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Preview 

Wild at heart 

Dimension 4 is unlike any other dimension. Consider the following facts: 

Let Mn be a closed topological n-manifold. Then: 

- If n ::; 3, there is exactly one smooth structure on M. 

- If n ;:::: 5, there are at most finitely-many smooth structures on M. 

- If n = 4, there are many simply-connected closed 4-manifolds that admit in-
finitely-many distinct smooth structures; there are no smooth 4-manifolds 
known to have only finitely-many smooth structures. 

One is thus easily tempted to conjecture that all smooth closed 4-manifolds 
admit countably-many distinct smooth structures. 

For open manifolds, things get even worse: 

For n -1- 4, the topological manifold lRn admits a unique smooth structure. How
ever, the topological 4-manifold lR4 admits uncountably-many distinct smooth 
structures. 

Many other open 4-manifolds admit uncountably-many distinct structures, 
and it is an unanswered question whether all do. 

A way to think about this might be that dimension 4 is an unstable bound
ary case: the dimension is big enough to have room for wild things to hap
pen, but the dimension is too small to allow room to tame and undo the 
wildness. -vii 



viii Preview 

The goals 

This is not a textbook.1 We wish to offer a comfortable overview of the 
differential topology of dimension 4 (as it appears in 2004), a pleasant-to
read global picture, presenting the main results while suggesting some of 
the techniques and attempting to convey the flavor of the subject. It can be 
used as a travel guide, as a supplemental course material, or as a compan
ion reader in 4-manifolds. 

The audience we are trying to address includes graduate students who are 
learning the subject and want a panorama to be used in parallel or before 
other more thorough sources, or who need a bibliographical guide to the 
literature. 

We also address mathematicians of various backgrounds, from the merely 
curious outsider to those genuinely interested in 4-manifolds. 

The contents 

This is a book about 4-dimensional topology. We restrict attention to sim
ply-connected 4-manifolds, since that provides more than enough ground 
to cover. The eventual focus is on smooth 4-manifolds, but we cannot 
avoid discussion of topological 4-manifolds, and even a bit of higher-di
mensional manifolds. 

1. As motivation and context, we start with a presentation of the main 
technique used for dealing with higher-dimensional manifolds, namely the 
h-cobordism theorem. We point out how and why it fails in dimension 4: 
it is all about embedding disks. Then, we look at the attempt to overcome 
this difficulty, and review Freedman's success for topological4-manifolds. 

2. After that, we will focus on the main invariant of a 4-manifold, its in
tersection form. After defining it and describing in detail the fundamental 
example of the K3 complex surface, we proceed to relate intersection forms 
with the topology of the 4-manifold, culminating with Freedman's classi
fication of topological 4-manifolds. We immediately counter with Donald
son's first startling result about smooth 4-manifolds, which in particular 
leads to exotic JR4 's. 

3. As a good source of examples of smooth 4-manifolds, we take a rapid 
trip through the geometry of complex surfaces, review the Enriques-Koda
ira classification of complex surfaces, compare the complex point-of-view 
with the smooth point-of-view, and conclude by presenting in some detail 
the important class of (simply-connected) elliptic surfaces. As a side-effect, 

1. Ceci n'est pas une pipe. 
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we stumble upon infinite families of distinct smooth 4-manifolds that are 
homeomorphic. 

4. Finally, in last part of the book we look at the explosion of results coming 
from the application of gauge theory to 4-manifolds. After a quick glimpse 
at Donaldson theory, we focus on its more recent replacement, Seiberg-Wit
ten theory. After discussing general results and Taubes' interpretation on 
symplectic manifolds, we survey the problem of determining the minimum 
genus needed to represent a fixed homology class by embedded surfaces 
in a 4-manifold. At the end we describe a construction of R. Fintushel and 
R. Stern that yields even more infinite families of homeomorphic but non
diffeomorphic 4-manifolds. 

The second and fourth parts of the book are more in depth than the exposi
tory first and third parts. 

What is omitted. Everything non-simply-connected is essentially ignored. 
There is little discussion of Kirby calculus, which is already well-covered in 
the literature. The interaction between 4-manifolds and 3-manifolds, even 
though fundamental to the subject, is only incidentally present. In particu
lar, 3 + 1 topological quantum field theories, such as the newly-emerging 
Ozsvath-Szab6 Heegard-Floer homologies, are not discussed. 

There is little discussion of the symplectic geometry of 4-manifolds, even 
though there are a lot of results appearing from that area that might eventu
ally become of fundamental importance for general smooth 4-manifolds. 
In particular, Lefschetz pencils I fibrations and their extension to general 
4-manifolds are only briefly mentioned. Complex geometry is merely sur
veyed, while Riemannian geometry only plays occasional auxiliary roles. 

Errata and other inevitable comments or updates that will arise after print
ing will be maintained on the arXi v2 and also at the online AMS Book
store.3 The readers are encouraged to inform the author of any items that 
need to be included. 

Travel guide 

Alongside the main text, this volume contains several other layers: there are 
footnotes, inserted notes (indented paragraphs with smaller type), end-notes 
at the closing of each chapter, and of course proofs. The structure of this 
book is not linear, and varied readings will offer panoramas ranging from 

2. Search on http: I I arXi v. org I archive I rna th, or its friendlier front-end http: I I front. 
math.ucdavis.edu. 

3.Seehttp:llwww.ams.orglbookstore-getitemlitem=fourman. 
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a rapid survey to almost a textbook. The extensive index at the end of the 
volume should not be overlooked as a navigation tool. 

The main text is what a minimalist tourist might want to read at a first visit, 
skipping all of the other layers, including the proofs. We have strived to 
make such a trip quite reasonable and somewhat scenic with the almost 
three hundred pictures on the side of the road. The main text, devoid of 
pictures and cleaned of the other layers, would occupy about two hundred 
pages. 

Other itineraries are of course possible, and the reader should choose the 
one that fits best. The drawback of facilitating such alternative trajectories, 
as well as addressing as wide an audience as possible, is that repetitions 
must be made. 

The end-notes of each chapter contain side developments or central argu
ments whose exclusion from the main text seemed to help streamline the 
latter-often the end-notes contain detailed proofs of statements made in 
the main text. At times, the end-notes to a chapter are quite extensive. 
The end-notes are cut into titled parts and could be viewed as appendices 
to their respective chapters. The end-notes also contain a section of com
mented bibliographical references for each chapter. 

The inserted notes are, in a way, smaller notes or comments that we felt did 
not interfere with the main track of the volume, but could still be skipped 
by a fast traveller. Sometimes, when such a note seemed to halt the main 
tour, it was exiled into a footnote. 

The footnotes also contain cross-references. Also, to make this volume read
able to a wider audience, we used footnotes to recall certain definitions 
and technical details. Whether you should let your gaze descend upon a 
footnote depends on your background and interest on the marked words.4 

The proofs of various results range from a mere mention of the ideas in
volved to fully detailed arguments, and in any case they can be safely 
skipped. To help with such a jump, their text was indented. 

As with all tourism, a judicious choice of what to visit and what to skip 
is part of making for a pleasant journey, especially when revisiting only 
involves picking up the book again. 

4. We have consistently avoided marking with footnotes any mathematical formulae or symbols. When 
a footnote refers to a math item, the footnote mark appears on the English word preceding it. 
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THE WILD WORLD OF 4-MANIFOLDS 





Introduction 

HIS book is concerned with simply-connected, closed oriented 4-mani
olds and is focused on smooth 4-manifolds. However, for a better un
derstanding of smooth 4-manifolds one needs to have some perspective 

on their mathematical context. 

In their immediate neighborhood, smooth 4-manifolds are included in the 
much wider class of topological 4-manifolds: we will need to see how the 
world of topological manifolds is different. At this moment, the topologi
cal realm is in fact much better understood than the smooth realm, while 
the latter has just started to unveil its wildness. Contrasting the two territo
ries is necessary for gaining the proper perspective. A first remark is that, 
by softening our outlook from differential to topological, we make many 
smooth manifolds look topologically the same.5 A second remark is that 
most topological manifolds do not admit smooth structures whatsoever. 

In the opposite direction, not by weakening the structure but by strengthen
ing its rigidity, lies the realm of 4-manifolds that admit complex structures, 
namely the empire of complex surfaces. These are also better understood 
than smooth 4-manifolds and are an excellent source of examples. The ex
tra rigidity of the complex realm ensures that many complex surfaces that 
look the same as smooth 4-manifolds are different as complex manifolds. 
And, of course, most smooth 4-manifolds do not admit any complex struc
tures whatsoever. 

5. You should probably think of this as analogous to considering topological spaces only up to homo
topy equivalence: many quite different spaces look homotopically the same. 

-1 



2 Introduction 

In order to gain the proper perspective on 4-manifolds, it is also inevitable 
to peek at what happens in other dimensions. In lower dimensions, mani
folds of dimension 1 are a bore, manifolds of dimension 2 have been well
understood for quite a while, while manifolds of dimension 3 (modulo the 
Poincare conjecture) are essentially governed by their fundamental groups 
(but of course are far from being completely deciphered). In any case, the 
distinction between smooth and topological manifolds (or complex man
ifolds, for dimension 2) does not exist in lower dimensions, and simply
connected manifolds are uninteresting. 

On the other hand, in dimensions 5 and higher, a theory of a different fla
vor has been developed, taking advantage of the extra room available. For 
simply-connected high-dimensional manifolds, the main technical tool is 
the h-cobordism theorem, discovered in the 1960s. Its power in helping 
clear the waters in high dimensions cannot be understated, and its author, 
S. Smale, received a Fields Medal for discovering it. 

