equations, differential topology,
and classical mechanics, among many other fields.

In this chapter, we can give only a quick overview of the subject of symplectic
geometry. We begin with a discussion of the algebra of nondegenerate alternating 2-
tensors on a finite-dimensional vector space, and then turn our attention to symplec-
tic structures on manifolds. The most important example is a canonically defined
symplectic structure on the cotangent bundle of each smooth manifold. We give a
proof of the important Darboux theorem, which shows that every symplectic form
can be put into canonical form locally by a choice of smooth coordinates, so, unlike
the situation for Riemannian metrics, there is no local obstruction to “flatness” of
symplectic structures.

Then we explore one of the most important applications of symplectic structures.
Any smooth real-valued function on a symplectic manifold gives rise to a canoni-
cal system of ordinary differential equations called a Hamiltonian system. These
systems are central to the study of classical mechanics.

After treating Hamiltonian systems, we give a brief introduction to an odd-
dimensional analogue of symplectic structures, called contact structures. Then at
the end of the chapter, we show how symplectic and contact geometry can be used
to construct solutions to first-order partial differential equations.
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Symplectic Tensors

We begin with linear algebra. A 2-covector ! on a finite-dimensional vector space V
is said to be nondegenerate if the linear map y! W V ! V � defined by y!.v/D v ³!
is invertible.

I Exercise 22.1. Show that the following are equivalent for 2-covector ! on a finite-
dimensional vector space V :

(a) ! is nondegenerate.
(b) For each nonzero v 2 V , there exists w 2 V such that !.v;w/¤ 0.
(c) In terms of some (hence every) basis, the matrix .!ij / representing ! is nonsin-

gular.

A nondegenerate 2-covector is called a symplectic tensor. A vector space V en-
dowed with a specific symplectic tensor is called a symplectic vector space. (A sym-
plectic tensor is also often called a “symplectic form,” because it is in particular a
bilinear form. But to avoid confusion, we reserve that name for something slightly
different, to be defined below.)

Example 22.2. Let V be a vector space of dimension 2n, with a basis denoted by
.A1;B1; : : : ;An;Bn/. Let

�
˛1; ˇ1; : : : ; ˛n; ˇn

�
denote the corresponding dual basis

for V �, and let ! 2ƒ2.V �/ be the 2-covector defined by

! D

nX

iD1

˛i ^ ˇi : (22.1)

Note that the action of ! on basis vectors is given by

!.Ai ;Aj /D !.Bi ;Bj /D 0; !.Ai ;Bj /D�!.Bj ;Ai /D ıij : (22.2)

Suppose v D aiAi C biBi 2 V satisfies !.v;w/ D 0 for all w 2 V . Then 0 D
!.v;Bi /D a

i and 0D !.v;Ai /D�bi , which implies that v D 0. Thus ! is non-
degenerate, and so is a symplectic tensor. //

It is interesting to consider the special case in which dimV D 2. In this case,
using the notation of the preceding example, ˛1 ^ ˇ1 is nondegenerate, and ev-
ery 2-covector is a multiple of ˛1 ^ ˇ1. Thus every nonzero 2-covector on a 2-
dimensional vector space is symplectic.

If .V;!/ is a symplectic vector space and S � V is any linear subspace, we
define the symplectic complement of S , denoted by S?, to be the subspace

S? D fv 2 V W !.v;w/D 0 for all w 2 Sg:

As the notation suggests, the symplectic complement is analogous to the orthog-
onal complement in an inner product space. Just as in the inner product case, the
dimension of S? is the codimension of S , as the next lemma shows.

Lemma 22.3. Let .V;!/ be a symplectic vector space. For any linear subspace
S � V , we have dimS C dimS? D dimV .
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Proof. Let S � V be a subspace, and define a linear map ˚ W V ! S� by ˚.v/D
.v ³!/jS , or equivalently

˚.v/.w/D !.v;w/ for v 2 V; w 2 S:

Suppose ' is an arbitrary element of S�, and let z' 2 V � be any extension of ' to a
linear functional on all of V . Since the map y! W V ! V � defined by v 7! v ³ ! is
an isomorphism, there exists v 2 V such that v ³ ! D z'. It follows that ˚.v/D ',
and therefore ˚ is surjective. By the rank–nullity law, S? D Ker ˚ has dimension
equal to dimV � dimS� D dimV � dimS . �

I Exercise 22.4. Let .V;!/ be a symplectic vector space and S � V be a linear
subspace. Show that .S?/? D S .

Symplectic complements differ from orthogonal complements in one important
respect: although it is always true that S \ S? D f0g in an inner product space, this
need not be true in a symplectic vector space. Indeed, if S is 1-dimensional, the fact
that ! is alternating forces !.v; v/D 0 for every v 2 S , so S � S?. Carrying this
idea a little further, a linear subspace S � V is said to be

� symplectic if S \ S? D f0g;
� isotropic if S � S?;
� coisotropic if S 
 S?;
� Lagrangian if S D S?.

Proposition 22.5. Let .V;!/ be a symplectic vector space, and let S � V be a
linear subspace.

(a) S is symplectic if and only if S? is symplectic.
(b) S is symplectic if and only if !jS is nondegenerate.
(c) S is isotropic if and only if !jS D 0.
(d) S is coisotropic if and only if S? is isotropic.
(e) S is Lagrangian if and only if !jS D 0 and dimS D 1

2
dimV .

Proof. Problem 22-1. �

I Exercise 22.6. Let .V;!/ be the symplectic vector space of dimension 2n de-
scribed in Example 22.2, and let k be an integer such that 0� k � n.

(a) Show that span.A1;B1; : : : ;Ak ;Bk/ is symplectic.
(b) Show that span.A1; : : : ;Ak/ is isotropic.
(c) Show that span.A1; : : : ;An;B1; : : : ;Bk/ is coisotropic.
(d) Show that span.A1; : : : ;An/ is Lagrangian.
(e) If n� 3, which of the four kinds of subspace, if any, is span.A1;A2;B1/?

The symplectic tensor ! defined in Example 22.2 turns out to be the prototype
of all symplectic tensors, as the next proposition shows. This can be viewed as a
symplectic version of the Gram–Schmidt algorithm.

Proposition 22.7 (Canonical Form for a Symplectic Tensor). Let ! be a sym-
plectic tensor on an m-dimensional vector space V . Then V has even dimension
mD 2n, and there exists a basis for V in which ! has the form (22.1).
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Proof. The tensor ! has the form (22.1) with respect to a basis .A1;B1; : : : ;An;Bn/
if and only if its action on basis vectors is given by (22.2). We prove the theorem by
induction on mD dimV by showing that there is a basis with this property.

For mD 0 there is nothing to prove. Suppose .V;!/ is a symplectic vector space
of dimensionm� 1, and assume that the proposition is true for all symplectic vector
spaces of dimension less than m. Let A1 be any nonzero vector in V . Since ! is
nondegenerate, there exists B1 2 V such that !.A1;B1/¤ 0. Multiplying B1 by a
constant if necessary, we may assume that !.A1;B1/D 1. Because ! is alternating,
B1 cannot be a multiple of A1, so the set fA1;B1g is linearly independent, and
hence dimV � 2.

Let S � V be the span of fA1;B1g. Then dimS? Dm�2 by Lemma 22.3. Since
!jS is nondegenerate, by Proposition 22.5 it follows that S is symplectic, and thus
S? is also symplectic. By induction, S? is even-dimensional and there is a basis
.A2;B2; : : : ;An;Bn/ for S? such that (22.2) is satisfied for 2� i; j � n. It follows
easily that .A1;B1;A2;B2; : : : ;An;Bn/ is the required basis for V . �

Because of this proposition, if .V;!/ is a symplectic vector space, a basis
.A1;B1; : : : ;An;Bn/ for V is called a symplectic basis if (22.2) holds, which is
equivalent to ! being given by (22.1) in terms of the dual basis. The proposition
then says that every symplectic vector space has a symplectic basis.

This leads to another useful criterion for 2-covector to be nondegenerate. For an
alternating tensor !, the notation !k denotes the k-fold wedge product ! ^ � � � ^!.

Proposition 22.8. Suppose V is a 2n-dimensional vector space and ! 2ƒ2.V �/.
Then ! is a symplectic tensor if and only if !n ¤ 0.

Proof. Suppose first that ! is a symplectic tensor. Let .Ai ;Bi / be a symplectic ba-
sis for V , and write ! D

P
i ˛
i ^ ˇi in terms of the dual coframe. Then !n DP

I ˛
i1 ^ˇi1 ^ � � � ^ ˛in ^ˇin , where I D .i1; : : : ; in/ ranges over all multi-indices

of length n. Any term in this sum for which I has a repeated index is zero be-
cause ˛i ^ ˛i D 0. The surviving terms are those for which I is a permutation of
.1; : : : ; n/, and these terms are all equal to each other because 2-forms commute
with each other under wedge product. Thus

!n D nŠ
�
˛1 ^ ˇ1 ^ � � � ^ ˛n ^ ˇn

�
¤ 0:

Conversely, suppose ! is degenerate. Then there is a nonzero vector v 2 V
such that v ³ ! D y!.v/ D 0. Since interior multiplication by v is an antideriva-
tion, this implies v ³ .!n/ D n.v ³ !/ ^ !n�1 D 0. We can extend v to a basis
.E1;E2; : : : ;E2n/ for V with E1 D v, and then !n.E1; : : : ;E2n/D 0, which im-
plies !n D 0. �

Symplectic Structures on Manifolds

Now let us turn to a smooth manifold M . A nondegenerate 2-form on M is a 2-
form ! such that !p is a nondegenerate 2-covector for each p 2M . A symplectic
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form on M is a closed nondegenerate 2-form. A smooth manifold endowed with
a specific choice of symplectic form is called a symplectic manifold. A choice of
symplectic form is also sometimes called a symplectic structure.

Proposition 22.7 implies that a symplectic manifold must be even-dimensional.
However, not all even-dimensional smooth manifolds admit symplectic structures.
For example, Proposition 22.8 shows that if ! is a symplectic form on a 2n-
manifold, then !n is a nonvanishing 2n-form, so every symplectic manifold is
orientable. In addition, a necessary homological condition is described in Prob-
lem 22-5. It implies, in particular, that S2 is the only sphere that admits a symplectic
structure.

If .M1;!1/ and .M2;!2/ are symplectic manifolds, a diffeomorphism F W M1!

M2 satisfying F �!2 D !1 is called a symplectomorphism. The study of properties
of symplectic manifolds that are invariant under symplectomorphisms is known as
symplectic geometry or symplectic topology.

Example 22.9 (Symplectic Manifolds).

(a) With standard coordinates on R2n denoted by
�
x1; : : : ; xn; y1; : : : ; xn

�
, the 2-

form

! D

nX

iD1

dxi ^ dyi

is symplectic: it is obviously closed, and it is nondegenerate because its value at
each point is the symplectic tensor of Example 22.2. This is called the standard
symplectic form on R2n. (In formulas involving the standard symplectic form,
like those involving the Euclidean inner product, it is usually necessary to insert
explicit summation signs, because the summation index i appears twice in the
upper position.)

(b) Suppose ˙ is any orientable smooth 2-manifold and ! is a nonvanishing
smooth 2-form on˙ . Then ! is closed because d! is a 3-form on a 2-manifold.
Moreover, as we observed just after Example 22.2, in two dimensions every
nonvanishing 2-form is nondegenerate, so .˙;!/ is a symplectic manifold. //

Suppose .M;!/ is a symplectic manifold. An (immersed or embedded) subman-
ifold S �M is said to be a symplectic, isotropic, coisotropic, or Lagrangian sub-
manifold if TpS (thought of as a subspace of TpM ) has the corresponding prop-
erty at each point p 2 S . More generally, a smooth immersion (or embedding)
F W N !M is said to have one of these properties if the subspace dFp.TpN/ �
TF.p/M has the corresponding property for every p 2 N . Thus a submanifold is
symplectic (isotropic, etc.) if and only if its inclusion map has the same property.

I Exercise 22.10. Suppose .M;!/ is a symplectic manifold and F W N !M is a
smooth immersion. Show that F is isotropic if and only if F �! D 0, and F is sym-
plectic if and only if F �! is a symplectic form.
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Fig. 22.1 The tautological 1-form on T �M

The Canonical Symplectic Form on the Cotangent Bundle

The most important symplectic manifolds are total spaces of cotangent bundles,
which carry canonical symplectic structures that we now define. First, there is a
natural 1-form � on the total space of T �M; called the tautological 1-form, defined
as follows. A point in T �M is a covector ' 2 T �qM for some q 2M ; we denote
such a point by the notation .q; '/. The natural projection � W T �M !M is then
just �.q;'/D q, and its pointwise pullback at q is a linear map d��

.q;'/
W T �qM !

T �
.q;'/

.T �M/. We define � 2�1.T �M/ (a 1-form on the total space of T �M ) by

�.q;'/ D d�
�
.q;'/': (22.3)

(See Fig. 22.1.) In other words, the value of � at .q; '/ 2 T �M is the pullback with
respect to � of the covector ' itself. If v is a tangent vector in T.q;'/.T �M/, then

�.q;'/.v/D '
�
d�.q;'/.v/

�
:

Proposition 22.11. Let M be a smooth manifold. The tautological 1-form � is
smooth, and ! D�d� is a symplectic form on the total space of T �M .

Proof. Let
�
xi
�

be smooth coordinates onM; and let
�
xi ; �i

�
denote the correspond-

ing natural coordinates on T �M as defined on p. 277. Recall that the coordinates of
.q; '/ 2 T �M are defined to be

�
xi ; �i

�
, where

�
xi
�

is the coordinate representation
of q, and �i dxi is the coordinate representation of '. In terms of these coordinates,
the projection � W T �M !M has the coordinate expression �.x; �/D x. This im-
plies that d��.dxi /D dxi , so the coordinate expression for � is

�.x;/ D d�
�
.x;/

�
�i dx

i
�
D �i dx

i : (22.4)

It follows immediately that � is smooth, because its component functions in these
coordinates are linear.
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Let ! D�d� 2�2.T �M/. Clearly, ! is closed, because it is exact. Moreover,
in natural coordinates, (22.4) yields

! D
X

i

dxi ^ d�i :

Under the identification of an open subset of T �M with an open subset of R2n by
means of these coordinates, ! corresponds to the standard symplectic form on R2n

(with �i substituted for yi ). It follows that ! is symplectic. �

The symplectic form defined in this proposition is called the canonical symplec-
tic form on T �M . One of its many uses is in giving the following somewhat more
“geometric” interpretation of what it means for a 1-form to be closed.

Proposition 22.12. Let M be a smooth manifold, and let � be a smooth 1-form
on M . Thought of as a smooth map from M to T �M; � is a smooth embedding,
and � is closed if and only if its image �.M/ is a Lagrangian submanifold of T �M .

Proof. Throughout this proof we need to remember that � W M ! T �M is playing
two roles: on the one hand, it is a 1-form on M; and on the other hand, it is a
smooth map between manifolds. Since they are literally the same map, we do not
use different notations to distinguish between them; but you should be careful to
think about which role � is playing at each step of the argument.

In terms of smooth local coordinates
�
xi
�

forM and corresponding natural coor-
dinates

�
xi ; �i

�
for T �M; the map � W M ! T �M has the coordinate representation

�
�
x1; : : : ; xn

�
D
�
x1; : : : ; xn; �1.x/; : : : ; �n.x/

�
;

where �i dxi is the coordinate representation of � as a 1-form. It follows immedi-
ately that � is a smooth immersion, and it is injective because � ı� D IdM . To show
that it is an embedding, it suffices by Proposition 4.22 to show that it is a proper map.
This in turn follows from the fact that � is a left inverse for � , by Proposition A.53.

Because �.M/ is n-dimensional, it is Lagrangian if and only if it is isotropic,
which is the case if and only if ��! D 0. The pullback of the tautological form �

under � is

��� D ��
�
�i dx

i
�
D �i dx

i D �:

This can also be seen somewhat more invariantly from the computation

.���/p.v/D ��.p/
�
d�p.v/

�
D �p

�
d��.p/ ı d�p.v/

�
D �p.v/;

which follows from the definition of � and the fact that � ı � D IdM . Therefore,

��! D���d� D�d.���/D�d�:

It follows that � is a Lagrangian embedding if and only if d� D 0. �
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The Darboux Theorem

Our next theorem is one of the most fundamental results in symplectic geometry. It
is a nonlinear analogue of the canonical form for a symplectic tensor given in Propo-
sition 22.7. It illustrates the most dramatic difference between symplectic structures
and Riemannian metrics: unlike the Riemannian case, there is no local obstruction
to a symplectic structure being locally equivalent to the standard flat model.

Theorem 22.13 (Darboux). Let .M;!/ be a 2n-dimensional symplectic manifold.
For any p 2M; there are smooth coordinates

�
x1; : : : ; xn; y1; : : : ; yn

�
centered at

p in which ! has the coordinate representation

! D

nX

iD1

dxi ^ dyi : (22.5)

We will prove the theorem below. Any coordinates satisfying (22.5) theorem
are called Darboux coordinates, symplectic coordinates, or canonical coordinates.
Obviously, the standard coordinates

�
x1; : : : ; xn; y1; : : : ; yn

�
on R2n are Darboux

coordinates. The proof of Proposition 22.11 showed that the natural coordinates�
xi ; �i

�
are Darboux coordinates for T �M with its canonical symplectic structure.

The Darboux theorem was first proved (in a slightly different form) by Gaston
Darboux in 1882, in connection with his work on ordinary differential equations
arising in classical mechanics. The proof we give was discovered in 1971 by Alan
Weinstein [Wei71], based on a technique due to Jürgen Moser [Mos65]. A more
elementary—but less elegant—proof is outlined in Problem 22-19.

Weinstein’s proof of the Darboux theorem is based on the theory of time-
dependent flows (see Theorem 9.48). Before we carry out the proof, we need some
preliminary results regarding such flows.

First, recall that Proposition 12.36 shows how to use Lie derivatives to compute
the derivative of a tensor field under a flow. We need the following generalization of
that result to the case of time-dependent flows.

Proposition 22.14. Let M be a smooth manifold. Suppose V W J �M ! TM is a
smooth time-dependent vector field and  W E!M is its time-dependent flow. For
any smooth covariant tensor field A 2 T k.M/ and any .t1; t0; p/ 2 E ,

d

dt

ˇ̌
ˇ̌
tDt1

�
 �t;t0A

�
p
D
�
 �t1;t0

�
LVt1

A
��
p
: (22.6)

Proof. First, assume t1 D t0. In this case,  t0;t0 is the identity map of M; so we
need to prove

d

dt

ˇ̌
ˇ̌
tDt0

�
 �t;t0A

�
p
D
�
LVt0

A
�
p
: (22.7)

We begin with the special case in which AD f is a smooth 0-tensor field:

d

dt

ˇ̌
ˇ̌
tDt0

�
 �t;t0f

�
.p/D

@

@t

ˇ̌
ˇ̌
tDt0

f
�
 .t; t0; p/

�
D V

�
t0; .t0; t0; p/

�
f
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D
�
LVt0

f
�
.p/:

Next consider an exact 1-form A D df . In any smooth local coordinates
�
xi
�
,

the function  �t;t0f .x/ D f
�
 .t; t0; x/

�
depends smoothly on all nC 1 variables�

t; x1; : : : ; xn
�
. Thus, the operator d=dt (which is more properly written as @=@t in

this situation) commutes with each of the partial derivatives @=@xi when applied to
 �t;t0f . In particular, this means that the exterior derivative operator d commutes
with @=@t , and so

d

dt

ˇ̌
ˇ̌
tDt0

�
 �t;t0df

�
p
D

@

@t

ˇ̌
ˇ̌
tDt0

d
�
 �t;t0f

�
p
D d

�
@

@t

ˇ̌
ˇ̌
tDt0

�
 �t;t0f

��

p

D d
�
LVt0

f
�
p
D
�
LVt0

df
�
p
:

Thus, the result is proved for 0-tensors and for exact 1-forms.
Now suppose that ADB˝C for some smooth covariant tensor fields B and C ,

and assume that the proposition is true for B and C . (We include the possibility that
B or C has rank 0, in which case the tensor product is just ordinary multiplication.)
By the product rule for Lie derivatives (Proposition 12.32(c)), the right-hand side of
(22.7) satisfies

�
LVt0

.B ˝C/
�
p
D
�
LVt0

B
�
p
˝Cp CBp ˝

�
LVt0

C
�
p
:

On the other hand, by an argument entirely analogous to that in the proof of Propo-
sition 12.32, the left-hand side satisfies a similar product rule:

d

dt

ˇ̌
ˇ̌
tDt0

�
 �t;t0.B ˝C/

�
p
D

�
d

dt

ˇ̌
ˇ̌
tDt0

�
 �t;t0B

�
p

�
˝Cp

CBp ˝

�
d

dt

ˇ̌
ˇ̌
tDt0

�
 �t;t0C

�
p

�
:

This shows that (22.7) holds for AD B ˝ C , provided it holds for B and C . The
case of arbitrary tensor fields now follows by induction, using the fact that any
smooth covariant tensor field can be written locally as a sum of tensor fields of the
form AD f dxi1 ˝ � � � ˝ dxik .

To handle arbitrary t1, we use Theorem 9.48(d), which shows that  t;t0 D t;t1 ı
 t1;t0 wherever the right-hand side is defined. Therefore, because the linear map
d
�
 t1;t0

��
p
W T k

�
T �
 t1;t0 .p/

M
�
! T k.T �pM/ does not depend on t ,

d

dt

ˇ̌
ˇ̌
tDt1

�
 �t;t0A

�
p
D

d

dt

ˇ̌
ˇ̌
tDt1

d. t1;t0/
�
p ı d. t;t1/

�
 t1;t0 .p/

�
A t;t0 .p/

�

D d. t1;t0/
�
p

d

dt

ˇ̌
ˇ
ˇ
tDt1

d. t;t1/
�
 t1;t0 .p/

�
A t;t1ı t1;t0 .p/

�

D
�
 �t1;t0

�
LVt1

A
��
p
:
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�
A smooth time-dependent tensor field on a smooth manifoldM is a smooth map

A W J �M ! T kT �M; where J �R is an interval, satisfying A.t;p/ 2 T k.T �pM/

for each .t;p/ 2 J �M .

Proposition 22.15. Let M be a smooth manifold and J � R be an open interval.
Suppose V W J �M is a smooth time-dependent vector field onM;  W E!M is its
time-dependent flow, and A W J �M ! T kT �M is a smooth time-dependent tensor
field on M . Then for any .t1; t0; p/ 2 E ,

d

dt

ˇ̌
ˇ̌
tDt1

�
��t;t0At

�
p
D

 

��t1;t0

�
LVt1

At1 C
d

dt

ˇ̌
ˇ̌
tDt1

At

�!

p

: (22.8)

Proof. For sufficiently small " > 0, consider the smooth map F W .t1 � "; t1 C "/ �
.t1 � "; t1C "/! T k.T �pM/ defined by

F.u; v/D
�
��u;t0Av

�
p
D d

�
�u;t0

��
p

	
Av
ˇ̌
�u;t0 .p/



:

Since F takes its values in the finite-dimensional vector space T k.T �pM/, we can
apply the chain rule together with Proposition 22.14 to conclude that

d

dt

ˇ̌
ˇ
ˇ
tDt1

F.t; t/D
@F

@u
.t1; t1/C

@F

@v
.t1; t1/

D
�
��t1;t0

�
LVt1

At1
��
p
C

@

@v

ˇ̌
ˇ̌
vDt1

d
�
�t1;t0

��
p

	
Av
ˇ̌
�t1;t0 .p/



:

Just as in the proof of Proposition 22.14, the linear map d
�
�t1;t0

��
p

commutes past
@=@v, yielding (22.8). �
Proof of the Darboux theorem. Let !0 denote the given symplectic form onM; and
let p0 2M be arbitrary. The theorem will be proved if we can find a smooth coordi-
nate chart .U0; '/ centered at p0 such that '�!1 D !0, where !1 D

Pn
iD1 dx

i^dyi

is the standard symplectic form on R2n. Since this is a local question, by choosing
smooth coordinates

�
x1; : : : ; xn; y1; : : : ; yn

�
in a neighborhood of p0, we may re-

place M with an open ball U � R2n. Proposition 22.7 shows that we can arrange
by a linear change of coordinates that !0jp0 D !1jp0 .

Let � D !1 � !0. Because � is closed, the Poincaré lemma (Theorem 17.14)
shows that we can find a smooth 1-form ˛ on U such that d˛D��. By subtracting
a constant-coefficient (and thus closed) 1-form from ˛, we may assume without loss
of generality that p̨0 D 0.

For each t 2R, define a closed 2-form !t on U by

!t D !0C t�D .1� t/!0C t!1:

Let J be a bounded open interval containing Œ0; 1�. Because !t jp0 D !0jp0 is non-
degenerate for all t , a simple compactness argument shows that there is some neigh-
borhoodU1 � U of p0 such that !t is nondegenerate onU1 for all t 2 xJ . Because of
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this nondegeneracy, the smooth bundle homomorphism y!t W T U1! T �U1 defined
by y!t .X/DX ³!t is an isomorphism for each t 2 xJ .

Define a smooth time-dependent vector field V W J �U1! T U1 by Vt D y!�1t ˛,
or equivalently

Vt ³!t D ˛:

Our assumption that p̨0 D 0 implies that Vt jp0 D 0 for each t . If � W E ! U1 de-
notes the time-dependent flow of V , it follows that �.t; 0;p0/D p0 for all t 2 J , so
J � f0g � fp0g � E . Because E is open in J � J �M and Œ0; 1� is compact, there
is some neighborhood U0 of p0 such that Œ0; 1�� f0g �U0 � E .

For each t1 2 Œ0; 1�, it follows from Proposition 22.15 that

d

dt

ˇ̌
ˇ̌
tDt1

.��t;0!t /D �
�
t1;0

�
LVt1

!t1 C
d

dt

ˇ̌
ˇ̌
tDt1

!t

�

D ��t1;0
�
Vt1 ³ d!t1 C d.Vt1 ³!t1/C �

�

D ��t1;0.0C d˛C �/D 0:

Therefore, ��t;0!t D �
�
0;0!0 D !0 for all t . In particular, ��1;0!1 D !0. It follows

from Theorem 9.48(c) that �1;0 is a diffeomorphism onto its image, so it is a coor-
dinate map. Because �1;0.p0/D p0 D 0, these coordinate are centered at p0. �

Hamiltonian Vector Fields

One of the most useful constructions on symplectic manifolds is a symplectic ana-
logue of the gradient, defined as follows. Suppose .M;!/ is a symplectic manifold.
For any smooth function f 2 C1.M/, we define the Hamiltonian vector field of f
to be the smooth vector field Xf defined by

Xf D y!
�1.df /;

where y! W TM ! T �M is the bundle isomorphism determined by !. Equivalently,

Xf ³! D df;

or for any vector field Y ,

!.Xf ; Y /D df .Y /D Yf:

In any Darboux coordinates, Xf can be computed explicitly as follows. Writing

Xf D

nX

iD1

�
ai

@

@xi
C bi

@

@yi

�

for some coefficient functions
�
ai ; bi

�
to be determined, we compute

Xf ³! D

nX

jD1

�
aj

@

@xj
C bj

@

@yj

�
³

nX

iD1

dxi ^ dyi D

nX

iD1

�
ai dyi � bi dxi

�
:
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On the other hand,

df D

nX

iD1

�
@f

@xi
dxi C

@f

@yi
dyi

�
:

Setting these two expressions equal to each other, we find that ai D @f=@yi and
bi D�@f=@xi , which yields the following formula for the Hamiltonian vector field
of f in Darboux coordinates:

Xf D

nX

iD1

�
@f

@yi
@

@xi
�
@f

@xi
@

@yi

�
: (22.9)

This formula holds, in particular, on R2n with its standard symplectic form.
Although the definition of the Hamiltonian vector field is formally analogous to

that of the gradient on a Riemannian manifold, Hamiltonian vector fields differ from
gradients in some very significant ways, as the next lemma shows.

Proposition 22.16 (Properties of Hamiltonian Vector Fields). Let .M;!/ be a
symplectic manifold and let f 2 C1.M/.

(a) f is constant along each integral curve of Xf .
(b) At each regular point of f , the Hamiltonian vector field Xf is tangent to the

level set of f .

Proof. Both assertions follow from the fact that

Xf f D df .Xf /D !.Xf ;Xf /D 0

because ! is alternating. �

A smooth vector field X on M is said to be symplectic if ! is invariant under the
flow of X . It is said to be Hamiltonian (or globally Hamiltonian) if there exists a
function f 2 C1.M/ such that X DXf , and locally Hamiltonian if each point p
has a neighborhood on whichX is Hamiltonian. Clearly, every globally Hamiltonian
vector field is locally Hamiltonian.

Proposition 22.17 (Hamiltonian and Symplectic Vector Fields). Let .M;!/ be
a symplectic manifold. A smooth vector field on M is symplectic if and only if it
is locally Hamiltonian. Every locally Hamiltonian vector field on M is globally
Hamiltonian if and only if H 1

dR.M/D 0.

Proof. By Theorem 12.37, a smooth vector field X is symplectic if and only if
LX! D 0. Using Cartan’s magic formula, we compute

LX! D d.X ³!/CX ³ .d!/D d.X ³!/: (22.10)

Therefore, X is symplectic if and only if the 1-form X ³ ! is closed. On the one
hand, if X is locally Hamiltonian, then in a neighborhood of each point there is
a real-valued function f such that X D Xf , so X ³ ! D Xf ³ ! D df , which is
certainly closed. Conversely, if X is symplectic, then by the Poincaré lemma each
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point p 2M has a neighborhood U on which the closed 1-formX ³! is exact. This
means there is a smooth real-valued function f defined on U such thatX ³! D df ;
because ! is nondegenerate, this implies that X DXf on U .

Now suppose M is a smooth manifold with H 1
dR.M/ D 0. If X is a locally

Hamiltonian vector field, then it is symplectic, so (22.10) shows that X ³ ! is
closed. The hypothesis then implies that there is a function f 2 C1.M/ such that
X ³ ! D df . This means that X DXf , so X is globally Hamiltonian. Conversely,
suppose every locally Hamiltonian vector field is globally Hamiltonian. Let � be a
closed 1-form, and let X be the vector field X D y!�1�. Then (22.10) shows that
LX! D d�D 0, so X is symplectic and therefore locally Hamiltonian. By hypoth-
esis, there is a global smooth real-valued function f such that X D Xf , and then
unwinding the definitions, we find that �D df . �

A symplectic manifold .M;!/ together with a smooth function H 2 C1.M/

is called a Hamiltonian system. The function H is called the Hamiltonian of the
system; the flow of the Hamiltonian vector field XH is called its Hamiltonian flow,
and the integral curves of XH are called the trajectories or orbits of the system.
In Darboux coordinates, formula (22.9) implies that the orbits are those curves
�.t/D

�
xi .t/; yi .t/

�
that satisfy

Pxi .t/D
@H

@yi

�
x.t/; y.t/

�
;

Pyi .t/D�
@H

@xi

�
x.t/; y.t/

�
(22.11)

(with dots denoting ordinary derivatives of component functions with respect to t ).
These are called Hamilton’s equations.

Hamiltonian systems play a central role in classical mechanics. We illustrate how
they arise with a simple example.

Example 22.18 (The n-Body Problem). Consider n physical particles moving
in space, and suppose their masses are m1; : : : ;mn. For many purposes, an effec-
tive model of such a system is obtained by idealizing the particles as points in
R3, which we denote by q1; : : : ;qn. Writing the coordinates of qk at time t as�
q1
k
.t/; q2

k
.t/; q3

k
.t/
�
, we can represent the evolution of the system over time by a

curve in R3n:

q.t/D
�
q11.t/; q

2
1.t/; q

3
1.t/; : : : ; q

1
n.t/; q

2
n.t/; q

3
n.t/

�
:

The collision set is the subset C � R3n where two or more particles occupy the
same position in space:

C D
˚
q 2R3n W qk D ql for some k ¤ l

�
:

We consider only motions with no collisions, so we are interested in curves in the
open subset QDR3n XC .

Suppose the particles are acted upon by forces that depend only on the posi-
tions of all the particles in the system. (A typical example is gravitational forces.)
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If we denote the components of the net force on the kth particle by Fk.q/ D�
F 1
k
.q/;F 2

k
.q/;F 3

k
.q/
�
, then Newton’s second law of motion asserts that the par-

ticles’ motion satisfies mk Rqk.t/ D Fk
�
q.t/

�
for each k, which translates into the

3n� 3n system of second-order ODEs

mk Rq
1
k.t/D F

1
k

�
q.t/

�
;

mk Rq
2
k.t/D F

2
k

�
q.t/

�
;

mk Rq
3
k.t/D F

3
k

�
q.t/

�
; k D 1; : : : ; n:

(There is no implied summation in these equations.)
This can be written in a more compact form if we relabel the 3n position co-

ordinates as q.t/ D
�
q1.t/; : : : ; q3n.t/

�
and the 3n components of the forces as

F.q/D
�
F1.q/; : : : ;F3n.q/

�
, and let M D .Mij / denote the 3n� 3n diagonal ma-

trix whose diagonal entries are .m1;m1;m1;m2;m2;m2; : : : ;mn;mn;mn/. Then
Newton’s second law can be written

Mij Rq
j .t/D Fi

�
q.t/

�
: (22.12)

(Here the summation convention is in force.) We assume that the forces depend
smoothly on q, so we can interpret F.q/D .F1.q/; : : : ;F3n.q// as the components
of a smooth covector field onQ. We assume further that the forces are conservative,
which by the results of Chapter 11 is equivalent to the existence of a smooth function
V 2 C1.Q/ (called the potential energy of the system) such that F D�dV .

Under the physically reasonable assumption that all of the masses are posi-
tive, the matrix M is positive definite, and thus can be interpreted as a (constant-
coefficient) Riemannian metric on Q. It therefore defines a smooth bundle isomor-
phism �M W TQ! T �Q. If we denote the natural coordinates on TQ by

�
qi ; vi

�

and those on T �Q by
�
qi ; pi

�
, then M.v;w/DMij v

iwj , and �M has the coordi-
nate representation

�
qi ; pi

�
D �M

�
qi ; vi

�
D
�
qi ;Mij v

j
�
:

If q0.t/D
�
Pq1.t/; : : : ; Pq3n.t/

�
is the velocity vector of the system of particles at time

t , then the covector p.t/D �M
�
q0.t/

�
is given by the formula

pi .t/DMij Pq
j .t/: (22.13)

To give this equation a physical interpretation, we can revert to our original labeling
of the coordinates and write

p.t/D
�
p11 ; p

2
1 ; p

3
1 ; : : : ; p

1
n; p

2
n; p

3
n

�
;

and then pk.t/D
�
p1
k
.t/;p2

k
.t/;p3

k
.t/
�
Dmk Pqk.t/ is interpreted as the momentum

of the kth particle at time t .
Using (22.13), we see that a curve q.t/ in Q satisfies Newton’s second law

(22.12) if and only if the curve �.t/D
�
q.t/;p.t/

�
in T �Q satisfies the first-order
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system of ODEs

Pqi .t/DM ijpj .t/;

Ppi .t/D�
@V

@qi

�
q.t/

�
;

(22.14)

where
�
M ij

�
is the inverse of the matrix of .Mij /. Define a function E 2

C1.T �Q/, called the total energy of the system, by

E.q;p/D V.q/CK.p/;

where V is the potential energy introduced above, and K is the kinetic energy,
defined by

K.p/D 1
2
M ijpipj :

Since
�
qi ; pi

�
are Darboux coordinates on T �Q, a comparison of (22.14) with

(22.11) shows that (22.14) is precisely Hamilton’s equations for the Hamiltonian
flow of E . The fact that E is constant along the trajectories of its own Hamiltonian
flow is known as the law of conservation of energy. //

An elaboration of the same technique can be applied to virtually any classical
dynamical system in which the forces are conservative. For example, if the positions
of a system of particles are subject to constraints, as are the constituent particles of
a rigid body, for example, then the configuration space is typically a submanifold
of R3n rather than an open subset. Under very general hypotheses, the equations of
motion of such a system can be formulated as a Hamiltonian system on the cotangent
bundle of the constraint manifold. For much more on Hamiltonian systems, see
[AM78].

Poisson Brackets

Hamiltonian vector fields allow us to define an operation on real-valued functions
on a symplectic manifoldM similar to the Lie bracket of vector fields. Given f;g 2
C1.M/, we define their Poisson bracket ff;gg 2 C1.M/ by any of the following
equivalent formulas:

ff;gg D !
�
Xf ;Xg

�
D df

�
Xg
�
DXgf: (22.15)

Two functions are said to Poisson commute if their Poisson bracket is zero.
The geometric interpretation of the Poisson bracket is evident from the char-

acterization ff;gg D Xgf : it is a measure of the rate of change of f along the
Hamiltonian flow of g. In particular, f and g Poisson commute if and only if f is
constant along the Hamiltonian flow of g.

Using (22.9), we can readily compute the Poisson bracket of two functions f;g
in Darboux coordinates:

ff;gg D

nX

iD1

@f

@xi
@g

@yi
�
@f

@yi
@g

@xi
: (22.16)
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Proposition 22.19 (Properties of the Poisson Bracket). Suppose .M;!/ is a sym-
plectic manifold, and f;g;h 2 C1.M/.

(a) BILINEARITY: ff;gg is linear over R in f and in g.
(b) ANTISYMMETRY: ff;gg D �fg;f g.
(c) JACOBI IDENTITY: fff;gg; hg C ffg;hg; f g C ffh;f g; gg D 0.
(d) Xff;gg D�ŒXf ;Xg �.

Proof. Parts (a) and (b) are obvious from the characterization ff;gg D !
�
Xf ;Xg

�

together with the fact that Xf D y!�1.df / depends linearly on f . Because of the
nondegeneracy of !, to prove (d), it suffices to show that the following holds for
every vector field Y :

!
�
Xff;gg; Y

�
C!

�
ŒXf ;Xg �; Y

�
D 0: (22.17)

On the one hand, note that !
�
Xff;gg; Y

�
D d.ff;gg/.Y /D Y ff;gg D YXgf . On

the other hand, because Hamiltonian vector fields are symplectic, the Lie derivative
formula of Corollary 12.33 yields

0D
�
LXg!

�
.Xf ; Y /

DXg
�
!.Xf ; Y /

�
�!

�
ŒXg ;Xf �; Y

�
�!

�
Xf ; ŒXg ; Y �

�
: (22.18)

The first and third terms on the right-hand side can be simplified as follows:

Xg
�
!.Xf ; Y /

�
DXg

�
df .Y /

�
DXgYf:

!
�
Xf ; ŒXg ; Y �

�
D df

�
ŒXg ; Y �

�
D ŒXg ; Y �f DXgYf � YXgf

DXgYf �!
�
Xff;gg; Y

�
:

Inserting these into (22.18), we obtain (22.17).
Finally, (c) follows from (d), (b), and (22.15):

ff; fg;hgg DXfg;hgf D�ŒXg ;Xh�f D�XgXhf CXhXgf

D�Xgff;hg CXhff;gg D �fff;hg; gg C fff;gg; hg

D �fg; fh;f gg � fh; ff;ggg: ��

The following corollary is immediate.

Corollary 22.20. If .M;!/ is a symplectic manifold, the vector space C1.M/ is a
Lie algebra under the Poisson bracket. �

If .M;!;H/ is a Hamiltonian system, any function f 2 C1.M/ that is con-
stant on every integral curve of XH is called a conserved quantity of the system.
Conserved quantities turn out to be deeply related to symmetries, as we now show.

A smooth vector field V on M is called an infinitesimal symmetry of .M;!;H/
if both ! and H are invariant under the flow of V .
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Proposition 22.21. Let .M;!;H/ be a Hamiltonian system.

(a) A function f 2 C1.M/ is a conserved quantity if and only if ff;H g D 0.
(b) The infinitesimal symmetries of .M;!;H/ are precisely the symplectic vector

fields V that satisfy VH D 0.
(c) If � is the flow of an infinitesimal symmetry and � is a trajectory of the system,

then for each s 2R, �s ı � is also a trajectory on its domain of definition.

Proof. Problem 22-18. �
The following theorem, first proved (in a somewhat different form) by Emmy

Noether in 1918 [Noe71], has had a profound influence on both physics and math-
ematics. It shows that for many Hamiltonian systems, there is a one-to-one cor-
respondence between conserved quantities (modulo constants) and infinitesimal
symmetries.

Theorem 22.22 (Noether’s Theorem). Let .M;!;H/ be a Hamiltonian system.
If f is any conserved quantity, then its Hamiltonian vector field is an infinitesi-
mal symmetry. Conversely, if H 1

dR.M/D 0, then each infinitesimal symmetry is the
Hamiltonian vector field of a conserved quantity, which is unique up to addition of
a function that is constant on each component of M .

Proof. Suppose f is a conserved quantity. Proposition 22.21 shows that ff;H g D
0. This in turn implies that XfH D fH;f g D 0, so H is constant along the flow of
Xf . Since ! is invariant along the flow of any Hamiltonian vector field by Proposi-
tion 22.17, this shows that Xf is an infinitesimal symmetry.

Now suppose that M is a smooth manifold with H 1
dR.M/D 0. Let V be an in-

finitesimal symmetry of .M;!;H/. Then V is symplectic by definition, and glob-
ally Hamiltonian by Proposition 22.17. Writing V D Xf , the fact that H is con-
stant along the flow of V implies that fH;f g D XfH D VH D 0, so f is a
conserved quantity. If zf is any other function that satisfies X zf D V D Xf , then

d
�
zf � f

�
D
�
X zf �Xf

�
³ ! D 0, so zf � f must be constant on each component

of M . �
There is one conserved quantity that every Hamiltonian system possesses: the

Hamiltonian H itself. The infinitesimal symmetry corresponding to it, of course,
generates the Hamiltonian flow of the system, which describes how the system
evolves over time. Since H is typically interpreted as the total energy of the sys-
tem (as in Example 22.18), one usually says that the symmetry corresponding to
conservation of energy is “translation in the time variable.”

Hamiltonian Flowouts

Hamiltonian vector fields are powerful tools for constructing isotropic and La-
grangian submanifolds. Because Lagrangian submanifolds of T �M correspond to
closed 1-forms (Proposition 22.12), which in turn correspond locally to differentials
of functions, such constructions have numerous applications in PDE theory. We will
see one such application later in this chapter.
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Theorem 22.23 (Hamiltonian Flowout Theorem). Suppose .M;!/ is a symplec-
tic manifold, H 2 C1.M/, � is an embedded isotropic submanifold of M that is
contained in a single level set ofH , and the Hamiltonian vector fieldXH is nowhere
tangent to � . If � is a flowout from � along XH , then � is also isotropic and con-
tained in the same level set of H .

Proof. Let � be the flow of XH . Recall from Theorem 9.20 that the flowout is
parametrized by the restriction of � to a neighborhood Oı of f0g�� in R�� . First
consider a point p 2 � � � . If we choose a basis E1; : : : ;Ek for Tp� , then Tp�

is spanned by
�
XH jp;E1; : : : ;Ek

�
. The assumption that � is isotropic implies that

!p
�
Ei ;Ej

�
D 0 for all i and j . On the other hand, by definition of the Hamiltonian

vector field,

!p
�
XH jp;Ej

�
D dHp

�
Ej
�
D 0;

because Ej is tangent to � , which is contained in a level set of H . This shows that
the restriction of ! to Tp� is zero when p 2 � .

Any other point p0 2 � is of the form p0 D �t .p/ for some .t;p/ 2Oı �R�� .
Because �t is a local diffeomorphism that maps a neighborhood of p in � to a
neighborhood of p0 in � , its differential takes Tp� isomorphically onto Tp0� . Thus,
for any vectors v;w 2 Tp0� , there are vectors yv; yw 2 Tp� such that d.�t /p

�
yv
�
D v

and d.�t /p
�
yw
�
D w. Moreover, because XH is a symplectic vector field, its flow

preserves !. Therefore,

!p0.v;w/D !p0
�
d.�t /p

�
yv
�
; d.�t /p

�
yw
��
D
�
��t !

�
p

�
yv; yw

�
D !p

�
yv; yw

�
D 0:

It follows that � is isotropic. By Proposition 22.16,H is constant along each integral
curve of XH , so � is contained in the same level set of H as � . �

Contact Structures

As we have seen, symplectic manifolds must be even-dimensional; but there is
a closely related structure called a contact structure that one can define on odd-
dimensional manifolds. It also has important applications in geometry and analysis.
In this section, we introduce the main elements of contact geometry.

Suppose M is a smooth manifold of odd dimension 2n C 1. A contact form
on M is a nonvanishing smooth 1-form � with the property that for each p 2M;
the restriction of d�p to the subspace Ker �p � TpM is nondegenerate, which is
to say it is a symplectic tensor. A contact structure on M is a smooth distribution
H � TM of rank 2n with the property that any smooth local defining form � for
H is a contact form. A contact manifold is a smooth manifold M together with
a contact structure on M . If .M;H/ is a contact manifold, any (local or global)
defining form for H is called a contact form for H . It was proved in 1971 by Jean
Martinet [Mar71] that every oriented compact smooth 3-manifold admits a contact
structure; but the question of which higher-dimensional manifolds admit contact
structures is still unresolved.
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Proposition 22.24. A smooth 1-form � on a .2nC 1/-manifold is a contact form if
and only if � ^ d�n is nonzero everywhere on M; where d�n represents the n-fold
wedge product d� ^ � � � ^ d� .

I Exercise 22.25. Prove the preceding proposition.

I Exercise 22.26. SupposeH is a contact structure on a smooth manifoldM . Show
that if �1 and �2 are any two local contact forms for H , then on their common domain
there is a smooth nonvanishing function f such that �2 D f �1.

It follows from the result of Problem 19-2 that a codimension-1 distributionH �
TM is integrable if and only if any local defining form � satisfies � ^ d� � 0. If H
is a contact structure, by contrast, not only is � ^d� nonzero everywhere on M; but
it remains nonzero after taking n� 1 more wedge products with d� . Thus, a contact
structure is, in a sense, a “maximally nonintegrable distribution.”

Example 22.27 (Contact Forms).

(a) On R2nC1 with coordinates
�
x1; : : : ; xn; y1; : : : ; yn; z

�
, define a 1-form � by

� D dz �

nX

iD1

yi dxi ; (22.19)

and let H � TR2nC1 be the rank-2n distribution annihilated by � . Then d� DPn
iD1 dx

i ^ dyi . If we define vector fields fXi ; Yi W i D 1; : : : ; ng by

Xi D
@

@xi
C yi

@

@z
; Yi D

@

@yi
;

then
�
Xi ; Yi

�
is a smooth frame for H , and it is straightforward to check that

it satisfies d�
�
Xi ;Xj

�
D d�

�
Yi ; Yj

�
D 0 and d�

�
Xi ; Yj

�
D ıij . It follows just

as in Example 22.2 that d� jH is nondegenerate, so � is a contact form. Theo-
rem 22.31 below shows that every contact form can be put into this form locally
by a change of coordinates.

(b) Let M be a smooth n-manifold, and define a smooth 1-form � on the .2nC 1/-
manifold R�T �M by � D dz�� , where z is the standard coordinate on R and
� is the tautological 1-form on T �M . In terms of natural coordinates

�
xi ; �i

�

for T �M; the form � has the coordinate representation

� D dz �

nX

iD1

�i dx
i ;

so it is a contact form by the same argument as in part (a).
(c) On R2nC2 with coordinates

�
x1; : : : ; xnC1; y1; : : : ; ynC1

�
, consider the 1-form

 D

nC1X

iD1

�
xi dyi � yi dxi

�
:
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The standard contact form on S2nC1 is the smooth 1-form � D 	�, where
	 W S2nC1 ,! R2nC2 is inclusion. To see that � is indeed a contact form, note
first that d D 2

PnC1
iD1 dx

i ^dyi is a symplectic form on R2nC2. Consider the
following vector fields on R2nC1 X f0g:

N D xj
@

@xj
C yj

@

@yj
; T D xj

@

@yj
� yj

@

@xj
:

A computation shows that N is normal to S2nC1 (with respect to the Euclidean
metric) and T is tangent to it. Let S � T

�
R2nC2 X f0g

�
denote the subbundle

spanned byN and T , and let S? denote its symplectic complement with respect
to d. For each p 2 S2nC1, S?p is the set of vectors X 2 TpR2nC2 such that
dp

�
Np;Xp

�
D dp

�
Tp;Xp

�
D 0. We compute

N ³ d D 2

nC1X

iD1

�
xi dyi � yi dxi

�
D 2;

T ³ d D 2

nC1X

iD1

�
xi dxi C yi dyi

�
D d

�
jxj2C jyj2

�
:

It follows that S?p is the common kernel of p and d
�
jxj2C jyj2

�
p

, which

is Ker p \ TpS2nC1 D Ker �p . Because d.N;T / D jxj2 C jyj2 ¤ 0 on
R2nC1 X f0g, Sp is a symplectic subspace of TpR2nC2, and thus Ker �p D S?p
is also a symplectic subspace by Proposition 22.5(a). Because the restriction of
d�p to Ker �p is the same as the restriction of dp , it is nondegenerate, so � is
a contact form. //

Theorem 22.28 (The Reeb Field). Let .M;H/ be a contact manifold, and suppose
� is a contact form forH . There is a unique vector field T 2X.M/, called the Reeb
field of � , that satisfies the following two conditions:

T ³ d� D 0; �.T /D 1: (22.20)

Proof. Define a smooth bundle homomorphism ˚ W TM ! T �M by ˚.X/ D

X ³ d� , and for each p 2M; let p̊ denote the linear map ˚ jTpM W TpM ! T �pM .
The fact that d�p restricts to a nondegenerate 2-tensor on Hp implies that p̊jHp
is injective, so p̊ has rank at least 2n (where 2nC 1 is the dimension of M ). On
the other hand, p̊ cannot have rank 2nC 1, because then d�p would be nonde-
generate, which is impossible because TpM is odd-dimensional. Thus p̊ has rank
exactly 2n, so dim Ker p̊ D 1. Since Ker p̊ is not contained in Hp D Ker �p ,
there is a unique vector Tp 2Ker p̊ satisfying �p.Tp/D 1. This shows that there is
a unique rough vector field T satisfying (22.20).

To see that T is smooth, note that Ker ˚ is a smooth rank-1 subbundle of TM by
Theorem 10.34. Given p 2M; let X be any smooth nonvanishing section of Ker ˚
on a neighborhood of p. Because �.X/¤ 0, we can write the Reeb field locally as
T D �.X/�1X , which is also smooth. �
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I Exercise 22.29. Show that the Reeb fields of the three contact forms described in
Example 22.27 are as follows:

(a) T D
@

@z
I (b) T D

@

@t
I (c) T D

�
xj

@

@yj
� yj

@

@xj

�ˇ̌
ˇ
ˇ
S2nC1

:

I Exercise 22.30. Let � be a contact form and T be its Reeb field. Show that
LT � D 0.

Many of the constructs that we described for symplectic manifolds have ana-
logues in contact geometry. We begin with an analogue of the Darboux theorem.

Theorem 22.31 (Contact Darboux Theorem). Suppose � is a contact form on a
.2nC 1/-dimensional manifold M . For each p 2M; there are smooth coordinates�
x1; : : : ; xn; y1; : : : ; yn; z

�
centered at p in which � has the form (22.19).

Proof. Let p 2M be arbitrary. Let
�
U;
�
ui
��

be a smooth coordinate cube centered
at p in which the Reeb field of � has the form T D @=@u1, and let Y � U be the
slice defined by u1 D 0. Because T is nowhere tangent to Y , it follows that the
pullback of d� to Y is a symplectic form. After shrinking U and Y if necessary,
we can find Darboux coordinates

�
x1; : : : ; xn; y1; : : : ; yn

�
for Y centered at p, and

extend them to U by requiring them to be independent of u1 (or equivalently, to be
constant on the integral curves of T ). Let ˛ be the 1-form

P
i y
i dxi on U , so the

pullbacks of d� and �d˛ to Y agree. Because T ³ d� D T ³ d˛ D 0, it follows
that d� C d˛ D 0 at points of Y . Then LT � DLT ˛ D 0 implies that d.� C ˛/ is
invariant under the flow of T , so in fact d.� C ˛/D 0 on all of U . By the Poincaré
lemma, there is a smooth function z on U such that dz D � C ˛; by subtracting a
constant, we may arrange that z.p/D 0. Because dzp.Tp/D �p.Tp/D 1, it follows
that

˚
dxi jp; dy

i jp; dzjp
�

are linearly independent, so Problem 11-6 shows that there
is a neighborhood of p on which

�
x1; : : : ; xn; y1; : : : ; yn; z

�
are the coordinates we

seek. �
The next proposition describes a contact analogue of Hamiltonian vector fields.

Proposition 22.32. Suppose .M;H/ is a contact manifold and � is a contact
form for H . For any function f 2 C1.M/, there is a unique vector field Xf ,
called the contact Hamiltonian vector field of f , that satisfies �.Xf / D f and
.Xf ³ d�/jH D�df jH .

Proof. Suppose f 2 C1.M/. Because the restriction of d� toH is nondegenerate,
there is a unique smooth vector field B 2 �.H/ such that B ³ d� jH D df jH . If we
set Xf D f T �B , where T is the Reeb field for � , then it is easy to check that the
required conditions are satisfied. �

Suppose .M;H/ is a contact manifold. A smooth vector field X 2 X.M/ is
called a contact vector field if its flow � preserves the contact structure, in the sense
that d.�t /p.Hp/DH�t .p/ for all .t;p/ in the domain of � .

Theorem 22.33 (Characterization of Contact Vector Fields). If .M;H/ is a con-
tact manifold and � is a contact form for H , then a smooth vector field on M is a
contact vector field if and only if it is a contact Hamiltonian vector field.
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Proof. Problem 22-21. �

If .M;H/ is a contact manifold, a smooth submanifold S �M is said to be
isotropic if TS � H , or equivalently if 	�� D 0 for any contact form � , where
	 W S ,!M is inclusion. If S �M is isotropic, then 	�d� D d.	��/D 0. This im-
plies that for each p 2 S , the tangent space TpS is an isotropic subspace of the
symplectic vector space Hp , and thus its dimension cannot be any larger than n,
where 2nC 1 is the dimension of M . An isotropic submanifold of the maximum
possible dimension n is called a Legendrian submanifold.

The next theorem is a contact analogue of the Hamiltonian flowout theorem, and
is proved in much the same way. It is the main tool for constructing solutions of
fully nonlinear PDEs (see Theorem 22.39 below).

Theorem 22.34 (Contact Flowout Theorem). Suppose .M;H/ is a contact mani-
fold, F 2 C1.M/, � is an embedded isotropic submanifold of M that is contained
in the zero set of F , and the contact Hamiltonian vector fieldXF is nowhere tangent
to � . If � is a flowout from � along XF , then � is also isotropic and contained in
the zero set of H .

Proof. Problem 22-23. �

Nonlinear First-Order PDEs

In Chapter 9, we discussed first-order partial differential equations, and showed how
to use the theory of flows to solve them in the linear and quasilinear cases. In this
section, we show how to use symplectic and contact geometry to solve fully nonlin-
ear first-order equations (i.e., equations that are not quasilinear).

We begin with a somewhat special case. A first-order partial differential equation
that involves only the first derivatives of the unknown function but not the values of
the function itself is called a Hamilton–Jacobi equation. Such an equation for an
unknown function u

�
x1; : : : ; xn

�
can be written in the form

F

�
x1; : : : ; xn;

@u

@x1
.x/; : : : ;

@u

@xn
.x/

�
D 0; (22.21)

where F is a smooth function defined on an open subset of R2n. (The terminology
regarding Hamilton–Jacobi equations is not universally agreed upon. Some authors
reserve the term Hamilton–Jacobi equation for the special case of an equation of
the form

@u

@x1
CH

�
x1; : : : ; xn;

@u

@x2
.x/; : : : ;

@u

@xn
.x/

�
D 0: (22.22)

The implicit function theorem shows that an equation of the general form (22.21)
can be locally rewritten in this special form if and only if the partial derivative
of F with respect to its .n C 1/st variable is nonzero. On the other hand, other
authors use the term eikonal equation to refer to any equation of the form (22.21).
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We reserve that term for another special case to which it was originally applied; see
Problem 22-24.)

More generally, if M is a smooth manifold, a Hamilton–Jacobi equation on M
is given by a smooth real-valued function F defined on an open subset W � T �M;
and a solution to the equation is a smooth real-valued function u defined on an open
subset U �M such that the image of du lies in the zero set of F :

F
�
x;du.x/

�
D 0 for all x 2 U: (22.23)

(We write the covector dux 2 T �xM as
�
x;du.x/

�
, in order to be more consistent

with the coordinate representation (22.21) of the equation.) We are interested in
solving a Cauchy problem for (22.23): given an embedded hypersurface S �M
and a smooth function ' W S !R, we wish to find a smooth function u defined on
a neighborhood of S in M and satisfying (22.23) together with the initial condition

u
ˇ̌
S
D ': (22.24)

Just as in Chapter 9, in order to obtain solutions we need to assume that the problem
is of a type called noncharacteristic; we will describe what this means below.

Because Equation (22.23) involves only du, not u itself, we look first for a
closed 1-form ˛ satisfying F

�
x;˛.x/

�
� 0; then the Poincaré lemma guarantees

that locally ˛ D du for some function u, which then satisfies (22.23). By Proposi-
tion 22.12, it suffices to construct a Lagrangian submanifold of T �M that is the im-
age of a 1-form and is contained in F �1.0/. The key to finding such a submanifold
is the Hamiltonian flowout theorem (Theorem 22.23): after identifying an appropri-
ate isotropic embedded initial submanifold � � T �M; we will construct the image
of ˛ as the flowout from � along the Hamiltonian field of F .

The first challenge is to construct an appropriate initial submanifold � � T �M .
The image of d' will not do, because it lies in T �S , not T �M (and there is no
canonical way to identify T �S as a subset of T �M ). Thus, we must first look for an
appropriate section of the restricted bundle T �M jS , that is, a smooth map � W S !
T �M such that �.x/ 2 T �xM for each x 2 S . This will be the value of du along
S for our eventual solution u. Thus, we should expect that it matches d' when
restricted to vectors tangent to S , and that it satisfies the PDE at points of S . In
summary, we require � to satisfy the following conditions:

�.x/
ˇ̌
TxS
D d'.x/ for all x 2 S; (22.25)

F
�
x;�.x/

�
D 0 for all x 2 S: (22.26)

To find such a � , at least locally, begin by extending ' to a smooth function z' in a
neighborhood of S and choosing a smooth local defining function  for S . Since �
must agree with d' when restricted to TS , and the annihilator of TS at each point
is spanned by d , the only possibility for � is a section of the form � D d z'Cf d 

for some unknown real-valued function f defined in a neighborhood of S . You can
then insert this into the equation F

�
x;�.x/

�
D 0, and attempt to solve for the values

of f along S .
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The Cauchy problem (22.23)–(22.24) is said to be noncharacteristic if there ex-
ists a smooth section � 2 � .T �M jS / satisfying (22.25)–(22.26), with the additional
property that if

�
xi
�

are any local coordinates onM and
�
x1; : : : ; xn; �1; : : : ; �n

�
are

the corresponding natural coordinates on T �M; the following vector field along S
is nowhere tangent to S :

A�
ˇ
ˇ
x
D
@F

@�1

�
x;�.s/

� @

@x1
C � � � C

@F

@�n

�
x;�.s/

� @

@xn
: (22.27)

(As we will see in the proof of the next theorem, A� is actually globally defined as a
vector field along S , and does not depend on the choice of coordinates.) When this
condition is satisfied, we can solve the Cauchy problem.

Theorem 22.35 (The Cauchy Problem for a Hamilton–Jacobi Equation). Sup-
pose M is a smooth manifold, W � T �M is an open subset, F W W ! R is a
smooth function, S �M is an embedded hypersurface, and ' W S !R is a smooth
function. If the Cauchy problem (22.23)–(22.24) is noncharacteristic, then for each
p 2 S there is a smooth solution defined on some neighborhood of p in M .

Proof. Given � W S! T �M jS satisfying (22.25)–(22.26), let � �W be the image
of � . Then � is an embedded submanifold of dimension n� 1, where nD dimM .
In order to apply the Hamiltonian flowout theorem, we need to check first that �
is isotropic with respect to the canonical symplectic structure ! on T �M . Since
� W S! T �M is a smooth embedding whose image is � , this is equivalent to show-
ing that ��! D 0. Let � W T �M !M be the projection; then � ı � is equal to the
inclusion 	 W S ,!M . If � denotes the tautological 1-form on T �M; the defining
equation (22.3) for � implies

.���/.p/D d��p
�
d���.p/�.p/

�
D d.� ı �/�p�.p/D d	

�
p�.p/D d'.p/:

Thus ��� D d', and it follows that ��! D ��.�d�/D�d.���/D�d.d'/D 0.
Thus � is isotropic.

Next we need to check that the Hamiltonian vector field XF is nowhere tangent
to � . This follows from the noncharacteristic condition just as in the proof of The-
orem 9.53: because � W T �M !M restricts to a diffeomorphism from � to S , if
XF were tangent to � at some point

�
p;�.p/

�
2 � , then d�

�
XF j.p;�.p//

�
would

be tangent to S at p. Using (22.9) in natural coordinates
�
xi ; �i

�
on T �M (which

are Darboux coordinates for the canonical symplectic form), we find that

XF D
@F

@�1
@

@x1
C � � � C

@F

@�n
@

@xn
�
@F

@x1
@

@�1
� � � � �

@F

@xn
@

@�n
:

Thus d�
�
XF j.p;�.p//

�
DA� jp , so the assumption that the Cauchy problem is non-

characteristic guarantees that XF is nowhere tangent to � . (This calculation also
shows that A� is well defined independently of coordinates, because it is the push-
forward of XF from points of � .)

Let � be a flowout from � along XF . The Hamiltonian flowout theorem guaran-
tees that � is an n-dimensional isotropic—and therefore Lagrangian—submanifold
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of T �M contained in F �1.0/. Using the result of Problem 22-11, we conclude that
it will be the image of a closed 1-form on a neighborhood of p provided that it is
transverse to the fiber of � at

�
p;�.p/

�
. Once again, we use the fact that T.p;�.p//�

is spanned by T.p;�.p//� and XF j.p;�.p//. Because d� maps XF j.p;�.p// to A� jp
and maps T.p;�.p//� isomorphically onto TpS , the noncharacteristic assumption
guarantees that T.p;�.p//T �M D T.p;�.p//�˚Ker d�.p;�.p//, and thus � intersects
the fiber transversely at

�
p;�.p/

�
. By Problem 22-11, there is a closed 1-form ˛ de-

fined on a neighborhood U of p whose graph is an open subset of � . Because the
image of � is contained in � , it follows that

˛.x/D �.x/ for x 2 S \U: (22.28)

By the Poincaré lemma, after shrinking U further if necessary, we can find a
smooth function u W U !R such that duD ˛. Because � � F �1.0/, we conclude
that u satisfies (22.23). To ensure that the initial condition is also satisfied, shrink U
further so that S \U is connected. By adding a constant to u, we may arrange that
u.p/D '.p/. Then for any x 2 S , it follows from (22.25) and (22.28) that

du.x/
ˇ̌
TxS
D ˛.x/

ˇ̌
TxS
D �.x/

ˇ̌
TxS
D d'.x/:

Because S \U is connected, this means that u�' is constant on S \U . Since this
difference vanishes at p, it vanishes identically, so (22.24) is satisfied on S \U . �

Note that we did not claim any uniqueness in this theorem. In Cauchy problems
for fully nonlinear equations, even local uniqueness can fail. For example, consider
the following Cauchy problem in the plane:

�
@u

@x

�2
D 1; u.0;y/D 0:

This is noncharacteristic, as you can check. Both u.x;y/D x and u.x;y/D�x are
solutions to this problem, but they are not equal in any open subset. The problem
here is that there are two possible choices for the initial 1-form � (namely, � D dx
and � D�dx), and they yield different initial manifolds � and therefore different
solutions to the Cauchy problem. As Problem 22-25 shows, once � is chosen, local
uniqueness holds just as in the quasilinear case.

Example 22.36 (A Hamilton–Jacobi Equation). Consider the following Cauchy
problem in the plane:

@u

@x
�

�
@u

@y

�2
D 0; u.0;y/D y2:

The corresponding function on T �R2 is F.x;y; �; �/ D � � �2, where we use
.x; y; �; �/ to denote natural coordinates on T �R2 associated with .x; y/.

To check that the problem is noncharacteristic, we need to find a suitable 1-form
� along the initial manifold S D f.x; y/ W x D 0g. Since x is a defining function for
S , we can write � D d

�
y2
�
C f .y/dx D 2y dy C f .y/dx and solve the equation
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F.0;y;f .y/; 2y/D f .y/� .2y/2 D 0 to obtain f .y/D 4y2, and thus we can set
�.y/D 2y dy C 4y2 dx. The vector field A� is given by

A�
ˇ̌
.x;y/
D

@

@x
� 4y

@

@y
;

which is nowhere tangent to S .
The initial curve S can be parametrized byX.s/D .0; s/, and therefore the initial

curve � � T �R2 (the image of � ) can be parametrized by zX.s/D
�
0; s; 4s2; 2s

�
.

The Hamiltonian field of F is

XF
ˇ
ˇ
.x;y;;�/

D
@

@x
� 2�

@

@y
;

and it is an easy matter to solve the corresponding system of ODEs with initial
conditions .x; y; �; �/D

�
0; s; 4s2; 2s

�
to obtain the following parametrization of � :

�.t; s/D
�
t; s � 4st; 4s2; 2s

�
:

Solving .x; y/D .t; s � 4st/ for .t; s/ and inserting into the formulas for .�; �/, we
find that � is the image of the following 1-form:

˛D
4y2

.1� 4x/2
dxC

2y

1� 4x
dy:

This is indeed a closed 1-form, and using the procedure sketched at the end of
Chapter 11 we find that ˛D du on the set f.x; y/ W x < 1=4g, where

u.x;y/D
y2

1� 4x
:

In principle, we might have to add a constant to u to satisfy the initial condition, but
in this case u.0;y/D y2 already, so this is the solution to our Cauchy problem. //

General Nonlinear Equations

Finally, we show how the preceding method can be adapted to solve arbitrary first-
order PDEs by using contact geometry in place of symplectic geometry. For this
purpose, we introduce one last geometric construction. If M is a smooth manifold,
the 1-jet bundle of M is the smooth vector bundle J 1M DR�T �M !M; whose
fiber at x 2 M is R � T �xM . (It is the Whitney sum of a trivial R-bundle with
T �M .) If u W M !R is a smooth function, the 1-jet of u is the section j 1u W M !
J 1M defined by j 1u.x/D

�
u.x/; du.x/

�
. A point in the fiber of J 1M over x 2M

can be viewed as a first-order Taylor polynomial at x of a smooth function on M;
represented invariantly as the values of the function and its differential at x. (One
can also define higher-order jet bundles that give invariant representations of higher-
order Taylor polynomials. They are useful for studying higher-order PDEs, but we
do not pursue them here.)
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The canonical contact form on J 1M is the 1-form � D dz � � defined in Ex-
ample 22.27(b). A smooth (local or global) section � W M ! J 1M is said to be
Legendrian if its image is a Legendrian submanifold of J 1M; or equivalently if
��� D 0. The next proposition is a contact analogue of Proposition 22.12.

Proposition 22.37. Let M be a smooth manifold. A smooth local section of J 1M
is the 1-jet of a smooth function if and only if it is Legendrian.

I Exercise 22.38. Prove the preceding proposition.

The 1-jet bundle provides the most general setting in which to consider first-
order partial differential equations. IfM is a smooth manifold, a first-order PDE for
a function u W M !R can be viewed as a real-valued function F on the 1-jet bundle
of M; and a solution is a function whose 1-jet takes its values in the zero set of F .

Let M be a smooth manifold, and suppose we are given a function F 2 C1.W /
on some open subset W � J 1M; a smooth hypersurface S �M; and a smooth
function ' W S!R. We wish to solve the following Cauchy problem for u:

F
�
x;u.x/; du.x/

�
� 0; (22.29)

u
ˇ̌
S
D ': (22.30)

This problem is said to be noncharacteristic if there exists a smooth section � 2
�
�
T �M jS

�
taking its values in W and satisfying

�.x/
ˇ̌
TxS
D d'.x/ for all x 2 S; (22.31)

F
�
x;'.x/; �.x/

�
D 0 for all x 2 S; (22.32)

and such that the following vector field along S is nowhere tangent to S :

A';�
ˇ̌
x
D
@F

@�1

�
x;'.x/; �.x/

� @
@x1
C � � � C

@F

@�n

�
x;'.x/; �.x/

� @

@xn
: (22.33)

The proof of the next theorem is very similar to that of Theorem 22.35, but uses the
contact flowout theorem instead of the Hamiltonian one.

Theorem 22.39 (The General First-Order Cauchy Problem). Suppose M is a
smooth manifold, W � J 1M is an open subset, F W W ! R is a smooth function,
S �M is an embedded hypersurface, and ' W S ! R is a smooth function. If the
Cauchy problem (22.29)–(22.30) is noncharacteristic, then for each p 2 S there is
a smooth solution on some neighborhood of p in M .

Proof. Problem 22-26. �

Problems

22-1. Prove Proposition 22.5 (properties of symplectic, isotropic, coisotropic, and
Lagrangian subspaces).
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22-2. Let .V;!/ be a symplectic vector space of dimension 2n. Show that for each
symplectic, isotropic, coisotropic, or Lagrangian subspace S � V , there
exists a symplectic basis .Ai ;Bi / for V with the following property:
(a) If S is symplectic, S D span .A1;B1; : : : ;Ak ;Bk/ for some k.
(b) If S is isotropic, S D span .A1; : : : ;Ak/ for some k.
(c) If S is coisotropic, S D span .A1; : : : ;An;B1; : : : ;Bk/ for some k.
(d) If S is Lagrangian, S D span .A1; : : : ;An/.

22-3. The real symplectic group is the subgroup Sp.2n;R/ � GL.2n;R/ con-
sisting of all 2n � 2n matrices that leave the standard symplectic tensor
! D

Pn
iD1 dx

i ^ dyi invariant, that is, the set of invertible linear maps
Z W R2n!R2n such that !.Zx;Zy/D !.x;y/ for all x;y 2R2n.
(a) Show that a matrix Z is in Sp.2n;R/ if and only if it takes the standard

basis to a symplectic basis.
(b) Show that Z 2 Sp.2n;R/ if and only if ZT JZ D J , where J is the

2n� 2n block diagonal matrix

J D

�

j : : : 0
:::
: : :

:::

0 : : : j

�

;

with copies of the 2� 2 block j D
� 0 1
�1 0

�
along the main diagonal, and

zeros elsewhere.
(c) Show that Sp.2n;R/ is an embedded Lie subgroup of GL.2n;R/, and

determine its dimension.
(d) Determine the Lie algebra of Sp.2n;R/ as a subalgebra of gl.2n;R/.
(e) Is Sp.2n;R/ compact?

22-4. Let .M;!/ be a symplectic manifold, and suppose F W N !M is a smooth
map such that F �! is symplectic. Show that F is a smooth immersion.

22-5. Suppose .M;!/ is a 2n-dimensional compact symplectic manifold.
(a) Show that !n (the n-fold wedge product of ! with itself) is not exact.
(b) Show that H 2p

dR .M/¤ 0 for pD 1; : : : ; n.
(c) Show that S2 is the only sphere that admits a symplectic structure.

22-6. Prove that R2n (with its standard symplectic structure) does not have any
compact symplectic submanifolds.

22-7. Let .M;!/ and
� �M; z!

�
be symplectic manifolds. Define a 2-form ˝ on

M � �M by ˝ D ��! � z�� z!, where � W M � �M !M and z� W M � �M !
�M are the projections.
(a) Show that ˝ is symplectic.
(b) Show that a diffeomorphism F W M ! �M is a symplectomorphism if

and only if its graph �.F /D
˚
.x; y/ 2M � �M W y D F.x/

�
is a La-

grangian submanifold of
�
M � �M;˝

�
.

22-8. Suppose .M;!/ is a symplectic manifold and S �M is a coisotropic sub-
manifold. An immersed submanifold N � S is said to be characteristic if
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TpN D .TpS/
? for each p 2N . Show that there is a foliation of S by con-

nected characteristic submanifolds of S whose dimension is equal to the
codimension of S in M .

22-9. Considering R2n as a symplectic manifold with its standard symplectic
structure ! D

P
i dx

i ^ dyi , let ƒn � Gn
�
R2n

�
denote the set of La-

grangian subspaces of R2n.
(a) Show that the real symplectic group Sp.2n;R/ acts transitively on ƒn

(see Problem 22-3).
(b) Show that ƒn has a unique smooth manifold structure such that the

action of Sp.2n;R/ is smooth, and determine its dimension.
(c) Is ƒn compact?

22-10. Show that the canonical symplectic form on the cotangent bundle is invari-
ant under diffeomorphisms, in the following sense: suppose Q and zQ are
smooth manifolds and F W Q! zQ is a diffeomorphism. Let dF � W T � zQ!
T �Q be the smooth bundle homomorphism described in Problem 11-8.
Show that dF � is a symplectomorphism when both T �Q and T � zQ are
endowed with their canonical symplectic forms.

22-11. Let Q be a smooth manifold, and let S be an embedded Lagrangian sub-
manifold of the total space of T �Q. Prove the following statements.
(a) If S is transverse to the fiber of T �Q at a point q 2 T �Q, then there

exist a neighborhood V of q in S and a neighborhood U of �.q/ in Q
such that V is the image of a smooth closed 1-form defined on U .

(b) S is the image of a globally defined smooth closed 1-form on Q if and
only if S intersects each fiber transversely in exactly one point.

(Cf. Theorem 6.32 and Corollary 6.33.) (Used on p. 588.)

22-12. Let M be a smooth manifold of dimension at least 1. Show that there is no
1-form � on M such that the tautological form � 2�1.T �M/ is equal to
the pullback ��� .

22-13. Let M be a smooth manifold and let S �M be an embedded submanifold.
Define the conormal bundle of S to be the subset N �S � T �M defined
by

N �S D
n
.q; �/ 2 T �M W q 2 S; �

ˇ̌
TqS
� 0

o
:

Show that N �S is a smooth subbundle of T �M jS , and an embedded La-
grangian submanifold of T �M (with respect to the canonical symplectic
structure on T �M ).

22-14. Prove the following global version of the Darboux theorem, due to Moser
[Mos65]: LetM be a compact smooth manifold, and let !0 be a symplectic
form on M . Suppose there is a smooth time-dependent 1-form ˛ W Œ0; 1� �

M ! T �M such that !t D !0Cd˛t is symplectic for each t 2 Œ0; 1�. Show
that there is a diffeomorphism F W M !M such that F �!1 D !0.

22-15. Using the same technique as in the proof of Theorem 22.13, prove the fol-
lowing theorem of Moser [Mos65]: If M is an oriented compact smooth
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n-manifold, n � 1, and !0, !1 are smooth orientation forms on M such
that

R
M
!0 D

R
M
!1, then there exists a diffeomorphism F W M !M such

that F �!1 D !0. [Hint: for any orientation form !, show that the map
ˇ W X.M/!�n�1.M/ defined by ˇ.X/DX ³! as in (16.11) is a bundle
isomorphism.]

22-16. Let .M;!/ be a symplectic manifold. Let �.M/�X.M/ denote the set of
symplectic vector fields on M; and H .M/�X.M/ the set of Hamiltonian
vector fields.
(a) Show that �.M/ is a Lie subalgebra of X.M/, and H .M/ is a Lie

subalgebra of �.M/.
(b) Show that the map from �.M/ to �1.M/ given by X 7! X ³ !

descends to a vector space isomorphism between �.M/=H .M/ and
H 1

dR.M/.

22-17. Consider the 2-body problem, that is, the Hamiltonian system .T �Q;!;E/

described in Example 22.18 in the special case n D 2. Suppose that the
potential energy V depends only on the distance between the particles.
More precisely, suppose that V.q/ D v

�
r.q/

�
for some smooth function

v W .0;1/!R, where

r.q/D jq1 � q2j D
q�
q11 � q

1
2

�2
C
�
q21 � q

2
2

�2
C
�
q31 � q

3
2

�2
:

(a) Let uD
�
u1; u2; u3

�
be a unit vector in R3, and show that the function

P W T �Q!R defined by

P.q;p/D u � p1C u � p2

D u1p11 C u
2p21 C u

3p31 C u
1p12 C u

2p22 C u
3p32

is a conserved quantity (called the total linear momentum in the u-
direction), and that the corresponding infinitesimal symmetry generates
translations in the u-direction:

�t .q;p/D .q1C tu;q2C tu;p1;p2/

D
�
q11 C tu

1; q21 C tu
2; q31 C tu

3; q12 C tu
1; q22 C tu

2;

q32 C tu
3; p11 ; p

2
1 ; p

3
1 ; p

1
2 ; p

2
2 ; p

3
2

�
:

(b) Show that the function L W T �Q!R defined by

L.q;p/D q11p
2
1 � q

2
1p

1
1 C q

1
2p

2
2 � q

2
2p

1
2

is a conserved quantity (called the total angular momentum about the
z-axis), and find the flow of the corresponding infinitesimal symmetry.
Explain what this has to do with rotational symmetry.

22-18. Prove Proposition 22.21 (properties of conserved quantities and infinitesi-
mal symmetries).
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22-19. This problem outlines a different proof of the Darboux theorem. Let .M;!/
be a 2n-dimensional symplectic manifold and p 2M .
(a) Show that smooth coordinates

�
x1; : : : ; xn; y1; : : : ; yn

�
on an open sub-

set U �M are Darboux coordinates if and only if their Poisson brack-
ets satisfy

˚
xi ; yj

�
D ıij I

˚
xi ; xj

�
D
˚
yi ; yj

�
D 0: (22.34)

(b) Prove the following statement by induction on k: for each k D 0; : : : ; n,
there are smooth functions

�
x1; : : : ; xk ; y1; : : : ; yk

�
vanishing at p and

satisfying (22.34) in a neighborhood of p such that the 2k-tuple of
1-forms

�
dx1; : : : ; dxk; dy1; : : : ; dyk

�
is linearly independent at p.

When k D n, this proves the theorem. [Hint: for the inductive step,
assuming that

�
x1; : : : ; xk; y1; : : : ; yk

�
have been found, find smooth

coordinates
�
u1; : : : ; u2n

�
such that

@

@ui
DXxi ;

@

@uiCk
DXyi ; i D 1; : : : ; k;

and let ykC1 D u2kC1. Then find new coordinates
�
v1; : : : ; v2n

�
with

@

@vi
D Xxi ; i D 1; : : : ; k;

@

@viCk
D Xyi ; i D 1; : : : ; kC 1;

and let xkC1 D v2kC1.]

22-20. Suppose .M;H/ is a contact manifold of dimension 2nC 1. Show that if n
is odd, then M is orientable, while if n is even, then M is orientable if and
only if there exists a global contact form for H .

22-21. Prove Theorem 22.33 (characterization of contact vector fields).

22-22. Suppose .M;H/ is a contact manifold andX is a smooth vector field onM .
Prove that X is the Reeb field of some contact form for H if and only if it
is a contact vector field that takes no values in H .

22-23. Prove Theorem 22.34 (the contact flowout theorem).

22-24. The classical eikonal equation for a real-valued function u on an open sub-
set U �Rn is

nX

iD1

�
@u

@xi

�2
D f .x/; (22.35)

where f is a given smooth real-valued function on u. It plays an important
role in the theory of optics. (The word “eikonal” stems from the Greek word
for “image,” the same root from which our word “icon” is derived.) In the
special case f .x/ � 1, find an explicit solution u to (22.35) on an open
subset of Rn with uD 0 on the unit sphere.
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22-25. Suppose (22.24) is a noncharacteristic initial condition for a Hamilton–
Jacobi equation (22.23). For any choice of � W S ! T �Rn satisfying
(22.25), (22.26), and (22.27), and any p 2 S , show that there is a neigh-
borhood U of p on which there is a unique solution to the Cauchy problem
(22.23)–(22.24) satisfying du.x/D �.x/ for x 2 S .

22-26. Prove Theorem 22.39 (solution to the general first-order Cauchy problem).



Appendix A
Review of Topology

This book is written for readers who have already completed a rigorous course in
basic topology, including an introduction to the fundamental group and covering
maps. A convenient source for this material is [LeeTM], which covers all the topo-
logical ideas we need, and uses notations and conventions that are compatible with
those in the present book. But almost any other good topology text would do as
well, such as [Mun00, Sie92, Mas89]. In this appendix we state the most important
definitions and results, with most of the proofs left as exercises. If you have had
sufficient exposure to topology, these exercises should be straightforward, although
you might want to look a few of them up in the topology texts listed above.

Topological Spaces

We begin with the definitions. Let X be a set. A topology on X is a collection T of
subsets of X , called open subsets, satisfying

(i) X and ¿ are open.
(ii) The union of any family of open subsets is open.

(iii) The intersection of any finite family of open subsets is open.

A pair .X;T / consisting of a set X together with a topology T on X is called a
topological space. Ordinarily, when the topology is understood, one omits mention
of it and simply says “X is a topological space.”

There are a host of constructions and definitions associated with topological
spaces. Here we summarize the ones that are most important for this book.

Suppose X is a topological space, p 2X , and S �X .

� A neighborhood of p is an open subset containing p. Similarly, a neighborhood
of the set S is an open subset containing S . (Be warned that some authors use the
word “neighborhood” in the more general sense of a subset containing an open
subset containing p or S .)
� S is said to be closed if X X S is open (where X X S denotes the set difference
fx 2X W x … Sg).

J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics 218,
DOI 10.1007/978-1-4419-9982-5, © Springer Science+Business Media New York 2013
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� The interior of S , denoted by IntS , is the union of all open subsets of X con-
tained in S .
� The exterior of S , denoted by ExtS , is the union of all open subsets of X con-

tained in X X S .
� The closure of S , denoted by xS , is the intersection of all closed subsets of X

containing S .
� The boundary of S , denoted by @S , is the set of all points ofX that are in neither

IntS nor ExtS .
� A point p 2 S is said to be an isolated point of S if p has a neighborhood U �X

such that U \ S D fpg.
� A point p 2 X (not necessarily in S ) is said to be a limit point of S if every

neighborhood of p contains at least one point of S other than p.
� S is said to be dense in X if xS D X , or equivalently if every nonempty open

subset of X contains at least one point of S .
� S is said to be nowhere dense in X if xS contains no nonempty open subset.

The most important concepts of topology are continuous maps and convergent
sequences, which we define next. Let X and Y be topological spaces.

� A map F W X ! Y is said to be continuous if for every open subset U � Y , the
preimage F �1.U / is open in X .
� A continuous bijective map F W X! Y with continuous inverse is called a home-

omorphism. If there exists a homeomorphism from X to Y , we say that X and Y
are homeomorphic.
� A continuous map F W X! Y is said to be a local homeomorphism if every point
p 2 X has a neighborhood U � X such that F.U / is open in Y and F restricts
to a homeomorphism from U to F.U /.
� Given a sequence .pi /1iD1 of points in X and a point p 2 X , the sequence is

said to converge to p if for every neighborhood U of p, there exists a positive
integer N such that pi 2 U for all i � N . In this case, we write pi ! p or
limi!1 pi D p.

I Exercise A.1. Let F W X ! Y be a map between topological spaces. Prove that
each of the following properties is equivalent to continuity of F :

(a) For every subset A�X , F
�
xA
�
� F.A/.

(b) For every subset B � Y , F�1.IntB/� IntF�1.B/.

I Exercise A.2. Let X , Y , and Z be topological spaces. Show that the following
maps are continuous:

(a) The identity map IdX W X!X , defined by IdX .x/D x for all x 2X .
(b) Any constant map F W X ! Y (i.e., a map such that F.x/ D F.y/ for all

x;y 2X ).
(c) Any composition G ıF of continuous maps F W X! Y and G W Y !Z.

I Exercise A.3. Let X and Y be topological spaces. Suppose F W X! Y is contin-
uous and pi ! p in X . Show that F.pi /! F.p/ in Y .
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The most important examples of topological spaces, from which most of our
examples of manifolds are built in one way or another, are described below.

Example A.4 (Discrete Spaces). If X is an arbitrary set, the discrete topology on
X is the topology defined by declaring every subset of X to be open. Any space that
has the discrete topology is called a discrete space. //

Example A.5 (Metric Spaces). A metric space is a setM endowed with a distance
function (also called a metric) d W M �M ! R (where R denotes the set of real
numbers) satisfying the following properties for all x;y; z 2M :

(i) POSITIVITY: d.x;y/� 0, with equality if and only if x D y.
(ii) SYMMETRY: d.x;y/D d.y;x/.

(iii) TRIANGLE INEQUALITY: d.x; z/� d.x;y/C d.y; z/.

If M is a metric space, x 2M; and r > 0, the open ball of radius r around x is the
set

Br .x/D
˚
y 2M W d.x;y/ < r

�
;

and the closed ball of radius r is

xBr .x/D
˚
y 2M W d.x;y/� r

�
:

The metric topology onM is defined by declaring a subset S �M to be open if for
every point x 2 S , there is some r > 0 such that Br .x/� S . //

If M is a metric space and S is any subset of M; the restriction of the distance
function to pairs of points in S turns S into a metric space and thus also a topological
space. We use the following standard terminology for metric spaces:

� A subset S � M is bounded if there exists a positive number R such that
d.x;y/�R for all x;y 2 S .
� If S is a nonempty bounded subset of M; the diameter of S is the number

diamS D supfd.x;y/ W x;y 2 Sg.
� A sequence of points .xi /1iD1 inM is a Cauchy sequence if for every " > 0, there

exists an integer N such that i; j �N implies d.xi ; xj / < ".
� A metric space M is said to be complete if every Cauchy sequence in M con-

verges to a point of M .