Such a powerful tool available from just one dimension higher than the 
realm of 4-manifolds can only tempt one to extend it to our land as well. 
An examination of its high-dimensional proof reveals that it hinges on em
bedding 2-dimensional disks in the manifold, which is easy in dimension 
5 or more, but not in dimension 4. Eventually, M. Freedman was able to 
prove in 1981 the h-cobordism theorem for dimension 4, but at the price 
of dropping differentiability and softening to the more flexible domain of 
topological manifolds. This enabled him to quickly obtain a complete clas
sification of simply-connected topological 4-manifolds, and earned him a 
Fields Medal. 

In contrast, just one year later S.K. Donaldson showed that the realm of 
smooth 4-manifolds is not yet understood. Making use of differential-geo
metric methods, he showed that most topological 4-manifolds do not ad
mit any smooth structures. Later, he exhibited smoothly-distinct 4-mani
folds that look the same topologically, and even infinite families of such. 
These results led to a Fields Medal as well. 

After about ten more years, in 1994, N. Seiberg and E. Witten came up with 
a different approach to Donaldson's insights, which was much easier to use 
and thus proved to be quite more powerful.6 While Donaldson's methods 
worked best on complex surfaces, the Seiberg-Witten techniques are more 
flexible, and led to new striking results. Among them is a method (due 
to R. Fintushel and R. Stem) for modifying many 4-manifolds in a man
ner that alters their smooth structure but does not change their topological 
type. 

6. Witten already held a Fields Medal for previous work. 
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The paradoxical result of all these advances is that they just made more and 
more obvious the level of our current ignorance, opening windows toward 
vast fields of unsuspected phenomena for which we presently do not have 
powerful enough methods of exploration. As a simple example, currently 
there are no tools for studying smooth manifolds homeomorphic to the 4-
dimensional sphere: there might be infinitely many distinct such creatures, 
or just good old S4 . 

It's a wide and wild world out there. 

There goes the neighborhood 

-____ •m•~~W·----=3/-7-manifolds ----

6 -manifolds 
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The quickest review 

Manifolds. A topological manifold of dimension m (or m-manifold) is a 
separable metrizable7 topological space X that is locally lR.m; that is to say, 
for every x E X, there is an open neighborhood U of x and a homeomor
phism cP: U :::::: U' C lR.m. Two homeomorphic topological manifolds are 
considered identical. A homeomorphism is an invertible continuous map 
whose inverse is also continuous. 

An m-manifold X is said to admit a smooth structure if one can find ho
meomorphisms cPa:: Ua: :::::: U~ C lR.m with the Ua: 's covering all X and with 
all the overlaps cPa: o cp13-I differentiable ( CJO ). In general, smooth will stand 
for "C00-differentiable". Two smooth manifolds that are diffeomorphic are 
considered identical. A diffeomorphism is a smooth invertible map whose 
inverse is also smooth. 

A. Smooth homeomorphism JR. ----> JR. that is not a diffeomorphism 

7. Asking a locally Euclidean space to be separable and metrizable is equivalent to several other sets 
of conditions, such as Hausdorff and separable, Hausdorff and paracompact, etc. They are all meant 
to exclude pathological spaces, such as the line with two origins or the long line, see for example [Hir94, 
sec 1.1, exercise 9 & 10]. 

-5 
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A 2m-manifold X is said to admit a complex structure if one can find ho
meomorphisms <Pa: Ua ~ U~ C em with the Ua's covering all X and with 
all the overlaps <Pa o <P13-l holomorphic. A map is called holomorphic if it is 
smooth and its differential is C-linear. Two complex manifolds are consid
ered identical if they are biholomorphic. A biholomorphism is an invertible 
holomorphic map whose inverse is also holomorphic. 

Note on PL structures. Besides topological and smooth structures on a man
ifold, there is a third intermediate type of structure: piecewise-linear (or PL) 
structure (an atlas of compatible local triangulations or a nice global triangu
lation8). In dimension 4 though (as in all dimensions below 7 ), a piecewise
linear structure is essentially equivalent to a smooth structure: A topologi
cal 4-manifold admits a piecewise-linear structure if and only if it admits a 
smooth structure; even more, if two 4-manifolds are piecewise-linearly home
omorphic, then they must be diffeomorphic.9 As a consequence, we will not 
concern ourselves with PL structures any further. 10 

Boundaries. An m-manifold X is said to have boundary if it is locally mod
elednotonlyonR.m,butalsohasregionsmodeledonR.~ = {(xr, ... ,xm) I 
Xm ~ 0}. The boundary a X of X is the ( m - 1) -manifold coming from the 
portions of X mapped to a R.~ = { ( Xl' ... ' Xm-1' 0)}. See figure B. Struc
tures on X usually induce corresponding structures on a X. The manifold 
X \ a X is called the interior of X and is denoted by Int X. 

B. A manifold with boundary 

8. The word "nice" is of the essence: many topological manifolds admit triangulations without being 
piecewise-linear. A triangulation of M is piecewise-linear if M is a combinatorial manifold, i.e., if the 
link of every vertex is simplicially-homeomorphic to a sphere. This is equivalent to the existence of an 
atlas of charts cPa: Ua --+ IRm to IRm, with the overlaps cPa o 4>,6-I piecewise-linear homeomorphisms. 
A map f: A --+ B between two triangulated spaces is piecewise-linear (PL) if there are subdivisions of 
the triangulations of A and B so that f maps the resulting simplices linearly (affinely) to simplices. 

9. This follows essentially from J. Cerf's Surles diffeomorphismes de la sphere de dimension trois 
(r 4 = 0) [Cer68a]; see also the end-notes of chapter 4 (smoothing topological manifolds, page 207). 

10. See C. Rourke and B. Sanderson's Introduction to piecewise-linear topology [RS72] for an intro
duction to the PL world. 
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A manifold is called closed if it is compact and without boundary. A man
ifold is called open if it is non-compact and without boundary. See also 
figure C. We usually assume our manifolds to be connected. Most of our 
manifolds will be closed or at least compact.U 

C. A closed manifold and an open manifold 

Bundles. A vector bundle of rank k (or a k-plane bundle) over an m-mani
fold X is an open (m + k)-manifold E together with a map p: E ---* X 
such that each fiber p-1 [x] is a smoothly-varying copy of the vector space 
JRk. We always think of the base X as embedded in E as its zero-section. 
We denote by Ely the restriction of E to any Y c X, defined as the bundle 
p: p-1 [Y] ---* Y. In particular, the fiber p-1 [ x] will be denoted by E I x. 

A k-plane bundle E is said to be trivial if there is some bundle-isomorphism 
of E ---* X with X x JRk ---* X. A bundle E is said to be trivialized if a spe
cific bundle isomorphism E ~ X x JRk has been chosen (with the actual 
isomorphism usually considered only up to homotopy). Notice that a triv
ial bundle can have many non-equivalent trivializations.12 The word frame 
will be used synonymous with basis or with linearly independent set of vec
tors. Thus, a j-frame field in E is a field of j linearly independent sections, 
while a frame field is a field of bases in E. A framed bundle is the same as 
a trivialized bundle. 

Given a bundle p: E ---* X and a map f: Y ---* X, we can build the pull-back 
f* E = { (y, e) E Y x E I f(y) = p(e)}, which becomes a vector bundle over 
Y when endowed with the natural projection pr 1 : f* E ---* Y, and then fits 
in the diagram 

f*E ~ E 
lprl prz lp 

f Y ~x. 
Essentially, over each y is brought back the fiber of E over f (y), and to
gether these fibers make up the bundle f* E; notice that the projection 

11. When we will call a manifold "compact" rather than "closed", it is probably safe to assume that the 
manifold has non-empty boundary. 

12. For example, the trivializations of the bundle 51 x R2 -> 51, up to homotopy, are in bijective 
correspondence with ?TJ S0(2) = Z. 
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pr2 : f* E ---+ E is an isomorphism on fibers. Often, restrictions EIA are 
better understood as pull-backs t* E though the inclusion l: A C X. That 
is especially relevant when we allow A to be merely immersed in X, for 
example for Elcurve· 

Given vector bundles E ---+ X and F ---+ X, one can build other bundles, 
such as Hom(E, F), orE E9 F, orE® F, or the dual E* = Hom(E,lR). These 
appear by letting the corresponding algebraic operation act fiberwise on 
the bundles. 

After picking a random inner-product in the fibers of a vector bundle, we 
can define its associated disk bundle DE ---+ X, whose fiber DEix is the 
disk of unit radius inside E I x, and we can define its sphere bundle SE ---+ X, 
whose fiber S E I x is the sphere of unit radius inside E I x. 

Tangent bundles. Every smooth m-manifold X admits a natural m-plane 
bundle called the tangent bundle T x, that is, an m-plane bundle whose 
fiber over each x E X is a vector space that best approximates X around x, 
offering the infinitesimal picture of a neighborhood of x in X. The tangent 
bundle Tx is built from pieces Ua x lRm glued by identifying (x, va) from 
Ua X lRm with (x,vf3) from Uf3 X lRm ifandonlyif Va = d(<Pa<P,B 1)Ix · Vf3. 

Every smooth map f: X ---+ Y has a differential (or derivative) d f: T x ---+ T y 

that sends linearly the fiber over x EX to the fiber over f(x) E Y, offering 
the linear-infinitesimal picture of f. It fits in the diagram 

Tx -----> Ty 
df 

1 1 
f X -----> Y. 

In particular, any function f: X ---+ lR has a differential d f: T x ---+ lR, which 
is best thought of as a section in the dual bundle T)(, and is often called a 
1-form. 

From T x many other wondrous objects appear, such as the cotangent bun
dle T)( and the p-forms from AP(T)(). The latter are the skew-symmetric 
part of T)( ® · · · ® T)(. 

Orientations. The space of bases of any vector space V has two connected 
components called orientations of V. A change-of-basis matrix A pre
serves orientation if det A > 0 and changes it if det A < 0. 