Example A.6 (Euclidean Spaces). For each integer n � 1, the set Rn of ordered
n-tuples of real numbers is called n-dimensional Euclidean space. We denote a
point in Rn by

�
x1; : : : ; xn

�
,
�
xi
�
, or x; the numbers xi are called the components

or coordinates of x. (When n is small, we often use more traditional names such
as .x; y; z/ for the coordinates.) Notice that we write the coordinates of a point�
x1; : : : ; xn

�
2Rn with superscripts, not subscripts as is usually done in linear alge-

bra and calculus books, so as to be consistent with the Einstein summation conven-
tion, explained in Chapter 1. By convention, R0 is the one-element set f0g.

For each x 2Rn, the Euclidean norm of x is the nonnegative real number

jxj D

q�
x1
�2
C � � � C

�
xn
�2
;
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and for x;y 2Rn, the Euclidean distance function is defined by

d.x;y/D jx � yj:

This distance function turns Rn into a complete metric space. The resulting metric
topology on Rn is called the Euclidean topology. //

Example A.7 (Complex Euclidean Spaces). We also sometimes have occasion
to work with complex Euclidean spaces. We consider the set C of complex num-
bers, as a set, to be simply R2, with the complex number x C iy corresponding
to .x; y/ 2 R2. For any positive integer n, the n-dimensional complex Euclidean
space is the set Cn of ordered n-tuples of complex numbers. It becomes a topolog-
ical space when identified with R2n via the correspondence

�
x1C iy1; : : : ; xnC iyn

�
$
�
x1; y1; : : : ; xn; yn

�
: //

Example A.8 (Subsets of Euclidean Spaces). Every subset of Rn or Cn becomes
a metric space, and thus a topological space, when endowed with the Euclidean
metric. Whenever we mention such a subset, it is always assumed to have this metric
topology unless otherwise specified. It is a complete metric space if and only if it is
a closed subset of Rn. Here are some standard subsets of Euclidean spaces that we
work with frequently:

� The unit interval is the subset I �R defined by

I D Œ0; 1�D fx 2R W 0� x � 1g:

� The (open) unit ball of dimension n is the subset Bn �Rn defined by

Bn D
˚
x 2Rn W jxj< 1

�
:

� The closed unit ball of dimension n is the subset xBn �Rn defined by

xBn D
˚
x 2Rn W jxj � 1

�
:

The terms (open) unit disk and closed unit disk are commonly used for B2

and xB2, respectively.
� For n� 0, the (unit) n-sphere is the subset Sn �RnC1 defined by

Sn D
˚
x 2RnC1 W jxj D 1

�
:

Sometimes it is useful to think of an odd-dimensional sphere S2nC1 as a subset
of CnC1, by means of the usual identification of CnC1 with R2nC2.
� The (unit) circle is the 1-sphere S1, considered either as a subset of R2 or as a

subset of C. //

Hausdorff Spaces

Topological spaces allow us to describe a wide variety of concepts of “spaces.” But
for the purposes of manifold theory, arbitrary topological spaces are far too general,
because they can have some unpleasant properties, as the next exercise illustrates.
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I Exercise A.9. Let X be any set. Show that fX;¿g is a topology on X , called the
trivial topology. Show that when X is endowed with this topology, every sequence
in X converges to every point of X , and every map from a topological space into X is
continuous.

To avoid pathological cases like this, which result when X does not have suf-
ficiently many open subsets, we often restrict our attention to topological spaces
satisfying the following special condition. A topological space X is said to be a
Hausdorff space if for every pair of distinct points p;q 2 X , there exist disjoint
open subsets U;V �X such that p 2 U and q 2 V .

I Exercise A.10. Show that every metric space is Hausdorff in the metric topology.

I Exercise A.11. Let X be a Hausdorff space. Show that each finite subset of X is
closed, and that each convergent sequence in X has a unique limit.

Bases and Countability

Suppose X is a topological space. A collection B of open subsets of X is said to be
a basis for the topology of X (plural: bases) if every open subset of X is the union
of some collection of elements of B.

More generally, suppose X is merely a set, and B is a collection of subsets of X
satisfying the following conditions:

(i) X D
S
B2B B .

(ii) If B1;B2 2B and x 2 B1 \ B2, then there exists B3 2B such that x 2 B3 �
B1 \B2.

Then the collection of all unions of elements of B is a topology on X , called the
topology generated by B , and B is a basis for this topology.

If X is a topological space and p 2X , a neighborhood basis at p is a collection
Bp of neighborhoods of p such that every neighborhood of p contains at least one
B 2Bp .

A set is said to be countably infinite if it admits a bijection with the set of positive
integers, and countable if it is finite or countably infinite. A topological space X is
said to be first-countable if there is a countable neighborhood basis at each point,
and second-countable if there is a countable basis for its topology. Since a count-
able basis for X contains a countable neighborhood basis at each point, second-
countability implies first-countability.

The next lemma expresses the most important properties of first-countable
spaces. To say that a sequence is eventually in a subset means that all but finitely
many terms of the sequence are in the subset.

Lemma A.12 (Sequence Lemma). Let X be a first-countable space, let A�X be
any subset, and let x 2X .

(a) x 2 xA if and only if x is a limit of a sequence of points in A.
(b) x 2 IntA if and only if every sequence in X converging to x is eventually in A.
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(c) A is closed in X if and only if A contains every limit of every convergent se-
quence of points in A.

(d) A is open in X if and only if every sequence in X converging to a point of A is
eventually in A.

I Exercise A.13. Prove the sequence lemma.

I Exercise A.14. Show that every metric space is first-countable.

I Exercise A.15. Show that the set of all open balls in Rn whose radii are rational
and whose centers have rational coordinates is a countable basis for the Euclidean
topology, and thus Rn is second-countable.

One of the most important properties of second-countable spaces is expressed in
the following proposition. Let X be a topological space. A cover of X is a collec-
tion U of subsets of X whose union is X ; it is called an open cover if each of the
sets in U is open. A subcover of U is a subcollection of U that is still a cover.

Proposition A.16. Let X be a second-countable topological space. Every open
cover of X has a countable subcover.

Proof. Let B be a countable basis for X , and let U be an arbitrary open cover
of X . Let B 0 �B be the collection of basis open subsets B 2B such that B � U
for some U 2U. For each B 2B 0, choose a particular set UB 2U containing B .
The collection fUB WB 2B 0g is countable, so it suffices to show that it covers X .
Given a point x 2 X , there is some V 2U containing x, and because B is a basis
there exists B 2B such that x 2 B � V . This implies, in particular, that B 2B 0,
and therefore x 2B � UB . �

Subspaces, Products, Disjoint Unions, and Quotients

Subspaces

Probably the simplest way to obtain new topological spaces from old ones is by
taking subsets of other spaces. If X is a topological space and S � X is an arbi-
trary subset, we define the subspace topology on S (sometimes called the relative
topology) by declaring a subset U � S to be open in S if and only if there exists an
open subset V � X such that U D V \ S . A subset of S that is open or closed in
the subspace topology is sometimes said to be relatively open or relatively closed
in S , to make it clear that we do not mean open or closed as a subset of X . Any
subset of X endowed with the subspace topology is said to be a subspace of X .
Whenever we treat a subset of a topological space as a space in its own right, we
always assume that it has the subspace topology unless otherwise specified.

If X and Y are topological spaces, a continuous injective map F W X ! Y is
called a topological embedding if it is a homeomorphism onto its image F.X/� Y
in the subspace topology.

The most important properties of the subspace topology are summarized in the
next proposition.
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Proposition A.17 (Properties of the Subspace Topology). Let X be a topological
space and let S be a subspace of X .

(a) CHARACTERISTIC PROPERTY: If Y is a topological space, a map F W Y ! S is
continuous if and only if the composition 	S ı F W Y !X is continuous, where
	S W S ,!X is the inclusion map (the restriction of the identity map of X to S ).

(b) The subspace topology is the unique topology on S for which the characteristic
property holds.

(c) A subset K � S is closed in S if and only if there exists a closed subset L�X
such that K DL\ S .

(d) The inclusion map 	S W S ,!X is a topological embedding.
(e) If Y is a topological space and F W X ! Y is continuous, then F jS W S ! Y

(the restriction of F to S ) is continuous.
(f) If B is a basis for the topology of X , then BS D fB \S WB 2Bg is a basis for

the subspace topology on S .
(g) If X is Hausdorff, then so is S .
(h) If X is first-countable, then so is S .
(i) If X is second-countable, then so is S .

I Exercise A.18. Prove the preceding proposition.

IfX and Y are topological spaces and F W X! Y is a continuous map, part (e) of
the preceding proposition guarantees that the restriction of F to every subspace ofX
is continuous (in the subspace topology). We can also ask the converse question: If
we know that the restriction of F to certain subspaces ofX is continuous, is F itself
continuous? The next two propositions express two somewhat different answers to
this question.

Lemma A.19 (Continuity Is Local). Continuity is a local property, in the following
sense: if F W X ! Y is a map between topological spaces such that every point
p 2X has a neighborhood U on which the restriction F jU is continuous, then F is
continuous.

Lemma A.20 (Gluing Lemma for Continuous Maps). Let X and Y be topologi-
cal spaces, and suppose one of the following conditions holds:

(a) B1; : : : ;Bn are finitely many closed subsets of X whose union is X .
(b) fBigi2A is a collection of open subsets of X whose union is X .

Suppose that for all i we are given continuous maps Fi W Bi ! Y that agree on over-
laps: Fi jBi\Bj D Fj jBi\Bj . Then there exists a unique continuous map F W X! Y

whose restriction to each Bi is equal to Fi .

I Exercise A.21. Prove the two preceding lemmas.

I Exercise A.22. Let X be a topological space, and suppose X admits a countable
open cover fUi g such that each set Ui is second-countable in the subspace topology.
Show that X is second-countable.
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Product Spaces

Next we consider finite products of topological spaces. If X1; : : : ;Xk are (finitely
many) sets, their Cartesian product is the set X1�� � ��Xk consisting of all ordered
k-tuples of the form

�
x1; : : : ; xk

�
with xi 2Xi for each i . The i th projection map

is the map �i W X1 � � � � �Xk!Xi defined by �i
�
x1; : : : ; xk

�
D xi .

Suppose X1; : : : ;Xk are topological spaces. The collection of all subsets of X1�
� � � � Xk of the form U1 � � � � � Uk , where each Ui is open in Xi , forms a basis
for a topology on X1 � � � � � Xk , called the product topology. Endowed with this
topology, a finite product of topological spaces is called a product space. Any open
subset of the form U1 � � � � �Uk �X1 � � � � �Xk , where each Ui is open in Xi , is
called a product open subset. (A slightly different definition is required for products
of infinitely many spaces, but we need only the finite case. See [LeeTM] for more
about infinite product spaces.)

Proposition A.23 (Properties of the Product Topology). SupposeX1; : : : ;Xk are
topological spaces, and let X1 � � � � �Xk be their product space.

(a) CHARACTERISTIC PROPERTY: If B is a topological space, a map F W B !
X1 � � � � �Xk is continuous if and only if each of its component functions Fi D
�i ıF W B!Xi is continuous.

(b) The product topology is the unique topology on X1 � � � � � Xk for which the
characteristic property holds.

(c) Each projection map �i W X1 � � � � �Xk!Xi is continuous.
(d) Given any continuous maps Fi W Xi ! Yi for i D 1; : : : ; k, the product map

F1 � � � � �Fk W X1 � � � � �Xk! Y1 � � � � � Yk is continuous, where

F1 � � � � �Fk.x1; : : : ; xk/D
�
F1.x1/; : : : ;Fk.xk/

�
:

(e) If Si is a subspace ofXi for i D 1; : : : ; n, the product topology and the subspace
topology on S1 � � � � � Sn �X1 � � � � �Xn coincide.

(f) For any i 2 f1; : : : ; kg and any choices of points aj 2 Xj for j ¤ i , the map
x 7! .a1; : : : ; ai�1; x; aiC1; : : : ; ak/ is a topological embedding of Xi into the
product space X1 � � � � �Xk .

(g) If Bi is a basis for the topology of Xi for i D 1; : : : ; k, then the collection

B D fB1 � � � � �Bk WBi 2Big

is a basis for the topology of X1 � � � � �Xk .
(h) Every finite product of Hausdorff spaces is Hausdorff.
(i) Every finite product of first-countable spaces is first-countable.
(j) Every finite product of second-countable spaces is second-countable.

I Exercise A.24. Prove the preceding proposition.

Disjoint Union Spaces

Another simple way of building new topological spaces is by taking disjoint unions
of other spaces. From a set-theoretic point of view, the disjoint union is defined as
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follows. If .X˛/˛2A is an indexed family of sets, their disjoint union is the set
a

˛2A

X˛ D
˚
.x;˛/ W ˛ 2A; x 2X˛

�
:

For each ˛, there is a canonical injective map 	˛ W X˛!
`
˛2AX˛ given by 	˛.x/D

.x;˛/, and the images of these maps for different values of ˛ are disjoint. Typically,
we implicitly identify X˛ with its image in the disjoint union, thereby viewing X˛
as a subset of

`
˛2AX˛ . The ˛ in the notation .x;˛/ should be thought of as a “tag”

to indicate which set x comes from, so that the subsets corresponding to different
values of ˛ are disjoint, even if some or all of the original sets X˛ were identical.

Given an indexed family of topological spaces .X˛/˛2A, we define the disjoint
union topology on

`
˛2AX˛ by declaring a subset of

`
˛2AX˛ to be open if and

only if its intersection with each X˛ is open in X˛ .

Proposition A.25 (Properties of the Disjoint Union Topology). Suppose .X˛/˛2A
is an indexed family of topological spaces, and

`
˛2AX˛ is endowed with the dis-

joint union topology.

(a) CHARACTERISTIC PROPERTY: If Y is a topological space, a map

F W
a

˛2A

X˛! Y

is continuous if and only if F ı 	˛ W X˛! Y is continuous for each ˛ 2A.
(b) The disjoint union topology is the unique topology on

`
˛2AX˛ for which the

characteristic property holds.
(c) A subset of

`
˛2AX˛ is closed if and only if its intersection with each X˛ is

closed.
(d) Each injection 	˛ W X˛!

`
˛2AX˛ is a topological embedding.

(e) Every disjoint union of Hausdorff spaces is Hausdorff.
(f) Every disjoint union of first-countable spaces is first-countable.
(g) Every disjoint union of countably many second-countable spaces is second-

countable.

I Exercise A.26. Prove the preceding proposition.

Quotient Spaces and Quotient Maps

If X is a topological space, Y is a set, and � W X ! Y is a surjective map, the
quotient topology on Y determined by � is defined by declaring a subset U � Y
to be open if and only if ��1.U / is open in X . If X and Y are topological spaces,
a map � W X ! Y is called a quotient map if it is surjective and continuous and Y
has the quotient topology determined by � .

The following construction is the most common way of producing quotient maps.
A relation 	 on a set X is called an equivalence relation if it is reflexive (x 	 x for
all x 2X ), symmetric (x 	 y implies y 	 x), and transitive (x 	 y and y 	 z imply
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x 	 z). If R �X �X is any relation on X , then the intersection of all equivalence
relations on X containing R is an equivalence relation, called the equivalence rela-
tion generated by R. If 	 is an equivalence relation on X , then for each x 2X , the
equivalence class of x, denoted by Œx�, is the set of all y 2X such that y 	 x. The
set of all equivalence classes is a partition of X : a collection of disjoint nonempty
subsets whose union is X .

Suppose X is a topological space and 	 is an equivalence relation on X . Let
X=	 denote the set of equivalence classes in X , and let � W X!X=	 be the natu-
ral projection sending each point to its equivalence class. Endowed with the quotient
topology determined by � , the space X=	 is called the quotient space (or identi-
fication space) of X determined by �. For example, suppose X and Y are topo-
logical spaces, A� Y is a closed subset, and f W A!X is a continuous map. The
relation a	 f .a/ for all a 2A generates an equivalence relation on X q Y , whose
quotient space is denoted by X [f Y and called an adjunction space. It is said to
be formed by attaching Y to X along f .

If � W X! Y is a map, a subset U �X is said to be saturated with respect to �
if U is the entire preimage of its image: U D ��1

�
�.U /

�
. Given y 2 Y , the fiber

of � over y is the set ��1.y/. Thus, a subset of X is saturated if and only if it is a
union of fibers.

Theorem A.27 (Properties of Quotient Maps). Let � W X ! Y be a quotient
map.

(a) CHARACTERISTIC PROPERTY: If B is a topological space, a map F W Y ! B

is continuous if and only if F ı � W X!B is continuous.
(b) The quotient topology is the unique topology on Y for which the characteristic

property holds.
(c) A subset K � Y is closed if and only if ��1.K/ is closed in X .
(d) If � is injective, then it is a homeomorphism.
(e) If U � X is a saturated open or closed subset, then the restriction �jU W U !

�.U / is a quotient map.
(f) Any composition of � with another quotient map is again a quotient map.

I Exercise A.28. Prove the preceding theorem.

I Exercise A.29. Let X and Y be topological spaces, and suppose that F W X ! Y

is a surjective continuous map. Show that the following are equivalent:

(a) F is a quotient map.
(b) F takes saturated open subsets to open subsets.
(c) F takes saturated closed subsets to closed subsets.

The next two properties of quotient maps play important roles in topology, and have
equally important generalizations in smooth manifold theory (see Chapter 4).

Theorem A.30 (Passing to the Quotient). Suppose � W X ! Y is a quotient map,
B is a topological space, and F W X ! B is a continuous map that is constant on
the fibers of � (i.e., �.p/D �.q/ implies F.p/D F.q/). Then there exists a unique
continuous map zF W Y !B such that F D zF ı � .
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Proof. The existence and uniqueness of zF follow from set-theoretic considerations,
and its continuity is an immediate consequence of the characteristic property of the
quotient topology. �

Theorem A.31 (Uniqueness of Quotient Spaces). If �1 W X ! Y1 and �2 W X !
Y2 are quotient maps that are constant on each other’s fibers (i.e., �1.p/D �1.q/ if
and only if �2.p/D �2.q/), then there exists a unique homeomorphism ' W Y1! Y2
such that ' ı �1 D �2.

Proof. Applying the preceding theorem to the quotient map �1 W X ! Y1, we see
that �2 passes to the quotient, yielding a continuous map z�2 W Y1! Y2 satisfying
z�2 ı �1 D �2. Applying the same argument with the roles of �1 and �2 reversed,
there is a continuous map z�1 W Y2! Y1 satisfying z�1 ı �2 D �1. Together, these
identities imply that z�2 ı z�1 ı �2 D �2. Applying Theorem A.30 again with �2
playing the roles of both � and F , we see that both z�2 ı z�1 and IdY2 are obtained
from �2 by passing to the quotient, so the uniqueness assertion of Theorem A.30
implies that z�2 ı z�1 D IdY2 . A similar argument shows that z�1 ı z�2 D IdY1 , so that
z�2 is the desired homeomorphism. �

Open and Closed Maps

A map F W X ! Y (continuous or not) is said to be an open map if for every open
subsetU �X , the image set F.U / is open in Y , and a closed map if for every closed
subset K � X , the image F.K/ is closed in Y . Continuous maps may be open,
closed, both, or neither, as can be seen by examining simple examples involving
subsets of the plane.

I Exercise A.32. Suppose X1; : : : ;Xk are topological spaces. Show that each pro-
jection �i W X1 � � � � �Xk!Xi is an open map.

I Exercise A.33. Let .X˛/˛2A be an indexed family of topological spaces. Show
that each injection 	˛ W X˛!

`
˛2AX˛ is both open and closed.

I Exercise A.34. Show that every local homeomorphism is an open map.

I Exercise A.35. Show that every bijective local homeomorphism is a homeomor-
phism.

I Exercise A.36. Suppose q W X ! Y is an open quotient map. Prove that Y is
Hausdorff if and only if the set RD f.x1; x2/ W q.x1/D q.x2/g is closed in X �X .

I Exercise A.37. Let X and Y be topological spaces, and let F W X! Y be a map.
Prove the following:

(a) F is closed if and only if for every A�X , F
�
xA
�

 F.A/.

(b) F is open if and only if for every B � Y , F�1.IntB/
 IntF�1.B/.

The most important classes of continuous maps in topology are the homeomor-
phisms, quotient maps, and topological embeddings. Obviously, it is necessary for
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a map to be bijective in order for it to be a homeomorphism, surjective for it to be
a quotient map, and injective for it to be a topological embedding. However, even
when a continuous map is known to satisfy one of these necessary set-theoretic con-
ditions, it is not always easy to tell whether it has the desired topological property.
One simple sufficient condition is that it be either an open or a closed map, as the
next theorem shows.

Theorem A.38. Suppose X and Y are topological spaces, and F W X ! Y is a
continuous map that is either open or closed.

(a) If F is surjective, then it is a quotient map.
(b) If F is injective, then it is a topological embedding.
(c) If F is bijective, then it is a homeomorphism.

Proof. Suppose first that F is surjective. If it is open, it certainly takes saturated
open subsets to open subsets. Similarly, if it is closed, it takes saturated closed sub-
sets to closed subsets. Thus it is a quotient map by Exercise A.29.

Now suppose F is open and injective. Then F W X ! F.X/ is bijective, so
F �1 W F.X/! X exists by elementary set-theoretic considerations. If U � X is
open, then

�
F �1

�
�1.U /D F.U / is open in Y by hypothesis, and therefore is also

open in F.X/ by definition of the subspace topology on F.X/. This proves that
F �1 is continuous, so that F is a homeomorphism onto its image. If F is closed,
the same argument goes through with “open” replaced by “closed” (using the char-
acterization of closed subsets of F.X/ given in Proposition A.17(c)). This proves
part (b), and part (c) is just the special case of (b) in which F.X/D Y . �

Connectedness and Compactness

A topological space X is said to be disconnected if it has two disjoint nonempty
open subsets whose union is X , and it is connected otherwise. Equivalently, X is
connected if and only if the only subsets of X that are both open and closed are ¿
and X itself. If X is any topological space, a connected subset of X is a subset
that is a connected space when endowed with the subspace topology. For example,
the nonempty connected subsets of R are the singletons (one-element sets) and
the intervals, which are the subsets J � R containing more than one point and
having the property that whenever a; b 2 J and a < c < b, it follows that c 2 J as
well.

A maximal connected subset of X (i.e., a connected subset that is not properly
contained in any larger connected subset) is called a component (or connected com-
ponent) of X .

Proposition A.39 (Properties of Connected Spaces). Let X and Y be topological
spaces.

(a) If F W X! Y is continuous and X is connected, then F.X/ is connected.
(b) Every connected subset of X is contained in a single component of X .
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(c) A union of connected subspaces of X with a point in common is connected.
(d) The components of X are disjoint nonempty closed subsets whose union is X ,

and thus they form a partition of X .
(e) If S is a subset of X that is both open and closed, then S is a union of compo-

nents of X .
(f) Every finite product of connected spaces is connected.
(g) Every quotient space of a connected space is connected.

I Exercise A.40. Prove the preceding proposition.

Closely related to connectedness is path connectedness. If X is a topological
space and p;q 2 X , a path in X from p to q is a continuous map f W I ! X

(where I D Œ0; 1�) such that f .0/ D p and f .1/ D q. If for every pair of points
p;q 2X there exists a path in X from p to q, then X is said to be path-connected.
The path components of X are its maximal path-connected subsets.

Proposition A.41 (Properties of Path-Connected Spaces).

(a) Proposition A.39 holds with “connected” replaced by “path-connected” and
“component” by “path component” throughout.

(b) Every path-connected space is connected.

I Exercise A.42. Prove the preceding proposition.

For most topological spaces we treat in this book, including all manifolds, con-
nectedness and path connectedness turn out to be equivalent. The link between the
two concepts is provided by the following notion. A topological space is said to be
locally path-connected if it admits a basis of path-connected open subsets.

Proposition A.43 (Properties of Locally Path-Connected Spaces). Let X be a
locally path-connected topological space.

(a) The components of X are open in X .
(b) The path components of X are equal to its components.
(c) X is connected if and only if it is path-connected.
(d) Every open subset of X is locally path-connected.

I Exercise A.44. Prove the preceding proposition.

A topological space X is said to be compact if every open cover of X has a finite
subcover. A compact subset of a topological space is one that is a compact space in
the subspace topology. For example, it is a consequence of the Heine–Borel theorem
that a subset of Rn is compact if and only if it is closed and bounded.

Proposition A.45 (Properties of Compact Spaces). Let X and Y be topological
spaces.

(a) If F W X! Y is continuous and X is compact, then F.X/ is compact.
(b) If X is compact and f W X ! R is continuous, then f is bounded and attains

its maximum and minimum values on X .
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(c) Any union of finitely many compact subspaces of X is compact.
(d) If X is Hausdorff and K and L are disjoint compact subsets of X , then there

exist disjoint open subsets U;V �X such that K � U and L� V .
(e) Every closed subset of a compact space is compact.
(f) Every compact subset of a Hausdorff space is closed.
(g) Every compact subset of a metric space is bounded.
(h) Every finite product of compact spaces is compact.
(i) Every quotient of a compact space is compact.

I Exercise A.46. Prove the preceding proposition.

For maps between metric spaces, there are several variants of continuity that are
useful, especially in the context of compact spaces. Suppose .M1; d1/ and .M2; d2/

are metric spaces, and F W M1!M2 is a map. Then F is said to be uniformly con-
tinuous if for every " > 0, there exists ı > 0 such that for all x;y 2M1, d1.x; y/ < ı
implies d2

�
F.x/;F.y/

�
< ". It is said to be Lipschitz continuous if there is a con-

stant C such that d2
�
F.x/;F.y/

�
� Cd1.x; y/ for all x;y 2M1. Any such C is

called a Lipschitz constant for F . We say that F is locally Lipschitz continuous
if every point x 2M1 has a neighborhood on which F is Lipschitz continuous.
(To emphasize the distinction, Lipschitz continuous functions are sometimes called
uniformly or globally Lipschitz continuous.)

I Exercise A.47. For maps between metric spaces, show that Lipschitz continuous
) uniformly continuous) continuous, and Lipschitz continuous) locally Lipschitz
continuous) continuous. (Exercise A.49 below shows that these implications are not
reversible.)

Proposition A.48. Suppose .M1; d1/ and .M2; d2/ are metric spaces and F W M1!

M2 is a map. Let K be any compact subset of M1.

(a) If F is continuous, then F jK is uniformly continuous.
(b) If F is locally Lipschitz continuous, then F jK is Lipschitz continuous.

Proof. First we prove (a). Assume F is continuous, and let " > 0 be given. For
each x 2 K , by continuity there is a positive number ı.x/ such that d1.x; y/ <
2ı) d2

�
F.x/;F.y/

�
< "=2. Because the open balls fBı.x/.x/ W x 2Kg cover K ,

by compactness there are finitely many points x1; : : : ; xn 2 K such that K �
Bı.x1/.x1/ [ � � � [ Bı.xn/.xn/. Let ı D minfı.x1/; : : : ; ı.xn/g. Suppose x;y 2 K
satisfy d1.x; y/ < ı. There is some i such that x 2Bı.xi /.xi /, and then the triangle
inequality implies that x and y both lie in B2ı.xi /.xi /. It follows that

d2
�
F.x/;F.y/

�
� d2

�
F.x/;F.xi /

�
C d2

�
F.xi /;F.y/

�
< "=2C "=2D ":

Next we prove (b). Assume F is locally Lipschitz continuous. Because F is
continuous, Proposition A.45 shows that F.K/ is compact and therefore bounded.
Let D D diamF.K/. For each x 2K , there is a positive number ı.x/ such that F
is Lipschitz continuous on B2ı.x/.x/, with Lipschitz constant C.x/. By compact-
ness, there are points x1; : : : ; xn 2K such that K � Bı.x1/.x1/[ � � � [Bı.xn/.xn/.
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Let C DmaxfC.x1/; : : : ;C.xn/g and ı Dminfı.x1/; : : : ; ı.xn/g, and let x;y 2K
be arbitrary. On the one hand, if d1.x; y/ < ı, then by the same argument as in
the preceding paragraph, x and y lie in one of the balls on which F is Lipschitz
continuous, so d2

�
F.x/;F.y/

�
� Cd1.x; y/. On the other hand, if d1.x; y/ � ı,

then d2
�
F.x/;F.y/

�
� D � .D=ı/d1.x; y/. Therefore, maxfC;D=ıg is a Lips-

chitz constant for F on K . �

I Exercise A.49. Let f;g W Œ0;1/!R be defined by f .x/D
p
x and g.x/D x2.

Show that f is uniformly continuous but not locally or globally Lipschitz continu-
ous, and g is locally Lipschitz continuous but not uniformly continuous or globally
Lipschitz continuous.

For manifolds, subsets of manifolds, and most other spaces we work with, there
are two other equivalent formulations of compactness that are frequently useful.
Proofs of the next proposition can be found in [LeeTM, Chap. 4], [Mun00, Chap. 3],
and [Sie92, Chap. 7].

Proposition A.50 (Equivalent Formulations of Compactness). Suppose M is a
second-countable Hausdorff space or a metric space. The following are equivalent.

(a) M is compact.
(b) Every infinite subset of M has a limit point in M .
(c) Every sequence in M has a convergent subsequence in M .

I Exercise A.51. Show that every compact metric space is complete.

The next lemma expresses one of the most useful properties of compact spaces.

Lemma A.52 (Closed Map Lemma). SupposeX is a compact space, Y is a Haus-
dorff space, and F W X! Y is a continuous map.

(a) F is a closed map.
(b) If F is surjective, it is a quotient map.
(c) If F is injective, it is a topological embedding.
(d) If F is bijective, it is a homeomorphism.

Proof. By virtue of Theorem A.38, the last three assertions follow from the first,
so we need only prove that F is closed. Suppose K � X is a closed subset. Then
part (e) of Proposition A.45 implies that K is compact; part (a) of that proposition
implies that F.K/ is compact; and part (f) implies that F.K/ is closed in Y . �

If X and Y are topological spaces, a map F W X! Y (continuous or not) is said
to be proper if for every compact set K � Y , the preimage F �1.K/ is compact.
Here are some useful sufficient conditions for a map to be proper.

Proposition A.53 (Sufficient Conditions for Properness). Suppose X and Y are
topological spaces, and F W X! Y is a continuous map.

(a) If X is compact and Y is Hausdorff, then F is proper.
(b) If F is a closed map with compact fibers, then F is proper.
(c) If F is a topological embedding with closed image, then F is proper.
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(d) If Y is Hausdorff and F has a continuous left inverse (i.e., a continuous map
G W Y !X such that G ıF D IdX ), then F is proper.

(e) If F is proper and A� X is a subset that is saturated with respect to F , then
F jA W A! F.A/ is proper.

I Exercise A.54. Prove the preceding proposition.

Locally Compact Hausdorff Spaces

In general, the topological spaces whose properties are most familiar are those
whose topologies are induced by metrics; such a topological space is said to be
metrizable. However, when studying manifolds, it is often quite inconvenient to ex-
hibit a metric that generates a manifold’s topology. Fortunately, as shown in Chap-
ter 1, manifolds belong to another class of spaces with similarly nice properties, the
locally compact Hausdorff spaces. In this section, we review some of the properties
of these spaces.

A topological space X is said to be locally compact if every point has a neigh-
borhood contained in a compact subset of X . If X is Hausdorff, this property has
two equivalent formulations that are often more useful, as the next exercise shows.
A subset of X is said to be precompact in X if its closure in X is compact.

I Exercise A.55. For a Hausdorff space X , show that the following are equivalent:

(a) X is locally compact.
(b) Each point of X has a precompact neighborhood.
(c) X has a basis of precompact open subsets.

I Exercise A.56. Prove that every open or closed subspace of a locally compact
Hausdorff space is itself a locally compact Hausdorff space.

The next result can be viewed as a generalization of the closed map lemma
(Lemma A.52).

Theorem A.57 (Proper Continuous Maps Are Closed). Suppose X is a topolog-
ical space and Y is a locally compact Hausdorff space. Then every proper continu-
ous map F W X! Y is closed.

Proof. Let K �X be a closed subset. To show that F.K/ is closed in Y , we show
that it contains all of its limit points. Let y be a limit point of F.K/, and let U be
a precompact neighborhood of y. Then y is also a limit point of F.K/ \ xU . Be-
cause F is proper, F �1

�
xU
�

is compact, which implies thatK\F �1
�
xU
�

is compact.
Because F is continuous, F

�
K \F �1

�
xU
��
D F.K/\ xU is compact and therefore

closed in Y . In particular, y 2 F.K/\ xU � F.K/, so F.K/ is closed. �
Here is an important property of locally compact Hausdorff spaces, which is also

shared by complete metric spaces. For a proof, see [LeeTM, Chap. 4].

Theorem A.58 (Baire Category Theorem). In a locally compact Hausdorff space
or a complete metric space, every countable union of nowhere dense sets has empty
interior.
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Corollary A.59. In a locally compact Hausdorff space or a complete metric space,
every nonempty countable closed subset contains at least one isolated point.

Proof. Assume X is such a space. Let A � X be a nonempty countable closed
subset, and assume that A has no isolated points. The fact that A is closed in X
means that A itself is either a locally compact Hausdorff space or a complete metric
space. For each a 2 A, the singleton fag is nowhere dense in A: it is closed in A
because A is Hausdorff, and it contains no nonempty open subset because A has
no isolated points. Since A is a countable union of singletons, the Baire category
theorem implies that A has empty interior in A, which is a contradiction. �

If we add the hypothesis of second-countability to a locally compact Hausdorff
space, we can prove even more. A sequence .Ki /1iD1 of compact subsets of a topo-
logical space X is called an exhaustion of X by compact sets if X D

S
i Ki and

Ki � IntKiC1 for each i .

Proposition A.60. A second-countable, locally compact Hausdorff space admits an
exhaustion by compact sets.

Proof. Let X be such a space. Because X is a locally compact Hausdorff space,
it has a basis of precompact open subsets; since it is second-countable, it is cov-
ered by countably many such sets. Let .Ui /1iD1 be such a countable cover. Be-
ginning with K1 D xU1, assume by induction that we have constructed compact
sets K1; : : : ;Kk satisfying Uj �Kj for each j and Kj�1 � IntKj for j � 2. Be-
cause Kk is compact, there is some mk such that Kk � U1 [ � � � [ Umk . If we let
KkC1 D xU1 [ � � � [ xUmk , then KkC1 is a compact set whose interior contains Kk .
Moreover, by increasing mk if necessary, we may assume that mk � k C 1, so that
UkC1 �KkC1. By induction, we obtain the required exhaustion. �

Homotopy and the Fundamental Group

If X and Y are topological spaces and F0;F1 W X ! Y are continuous maps, a
homotopy from F 0 to F 1 is a continuous map H W X � I ! Y satisfying

H.x;0/D F0.x/;

H.x; 1/D F1.x/;

for all x 2X . If there exists a homotopy from F0 to F1, we say that F 0 and F 1 are
homotopic, and write F0 ' F1. If the homotopy satisfies H.x; t/D F0.x/D F1.x/
for all t 2 I and all x in some subset A � X , the maps F0 and F1 are said to
be homotopic relative to A. Both “homotopic” and “homotopic relative to A” are
equivalence relations on the set of all continuous maps from X to Y .

The most important application of homotopies is to paths. Suppose X is a topo-
logical space. Two paths f0; f1 W I ! X are said to be path-homotopic, denoted
symbolically by f0 	 f1, if they are homotopic relative to f0; 1g. Explicitly, this
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means that there is a continuous map H W I � I !X satisfying

H.s; 0/D f0.s/; s 2 I I

H.s; 1/D f1.s/; s 2 I I

H.0; t/D f0.0/D f1.0/; t 2 I I

H.1; t/D f0.1/D f1.1/; t 2 I:

For any given points p;q 2X , path homotopy is an equivalence relation on the set
of all paths from p to q. The equivalence class of a path f is called its path class,
and is denoted by Œf �.

Given two paths f;g W I ! X such that f .1/D g.0/, their product is the path
f � g W I !X defined by

f � g.s/D

(
f .2s/; 0� s � 1

2
I

g.2s � 1/; 1
2
� s � 1:

If f 	 f 0 and g 	 g0, it is not hard to show that f � g 	 f 0 � g0. Therefore, it
makes sense to define the product of the path classes Œf � and Œg� by Œf � � Œg� D
Œf � g�. Although multiplication of paths is not associative, it is associative up to
path homotopy: .Œf � � Œg�/ � Œh�D Œf � � .Œg� � Œh�/. When we need to consider products
of three or more actual paths (as opposed to path classes), we adopt the convention
that such products are to be evaluated from left to right: f � g � hD .f � g/ � h.

If X is a topological space and q is a point in X , a loop in X based at q is a path
in X from q to q, that is, a continuous map f W I !X such that f .0/D f .1/D q.
The set of path classes of loops based at q is denoted by �1.X; q/. Equipped with
the product described above, it is a group, called the fundamental group of X
based at q. The identity element of this group is the path class of the constant
path cq.s/� q, and the inverse of Œf � is the path class of the reverse path xf .s/D
f .1� s/.

It can be shown that for path-connected spaces, the fundamental groups based at
different points are isomorphic. If X is path-connected and for some (hence every)
q 2X , the fundamental group �1.X; q/ is the trivial group consisting of Œcq� alone,
we say that X is simply connected. This means that every loop is path-homotopic
to a constant path.

I Exercise A.61. Let X be a path-connected topological space. Show that X is sim-
ply connected if and only if every pair of paths in X with the same starting and ending
points are path-homotopic.

A key feature of the homotopy relation is that it is preserved by composition, as
the next proposition shows.

Proposition A.62. If F0;F1 W X ! Y and G0;G1 W Y ! Z are continuous maps
with F0 ' F1 and G0 'G1, then G0 ı F0 'G1 ı F1. Similarly, if f0; f1 W I !X

are path-homotopic and F W X! Y is a continuous map, then F ı f0 	 F ı f1.

I Exercise A.63. Prove the preceding proposition.
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Thus if F W X! Y is a continuous map, for each q 2X we obtain a well-defined
map F� W �1.X; q/! �1

�
Y;F.q/

�
by setting

F�Œf �D ŒF ı f �:

Proposition A.64. If X and Y are topological spaces and F W X ! Y is a contin-
uous map, then F� W �1.X; q/! �1

�
Y;F.q/

�
is a group homomorphism, known as

the homomorphism induced by F .

Proposition A.65 (Properties of the Induced Homomorphism).

(a) Let F W X ! Y and G W Y ! Z be continuous maps. Then for each q 2 X ,
.G ıF /� DG� ıF� W �1.X; q/! �1

�
Z;G.F.q//

�
.

(b) For each space X and each q 2X , the homomorphism induced by the identity
map IdX W X!X is the identity map of �1.X; q/.

(c) If F W X ! Y is a homeomorphism, then F� W �1.X; q/ ! �1
�
Y;F.q/

�
is

an isomorphism. Thus, homeomorphic spaces have isomorphic fundamental
groups.

I Exercise A.66. Prove the two preceding propositions.

I Exercise A.67. A subset U �Rn is said to be star-shaped if there is a point c 2U
such that for each x 2 U , the line segment from c to x is contained in U . Show that
every star-shaped set is simply connected.

Proposition A.68 (Fundamental Groups of Spheres).

(a) �1
�
S1; .1; 0/

�
is the infinite cyclic group generated by the path class of the loop

! W I ! S1 given by !.s/D .cos2�s; sin2�s/.
(b) If n > 1, Sn is simply connected.

Proposition A.69 (Fundamental Groups of Product Spaces). SupposeX1; : : : ;Xk
are topological spaces, and let pi W X1 � � � � �Xk ! Xi denote the i th projection
map. For any points qi 2Xi , i D 1; : : : ; k, define a map

P W �1
�
X1 � � � � �Xk ; .q1; : : : ; qk/

�
! �1.X1; q1/� � � � � �1.Xk ; qk/

by

P Œf �D
�
p1�Œf �; : : : ; pk�Œf �

�
:

Then P is an isomorphism.

I Exercise A.70. Prove the two preceding propositions.

A continuous map F W X! Y between topological spaces is said to be a homo-
topy equivalence if there is a continuous map G W Y ! X such that F ıG ' IdY
and G ıF ' IdX . Such a map G is called a homotopy inverse for F . If there exists
a homotopy equivalence between X and Y , the two spaces are said to be homo-
topy equivalent. For example, the inclusion map 	 W Sn�1 ,! Rn X f0g is a homo-
topy equivalence with homotopy inverse r.x/D x=jxj, because r ı 	D IdSn�1 and
	 ı r is homotopic to the identity map of Rn X f0g via the straight-line homotopy
H.x; t/D txC .1� t/x=jxj.
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Theorem A.71 (Homotopy Invariance). If F W X! Y is a homotopy equivalence,
then for each p 2X , F� W �1.X;p/! �1

�
Y;F.p/

�
is an isomorphism.

For a proof, see any of the topology texts mentioned at the beginning of this
appendix.

Covering Maps

Suppose E and X are topological spaces. A map � W E ! X is called a covering
map if E and X are connected and locally path-connected, � is surjective and con-
tinuous, and each point p 2 X has a neighborhood U that is evenly covered by � ,
meaning that each component of ��1.U / is mapped homeomorphically onto U
by � . In this case, X is called the base of the covering, and E is called a covering
space of X . If U is an evenly covered subset of X , the components of ��1.U / are
called the sheets of the covering over U .

Some immediate consequences of the definition should be noted. First, it follows
from Proposition A.43 that E and X are actually path-connected. Second, suppose
U � X is any evenly covered open subset. Because ��1.U / is open in E , it is lo-
cally path-connected, and therefore its components are open subsets of ��1.U / and
thus also of E . Because U is the homeomorphic image of any one of the compo-
nents of ��1.U /, each of which is path-connected, it follows that evenly covered
open subsets are path-connected.

I Exercise A.72. Show that every covering map is a local homeomorphism, an open
map, and a quotient map.

I Exercise A.73. Show that an injective covering map is a homeomorphism.

I Exercise A.74. Show that all fibers of a covering map have the same cardinality,
called the number of sheets of the covering.

I Exercise A.75. Show that a covering map is a proper map if and only if it is finite-
sheeted.

I Exercise A.76. Show that every finite product of covering maps is a covering map.

The main properties of covering maps that we need are summarized in the next
four propositions. For proofs, you can consult [LeeTM, Chaps. 11 and 12], [Mun00,
Chaps. 9 and 13], or [Sie92, Chap. 14].

If � W E!X is a covering map and F W B!X is a continuous map, a lift of F
is a continuous map zF W B!E such that � ı zF D F :

E

B
F
�

zF

�

X:

�
�
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Proposition A.77 (Lifting Properties of Covering Maps). Suppose � W E!X is
a covering map.

(a) UNIQUE LIFTING PROPERTY: If B is a connected space and F W B! X is a
continuous map, then any two lifts of F that agree at one point are identical.

(b) PATH LIFTING PROPERTY: If f W I ! X is a path, then for any point e 2 E
such that �.e/ D f .0/, there exists a unique lift zfe W I ! E of f such that
zf .0/D e.

(c) MONODROMY THEOREM: If f;g W I ! X are path-homotopic paths and
zfe; zge W I ! E are their lifts starting at the same point e 2 E , then zfe and
zge are path-homotopic and zfe.1/D zge.1/.

Proposition A.78 (Lifting Criterion). Suppose � W E!X is a covering map, Y is
a connected and locally path-connected space, and F W Y !X is a continuous map.
Let y 2 Y and e 2E be such that �.e/D F.y/. Then there exists a lift zF W Y !E

of F satisfying zF .y/D e if and only if F�
�
�1.Y;y/

�
� ��

�
�1.E; e/

�
.

Proposition A.79 (Coverings of Simply Connected Spaces). IfX is a simply con-
nected space, then every covering map � W E!X is a homeomorphism.

A topological space is said to be locally simply connected if it admits a basis of
simply connected open subsets.

Proposition A.80 (Existence of a Universal Covering Space). IfX is a connected
and locally simply connected topological space, there exists a simply connected
topological space zX and a covering map � W zX ! X . If y� W yX ! X is any other
simply connected covering of X , there is a homeomorphism ' W zX ! yX such that
y� ı ' D � .

The simply connected covering space zX whose existence and uniqueness (up to
homeomorphism) are guaranteed by this proposition is called the universal covering
space of X .



Appendix B
Review of Linear Algebra

For the basic properties of vector spaces and linear maps, you can consult almost
any linear algebra book that treats vector spaces abstractly, such as [FIS03]. Here
we just summarize the main points, with emphasis on those aspects that are most
important for the study of smooth manifolds.

Vector Spaces

Let R denote the field of real numbers. A vector space over R (or real vector space)
is a set V endowed with two operations: vector addition V � V ! V , denoted by
.v;w/ 7! v C w, and scalar multiplication R � V ! V , denoted by .a; v/ 7! av,
satisfying the following properties:

(i) V is an abelian group under vector addition.
(ii) Scalar multiplication satisfies the following identities:

a.bv/D .ab/v for all v 2 V and a; b 2RI

1vD v for all v 2 V:

(iii) Scalar multiplication and vector addition are related by the following distribu-
tive laws:

.aC b/vD avC bv for all v 2 V and a; b 2RI

a.vCw/D avC aw for all v;w 2 V and a 2R:

This definition can be generalized in two directions. First, replacing R by an
arbitrary field F everywhere, we obtain the definition of a vector space over F . In
particular, we sometimes have occasion to consider vector spaces over C, called
complex vector spaces. Unless we specify otherwise, all vector spaces are assumed
to be real.

Second, if R is replaced by a commutative ring R, this becomes the definition
of a module over R (or R-module). For example, if Z denotes the ring of integers,
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it is straightforward to check that modules over Z are just abelian groups under
addition.

The elements of a vector space are usually called vectors. When it is necessary to
distinguish them from vectors, elements of the underlying field (which is R unless
otherwise specified) are called scalars.

Let V be a vector space. A subset W � V that is closed under vector addition
and scalar multiplication is itself a vector space with the same operations, and is
called a subspace of V . To avoid confusion with the use of the word “subspace”
in topology, we sometimes use the term linear subspace for a subspace of a vector
space in this sense, and topological subspace for a subset of a topological space
endowed with the subspace topology.

A finite sum of the form
Pk
iD1 a

ivi , where ai are scalars and vi 2 V , is called
a linear combination of the vectors v1; : : : ; vk. (The reason we write the coeffi-
cients ai with superscripts instead of subscripts is to be consistent with the Einstein
summation convention, explained in Chapter 1.) If S is an arbitrary subset of V ,
the set of all linear combinations of elements of S is called the span of S and is
denoted by span.S/; it is easily seen to be the smallest subspace of V containing S .
If V D span.S/, we say that S spans V . By convention, a linear combination of no
elements is considered to sum to zero, and the span of the empty set is f0g.

If p and q are points of V , the line segment from p to q is the set f.1� t/pC tq W
0 � t � 1g. A subset B � V is said to be convex if for every two points p;q 2 B ,
the line segment from p to q is contained in B .

Bases and Dimension

Suppose V is a vector space. A subset S � V is said to be linearly dependent
if there exists a linear relation of the form

Pk
iD1 a

ivi D 0, where v1; : : : ; vk are
distinct elements of S and at least one of the coefficients ai is nonzero; S is said to
be linearly independent otherwise. In other words, S is linearly independent if and
only if the only linear combination of distinct elements of S that sums to zero is the
one in which all the scalar coefficients are zero. Note that every set containing the
zero vector is linearly dependent. By convention, the empty set is considered to be
linearly independent.

It is frequently important to work with ordered k-tuples of vectors in V ; such
a k-tuple is denoted by .v1; : : : ; vk/ or .vi /, with parentheses instead of braces to
distinguish it from the (unordered) set of elements fv1; : : : ; vkg. When we consider
ordered k-tuples, linear dependence takes on a slightly different meaning. We say
that .v1; : : : ; vk/ is a linearly dependent k-tuple if there are scalars .a1; : : : ; ak/,
not all zero, such that

Pk
iD1 a

ivi D 0; it is a linearly independent k-tuple oth-
erwise. The only difference between a linearly independent set and a linearly in-
dependent k-tuple is that the latter cannot have repeated vectors. For example if
v 2 V is a nonzero vector, the ordered pair .v; v/ is linearly dependent, while the
set fv; vg D fvg is linearly independent. On the other hand, if .v1; : : : ; vk/ is any
linearly independent k-tuple, then the set fv1; : : : ; vkg is also linearly independent.
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I Exercise B.1. Let V be a vector space. Prove the following statements.

(a) If S � V is linearly independent, then every subset of S is linearly independent.
(b) If S � V is linearly dependent or spans V , then every subset of V that properly

contains S is linearly dependent.
(c) A subset S � V containing more than one element is linearly dependent if and

only if some element v 2 S can be expressed as a linear combination of elements
of S X fvg.

(d) If .v1; : : : ; vk/ is a linearly dependent k-tuple in V with v1 ¤ 0, then some vi can
be expressed as a linear combination of the preceding vectors .v1; : : : ; vi�1/.

A basis for V (plural: bases) is a subset S � V that is linearly independent and
spans V . If S is a basis for V , every element of V has a unique expression as
a linear combination of elements of S . If V has a finite basis, then V is said to
be finite-dimensional, and otherwise it is infinite-dimensional. The trivial vector
space f0g is finite-dimensional, because it has the empty set as a basis.

If V is finite-dimensional, an ordered basis for V is a basis endowed with a
specific ordering of the basis vectors, or equivalently a linearly independent n-tuple
.Ei / that spans V . For most purposes, ordered bases are more useful than unordered
bases, so we always assume, often without comment, that each basis comes with a
given ordering.

If .E1; : : : ;En/ is an (ordered) basis for V , each vector v 2 V has a unique
expression as a linear combination of basis vectors:

vD

nX

iD1

viEi :

The numbers vi are called the components of v with respect to this basis, and the
ordered n-tuple

�
v1; : : : ; vn

�
is called its basis representation. (Here is an example

of a definition that requires an ordered basis.)

Lemma B.2. Let V be a vector space. If V is spanned by a set of n vectors, then
every subset of V containing more than n vectors is linearly dependent.

Proof. Suppose fv1; : : : ; vng is an n-element set that spans V . To prove the lemma,
it suffices to show that every set containing exactly nC 1 vectors is linearly depen-
dent. Let fw1; : : : ;wnC1g be such a set. If any of the wi ’s is zero, then clearly the set
is dependent, so we might as well assume they are all nonzero. By Exercise B.1(b),
the set fw1; v1; : : : ; vng is linearly dependent, and thus so is the ordered .nC1/-tuple
.w1; v1; : : : ; vn/. By Exercise B.1(d), one of the vectors vj can be written as a linear
combination of fw1; v1; : : : ; vj�1g, and thus the set fw1; v1; : : : ; vj�1; vjC1; : : : ; vng
still spans V . Renumbering the vi ’s if necessary, we may assume that the set
fw1; v2; : : : ; vng spans V .

Now suppose by induction that fw1;w2; : : : ;wk�1; vk; : : : ; vng spans V . As be-
fore, the .nC 1/-tuple .w1;w2; : : : ;wk�1;wk ; vk; : : : ; vn/ is linearly dependent, so
one of the vectors in this list can be written as a linear combination of the preceding
ones. If one of the wi ’s can be so written, then the set fw1; : : : ;wnC1g is dependent
and we are done. Otherwise, one of the vj ’s can be so written, and after reordering
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we may assume that fw1;w2; : : : ;wk; vkC1; : : : ; vng still spans V . Continuing by
induction, by the time we get to k D n, if we have not already shown that the wi ’s
are dependent, we conclude that the set fw1; : : : ;wng spans V . But this means that
the set fw1; : : : ;wnC1g is linearly dependent by Exercise B.1(b). �

Proposition B.3. If V is a finite-dimensional vector space, all bases for V contain
the same number of elements.

Proof. If fE1; : : : ;Eng is a basis for V with n elements, then Lemma B.2 implies
that every set containing more than n elements is linearly dependent, so no basis
can have more than n elements. On the other hand, if there were a basis containing
fewer than n elements, then Lemma B.2 would imply that fE1; : : : ;Eng is linearly
dependent, which is a contradiction. �

Because of the preceding proposition, if V is a finite-dimensional vector space,
it makes sense to define the dimension of V , denoted by dimV , to be the number
of elements in any basis.

I Exercise B.4. Suppose V is a finite-dimensional vector space.

(a) Show that every set that spans V contains a basis, and every linearly independent
subset of V is contained in a basis.

(b) Show that every subspace S � V is finite-dimensional and satisfies dimS �
dimV , with equality if and only if S D V .

(c) Show that dimV D 0 if and only if V D f0g.

I Exercise B.5. Suppose V is an infinite-dimensional vector space.

(a) Use Zorn’s lemma to show that every linearly independent subset of V is contained
in a basis.

(b) Show that any two bases for V have the same cardinality. [Hint: assume that S and
T are bases such that S has larger cardinality than T . Each element of T can be
expressed as a linear combination of elements of S , and the hypothesis guarantees
that some element of S does not appear in any of the expressions for elements
of T . Show that this element can be expressed as a linear combination of other
elements of S , contradicting the hypothesis that S is linearly independent.]

If S is a subspace of a finite-dimensional vector space V , we define the codimen-
sion of S in V to be dimV � dimS . By virtue of Exercise B.4(b), the codimension
of S is always nonnegative, and is zero if and only if S D V . A (linear) hyperplane
is a linear subspace of codimension 1.

Example B.6 (Euclidean Spaces). For each integer n� 0, Rn is a real vector space
under the usual operations of vector addition and scalar multiplication:

�
x1; : : : ; xn

�
C
�
y1; : : : ; yn

�
D
�
x1C y1; : : : ; xnC yn

�
;

a
�
x1; : : : ; xn

�
D
�
ax1; : : : ; axn

�
:

There is a natural basis .e1; : : : ; en/ for Rn, called the standard basis, where ei D
.0; : : : ; 1; : : : ; 0/ is the vector with a 1 in the i th place and zeros elsewhere; thus
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Rn has dimension n, as one would expect. Any element x 2 Rn can be written�
x1; : : : ; xn

�
D
Pn
iD1 x

iei , so its components with respect to the standard basis are
just its coordinates

�
x1; : : : ; xn

�
. //

Example B.7 (Complex Euclidean Spaces). With scalar multiplication and vector
addition defined just as in the real case, the n-dimensional complex Euclidean space
Cn becomes a complex vector space. Because the vectors .e1; : : : ; en/, defined as
above, form a basis for Cn over C, it follows that Cn has dimension n as a complex
vector space.

By restricting scalar multiplication to real scalars, we can also consider Cn as
a real vector space. In this case, it is straightforward to check that the vectors
.e1; ie1; : : : ; en; ien/ form a basis for Cn over R, so Cn has dimension 2n when
considered as a real vector space. //

If S and T are subspaces of a vector space V , the notation S C T denotes the
set of all vectors of the form vCw, where v 2 S and w 2 T . It is easily seen to be
a subspace of V , and in fact is the subspace spanned by S [ T . If S C T D V and
S \ T D f0g, then V is said to be the (internal) direct sum of S and T , and we
write V D S ˚ T . Two linear subspaces S;T � V are said to be complementary
subspaces if V D S ˚ T . In this case, every vector in V has a unique expression as
a sum of an element of S plus an element of T .

I Exercise B.8. Suppose S and T are subspaces of a finite-dimensional vector
space V .

(a) Show that S \ T is a subspace of V .
(b) Show that dim.S C T /D dimS C dimT � dim.S \ T /.
(c) Suppose V D SCT . Show that V D S˚T if and only if dimV D dimSCdimT .

I Exercise B.9. Let V be a finite-dimensional vector space. Show that every sub-
space S � V has a complementary subspace in V . In fact, given an arbitrary ba-
sis .E1; : : : ;En/ for V , show that there is some subset fi1; : : : ; ikg of the integers
f1; : : : ; ng such that span.Ei1 ; : : : ;Eik / is a complement to S . [Hint: choose a ba-
sis .F1; : : : ;Fm/ for S , and apply Exercise B.1(d) to the ordered .m C n/-tuple
.F1; : : : ;Fm;E1; : : : ;En/.]

Suppose S � V is a linear subspace. Any subset of V of the form

vC S D fvCw Ww 2 Sg

for some fixed v 2 V is called an affine subspace of V parallel to S . If S is a linear
hyperplane, then any affine subspace parallel to S is called an affine hyperplane.

I Exercise B.10. Let V be a vector space, and let vC S be an affine subspace of V
parallel to S .

(a) Show that vCS is a linear subspace if an only if it contains 0, which is true if and
only if v 2 S .

(b) Show that vC S D zvC zS if and only if S D zS and v � zv 2 S .
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Because of part (b) of the preceding exercise, we can unambiguously define the
dimension of vC S to be the dimension of S .

For each vector v 2 V , the affine subspace v C S is also called the coset of S
determined by v. The set V=S of cosets of S is called the quotient of V by S .

I Exercise B.11. Suppose V is a vector space and S is a linear subspace of V .
Define vector addition and scalar multiplication of cosets by

.vC S/C .wC S/ D .vCw/C S;

c.vC S/ D .cv/C S:

(a) Show that the quotient V=S is a vector space under these operations.
(b) Show that if V is finite-dimensional, then dimV=S D dimV � dimS .

Linear Maps

Let V and W be real vector spaces. A map T W V !W is linear if T .avC bw/D
aT vC bTw for all vectors v;w 2 V and all scalars a; b. (Because of the close con-
nection between linear maps and matrix multiplication described below, we gener-
ally write the action of a linear map T on a vector v as T v without parentheses,
unless parentheses are needed for grouping.) In the special case W D R, a linear
map from V to R is usually called a linear functional on V .

If T W V !W is a linear map, the kernel or null space of T , denoted by KerT
or T �1.0/, is the set fv 2 V W T v D 0g, and the image of T , denoted by ImT or
T .V /, is the set fw 2W WwD T v for some v 2 V g.

One simple but important example of a linear map arises in the following way.
Given a subspace S � V and a complementary subspace T , there is a unique linear
map � W V ! S defined by

�.vCw/D v for v 2 S; w 2 T:

This map is called the projection onto S with kernel T .
If V and W are vector spaces, a bijective linear map T W V ! W is called an

isomorphism. In this case, there is a unique inverse map T �1 W W ! V , and the
following computation shows that T �1 is also linear:

aT �1vC bT �1w D T �1T
�
aT �1vC bT �1w

�

D T �1
�
aT T �1vC bT T �1w

�
.by linearity of T /

D T �1.avC bw/:

For this reason, a bijective linear map is also said to be invertible. If there exists an
isomorphism T W V !W , then V and W are said to be isomorphic.

Example B.12. Let V be an n-dimensional real vector space, and .E1; : : : ;En/ be
an ordered basis for V . Define a map E W Rn! V by

E
�
x1; : : : ; xn

�
D x1E1C � � � C x

nEn:
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ThenE is linear and bijective, so it is an isomorphism, called the basis isomorphism
determined by this basis. Thus, every n-dimensional real vector space is isomorphic
to Rn. //

I Exercise B.13. Let V and W be vector spaces, and let .E1; : : : ;En/ be a basis
for V . For any n elements w1; : : : ;wn 2 W , show that there is a unique linear map
T W V !W satisfying T .Ei /Dwi for i D 1; : : : ; n.

I Exercise B.14. Let S W V !W and T W W !X be linear maps.

(a) Show that KerS and ImS are subspaces of V and W , respectively.
(b) Show that S is injective if and only if KerS D f0g.
(c) Show that if S is an isomorphism, then dimV D dimW (in the sense that these

dimensions are either both infinite or both finite and equal).
(d) Show that if S and T are both injective or both surjective, then T ıS has the same

property.
(e) Show that if T ıS is surjective, then T is surjective; give an example to show that

S might not be.
(f) Show that if T ıS is injective, then S is injective; give an example to show that T

might not be.

I Exercise B.15. Suppose V is a vector space and S is a subspace of V , and let
� W V ! V=S denote the projection defined by �.v/D vC S .

(a) Show that � is a surjective linear map with kernel equal to S .
(b) Given a linear map T W V !W , show that there exists a linear map zT W V=S!W

such that zT ı � D T if and only if S �KerT .

If V andW are vector spaces, a map F W V !W is called an affine map if it can
be written in the form F.v/DwC T v for some linear map T W V !W and some
fixed w 2W .

I Exercise B.16. Suppose F W V !W is an affine map. Show that F.V / is an affine
subspace of W , and the sets F�1.z/ for z 2W are parallel affine subspaces of V .

I Exercise B.17. Suppose V is a finite-dimensional vector space. Show that every
affine subspace of V is of the form F�1.z/ for some affine map F W V !W and some
z 2W .

Now suppose V and W are finite-dimensional vector spaces with ordered bases
.E1; : : : ;En/ and .F1; : : : ;Fm/, respectively. If T W V ! W is a linear map, the
matrix of T with respect to these bases is the m� n matrix

AD
�
Aij
�
D

�

A11 : : : A
1
n

:::
: : :

:::

Am1 : : : A
m
n

�

whose j th column consists of the components of TEj with respect to the basis .Fi /:

TEj D

mX

iD1

AijFi :
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By linearity, the action of T on an arbitrary vector vD
P
j v

jEj is then given by

T

� nX

jD1

vjEj

�
D

mX

iD1

nX

jD1

Aij v
jFi :

If we write the components of a vector with respect to a basis as a column matrix,
then the matrix representation of wD T v is given by matrix multiplication:

�

w1

:::

wm

�

D

�

A11 : : : A
1
n

:::
: : :

:::

Am1 : : : A
m
n

��

v1

:::

vn

�

;

or, more succinctly,

wi D

nX

jD1

Aij v
j :

Insofar as possible, we denote the row index of a matrix by a superscript and the
column index by a subscript, so that Aij represents the element in the i th row and
j th column. Thus the entry in the i th row and j th column of a matrix product AB
is given by

.AB/ij D

nX

kD1

AikB
k
j :

The composition of two linear maps is represented by the product of their ma-
trices. Provided we use the same basis for both the domain and the codomain, the
identity map on an n-dimensional vector space is represented by the n� n identity
matrix, which we denote by In; it is the matrix with ones on the main diagonal
(where the row number equals the column number) and zeros elsewhere.

The set M.m� n;R/ of all m� n real matrices is easily seen to be a real vector
space of dimension mn. (In fact, by stringing out the matrix entries in a single row,
we can identify it in a natural way with Rmn.) Similarly, because C is a real vector
space of dimension 2, the set M.m � n;C/ of m � n complex matrices is a real
vector space of dimension 2mn. When mD n, we abbreviate the spaces of n � n
square real and complex matrices by M.n;R/ and M.n;C/, respectively. In this
case, matrix multiplication gives these spaces additional algebraic structure. If V ,
W , and Z are vector spaces, a map B W V �W ! Z is said to be bilinear if it is
linear in each variable separately when the other is held fixed:

B.a1v1C a2v2;w/D a1B.v1;w/C a2B.v2;w/;

B.v; a1w1C a2w2/D a1B.v;w1/C a2B.v;w2/:

An algebra (over R) is a real vector space V endowed with a bilinear product map
V � V ! V . The algebra is said to be commutative or associative if the bilinear
product has that property.
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I Exercise B.18. Show that matrix multiplication turns both M.n;R/ and M.n;C/
into associative algebras over R. Show that they are noncommutative unless nD 1.

Suppose A is an n � n matrix. If there is a matrix B such that AB D BAD In,
then A is said to be invertible or nonsingular; it is singular otherwise.

I Exercise B.19. Suppose A is an n� n matrix. Prove the following statements.

(a) If A is nonsingular, then there is a unique n� n matrix B such that AB D BAD
In. This matrix is denoted by A�1 and is called the inverse of A.

(b) If A is the matrix of a linear map T W V !W with respect to some bases for V
and W , then T is invertible if and only if A is invertible, in which case A�1 is the
matrix of T �1 with respect to the same bases.

(c) IfB is an n�nmatrix such that eitherAB D In orBAD In, thenA is nonsingular
and B DA�1.

Because Rn comes equipped with the standard basis .ei /, we can unambiguously
identify linear maps from Rn to Rm with m � n real matrices, and we often do so
without further comment.

Change of Basis

In this book we often need to be concerned with how various objects transform when
we change bases. Suppose .Ei / and

�
zEj
�

are two bases for a finite-dimensional real
vector space V . Then each basis can be written uniquely in terms of the other, so
there is an invertible matrix B , called the transition matrix between the two bases,
such that

Ei D

nX

jD1

B
j
i
zEj ; zEj D

nX

iD1

�
B�1

�i
j
Ei : (B.1)

Now suppose V and W are finite-dimensional vector spaces and T W V ! W

is a linear map. With respect to bases .Ei / for the domain V and .Fj / for the
codomain W , the map T is represented by some matrix A D

�
Aij
�
. If

�
zEi
�

and
�
zFj
�

are any other choices of bases for V and W , respectively, let B and C denote
the transition matrices satisfying (B.1) and

Fi D

mX

jD1

C
j
i
zFj ; zFj D

mX

iD1

�
C�1

�i
j
Fi :

Then a straightforward computation shows that the matrix zA representing T with
respect to the new bases is related to A by

zAij D
X

k;l

C il A
l
k

�
B�1

�k
j
;

or, in matrix notation,
zAD CAB�1:
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In particular, if T is a map from V to itself, we usually use the same basis for the
domain and the codomain. In this case, if A denotes the matrix of T with respect to
.Ei /, and zA is its matrix with respect to

�
zEi
�
, we have

zADBAB�1: (B.2)

If V and W are real vector spaces, the set L.V IW / of linear maps from V to W
is a real vector space under the operations

.S C T /vD SvC T vI .cT /vD c.T v/:

If dimV D n and dimW D m, then each choice of bases for V and W gives us
a map L.V IW /!M.m � n;R/, by sending every linear map to its matrix with
respect to the chosen bases. This map is easily seen to be linear and bijective, so
dim L.V IW /D dim M.m� n;R/Dmn.

If T W V !W is a linear map between finite-dimensional spaces, the dimension
of ImT is called the rank of T , and the dimension of KerT is called its nullity.
The following theorem shows that, up to choices of bases, a linear map is completely
determined by its rank together with the dimensions of its domain and codomain.

Theorem B.20 (Canonical Form for a Linear Map). Suppose V andW are finite-
dimensional vector spaces, and T W V !W is a linear map of rank r . Then there are
bases for V and W with respect to which T has the following matrix representation
(in block form): �

Ir 0

0 0

�
:

Proof. Choose bases .F1; : : : ;Fr / for ImT and .K1; : : : ;Kk/ for KerT . Extend
.Fj / arbitrarily to a basis .F1; : : : ;Fm/ for W . By definition of the image, there
are vectors E1; : : : ;Er 2 V such that TEi D Fi for i D 1; : : : ; r . We will show that
.E1; : : : ;Er ;K1; : : : ;Kk/ is a basis for V ; once we know this, it follows easily that
T has the desired matrix representation.

Suppose first that
P
i a
iEi C

P
j b

jKj D 0. Applying T to this equation yields
Pr
iD1 a

iFi D 0, which implies that all the coefficients ai are zero. Then it follows
also that all the bj ’s are zero because the Kj ’s are linearly independent. Therefore,
the .r C k/-tuple .E1; : : : ;Er ;K1; : : : ;Kk/ is linearly independent.

To show that these vectors span V , let v 2 V be arbitrary. We can express T v 2
ImT as a linear combination of .F1; : : : ;Fr /:

T vD

rX

iD1

ciFi :

If we put w D
P
i c
iEi 2 V , it follows that Tw D T v, so z D v � w 2 KerT .

Writing z D
P
j d

jKj , we obtain

vDwC z D

rX

iD1

ciEi C

kX

jD1

d jKj ;

so the .r C k/-tuple .E1; : : : ;Er ;K1; : : : ;Kk/ does indeed span V . �
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This theorem says that every linear map can be put into a particularly nice diag-
onal form by appropriate choices of bases in the domain and codomain. However,
it is important to be aware of what the theorem does not say: if T W V ! V is a
linear map from a finite-dimensional vector space to itself, it might not be possible
to represent T by a diagonal matrix with respect to the same basis for the domain
and codomain.

The next result is central in applications of linear algebra to smooth manifold
theory; it is a corollary to the proof of the preceding theorem.

Corollary B.21 (Rank-Nullity Law). Suppose T W V ! W is a linear map be-
tween finite-dimensional vector spaces. Then

dimV D rankT C nullityT D dim.ImT /C dim.KerT /:

Proof. The preceding proof showed that V has a basis consisting of kC r elements,
where k D dim.KerT / and r D dim.ImT /. �

I Exercise B.22. Suppose V;W;X are finite-dimensional vector spaces, and S W V !
W and T W W !X are linear maps. Prove the following statements.

(a) rankS � dimV , with equality if and only if S is injective.
(b) rankS � dimW , with equality if and only if S is surjective.
(c) If dimV D dimW and S is either injective or surjective, then it is an isomorphism.
(d) rank.T ı S/� rankS , with equality if and only if ImS \KerT D f0g.
(e) rank.T ı S/� rankT , with equality if and only if ImS CKerT DW .
(f) If S is an isomorphism, then rank.T ı S/D rankT .
(g) If T is an isomorphism, then rank.T ı S/D rankS .

Let A be an m� n matrix. The transpose of A is the n�m matrix AT obtained
by interchanging the rows and columns of A:

�
AT
�j
i D A

i
j . A square matrix A is

said to be symmetric if ADAT and skew-symmetric if AD�AT .

I Exercise B.23. Show that if A and B are matrices of dimensionsm�n and n�k,
respectively, then .AB/T DBTAT .

The rank of an m � n matrix A is defined to be the rank of the corresponding
linear map from Rn to Rm. Because the columns of A, thought of as vectors in Rm,
are the images of the standard basis vectors under this linear map, the rank of A
can also be thought of as the dimension of the span of its columns, and is some-
times called its column rank. Analogously, we define the row rank of A to be the
dimension of the span of its rows, thought of similarly as vectors in Rn.

Proposition B.24. The row rank of a matrix is equal to its column rank.

Proof. Let A be an m� n matrix. Because the row rank of A is equal to the column
rank of AT , we must show that rankAD rankAT .
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Suppose the (column) rank of A is k. Thought of as a linear map from Rn to Rm,
A factors through ImA as follows:

Rn
A � Rm

ImA;
	

�

zA
�

where zA is just the map A with its codomain restricted to ImA, and 	 is the inclusion
of ImA into Rm. Choosing a basis for the k-dimensional subspace ImA, we can
write this as a matrix equation AD BC , where B and C are the matrices of 	 and
zA with respect to the standard bases in Rn and Rm and the chosen basis in ImA.

Taking transposes, we obtain AT D C TBT , from which it follows that rankAT �
rankBT . Since BT is a k �m matrix, its column rank is at most k, which shows
that rankAT � rankA. Reversing the roles of A and AT and using the fact that
.AT /T DA, we conclude that rankAD rankAT . �

Suppose A D
�
Aij
�

is an m � n matrix. If we choose integers 1 � i1 < � � � <
ik �m and 1� j1 < � � �< jl � n, we obtain a k � l matrix whose entry in the pth
row and qth column is Aipjq :




A
i1
j1
: : : A

i1
jl

:::
: : :

:::

A
ik
j1
: : : A

ik
jl

˘

:

Such a matrix is called a submatrix of A. Looking at submatrices gives a convenient
criterion for checking the rank of a matrix.

Proposition B.25. Suppose A is an m � n matrix. Then rankA � k if and only if
some k � k submatrix of A is nonsingular.

Proof. By definition, rankA� k if and only if A has at least k linearly independent
columns, which is equivalent to A having some m � k submatrix with rank k. But
by Proposition B.24, an m � k submatrix has rank k if and only if it has k linearly
independent rows. Thus A has rank at least k if and only if it has anm�k submatrix
with k linearly independent rows, if and only if it has a k � k submatrix that is
nonsingular. �

The Determinant

There are a number of ways of defining the determinant of a square matrix, each of
which has advantages in different contexts. The definition we give here, while not
particularly intuitive, is the simplest to state and fits nicely with our treatment of
alternating tensors in Chapter 14.

IfX is a set, a permutation of X is a bijective map fromX to itself. The set of all
permutations of X is a group under composition. A transposition is a permutation
that interchanges two elements and leaves all the others fixed.
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We let Sn denote the group of permutations of the set f1; : : : ; ng, called the sym-
metric group on n elements. The properties of Sn that we need are summarized in
the following proposition; proofs can be found in any good undergraduate algebra
text such as [Hun97] or [Her75].

Proposition B.26 (Properties of the Symmetric Group).

(a) Every element of Sn can be expressed as a composition of finitely many
transpositions.

(b) For each � 2 Sn, the parity (evenness or oddness) of the number of factors in
any decomposition of � as a product of transpositions is independent of the
choice of decomposition. We say that � is an even permutation if every such de-
composition has an even number of factors, and an odd permutation otherwise.

(c) For each � 2 Sn, define the sign of � to be the number

sgn� D

(
C1 if � is even;

�1 if � is odd:

If n� 2, sgn W Sn!f˙1g is a surjective group homomorphism, where we con-
sider f˙1g as a group under multiplication.

I Exercise B.27. Prove (or look up) Proposition B.26.

IfAD
�
Aij
�

is an n�n (real or complex) matrix, the determinant of A is defined
by the expression

detAD
X

�2Sn

.sgn�/A�.1/1 � � �A�.n/n : (B.3)

For simplicity, we assume throughout this section that our matrices are real. The
statements and proofs, however, hold equally well in the complex case. In our study
of Lie groups we also have occasion to consider determinants of complex matrices.

Although the determinant is defined as a function of matrices, it is also use-
ful to think of it as a function of n vectors in Rn: if A1; : : : ;An 2 Rn, we inter-
pret det.A1; : : : ;An/ to mean the determinant of the matrix whose columns are
.A1; : : : ;An/:

det.A1; : : : ;An/D det

�

A11 : : : A
1
n

:::
: : :

:::

An1 : : : A
n
n

�

:

It is obvious from the defining formula (B.3) that the function det W Rn� � � � �Rn!
R so defined is multilinear, which means that it is linear as a function of each vector
when all the other vectors are held fixed.

Proposition B.28 (Properties of the Determinant). Let A be an n� n matrix.

(a) If one column of A is multiplied by a scalar c, the determinant is multiplied by
the same scalar:

det.A1; : : : ; cAi ; : : : ;An/D c det.A1; : : : ;Ai ; : : : ;An/:
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(b) The determinant changes sign when two columns are interchanged:

det.A1; : : : ;Aq; : : : ;Ap; : : : ;An/D�det.A1; : : : ;Ap; : : : ;Aq; : : : ;An/: (B.4)

(c) The determinant is unchanged by adding a scalar multiple of one column to any
other column:

det.A1; : : : ;Ai ; : : : ;Aj C cAi ; : : : ;An/D det.A1; : : : ;Ai ; : : : ;Aj : : : ;An/:

(d) For every scalar c, det.cA/D cn detA.
(e) If any two columns of A are identical, then detAD 0.
(f) If A has a column of zeros, then detAD 0.
(g) detAT D detA.
(h) detIn D 1.
(i) If A is singular, then detAD 0.

Proof. Part (a) is part of the definition of multilinearity, and (d) follows immediately
from (a). Part (f) also follows from (a), because a matrix with a column of zeros is
unchanged when that column is multiplied by zero, so detA D 0.detA/ D 0. To
prove (b), suppose p < q and let � 2 Sn be the transposition that interchanges p
and q, leaving all other indices fixed. Then the left-hand side of (B.4) is equal to

det.A1; : : : ;Aq; : : : ;Ap; : : : ;An/

D
X

�2Sn

.sgn�/A�.1/1 � � �A�.p/q � � �A�.q/p � � �A�.n/n

D
X

�2Sn

.sgn�/A�.1/1 � � �A�.q/p � � �A�.p/q � � �A�.n/n

D
X

�2Sn

.sgn�/A�.
.1//1 � � �A�.
.n//n

D�
X

�2Sn

�
sgn.��/

�
A
�.
.1//
1 � � �A�.
.n//n

D�
X

�2Sn

.sgn�/A�.1/1 � � �A�.n/n

D�det.A1; : : : ;Ap; : : : ;Aq; : : : ;An/;

where the next-to-last line follows by substituting � D �� and noting that � runs
over all elements of Sn as � does. Part (e) is then an immediate consequence of (b),
and (c) follows by multilinearity:

det.A1; : : : ;Ai ; : : : ;Aj C cAi ; : : : ;An/

D det.A1; : : : ;Ai ; : : : ;Aj : : : ;An/C c det.A1; : : : ;Ai ; : : : ;Ai : : : ;An/

D det.A1; : : : ;Ai ; : : : ;Aj : : : ;An/C 0:
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Part (g) follows directly from the definition of the determinant:

detAT D
X

�2Sn

.sgn�/A1�.1/ � � �A
n
�.n/

D
X

�2Sn

.sgn�/A�
�1.�.1//

�.1/
� � �A

��1.�.n//

�.n/

D
X

�2Sn

.sgn�/A�
�1.1/
1 � � �A�

�1.n/
n

D
X

�2Sn

.sgn�/A�.1/1 � � �A�.n/n D detA:

In the third line we have used the fact that multiplication is commutative, and the

numbers
˚
A
��1.�.1//

�.1/
; : : : ;A

��1.�.n//

�.n/

�
are just

˚
A
��1.1/
1 ; : : : ;A

��1.n/
n

�
in a differ-

ent order; and the fourth line follows by substituting � D ��1 and noting that
sgn��1 D sgn� . Similarly, (h) follows from the definition, because when A is the
identity matrix, for each � except the identity permutation there is some j such that
A
�.j /
j D 0.

Finally, to prove (i), suppose A is singular. Then, as a linear map from Rn to Rn,
A has rank less than n by parts (a) and (b) of Exercise B.22. Thus the columns
of A are linearly dependent, so at least one column can be written as a linear com-
bination of the others: Aj D

P
i¤j c

iAi . The result then follows from (e) and the
multilinearity of det. �

The operations on matrices described in parts (a), (b), and (c) of the preceding
proposition (multiplying one column by a scalar, interchanging two columns, and
adding a multiple of one column to another) are called elementary column oper-
ations. Part of the proposition, therefore, describes precisely how a determinant is
affected by elementary column operations. If we define elementary row operations
analogously, the fact that the determinant of AT is equal to that of A implies that
the determinant behaves similarly under elementary row operations.

Since the columns of an n � n matrix A are the images of the standard basis
vectors under the linear map from Rn to itself that A defines, elementary column
operations correspond to changes of basis in the domain. Thus each elementary
column operation on a matrix A can be realized by multiplying A on the right by
a suitable matrix. For example, multiplying the i th column by c is achieved by
multiplying A by the matrix Ec that is equal to the identity matrix except for a c in
the .i; i/ position:

�
A11 : : : A

1
i : : : A

1
n

:::
:::

:::

A
j
1 : : : A

j
i : : : A

j
n

:::
:::

:::

An1 : : : A
n
i : : : A

n
n

��
1 : : : 0 : : : 0
: : :

c
: : :

0 : : : 0 : : : 1

�

D

�
A11 : : : cA

1
i : : : A

1
n

:::
:::

:::

A
j
1 : : : cA

j
i : : : A

j
n

:::
:::

:::

An1 : : : cA
n
i : : : A

n
n

�

:
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I Exercise B.29. Show that replacing one column of a matrix by c times that same
column is equivalent to multiplying on the right by a matrix whose determinant is c;
interchanging two columns is equivalent to multiplying on the right by a matrix whose
determinant is �1; and adding a multiple of one column to another is equivalent to
multiplying on the right by a matrix of determinant 1. Matrices of these three types are
called elementary matrices.

I Exercise B.30. Suppose A is a nonsingular n� n matrix.

(a) Show that A can be reduced to the identity In by a sequence of elementary column
operations.

(b) Show that A is equal to a product of elementary matrices.

Elementary matrices form a key ingredient in the proof of the following theorem,
which is arguably the deepest and most important property of the determinant.

Theorem B.31. If A and B are n� n matrices, then

det.AB/D .detA/.detB/:

Proof. If B is singular, then rankB < n, which implies that rankAB < n. Therefore
both detB and detAB are zero by Proposition B.28(i). On the other hand, parts (a),
(b), and (c) of Proposition B.28 combined with Exercise B.29 show that the theorem
is true when B is an elementary matrix. Finally, if B is an arbitrary nonsingular
matrix, then B can be written as a product of elementary matrices by Exercise B.30,
and the result follows by induction on the number of elementary matrices in such a
product. �
Corollary B.32. If A is a nonsingular n�n matrix, then detA¤ 0 and det

�
A�1

�
D

.detA/�1.

Proof. Just note that 1D detIn D det
�
AA�1

�
D .detA/

�
detA�1

�
. �

Corollary B.33. A square matrix is singular if and only if its determinant is zero.

Proof. One direction follows from Proposition B.28(i), and the other from Corol-
lary B.32. �
Corollary B.34. Suppose A and B are n� n matrices and B is nonsingular. Then
det
�
BAB�1

�
D detA.

Proof. This is just a computation using Theorem B.31 and Corollary B.32:

det
�
BAB�1

�
D .detB/.detA/

�
detB�1

�

D .detB/.detA/.detB/�1

D detA: �
The last corollary allows us to extend the definition of the determinant to linear

maps on arbitrary finite-dimensional vector spaces. Suppose V is an n-dimensional
vector space and T W V ! V is a linear map. With respect to a choice of basis
for V , T is represented by an n � n matrix. As we observed above, the matrices
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A and zA representing T with respect to two different bases are related by zA D
BAB�1 for some nonsingular matrix B (see (B.2)). It follows from Corollary B.34,
therefore, that det zAD detA. Thus, we can make the following definition: for each
linear map T W V ! V from a finite-dimensional vector space to itself, we define the
determinant of T to be the determinant of any matrix representation of T (using
the same basis for the domain and codomain).

For actual computations of determinants, the formula in the following proposi-
tion is usually more useful than the definition.

Proposition B.35 (Expansion by Minors). Let A be an n� n matrix, and for each
i; j let M j

i denote the .n � 1/ � .n � 1/ submatrix obtained by deleting the i th
column and j th row of A. For any fixed i between 1 and n inclusive,

detAD
nX

jD1

.�1/iCjA
j
i detM j

i : (B.5)

Proof. It is useful to consider first a special case: suppose A is an n� n matrix that
has the block form

AD

�
B 0

C 1

�
; (B.6)

where B is an .n� 1/� .n� 1/ matrix and C is a 1� .n� 1/ row matrix. Then in
the defining formula (B.3) for detA, the factor A�.n/n is equal to 1 when �.n/D n
and zero otherwise, so in fact the only terms that are nonzero are those in which
� 2 Sn�1, thought of as the subgroup of Sn consisting of elements that permute
f1; : : : ; n� 1g and leave n fixed. Thus the determinant of A simplifies to

detAD
X

�2Sn�1

.sgn�/A�.1/1 � � �A
�.n�1/
n�1 D detB:

Now let A be arbitrary, and fix i 2 f1; : : : ; ng. For each j D 1; : : : ; n, let Xji
denote the matrix obtained by replacing the i th column of A by the basis vector ej .
Since the determinant is a multilinear function of its columns,

detAD det

�
A1; : : : ;Ai�1;

nX

jD1

A
j
i ej ;AiC1; : : : ;An

�

D

nX

jD1

A
j
i det.A1; : : : ;Ai�1; ej ;AiC1; : : : ;An/

D

nX

jD1

A
j
i detXji : (B.7)

On the other hand, by interchanging columns n � i times and then interchanging
rows n�j times, we can transform X

j
i to a matrix of the form (B.6) with B DM j

i .
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Therefore, by the observation in the preceding paragraph,

detXji D .�1/
n�iCn�j detM j

i D .�1/
iCj detM j

i :

Inserting this into (B.7) completes the proof. �

Each determinant detM j
i is called a minor of A, and (B.5) is called the ex-

pansion of detA by minors along the i th column. Since detAD detAT , there is
an analogous expansion along any row. The factor .�1/iCj detM j

i multiplying Aji
in (B.5) is called the cofactor of Aj

i
, and is denoted by cof ji .

Proposition B.36 (Cramer’s Rule). If A is a nonsingular n � n matrix, then A�1

is equal to 1=.detA/ times the transposed cofactor matrix of A. Thus, the entry in
the i th row and j th column of A�1 is

�
A�1

�i
j
D

1

detA
cofji D

1

detA
.�1/iCj detM j

i : (B.8)

Proof. Let B ij denote the expression on the right-hand side of (B.8). Then

nX

jD1

B ijA
j

k
D

1

detA

nX

jD1

.�1/iCjA
j

k
detM j

i : (B.9)

When k D i , the summation on the right-hand side is precisely the expansion of
detA by minors along the i th column, so the right-hand side of (B.9) is equal to 1.
On the other hand, if k ¤ i , the summation is equal to the determinant of the matrix
obtained by replacing the i th column of A by the kth column. Since this matrix has
two identical columns, its determinant is zero. Thus (B.9) is equivalent to the matrix
equation BA D In, where B is the matrix .B ij /. By Exercise B.19(c), therefore,
B DA�1. �

A square matrix A D
�
Aij
�

is said to be upper triangular if Aij D 0 for i > j
(i.e., the only nonzero entries are on and above the main diagonal). Determinants of
upper triangular matrices are particularly easy to compute.

Proposition B.37. If A is an upper triangular n � n matrix, then the determinant
of A is the product of its diagonal entries:

detADA11 � � �A
n
n:

Proof. When nD 1, this is trivial. So assume the result is true for .n� 1/� .n� 1/
matrices, and let A be an upper triangular n�n matrix. In the expansion of detA by
minors along the first column, there is only one nonzero entry, namely A11 detM 1

1 .
By induction, detM 1

1 DA
2
2 � � �A

n
n, which proves the proposition. �

Suppose X is an .m C k/ � .m C k/ matrix. We say that X is block upper
triangular if X has the form

X D

�
A B

0 C

�
(B.10)
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for some matrices A;B;C of sizes m�m, m� k, and k � k, respectively.