A smooth manifold is called oriented if a coherent choice of orientation has 
been made in all fibers of T x. This is equivalent to saying that there is a 
choice of <P/s such that the overlaps <Pa o <P13-I have Jacobian determinant 
det d ( <Pa <P13-I) everywhere-positive. All our manifolds will be orientable, 
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and we usually assume them to have a fixed favorite orientation. Notice 
that an orientation of X induces a natural orientation13 on oX, as suggested 
in figure D. 

)_ )- ) .......... ., .. 

r J 
D. Inducing an orientation on the boundary: outer first 

In homology, an orientation of an m-dimensional vector space V is a choice 
of generator for Hm(v, V \ 0; Z) ~ Z. An orientation of an m-manifold 
X is a class in Hm(Tx, Tx \X; Z) which restricts to generators for each 
Hm(Txlx• Txlx \ x; Z). Through the duality isomorphism Hm(Tx, Tx \ 
X; Z) ~ Hm (X; Z), this corresponds to a choice of a generator14 [X] E 
Hm(X; Z) ~ Z called the fundamental cycle of X. Every closed ori
ented m-manifold satisfies the Poincare duality: Hk(X; Z) ~ Hm-k(X; Z) 
through IX f--t IX n [X]. 

Technology 

Special types of maps. A map f: X -7 Y between two smooth manifolds 
is called an immersion if its differential d f: T x -7 Ty is fiberwise one-to
one (injective). This means that locally f looks like the linear inclusion of 
JR.k into lR.m. A map f: X -7 Y is called a submersion if d f is fiberwise 
onto (surjective on) Tylf[X]· This means that locally f looks like the linear 
projection of lR.m onto JR.k. 

For any map f: xm -7 yn, a point y E Y is called a regular value of f if 
either y ¢ f[X] or dflx is surjective for all x E f- 1[y]. Most y's from Y 
are regular values15 off, and therefore for most y's the set f- 1 [y] is either 
empty or a manifold of dimension m - n. 

If X is compact, then an injective immersion is a diffeomorphism onto its 
image and is thus called an embedding. (A topological embedding is merely a 
homeomorphism onto its image.) A submanifold yk of an m-manifold xm 
is a manifold embedded in X. Locally, it looks like JR.k inside lRn. (If X has 

13. Remember Stokes' theorem? 

14. Or, for manifolds with non-empty boundary, to a generator [X, a X] of Hm (X, a X; Z). 

15. This is a weak version of the celebrated Sard theorem, proved in A. Sard's The measure of the critical 
values of differentiable maps [Sar42]. 
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boundary, then we automatically assume that Y n a X = a Y and that Y is 
transverse to a X.) 

Deformations. A homotopy of f: X - Y is a path of maps starting with f, 
that is to say, a map F: X x [0, 1] - Y, usually written ft = F( ·, t), with 
fo = f. The end-functions fo and /1 are called homotopic and we write 
fo rv JI. A homotopy so that each ft is an embedding is called an isotopy. 
An isotopy of a submanifold Y C X is an isotopy of its inclusion map. 
An ambient isotopy of an embedding f: Y C X is an isotopy ft realized 
through an isotopy ht of the identity map id: X - X, i.e., ft = ht of 
with ho = id and each ht a self-diffeomorphism of X. A typical method 
for obtaining an ambient isotopy is to integrate a vector field D E f(Tx) 
and take ht to be the flow of D. Furthermore, every isotopy of a compact 
submanifold can be realized by an ambient isotopy. We will freely use such 
happy words as "deformation", "perturbation" and "approximation" to mean 
isotopy or ambient isotopy. 

Transversality. Two linear subspaces V' and V" of Rm are called trans
verse if V' + V" = Rm. Two submanifolds Y' and Y" of a manifold X 
are called transverse (or in general position) if around any x E Y' n Y" 
they look like two transverse subspaces of Rm. In other words, if Ty' + 
TyniY'nYn = TxiY'nyn. SeefigureE. 

I 
I 

E. Transverse submanifolds in JR3 

If dimensions do not add up to allow that T Y' + Tyn I Y'nYn = T xI Y'nYn, then 
the transversality of Y' and Y" must mean that Y' n Y" = 0. 

If dimensions add up perfectly and transversality means Ty, EB Tyn IY'nYn = 
TxiY'nYn, then Y' and Y" meet in isolated points. Further, choosing orien
tations for X, Y' andY" and comparing them while summing will assign 
a sign ± to each x E Y' n Y", which can then be added up to yield the 
intersection number Y' · Y" (depending only on the homology classes [Y'] 
and [Y"] inside X). 

Given any two submanifolds Y' and Y" of X, any one of them, say Y', can 
be isotoped to an arbitrarily-close submanifold Y~ that is transverse to Y". 
Therefore, whenever we mention submanifolds, they should be assumed 
to be transverse, without our commenting further. 
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In particular, a curve and a surface inside a 4-manifold can be perturbed 
so that they do not touch at all. Two surfaces S', S" inside a 4-manifold 
M can be made to meet only at isolated points x where Ts' EB Ts" lx = TMJx, 
and an intersection numberS'· S" can thus be defined. 

Perturb into niceness. Every continuous map f: X ----> Z between smooth 
manifolds is homotopic to an arbitrarily-close smooth map X ----> Z. There
fore, whenever we mention a map between smooth objects, it should be 
assumed smoothed, without our commenting further. 

If 2 dim X ::; dim Z, then any map f: X ----> Z is homotopic to an arbitrarily
close immersion. Further, if 2 dim X+ 1 ::; dim Z and X is compact, then any 
map f: X ----> Z is homotopic to an arbitrarily-close embedding. In the bor
derline case 2 dim X = dim Z, any map f: X ----> Z can be approximated by 
a self-transverse immersion, i.e., an immersion with isolated double-points 
f(x') = f(x") where the two branches of f[X] meet transversely, in other 
words, with df[Txlx'] EB df[Txlx"] = Tzlt(x') · 

In particular, any map from a closed surface into a 4-manifold can be de
formed to an immersion with isolated transverse double-points, while any 
map of a surface into a 5-manifold can be perturbed to an embedding. 

Normal bundles. The inclusion Y c X of a submanifold Y into a manifold 
X induces a fiberwise-linear inclusion Ty C TxJy, and thus defines a quo
tient bundle TxJyjTy called the normal bundle of Yin X and denoted by 
Ny IX. It fits in the exact sequence16 

0---+ Ty---+ TxJy---+ Ny1x---+ 0. 

The normal bundle Ny 1 x can be embedded around Y as a tubular neigh
borhood of Yin X, i.e., as an open set U around Y together with a retrac
tion17 p: U ----> Y that organizes U as a vector bundle isomorphic to Ny IX .18 
See figure F on the following page. 

While there is no unique way of embedding Ny1x around Y, nonetheless, 
any two tubular neighborhoods of Y are isotopic (as embedded vector bun
dles19). Thus, for every submanifold Y in X we will automatically assume 

16. A sequence of morphisms is called exact if at each node we have Im( ending) = Ker(beginning). 

17. If A C B, then a retraction r: B ---> A is any continuous map so that riA = id. 

18. A typical method for obtaining a tubular neighborhood is to pick a random Riemannian metric on 
X and use its exponential map to send a neighborhood of Yin Nv1x = (Ty ).l c Txlv to a neighbor
hood of Y in X. 

19. Given two embeddings fo: Ny 1 x C X and h: Ny 1 x C X as tubular neighborhoods of Y in X, 
there is an isotopy ft connecting fo to an embedding /J : Ny 1 x C X so that f! 1 o h is a well-defined 
vector bundle isomorphism Ny 1 x ---> Ny 1 x, and so that the isotopy ft fixes the zero section Y C Ny 1 x. 
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F. Tubular neighborhood of Y in X 

that it is surrounded by a (essentially unique) copy of Ny ;x as a tubular 
neighborhood in X. 

The boundary d X of X admits a neighborhood called a collar, i.e., an open 
set U around a X together with a retraction p: U -----t d X that is isomorphic 
to a X x [0, 1) -----t d X (with a X c X corresponding to a X x 0). One should 
think of a collar as half a tubular neighborhood, realizing half the normal 
bundle of a X. 

Cut-and-paste 

Connected sums. The simplest of many cut-and-paste methods in manifold 
topology is the connected sum. Given two m-manifolds X andY, we can 
build a new manifold X #Y as follows: we cut a small m-ball out of X and 
another out of Y; both results have an ( m - 1) -sphere as boundary; we 
identify these two spheres to obtain a new connected m-manifold, denoted 
by 

X#Y. 

The connected sum can be pictured as connecting X and Y by a (hollow) 
tube, as in figure G. 

G. Connected sum 

A typical problem in topology is to split manifolds into connected sums of 
simpler manifolds. If a manifold zm cannot be written as Z = X# Y, where 
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neither X nor Y is a homotopy m-sphere, then Z is called irreducible. 
(A homotopy m-sphere I: is any m-manifold that is homotopy-equiva
lent to a sphere; the preceding condition simply requires that parts of the 
homology or fundamental group of Z be taken by each of X and Y.) 

Boundary sums. For manifolds with non-empty boundary, there is a another 
construction, which we mention only for the sake of completeness (it will 
appear in this text only marginally). Given two manifolds X andY with non
empty boundaries, one can perform a connected sum on their boundaries. 
The result is denoted by 

and is called the boundary sum of X and Y; it is a manifold whose boundary 
is a(X q Y) = (a X)# (a Y). See figure H. 

88) 
H. Boundary sum 

Gluing technology. Given two manifolds X and Y with homeomorphic 
boundaries a X ~ a y I one can identify the two boundaries and obtain a 
new manifold, denoted by 

X Ua Y. 

The result in general depends on the choice of homeomorphism of the 
boundaries. 