Proposition B.38. If X is the block upper triangular matrix given by (B.10), then
detX D .detA/.detC/.

Proof. If A is singular, then the columns of both A and X are linearly depen-
dent, which implies that detX D 0 D .detA/.detC/. So let us assume that A is
nonsingular.

Consider first the following special case:

X D

�
Im 0

0 C

�
:

Expanding by minors along the first column and using induction onm, we conclude
easily that detX D detC in this case. A similar argument shows that

det

�
A 0

0 Ik

�
D detA:

In the general case, a straightforward computation yields the factorization
�
A B

0 C

�
D

�
A 0

0 Ik

��
Im 0

0 C

��
Im A

�1B

0 Ik

�
: (B.11)

By the preceding observations, the determinants of the first two factors are equal to
detA and detC , respectively; and the third factor is upper triangular, so its determi-
nant is 1 by Proposition B.37. The result then follows from Theorem B.31. �

Inner Products and Norms

If V is a real vector space, an inner product on V is a map V � V ! R, usually
written .v;w/ 7! hv;wi, that satisfies the following conditions:

(i) SYMMETRY:

hv;wi D hw;viI

(ii) BILINEARITY:

havC a0v0;wi D ahv;wi C a0hv0;wi;

hv; bwC b0w0i D bhv;wi C b0hv;w0iI

(iii) POSITIVE DEFINITENESS:

hv; vi � 0; with equality if and only if vD 0:

A vector space endowed with a specific inner product is called an inner product
space. The standard example is, of course, Rn with its Euclidean dot product:

hx;yi D x � y D
nX

iD1

xiyi :
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Suppose V is an inner product space. For each v 2 V , the length of v is the
nonnegative real number jvj D

p
hv; vi. A unit vector is a vector of length 1. If

v;w 2 V are nonzero vectors, the angle between v and w is defined to be the unique
� 2 Œ0;�� satisfying

cos� D
hv;wi

jvj jwj
:

Two vectors v;w 2 V are said to be orthogonal if hv;wi D 0; this means that either
one of the vectors is zero, or the angle between them is �=2.

I Exercise B.39. Let V be an inner product space. Show that the length function
associated with the inner product satisfies

jvj > 0; v 2 V; v¤ 0;

jcvj D jcjjvj; c 2R; v 2 V;

jvCwj � jvj C jwj; v;w 2 V;

and the Cauchy–Schwarz inequality:

jhv;wij � jvjjwj; v;w 2 V:

Suppose V is a finite-dimensional inner product space. A basis .E1; : : : ;En/ for
V is said to be orthonormal if each Ei is a unit vector and Ei is orthogonal to Ej
when i ¤ j .

Proposition B.40 (The Gram–Schmidt Algorithm). Let V be an inner product
space of dimension n� 1. Then V has an orthonormal basis. In fact, if .E1; : : : ;En/
is an arbitrary basis for V , there is an orthonormal basis

�
zE1; : : : ; zEn

�
with the

property that

span
�
zE1; : : : ; zEk

�
D span.E1; : : : ;Ek/ for k D 1; : : : ; n: (B.12)

Proof. The proof is by induction on n D dimV . If n D 1, there is only one basis
element E1, and then zE1 DE1=jE1j is an orthonormal basis.

Suppose the result is true for inner product spaces of dimension n� 1, and let V
have dimension n. Then W D span.E1; : : : ;En�1/ is an .n� 1/-dimensional inner
product space with the inner product restricted from V , so there is an orthonormal
basis

�
zE1; : : : ; zEn�1

�
satisfying (B.12) for k D 1; : : : ; n� 1. Define zEn by

zEn D
En �

Pn�1
iD1hEn;

zEi i zEiˇ̌
En �

Pn�1
iD1hEn;

zEi i zEi
ˇ̌ : (B.13)

A computation shows that
�
zE1; : : : ; zEn

�
is the desired orthonormal basis for V . �

I Exercise B.41. For w D
�
w1; : : : ;wn

�
and z D

�
z1; : : : ; zn

�
2 Cn, define the

Hermitian dot product by w � z D
Pn
jD1w

j zj , where, for any complex number
z D x C iy, the notation xz denotes the complex conjugate: xz D x � iy. A basis
.E1; : : : ;En/ for Cn (over C) is said to be orthonormal ifEi �Ei D 1 andEi �Ej D 0
for i ¤ j . Show that the statement and proof of Proposition B.40 hold for the Hermi-
tian dot product.
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An isomorphism T W V ! W between inner product spaces is called a linear
isometry if it takes the inner product of V to that of W :

hT v;Twi D hv;wi for all v;w 2 V:

I Exercise B.42. Show that every linear isometry between inner product spaces is a
homeomorphism that preserves lengths, angles, and orthogonality, and takes orthonor-
mal bases to orthonormal bases.

I Exercise B.43. Given any basis .Ei / for a finite-dimensional vector space V ,
show that there is a unique inner product on V for which .Ei / is orthonormal.

I Exercise B.44. Suppose V is a finite-dimensional inner product space and
E W Rn ! V is the basis map determined by some orthonormal basis. Show that E
is a linear isometry when Rn is endowed with the Euclidean inner product.

The preceding exercise shows that finite-dimensional inner product spaces are
geometrically indistinguishable from the Euclidean space of the same dimension.

If V is a finite-dimensional inner product space and S � V is a subspace, the
orthogonal complement of S in V is the set

S? D fv 2 V W hv;wi D 0 for all w 2 Sg:

I Exercise B.45. Let V be a finite-dimensional inner product space and let S � V
be a subspace. Show that S? is a subspace and V D S ˚ S?.

Thanks to the result of the preceding exercise, for any subspace S of an inner
product space V , there is a natural projection � W V ! S with kernel S?. This is
called the orthogonal projection of V onto S .

Norms

If V is a real vector space, a norm on V is a function from V to R, written v 7! jvj,
satisfying the following properties.

(i) POSITIVITY: jvj � 0 for all v 2 V , with equality if and only if vD 0.
(ii) HOMOGENEITY: jcvj D jcj jvj for all c 2R and v 2 V .

(iii) TRIANGLE INEQUALITY: jvCwj � jvj C jwj for all v;w 2 V .

A vector space together with a specific choice of norm is called a normed linear
space. Exercise B.39 shows that the length function associated with any inner prod-
uct is a norm; thus, in particular, every finite-dimensional vector space possesses
many norms. Given a norm on V , the distance function d.v;w/D jv �wj turns V
into a metric space, yielding a topology on V called the norm topology.

Example B.46 (Euclidean Spaces). Endowed with the Euclidean norm defined by

jxj D
p
x � x; (B.14)

Rn is a normed linear space, whose norm topology is exactly the Euclidean topology
described in Appendix A. //
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Example B.47 (The Frobenius Norm on Matrices). The vector space M.m �
n;R/ of m � n real matrices has a natural Euclidean inner product, obtained by
identifying a matrix with a point in Rmn:

A �B D
X

i;j

AijB
i
j :

This yields a norm on matrices, called the Frobenius norm:

jAj D

qX

i;j

�
Aij
�2
: (B.15)

Whenever we use a norm on matrices, it is always this one. //

I Exercise B.48. For any matrices A 2M.m � n;R/ and B 2M.n � k;R/, show
that

jABj � jAj jBj :

Two norms j � j1 and j � j2 on a vector space V are said to be equivalent if there
are positive constants c;C such that

cjvj1 � jvj2 � C jvj1 for all v 2 V:

I Exercise B.49. Show that equivalent norms determine the same topology.

I Exercise B.50. Show that any two norms on a finite-dimensional vector space are
equivalent. [Hint: first do the case in which V D Rn and one of the norms is the
Euclidean norm, and consider the restriction of the other norm to the unit sphere.]

The preceding exercise shows that finite-dimensional normed linear spaces of
the same dimension are topologically indistinguishable from one another. Thus, any
such space automatically inherits all the usual topological properties of Euclidean
space, such as compactness of closed and bounded subsets.

If V and W are normed linear spaces, a linear map T W V ! W is said to be
bounded if there exists a positive constant C such that

jT vj � C jvj for all v 2 V:

I Exercise B.51. Show that a linear map between normed linear spaces is continu-
ous if and only if it is bounded. [Hint: to show that continuity of T implies bounded-
ness, first show that there exists ı > 0 such that jxj< ı) jT .x/j< 1.]

I Exercise B.52. Show that every linear map between finite-dimensional normed
linear spaces is bounded and therefore continuous.

Direct Products and Direct Sums

If V1; : : : ; Vk are real vector spaces, their direct product is the vector space whose
underlying set is the Cartesian product V1 � � � � � Vk , with addition and scalar mul-
tiplication defined componentwise:

�
v1; : : : ; vk

�
C
�
v01; : : : ; v

0
k

�
D
�
v1C v

0
1; : : : ; vk C v

0
k

�
;
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c
�
v1; : : : ; vk

�
D
�
cv1; : : : ; cvk

�
:

The basic example is the Euclidean space Rn DR� � � � �R.
For some applications (chiefly in our treatment of de Rham cohomology in Chap-

ters 17 and 18), it is important to generalize this to an infinite number of vector
spaces. For this discussion, we turn to the general setting of modules over a com-
mutative ring R. Linear maps between R-modules are defined exactly as for vector
spaces: if V and W are R-modules, a map F W V ! W is said to be R-linear if
F.avCbw/D aF.v/CbF.w/ for all a; b 2R and v;w 2 V . If V is an R-module,
a subset S � V is called a submodule of V if it is closed under addition and scalar
multiplication, so it is itself an R-module. Throughout the rest of this section we
assume that R is a fixed commutative ring. In all of our applications, R will be
either the field R of real numbers, in which case the modules are real vector spaces
and the linear maps are the usual ones, or the ring of integers Z, in which case the
modules are abelian groups and the linear maps are group homomorphisms.

If .V˛/˛2A is an arbitrary indexed family of sets, their Cartesian product, de-
noted by

Q
˛2A V˛ , is defined as the set of functions v W A!

S
˛2A V˛ with the

property that v.˛/ 2 V˛ for each ˛. Thanks to the axiom of choice, the Cartesian
product of a nonempty indexed family of nonempty sets is nonempty. If v is an el-
ement of the Cartesian product, we usually denote the value of v at ˛ 2 A by v˛
instead of v.˛/; the element v itself is usually denoted by .v˛/˛2A, or just .v˛/ if
the index set is understood. This can be thought of as an indexed family of elements
of the sets V˛ , or an “A-tuple.” For each ˇ 2A, we have a canonical projection map
�ˇ W

Q
˛2A V˛! Vˇ , defined by

�ˇ
�
.v˛/˛2A

�
D vˇ :

Now suppose that .V˛/˛2A is an indexed family of R-modules. The direct prod-
uct of the family is the set

Q
˛2A V˛ , made into an R-module by defining addition

and scalar multiplication as follows:

.v˛/C
�
v0˛
�
D
�
v˛ C v

0
˛

�
;

c.v˛/D .cv˛/:

The zero element of this module is the A-tuple with v˛ D 0 for every ˛. It is easy to
check that each projection map �ˇ is R-linear.

Proposition B.53 (Characteristic Property of the Direct Product). Let .V˛/˛2A
be an indexed family of R-modules. Given an R-module W and a family of R-
linear maps G˛ W W ! V˛ , there exists a unique R-linear map G W W !

Q
˛2A V˛

such that �˛ ıG DG˛ for each ˛ 2A.

I Exercise B.54. Prove the preceding proposition.

Complementary to direct products is the notion of direct sums. Given an indexed
family .V˛/˛2A as above, we define the direct sum of the family to be the submodule
of their direct product consisting of A-tuples .v˛/˛2A with the property that v˛ D 0
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for all but finitely many ˛. The direct sum is denoted by
L
˛2A V˛ , or in the case of

a finite family by V1 ˚ � � � ˚ Vk . For finite families of modules, the direct product
and the direct sum are identical.

For each ˇ 2 A, there is a canonical R-linear injection 	ˇ W Vˇ !
L
˛2A V˛ ,

defined by letting 	ˇ .v/ be the A-tuple .v˛/˛2A with vˇ D v and v˛ D 0 for ˛¤ ˇ.
In the case of a finite direct sum, this just means 	ˇ .v/D .0; : : : ; 0; v; 0; : : : ; 0/, with
v in position ˇ.

Proposition B.55 (Characteristic Property of the Direct Sum). Let .V˛/˛2A be
an indexed family of R-modules. Given an R-module W and a family of R-linear
maps G˛ W V˛!W , there exists a unique R-linear map G W

L
˛2A V˛!W such

that G ı 	˛ DG˛ for each ˛ 2A.

I Exercise B.56. Prove the preceding proposition.

If W is an R-module and .V˛/˛2A is a family of subspaces of W , then the char-
acteristic property applied to the inclusions 	˛ W V˛ ,!W guarantees the existence
of a canonical R-linear map

L
˛ V˛ ! W that restricts to inclusion on each V˛ .

This map is an isomorphism precisely when the V˛’s are chosen so that every el-
ement of W has a unique expression as a finite linear combination

P
˛ c˛v˛ with

v˛ 2 V˛ for each ˛. In this case, we can naturally identify W with
L
˛ V˛ , and we

say that W is the internal direct sum of the submodules fV˛g, extending the termi-
nology we introduced earlier for two complementary subspaces of a vector space.
A direct sum of an abstract family of modules is sometimes called their external
direct sum to distinguish it from an internal direct sum.

If V and W are R-modules, the set HomR.V;W / of all R-linear maps from V

to W is an R-module under pointwise addition and scalar multiplication:

.F CG/.v/D F.v/CG.v/;

.aF /.v/D aF.v/:

(If V and W are real vector spaces, then HomR.V;W / is just the space L.V IW /
of R-linear maps; if they are abelian groups, then Z-linear maps are group homo-
morphisms, and we usually write Hom.V;W / instead of HomZ.V;W /.) Our last
proposition is used in the proof of the de Rham theorem in Chapter 18.

Proposition B.57. Let .V˛/˛2A be an indexed family of R-modules. For each R-
module W , there is a canonical isomorphism

HomR

�M

˛2A

V˛;W

�
Š
Y

˛2A

HomR.V˛;W /:

Proof. Define a map ˚ W HomR

�L
˛2A V˛;W

�
!
Q
˛2AHomR.V˛;W / by set-

ting ˚.F /D .F˛/˛2A, where F˛ D F ı 	˛ .
To prove that ˚ is surjective, suppose .F˛/˛2A is an arbitrary element ofQ
˛2AHomR.V˛;W /. This just means that for each ˛, F˛ is an R-linear map from

V˛ toW . The characteristic property of the direct sum then guarantees the existence
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of an R-linear map F W
L
˛2A V˛!W satisfying F ı 	˛ D F˛ for each ˛, which

is equivalent to ˚.F /D .F˛/˛2A.
To prove that ˚ is injective, suppose that ˚.F /D .F˛/˛2A D 0. By definition

of the zero element of the direct product, this means that F˛ D F ı 	˛ is the zero
homomorphism for each ˛. By the uniqueness assertion in Proposition B.55, this
implies that F itself is the zero homomorphism. �



Appendix C
Review of Calculus

In this appendix we summarize the main results from multivariable calculus and real
analysis that are needed in this book. For details on most of the ideas touched on
here, you can consult [Apo74], [Rud76], or [Str00].

Total and Partial Derivatives

For maps between (open subsets of) finite-dimensional vector spaces, the most gen-
eral notion of derivative is the total derivative.

Let V , W be finite-dimensional vector spaces, which we may assume to be en-
dowed with norms. If U � V is an open subset and a 2 U , a map F W U !W is
said to be differentiable at a if there exists a linear map L W V !W such that

lim
v!0

jF.aC v/�F.a/�Lvj

jvj
D 0: (C.1)

The norm in the numerator of this expression is that of W , while the norm in the
denominator is that of V . Because all norms on a finite-dimensional vector space are
equivalent (Exercise B.49), the definition is independent of both choices of norms.

I Exercise C.1. Suppose F W U !W is differentiable at a 2 U . Show that the lin-
ear map L satisfying (C.1) is unique.

If F is differentiable at a, the linear map L satisfying (C.1) is denoted byDF.a/
and is called the total derivative of F at a. Condition (C.1) can also be written

F.aC v/D F.a/CDF.a/vCR.v/; (C.2)

where the remainder term R.v/ D F.a C v/ � F.a/ � DF.a/v satisfies
jR.v/j=jvj ! 0 as v! 0. Thus the total derivative represents the “best linear ap-
proximation” to F.aC v/�F.a/ near a.

I Exercise C.2. Suppose V;W;X are finite-dimensional vector spaces, U � V is an
open subset, a is a point in U , and F;G W U !W and f;g W U !R are maps. Prove
the following statements.

J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics 218,
DOI 10.1007/978-1-4419-9982-5, © Springer Science+Business Media New York 2013
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(a) If F is differentiable at a, then it is continuous at a.
(b) If F is a constant map, then F is differentiable at a and DF.a/D 0.
(c) If F and G are differentiable at a, then F CG is also, and

D.F CG/.a/DDF.a/CDG.a/:

(d) If f and g are differentiable at a, then fg is also, and

D.fg/.a/D f .a/Dg.a/C g.a/Df .a/:

(e) If f and g are differentiable at a and g.a/¤ 0, then f=g is differentiable at a,
and

D.f=g/.a/D
g.a/Df .a/� f .a/Dg.a/

g.a/2
:

(f) If T W V !W is a linear map, then T is differentiable at every point v 2 V , with
total derivative equal to T itself: DT.v/D T .

(g) If B W V � W ! X is a bilinear map, then B is differentiable at every point
.v;w/ 2 V �W , and

DB.v;w/.x;y/DB.v;y/CB.x;w/:

Proposition C.3 (The Chain Rule for Total Derivatives). Suppose V , W , X
are finite-dimensional vector spaces, U � V and zU � W are open subsets, and
F W U ! zU and G W zU ! X are maps. If F is differentiable at a 2 U and G is
differentiable at F.a/ 2 zU , then G ıF is differentiable at a, and

D.G ıF /.a/DDG
�
F.a/

�
ıDF.a/:

Proof. Let ADDF.a/ and B DDG
�
F.a/

�
. We need to show that

lim
v!0

jG.F.aC v//�G.F.a//�BAvj

jvj
D 0: (C.3)

Let us write b D F.a/ and wD F.aC v/�F.a/. With these substitutions, we can
rewrite the quotient in (C.3) as

jG.bCw/�G.b/�BAvj

jvj
D
jG.bCw/�G.b/�BwCBw �BAvj

jvj

�
jG.bCw/�G.b/�Bwj

jvj
C
jB.w �Av/j

jvj
: (C.4)

Since A and B are linear, Exercise B.52 shows that there are constants C;C 0

such that jAxj � C jxj for all x 2 V , and jByj � C 0jyj for all y 2W . The differen-
tiability of F at a means that for any " > 0, we can ensure that

jw �Avj D jF.aC v/�F.a/�Avj � "jvj

as long as v lies in a small enough neighborhood of 0. Moreover, as v! 0, jwj D
jF.aC v/� F.a/j ! 0 by continuity of F . Therefore, the differentiability of G at
b means that by making jvj even smaller if necessary, we can also achieve

jG.bCw/�G.b/�Bwj � "jwj:



644 C Review of Calculus

Putting all of these estimates together, we see that for jvj sufficiently small, (C.4)
is bounded by

"
jwj

jvj
CC 0

jw �Avj

jvj
D "
jw �AvCAvj

jvj
CC 0

jw �Avj

jvj

� "
jw �Avj

jvj
C "
jAvj

jvj
CC 0

jw �Avj

jvj

� "2C "C CC 0";

which can be made as small as desired. �

Partial Derivatives

Now we specialize to maps between Euclidean spaces. Suppose U � Rn is open
and f W U ! R is a real-valued function. For any a D

�
a1; : : : ; an

�
2 U and any

j 2 f1; : : : ; ng, the j th partial derivative of f at a is defined to be the ordinary
derivative of f with respect to xj while holding the other variables fixed:

@f

@xj
.a/D lim

h!0

f .a1; : : : ; aj C h; : : : ; an/� f .a1; : : : ; aj ; : : : ; an/

h

D lim
h!0

f .aC hej /� f .a/

h
;

if the limit exists.
More generally, for a vector-valued function F W U ! Rm, we can write the

coordinates of F.x/ as F.x/ D
�
F 1.x/; : : : ;Fm.x/

�
. This defines m functions

F 1; : : : ;Fm W U ! R called the component functions of F . The partial deriva-
tives of F are defined simply to be the partial derivatives @F i=@xj of its component
functions. The matrix

�
@F i=@xj

�
of partial derivatives is called the Jacobian matrix

of F , and its determinant is called the Jacobian determinant of F .
If F W U !Rm is a function for which each partial derivative exists at each point

in U and the functions @F i=@xj W U ! R so defined are all continuous, then F is
said to be of class C 1 or continuously differentiable. If this is the case, we can
differentiate the functions @F i=@xj to obtain second-order partial derivatives

@2F i

@xk@xj
D

@

@xk

�
@F i

@xj

�
;

if they exist. Continuing this way leads to higher-order partial derivatives: the partial
derivatives of F of order k are the (first) partial derivatives of those of order k � 1,
when they exist.

In general, if U � Rn is an open subset and k � 0, a function F W U ! Rm

is said to be of class C k or k times continuously differentiable if all the partial
derivatives of F of order less than or equal to k exist and are continuous functions
on U . (Thus a function of class C 0 is just a continuous function.) Because existence
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and continuity of derivatives are local properties, clearly F is C k if and only if it
has that property in a neighborhood of each point in U .

A function that is of class C k for every k � 0 is said to be of class C1, smooth,
or infinitely differentiable. If U and V are open subsets of Euclidean spaces, a func-
tion F W U ! V is called a diffeomorphism if it is smooth and bijective and its
inverse function is also smooth.

One consequence of the chain rule is worth noting.

Proposition C.4. Suppose U �Rn and V �Rm are open subsets and F W U ! V

is a diffeomorphism. Then mD n, and for each a 2 U , the total derivative DF.a/
is invertible, with DF.a/�1 DD

�
F �1

��
F.a/

�
.

Proof. Because F �1 ıF D IdU , the chain rule implies that for each a 2U ,

IdRn DD.IdU /.a/DD
�
F �1 ıF

�
.a/DD

�
F �1

��
F.a/

�
ıDF.a/: (C.5)

Similarly, F ı F �1 D IdV implies that DF.a/ ı D
�
F �1

��
F.a/

�
is the identity

on Rm. This implies that DF.a/ is invertible with inverse D
�
F �1

��
F.a/

�
, and

therefore mD n. �
We sometimes need to consider smoothness of functions whose domains are

subsets of Rn that are not open. If A � Rn is an arbitrary subset, a function
F W A!Rm is said to be smooth on A if it admits a smooth extension to an open
neighborhood of each point, or more precisely, if for every x 2 A, there exist an
open subset Ux �Rn containing x and a smooth function zF W Ux!Rm that agrees
with F on Ux \A. The notion of diffeomorphism extends to arbitrary subsets in the
obvious way: given arbitrary subsets A;B �Rn, a diffeomorphism from A to B is
a smooth bijective map f W A!B with smooth inverse.

We are especially concerned with real-valued functions, that is, functions whose
codomain is R. If U � Rn is open, the set of all real-valued functions of class
C k on U is denoted by C k.U /, and the set of all smooth real-valued functions by
C1.U /. Sums, constant multiples, and products of functions are defined pointwise:
for f;g W U !R and c 2R,

.f C g/.x/D f .x/C g.x/;

.cf /.x/D c
�
f .x/

�
;

.fg/.x/D f .x/g.x/:

I Exercise C.5. Let U � Rn be an open subset, and suppose f;g 2 C1.U / and
c 2R.

(a) Show that f C g, cf , and fg are smooth.
(b) Show that these operations turn C1.U / into a commutative ring and a commuta-

tive and associative algebra over R (see p. 624).
(c) Show that if g never vanishes on U , then f=g is smooth.

The following important result shows that for most interesting functions, the or-
der in which we take partial derivatives is irrelevant. For a proof, see [Apo74, Rud76,
Str00].
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Proposition C.6 (Equality of Mixed Partial Derivatives). If U is an open subset
of Rn and F W U ! Rm is a function of class C 2, then the mixed second-order
partial derivatives of F do not depend on the order of differentiation:

@2F i

@xj @xk
D

@2F i

@xk@xj
:

Corollary C.7. If F W U ! Rm is smooth, then the mixed partial derivatives of F
of any order are independent of the order of differentiation. �

Next we study the relationship between total and partial derivatives. Suppose
U � Rn is open and F W U ! Rm is differentiable at a 2 U . As a linear map be-
tween Euclidean spaces Rn and Rm,DF.a/ can be identified with anm�n matrix.
The next proposition identifies that matrix as the Jacobian of F .

Proposition C.8. Let U �Rn be open, and suppose F W U !Rm is differentiable
at a 2U . Then all of the partial derivatives of F at a exist, and DF.a/ is the linear
map whose matrix is the Jacobian of F at a:

DF.a/D

�
@F j

@xi
.a/

�
:

Proof. Let B DDF.a/, and for v 2 Rn small enough that aC v 2 U , let R.v/D
F.a C v/ � F.a/ � Bv. The fact that F is differentiable at a implies that each
component of the vector-valued function R.v/=jvj goes to zero as v! 0. The i th
partial derivative of F j at a, if it exists, is

@F j

@xi
.a/D lim

t!0

F j .aC tei /�F
j .a/

t
D lim
t!0

B
j
i t CR

j .tei /

t

D B
j
i C lim

t!0

Rj .tei /

t
:

The norm of the quotient on the right above is
ˇ̌
Rj .tei /

ˇ̌
=jtei j, which approaches

zero as t! 0. It follows that @F j =@xi .a/ exists and is equal to Bji as claimed. �

I Exercise C.9. Suppose U � Rn is open. Show that a function F W U ! Rm is
differentiable at a 2 U if and only if each of its component functions F 1; : : : ;Fm is
differentiable at a. Show that if this is the case, then

DF.a/D

�

DF 1.a/
:::

DFm.a/

�

:

The preceding exercise implies that for an open interval J �R, a map � W J !
Rm is differentiable if and only if its component functions are differentiable in the
sense of one-variable calculus.

The next proposition gives the most important sufficient condition for differen-
tiability; in particular, it shows that all of the usual functions of elementary calculus
are differentiable. For a proof, see [Apo74, Rud76, Str00].
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Proposition C.10. Let U � Rn be open. If F W U ! Rm is of class C 1, then it is
differentiable at each point of U .

For functions between Euclidean spaces, the chain rule can be rephrased in terms
of partial derivatives.

Corollary C.11 (The Chain Rule for Partial Derivatives). Let U �Rn and zU �
Rm be open subsets, and let x D

�
x1; : : : ; xn

�
denote the standard coordinates on

U and y D
�
y1; : : : ; ym

�
those on zU .

(a) A composition of C 1 functions F W U ! zU and G W zU ! Rp is again of class
C 1, with partial derivatives given by

@.Gi ıF /

@xj
.x/D

mX

kD1

@Gi

@yk

�
F.x/

�@F k

@xj
.x/:

(b) If F and G are smooth, then G ıF is smooth.

I Exercise C.12. Prove Corollary C.11.

From the chain rule and induction one can derive formulas for the higher partial
derivatives of a composite function as needed, provided the functions in question
are sufficiently differentiable.

I Exercise C.13. Suppose A�Rn and B �Rm are arbitrary subsets, and F W A!
Rm and G W B!Rp are smooth maps (in the sense that they have smooth extensions
in a neighborhood of each point) such that F.A/� B . Show that G ı F W A!Rp is
smooth.

Now suppose f W U ! R is a smooth real-valued function on an open subset
U � Rn, and a 2 U . For each vector v 2 Rn, we define the directional derivative
of f in the direction v at a to be the number

Dvf .a/D
d

dt

ˇ̌
ˇ̌
tD0

f .aC tv/: (C.6)

(This definition makes sense for any vector v; we do not require v to be a unit vector
as one sometimes does in elementary calculus.)

SinceDvf .a/ is the ordinary derivative of the composite function t 7! aC tv 7!

f .aC tv/, by the chain rule it can be written more concretely as

Dvf .a/D

nX

iD1

vi
@f

@xi
.a/DDf .a/v:

The fundamental theorem of calculus expresses one well-known relationship be-
tween integrals and derivatives. Another is that integrals of smooth functions can
be differentiated under the integral sign. A precise statement is given in the next
theorem; this is not the best that can be proved, but it is more than sufficient for our
purposes. For a proof, see [Apo74, Rud76, Str00].
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Theorem C.14 (Differentiation Under an Integral Sign). Let U �Rn be an open
subset, let a; b 2R, and let f W U � Œa; b�!R be a continuous function such that
the partial derivatives @f=@xi W U � Œa; b�! R exist and are continuous on U �
Œa; b� for i D 1; : : : ; n. Define F W U !R by

F.x/D

Z b

a

f .x; t/ dt:

Then F is of class C 1, and its partial derivatives can be computed by differentiating
under the integral sign:

@F

@xi
.x/D

Z b

a

@f

@xi
.x; t/ dt:

You are probably familiar with Taylor’s theorem, which shows how a sufficiently
smooth function can be approximated near a point by a polynomial. We need a
version of Taylor’s theorem in several variables that gives an explicit integral form
for the remainder term. In order to express it concisely, it helps to introduce some
shorthand notation. For any m-tuple I D .i1; : : : ; im/ of indices with 1� ij � n, we
let jI j Dm denote the number of indices in I , and

@I D
@m

@xi1 � � �@xim
;

.x � a/I D
�
xi1 � ai1

�
� � �
�
xim � aim

�
:

Theorem C.15 (Taylor’s Theorem). Let U �Rn be an open subset, and let a 2U
be fixed. Suppose f 2 C kC1.U / for some k � 0. If W is any convex subset of U
containing a, then for all x 2W ,

f .x/D Pk.x/CRk.x/; (C.7)

where Pk is the kth-order Taylor polynomial of f at a, defined by

Pk.x/D f .a/C

kX

mD1

1

mŠ

X

I WjI jDm

@If .a/.x � a/
I ; (C.8)

and Rk is the kth remainder term, given by

Rk.x/D
1

kŠ

X

I WjI jDkC1

.x � a/I
Z 1

0

.1� t/k@If
�
aC t.x � a/

�
dt: (C.9)

Proof. For k D 0 (where we interpret P0 to mean f .a/), this is just the fundamental
theorem of calculus applied to the function u.t/D f

�
aC t.x � a/

�
, together with

the chain rule. Assuming the result holds for some k, integration by parts applied to
the integral in the remainder term yields

Z 1

0

.1� t/k@If
�
aC t.x � a/

�
dt
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D

�
�
.1� t/kC1

kC 1
@If

�
aC t.x � a/

�tD1

tD0

C

Z 1

0

.1� t/kC1

kC 1

@

@t

�
@If

�
aC t.x � a/

��
dt

D
1

kC 1
@If .a/

C
1

kC 1

nX

jD1

�
xj � aj

�Z 1

0

.1� t/kC1
@

@xj
@If

�
aC t.x � a/

�
dt:

When we insert this into (C.7), we obtain the analogous formula with k replaced by
kC 1. �
Corollary C.16. Suppose U �Rn is an open subset, a 2 U , and f 2 C kC1.U / for
some k � 0. If W is a convex subset of U containing a on which all of the .kC 1/st
partial derivatives of f are bounded in absolute value by a constant M; then for all
x 2W ,

ˇ̌
f .x/�Pk.x/

ˇ̌
�
nkC1M

.kC 1/Š
jx � ajkC1;

where Pk is the kth Taylor polynomial of f at a, defined by (C.8).

Proof. There are nkC1 terms on the right-hand side of (C.9), and each term is
bounded in absolute value by .1=.kC 1/Š/jx � ajkC1M . �

Multiple Integrals

In this section we give a brief review of some basic facts regarding multiple inte-
grals in Rn. For our purposes, the Riemann integral is more than sufficient. Readers
who are familiar with the theory of Lebesgue integration are free to interpret all
of our integrals in the Lebesgue sense, because the two integrals are equal for the
types of functions we consider. For more details on the aspects of integration theory
described here, you can consult [Apo74, Rud76, Str00].

A closed rectangle in Rn is a product set of the form
�
a1; b1

�
�� � ��

�
an; bn

�
, for

real numbers ai < bi . Analogously, an open rectangle is a set of the form
�
a1; b1

�
�

� � ��
�
an; bn

�
. IfA is a rectangle of either type, the volume of A, denoted by Vol.A/,

is defined to be the product of the lengths of its component intervals:

Vol.A/D
�
b1 � a1

�
� � �
�
bn � an

�
: (C.10)

A rectangle is called a cube if all of its side lengths
�
bi � ai

�
are equal.

Given a closed interval Œa; b��R, a partition of Œa;b� is a finite sequence P D
.a0; : : : ; ak/ of real numbers such that a D a0 < a1 < � � � < ak D b. Each of the
intervals Œai�1; ai � for i D 1; : : : ; k is called a subinterval of P . Similarly, if AD�
a1; b1

�
� � � � �

�
an; bn

�
is a closed rectangle, a partition of A is an n-tuple P D
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.P1; : : : ;Pn/, where each Pi is a partition of
�
ai ; bi

�
. Each rectangle of the form

I1� � � �� In, where Ij is a subinterval of Pj , is called a subrectangle of P . Clearly,
A is the union of all the subrectangles in any partition, and distinct subrectangles
intersect only on their boundaries.

Suppose A�Rn is a closed rectangle and f W A!R is a bounded function. For
each partition P of A, we define the lower sum of f with respect to P by

L.f;P /D
X

j

	
inf
Rj
f



Vol.Rj /;

where the sum is over all the subrectangles Rj of P . Similarly, the upper sum is

U.f;P /D
X

j

	
sup
Rj

f



Vol.Rj /:

The lower sum with respect to P is obviously less than or equal to the upper sum
with respect to the same partition. In fact, more is true.

Lemma C.17. Let A�Rn be a closed rectangle, and let f W A!R be a bounded
function. For any pair of partitions P and P 0 of A,

L.f;P /�U.f;P 0/:

Proof. Write P D .P1; : : : ;Pn/ and P 0 D .P 01; : : : ;P
0
n/, and let Q be the partition

Q D .P1 [ P
0
1; : : : ;Pn [ P

0
n/. Each subrectangle of P or P 0 is a union of finitely

many subrectangles of Q. An easy computation shows that

L.f;P /� L.f;Q/�U.f;Q/�U.f;P 0/;

from which the result follows. �

The lower integral of f over A is
Z

A

f dV D sup
˚
L.f;P / W P is a partition of A

�
;

and the upper integral is

Z

A

f dV D inf
˚
U.f;P / W P is a partition of A

�
:

Clearly, both numbers exist, because f is bounded, and Lemma C.17 implies that
the lower integral is less than or equal to the upper integral.

If f W A!R is a bounded function whose upper and lower integrals are equal,
we say that f is (Riemann) integrable over A, and their common value, denoted
by

Z

A

f dV;
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is called the integral of f over A. The “dV ” in this notation, like the “dx” in the
notation for single integrals, has no meaning on its own; it is just a “closing bracket”
for the integral sign. Other common notations are

Z

A

f or
Z

A

f dx1 � � �dxn or
Z

A

f
�
x1; : : : ; xn

�
dx1 � � �dxn:

In R2, the symbol dV is often replaced by dA.
There is a simple criterion for a bounded function to be Riemann integrable. It

is based on the following notion. A subset X �Rn is said to have measure zero if
for every ı > 0, there exists a countable cover of X by open rectangles fCig such
that

P
i Vol.Ci / < ı. (Those who are familiar with the theory of Lebesgue measure

will notice that this is equivalent to the condition that the Lebesgue measure of X
be equal to zero.)

Proposition C.18 (Properties of Sets of Measure Zero).

(a) If X �Rn has measure zero and x0 2Rn, then the translated subset x0CX D
fx0C a W a 2Xg also has measure zero.

(b) Every subset of a set of measure zero in Rn has measure zero.
(c) A countable union of sets of measure zero in Rn has measure zero.
(d) If k < n, then every subset of Rk (viewed as the set of points x 2 Rn with

xkC1 D � � � D xn D 0) has measure zero in Rn.

I Exercise C.19. Prove Proposition C.18.

Part (d) of this proposition illustrates that having measure zero is a property of
a set in relation to a particular Euclidean space containing it, not of a set in and
of itself. For example, an open interval in the x-axis has measure zero as a subset
of R2, but not when considered as a subset of R1. For this reason, we sometimes
say that a subset of Rn has n-dimensional measure zero if we wish to emphasize
that it has measure zero as a subset of Rn.

The following proposition gives a sufficient condition for a function to be in-
tegrable. It shows, in particular, that every bounded continuous function is inte-
grable.

Proposition C.20 (Lebesgue’s Integrability Criterion). Let A� Rn be a closed
rectangle, and let f W A!R be a bounded function. If the set

S D fx 2A W f is not continuous at xg

has measure zero, then f is integrable.

Proof. Suppose the set S has measure zero, and let " > 0 be given. By defini-
tion of measure zero sets, S can be covered by a countable collection of open
rectangles fCig, the sum of whose volumes is less than ". For each q 2 A X S ,
since f is continuous at q, there is an open rectangle Dq centered at q such that
jf .x/� f .q/j< " for all x 2Dq \A. By shrinking Dq a little, we can arrange that
the same inequality holds for all x 2 xDq \ A. This implies sup xDq f � inf xDq f �
2".
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The collection of all rectangles of the form Ci or Dq is an open cover of A.
By compactness, finitely many of them cover A. Let us relabel these rectangles as
fC1; : : : ;Ck ;D1; : : : ;Dlg. Replacing each Ci or Dj by its intersection with IntA,
we may assume that each xCi and each xDj is contained in A.

Since there are only finitely many rectangles fCi ;Dj g, there is a partition P
of A with the property that each xCi or xDj is equal to a union of subrectangles
of P . (Just use the union of all the endpoints of the component intervals of the
rectangles Ci and Dj to define the partition.) We can divide the subrectangles of
P into two disjoint sets C and D such that every subrectangle in C is contained
in xCi for some i , and every subrectangle in D is contained in xDj for some j .
Then

U.f;P /� L.f;P /

D
X

i

	
sup
Ri

f



Vol.Ri /�
X

i

	
inf
Ri
f



Vol.Ri /

D
X

Ri2C

	
sup
Ri

f � inf
Ri
f



Vol.Ri /C
X

Ri2D

	
sup
Ri

f � inf
Ri
f



Vol.Ri /

�
	

sup
A

f � inf
A
f

 X

Ri2C

Vol.Ri /C 2"
X

Ri2D

Vol.Ri /

�
	

sup
A

f � inf
A
f


"C 2"Vol.A/:

It follows that
Z

A

f dV �

Z

A

f dV �
	

sup
A

f � inf
A
f


"C 2"Vol.A/;

which can be made as small as desired by taking " sufficiently small. This implies
that the upper and lower integrals of f are equal, so f is integrable. �

In fact, Lebesgue’s criterion is both necessary and sufficient for Riemann inte-
grability, but we do not need that.

Now suppose D �Rn is an arbitrary bounded set, and f W D!R is a bounded
function. Define fD W Rn!R by

fD.x/D

(
f .x/; x 2D;

0; x 2Rn XD:
(C.11)

If the integral
Z

A

fD dV (C.12)

exists for some closed rectangle A containing D, then f is said to be integrable
over D. The integral (C.12) is denoted by

R
D f dV and called the integral of f
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over D. It is easy to check that both the integrability of f and the value of the
integral are independent of the rectangle chosen.

In practice, we are interested only in integrals of bounded continuous functions.
However, since we sometimes need to integrate them over domains other than rect-
angles, it is necessary to consider also integrals of discontinuous functions such as
the function fD defined by (C.11). The main reason for proving Proposition C.20
is that it allows us to give a simple description of domains on which all bounded
continuous functions are integrable.

A subset D � Rn is called a domain of integration if D is bounded and @D
has n-dimensional measure zero. It follows from Proposition C.18 that every open
or closed rectangle is a domain of integration, and a finite union of domains of
integration is again a domain of integration.

Proposition C.21. If D �Rn is a domain of integration, then every bounded con-
tinuous real-valued function on D is integrable over D.

Proof. Let f W D! R be bounded and continuous, let fD W Rn! R be the func-
tion defined by (C.11), and let A be a closed rectangle containing D. To prove the
theorem, we need only show that the set of points in A where fD is discontinuous
has measure zero.

If x 2 IntD, then fD D f on a neighborhood of x, so fD is continuous at x.
Similarly, if x 2 Rn X xD, then fD � 0 on a neighborhood of x, so again f is
continuous at x. Thus the set of points where fD is discontinuous is contained
in @D, and therefore has measure zero. �

Of course, ifD is compact, then the assumption that f is bounded in the preced-
ing proposition is superfluous.

If D is a domain of integration, the volume of D is defined to be

Vol.D/D
Z

D

1dV: (C.13)

The integral on the right-hand side is often abbreviated
R
D
dV .

The next two propositions collect some basic facts about volume and integrals of
continuous functions.

Proposition C.22 (Properties of Volume). Let D � Rn be a domain of integra-
tion.

(a) If D is an open or closed rectangle, then the two definitions (C.10) and (C.13)
of Vol.D/ agree.

(b) Vol.D/� 0, with equality if and only if D has measure zero.
(c) If D1; : : : ;Dk are domains of integration whose union is D, then

Vol.D/�Vol.D1/C � � � CVol.Dk/;

with equality if and only if Di \Dj has measure zero for each i ¤ j .
(d) If D1 is a domain of integration contained in D, then Vol.D1/�Vol.D/, with

equality if and only if D XD1 has measure zero.
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Proposition C.23 (Properties of Integrals). Let D �Rn be a domain of integra-
tion, and let f;g W D!R be continuous and bounded.

(a) For any a; b 2R,
Z

D

.af C bg/dV D a

Z

D

f dV C b

Z

D

g dV:

(b) If D has measure zero, then
R
D
f dV D 0.

(c) IfD1; : : : ;Dk are domains of integration whose union isD and whose pairwise
intersections have measure zero, then

Z

D

f dV D

Z

D1

f dV C � � � C

Z

Dk

f dV:

(d) If f � 0 on D, then
R
D f dV � 0, with equality if and only if f � 0 on IntD.

(e) .infD f /Vol.D/�
R
D f dV � .supD f /Vol.D/.

(f)
ˇ̌ R
D f dV

ˇ̌
�
R
D jf jdV .

I Exercise C.24. Prove Propositions C.22 and C.23.

Corollary C.25. A set of measure zero in Rn contains no nonempty open subset.

Proof. Assume for the sake of contradiction that D � Rn has measure zero and
contains a nonempty open subset U . Then U contains a nonempty open rectangle,
which has positive volume and therefore does not have measure zero by Proposi-
tion C.22. But this contradicts the fact that every subset of D has measure zero by
Proposition C.18. �

There are two more fundamental properties of multiple integrals that we need.
The proofs are too involved to be included in this summary, but you can look them
up in [Apo74, Rud76, Str00] if you are interested. Each of these theorems can be
stated in various ways, some stronger than others. The versions we give here are
quite sufficient for our applications.