If X and Y are oriented, then the new manifold X Ua Y could inherit an 
induced natural orientation, agreeing with the chosen orientations of X 
and Y. However, that requires that the identification of a X with a Y be 
made by reversing their inherited orientations, as suggested in figure I on 
the following page. In other words, we need a homeomorphism a X ~ 
a Y in order to glue X Ua Y as a nice oriented manifold.20 

Further, if X and Y are smooth, then, to ensure that X Ua Y is a smooth 
manifold as well, such a gluing should be made by identifying whole collars 
of the boundaries, as suggested in figure J on the next page. 

Cut-and-paste methods will be used throughout this volume, and, even 
without our mentioning it again, the above technology should always be 
understood as lying behind them. 

20. This of course is never a problem for the spheres that appear in a connected sum: any reflec
tion will do. Nonetheless, there are plenty of manifolds that do not admit orientation-reversing self
homeomorphisms. 
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,)veL t 
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\J / \J 

I. Orientation-reversal for gluing 

-• i.____ 
1 

_iiL...----
J. Gluing with collars 

Rounding corners. Further, in many constructions that we will use (e.g., 
attaching handles), the cut-and-paste procedure yields at first an object 
with corners, as in figure K. To obtain a smooth manifold, either these cor
ners can be rounded (smoothed), as suggested in figure L, or the gluing can 
be done with more care, as in figure M on the facing page. Again, this issue 
will not be mentioned again. 

) 

K. Apparition of a corner 

L ) L 
L. Rounding a corner 
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) 

M. Round attachment 

Homology of manifolds 

The homology and cohomology of a manifold are governed by the uni
versal coefficients theorems and by Poincare duality. In what follows we 
quickly review these. 

We start by recalling that we have 

Hr(M;Z) = nr(M) / [nr(M), nr(M)] 

(with Hr written additively, but ?Tr written multiplicatively). Here, [G, G] 
is { aba-Ib- 1 I a, b E G}; thus H1 (M; Z) is the Abelianization of n 1 (M). 

Universal coefficients. The universal coefficient theorem for homology is the 
exact sequence 

0---> Hk(M;Z) ®z G---> Hk(M;G)---> Tor(Hk-r(M;Z), G)---> 0, 

where G is any Abelian group (viewed as a Z-module). The operator Tor is 
described by the properties: Tor( Free, G) = 0, Tor(Zn. G) = Ker( G ~ G), 
Tor(A E9 B, G) = Tor(A,G) E9Tor(B,G), and Tor(A,B) = Tor(B,A); it es
sentially detects the common torsion of its arguments. While there are iso
morphisms Hk(M;G) ~ (Hk(M;Z) ®z G) E9 Tor(Hk-r(M;Z), G),none 
of them is canonical. 

The universal coefficient theorem for cohomology is the exact sequence 

0---> Ext(Hk-r(M;Z), G)---> Hk(M;G)---> Homz(Hk(M;Z), G) --->0. 

The operator Ext is the "dual" of Tor and satisfies analogous properties: 
Ext(Free,G) = 0, Ext(Zn,G) = GjnG, and Ext(AE9B, G)= Ext(A,G) E9 
Ext( B, G); it also detects torsion. And again, while there are isomorphisms 
Hk(M;G) ~ Homz(Hk(M;Z), G) E9 Ext(Hk-r(M;Z), G), they are not 
canonical. 

Let us denote by Tk the torsion submodule of Hk(M;Z), that is to say, 
Tk = {a E Hk(M;Z) I ma = 0 for some mE Z}. Choose your favorite 
complement Fk of Tk in Hk(M;Z), that is, a free submodule of Hk(M;Z) 

so that Hk(M;Z) ~ Fk E9 Tk. 
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Applying the universal coefficient theorem for cohomology with G = Z 
yields isomorphisms 

Notice how torsion is retarded by one. See also table I. These isomorphisms, 
of course, are not canonical. 

I. Integral co /homology 

k n-1 n n+1 

Hk(X;Z) Fn-1 EB Tn-2 Fn EB Tn-1 Fn+1 EB Tn 

Hk(X;Z) Fn-1 EB Tn-1 Fn EB Tn Fn+1 EB Tn+1 

Enter Poincare duality. While the above are true on all spaces with finitely
generated homology, the case of oriented m-manifolds is further enriched 
by Poincare duality. This is a canonical isomorphism 

Hk(M;Z) = Hm-k(M;Z). 

Combining with the above symmetries, it yields isomorphisms 

and 

In the particular case of an oriented 4-manifold, the picture that emerges is 
that from table IT. One should notice that the only torsion that floats around 
is the torsion of H1(M;Z), which has its origins in 1t1(M); of course, it 
vanishes in the simply-connected case. 

II. Integral co/homology of an oriented 4-manifold 

k 0 1 2 3 4 

Hk(M4 ; Z) z F1 F2 EB T1 F1 EB T1 z 
Hk(M4 ; Z) z F1 EB T1 F2 EB T1 F1 z 

Finally, in the case of modulo 2 coefficients, the picture looks somewhat 
different, as in table III. Here we denoted by F; the modulo 2 reduction of 
the free part Fb namely F; = Fk/2Fk; and we denoted by Tf the 2-torsion 
of H1 (M; Z), that is, Tf = {IX E H1 I 2tt = 0}. The 2-torsion originates in 
n 1 (M) and now pollutes everything. 

III. Modulo 2 co/homology of an oriented 4-manifold 

k 0 1 2 3 4 

Hk(M4 ; Zz) Zz F" EB T" 1 1 F." EB T" 2 1 F" EB T" 1 1 Zz 

Hk(M4 ; Zz) Zz F" EB T" 1 1 F." EB T" 2 1 F" EB T" 1 1 Zz 
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Conventions, notations, abbreviations 

Unless otherwise specified, everything is orientable and endowed with a 
chosen preferred orientation. All maps will be continuous and, most of 
them, differentiable. Most manifolds will be connected and closed. Most 
of them, 4-dimensional. Most of them, simply-connected. Most of them, 
smooth. 

Therefore, should we write "M" without any comments, it is safe to assume 
that it represents a random smooth simply-connected closed oriented 4-
manifold. 

More. While the value of a function f: X ~ Y at a point x will of course 
be denoted by f(x), the image of a subset A c X will be written f[A], 
while the preimage of y E Y, as long as f is not invertible, will be denoted 
by f-1 [y]. We do this to better distinguish between sets and points.21 On 
the other hand, we will often use x in notations like A x x c A x B, even 
though { x} might be more rigorous. 

We denote the integers by Z and their modulo m residue classes Z / mZ by 
Zm. The rational numbers are denoted by Q, the real numbers by lR, the 
complex numbers by C (with imaginary unit i = J=T), and the quater
nions by JH. 

Further, lRm denotes the Euclidean real m-space, with its preferred basis, 
orientation and metric, while em denotes complex m-space (of real dimen
sion 2m). Further, sm denotes the standard m-dimensional sphere { x E 

JRm+l I lxl = 1}, and lDm denotes the standard m-dimensional disk (or 
ball) {x E lRm llxl ::; 1}. In low dimensions, we take JD0 = {point}, JD1 = 
[ -1, + 1] and 5° = { -1, + 1} . Further, lRlPm denotes real projective m
space sm /±1, while ClPm denotes complex projective m-space szm+l /51 

(of real dimension 2m). Notice that JRJP1 = S1 and CJP1 = 52 . Finally, ym 
will denote them-torus 51 X ... X 5 1 (m factors). 

We will denote by ( · , · ) inner-products or Riemannian metrics; we will 
denote by I a I the (pointwise) length of a; we will denote by II a II an integral 
norm of a, specifically the L2-norm. The span of a, b, c, ... over a ring lF 
will be denoted by lF{a,b,c, .. . }; for example, the (x,y)-plane in JR3 will 
be denoted by lR{ e1, e2} (instead of, say, spanR{ e1, e2} ). 

An m-dimensional manifold X will sometimes be written xm to empha
size its dimension m. 

We will use X to denote the manifold X with the opposite orientation. 

21. We learned these notations from J. Kelley's classic General topology [Kel55, Kel75]. 



18 Front matter 

Writing X ""' Y will mean" X is homotopy-equivalent22 to Y"; writing X ~ 
Y will mean "X is homeomorphic to Y"; writing X ~ Y will mean "X is 
diffeomorphic to Y". To avoid confusion, in most cases we will support 
such notations with hints in English. 

A manifold X will be called a fake X (for whatever typical manifold X 
might be) if X is homotopy-equivalent to X, but not homeomorphic to it. 
A manifold X will be called an exotic X if X is homeomorphic to X, but 
not diffeomorphic to it. 

As already mentioned, we use X# Y to denote the connected sum of the 
manifolds X and Y. A writing like X# n Y represents the connected sum 
of X with n copies of Y, instead of, say, X# ( #~=l Y). We use a simi
lar convention in algebra, where we write, say, Z EB n Z2 instead of Z E9 
( E9k=l Z2). For multiplicative operations, we write Z ® z~n instead of 

Z 0 (®k=l Z2). 

If E is a vector bundle, then f(E)will denote the space of its global sec
tions. For example, a: E r(A2 (T.X)) means that a: is an exterior 2-form 
on X. If E has some extra structure, then the sections are assumed to re
spect that structure. In most cases that merely means that the sections are 
differentiable, but i£the bundle is holomorphic, then f(E) is automatically 
assumed to contain only holomorphic sections. 

Thickenings. Often, we will need to take a k-dimensional object r,k and 
"thicken" it into a (k + n )-dimensional creature. Such a thickening is made 
by multiplying 1: by a disk Dn. To emphasize that the product 1: X Dn is 
to be thought merely as a thickened 1:, we will write the thickening-factor 
in smaller type, as in .r;k x lDn. Related objects will inherit this convention, 
as for example in a( I: X lDn) = a 1: X lDn U I; X sn-1. 