Theorem C.26 (Change of Variables). Suppose D and E are open domains of
integration in Rn, and G W xD! xE is smooth map that restricts to a diffeomorphism
from D to E . For every continuous function f W xE!R,

Z

E

f dV D

Z

D

.f ıG/ jdetDGj dV:

Theorem C.27 (Fubini’s Theorem). Let AD
�
a1; b1

�
� � � � �

�
an; bn

�
be a closed

rectangle in Rn, and let f W A!R be continuous. Then

Z

A

f dV D

Z bn

an

�
� � �

�Z b1

a1
f .x1; : : : ; xn/dx1

�
� � �

�
dxn;

and the same is true if the variables in the iterated integral on the right-hand side
are reordered in any way.
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Integrals of Vector-Valued Functions

If D � Rn is a domain of integration and F W D! Rk is a bounded continuous
vector-valued function, we define the integral of F over D to be the vector in Rk

obtained by integrating F component by component:
Z

D

F dV D

�Z

D

F 1 dV; : : : ;

Z

D

F k dV

�
:

The analogues of parts (a)–(c) of Proposition C.23 obviously hold for vector-valued
integrals, just by applying them to each component. Part (f) holds as well, but re-
quires a bit more work to prove.

Proposition C.28. SupposeD �Rn is a domain of integration and F W D!Rk is
a bounded continuous vector-valued function. Then

ˇ̌
ˇ̌
Z

D

F dV

ˇ̌
ˇ̌�

Z

D

jF jdV: (C.14)

Proof. Let G denote the vector
R
D
F dV 2 Rk . If G D 0, then (C.14) obviously

holds, so we may as well assume that G ¤ 0. We compute

jGj2 D

kX

iD1

�
Gi
�2
D

kX

iD1

Gi
Z

D

F i dV D

kX

iD1

Z

D

GiF i dV D

Z

D

.G � F /dV:

Applying Proposition C.23(f) to the scalar integral
R
D.G � F /dV , we obtain

jGj2 �

Z

D

jG � F j dV �
Z

D

jGj jF j dV D jGj

Z

D

jF j dV:

Dividing both sides of the inequality above by jGj yields (C.14). �

As an application of (C.14), we prove an important estimate for the local behavior
of a C 1 function in terms of its total derivative.

Proposition C.29 (Lipschitz Estimate forC 1 Functions). LetU �Rn be an open
subset, and suppose F W U !Rm is of class C 1. Then F is Lipschitz continuous on
every compact convex subset K � U . The Lipschitz constant can be taken to be
supx2K jDF.x/j.

Proof. Since jDF.x/j is a continuous function of x, it is bounded on the compact
set K . (The norm here is the Frobenius norm on matrices defined in (B.15).) Let
M D supx2K jDF.x/j. For arbitrary a; b 2 K , we have a C t.b � a/ 2 K for all
t 2 I because K is convex. By the fundamental theorem of calculus applied to each
component of F , together with the chain rule,

F.b/�F.a/D

Z 1

0

d

dt
F
�
aC t.b � a/

�
dt
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D

Z 1

0

DF
�
aC t.b � a/

�
.b � a/dt:

Therefore, by (C.14) and Exercise B.48,

ˇ̌
F.b/�F.a/

ˇ̌
�

Z 1

0

ˇ̌
DF

�
aC t.b � a/

�ˇ̌
jb � aj dt

�

Z 1

0

M jb � aj dt DM jb � aj: �

Corollary C.30. If U �Rn is an open subset and F W U !Rm is of class C 1, then
f is locally Lipschitz continuous.

Proof. Each point of U is contained in a ball whose closure is contained in U ,
and Proposition C.29 shows that the restriction of F to such a ball is Lipschitz
continuous. �

Sequences and Series of Functions

Let S � Rn, and suppose we are given functions f W S ! Rm and fi W S ! Rm

for each integer i � 1. The sequence .fi /1iD1 is said to converge pointwise to f if
for each a 2 S and each " > 0, there exists an integer N such that i � N implies
jfi .a/ � f .a/j < ". The sequence is said to converge uniformly to f if N can be
chosen independently of the point a: for each " > 0 there exists N such that i �N
implies jfi .a/� f .a/j< " for all a 2 S . The sequence is uniformly Cauchy if for
every " > 0 there exists N such that i; j � N implies jfi .a/ � fj .a/j < " for all
a 2 S .

Theorem C.31 (Properties of Uniform Convergence). Let S �Rn, and suppose
fi W S!Rm is continuous for each integer i � 1.

(a) If fi ! f uniformly, then f is continuous.
(b) If the sequence .fi /1iD1 is uniformly Cauchy, then it converges uniformly to a

continuous function.
(c) If fi ! f uniformly and S is a compact domain of integration, then

lim
i!1

Z

S

fi dV D

Z

S

f dV:

(d) If S is open, each fi is of classC 1, fi ! f pointwise, and
�
@fi=@x

j
�

converges
uniformly on S as i!1, then @f=@xj exists on S and

@f

@xj
D lim
i!1

@fi

@xj
:

For a proof, see [Apo74, Rud76, Str00].
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Given an infinite series of (real-valued or vector-valued) functions
P1
iD0 fi on

S �Rn, one says the series converges pointwise if the corresponding sequence of
partial sums converges pointwise to some function f :

f .x/D lim
N!1

NX

iD0

fi .x/ for all x 2 S:

We say the series converges uniformly if its partial sums do so.

Proposition C.32 (Weierstrass M -test). Suppose S � Rn, and fi W S ! Rk are
functions. If there exist positive real numbers Mi such that supS jfi j � Mi andP
iMi converges, then

P
i fi converges uniformly on S .

I Exercise C.33. Prove Proposition C.32.

The Inverse and Implicit Function Theorems

The last two theorems in this appendix are central results about smooth functions.
They say that under certain hypotheses, the local behavior of a smooth function is
modeled by the behavior of its total derivative.

Theorem C.34 (Inverse Function Theorem). Suppose U and V are open subsets
of Rn, and F W U ! V is a smooth function. If DF.a/ is invertible at some point
a 2U , then there exist connected neighborhoods U0 � U of a and V0 � V of F.a/
such that F jU0 W U0! V0 is a diffeomorphism.

The proof of this theorem is based on an elementary result about metric spaces,
which we describe first.

Let X be a metric space. A map G W X!X is said to be a contraction if there is
a constant 
 2 .0; 1/ such that d

�
G.x/;G.y/

�
� 
d.x;y/ for all x;y 2X . Clearly,

every contraction is continuous. A fixed point of a map G W X!X is a point x 2X
such that G.x/D x.

Lemma C.35 (Contraction Lemma). LetX be a nonempty complete metric space.
Every contraction G W X!X has a unique fixed point.

Proof. Uniqueness is immediate, for if x and x0 are both fixed points of G, the con-
traction property implies d.x;x0/D d

�
G.x/;G.x0/

�
� 
d.x;x0/, which is possible

only if x D x0.
To prove the existence of a fixed point, let x0 be an arbitrary point in X ,

and define a sequence .xn/1nD0 inductively by xnC1 D G.xn/. For any i � 1 we
have d.xi ; xiC1/ D d

�
G.xi�1/;G.xi /

�
� 
d.xi�1; xi /, and therefore by induc-

tion

d.xi ; xiC1/� 

id.x0; x1/:

If N is a positive integer and j � i �N ,

d.xi ; xj / � d.xi ; xiC1/C d.xiC1; xiC2/C � � � C d.xj�1; xj /
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�
�

i C � � � C 
j�1

�
d.x0; x1/

� 
i
� 1X

nD0


n
�
d.x0; x1/

� 
N
1

1� 

d.x0; x1/:

Since this last expression can be made as small as desired by choosing N large, the
sequence .xn/ is Cauchy and therefore converges to a limit x 2 X . Because G is
continuous,

G.x/DG
	

lim
n!1

xn



D lim
n!1

G.xn/D lim
n!1

xnC1 D x;

so x is the desired fixed point. �

Proof of the inverse function theorem. We begin by making some simple modifica-
tions to the function F to streamline the proof. First, the function F1 defined by

F1.x/D F.xC a/�F.a/

is smooth on a neighborhood of 0 and satisfies F1.0/D 0 and DF1.0/DDF.a/;
clearly, F is a diffeomorphism on a connected neighborhood of a if and only if F1
is a diffeomorphism on a connected neighborhood of 0. Second, the function F2 D
DF1.0/

�1ıF1 is smooth on the same neighborhood of 0 and satisfies F2.0/D 0 and
DF2.0/D In; and if F2 is a diffeomorphism in a neighborhood of 0, then so is F1
and therefore also F . Henceforth, replacing F by F2, we assume that F is defined
in a neighborhood U of 0, F.0/D 0, and DF.0/D In. Because the determinant of
DF.x/ is a continuous function of x, by shrinking U if necessary, we may assume
that DF.x/ is invertible for each x 2U .

Let H.x/ D x � F.x/ for x 2 U . Then DH.0/ D In � In D 0. Because the
matrix entries of DH.x/ are continuous functions of x, there is a number ı > 0
such that Bı.0/� U and for all x 2 xBı.0/, we have jDH.x/j � 1

2
. If x;x0 2 xBı.0/,

the Lipschitz estimate for smooth functions (Proposition C.29) implies

jH.x0/�H.x/j � 1
2
jx0 � xj: (C.15)

In particular, taking x0 D 0, this implies

jH.x/j � 1
2
jxj: (C.16)

Since x0 � x D F.x0/�F.x/CH.x0/�H.x/, it follows that

jx0 � xj �
ˇ̌
F.x0/�F.x/

ˇ̌
C
ˇ̌
H.x0/�H.x/

ˇ̌
�
ˇ̌
F.x0/�F.x/

ˇ̌
C 1

2
jx0 � xj;

and rearranging gives

jx0 � xj � 2jF.x0/�F.x/j (C.17)

for all x;x0 2 xBı.0/. In particular, this shows that F is injective on xBı.0/.
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Now let y 2 Bı=2.0/ be arbitrary. We will show that there exists a unique point
x 2 Bı.0/ such that F.x/ D y. Let G.x/ D y CH.x/ D y C x � F.x/, so that
G.x/D x if and only if F.x/D y. If jxj � ı, (C.16) implies

jG.x/j � jyj C jH.x/j<
ı

2
C
1

2
jxj � ı; (C.18)

so G maps xBı.0/ to itself. It then follows from (C.15) that jG.x/�G.x0/j D
jH.x/�H.x0/j � 1

2
jx�x0j, soG is a contraction. Since xBı.0/ is a complete metric

space (see Example A.6), the contraction lemma implies that G has a unique fixed
point x 2 xBı.0/. From (C.18), jxj D jG.x/j< ı, so in fact x 2 Bı.0/, thus proving
the claim.

Let V0 D Bı=2.0/ and U0 D Bı.0/\ F �1.V0/. Then U0 is open in Rn, and the
argument above shows that F W U0! V0 is bijective, so F �1 W V0! U0 exists. Sub-
stituting x D F �1.y/ and x0 D F �1.y0/ into (C.17) shows that F �1 is continuous.
Thus F W U0! V0 is a homeomorphism, and it follows that U0 is connected because
V0 is.

The only thing that remains to be proved is that F �1 is smooth. If we knew it
were smooth, Proposition C.4 would imply that D

�
F �1

�
.y/ D DF.x/�1, where

x D F �1.y/. We begin by showing that F �1 is differentiable at each point of V0,
with total derivative given by this formula.

Let y 2 V0 be arbitrary, and set x D F �1.y/ and LDDF.x/. We need to show
that

lim
y0!y

F �1.y0/�F �1.y/�L�1.y0 � y/

jy0 � yj
D 0:

Given y0 2 V0 X fyg, write x0 D F �1.y0/ 2 U0 X fxg. Then

F �1.y0/�F �1.y/�L�1.y0 � y/

jy0 � yj

DL�1
�
L.x0 � x/� .y0 � y/

jy0 � yj

�

D
jx0 � xj

jy0 � yj
L�1

�
�
F.x0/�F.x/�L.x0 � x/

jx0 � xj

�
:

The factor jx0 � xj=jy0 � yj above is bounded thanks to (C.17), and because L�1

is linear and therefore bounded (Exercise B.52), the norm of the second factor is
bounded by a constant multiple of

jF.x0/�F.x/�L.x0 � x/j

jx0 � xj
: (C.19)

As y0! y, it follows that x0! x by continuity of F �1, and then (C.19) goes to
zero because L D DF.x/ and F is differentiable. This completes the proof that
F �1 is differentiable.
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By Proposition C.8, the partial derivatives of F �1 are defined at each point
y 2 V0. Observe that the formula D

�
F �1

�
.y/DDF

�
F �1.y/

�
�1 implies that the

matrix-valued function y 7!D
�
F �1

�
.y/ can be written as the composition

y
F �1� F �1.x/

DF� DF
�
F �1.y/

� i� DF
�
F �1.y/

�
�1; (C.20)

where i is matrix inversion. In this composition, F �1 is continuous; DF is smooth
because its component functions are the partial derivatives of F ; and i is smooth
because Cramer’s rule expresses the entries of an inverse matrix as rational func-
tions of the entries of the matrix. Because D

�
F �1

�
is a composition of continuous

functions, it is continuous. Thus the partial derivatives of F �1 are continuous, so
F �1 is of class C 1.

Now assume by induction that we have shown that F �1 is of class C k . This
means that each of the functions in (C.20) is of class C k . Because D

�
F �1

�
is a

composition of C k functions, it is itself C k ; this implies that the partial derivatives
of F �1 are of class C k , so F �1 itself is of class C kC1. Continuing by induction,
we conclude that F �1 is smooth. �
Corollary C.36. Suppose U �Rn is an open subset, and F W U !Rn is a smooth
function whose Jacobian determinant is nonzero at every point in U .

(a) F is an open map.
(b) If F is injective, then F W U ! F.U / is a diffeomorphism.

Proof. For each a 2 U , the fact that the Jacobian determinant of F is nonzero im-
plies that DF.a/ is invertible, so the inverse function theorem implies that there
exist open subsets Ua � U containing a and Va � F.U / containing F.a/ such that
F restricts to a diffeomorphism F jUa W Ua! Va. In particular, this means that each
point of F.U / has a neighborhood contained in F.U /, so F.U / is open. If U0 � U
is an arbitrary open subset, the same argument with U replaced by U0 shows that
F.U0/ is also open; this proves (a). If in addition F is injective, then the inverse
map F �1 W F.U /! U exists for set-theoretic reasons; on a neighborhood of each
point F.a/ 2 F.U / it is equal to the inverse of F jUa , so it is smooth. �

The next two examples illustrate the use of the preceding corollary.

Example C.37 (Polar Coordinates). As you know from calculus, polar coor-
dinates .r; �/ in the plane are defined implicitly by the relations x D r cos� ,
y D r sin� . The map F W .0;1/ �R! R2 defined by F.r; �/D .r cos�; r sin�/
is smooth and has Jacobian determinant equal to r , which is nonzero everywhere
on the domain. Thus, Corollary C.36 shows that the restriction of F to any open
subset on which it is injective is a diffeomorphism onto its image. One such sub-
set is f.r; �/ W r > 0; �� < � < �g, which is mapped bijectively by F onto the
complement of the nonpositive part of the x-axis. //

Example C.38 (Spherical Coordinates). Similarly, spherical coordinates on R3

are the functions .�; '; �/ defined by the relations

x D � sin' cos�;
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y D � sin' sin�;

z D � cos':

Geometrically, � is the distance from the origin, ' is the angle from the positive
z-axis, and � is the angle from the x > 0 half of the .x; z/-plane. If we define
G W .0;1/ � .0;�/ �R! R3 by G.�;'; �/D .� sin' cos�; � sin' sin�; � cos'/,
a computation shows that the Jacobian determinant of G is �2 sin' ¤ 0. Thus, the
restriction of G to any open subset on which it is injective is a diffeomorphism onto
its image. One such subset is

˚
.�; '; �/ W � > 0; 0 < ' < �;�� < � < �

�
:

Notice how much easier it is to argue this way than to try to construct an inverse
map explicitly out of inverse trigonometric functions. //

I Exercise C.39. Verify the claims in the preceding two examples.

The next result is one of the most important consequences of the inverse function
theorem. It gives conditions under which a level set of a smooth function is locally
the graph of a smooth function.

Theorem C.40 (Implicit Function Theorem). Let U �Rn �Rk be an open sub-
set, and let .x; y/ D

�
x1; : : : ; xn; y1; : : : ; yk

�
denote the standard coordinates on

U . Suppose ˚ W U !Rk is a smooth function, .a; b/ 2 U , and c D ˚.a; b/. If the
k � k matrix

�
@˚ i

@yj
.a; b/

�

is nonsingular, then there exist neighborhoods V0 �Rn of a and W0 �Rk of b and
a smooth function F W V0!W0 such that ˚�1.c/ \ .V0 �W0/ is the graph of F ,
that is, ˚.x;y/D c for .x; y/ 2 V0 �W0 if and only if y D F.x/.

Proof. Consider the smooth function � W U ! Rn � Rk defined by �.x;y/ D�
x;˚.x;y/

�
. Its total derivative at .a; b/ is

D�.a; b/D

�

In 0

@˚ i

@xj
.a; b/

@˚ i

@yj
.a; b/

�

;

which is nonsingular because it is block lower triangular and the two blocks on the
main diagonal are nonsingular. Thus by the inverse function theorem there exist
connected neighborhoods U0 of .a; b/ and Y0 of .a; c/ such that � W U0! Y0 is
a diffeomorphism. Shrinking U0 and Y0 if necessary, we may assume that U0 D
V �W is a product neighborhood.

Writing ��1.x; y/ D
�
A.x;y/;B.x;y/

�
for some smooth functions A and B ,

we compute

.x; y/D �
�
��1.x; y/

�
D �

�
A.x;y/;B.x;y/

�

D
�
A.x;y/;˚

�
A.x;y/;B.x;y/

��
: (C.21)
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Comparing the first components in this equation, we find that A.x;y/D x, so ��1

has the form ��1.x; y/D
�
x;B.x;y/

�
.

Now let V0 D fx 2 V W .x; c/ 2 Y0g and W0 DW , and define F W V0!W0 by
F.x/DB.x; c/. Comparing the second components in (C.21) yields

c D˚
�
x;B.x; c/

�
D˚

�
x;F.x/

�

whenever x 2 V0, so the graph of F is contained in ˚�1.c/. Conversely, suppose
.x; y/ 2 V0 �W0 and ˚.x;y/D c. Then �.x;y/D

�
x;˚.x;y/

�
D .x; c/, so

.x; y/D ��1.x; c/D
�
x;B.x; c/

�
D
�
x;F.x/

�
;

which implies that y D F.x/. This completes the proof. �



Appendix D
Review of Differential Equations

The theory of ordinary differential equations (ODEs) underlies much of the study of
smooth manifolds. In this appendix, we review both the theoretical and the practical
aspects of the subject. Since we need to work only with first-order equations and
systems, we concentrate our attention on those. For more detail, consult any good
ODE textbook, such as [BR89] or [BD09].

Existence, Uniqueness, and Smoothness

Here is the general setting in which ODEs appear in this book: we are given n real-
valued continuous functions V 1; : : : ; V n defined on some open subset W �RnC1,
and the goal is to find differentiable real-valued functions y1; : : : ; yn solving the
following initial value problem:

Pyi .t/D V i
�
t; y1.t/; : : : ; yn.t/

�
; i D 1; : : : ; n; (D.1)

yi .t0/D c
i ; i D 1; : : : ; n; (D.2)

where .t0; c1; : : : ; cn/ is an arbitrary point in W . (Here and elsewhere in the book,
we use a dot to denote an ordinary derivative with respect to t whenever conve-
nient, primarily when there are superscripts that would make the prime notation
cumbersome.)

The fundamental fact about ordinary differential equations is that for smooth
equations, there always exists a unique solution to the initial value problem, at least
for a short time, and the solution is a smooth function of the initial conditions as
well as time. The existence and uniqueness parts of this theorem are proved in most
ODE textbooks, but the smoothness part is often omitted. Because this result is so
fundamental to smooth manifold theory, we give a complete proof here.

Most of our applications of the theory are confined to the following special case:
if the functions V i on the right-hand side of (D.1) do not depend explicitly on t ,
the system is said to be autonomous; otherwise, it is nonautonomous. We begin by
stating and proving our main theorem in the autonomous case. Afterwards, we show
how the general case follows from this one.

J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics 218,
DOI 10.1007/978-1-4419-9982-5, © Springer Science+Business Media New York 2013
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Theorem D.1 (Fundamental Theorem for Autonomous ODEs). Suppose U �
Rn is open, and V W U !Rn is a smooth vector-valued function. Consider the ini-
tial value problem

Pyi .t/D V i
�
y1.t/; : : : ; yn.t/

�
; i D 1; : : : ; n; (D.3)

yi .t0/D c
i ; i D 1; : : : ; n; (D.4)

for arbitrary t0 2R and c D .c1; : : : ; cn/ 2 U .

(a) EXISTENCE: For any t0 2 R and x0 2 U , there exist an open interval J0 con-
taining t0 and an open subset U0 � U containing x0 such that for each c 2U0,
there is a C 1 map y W J0!U that solves (D.3)–(D.4).

(b) UNIQUENESS: Any two differentiable solutions to (D.3)–(D.4) agree on their
common domain.

(c) SMOOTHNESS: Let J0 and U0 be as in (a), and let � W J0 �U0! U be the map
defined by �.t; x/D y.t/, where y W J0! U is the unique solution to (D.3) with
initial condition y.t0/D x. Then � is smooth.

The existence, uniqueness, and smoothness parts of this theorem will be proved
separately below. The following comparison theorem is useful in the proofs to
follow.

Theorem D.2 (ODE Comparison Theorem). Let J �R be an open interval, and
suppose the differentiable function u W J ! Rn satisfies the following differential
inequality for all t 2 J :

ju0.t/j � f
�
ju.t/j

�
;

where f W Œ0;1/! Œ0;1/ is Lipschitz continuous. If for some t0 2 J , v W Œ0;1/!
Œ0;1/ is a differentiable real-valued function satisfying the initial-value problem

v0.t/D f
�
v.t/

�
;

v.0/D ju.t0/j;

then the following inequality holds for all t 2 J :

ju.t/j � v
�
jt � t0j

�
: (D.5)

Proof. Assume first that t0 D 0, and let JC D ft 2 J W t � 0g. We begin by proving
that (D.5) holds for all t 2 JC. On the open subset of JC where ju.t/j > 0, ju.t/j
is a differentiable function of t , and the Cauchy–Schwarz inequality shows that

d

dt
ju.t/j D

d

dt

�
u.t/ � u.t/

�1=2
D
1

2

�
u.t/ � u.t/

��1=2�
2u.t/ � u0.t/

�

�
1

2
ju.t/j�1

�
2 ju.t/j

ˇ̌
u0.t/

ˇ̌�
D
ˇ̌
u0.t/

ˇ̌
� f

�
ju.t/j

�
:

Let A be a Lipschitz constant for f , and consider the continuous function
w W JC!R defined by

w.t/D e�At
�
ju.t/j � v.t/

�
:
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Then w.0/D 0, and (D.5) for t 2 JC is equivalent to w.t/� 0.
At any t 2 JC such that w.t/ > 0 (and therefore ju.t/j> v.t/� 0), w is differ-

entiable and satisfies

w0.t/D �Ae�At
�
ju.t/j � v.t/

�
C e�At

d

dt

�
ju.t/j � v.t/

�

� �Ae�At
�
ju.t/j � v.t/

�
C e�At

�
f
�
ju.t/j

�
� f

�
v.t/

��

� 0;

where the last inequality follows from the Lipschitz estimate for f .
Now suppose there is some t1 2 JC such that w.t1/ > 0. Let

� D sup
˚
t 2 Œ0; t1� Ww.t/� 0

�
:

Then w.�/D 0 by continuity, and w.t/ > 0 for t 2 .�; t1�. Since w is continuous on
Œ�; t1� and differentiable on .�; t1/, the mean value theorem implies that there must
exist t 2 .�; t1/ such thatw.t/ > 0 andw0.t/ > 0. But this contradicts the calculation
above, which showed that w0.t/� 0 whenever w.t/ > 0, thus proving that w.t/� 0
for all t 2 JC.

Now, the result for t � 0 follows easily by substituting �t for t in the argument
above. Finally, for the general case in which t0 ¤ 0, we simply apply the above
argument to the function zu.t/D u.t C t0/ on the interval zJ D ft W t C t0 2 J g. �
Remark. In the statement of the comparison theorem, we have assumed for simplic-
ity that both f and v are defined for all nonnegative t , but these hypotheses can be
weakened: the proof goes through essentially without modification as long as v is
defined on an interval Œ0; b/ large enough that J � .t0� b; t0C b/, and f is defined
on some interval that contains ju.t/j and v.t/ for all t 2 J .

Theorem D.3 (Existence of ODE Solutions). Let U �Rn be an open subset, and
suppose V W U !Rn is locally Lipschitz continuous. Let .t0; x0/ 2R�U be given.
There exist an open interval J0 � R containing t0, an open subset U0 � U con-
taining x0, and for each c 2 U0, a C 1 map y W J0! U satisfying the initial value
problem (D.3)–(D.4).

Proof. By shrinking U if necessary, we may assume that V is Lipschitz continuous
on U . We begin by showing that the system (D.3)–(D.4) is equivalent to a certain
integral equation. Suppose y is any solution to (D.3)–(D.4) on some interval J0
containing t0. Because y is differentiable, it is continuous, and then the fact that the
right-hand side of (D.3) is a continuous function of t implies that y is of class C 1.
Integrating (D.3) with respect to t and applying the fundamental theorem of calculus
shows that y satisfies the following integral equation:

yi .t/D ci C

Z t

t0

V i
�
y.s/

�
ds: (D.6)

Conversely, if y W J0! U is a continuous map satisfying (D.6), then the fundamen-
tal theorem of calculus implies that y satisfies (D.3)–(D.4) and therefore is actually
of class C 1.
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This motivates the following definition. Suppose J0 is an open interval contain-
ing t0. For any continuous map y W J0! U , we define a new map Iy W J0! Rn

by

Iy.t/D cC

Z t

t0

V
�
y.s/

�
ds: (D.7)

Then we are led to seek a fixed point for I in a suitable metric space of maps.
Let C be a Lipschitz constant for V , so that

ˇ̌
V.y/� V

�
zy
�ˇ̌
� C

ˇ̌
y � zy

ˇ̌
; y; zy 2U: (D.8)

Given t0 2R and x0 2 U , choose r > 0 small enough that xBr .x0/� U . Let M be
the supremum of jV j on the compact set xBr .x0/. Choose ı > 0 and " > 0 small
enough that

ı <
r

2
; " <min

�
r

2M
;
1

C

�
;

and set J0 D .t0 � "; t0 C "/ � R and U0 D Bı.x0/ � U . For any c 2 U0, let Mc

denote the set of all continuous maps y W J0 ! xBr .x0/ satisfying y.t0/ D c. We
define a metric on Mc by

d.y; zy/D sup
t2J0

ˇ̌
y.t/� zy.t/

ˇ̌
:

Any sequence of maps in Mc that is Cauchy in this metric is uniformly Cauchy, and
thus converges to a continuous limit y. Clearly, the conditions that y take its values
in xBr .x0/ and y.t0/ D c are preserved in the limit. Therefore, Mc is a complete
metric space.

We wish to define a map I W Mc !Mc by formula (D.7). The first thing we
need to verify is that I really does map Mc into itself. It is clear from the definition
that Iy.t0/D c and Iy is continuous (in fact, it is differentiable by the fundamental
theorem of calculus). Thus, we need only check that Iy takes its values in xBr .x0/.
If y 2Mc , then for any t 2 J0,

jIy.t/� x0j D

ˇ̌
ˇ̌cC

Z t

t0

V
�
y.s/

�
ds � x0

ˇ̌
ˇ̌

� jc � x0j C

Z t

t0

ˇ̌
V
�
y.s/

�ˇ̌
ds

< ıCM"< r

by our choice of ı and ".
Next we check that I is a contraction (see p. 657). If y; zy 2Mc , then

d
�
Iy; I zy

�
D sup
t2J0

ˇ̌
ˇ
ˇ

Z t

t0

V
�
y.s/

�
ds �

Z t

t0

V
�
zy.s/

�
ds

ˇ̌
ˇ
ˇ

� sup
t2J0

Z t

t0

ˇ̌
V
�
y.s/

�
� V

�
zy.s/

�ˇ̌
ds
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� sup
t2J0

Z t

t0

C
ˇ̌
y.s/� zy.s/

ˇ̌
ds � C"d

�
y; zy

�
:

Because we have chosen " so that C" < 1, this shows that I is a contraction. By the
contraction lemma (Lemma C.35), I has a fixed point y 2Mc , which is a solution
to (D.6) and thus also to (D.3)–(D.4). �

Theorem D.4 (Uniqueness of ODE Solutions). Let U � Rn be an open subset,
and suppose V W U !Rn is locally Lipschitz continuous. For any t0 2R and c 2U ,
any two differentiable solutions to (D.3)–(D.4) are equal on their common domain.

Proof. Suppose first that y; zy W J0! U are two differentiable functions that both
satisfy (D.3) on the same open interval J0 � R, but not necessarily with the same
initial conditions. Let J1 be a bounded open interval containing t0 such that xJ1 � J0.
The union of y

�
xJ1
�

and zy
�
xJ1
�

is a compact subset of U , and Proposition A.48(b)
shows that there is a Lipschitz constant C for V on that set. Thus

ˇ̌
ˇ̌ d
dt

�
zy.t/� y.t/

�
ˇ̌
ˇ̌D

ˇ
ˇV
�
zy.t/

�
� V

�
y.t/

�ˇˇ� C
ˇ
ˇzy.t/� y.t/

ˇ
ˇ:

Applying the ODE comparison theorem (Theorem D.2) with u.t/ D zy.t/ � y.t/,
f .v/D Cv, and v.t/D eCt

ˇ̌
zy.t0/� y.t0/

ˇ̌
, we conclude that

ˇ̌
zy.t/� y.t/

ˇ̌
� eC jt�t0j

ˇ̌
zy.t0/� y.t0/

ˇ̌
; t 2 xJ1: (D.9)

Thus, y.t0/D zy.t0/ implies y � zy on all of xJ1. Since every point of J0 is contained
in some such subinterval J1, it follows that y � zy on all of J0. �

Theorem D.5 (Smoothness of ODE Solutions). Suppose U �Rn is an open sub-
set and V W U ! Rn is locally Lipschitz continuous. Suppose also that U0 � U is
an open subset, J0 �R is an open interval containing t0, and � W J0 � U0! U is
a map such that for each x 2 U0, y.t/ D �.t; x/ solves the initial value problem
(D.3)–(D.4) with initial condition c D x. If V is of class C k for some k � 0, then
so is � .

Proof. Let .t1; x1/ 2 J0 �U0 be arbitrary. It suffices to prove that � is C k on some
neighborhood of .t1; x1/. We prove this claim by induction on k.

Let J1 be a bounded open interval containing t0 and t1 such that xJ1 � J0. Be-
cause the restriction of � to J0 � fx1g is an integral curve of V , it is continuous and
therefore the set K D �

�
xJ1 � fx1g

�
is compact. Thus, there exists c > 0 such that

xB2c.y/ � U for every y 2 K . Let W D
S
y2K Bc.y/, so that W is a precompact

neighborhood of K in U . The restriction of V to W is bounded by compactness,
and is Lipschitz continuous by Proposition A.48(b). Let C be a Lipschitz constant
for V on W , and define constants M and T by

M D sup
W

jV j ; T D sup
t2 xJ1

jt � t0j :
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For any x; zx 2 W , both t 7! �.t; x/ and t 7! �.t; zx/ are integral curves of V for
t 2 J1. As long as both curves stay in W , (D.9) implies

j�.t; x/� �.t; zx/j � eCT jzx � xj: (D.10)

Choose r > 0 such that 2reCT < c, and let U1 D Br .x1/ and U2 D B2r .x1/.
We will prove that � maps xJ1 � xU2 into W . Assume not, which means there is
some .t2; x2/ 2 xJ1 � xU2 such that �.t2; x2/ …W ; for simplicity, assume t2 > t0. Let
� be the infimum of times t > t0 in J1 such that �.t; x2/ …W . By continuity, this
means �.�; x2/ 2 @W . But because both �.t; x1/ and �.t; x2/ are inW for t 2 Œt0; � �,
(D.10) yields j�.�; x2/ � �.�; x1/j � 2reCT < c, which means that �.�; x2/ 2W ,
a contradiction. This proves the claim.

For the k D 0 step, we need to show that � is continuous on xJ1 � xU1. It follows
from (D.10) that it is Lipschitz continuous there as a function of x. We need to show
that it is jointly continuous in .t; x/.

Let .t; x/ 2 xJ1� xU1 be arbitrary. Since every solution to the initial value problem
satisfies the integral equation (D.6), we find that

� i .t; x/D xi C

Z t

t0

V i
�
�.s; x/

�
ds; (D.11)

and therefore (assuming for simplicity that t1 � t ),

j� .t1; x1/� �.t; x/j � jx1 � xj C

ˇ̌
ˇ̌
Z t1

t0

V
�
� .s; x1/

�
ds �

Z t

t0

V
�
�.s; x/

�
ds

ˇ̌
ˇ̌

� jx1 � xj C

Z t

t0

ˇ̌
V
�
� .s; x1/

�
� V

�
�.s; x/

�ˇ̌
ds

C

Z t1

t

ˇ̌
V
�
� .s; x1/

�ˇ̌
ds

� jx1 � xj CC

Z t

t0

j� .s; x1/� �.s; x/j dsC

Z t1

t

M ds

� jx1 � xj CCTe
CT jx1 � xj CM jt1 � t j :

It follows that � is continuous at .t1; x1/.
Next we tackle the k D 1 step, which is the hardest part of the proof. Suppose

that V is of class C 1, and let xJ1, xU1 be defined as above. Expressed in terms of � ,
the initial value problem (D.3)–(D.4) with c D x reads

@� i

@t
.t; x/D V i

�
�.t; x/

�
;

� i .t0; x/D x
i :

(D.12)

Because we know that � is continuous by the argument above, this shows that
@� i=@t is continuous. We will prove that for each j , @� i=@xj exists and is con-
tinuous on xJ1 � xU1.
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For any real number h such that 0 < jhj< r and any indices i; j 2 f1; : : : ; ng, we
let .�h/ij W xJ1 � xU1!R be the difference quotient

.�h/
i
j .t; x/D

� i .t; xC hej /� �
i .t; x/

h
:

Then @� i=@xj .t; x/D limh!0.�h/
i
j .t; x/ if the limit exists. In fact, we will show

that .�h/ij converges uniformly on xJ1 � xU1 as h! 0, from which it follows that

@� i=@xj exists and is continuous there, because it is a uniform limit of continuous
functions. Let�h W xJ1� xU1!M.n;R/ be the matrix-valued function whose matrix
entries are .�h/ij .t; x/. Note that (D.10) implies j.�h/ij .t; x/j � e

CT for each i
and j , and thus

j�h.t; x/j � ne
CT ; (D.13)

where the norm on the left-hand side is the Frobenius norm on matrices.
Let us compute the derivative of .�h/ij with respect to t :

@

@t
.�h/

i
j .t; x/D

1

h

�
@� i

@t
.t; xC hej /�

@� i

@t
.t; x/

�

D
1

h

�
V i
�
�.t; xC hej /

�
� V i

�
�.t; x/

��
: (D.14)

The mean value theorem applied to the C 1 function

u.s/D V i
�
.1� s/�.t; x/C s�.t; xC hej /

�

implies that there is some c 2 .0; 1/ such that u.1/� u.0/D u0.c/. If we substitute
y0 D .1� c/�.t; x/C c�.t; x C hej / (a point on the line segment between �.t; x/
and �.t; xC hej /), this becomes

V i
�
�.t; xC hej /

�
� V i

�
�.t; x/

�
D

nX

kD1

@V i

@yk
.y0/

�
�k.t; xC hej /� �

k.t; x/
�

D h

nX

kD1

@V i

@yk
.y0/.�h/

k
j .t; x/:

Inserting this into (D.14) yields

@

@t
.�h/

i
j .t; x/D

nX

kD1

@V i

@yk
.y0/.�h/

k
j .t; x/:
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Thus for any sufficiently small nonzero real numbers h; zh,

@

@t

�
.�h/

i
j .t; x/� .�zh/

i
j .t; x/

�

D

nX

kD1

@V i

@yk
.y0/.�h/

k
j .t; x/�

nX

kD1

@V i

@yk
.zy0/.�zh/

k
j .t; x/

D

nX

kD1

@V i

@yk
.y0/

�
.�h/

k
j .t; x/� .�zh/

k
j .t; x/

�

C

nX

kD1

�
@V i

@yk
.y0/�

@V i

@yk

�
zy0
��
.�zh/

k
j .t; x/; (D.15)

where zy0 is defined similarly to y0, but with zh in place of h.
Now let " > 0 be given. Because the continuous functions @V i=@yk are uni-

formly continuous on xU1 (Proposition A.48(a)), there exists ı > 0 such that the
following inequality holds whenever jy1 � y2j< ı:

ˇ̌
ˇ̌@V

i

@yk
.y1/�

@V i

@yk
.y2/

ˇ̌
ˇ̌< ":

Suppose jhj and
ˇ̌
zh
ˇ̌

are both less than ıe�CT =n. Then we have

jy0 � �.t; x/j D cj�.t; xC hej /� �.t; x/j � cjhjj�h.t; x/j< ı; (D.16)

and similarly
ˇ̌
zy0 � �.t; x/

ˇ̌
< ı, so

ˇ̌
ˇ̌@V

i

@yk
.y0/�

@V i

@yk

�
zy0
�
ˇ̌
ˇ̌

�

ˇ̌
ˇ̌@V

i

@yk
.y0/�

@V i

@yk

�
�.t; x/

�
ˇ̌
ˇ̌C

ˇ̌
ˇ̌@V

i

@yk

�
�.t; x/

�
�
@V i

@yk

�
zy0
�
ˇ̌
ˇ̌< 2": (D.17)

Inserting (D.17) and (D.13) into (D.15), we find that the matrix-valued function
�h ��zh satisfies the following differential inequality:

ˇ̌
ˇ̌ @
@t

	
�h.t; x/��zh.t; x/


ˇ̌
ˇ̌�Ej�h.t; x/��zh.t; x/j C 2"ne

CT ;

where E is the supremum of jDV j on xU1. Note that � i .t0; x/ D xi implies that
.�h/

i
j satisfies the following initial condition:

.�h/
i
j .t0; x/D

� i .t0; xC hej /� �
i .t0; x/

h
D
.xi C hıij /� x

i

h
D ıij : (D.18)

Thus, �h.t0; x/ ��zh.t0; x/D 0, and we can apply the ODE comparison theorem
with f .v/D Ev C B and v.t/D .B=E/

�
eEt � 1

�
(where B D 2"neCT ) to con-
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clude that

ˇ̌
�h.t; x/��zh.t; x/

ˇ̌
�
2"neCT

E

�
eE jt�t0j � 1

�
�
2"neCT

E

�
eET � 1

�
: (D.19)

Since the expression on the right can be made as small as desired by choosing h and
zh sufficiently small, this shows that for each i and j , and any sequence hk ! 0,
the sequence of functions

�
.�hk /

i
j

�1
kD1

is uniformly Cauchy and therefore uni-
formly convergent to a continuous limit function. It follows easily from (D.19)
that the limit is independent of the choice of .hk/, so the limit is in fact equal to
limh!0.�h/

i
j .t; x/, which is @� i=@xj .t; x/ by definition. This shows that � i has

continuous first partial derivatives, and completes the proof of the k D 1 case.
Now assume that the theorem is true for some k � 1, and suppose V is of class

C kC1. By the inductive hypothesis, � is of class C k , and therefore by (D.12),
@� i=@t is also C k . We can differentiate under the integral sign in (D.11) to obtain

@� i

@xj
.t; x/D ıij C

nX

kD1

Z t

t0

@V i

@yk

�
�.s; x/

�@�k

@xj
.s; x/ds:

By the fundamental theorem of calculus, this implies that @� i=@xj satisfies the dif-
ferential equation

@

@t

@� i

@xj
.t; x/D

nX

kD1

@V i

@yk

�
�.t; x/

�@�k

@xj
.t; x/:

Consider the following initial value problem for the nC n2 unknown functions�
˛i ; ˇij

�
:

P̨ i .t/D V i
�
˛.t/

�
; ˛i .t0/D a

i ;

P̌i
j .t/D

nX

kD1

@V i

@yk

�
˛.t/

�
ˇkj .t/; ˇij .t0/D b

i
j :

The functions on the right-hand side of this system are C k functions of
�
˛i ; ˇij

�
,

so the inductive hypothesis implies that its solutions are C k functions of
�
t; ai ; bij

�
.

The discussion in the preceding paragraph shows that ˛i .t/D � i .t; x/ and ˇij .t/D

@� i=@xj .t; x/ solve this system with initial conditions ai D xi , bij D ı
i
j . This shows

that @� i=@xj is a C k function of .t; x/, so � itself is of class C kC1, thus completing
the induction. �

Proof of the fundamental theorem. Suppose U � Rn is open and V W U ! Rn is
smooth. Let t0 2 R and x0 2 U be arbitrary. Because V is smooth, it is locally
Lipschitz continuous by Corollary C.30, so the theorems of this appendix apply.
Theorem D.3 shows that there exist neighborhoods J0 of t0 and U0 of x0 such that
for each c 2 U0, there is a C 1 solution y W J0 ! U to (D.3)–(D.4). Uniqueness
of solutions is an immediate consequence of Theorem D.4. Finally, Theorem D.5
shows that the solution is C k for every k as a function of .t; c/, so it is smooth. �
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Nonautonomous Systems

Many applications of ODEs require the consideration of nonautonomous systems.
In this section we show how the main theorem can be extended to cover the nonau-
tonomous case.

Theorem D.6 (Fundamental Theorem for Nonautonomous ODEs). Let J �R
be an open interval and U �Rn be an open subset, and let V W J � U !Rn be a
smooth vector-valued function.

(a) EXISTENCE: For any s0 2 J and x0 2 U , there exist an open interval J0 � J
containing s0 and an open subset U0 � U containing x0, such that for each
t0 2 J0 and c D .c1; : : : ; cn/ 2 U0, there is a C 1 map y W J0! U that solves
(D.1)–(D.2).

(b) UNIQUENESS: Any two differentiable solutions to (D.1)–(D.2) agree on their
common domain.

(c) SMOOTHNESS: Let J0 and U0 be as in (a), and define a map � W J0 � J0 �
U0! U by letting �.t; t0; c/D y.t/, where y W J0! U is the unique solution
to (D.1)–(D.2). Then � is smooth.