Sloppy. We will be pretty careless with notations. We will denote by the 
same letter a submanifold, the homology class it determines, and even its 
Poincare-dual cohomology class. In general, Poincare duality will be used 
blindly and tacitly. When talking about complex surfaces, we will denote 
by the same letter a complex-line bundle and its Chern class. Also, using 
the orientation, we identify without comment the top (co )homology of a 
manifold with the integers, Hm(xm;z) = Z and Hm(Xm;z) = Z, by 
identifying [X] with + 1. 

As a few examples, if S' and S" are oriented surfaces inside M4 , we will 
comfortably write S' · S" to denote their intersection number, instead of, 
say, (PD([S']) U PD([S"])) n [M]. Or, for CJP2 #CJP2 we will denote by 

22. Two topological spaces A and B are called homotopy-equivalent if there are continuous maps 
f: A ---t B and g: B ---t A so that both fog and go f are homotopic to the identity. 
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(3, 1) the 2-homologyclassof 3[CJP1] from CJP2 added to [CJP 1] from CJP2 . 

Or, the Pontryagin class PI(TM) E H4 (M;Z) of a 4-manifold will not be 
distinguished from the Pontryagin number PI (T M) [ M] E Z. 

Finally. In what follows, many statements will be named conjectures. Un
less their names are followed by the word "open", it should be understood 
that they are in fact proved theorems, but have gained notoriety while be
ing unsolved questions. 

It is also worth noticing the double use of the words topology I topological. 
On one hand, they will be used to refer to the realm of topological man
ifolds, as opposed to that of smooth manifolds. On the other hand, they 
will be used to emphasize a topological point-of-view (as in "differential 
topology'' or "the smooth topology of M"), as opposed to, say, a differential
geometric or algebraic-geometric one. Thus, while this book is devoted to 
the topology of 4-manifolds, it is not focused on topological 4-manifolds. 

As the reader has probably noticed, we use sans-serif bold to emphasize a 
notion being defined. In bibliographical references we use bold for author 
names, slanted bold for titles of books, and italic bold for titles of articles. 

Requisites 

The reader needs a reasonable understanding of manifolds, preferably with 
a view toward differential topology, as can be gained for example from 
M. Hirsch's Differential topology [Hir76, Hir94] (skim through chapter 
2 and 3 at a first reading, but do read section 8.2 on gluing manifolds), or 
J. Milnor's little gem Topology from the differentiable viewpoint [Mil65b, 
Mil97]. V. Guillemin and A. Pollack's Differential topology [GP74] is an
other possible introduction to smooth manifolds, and so is A. Kosinski's 
Differential manifolds [Kos93], which leads into geometric topology and 
includes some topics that will be sketched in our first chapter. 

Some algebraic topology is of course also needed: Poincare duality, char
acteristic classes, etc. Sources are manifold. A nice one is A. Hatcher's 
Algebraic topology [Hat02]. 

A smattering of differential geometry and of algebraic geometry cannot 
hurt, but their absence will not make the book unreadable. 

Further reading 

For an in-depth perspective on 4-manifold topology, see R. Gompf and 
A. Stipsicz's textbook 4-Manifolds and Kirby calculus [GS99]. For topo
logical4-manifolds, the standard reference isM. Freedman and F. Quinn's 
Topology of 4-manifolds [FQ90]. 
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For classical (pre-gauge) developments and techniques, read R. Kirby's 
beautiful The topology of 4-manifolds [Kir89]. Also for classical devel
opments, the collection Ala recherche de la topologie perdue [GM86a], 
edited by L. Guillou and A. Marin, contains many rare gems.23 A histor
ical perspective on 4-dimensional topology, as it stood in the late 1970s 
(pre-Freedman), can be gained from R. Mandelbaum's survey Four-dimen
sional topology: an introduction [ManSO]; reading it puts the later revolu
tions and developments quite in perspective. 

For reading on Donaldson theory, the standard reference is S.K. Donald
son and P. Kronheimer's The geometry of four-manifolds [DK90]. For 
Seiberg-Witten theory, J. Morgan's The Seiberg-Witten equations and ap
plications to the topology of smooth four-manifolds [Mor96] is a good 
start, and L. Nicolaescu's Notes on Seiberg-Witten theory [NicOO] is com
prehensive while unfriendly. For a first contact with the Seiberg-Witten 
invariants, we recommend S.K. Donaldson's survey The Seiberg-Witten 
equations and 4-manifold topology [Don96a]. 

In directions less central to this volume, complex algebraic geometry needs 
P. Griffiths and J. Harris's Principles of algebraic geometry [GH78, GH94], 
just as differential geometry needs S. Kobayashi and K. Nomizu's Founda
tions of differential geometry [KN69, KN96]. 

For focusing on complex surfaces, the expert bible is W. Barth, C. Peters 
and A. Van de Ven's Compact complex surfaces [BPVdV84], or its second 
enlarged edition (with K. Hulek) [BHPVdV04]. 

For a good understanding of the spine structures that underlie Seiberg
Witten theory, it helps to understand spin structures. B. Lawson and M
L. Michelson's Spin geometry [LM89] is the unavoidable reference and 
it also contains a lot of differential geometry, including the Atiyah-Singer 
index theorem. 

For symplectic geometry, start with D. McDuff and D. Salamon's Intro
duction to symplectic topology [MS95, MS98] and continue with their J
holomorphic curves and symplectic topology [MS04]. 

As a classic on bundles, homotopy groups, and obstructions, N. Steenrod's 
The topology of fibre bundles [Ste51, Ste99] is a book that every topol
ogist or geometer should know and love. A very condensed comprehen
sive introduction to advanced algebraic topology is E. Spanier's Algebraic 
topology [Spa66, Spa81], but one should probably first try J. Davis and 
P. Kirk's Lecture notes in algebraic topology [DKOl]. 

23. Translations and commentary of papers of V. Rokhlin's, notes of A. Casson's lecture on Casson 
handles, etc. The collection's title could not be more appropriate. 
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Quite a lot of Riemannian geometry is included in A. Besse's Einstein man
ifolds [Bes87]. 

For further bibliographical comments, please refer to the notes at the end 
of each chapter. 
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Part I 

Background Scenery 



W E start our journey by taking a trip into the high-dimensional world, 
where we review the proof of the h-cobordism theorem. The rea
on for this outward look is two-fold. On one hand, it will help 

set 4-manifolds in their natural context among higher-dimensional mani-
folds, pinpointing where the split between dimension 4 and higher dimen
sions occurs-indeed, the h-cobordism theorem fails for smooth manifolds 
of dimension 4. On the other hand, since the theory of higher-dimensional 
manifolds has been so successful, it has inspired attempts to replicate its 
techniques in the realm of 4-manifolds; thus, inspecting the former will 
provide motivation for the methods that have been deployed in the study 
of topological 4-manifolds. 

To the latter is devoted chapter 2 (starting on page 69), where we review 
Casson handles-the main technical tool for the classification of topological 
4-manifolds-and culminates with M. Freedman's h-cobordism theorem 
for topological 4-manifolds. 

This first part of the book is intended as a superficial tour of the horizon: 
we first look at higher-dimensional manifolds, then we focus on techniques 
successful on topological 4-manifolds, while throughout following h-co
bordisms as a unifying thread. (This neighborhood tour ends with a short 
visit with dimension 3, in the end-note on page 101.) Keep in mind that our 
eventual goal is the realm of smooth 4-manifolds, and thus the material of 
this part is merely intended as a backdrop against which to later set smooth 
4-manifolds. 
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Higher Dimensions and 
the h-Cobordism 
Theorem 

Chapter 1 

THIS first chapter is devoted to an outline of the proof of the h-cobordism 
theorem for smooth manifolds of dimensions 5 or higher. Roughly, the 

theorem states that if two simply-connected m-manifolds can be connected 
by a simply-connected ( m + 1) -manifold so that homologically nothing 
happens in between, then nothing can happen smoothly either, and our 
two m-manifolds must be diffeomorphic. 

After properly stating this remarkable result that forms a bridge from the 
homological to the differentiable, we start in section 1.2 (page 32) to outline 
its proof by explaining handle decompositions of manifolds. In section 1.3 
(page 40) we explain how handle decompositions can be suitably modified 
using so called handle moves. 

The main line of argument of the h-cobordism theorem is sketched in sec
tion 1.4 (page 43), while its principal technical detail-the Whitney trick
is explained in section 1.5 (page 45), with further details in a note at the 
end of the chapter (page 54). The Whitney trick is the crucial point where 
high-dimensions and low-dimensions part ways: it hinges on embedding 
disks. 

Section 1.6 comments on some remaining details needed to complete the 
proof. Finally, in the notes at the end of the chapter (page 58) is outlined 
the non-simply-connected version of the h-cobordism theorem, known as 
the s-cobordism theorem. -27 
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Note that further raids in the high-dimensional realm will be made in the 
end-notes of the next chapter (exotic spheres, page 97), and in the end-notes 
of chapter 4 (smoothing topological manifolds, page 207). 

1.1. The statement of the theorem 

Meet cobordisms. A cobordism between two oriented m-manifolds M and 
N is any oriented ( m + 1) -manifold W such that its boundary is 

aW=MUN, 

as in figure 1.1. When such a W linking M and N exists, the manifolds 
M and N are called cobordant. You should think of W as some sort of 
''homology-without-ambient'' between M and N. 

M 

1.1. A cobordism 

The reason M appears with reversed orientation in a W = M UN is that 
we think of M and N as lying at opposite ends of W. It is similar to what 
happens with M x [0, 1], where we have 

a(M x [0, 1]) = M X 0 U M X 1. 

This latter equality is a consequence of how an orientation of a manifold 
induces an orientation on its boundary,l see figure 1.2 on the next page. 
The cobordism M x [0, 1] is called the trivial cobordism. 

1. Everyone has encountered an instance of this in the fundamental theorem of calculus, where 
f[a,b] df =- f(a) + f(b). The minus sign in - f(a) and the overline in M have the same root. 
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1.2. Orientations on boundaries 

While two manifolds being cobordant certainly points to a similarity be
tween them2 (and the study of cobordisms earned its creator, R. Thorn, a 
Fields Medal), it is not a very strong similarity. For example, every 4-mani
fold is cobordant to a connected sum of CJP2 's or CJP 2 's. 