Proof. Consider the following autonomous initial value problem for the nC1 func-
tions y0; : : : ; yn:

Py0.t/D 1I

Pyi .t/D V i
�
y0.t/; y1.t/; : : : ; yn.t/

�
; i D 1; : : : ; nI

y0.t0/D t0I

yi .t0/D c
i ; i D 1; : : : ; n:

(D.20)

Any solution to (D.20) satisfies y0.t/D t for all t , and therefore
�
y1; : : : ; yn

�
solves

the nonautonomous system (D.1)–(D.2); and conversely, any solution to (D.1)–(D.2)
yields a solution to (D.20) by setting y0.t/D t . Theorem D.1 guarantees that there
is an open interval J0 �R containing s0 and an open subset W0 � J �U contain-
ing .s0; x0/, such that for any .t0; c/ 2W0 there exists a unique solution to (D.20)
defined for t 2 J0, and the solution depends smoothly on .t; t0; c/. Shrinking J0 and
W0 if necessary, we may assume that J0 � J and W0 D J0 � U0 for some open
subset U0 � U . The result follows. �

Simple Solution Techniques

To get the most out of this book, you need to be able to find explicit solutions to a
few differential equations and systems of differential equations. You have probably
learned a variety of solution techniques for such equations. The following simple
types of equations are more than adequate for the needs of this book.
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Separable Equations

A first-order differential equation for a single function y.t/ that can be written in
the form

y0.t/D f
�
y.t/

�
g.t/;

where f and g are continuous functions with f nonvanishing, is said to be separa-
ble. Any separable equation can be solved (at least in principle) by dividing through
by f

�
y.t/

�
, integrating both sides, and using substitution to transform the left-hand

integral:

y0.t/

f .y.t//
D g.t/;

Z
y0.t/ dt

f .y.t//
D

Z
g.t/dt;

Z
dy

f .y/
D

Z
g.t/dt:

If the resulting indefinite integrals can be computed explicitly, the result is a relation
involving y and t that can (again, in principle) be solved for y. The constant of inte-
gration can then be adjusted to achieve the desired initial condition for y. Separable
equations include those of the form y0.t/D g.t/ as a trivial special case, which can
be solved by direct integration.

2� 2 Constant-Coefficient Linear Systems

A system of the form

x0.t/D ax.t/C by.t/;

y0.t/D cx.t/C dy.t/;
(D.21)

where a; b; c; d are constants, can be written in matrix notation as Z0.t/D AZ.t/,
where

Z.t/D

�
x.t/

y.t/

�
; AD

�
a b

c d

�
:

The set of solutions to this type of system always forms a 2-dimensional vector
space over R. Once two linearly independent solutions have been found, every other
solution is a linear combination of these, and the constants can be adjusted to match
any initial conditions.

It is always possible to find at least one (perhaps complex-valued) solution of
the form Z.t/D e�tZ0, where 
 is an eigenvalue of A and Z0 is a corresponding
eigenvector. If A has two distinct eigenvalues, then there are two such solutions, and
they span the solution space. (If the initial conditions are real, then the corresponding
solution is real.) On the other hand, ifA has only one eigenvalue, there are two cases.
If A � 
I2 ¤ 0, then there is a vector Z1 (called a generalized eigenvector) such
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that .A � 
I2/Z1 D Z0, and a second linearly independent solution is given by
Z.t/D e�t .tZ0 CZ1/. Otherwise, AD 
I2, and the two equations in (D.21) are
uncoupled and can be solved independently.

Partially Uncoupled Systems

If one of the differential equations in (D.1), say the equation for Pyi .t/, involves
none of the dependent variables other than yi .t/, then one can attempt to solve that
equation first and substitute the solution into the other equations, thus obtaining
a system with fewer unknown functions, which might be solvable by one of the
methods above.

I Exercise D.7. Solve the following initial value problems.

(a) x0.t/D x.t/2I x.0/D x0.

(b) x0.t/D
1

x.t/
I x.0/D x0 > 0.

(c) x0.t/D yI x.0/D x0I

y0.t/D 1I y.0/D y0:

(d) x0.t/D xI x.0/D x0I

y0.t/D 2yI y.0/D y0:

(e) x0.t/D�yI x.0/D x0I

y0.t/D xI y.0/D y0:

(f) x0.t/D�x.t/C y.t/I x.0/D x0I

y0.t/D�x.t/� y.t/I y.0/D y0:

(g) x0.t/D 1I x.0/D x0I

y0.t/D
1

1C x.t/2
I y.0/D y0:
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Notation Index

Symbols
j�j (norm of a vector), 598, 637
j�j (density associated with an n-form), 428
j�jg (Riemannian norm), 330
Œ�	 (equivalence class), 605
Œ�	 (path class), 613
Œ�	 (singular homology class), 470
Œ�	 (cohomology class), 441
Œ�	p (germ at p), 71
b�c (greatest integer function), 86
Œ: : : 	 (orientation determined by a basis), 379
Œ: : : 	 (geometric simplex), 468
h�; �i (inner product), 635
h�; �i (pairing between vectors and covectors),

274
h�; �ig (Riemannian inner product), 328, 437
.�; �/ (global inner product on forms), 439
Œ�; �	 (bracket in a Lie algebra), 190
Œ�; �	 (commutator bracket), 190
Œ�; �	 (Lie bracket of vector fields), 186
f�; �g (Poisson bracket), 578
Y (cup product), 464
³ (interior multiplication), 358
X (set difference), 596
] (sharp), 342
# (connected sum), 225
� (Hodge star operator), 423, 438
^ (wedge product), 355
Z (alt convention wedge product), 357
� (congruent modulo H ), 551
' (homotopic), 612
	 (path-homotopic), 612

 (diffeomorphic), 38

A
˛ˇ (symmetric product of ˛ and ˇ ), 315
A� (adjoint matrix), 167

A� (dual map), 273
A� (generic complex), 460
A�1 (inverse matrix), 625
Ak.V �/ (abstract alternating k-tensors), 374
A.w0; : : : ;wp/ (affine singular simplex), 468
Ab (category of abelian groups), 74
AB (product of subsets of a group), 156
Ad (adjoint representation of a Lie group), 533
ad (adjoint representation of a Lie algebra),

534
Alt (alternation), 351
Aut�.E/ (automorphism group of covering),

163

B
[ (flat), 342
ˇ (isomorphism between X.M/ and

�n�1.M/), 368, 423
xBn (closed unit ball), 599
Bn (open unit ball), 599
Bp.M/ (exact forms), 441
Bp.M/ (singular boundaries), 469
xBr.x/ (closed ball), 598
Br.x/ (open ball), 598

C
C (complex numbers), 599
Cn (complex n-space), 599
C� (nonzero complex numbers), 152
C 1 (continuously differentiable), 644
Ck (k times continuously differentiable), 15,

644
Ck.U / (Ck functions on U ), 645
C.M/ (algebra of continuous functions), 49
Cp.M/ (singular chain group), 468
C1 (infinitely differentiable), 11, 645
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C1.M/ (smooth functions on a manifold),
33

C1.U / (smooth functions on an open subset
of Rn), 645

C1p .M/ (set of germs at p), 71
C1p .M/ (smooth chain group), 473
C! (real-analytic), 15
cof j

i
(cofactor matrix), 634

CPn (complex projective space), 31, 465
CRng (category of commutative rings), 74
curl (curl operator), 426

D
@ (boundary of a manifold with boundary), 25
@ (boundary of a singular simplex), 469
@ (boundary of a subset), 597
@� (connecting homomorphism in singular

homology), 471
@� (connecting homomorphism in singular

cohomology), 473
@=@xi (coordinate vector field), 176
@=@xi jp (coordinate tangent vector), 60
@=@xi ja (partial derivative operator), 54
@f=@xj (partial derivative), 644
@i (i th boundary face), 468
@I (multiple derivative, 648
ı (connecting homomorphism in de Rham

cohomology), 461
ıi
j

(Kronecker delta), 82

ıJI (Kronecker delta for multi-indices), 352
� (geometric Laplacian), 436
� (Laplace–Beltrami operator), 464
�M (diagonal inM �M ), 132
�p (standard p-simplex), 468
d (differential of a map), 55
d (differential of a function), 281
d (distance function), 598
d (exterior derivative), 363
dg (Riemannian distance), 338
d� (adjoint of d ), 438
d=d� (vector field on S1), 176
DM (density bundle), 429
D.p/ (domain of � .p/), 211
Dp.M/ (derivations of the space of germs),

71
D.V / (densities on a vector space), 428
Dvja (directional derivative at a), 52
Dvf .a/ (directional derivative of f at a),

52, 647
dAg (Riemannian area form), 422
det (determinant), 629
dF (global differential), 68
dF � (global pullback map), 300

DF.a/ (total derivative), 642
dFp (differential of a map), 55
dF �p (pointwise pullback), 284
Diff (category of smooth manifolds), 74
Diff� (category of pointed smooth manifolds),

74
Diff1 (category of smooth manifolds and

diffeomorphisms), 300
Diffb (category of smooth manifolds with

boundary), 74
dimM (dimension of a manifold), 3
dimV (dimension of a vector space), 620
div (divergence operator), 423
dsg (Riemannian length form), 422
dV (in integral notation), 651
dVg (Riemannian volume form), 422
dVg (Riemannian density), 433
dxI (coordinate basis form), 360

E
"i (dual basis), 273
"I (elementary k-covector), 352
e (identity in a Lie group), 151
ei (standard dual basis), 273
ei (standard basis vector), 620
.Ei / (local frame for TM ), 178
.Ei / (ordered basis), 619
E!M (vector bundle), 250
E.n/ (Euclidean group), 551
Ep (fiber over p), 249
E jS (restriction of a bundle), 255
exp (exponential map), 518
ExtS (exterior of a subset), 597

F
F � (induced de Rham cohomology map), 442
F � (induced singular cohomology map), 472
F � (pullback of a covector field), 285
F � (pullback of a density), 430
F � (pullback of a form), 360
F � (pullback of a function), 49
F � (pullback of a tensor field), 320, 326
F � (pullback of an orientation), 383
F� (induced Lie algebra homomorphism), 195
F� (induced singular homology map), 470
F� (pushforward), 183, 326
f � g (path product), 613
Fi;p (i th face map), 469
FK.V / (set of flags), 555
F] (induced homomorphism on chains), 470
F .S/ (free vector space on a set), 308

G
� 0.t0/ (velocity of a curve), 69



680 Notation Index

�.E/ (space of smooth sections of E ), 257
�.f / (graph of f ), 5
yg (tangent-cotangent isomorphism), 341
xg (Euclidean metric), 339
Vg (round metric), 333
G=H (set of left cosets), 551
gij (metric coefficients), 328
gij (inverse of gij ), 342
Gk.Cn/ (complex Grassmannian), 562
G.k;n/ (Grassmannian), 22
Gk;n (Grassmannian), 22
Gk.V / (Grassmannian), 22
GL.n;C/ (complex general linear group), 152
gl.n;C/ (matrix Lie algebra), 191
GL.n;R/ (general linear group), 19, 151
gl.n;R/ (matrix Lie algebra), 190
GL.V / (group of invertible linear maps), 152
gl.V / (Lie algebra of linear maps), 191
GL�.n;R/ (matrices with negative

determinant), 558
GLC.n;R/ (matrices with positive

determinant), 152, 158, 558, 563
g ı f (composition in a category), 73
g �p (left action), 161
G �p (orbit), 162
g �p (left action), 162
Gp (isotropy group of p), 162
g �U (image of U under g), 541
grad (gradient operator), 280, 342
Grp (category of groups), 74

H
Hn (upper half-space), 25
H
p
c .M/ (compactly supported cohomology),

453
H
p
dR.M/ (de Rham cohomology), 441

Hp.M/ (singular homology), 469
Hp.M IR/ (real singular cohomology), 472
Hp.M IG/ (singular cohomology), 472
H1p .M/ (smooth singular homology), 473
Hom.C/ (morphisms in a category), 73
HomC.V;W / (morphisms in a category), 73
Hom.V;W / (group homomorphisms), 640
HomR.V;W / (space of R-linear maps), 640

IR
A f dV (integral in Rn), 650, 652R
D ! (integral of a form in Rn), 402R
� ! (line integral of a covector field), 289R
� X � ds (line integral of vector field), 302R
M f dVg (integral of a function on a

Riemannian manifold), 422, 433R
M ! (integral of a form over a manifold), 405

I (de Rham homomorphism), 482
I (integration map on forms), 454
I (multi-index), 351, 648
I (unit interval), 599
jI j (length of a multi-index), 648
I.D/ (forms that annihilateD), 495
In (identity matrix), 624
Ip.D/ (p-forms that annihilate D), 495
Ip (smooth functions that vanish at p), 299
I� (permuted multi-index), 351
iv (interior multiplication), 358
IdX (identity morphism), 73
ImT (image of T ), 622
IntM (interior of a manifold with boundary),

25
IntS (interior of a subset), 597

K
KerT (kernel of T ), 622

L
ƒkT �M (bundle of alternating tensors), 359
ƒk.V �/ (space of alternating covariant

tensors), 315, 350
ƒn (set of Lagrangian subspaces), 592
ƒ.V �/ (space of alternating tensors), 357
L.f;P / (lower sum), 650
Lg (left translation), 151
Lg (length of a curve), 337
L.V IW / (space of linear maps), 20, 325, 626
L.V1; : : : ;VkIW / (space of multilinear

maps), 305
LV (Lie derivative), 228, 321
lie (category of Lie algebras), 196
Lie (category of Lie groups), 196
Lie.G/ (Lie algebra of G), 191

M
�M (M with opposite orientation), 407
�M (orientation covering), 394
M=G (orbit space), 541
M.m� n;C/ (complex matrices), 19, 624
M.m� n;R/ (real matrices), 19, 624
M.n;C/ (square complex matrices), 19, 624
M.n;R/ (square real matrices), 19, 624
Mn (manifold of dimension n), 3
Mt (domain of time-t flow), 212
Man (category of topological manifolds), 73
Man� (category of pointed topological

manifolds), 74
Manb (category of topological manifolds with

boundary), 74

N
N�S (conormal bundle), 592
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NxM (normal space toM ), 138, 337
NM (normal bundle), 138, 337

O
˚ (direct sum), 202, 621, 640
˝ (tensor product), 305, 306, 308
y! (tangent-cotangent isomorphism), 565
!g (Riemannian volume form), 389
!G (Haar volume form), 410
��.M/ (smooth forms), 360
�k.M/ (smooth k-forms), 360
�
p
c .M/ (compactly supported forms), 453

O (orbit relation), 543
o.n/ (skew-adjoint matrices), 197
O.n/ (orthogonal group), 166
Ob.C/ (objects in a category), 73

P
�1.X;q/ (fundamental group), 613Q
˛2AV˛ (Cartesian product), 639

 t1;t0 (time-dependent flow), 237
p � g (right action), 162
P.V / (projectivization), 49
PD (Poincaré duality map), 489

R
R (real numbers), 598, 617
R� (nonzero real numbers), 152
RC (positive real numbers), 152
R0 (0-dimensional Euclidean space), 598
Rn (n-dimensional Euclidean space), 17, 598
xRn
C

(subset of Rn where all coordinates are
nonnegative), 415

Rna (geometric tangent space), 51
RPn (real projective space), 6
Rg (right translation), 151
Rng (category of rings), 74

S
�˛ (permuted tensor), 314
.�i / (local frame for a vector bundle), 257
†k.V �/ (symmetric covariant tensors on a

vector space), 314P
0 (sum over increasing multi-indices), 353

S CT (sum of subspaces), 621
S1 (unit circle), 31, 152
Sn (unit n-sphere), 599
xS (closure of a subset), 597
Sk (symmetric group), 314, 629
SL.n;C/ (complex special linear group), 158
sl.n;C/ (traceless complex matrices), 203
SL.n;R/ (special linear group), 158
sl.n;R/ (traceless matrices), 203
SO.n/ (special orthogonal group), 167

S? (symplectic complement), 565
S? (orthogonal complement), 637
SU.n/ (special unitary group), 168
su.n/ (skew-adjoint traceless matrices), 203
Set (category of sets), 73
Set� (category of pointed sets), 74
sgn (sign of a permutation), 316, 629
Sp.2n;R/ (symplectic group), 591
span (span of a set of vectors), 618
supp (support of a function), 43
Sym (symmetrization), 314

T
�g (group action), 161
� .p/ (orbit map), 166
� .p/ (integral curve), 209, 212
�t (flow at time t ), 209, 212

 (tautological 1-form), 569
T �M (cotangent bundle), 276
TaRn (space of derivations at a), 52
T .k;l/TM (bundle of mixed tensors), 316
T .k;l/.V / (mixed tensors on a vector space),

312
T k.M/ (space of smooth tensor fields), 317
T kT �M (bundle of covariant tensors), 316
T kTM (bundle of contravariant tensors), 316
T k.V / (contravariant tensors on a vector

space), 312
T k.V �/ (covariant tensors on a vector space),

311
Tn (n-torus), 7
T �pM (cotangent space), 275
TpM (tangent space at p), 54
TM (tangent bundle), 65
TM jS (ambient tangent bundle), 255
Top (category of topological spaces), 73
Top
�

(category of pointed topological spaces),
74

U
U.f;P / (upper sum), 650
U.n/ (unitary group), 167
u.n/ (skew-adjoint matrices), 203

V
V � (dual space), 272
V �� (second dual space), 274
va (geometric tangent vector), 51
.vi / (ordered k-tuple of vectors), 618
vL (left-invariant vector field), 192
VpM (equivalence classes of curves), 72, 76
VB (category of smooth vector bundles), 300
VecC (category of complex vector spaces), 74
VecR (category of real vector spaces), 74
Vol (volume), 422, 649, 653
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X
 (isomorphism between V and V �), 274
� (Cartesian product), 603
Ì (semidirect product), 168
X=	 (quotient space), 605
X.M/ (smooth vector fields), 177
X�.M/ (smooth covector fields), 279
Xf (contact Hamiltonian vector field), 584
Xf (Hamiltonian vector field), 574
Xp (value of vector field at p), 174
x � y (dot product), 635

Y
Pyi (derivative with respect to t ), 663
Y jS (restriction of vector field), 185

Z
xz (complex conjugate), 636
Z (integers), 617
Zp.M/ (closed forms), 441
Zp.M/ (singular cycles), 469



Subject Index

0–9
0-dimensional manifold, 17
1-jet, 589
2-body problem, 593

A
A-tuple, 639
Abelian Lie algebra, 191, 203, 537
Abelian Lie group, 203, 537, 562
Abelianization, 487
Abstract tensor product, 308
Action

by a discrete group, 163, 548
by a group, 161–163
by a Lie algebra, 527–530
by a Lie group, 162–164, 541–547
by a local Lie group, 532
by automorphisms, 168
by conjugation, 163
by left or right translation, 163
by O.n/ on Rn, 542
by O.n/ on Sn�1, 542
by SO.n/ on Sn�1, 551
continuous, 161
covering space, 548
free, 162
left, 161
linear, 170
local one-parameter, 212
of GL.n;R/ on Rn, 163
on a discrete space, 172
proper, 542, 548
properly discontinuous, 548
right, 161
smooth, 161
transitive, 162
trivial, 163

Adapted chart, 545
Adjoint matrix, 167
Adjoint representation

of a Lie algebra, 534
of a Lie group, 534
of GL.n;R/, 539

Adjunction space, 605
Ado’s theorem, 199
Affine hyperplane, 280, 621
Affine map, 623
Affine singular simplex, 468
Affine subspace, 621
Affinely independent, 467
Algebra, 624

associative, 624
commutative, 624
division, 200
exterior, 357
graded, 357, 366
Lie, see Lie algebra
over R, 624

Algebraic dual space, 299
Almost every, 145
Alt convention, 358
Alternating tensor, 315, 350

and orientation, 379
basis for, 353
elementary, 352, 353

Alternation, 351
Ambient manifold, 99
Ambient tangent bundle, 255
Angle, 330, 636
Angle function, 31
Angular momentum, 593
Annihilate a distribution, 494
Anti-self-dual, 438
Anticommutativity, 356, 357
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Antiderivation, 366
Antiderivative, 294
Antihomomorphism of Lie algebras, 529
Antipodal map, 48, 397, 435
Antisymmetric tensor, 315
Approximation, linear, 50

and the differential, 282
Approximation theorem, Whitney

for functions, 136
for manifolds with boundary, 223
for maps to manifolds, 141

Associated local frame, 258
Atlas, 12

complete, 13
maximal, 13
smooth, 12

Attaching a space to another, 605
Attaching manifolds along boundaries, 224
Automorphism group of a covering, 163

acts properly, 549
is a Lie group, 163, 549

Autonomous system of ODEs, 236, 663

B
Backward reparametrization, 290
Baire category theorem, 611
Baker–Campbell–Hausdorff formula, 537
Ball

closed, 31, 598
coordinate, 4
open, 598, 599
regular coordinate, 15
smooth coordinate, 15, 28
unit, 599

Base
of a covering, 91, 615
of a fiber bundle, 268
of a vector bundle, 250

Bases, see basis
Basis

dual, 273
for a topology, 600
for a vector space, 619
neighborhood, 600
ordered, 619
standard, for Rn, 273, 620
topology generated by, 600

Basis isomorphism, 17, 623
Basis representation of a vector, 619
Bilinear, 305, 624
Bilinear form, 312
Block upper triangular, 634
Borel, Émile, 27
Bott, Raoul, 179

Boundary
induced orientation on, 386
induced volume form on, 391
invariance of, 26, 29, 39, 465
manifold with, see manifold with boundary
of a manifold with boundary, 25
of a manifold with corners, 417
of a singular simplex, 469
of a subset, 597
singular, 469
topological, 26

Boundary chart, 25
Boundary defining function, 118
Boundary face, 468
Boundary flowout theorem, 222
Boundary operator, singular, 469
Boundary slice chart, 122
Bounded linear map, 638
Bounded Riemannian manifold, 340
Bounded subset, 598
Bracket

commutator, 190
in a Lie algebra, 190
Lie, see Lie bracket
Poisson, 578

Bredon, Glen E., 486
Brouwer fixed-point theorem, 459
Bump function, 42, 44
Bundle

cotangent, 276
fiber, 268
isomorphic, 261, 262
line, 250
Möbius, 251, 252, 268, 270, 271, 393
normal, 138, 337
principal, 560
product, 251
smooth fiber, 268
smooth vector, 250
tangent, 65, 252
tensor, 316, 317
trivial, 250, 251, 268
vector, 249

Bundle homomorphism, 261
bijective, 262
characterization lemma, 262
covering a map, 261
over a space, 261
with constant rank, 266

Bundle isomorphism, 261, 262

C
Ck manifold, 15
Ck structure, 15
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C! structure, 15
Calibrated submanifold, 488
Calibration, 488
Canonical contact form on J 1M , 590
Canonical coordinates, 571
Canonical form

for a contact form, 584
for a linear map, 626
for a nonvanishing vector field, 220
for a symplectic tensor, 566
for commuting vector fields, 234

Canonical symplectic form on T �M , 569, 570
Cartan, Élie, 372
Cartan’s lemma, 375
Cartan’s magic formula, 372
Cartesian product, 603, 639
Category, 73

locally small, 74
small, 74

Catenoid, 345
Cauchy problem, 239, 240, 242, 586–590

general first-order, 590
Hamilton–Jacobi, 587
linear, 240
noncharacteristic, 240, 242, 587, 590
quasilinear, 242

Cauchy sequence, 598
uniformly, 656

Cauchy–Schwarz inequality, 636
Cayley numbers, 200
Center

of a group, 173, 539, 562
of a Lie algebra, 539

Centered at a point, 4
Central subgroup, 562
Chain

singular, 468
smooth, 473

Chain complex, 460
singular, 470

Chain group
singular, 468
smooth, 473

Chain map, 461
Chain rule

for partial derivatives, 647
for total derivatives, 643

Change of variables, 654
Characteristic curve of a first-order PDE, 244
Characteristic property

of surjective smooth submersions, 90
of the direct product, 639
of the direct sum, 640
of the disjoint union topology, 604

of the free vector space, 308
of the orientation covering, 398
of the product topology, 603
of the quotient topology, 605
of the subspace topology, 602
of the tensor product, 309

Characteristic submanifold, 592
Characteristic vector field, 242
Characteristics, method of, 244
Chart, 4

boundary, 25
boundary slice, 122
centered at a point, 4
flat, 496
for a manifold with boundary, 25, 28
interior, 25
interior slice, 122
oriented, 381
slice, 101
smooth, 12, 15
with corners, 415

Chart lemma
smooth manifold, 21
vector bundle, 253

Circle, 31, 599
fundamental group of, 614
not diffeomorphic to square, 75
unit, 599

Circle group, 152, 158
Lie algebra of, 193

Classification of smooth 1-manifolds, 398
with boundary, 398

Closed ball
in a metric space, 598
is a manifold with boundary, 31
unit, 599

Closed covector field, 294, 362
vs. exact, 294, 296

Closed curve segment, 292
Closed form, 294, 367

vs. exact, 294, 296, 367, 447
Closed Lie subgroup, 523, 525
Closed manifold, 27
Closed map, 606
Closed map lemma, 610
Closed rectangle, 649
Closed subgroup, 156, 159, 523, 525
Closed subgroup theorem, 523
Closed submanifold, 100
Closed subset, 596

relatively, 601
Closed unit ball, 599
Closest point to a submanifold, 147
Closure of a subset, 597
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Cochain complex, 460
Cochain homotopy, 444
Cochain map, 461
Codimension

of a submanifold, 99, 108
of a submanifold with boundary, 120
of a subspace, 620

Codimension-zero submanifolds, 99, 120
Codomain, 625

restricting, 112, 113, 122
Cofactor, 634
Coframe

coordinate, 278
dual, 278
global, 278
local, 278

Cohomologous, 441
Cohomology

de Rham, see de Rham cohomology
of a complex, 460
singular, 472, 473

Cohomology class, 441
Cohomology map, induced, 442
Coisotropic immersion, 568
Coisotropic submanifold, 568
Coisotropic subspace, 566, 591
Collar neighborhood, 222
Column operations, elementary, 631
Column rank, 627
Commutative algebra, 624
Commutator bracket, 190
Commutator subgroup, 487
Commuting flows, 233
Commuting frame, 233
Commuting vector fields, 231–236

canonical form for, 234
Compact metric space, 610
Compact space, 608

continuous image of, 608
locally, 9, 611
product of, 609
quotient of, 609
subset of, 609

Compact subset, 608
union of, 609

Compactly supported cohomology, 453
Mayer–Vietoris theorem for, 488

Compactly supported form, 452
Compactly supported function, 43
Compactly supported vector field, 175
Compactness, 608

and convergent subsequences, 610
and limit points, 610

Comparison theorem for ODEs, 664

Compatible, smoothly, 12
Complement

orthogonal, 637
symplectic, 565

Complementary subspace, 621
Complete Lie algebra action, 527
Complete metric space, 598, 599, 610, 657
Complete Riemannian manifold, 340
Complete Riemannian metric, 340
Complete smooth atlas, 13
Complete vector field, 215–217
Completely integrable, 496

vs. involutive, 497
Completion of local frames, 178, 258
Complex

chain, 460
cochain, 460
de Rham, 460
of modules, 460
short exact sequence of, 461
singular chain, 470

Complex analytic structure, 15
Complex conjugate, 636
Complex Euclidean space, 599
Complex general linear group, 152, 158,

198
Complex manifold, 15
Complex numbers, 599
Complex projective space, 31, 48, 96, 172,

465, 560, 561
Complex special linear group, 158
Complex vector bundle, 250
Complex vector space, 617
Component

connected, 607
of a covector, 273
of a point in Rn, 598
of a topological space, 607
of a vector, 61
path, 608
with respect to a basis, 619

Component functions
of a covector field, 277, 279
of a section, 260
of a tensor field, 317
of a vector field, 175
of a vector-valued function, 644

Composition
in a category, 73
of C 1 functions, 647
of continuous maps, 597
of embeddings, 85
of immersions, 79
of smooth functions, 647
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Composition (cont.)
of smooth maps, 36
of submersions, 79

Congruent modulo a subgroup, 551
Conjugation in a Lie group, 153, 163
Connected component, 607
Connected space, 8, 607

continuous image of, 607
product of, 608
quotient of, 608
simply, 613
union of, 607

Connected subset, 607
Connected sum, 225, 465
Connecting homomorphism, 461, 471
Conormal bundle, 592
Conservation of energy, 578
Conservative covector field, 292

vs. exact, 292
Conservative force field, 577
Conservative vector field, 302
Conserved quantity, 579
Consistently oriented, 378, 382
Constant-coefficient ODEs, 673
Constant map, 597
Constant path, 613
Constant rank, 78, 83

bundle homomorphism with, 266
Constant-rank level set theorem, 105
Contact Darboux theorem, 584
Contact flowout theorem, 585
Contact form, 581
Contact Hamiltonian vector field, 584
Contact manifold, 581

orientability of, 594
Contact structure, 581
Contact vector field, 584
Continuity, 597, 602

of a linear map, 638
uniform, 609

Continuous homomorphism, 537
Continuously differentiable, 644
Contractible, 446
Contraction, 657
Contraction lemma, 657
Contravariant functor, 74
Contravariant tensor, 312
Contravariant tensor field, 317
Contravariant vector, 276
Convergent sequence, 597

pointwise, 656
uniformly, 656

Convergent series, 657

uniformly, 657
Convex subset, 618
Coordinate ball, 4

regular, 15
smooth, 15, 28

Coordinate basis, 61
Coordinate chart, see chart
Coordinate coframe, 278
Coordinate computations, 60–63
Coordinate covector field, 276
Coordinate cube, 4, 15
Coordinate domain, 4, 15
Coordinate frame, 178
Coordinate half-ball, 25, 28
Coordinate map, 4

smooth, 15
Coordinate neighborhood, 4

smooth, 15
Coordinate representation

of a covector field, 278
of a differential form, 360
of a function, 33
of a map, 35
of a point, 16
of a Riemannian metric, 328
of a tangent vector, 61
of a tensor field, 317
of a vector field, 175, 177
of the differential of a map, 63

Coordinate vector, 60
transformation law for, 64, 275

Coordinate vector field, 176
Coordinates

for vector bundles, 260
local, 4
natural, for the cotangent bundle, 277
natural, for the tangent bundle, 67
of a point in Rn, 598
polar, 660
slice, 101
spherical, 660
standard, for Rn, 17

Corner point, 416, 417, 435
Corners

chart with, 415
smooth manifold with, 415
smooth structure with, 415

Coset, 551, 622
Coset space, 551
Cotangent bundle, 276

canonical symplectic form on, 569, 570,
592

natural coordinates for, 277
triviality of, 300
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Cotangent functor, 301
Cotangent map, 284
Cotangent space, 275
Cotangent-tangent isomorphism, 341, 347

is not canonical, 303, 347
Countable

first, 600
second, 3, 600

Countable group, 152
Countable set, 600
Countable subcover, 601
Countably infinite, 600
Counterclockwise, 378, 379
Covariant functor, 74
Covariant tensor, 311
Covariant tensor field, 317

transformation law for, 326
Covariant vector, 276
Covector, 272

components of, 273
k-, 315, 350
tangent, 275
transformation law for, 275, 276, 286

Covector field, 277
closed, 294, 362
component functions of, 277
conservative, 292
coordinate, 276
exact, 292
integral of, 288, 289
on star-shaped domain, 296
pullback of, 285
restriction of, 287
rough, 277
smooth, 277
smoothness criteria for, 278
space of, 279
vanishing along a submanifold, 287

Cover, 601
open, 601

Covering group, universal, 154, 155
Covering manifold, 91

orientable, 392
universal, 94

Covering map, 91, 615
base of, 91
generalized, 393
injective, 91
product of, 92
proper, 96
smooth, 91
topological, 91

Covering space, 615
of a manifold, 92

of a manifold with boundary, 94
universal, 616

Covering space action, 548
Covering transformation, 163
Cramer’s rule, 24, 151, 634, 660
Critical point, 105, 347
Critical value, 105
Cross product, 202, 305
Cross section, 255
Cube, 649

coordinate, 4
smooth coordinate, 15
symmetry group of, 557

Cup product, 464
Curl, 302, 426
Curvature, 335
Curve, 68

closed, 292
derivative along, 283
in a submanifold, 124
integral, see integral curve
parametrized, 69
space-filling, 131
velocity of, 69

Curve segment, 288
length of, 301, 337
piecewise smooth, 288
smooth, 288

Cutoff function, 42
Cycle, singular, 469

homologous, 470

D
ı-close, 136
Darboux, Gaston, 571
Darboux coordinates, 571
Darboux theorem, 571, 573, 594

contact, 584
De Rham, Georges, 467
De Rham basis, 484
De Rham cohomology, 296, 441–464

and finite fundamental group, 447
cup product in, 464
diffeomorphism invariance of, 442
finite dimensionality of, 489
functoriality of, 442
homotopy invariance of, 443–446
in degree zero, 443
induced map on, 442
of a disjoint union, 442
of a nonorientable manifold, 457
of a simply connected manifold, 448
of an orientable manifold, 454
of Euclidean space, 447
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De Rham cohomology (cont.)
of punctured Rn, 450
of spheres, 450
of zero-manifolds, 443
top-degree, 454, 457
topological invariance of, 446
with compact support, 453, 488

De Rham complex, 460
De Rham cover, 484
De Rham group, 441
De Rham homomorphism, 482

naturality of, 482
De Rham manifold, 484
De Rham theorem, 484
Deck transformation, 163
Decomposable, 357, 374
Defining forms, 494
Defining function, 107

boundary, 118
for a regular domain, 121

Defining map, 107
and tangent space, 117

Defining representation, 169
Degree

of a continuous map, 459
of a differential form, 360
of a linear map, 366
of a proper map, 466
of a smooth map, 457–460

Delta, Kronecker, 82
Dense, 597

nowhere, 597
Dense curve on the torus, 86, 96
Dense subgroup of the torus, 158
Density, 427–434

integral of, 431, 432
negative, 429, 430
on a manifold, 430
on a vector space, 428
positive, 429, 430
pullback of, 430
Riemannian, 432

Density bundle, 429
Dependent k-tuple, linearly, 618
Dependent subset, linearly, 618
Derivation

at a point, 52, 54
of an algebra, 202
of C1.M/, 181
of the space of germs, 71

Derivative
directional, 52
exterior, see exterior derivative

Lie, see Lie derivative
partial, 644
total, 642–644
total vs. partial, 646
under an integral sign, 648

Determinant, 305, 401
and trace, 203, 536
and volume, 434
as a Lie group homomorphism, 153
differential of, 172
expansion by minors, 633, 634
is a tensor, 312
of a linear map, 633
of a matrix, 629
of a product, 632

Determinant convention, 358
Diagonal, 132, 148
Diameter of a subset, 598
Diffeomorphic, 38
Diffeomorphism

and constant rank, 83
between arbitrary subsets of Rn, 645
between manifolds, 38
between open subsets of Rn, 11, 645
local, 79

Diffeomorphism group acts transitively, 246
Diffeomorphism invariance

of de Rham cohomology, 442
of dimension, 39
of flows, 215
of the boundary, 39

Difference, set, 596
Differentiable, 642

continuously, 644
implies continuous, 643
infinitely, 645
vs. C 1, 647

Differentiable structure, 13
Differential

along a curve, 283
and linear approximation, 282
applied to a velocity vector, 70
as a bundle homomorphism, 262
commutes with Lie derivative, 323
coordinate formula for, 281, 282
exact, 292
global, 68
in coordinates, 61
of a constant, 282
of a function, 281
of a smooth map, 55
smoothness of, 68

Differential equation, see ordinary differential
equation or partial differential equation
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Differential form, 277, 319, 359–372
and orientation, 381
closed, 294, 367
conservative, 292
exact, 292, 367
integral of, 402–410
Lie derivative of, 372

Differential ideal, 496
Dimension

invariance of, 3, 39, 452
of a manifold, 2, 3
of a simplex, 468
of a vector space, 620
of an affine subspace, 622

Direct product, 638, 639
characteristic property of, 639
of Lie groups, 152

Direct sum, 621, 639
characteristic property of, 640
external, 640
internal, 640
of Lie algebras, 203

Directional derivative
in Rn, 52, 647
of a vector field, 227

Dirichlet eigenvalue, 437
Dirichlet’s approximation theorem, 86
Dirichlet’s principle, 437
Disconnected space, 607
Discontinuous, properly, 548
Discrete group, 152

action by, 163
Discrete kernel, 557
Discrete Lie group, 152

proper action by, 548
quotient by, 549

Discrete space, 598
Discrete subgroup, 556

quotient by, 556
Discrete topology, 598
Disjoint union, 604
Disjoint union topology, 604

characteristic property of, 604
Disk, unit, 599
Distance

associated to a norm, 637
in a metric space, 598
on a Riemannian manifold, 338

Distribution, 491
and differential forms, 493
completely integrable, 496
determined by a foliation, 502
integrable, 492
integral manifold of, 491

invariant under a diffeomorphism, 505
involutive, 492
left-invariant, 506
smooth, 491
spanned by vector fields, 491

Divergence, 423
and volume-preserving flows, 424
in coordinates, 436
on Rn, 368
product rule for, 436

Divergence theorem, 424
on a nonorientable manifold, 433

Division algebra, 200
Domain

coordinate, 4
of a map, 625
of integration, 653
regular, 120
restricting, 112, 122
smooth coordinate, 15

Donaldson, Simon, 40
Dot product, 19, 305, 312, 635

Hermitian, 168, 636
Double of a manifold with boundary, 226
Doughnut, see torus
Dual basis, 273
Dual bundle, 277
Dual coframe, 278
Dual homomorphism, 473
Dual map, 273
Dual space, 272

algebraic, 299
second, 274

Dual space functor, 274
Dummy index, 18
Dynamical systems, 222

E
Eigenfunction of the Laplacian, 437
Eigenvalue of the Laplacian, 437

Dirichlet, 437
Neumann, 437

Eikonal equation, 585, 594
Einstein summation convention, 18
Elementary alternating tensor, 352, 353
Elementary column operations, 631
Elementary k-covector, 352, 353
Elementary matrix, 632
Elementary row operations, 631
Embedded hypersurface, 99
Embedded subgroup, 156, 159, 525
Embedded submanifold, 98–104

closed vs. proper, 100
local slice criterion for, 101
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Embedded submanifold (cont.)
open, 99
properly, 100
weakly, 113, 500
with boundary, 120, 122

Embedded topological submanifold, 109
Embedding

composition of, 85
proper, 87
smooth, 85
topological, 85, 601, 607
vs. immersion, 87

Embedding theorem
local, 87
Whitney, 134, 135

Energy
kinetic, 578
potential, 577
total, 578

Equilibrium point, 220
Equivalence class, 605
Equivalence of categories, 538
Equivalence relation, 604

generated by a relation, 605
Equivalent norms, 638
Equivariant map, 164
Equivariant rank theorem, 165
Escape lemma, 217
Euclidean, locally, 3
Euclidean distance function, 345, 599
Euclidean dot product, 19, 635
Euclidean group, 168, 345, 551, 553
Euclidean metric, 328
Euclidean norm, 598, 637
Euclidean space, 598

as a Lie group, 152
as a manifold, 17
complex, 599
Lie algebra of, 192
real, 598
smooth structure on, 17, 40
standard coordinates for, 17
standard orientation of, 379

Euclidean topology, 599
Euler characteristic, 489
Euler vector field, 176
Euler’s homogeneous function

theorem, 199
Evaluation map, 191
Even permutation, 629
Evenly covered, 91, 615
Eventually in a subset, 600
Exact covector field, 292

locally, 297
vs. closed, 294, 296
vs. conservative, 292

Exact differential, 292
Exact form, 292, 367

locally, 297, 447
vs. closed, 294, 296, 367

Exact functor, 473
Exact sequence, 449, 460

of complexes, 461
Exhaustion by compact sets, 612
Exhaustion function, 46
Expansion by minors, 633, 634
Exponential map, 518

and one-parameter subgroups, 519
differential of, 519
is a local diffeomorphism, 519
nonsurjective, 537
of a Lie group, 518
of GL.n;R/, 519
smoothness of, 519

Exponential of a matrix, 517
Extension lemma

for smooth functions, 45, 115
for smooth maps, 141
for vector bundles, 257, 270
for vector fields, 176, 201

Extension of a Lie group, 562
Exterior algebra, 357
Exterior derivative, 362–372

commutes with Lie
derivative, 373

invariant formula for, 369, 370
naturality of, 366
of a 1-form, 369
vs. Lie bracket, 369

Exterior differentiation, 365
Exterior forms, 315, 350
Exterior of a subset, 597
Exterior product, 355
External direct sum, 640

F
F -related, 182
Face

boundary, 468
of a simplex, 468
opposite a vertex, 468

Face map, 469
Faithful representation

of a Lie algebra, 199
of a Lie group, 169

Fake R4, 40
Family of maps, smooth, 145
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Fiber
of a map, 605
of a vector bundle, 249

Fiber bundle, 268, 271
product, 268
smooth, 268
trivial, 268

Figure-eight, 86, 123
as immersed submanifold, 110

Finite group, 152
Finite-dimensional vector space, 619
First-countable, 600
First isomorphism theorem

for abstract groups, 555
for Lie groups, 556

First-order PDE, 239–244, 585–590
First-order system of PDEs, 510
Five lemma, 481
Fixed point, 459, 657
Flag manifold, 555, 562
Flat ([), 342
Flat chart

for a collection of submanifolds, 501
for a distribution, 496

Flat metric, 332, 333
on the torus, 345

Flat Riemannian manifold, 332, 333
Flow, 209–222

commuting, 233
diffeomorphism invariance of, 215
fundamental theorem on, 212
generated by a vector field, 214
global, 209
group laws for, 209, 211
is orientation-preserving, 397
local, 212
maximal, 212
naturality of, 215
of a vector field, 214
on a manifold with boundary, 227
time-dependent, 236–239
volume-decreasing, 424
volume-increasing, 424
volume-nondecreasing, 424
volume-nonincreasing, 424
volume-preserving, 424

Flow domain, 211
Flowout, 217
Flowout theorem, 217

boundary, 222
contact, 585
Hamiltonian, 581

Foliation, 501
and involutivity, 502

invariant under a diffeomorphism, 505
leaf of, 501

Forgetful functor, 75
Form

bilinear, 312
closed, 294, 367
conservative, 292
differential, see differential form
exact, 292, 367
Lie derivative of, 372

Formal linear combination, 308
Forward reparametrization, 290
Frame

associated with a local trivialization, 258
commuting, 233
coordinate, 178
dual to a coframe, 279
for a manifold, 178
global, 178, 257
holonomic, 233
left-invariant, 192
local, 178, 257
orthonormal, 178, 330
smooth, 178, 257

Free action of a group, 162
Free vector space, 308

characteristic property of, 308
Freedman, Michael, 40
Frobenius norm, 638
Frobenius theorem, 497

global, 502–505
Fubini’s theorem, 654
Full rank, 19, 78
Fully nonlinear PDE, 239, 585–590
Function, 32

real-valued, 32
smooth, 32, 645
vector-valued, 32
vs. map, 32

Function element, smooth, 71
Functional, linear, 272, 622
Functor, 74

contravariant, 74
cotangent, 301
covariant, 74
dual space, 274
exact, 473
smooth, 269, 299
tangent, 75