Stronger cobordisms. To strengthen the cobordism relation, we will further 
ask that homo topically nothing happen between M and N. Thus, a cobor
dism W between M and N is called an h-cobordism if W is homotopically 
like the trivial cobordism M x [0, 1]. 

Specifically, we ask that the inclusion of M into W (or, equivalently, of 
N into W) be a homotopy-equivalence; equivalently, that W deformation 
retracts toM (or toN). If W, M and N are all simply-connected, then this 
is equivalent to merely requiring that 

H*(W,M; Z) = 0. 

The theorem. Remarkably, in high dimensions a homotopically-trivial co
bordism must in fact be smoothly-trivial: 

h-Cobordism Theorem. Let Mm and Nm be compact simply-connected ori
ented m-manifolds that are h-cobordant through the simply-connected (m +I)
manifold wm+l. If m ~ 5, then there is a diffeomorphism 

W~Mx[O,l], 

which can be chosen to be the identity from M c W to M x 0 c M x [0, 1]. In 
particular, M and N must be diffeomorphic. 

The above statement is due to S. Smale in the early 1960s and was awarded 
a Fields Medal. The theorem's generalization to the non-simply-connected 
case is stated on page 65, inside the end-notes of this chapter (s-cobordisms, 
page 58). 

2. See also the end-notes of chapter 4 (cobordism groups, page 227). 
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The Poincare conjectures 

An example of the power of the h-cobordism theorem is the characteri
zation of spheres. Remember that an m-manifold x:,m is homotopy-equi
valent to sm if and only if it is simply-connected and its only nontrivial 
homology groups are Ho(I:.;Z) = Z and Hm(L.;Z) = Z. 

High-Dimensional Poincare Conjecture. If a smooth m-manifold x:,m is ho
motopy-equivalent to sm and m 2: 51 then x:,m and sm must be homeomorphic. 

Trying to obtain a diffeomorphism between r,m and sm will fail in dimen
sions 7 or more. Nonetheless, for dimensions m = 5 and m = 6, the 
statement can be strengthened to offer a diffeomorphism r,m ~ sm. For 
more on the gap homeomorphisms/ diffeomorphisms between r,m and sm I 
see the end-notes of the next chapter (exotic spheres, page 97). 

Proof. For m 2: 6, we proceed as follows: We cut out two small m
disks D' and D" from I:., as in figure 1.3. The leftover I:.\ D' U D" 
is an h-cobordism between two copies of sm-I. By the h-cobordism 
theorem, it must be a trivial cobordism: there exists a diffeomorphism 
I:.\ D' U D" ~ sm-I x [0, 1], which can be chosen to restrict to the 
identity on the lower sm-l . 

L:\ D' U D" sm-l X [0, I] 

1---'"""''''''''"""" .......... 

..... 

S"' 

1.3. Cutting up a proof of the Poincare conjecture 

In what follows, we will rebuild I:.. As we will glue the disks D', then 
D", back to I:. \ D' U D", we will also glue copies of D', then D", to 
the cylinder sm-l X [0, 1], and then try to extend the diffeomorphism 
I:,\ D' u D" ~ sm-! X [0, 1] across these disks, till we obtain I:, -:::::: sm. 

The diffeomorphism I:.\ D' U D" ~ sm-! x [0, 1] is the identity on the 
bottom sm-I . Thus, after we glue D' to both sides, we can extend the 
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diffeomorphism 1:\ D' U D" ~ sm- 1 x [0, 1] across the added copies 
of D' by the identity map and obtain a diffeomorphism 1: \ D" ~ 
sm- 1 x [0, 1] U D'. The latter manifold is, of course, merely an m-ball 

lDm. Hence, we can now view 1: as obtained from two m-balls, lDm 
and D", glued along some diffeomorphism of their (upper) boundary
spheres sm- 1 . 

Next, when we glue the disk D" to both sides, on one hand we obtain 
1:, on the other sm (by gluing D" in the standard manner to lDm). 

Our diffeomorphism 1:\ D" ~ lDm induces a diffeomorphism of the 
(upper) boundary-spheres sm- 1, which can be transported through the 
glue to a diffeomorphism a D" ~ a D" between the two copies of the 
boundary-sphere of D". To extend to a diffeomorphism 1: ~ sm I we 
need to extend it across the disk D". 

Any diffeomorphism of the boundary-sphere sm- 1 of an m-disk can be 
extended radially to the whole disk, as in figure 1.4, but only as a home
omorphism of D". Indeed, this radial extension has a good chance to 
fail from being differentiable at the center, and hence homeomorphism 
is all we get. The theorem is proved for the case m ~ 6. 

1.4. Extending a diffeomorphism of sm-i to a homeomorphism of Dm 

The case m = 5 is a bit trickier: one first uses the fact that 1:5 must 
bound a contractible 6-manifold V. If we cut out a standard 6-ball 
from V, the leftover is an h-cobordism from 1:5 to S5 , which must be 
trivial and establishes that 1:5 is actually diffeomorphic to S5 (thus, there 
are no exotic 5-spheres). D 

Dimension 4. The Poincare conjecture is also true for 4-manifolds: 

Topological 4-Dimensional Poincare Conjecture. If a 4-manifold 1:4 is ho
motopy-equivalent to S4 I then 1:4 and S4 must be homeomorphic. D 

The proof of this statement will require the whole machinery of A. Casson 
and M. Freedman's work, passing through a 4-dimensional topological 
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h-cobordism theorem from which the above is deduced. This will be dis
cussed in the next chapter. 

Encouraged by the fact that in the neighboring dimensions 5 and 6 the 
Poincare conjecture can be strengthened to an actual diffeomorphism be
tween r,m and sm 1 we also state: 

Smooth 4-Dimensional Poincare Conjecture (open). If a smooth 4-mani
fold L,4 is homotopy-equivalent to S4 1 then L,4 and S4 must be diffeomorphic. 

This conjecture is wide open: we do not know whether there are any exotic 
4-spheres, and there are no methods in sight for either proving or disprov
ing it. It is possible that the conjecture is true, just as it is possible that there 
are infinitely-many distinct smooth structures on S4 . 

Dimension 3. Finally, the statement that in 1904 started it all: 

Poincare Conjecture (open?). If a 3-manifold L,3 is homotopy-equivalent to 
S3 1 then L,3 and S3 must be diffeomorphic. 

In this case, the homotopy-equivalence hypothesis reduces to merely re
quiring that L,3 be simply-connected; and homeomorphisms in dimension 
3 are equivalent to diffeomorphisms. 

It is possible that the conjecture has been proved3 in 2003, a hundred years 
after it was stated. In other words, it is possible that dimension 4 is the 
only dimension left where spheres are not yet understood. 

The rest of this chapter is devoted to exploring the proof of the h-cobor
dism theorem in dimensions 5 or more. 

1.2. Handle decompositions 

The strategy for proving the h-cobordism theorem is the following: we 
will translate the algebraic triviality H* (W, M; Z) = 0 into the geometric 
triviality of W relative to M. 

For that, we must first express the homology of W by using geometric ele
ments, which will be done by using a handle decomposition of W. This is the 
equivalent, in the realm of manifolds, of a cellular decomposition, but with 
the cells "thickened" so that every skeleton will still be a manifold. 

A natural method for making handle decompositions appear is through the 
use of Morse functions: 

3. By G. Perelman [Per02, Per03b, Per03a], who might have proved Thurston's geometrization conjec
ture by using the (Riemannian-geometric) Ricci-flow method pioneered by R. Hamilton. The proof is 
still under scrutiny at the time of this writing (January 2005). 
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Morse functions 

A Morse function on W is a differentiable function 

f: w --t [0,1] 1 

with M = f- 1[0] and N = f-1[1], so that its differential df E f(TA1) is 
transverse to the zero-section of TM. 
Specifically, this means that around any critical point p (where dflr = 0) 
the function f can be written locally as 

j(x1, ... , Xm+d = -xi-···- x~ + x~+l + · · · + x~+l + constant, 

for a suitable k and some suitable local coordinates (x1, ... , Xm+I) centered 
at p. The critical point is then called a critical point of index k. 

The levels of f near a critical point look as suggested in figure 1.5. As we 
will see, the critical points of a Morse function exhibit a lot of information 
about its domain W. 

critical point 

1.5. Levels of a Morse function around a critical point 

No critical, no gain. Away from the critical points, nothing much happens 
in W. More precisely, the ascending cobordism 

Wp = f-l[O,p] 
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is topologically unchanged as p grows without encountering critical values 
of f. Indeed, if there are no critical values between p' and p", then the 
gradient vector field of f integrates to yield diffeomorphisms Wp' ~ Wp". 
This restricts to diffeomorphisms between the various upper boundaries 

Mp = f-1[p]' 

so that Mp' c:,; Mp". See figure 1.6. 

f 
p" 

p' 

0 

1.6. Ascending cobordisms 

Handles 

On the other hand, when running across a critical value of f, the topology 
of the ascending cobordism changes. 

The result of passing a critical point of index k is the same as gluing a thick
ened k-disk to the ascending cobordism. Indeed, We+£ is diffeomorphic to 
the result of attaching to We-£ a copy of4 

along its thickened boundary-sphere sk-1 X JI)nz+l-k. See figures 1.7 to 1.9 on 
the facing page. This is known as attaching a k-handle (or a handle of order5 

k) to We-£· 

4. Recall (from page 18) that, when we "thicken" something (by crossing with a disk, say), we type the 
"thickening" factor with smaller characters. 