Fundamental group, 613
homotopy invariance of, 615
of a Lie group, 562
of a manifold is countable, 10
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Fundamental theorem
for autonomous ODEs, 664
for line integrals, 291
for nonautonomous ODEs, 672
of Sophus Lie, 532
on flows, 211–214
on Lie algebra actions, 527, 529

G
G-space, 161

homogeneous, 550
Galois, Évariste, 150
Gauss’s theorem, 424
General linear group, 19, 151

complex, 152, 158, 198
connected components of, 559
Lie algebra of, 193, 198
natural action of, 163
one-parameter subgroups of, 517

General position, 467
Generalized covering map, 393
Generalized eigenvector, 673
Generating curve, 107
Generator, infinitesimal, see infinitesimal

generator
Geometric Laplacian, 436
Geometric simplex, 468
Geometric tangent space, 51
Geometric tangent vector, 51
Germ, 71, 76
Global coframe, 278
Global differential, 68

as a bundle homomorphism, 262
Global flow, 209
Global frame, 178, 257

and trivial bundles, 259
Global Frobenius theorem, 502–505
Global parametrization, 111
Global rank theorem, 83
Global section of a vector bundle, 255
Global tangent map, 68
Global trivialization, 250, 268
Globally Hamiltonian, 575
Globally Lipschitz continuous, 609
Gluing lemma

for continuous maps, 602
for smooth maps, 35

Graded algebra, 357, 366
Gradient, 280, 342

is orthogonal to level sets, 347
Gram–Schmidt algorithm, 636

for frames, 179
Graph

is an embedded submanifold, 100, 101

of a continuous function, 5
of a smooth function, 20, 100, 101

Graph coordinates, 5, 6, 20, 333
Graph parametrization, 111
Grassmann manifold, see Grassmannian
Grassmannian, 22–24, 554, 561

is compact, 561
Green’s identities, 437
Green’s theorem, 415
Group

circle, 152
complex general linear, 152
discrete, 152
fundamental, 613
general linear, 151
injective, 473
Lie, 151
symmetric, 629
topological, 151

Group laws for a flow, 209, 211

H
Haar integral, 411
Haar volume form, 411
Hairy ball theorem, 435
Half-ball

coordinate, 25
regular coordinate, 28
smooth coordinate, 28

Half-slice, 122
Half-space, upper, 25
Hamilton–Jacobi equation, 585
Hamiltonian, 576
Hamiltonian flow, 576
Hamiltonian flowout theorem, 581
Hamiltonian system, 576
Hamiltonian vector field, 574, 575, 593

contact, 584
globally, 575
in Darboux coordinates, 574
is tangent to level sets, 575
locally, 575
on R2n, 575

Hamilton’s equations, 576
Harmonic form, 464
Harmonic function, 436
Harvey, Reese, 488
Hatcher, Allan, 548
Hausdorff space, 3, 600

product of, 603
subspace of, 602

Helicoid, 331, 345
Hermitian dot product, 168, 636
Hodge star operator, 438
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Hodge theorem, 464
Holonomic frame, 233
Homeomorphic, 597
Homeomorphism, 597, 607

local, 597
Homogeneous, positively, 199
Homogeneous function, 48
Homogeneous G-space, 550
Homogeneous manifold, 550
Homogeneous space, 550

characterization theorem, 552
construction theorem, 551

Homologous cycles, 470
Homologous submanifolds, 487
Homology

of a complex, 461
singular, 467–472
smooth singular, 473–480

Homology class, 470
Homomorphism

dual, 473
induced Lie algebra, 196
Lie algebra, 190, 195
Lie group, 153
of fundamental groups, 614
with discrete kernel, 557

Homotopic, path, 612
Homotopic maps, 612

and orientation, 435
are smoothly homotopic, 142, 224
relative to a subset, 612
smoothly, 142

Homotopy, 612
cochain, 444
relative to a subset, 612
smooth, 142

Homotopy equivalence, 614
Homotopy invariance

of de Rham cohomology, 443–446
of singular cohomology, 472
of singular homology, 470
of the fundamental group, 615

Homotopy inverse, 614
Homotopy operator, 444
Hopf action, 172, 560
Hopf map, 560
Hyperplane, 280, 620

affine, 280, 621
linear, 280, 620

Hypersurface, 109
embedded, 99
induced volume form on, 390
normal vector field along, 397

orientability of, 384
smooth, 109

I
Ideal

and normal subgroups, 535
differential, 496
in��.M/, 495
in a Lie algebra, 204, 533

Identity component, 157
Identity functor, 75
Identity map, 597
Identity matrix, 624
Identity morphism, 73
Identity of a Lie group, 151
Image

of a group homomorphism, 555
of a Lie group homomorphism, 157, 556
of a linear map, 622
of a smooth embedding, 99
of an injective smooth immersion, 109

Immersed submanifold, 108
with boundary, 120

Immersed topological submanifold, 109
Immersion, 78

and constant rank, 83
composition of, 79
is locally an embedding, 87
smooth, 78
topological, 78, 88
vs. embedding, 87

Immersion theorem
for manifolds with boundary, 84
Whitney, 135, 136, 147

Implicit function theorem, 661, 662
Improper integral, 407
Increasing multi-index, 353
Indefinite integral, 294
Independent k-tuple, linearly, 618
Independent subset, linearly, 618
Index

dummy, 18
in the denominator, 52
lower and upper, 18
of a subgroup, 396

Index conventions, 18
Index position, 18
Induced cohomology map, 442
Induced fundamental group homomorphism,

614
Induced Lie algebra homomorphism, 195, 196
Induced metric, 333
Induced orientation on a boundary, 386
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Infinite-dimensional vector space, 299, 619,
620

Infinitely differentiable, 11, 645
Infinitesimal generator

of a flow, 210, 212
of a group action, 527
of a left action, 529
of a right action, 527

Infinitesimal symmetry, 579
Initial submanifold, 114
Initial value problem, 663
Injective group, 473
Inner product, 327, 635

of matrices, 638
Inner product space, 635
Integers, 617
Integrable distribution, 492

completely, 496
vs. involutive, 492, 497

Integrable function
Lebesgue’s criterion for, 651
over a bounded set, 652
over a rectangle, 650

Integral
differentiation under, 648
improper, 407
iterated, 654
Lebesgue, 649
line, 287, 289
lower, 650
multiple, 649–656
of a covector field, 288, 289
of a density, 431, 432
of a differential form, 402–410
of a vector-valued function, 655
on a 0-manifold, 406
on a boundary, 406
on a manifold with corners, 418
on a Riemannian manifold, 422,

433
on a submanifold, 406
over a bounded set, 652
over a rectangle, 651
over a smooth chain, 481
over a smooth simplex, 481
over parametrizations, 408
Riemann, 649
upper, 650

Integral curve, 206–209
is immersed, 219
maximal, 212
naturality of, 208
of a time-dependent vector

field, 236

periodic, 245, 560
Integral manifold, 491

local structure of, 500
union of, 502

Integrating factor, 512
Integration, domain of, 653
Integration by parts, 436
Interior

of a manifold with boundary, 25
of a subset, 597

Interior chart, 25
Interior multiplication, 358

of differential forms, 362
Interior slice chart, 122
Internal direct sum, 621, 640
Internal semidirect product, 169
Intertwine, 164
Interval, 607

unit, 599
Invariance of dimension, 3, 39, 452
Invariance of the boundary, 26, 465

diffeomorphism, 39
smooth, 29

Invariant definition, 16
Invariant distribution, 505
Invariant foliation, 505
Invariant tensor field, 323, 324
Invariant under a flow, 231, 323

vs. Lie derivative, 324
Inverse function theorem, 657–660

for manifolds, 79
Inverse matrix, 625

Cramer’s rule for, 634
Invertible linear map, 622
Invertible matrix, 625
Involutive distribution, 492

and differential forms, 493
and Lie subalgebras, 492
differential ideal criterion for, 496
local coframe criterion for, 495
local frame criterion for, 493
vs. completely integrable, 497
vs. integrable, 492

Inward-pointing, 118, 200
Isolated point, 597
Isometric Riemannian manifolds, 332

locally, 332
Isometry

linear, 637
local, 332, 389
of Rn, 345
Riemannian, 332

Isomorphic Lie algebras, 190
Isomorphic Lie groups, 153
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Isomorphic vector bundles, 261
over a space, 262

Isomorphic vector spaces, 622
Isomorphism

basis, 623
bundle, 261
in a category, 73
Lie algebra, 190
Lie group, 153
of vector spaces, 622

Isomorphism theorem, first
for abstract groups, 555
for Lie groups, 556

Isotopy, smooth, 247
Isotropic immersion, 568
Isotropic submanifold

of a contact manifold, 585
of a symplectic manifold, 568

Isotropic subspace, 566, 591
Isotropy group, 162
Iterated integral, 654

J
Jacobi identity

for Lie brackets, 188
for Poisson brackets, 579
in a Lie algebra, 190

Jacobian determinant, 644
Jacobian matrix, 62, 644
Jet, 589
Jet bundle, 589

K
k-covector, 315, 350

elementary, 352, 353
k-form, see differential form
k-plane field, see distribution
k-vector, 374
Kernel

of a group homomorphism, 555
of a Lie algebra homomorphism, 203
of a Lie group homomorphism, 157, 203,

556
of a linear map, 622

Kervaire, Michel, 13, 40, 179
Killing, Wilhelm, 345
Killing vector field, 345
Kinetic energy, 578
Kronecker delta, 82

for multi-indices, 352

L
Lagrange multiplier, 301
Lagrangian immersion, 568

Lagrangian submanifold, 568, 592
and closed 1-form, 570

Lagrangian subspace, 566, 591
Laplace–Beltrami operator, 464, 465
Laplacian, 436, 465

Dirichlet eigenvalue of, 437
eigenfunction of, 437
eigenvalue, 437
geometric, 436
Neumann eigenvalue of, 437

Lawson, Blaine, 488
Leaf of a foliation, 501
Lebesgue integral, 649
Lebesgue measure, 651
Lebesgue’s integrability criterion, 651
Left action

by a group, 161
by a Lie algebra, 530

Left-invariant distribution, 506
Left-invariant frame, 192
Left-invariant orientation, 384
Left-invariant tensor field, 410
Left-invariant vector field, 189

is complete, 216
is smooth, 192
on a local Lie group, 532

Left translation, 151
Legendrian section, 590
Legendrian submanifold, 585
Lemniscate, 86
Length

in an inner product space, 636
isometry invariance of, 337
of a curve segment, 301, 337, 338
of a tangent vector, 330
parameter independence of, 338

Level set, 20, 104
of a constant-rank map, 105
of a smooth function, 47
of a submersion, 105
regular, 106

Lie, Sophus, 150, 532
fundamental theorems of, 532

Lie algebra, 190
abelian, 191, 203, 537
and one-parameter subgroups, 516
correspondence with Lie groups, 531
direct sum of, 203
isomorphic, 190
of a Lie group, 191
of a subgroup, 197, 521
of GL.n;C/, 198
of GL.n;R/, 193
of GL.V /, 195
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Lie algebra (cont.)
of O.n/, 197
of Rn, 192
of S1, 193
of SL.n;C/, 203
of SL.n;R/, 203
of SO.n/, 203
of Sp.2n;R/, 591
of SU.n/, 203
of Tn, 193
of U.n/, 203
one-dimensional, 202
representation of, 199
two-dimensional, 202

Lie algebra action, see action
Lie algebra homomorphism, 190, 530

induced, 195, 196
Lie algebra isomorphism, 190
Lie bracket, 186

coordinate formula for, 186
equals Lie derivative, 229
naturality of, 188
of vectors tangent to a submanifold, 189
pushforward of, 189
vs. exterior derivative, 369

Lie correspondence, 531
Lie derivative, 228–230

and invariant tensor field, 324
commutes with d , 323, 373
equals Lie bracket, 229
of a differential form, 372
of a tensor field, 321, 326
of a vector field, 228
on a manifold with boundary, 228

Lie group, 151
abelian, 203, 537, 562
and covering maps, 557
correspondence with Lie algebras, 531
countable, 152
discrete, 152
finite, 152
fundamental group of, 562
identity component of, 157, 172
integration on, 410, 411
is parallelizable, 192
Lie algebra of, 191
neighborhood of e in, 156
orientation form on, 410
product of, 152, 203
simply connected, 531
smooth structure is unique on, 538
universal covering of, 154, 155
volume form on, 411

Lie group homomorphism, 153, 530
image of, 556
kernel of, 157, 556
with discrete kernel, 557

Lie group isomorphism, 153
Lie subalgebra, 190, 197

determines a Lie subgroup, 506
Lie subgroup, 156

associated with a Lie subalgebra, 506
closed, 156, 159, 523, 525, 551
closure of, 537
embedded, 156, 157, 159, 523, 525
is weakly embedded, 506

Lift
of a map, 615
of a vector field, 202

Lifting criterion, 616
Lifting property

path, 616
unique, 616

Limit point, 597
Line bundle, 250
Line integral, 287, 289

fundamental theorem for, 291
of a covector field, 288, 289
of a vector field, 302
parameter independence of, 290

Line segment, 618
Line with two origins, 29
Linear action, 170
Linear approximation, 50

and the differential, 282
Linear combination, 618

formal, 308
Linear functional, 272, 622
Linear hyperplane, 280, 620
Linear isometry, 637
Linear map, 622

canonical form for, 626
determinant of, 633
over a ring, 639

Linear momentum, 593
Linear over C1.M/, 262
Linear subspace, 618
Linearly dependent k-tuple, 618
Linearly dependent subset, 618
Linearly independent k-tuple, 618
Linearly independent sections, 257
Linearly independent subset, 618
Linearly independent vector fields, 178
Lipschitz constant, 609
Lipschitz continuous, 609
Lipschitz estimate for C 1 functions, 655
Local action, 532



698 Subject Index

Local coframe, 278
criterion for involutivity, 495

Local coordinates, 4
Local defining function, 107
Local defining map, 107
Local diffeomorphism, 79
Local embedding theorem, 87
Local exactness of closed forms, 297, 447
Local flow, 212
Local frame, 178, 257

associated with a local trivialization, 258
completion of, 178, 258
criterion for involutivity, 493
for a manifold, 178

Local homeomorphism, 597
Local isometry, 332, 389
Local Lie group, 532
Local one-parameter group action, 212
Local parametrization, 111, 333
Local section

linearly independent, 257
of a covering map, 92
of a map, 88
of a vector bundle, 255
spanning, 257

Local section theorem, 88
Local slice condition, 101

for submanifolds with boundary, 122
Local slice criterion, 101
Local trivialization, 250, 268

and local frame, 258
Locally compact, 9, 611
Locally compact Hausdorff space, 611
Locally Euclidean, 3
Locally exact, 297, 447
Locally finite, 9
Locally Hamiltonian, 575
Locally isometric, 332
Locally isomorphic, 532
Locally Lipschitz continuous, 609
Locally path-connected, 8, 608
Locally simply connected, 616
Locally small category, 74
Loop, 613
Lorentz metric, 2, 344
Lower integral, 650
Lower sum, 650
Lowering an index, 342

M
Manifold, 1, 2
Ck , 15
closed, 27
complex, 15

is metrizable, 341
open, 27
product of, 7
real-analytic, 15
smooth, 1, 13
topological, 1, 2

Manifold boundary, 26
Manifold with boundary, 24–29

local immersion theorem for, 84
partition of unity on, 44
product of, 29, 435
rank theorem for, 96
smooth, 28
smooth structure for, 28
tangent space to, 58
topological, 25

Manifold with corners, 415–419
corner points of, 435
product of, 435

Manifold with or without boundary, 26
Manifold without boundary, 26
Map, 32

vs. function, 32
Mapping, 32
Matrices, space of, 19, 624
Matrix, 623

Frobenius norm of, 638
inner product of, 638
of a linear map, 623
skew-symmetric, 627
symmetric, 167, 627

Matrix exponential, 517
Matrix Lie algebra, 190
Matrix product, 624
Maximal flow, 212
Maximal integral curve, 212
Maximal smooth atlas, 13
Mayer–Vietoris theorem

connecting homomorphism in, 464
for de Rham cohomology, 449–464
for singular cohomology, 473
for singular homology, 471
with compact support, 488

Measure zero
and smooth maps, 127
in manifolds, 128
in Rn, 126, 651
n-dimensional, 651
submanifold has, 131

Method of characteristics, 244
Metric

associated to a norm, 637
Euclidean, 328
flat, 332, 333
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Metric (cont.)
in a metric space, 598
Lorentz, 2, 344
product, 329
pseudo-Riemannian, 344
Riemannian, 327, 339
round, 333

Metric space, 598
compact, 610
complete, 598, 610, 657

Metric topology, 598
Metrizable, 340, 611
Milnor, John, 40, 179
Minor of a matrix, 634
Mixed partial derivatives, equality of, 646
Mixed tensor, 312
Mixed tensor field, 317

transformation law for, 326
Möbius band, 251

nonorientability of, 393
Möbius bundle, 251, 252, 268, 270, 271, 393,

397, 399
nonorientability of, 393

Möbius transformation, 551
Module, 617
Moise, Edwin, 40
Momentum, 577

angular, 593
linear, 593

Monodromy theorem, 616
Morphism, 73
Morse theory, 348
Moser, Jürgen, 571, 592, 593
Multi-index, 351

increasing, 353
Multicovector, 315, 350
Multilinear, 305, 629

over C1.M/, 318
Multiple integral, 649–656
Multivector, 374
Munkres, James, 40
Musical isomorphisms, 342

N
n-body problem, 576, 593
n-dimensional measure zero, 651
n-sphere, 599

is a topological manifold, 5
standard smooth structure on, 20

n-torus, 7
as a Lie group, 152
smooth structure on, 21

Natural coordinates
for the cotangent bundle, 277

for the tangent bundle, 67
Natural transformation, 302
Naturality

of flows, 215
of integral curves, 208
of the de Rham homomorphism, 482
of the Lie bracket, 188

Negatively oriented basis, 379
Negatively oriented chart, 382
Negatively oriented frame, 380
Neighborhood, 596

coordinate, 4
of a point, 596
of a set, 596
smooth coordinate, 15

Neighborhood basis, 600
Neumann eigenvalue, 437
Noether, Emmy, 580
Noether’s theorem, 580
Nonautonomous system of ODEs, 663
Noncharacteristic Cauchy problem, 240, 242,

587, 590
Nondegenerate 2-covector, 565
Nondegenerate 2-form, 567
Nondegenerate 2-tensor, 343
Nonlinear system of PDEs, 510
Nonorientable manifold, 380
Nonsingular matrix, 625
Norm

equivalent, 638
Euclidean, 598, 637
metric determined by, 637
of a differential form, 464
of a matrix, 638
of a tangent vector, 330
on a vector space, 637

Norm topology, 637
Normal bundle, 138, 337

is a vector bundle, 267, 337
trivial, 271, 398

Normal covering map, 163
Normal space, 138, 337
Normal subgroup, 153, 533, 535

and ideals, 535
Normal vector, 337
Normal vector field, 397

outward-pointing, 391
Normed linear space, 637
North pole, 30
Nowhere dense, 597
Null space, 622
Nullity, 626
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O
Object in a category, 73
Octonions, 200
Odd permutation, 629
ODE, see ordinary differential equation
One-form, 277
One-form criterion for involutivity, 494
One-parameter group action, 209

local, 212
One-parameter subgroup, 516, 536

and the Lie algebra, 516
generated by X , 516
of a Lie subgroup, 518
of GL.n;R/, 517

Open ball in a metric space, 598
Open cover, 601
Open manifold, 27
Open map, 606
Open rectangle, 649
Open subgroup, 152, 156
Open submanifold, 19, 28

is embedded, 99
tangent space tp, 56
with boundary, 28

Open subset
in a metric space, 598
in a topological space, 596
relatively, 601

Open unit ball, 599
Orbit

of a group action, 162
of a Hamiltonian system, 576

Orbit map, 166
Orbit relation, 543
Orbit space, 541
Order

of a partial derivative, 644
of a PDE, 239

Ordered basis, 619
Ordinary differential equation, 207

autonomous, 236, 663, 664
comparison theorem for, 664
existence theorem for, 664, 665, 672
fundamental theorem for, 664, 672
nonautonomous, 663, 672
smoothness theorem for, 664, 667,

672
uniqueness theorem for, 664, 667,

672
Orientable hypersurface, 384
Orientable manifold, 380

vs. parallelizable, 383
Orientation, 377–384

and alternating tensors, 379

and homotopic maps, 435
and nonvanishing n-form, 381
continuous, 380
induced on a boundary, 386
left-invariant, 384
of a 0-manifold, 380
of a boundary, 386
of a hypersurface, 384
of a manifold, 380
of a product manifold, 382
of a submanifold with boundary, 382
of a vector space, 379
pointwise, 380
pullback, 383
standard, of Rn, 379

Orientation covering, 394–397, 399
characteristic property of, 398
uniqueness of, 396

Orientation form, 381
Orientation-preserving action, 392
Orientation-preserving map, 383, 397
Orientation-reversing map, 383, 397
Oriented basis, 379
Oriented chart, 381

negatively, 382
Oriented double covering, 396
Oriented frame, 380
Oriented manifold, 380

with boundary, 380
Oriented n-covector, 380
Oriented n-form, 381
Oriented vector space, 379
Orthogonal, 330, 636
Orthogonal complement, 637
Orthogonal complement bundle, 267
Orthogonal group, 166

acting on Rn, 542
acting on Sn�1, 542
connected components of, 558
Lie algebra of, 197
special, 167, 558

Orthogonal matrix, 166
Orthogonal projection, 637
Orthonormal basis, 636
Orthonormal frame, 178, 330
Orthonormal vector fields, 178
Outward-pointing, 118, 200
Outward-pointing unit normal, 391
Overdetermined system of

PDEs, 507

P
Paracompact, 9, 49

vs. second-countable, 30
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Parallelizable, 179
implies orientable, 383
Lie groups, 192
spheres, 179, 200

Parameter independence
of length, 338
of line integrals, 290

Parametric transversality theorem, 145
Parametrization

global, 111
integration over, 408
local, 111, 333

Parametrized curve, 69
Partial derivatives, 644

equality of mixed, 646
higher-order, 644
order of, 644
second-order, 644
vs. total derivative, 646

Partial differential equation, 239
first-order, 239–244, 510, 585–590
fully nonlinear, 239, 585–590
linear, 240, 241
nonlinear, 242–244, 510, 585–590
overdetermined, 507, 510
quasilinear, 242–244
system of, 507, 510

Partition
of a closed rectangle, 649
of a set, 605
of an interval, 649

Partition of unity, 43, 44, 344
on a manifold with boundary, 44
smooth, 43

Passing to the quotient, 605
smoothly, 90

Path, 608
Path class, 613
Path class product, 613
Path component, 608
Path-connected, 8, 608

locally, 8, 608
Path-homotopic, 612
Path lifting property, 616
Path product, 613
PDE, see partial differential equation
Period

of a curve, 245
of a differential form, 487

Periodic curve, 245, 560
Permutation, 314, 316, 351, 628
Pfaffian system, 496
Piecewise smooth curve segment, 288
Plane field, see distribution

Plücker embedding, 561
Poincaré duality theorem, 489
Poincaré lemma, 447

for covector fields, 296
with compact support, 452

Pointed map, 74
Pointed set, 74
Pointed smooth manifold, 74
Pointed topological space, 74
Pointwise convergence, 656
Pointwise orientation, 380

continuous, 380
Pointwise pullback, 284, 320
Poisson bracket, 578, 579
Polar coordinates, 16, 361, 660
Poles, north and south, 30
Positively homogeneous function, 199
Positively oriented, see oriented
Potential energy, 577
Potential function, 292, 298
Power map, 48
Precompact, 611
Primitive, 294
Principal bundle, 560
Product

Cartesian, 603, 639
direct, 152, 638
exterior, 355
of covering maps, 92
of first-countable spaces, 603
of Hausdorff spaces, 603
of Lie groups, 152, 203
of manifolds with boundary, 435
of manifolds with corners, 435
of path classes, 613
of paths, 613
of second-countable spaces, 603
of vector spaces, 638
symmetric, 315, 325
wedge, 355

Product bundle, 251
Product fiber bundle, 268
Product manifold, 7

smooth map into, 36
smooth structure on, 21
tangent space to, 59

Product map, 603
Product metric, 329
Product open subset, 603
Product orientation, 382
Product rule, 52
Product smooth structure, 21
Product space, 603

fundamental group of, 614
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Product topology, 603
characteristic property of, 603

Projection
of a Cartesian product, 603
of a direct product, 639
of a fiber bundle, 268
of a vector bundle, 250
of the cotangent bundle, 276
of the tangent bundle, 65
onto a linear subspace, 622
orthogonal, 637

Projective plane, 6, 201
embeds into R4, 97

Projective space
complex, 31, 48, 96, 172, 465, 560, 561
orientability of, 393
real, 6, 7, 21, 48, 201

Projectivization, 49
Proper action, 542, 548
Proper embedding, 87
Proper map, 87, 610

is closed, 611
Properly discontinuous, 548
Properly embedded submanifold, 100, 120
Pseudo-Riemannian metric, 344
Pullback, 284, 320

of a 1-form, 285
of a closed covector field, 295
of a closed form, 442
of a density, 430
of a foliation, 513
of a k-form, 360, 361
of a mixed tensor field, 326
of a tensor field, 320, 326
of an exact covector field, 295
of an exact form, 442
of an exterior derivative, 366
pointwise, 284, 320

Pullback metric, 331
Pullback orientation, 383
Pushforward, 183

of a mixed tensor field, 326
of a vector field, 183
of the Lie bracket, 189

Q
QR decomposition, 559, 563
Quasilinear PDE, 242–244
Quaternion, 173, 200
Quotient

by a closed Lie subgroup, 551
by a discrete Lie group action, 549
by a discrete subgroup, 556
by a smooth group action, 544

Quotient manifold theorem, 544
Quotient map, 604, 607
Quotient space, 605

of a vector space, 622
passing to, 90, 605
uniqueness of, 90, 606

Quotient theorem
for abstract groups, 555
for Lie groups, 555

Quotient topology, 604
characteristic property of, 605

R
Raising an index, 342
Rank

column, 627
constant, 78
full, 19, 78
of a bundle homomorphism, 266
of a linear map, 77, 626
of a matrix, 627
of a smooth map, 77
of a tensor, 311
of a vector bundle, 249
row, 627

Rank-nullity law, 105, 627
Rank theorem, 81, 82

equivariant, 165
for a manifold with boundary, 96
global, 83
invariant version of, 83

Real-analytic manifold, 15
Real-analytic structure, 15
Real numbers, 598, 617
Real projective space, 6, 7, 21, 48, 201

orientability of, 393
Real-valued function, 32
Real vector space, 617
Rectangle, 649
Reeb field, 583, 584, 594
Refinement, 9
Reflexive relation, 604
Regular coordinate ball, 15
Regular coordinate half-ball, 28
Regular domain, 120
Regular level set, 106
Regular level set theorem, 106
Regular point

of a map, 105
of a vector field, 219

Regular sublevel set, 121
Regular submanifold, 99
Regular value, 105
Related, see F -related
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Relation, 604
Relative homotopy, 612
Relative topology, 601
Relatively open, 601
Remainder in Taylor’s theorem, 648
Reparametrization, 290, 337
Representation, 169, 170, 199, 533–535

adjoint, 534, 539
defining, 169
faithful, 169, 199
of a Lie algebra, 199
of a Lie group, 169

Rescaling lemma, 208
Restricting the codomain, 112, 122

to a weakly embedded
submanifold, 113

to an embedded submanifold, 113
to an integral manifold, 500

Restricting the domain, 112, 122
Restriction

of a covector field, 287
of a vector bundle, 255
of a vector field, 185

Retraction, 140
onto the boundary, 435

Reverse path, 613
Rham, de, see de Rham
Riemann integrable, 650
Riemann integral, 649, 651
Riemannian density, 432
Riemannian distance, 338
Riemannian geometry, 332
Riemannian isometry, 332
Riemannian manifold, 328

as a metric space, 339
flat, 332, 333
integration on, 421–427
with boundary, 328

Riemannian metric, 327
existence of, 329, 346
in graph coordinates, 333
on a surface of revolution, 334

Riemannian submanifold, 333
Riemannian volume form, 389

in coordinates, 389
on a hypersurface, 390

Right action
by a group, 161
by a Lie algebra, 527

Right-handed basis, 378, 379
Right-invariant vector field, 203
Right translation, 151
Rough covector field, 277
Rough section, 255

Rough vector field, 175
Round metric, 333
Row matrix, 273
Row operations, elementary, 631
Row rank, 627

S
� -compact, 30
Sard’s theorem, 129
Saturated, 605
Scalar, 618
Scalar multiplication, 617
Second-countable, 3, 600

vs. paracompact, 30
Second dual space, 274
Second-order partial derivative, 644
Section

component functions of, 260
global, 255
linearly independent, 257
local, 88, 92, 255
of a map, 88
of a vector bundle, 255
rough, 255
smooth, 255, 260
spanning, 257

Sedenions, 200
Segment

curve, 288
line, 618

Self-dual, 438
Semidirect product, 168, 169
Separable differential equation, 673
Sequence, 597

convergent, 597
Sequence lemma, 600
Series of functions, convergent, 657
Set difference, 596
Set with a transitive group action, 554
Sharp (]), 342
Sheets of a covering, 615
Short exact sequence, 461
Sign of a permutation, 316, 629
Signature of a bilinear form, 343
Simplex

affine singular, 468
boundary of, 469
geometric, 468
singular, 468
smooth, 473
standard, 468

Simply connected Lie group, 531
Simply connected manifold, cohomology of,

448
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Simply connected space, 613
covering of, 616
locally, 616

Singleton, 607
Singular boundary operator, 469
Singular chain, 468
Singular chain complex, 470
Singular chain group, 468
Singular cohomology, 472, 473
Singular homology, 467–472

is isomorphic to smooth singular, 474
smooth, 473–480

Singular matrix, 625, 632
Singular point of a vector field, 219
Singular simplex, 468

affine, 468
boundary of, 469

Skew-symmetric matrix, 627
Skew-symmetric tensor, 315
Slice, 101

of a product manifold, 100
Slice chart, 101

for a submanifold with boundary, 122
Slice condition

for submanifolds with boundary, 122
local, 101

Slice coordinates, 101
Smale, Steve, 40
Small category, 74
Smooth atlas, 12

complete, 13
maximal, 13

Smooth chain, 473
Smooth chain group, 473
Smooth chart, 12, 15

for a manifold with boundary, 28
Smooth coordinate ball, 15

in a manifold with boundary, 28
Smooth coordinate cube, 15
Smooth coordinate domain, 15
Smooth coordinate half-ball, 28
Smooth coordinate map, 15
Smooth coordinate neighborhood, 15
Smooth covector field, 277, 278
Smooth covering map, 91

generalized, 393
Smooth embedding, 85
Smooth family of maps, 145
Smooth frame, 178, 257
Smooth function

between Euclidean spaces, 11, 645
composition of, 647
on a manifold, 32
on a nonopen subset, 27, 45, 645, 647

Smooth function element, 71
Smooth functor, 269, 299
Smooth homotopy, 142
Smooth immersion, 78
Smooth invariance of the boundary, 29
Smooth isotopy, 247
Smooth manifold, 1, 13

chart lemma, 21
with boundary, 28

Smooth manifold structure, 13
Smooth map

between manifolds, 34
composition of, 36, 647
gluing lemma for, 35
on a nonopen subset, 27, 45, 645, 647

Smooth section, 255
Smooth simplex, 473
Smooth singular homology, 473–480

is isomorphic to singular, 474
Smooth structure, 13

determined by an atlas, 13
uniqueness of, 39, 40, 114, 115, 398
with corners, 415

Smooth subbundle, 264
Smooth submanifold, 109

with boundary, 120
Smooth submersion, 78
Smooth triangulation, 487
Smooth vector bundle, 250
Smooth vector field, 175
Smoothly compatible charts, 12
Smoothly homotopic maps, 142
Smoothly trivial bundle, 250, 268
Smoothness is local, 35
Source of a morphism, 73
Space-filling curve, 131
Span, 618
Spanning vector fields, 178
Special linear group, 158

complex, 158
is connected, 563
Lie algebra of, 203

Special orthogonal group, 167
action on Sn�1 by, 551
is connected, 558
Lie algebra of, 203

Special unitary group, 168
is connected, 558
Lie algebra of, 203

Sphere
de Rham cohomology of, 450
fundamental group of, 614
is a topological manifold, 5
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Sphere (cont.)
is an embedded submanifold, 103,

106
nonstandard smooth structures on, 40
orientation of, 385, 386, 397
round metric on, 333
standard metric on, 333
standard smooth structure on, 20
unit, 599
volume form of, 435

Spherical coordinates, 104, 388, 409,
660

Square
is not a smooth submanifold, 123
is not diffeomorphic to the circle, 75

Stabilizer, 162
Stable class of maps, 149
Standard basis for Rn, 620
Standard contact form on S2nC1, 583
Standard coordinates for Rn, 17
Standard dual basis for Rn, 273
Standard orientation of Rn, 379
Standard simplex, 468
Standard smooth structure

on a vector space, 18
on Rn, 17
on Sn, 20

Standard symplectic form, 568
Star operator, 438
Star-shaped, 296, 447, 614
Starting point of an integral curve, 206
Stereographic coordinates, 30, 269
Stereographic projection, 30, 31
Stokes orientation, 386
Stokes’s theorem, 411

for chains, 481
for surface integrals, 427
on manifolds with corners, 419

Subalgebra, Lie, 190, 197
Subbundle, 264

local frame criterion for, 265
smooth, 264
tangent, see distribution

Subcover, 601
Subgroup

closed, 156, 159, 523, 525, 551
discrete, 556
embedded, 156, 159, 523, 525
generated by a subset, 156
Lie, 156
normal, 153, 533, 535
one-parameter, 516
open, 152, 156

Subinterval, 649
Sublevel set, 46

regular, 121
Submanifold

calibrated, 488
closest point on, 147
codimension-zero, 99, 120
embedded, 98–104
has measure zero, 131
immersed, 108
initial, 114
open, 19, 28, 99
properly embedded, 100
regular, 99
Riemannian, 333
smooth, 109
tangent space to, 56, 115–117
tangent to, 184
topological, 109
uniqueness of smooth structure on, 114,

115
weakly embedded, 113, 115, 500
with boundary, 28, 120

Submatrix, 628
Submersion, 78

admits local sections, 88
and constant rank, 83
characteristic property of, 90
composition of, 79
is a quotient map, 89
is open, 89
smooth, 78
topological, 78, 89

Submersion level set theorem, 105
Submodule, 639
Subordinate to a cover, 43
Subrectangle, 650
Subspace

affine, 621
linear, 618
of a first-countable space, 602
of a Hausdorff space, 602
of a second-countable space, 602
of a vector space, 618
projection onto, 622
topological, 601, 618

Subspace topology, 601
characteristic property of, 602

Sum
connected, 225
direct, 621
lower, 650
upper, 650

Summation convention, 18
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Support
of a function, 43
of a section, 256
of a vector field, 175

Surface integral, 426
Stokes’s theorem for, 427

Surface of revolution, 107, 334
flatness criterion for, 335
Riemannian metric on, 334

Sylvester’s law of inertia, 343
Symmetric group, 314, 316, 629
Symmetric matrix, 167, 627
Symmetric product, 315, 325
Symmetric relation, 604
Symmetric tensor, 314

dimension of the space of, 325
Symmetric tensor field, 319
Symmetrization, 314
Symmetry, infinitesimal, 579
Symmetry group, 162
Symplectic basis, 567
Symplectic complement, 565
Symplectic coordinates, 571
Symplectic form, 567

canonical, on T �M , 569, 570
on a vector space, 565
standard, 19, 568

Symplectic geometry, 568
Symplectic group, 591
Symplectic immersion, 568
Symplectic manifold, 568
Symplectic structure, 568

on spheres, 591
Symplectic submanifold, 568
Symplectic subspace, 566, 591
Symplectic tensor, 565

canonical form for, 566
Symplectic topology, 568
Symplectic vector field, 575, 593
Symplectic vector space, 565
Symplectomorphism, 568, 591

T
Tangent bundle, 65

is a vector bundle, 252
natural coordinates for, 67
smooth structure on, 66
triviality of, 300
uniqueness of smooth structure on, 260

Tangent-cotangent isomorphism, 341, 347
is not canonical, 303, 347

Tangent covector, 275
Tangent distribution, see distribution
Tangent functor, 75, 269

Tangent map, 63, 68
Tangent space

alternative definitions of, 71–73
geometric, 51
to a manifold, 54
to a manifold with boundary, 58
to a product manifold, 59
to a submanifold, 115–117
to a vector space, 59
to an open submanifold, 56

Tangent space functor, 75
Tangent subbundle, see distribution
Tangent to a submanifold, 184
Tangent vector

alternative definitions of, 71–73
geometric, 51
in Euclidean space, 51
local nature, 56
on a manifold, 54
transformation law for, 276

Target of a morphism, 73
Tautological 1-form, 569
Tautological vector bundle, 271
Taylor polynomial, 648
Taylor’s theorem, 53, 648
Tensor, 311

alternating, 315
contravariant, 312
covariant, 311
elementary alternating, 352
mixed, 312
symmetric, 314

Tensor bundle, 316, 317
Tensor characterization lemma, 318
Tensor field, 317

invariant, under a flow, 323
smooth, 317
symmetric, 319
time-dependent, 573
transformation law for, 326

Tensor product
abstract, 308
characteristic property of, 309
of multilinear functions, 306
of vector spaces, 308
of vectors, 308
uniqueness of, 324

Time-dependent flow, 236–239, 571
Time-dependent tensor field, 573
Time-dependent vector field, 236–239, 571
Topological boundary, 26
Topological covering map, 91
Topological embedding, 85, 601, 607
Topological group, 151
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Topological immersion, 78, 88
Topological manifold, 1, 2

with boundary, 25
Topological space, 596
Topological submanifold, 109
Topological submersion, 78, 89
Topological subspace, 601, 618
Topology, 596

Euclidean, 599
generated by a basis, 600
metric, 598
norm, 637
trivial, 600

Tori, see torus
Torsion group, 448
Torus, 7

as a Lie group, 152
dense curve on, 86, 96, 110, 123, 502
dense subgroup of, 158
embedded, in R3, 97
flat metric on, 345
Lie algebra of, 193
n-dimensional, 7
of revolution, 78, 97, 108, 334, 397, 435,

488
smooth structure on, 21

Total derivative, 63, 642–644
vs. partial derivatives, 646

Total space
of a fiber bundle, 268
of a vector bundle, 250

Trajectory, 576
Transformation

of coordinate vectors, 64, 275
of covector components, 275, 276, 286
of tensor components, 326
of vector components, 64, 276

Transition function, 253, 269
Transition map, 12
Transition matrix, 378, 625
Transitive group action, 162

on a set, 554
Transitive Lie algebra action, 538
Transitive relation, 604
Translation, left and right, 151
Translation lemma, 208
Transpose

of a linear map, 273
of a matrix, 627

Transposition, 628
Transversality homotopy theorem, 146
Transversality theorem, parametric, 145
Transverse intersection, 143
Transverse maps, 148

Transverse to a submanifold, 143
Triangle inequality, 598, 637
Triangular matrix, upper, 634
Triangulation, 487
Trivial action, 163
Trivial bundle, 250, 251

and global frames, 259
Trivial cotangent bundle, 300
Trivial fiber bundle, 268
Trivial normal bundle, 271, 398
Trivial tangent bundle, 300
Trivial topology, 600
Trivialization

and local frames, 258
global, 250, 268
local, 250
smooth local, 250

Tube in RN , 132
Tubular neighborhood, 139
Tubular neighborhood theorem, 139
Two-body problem, 593

U
Uncoupled differential equation, 674
Uniform continuity, 609
Uniform convergence, 656, 657
Uniform time lemma, 216
Uniformly Cauchy, 656
Uniformly Lipschitz continuous, 609
Union, disjoint, 604
Unique lifting property, 616
Unit ball, 31, 599
Unit circle, 599
Unit disk, 599
Unit interval, 599
Unit-speed curve, 334, 345
Unit sphere, 599
Unit tangent bundle, 123, 344
Unit vector, 636
Unitary group, 167

is connected, 558
Lie algebra of, 203
special, 168

Unity, partition of, 43, 44
Universal coefficient theorem, 472
Universal covering group, 154, 155
Universal covering manifold, 91, 94
Universal covering space, 616
Upper half-space, 25
Upper integral, 650
Upper sum, 650
Upper triangular matrix, 634

block, 634
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V
Vanishing along a submanifold, 287
Vanishing to second order, 299
Vector

components of, 61
contravariant, 276
coordinate, 60
covariant, 276
geometric tangent, 51
in a vector space, 618
local nature of, 56
tangent, 51, 54
transformation law for, 64
velocity, 69, 70

Vector addition, 617
Vector bundle, 249

chart lemma, 253
complex, 250
construction theorem, 269
coordinates for, 260
isomorphic, 261
isomorphic over a space, 262
real, 249
section of, 255
smooth, 250
subbundle of, 264
trivial, 250

Vector field, 174
along a submanifold, 256, 384
along a subset, 176
canonical form for, 220, 234
commuting, 231–236
compactly supported, 216
complete, 215–217
component functions of, 175
conservative, 302
contact, 584
coordinate, 176
directional derivative of, 227
globally Hamiltonian, 575
Hamiltonian, 575, 593
invariant, under a flow, 231
Lie algebra of, 190
line integral of, 302
locally Hamiltonian, 575
pushforward of, 183
restriction of, 185
rough, 175
smooth, 175, 180
space of, 177
symplectic, 575, 593
time-dependent, 236–239

Vector space, 617
finite-dimensional, 619
infinite-dimensional, 299, 619, 620

over a field, 617
real, 617
smooth structure on, 17, 18
tangent space to, 59

Vector-valued function, 32
integral of, 655

Velocity, 69
differential applied to, 70
of a composite curve, 70
of a curve in Rn, 68

Vertex of a simplex, 468
Vertical vector, 376
Vertical vector field, 202
Vertices, see vertex
Volume

and determinant, 434
of a domain of integration, 653
of a rectangle, 649
of a Riemannian manifold, 422

Volume-decreasing flow, 424
Volume form, Riemannian, 389

in coordinates, 389
on a boundary, 391
on a hypersurface, 390

Volume-increasing flow, 424
Volume measurement, 401
Volume-nondecreasing flow, 424
Volume-nonincreasing flow, 424
Volume-preserving flow, 424

and divergence, 424

W
Weakly embedded, 113, 115, 500, 506
Wedge product, 355

Alt convention for, 358
anticommutativity of, 356
associativity of, 356
determinant convention for, 358
uniqueness of, 357

WeierstrassM -test, 657
Weinstein, Alan, 571
Whitney, Hassler, 135
Whitney approximation theorem

for functions, 136
for manifolds with boundary, 223
for maps to manifolds, 141

Whitney embedding theorem, 134, 135
Whitney immersion theorem, 135, 136, 147
Whitney sum, 254

Z
Zero-dimensional manifold, 17, 37
Zero section, 256
Zero set, 104
Zigzag lemma, 461
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