5. We will call k the order of the handle JDk x vm+l-k, and m + 1 the dimension of the handle. Hence, 
a handle of order n and dimension N is a thickening to dimension N of a n-dimensional cell. 
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c 

C-E 

handle em 
l 

1.7. Passing a critical point versus attaching a handle, I 

Th~d{j--( ·. 8 
; \ .. 

l 

1.8. Passing a critical point versus attaching a handle, II 

1.9. Passing a critical point versus attaching a handle, III 

35 
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Effect of attaching a handle. Looking closer at a handle, since 

we see that attaching a k-handle to We-e will delete from Mc-e a copy of 
sk-1 X vm+l-k while leaving behind its border sk-1 X sm-k. To this border is 
glued as replacement a copy of Dk x sm-k, thus filling the hole and creating 
Mc+e· See figures6 1.10 and 1.11. 

········ 

//A.... ··· .... \ /::.:::: ::.':Y 
~ I 

1.10. Attaching a k-handle (k = 1) 

.. 

c_z) 
part covered when attaching k-handle part left after attaching 

1.11. Effect of attaching a k-handle (k = 2) 

These small steps are all that is needed to transform M = Mo into N = M 1 

by climbing on the levels off in W. The Morse function exhibits the actual 
recipe for changing one into the other. 

Anatomy of a handle. The disk Dk X 0 inside a k-handle Dk X vm+l-k is 
called the core of the handle. The boundary sk- 1 x o of this core is called 
the attaching sphere of the handle. Finally, the sphere 0 x sm-k (wrapped 
around the "thickening'' of the handle) is called the belt sphere (or co
sphere) of the handle. See figure 1.12 on the facing page, or back at fi
gure 1.11 on this page. 

6. Remember that S0 = { -1, + 1} 
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belt sphere: 0 X sm-k attaching sphere: 5k-l X 0 

---~l-\~ 
core: JDk x o 

1.12. Anatomy of a k-handle JDk x D"'+ 1-k (k = 1) 

Extreme handles. The case of 0- and ( m + 1) -handles is somewhat special. 
They correspond to local minima and maxima of f. 
A 0-handle is a copy of JD0 x JD"'+ 1, where JD0 ={point}; hence a 0-handle 
is an (m + 1 )-ballJDm+1 • It is "attached" through s- 1 X JDm+l, where s- 1 

should be understood as the empty set. In other words, attaching a 0-
handle simply means setting an ( m + 1) -ball alongside the rest of our crea
ture; this creates an m-sphere in the resulting upper boundary. See the left 
of figure 1.13. 

An ( m + 1) -handle is a copy of JDm+ 1 x 10° attached along sm x o. In other 
words, an ( m + 1) -handle is an ( m + 1) -ball as well, but attaching it means 
filling a spherical hole in the previous upper boundary. See the right of fi
gure 1.13. 

1.13. Minima and 0-handles, maxima and ( m + 1) -handles 

As we will see later/ all 0- and ( m + 1) -handles can in fact be eliminated, 
so we will not worry about them till then. 

Handle decompositions. On every smooth W there exist Morse functions. 8 

This implies that every cobordism W can be exhibited as a series of handle 
attachments to M x [O,e], as pictured in figure 1.14 on the following page. 
This is called a handle decomposition9 (or handlebody structure) of W. 

7. See ahead section 1.6 (page 47). 

8. Morse functions form an open and dense subset of the space of all functions on W, see for example 
M. Hirsch's Differential topology [Hir76, Hir94, ch 6]. 

9. In fact, it is called a handle decomposition of W relative to M, since one starts with M as given. 
Later we will also encounter handle decompositions of closed manifolds, where one starts with nothing, 
picks a 0-handle (a ball) and starts gluing other handles to it. 
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(m- I)-handle 

1-handle 

1.14. Cobordism as a tower of handles 

Re-ordering handles. A dimension-counting and transversality argument 
shows that all k-handles can be slid off higher-order handles, as suggested 
in figure 1.15, so that in effect one attaches handles in stages of their increas
ing order. 

> 

1.15. Sliding a 1-handle off a 2-handle 

Indeed, let hi = Di x nm+I-i be any i-handle attached after the j-handle M = 
Dj x nm+I-j. If the attaching sphere of hi can be arranged to miss the belt 
sphere of hj, then hi can be slid off hj, meaning that it can be viewed as 
attached to a level before M was attached. 

After being attached, hj leaves in the upper boundary a copy of Dj x sm-J. If 
the attaching sphere of hi avoids the belt sphere 0 x sm-J of M, then whatever 
part of it might sit in the remaining part (Dj \ 0) x sm-J of hj can be pushed 
off radially to the border Sj x sm-i, as suggested in figure 1.16 on the facing 
page. This border is part of what the upper boundaries Mp before and after 
the attachment of M have in common. Therefore, since sliding the attaching 
sphere of hi implies that we can slide the whole attaching region of hi (which 
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is just a thickening of the former), this means that hi can be entirely pushed 
off hj and viewed as attached before hj. 

Being sure that the attaching (i- 1) -sphere of hi can be perturbed away from 
the belt ( m - j) -sphere of M is a matter of transversality These spheres both 
live in some m-manifold Mp, and thus their generic intersection will have 
dimension (i- 1) + (m- j)- m = i- j- 1. Therefore, if i :::; j, then this 
dimension is negative, meaning that generically the two spheres do not meet. 
Hence, lower-order handles can be slid off higher-order handles. 

~ 
c==J 

handle part left after attaching 

1.16. Miss the belt sphere, miss it all 

From now on, we will tacitly assume that the handles of any handle decom
position at which we might be looking have already been re-ordered so as 
to appear attached in waves of increasing orders. 

Homology from handles 

Since a k-handle is merely a thickened k-celt it should be no surprise that 
the homology H* (W, M; Z) can be retrieved directly from the handle de
composition of W. 

Namely, we translate the handle decomposition into the following alge
braic data: a chain complex with groups 

Ck = Z{ k-handles h~} 

and boundary maps ak : ck -----7 ck-1 / given by 

ak(h~) = L: (h~ 1 h~- 1 ) . h~- 1 , 

where (h~ I h~-l) is the incidence number of h~ with h~-l. This coefficient 
is defined as the intersection number of the attaching sphere of h~ with the 
belt sphere of h~-l . 

Observe that the attaching sphere of h~ is a (k - 1) -sphere, while the belt 
sphere of h~- 1 is an ( m - k + 1) -sphere; both are living in the m -dimensional 
upper boundary Mp of the ascending cobordism. If assumed transverse, their 
intersection is in isolated points; these points can then be counted with signs 
to yield the coefficients (h~ I h~-J). See figure 1.17 on the next page. 
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belt sphere of h%-l 

1.17. Defining the boundary operator 

It should not be hard to believe that the resulting homology groups 

Hk(C*) = Kerak / Imak+1 

of the complex { Cb ak} are naturally identical to Hk(W, M; Z). 

1.3. Handle moves 

The handle decomposition of W that we obtain at the outset from some ran
dom Morse function is probably not the best one. To obtain more suitable 
ones, we will want to modify this decomposition. 

There are two fundamental modifications of a handle decomposition: han
dle cancellation I creation and handle sliding.10 

Handle cancellation, handle creation 

If the hole created by adding a (k- I)-handle h~- 1 is filled by the later 
addition of some k-handle h~, then this pair of handles can be eliminated, 
as suggested in figures 1.18 and 1.19 on the facing page. This is called a 
handle cancellation. 

A necessary condition for canceling a pair of handles h~ and h~- 1 is that 

ah~ = ±h~- 1 • 

This means that the attaching sphere of h~ has ± 1 algebraic intersection 
with the belt sphere of h~- 1 , and zero algebraic intersection with the belt 
spheres of all other (k- I)-handles. In other words, the k-handle h~ 
passes algebraically-once over h~- 1 , and only over h~- 1 • 

10. There is also a third one, handle trading, which will be explained in section 1.6 (page 47) ahead. 
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(k- 1)-handle 

) ( 
attaching sphere 

1.18. Canceling a pair of handles (k = 2) 

(k-1)-handle 

\ 
1.19. Canceling a pair of handles (k = 3) 

However, to actually cancel, one needs more: the algebraic intersection 
needs to be realized geometrically-the attaching sphere of h~ must cross 
exactly once the belt sphere of h~- 1 , as in figure 1.20. 

belt sphere of ( k - 1) -handle attaching sphere of k-handle 

1.20. Attaching-sphere/belt-sphere position for canceling handles 

The process of canceling two handles can be reversed and it is then called 
handle creation (or handle birth). Specifically, a pair of canceling handles 
can be created out of thin air, by ''blistering" -just go in reverse in figures 
1.18 and 1.19. 
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The cancellation/ creation of handles can also be seen at the level of Morse 
functions,U as in figure 1.21. 

) 

< 

1.21. Canceling/ creating a pair of critical points of a Morse function 

Handle sliding 

The second way of modifying a handle decomposition is to change the way 
handles are attached. 

Namely, we can slide a k-handle h~ over another k-handle h~, as sug
gested in figure 1.22. What happens is that the attaching sphere of the 
sliding handle h~ travels across the core disk12 of the other handle, as in 
figure 1.23. 

nn 
1.22. Sliding handles, I 

1.23. Sliding handles, II 

11. It is known that every two Morse functions can be linked by a homotopy that only passes through 
Morse functions, except for moments of creation/cancellation of critical points. See J. Cerf's La strat
ification naturelle des espaces de fonctions differentiables reelles et le theoreme de la pseudo-isotopie 
[Cer70]. 

12. Actually, the attaching sphere of h~ travels across a parallel copy JDk x p (for some p E sm-k) of the 
core of h~, which lives on the upper boundary JDk x sk of the "ridden" handle h~ . 
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The algebraic effect of sliding is that it changes the boundary operator 
ak: Ck --+ Ck- 1 . Specifically, sliding h~ over h~ modifies ak the same way 
as would changing the basis of Ck by replacing h~ by h~ + h~ or h~- h~ 
(depending on how one slides and orientations). See figure 1.24. 

ah~ = o 

1.24. Sliding handles changes the boundary operator 

1.4. Outline of proof 
Remember the statement of the h-cobordism theorem: Let Mm and Nm be 
compact simply-connected oriented manifolds, and let wm+ 1 be a simply-connec
ted cobordism between them; assume that H* (W, M; .Z) = 0 and m is at least 5; 
then W is diffeomorphic to M x [0, 1]. 

Take a handle decomposition of W. Because H*(W,M; .Z) = 0, an alge-
braic reasoning shows that, by sliding handles and adding pairs of cancel-
ing handles, one can change the boundary operators till they all look like 

1 0 0 0 0 
0 1 0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 1 0 0 0 0 0 0 

ak = 0 0 0 1 0 or ak = 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 

This follows since: ( 1) all the Ck 's are free; ( 2) handle slides correspond 
to elementary row/column operations on ak's matrix; and (3) creation of 
a pair of handles enlarges the matrix of ak by adjoining an extra row and 
an extra column with just a 1 in the new corner.13 Finally, if we end up 
with -1 's in some ak 's matrix, then we can switch the orientation of a cor
responding handle, which changes the sign to + 1. 

13. An algebraic extension of this argument is presented in the end-notes of this chapter (page 58). 
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After performing the above modifications, and since ak ak+1 = 0, we de
duce that all the handles are now paired by I 's: that means that for ev
ery k-handle h~ either there exists a unique (k- I)-handle h~- 1 such 
that a h~ = h~- 1 , or there exists a unique (k + I )-handle h~+ 1 such that 
a h~+ 1 = h~. The handles are "a-paired". 

Next, for every pair of handles with a h~ = h~- 1 , we want to arrange that 
the algebraic intersection +I of the corresponding attaching and belt sphe
res be realized as a geometric intersection so that we can then cancel the 
two handles. We do that by eliminating pairs of intersection points with 
opposite signs, as suggested in figure 1.25. 

1.25. Eliminating algebraically-canceling intersection points 

Be optimistic and assume for a moment that we can somehow do that. It fol
lows that, whenever a h~ = h~- 1 , we can actually cancel the pair of handles 
h~ and h~. Since all handles are paired this way, it follows that all handles 
can be made to disappear. We are left with a handle-less decomposition 
of W. This means that W must be the trivial cobordism M x [0, I] and, in 
particular, that M and N must be diffeomorphic. The proof concludes. o 

The 0-, I-, m-, and (m +I)-handles must be dealt with separately, and 
we will do that a bit later. Besides that, there remains, of course, the crucial 
point of how one actually cancels those extraneous intersection points: 
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1.5. The Whitney trick 

Consider two submanifolds pk and Qm-k of complementary dimensions 
inside some Mm. Then P and Q meet in isolated points, and each intersec
tion point has a sign from comparing orientations. We will strive to geo
metrically eliminate algebraically-canceling pairs of intersection points. 

The case that concerns us is, of course, when P and Q are the attaching/belt 
spheres of some handles, and when M is simply-connected. After some 
maneuvers that will be presented in the next section, we can safely assume 
that the complement M \ P U Q of such P's and Q's is still simply-con
nected. Indeed, if, on one hand, both P and Q have codimension at least 
3, then their complement M \ P U Q is automatically simply-connected. 
This can still be shown to happen for the codimension-2 cases that appear 
between 2- and 3- and between (m- 2)- and (m- I)-handles. Finally, 
all 0-, I-, m- and (m +I)-handles can be eliminated. 

Accepting this for the moment, pick any pair of intersection points of P 
and Q with opposite signs, as suggested in figure 1.26 on the following page. 
Choose a path that links the two intersection points inside P and pick an
other path linking the two points inside Q: together, these two paths draw 
a circle. Owing to simple-connectedness, this circle must be homotopically
trivial in the complement M \ P U Q. Therefore it bounds some immersed 
disk in the complement of P and Q. 

However, it is known that embeddings are always dense in the space of all 
maps An ~ B2n+ 1 . In particular, this implies that immersions of disks in 
manifolds of dimension at least 5 can always be approximated by embed
dings. In our case, this results in an embedded disk bounded by our circle. 
Such a disk, with boundary contained in P U Q and touching the two inter
section points of P and Q, is called a Whitney disk; its boundary is called 
a Whitney circle. 

By using this Whitney disk as a guide, we can now push P past Q, till the 
intersection points disappear, as pictured in figure 1.26 on the next page. 
We have, in effect, eliminated a algebraically-canceling pair of intersection 
points of P and Q. 

Signs matter. The above overview might seem to suggest that starting with 
intersection points of opposite signs is not really necessary. However, it is 
essential that, when we push P past Q along the disk, we do not inadvertently 
create more intersections; in other words, it is essential that P and Q be kept 
in separate realms during the push. For that to work, one in fact needs the 
signs of the two intersection points to be opposed. This fundamental technical 
point is explained in detail in the end-notes of this chapter (page 54). 
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Q 

1.26. The Whitney trick 
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By applying this procedure to the attaching and belt spheres of our cobor
dism W, we eliminate all the algebraically-canceling intersections and thus 
finish the proof of the h-cobordism theorem when m 2: 5. 

Dimension 4. This maneuver is the point where one sees why the proof of the 
h -cobordism theorem fails for dimension m = 4: the essential Whitney trick 
cannot be performed in dimension 4. The failure is owing to the impossibility 
of making an immersed disk into a smoothly embedded one: embeddings 
are not dense among the maps JD2 ---+ M~. Thus, in 4-dimensional topology 
any progress along the lines of the h-cobordism strategy must hinge on the 
problem of embedding disks in 4 -manifolds. That will be the topic of the next 
chapter. 

1.6. Low and high handles; handle trading 
We will now explain a few details that were glossed over in the previous 
outline of the h-cobordism theorem. Specifically, we will explain how, be
fore anything else, one must deal with 0-, 1-, m-, and ( m + 1) -handles. 

First, since Ho (W, M; Z) = 0, all 0-handles can be paired with 1-handles 
and cancelled. Further, since wm+ 1 is simply-connected, every 1-handle 
bounds an embedded disk (again, we use that m 2: 5), which can be thick
ened into a canceling pair of a 2- and a 3-handle, so that the 2-handle kills 
the 1-handle, but leaves the 3-handle behind. In effect, we are trading all 
1-handles for 3-handles, and thus a good name for this maneuver is han
dle trading. Afterwards, the whole handle decomposition can be "turned 
upside-down", thus making the m- and ( m + 1) -handles look like 1- and 
0-handles, and we can then apply the preceding methods to eliminate them 
as well. 

Finally, we will comment on a technical detail for applying the Whitney 
trick when either P or Q has codimension 2, specifically the seeming fail
ure of simple-connectedness that appears between 2- and 3-handles and 
between (m- 2)- and (m- 1 )-handles. 

The reader should feel free to skip the remainder of this section, to the start 
of the end-notes on page 54, or to the start of the next chapter on page 69. 

Canceling 0-handles. The manifold wm+ 1 is connected and is obtained 
from M x [O,c] by adding various handles. A 0-handle is simply a thick
ened point, i.e., an ( m + 1) -ball. Adding a 0-handle simply means setting 
such a ball alongside M x [o, c]. As such, it is disconnected from the rest and 
it is the job of higher-order handles to achieve connectedness for W. 

However, the only handles that can link two distinct connected compo
nents are the 1-handles. Therefore, each 0-handle must be linked by a 
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1-handle to M x [O,E] (or to another 0-handle). Then, as suggested in fi
gures 1.27 and 1.28, we can cancel pairs of 0- and 1-handles till there are 
no 0-handles left. 

f? D. 
~------~=]~ ~, --------~, 

1.27. Canceling 0-handles, I 

JJ 
1.28. Canceling 0-handles, II 

Trading 1-handles for 3-handles. Just as 0-handles have the potential to 
ruin the connectedness of W, 1-handles could ruin the simple-connected
ness of W. Since wm+ r is assumed simply-connected, we will be able to 
eliminate all 1-handles. 

We assume as usual that, when building wm+r, handles are attached in 
stages of their increasing order. We also assume there are no 0-handles. 
Thus, we start with a thickening of Minto M x [O,E]. To its upper boundary 
M x E we attach all the 1-handles. Call the resulting upper boundary Mr. 
Then we attach the 2-handles, with their attaching regions sr x [)"'-1 glued 
to Mr; call the new upper boundary M2. To it we attach the 3-handles. 
And soon. 

Now, consider some random 1-handle, i.e., a copy of [-1,+1] x [)"',at
tached to M x E through { -1} x [)"' and { + 1} x [)"' and living between 
M x E and Mr. Take a parallel copy £ of the core [ -1, + 1] x o inside 
the boundary [-1,+1] x s"'- 1 (for example, take£= [-1,+1] x p with 
p E srn-1 ). The endpoints of £ are attached to M x E, and, since M is con
nected, these endpoints can also be linked by some path £' inside M x E. 

By putting £ and £' together we get a circle C, as in figure 1.29 on the next 
page. This circle travels once across our 1-handle. If we could make appear 
a 2-handle h~ attached to C, then this h~ would cancel our 1-handle. 

All 2-handles are glued along their (thickened) attaching circles to Mr. 
Since circles can be pushed away from circles, we can then assume that C 
misses all the attaching regions of the 2-handles and thus that it survives 
untouched into the next level M2, as in figure 1.30 on the facing page. 
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1.29. Circle across 1-handle 

1.30. Preparation for handle trading 

Since W is simply-connected, C is a homotopically-trivialloop and hence 
there must be some map 102 -----+ W that sends d 102 to C. Since the dimen
sion of W is at least 5, we can in fact get a disk D embedded in W and 
bounded by C. A little dimension counting also shows that in fact D can 
be pushed below all handles of order 3 or more and pushed on top of all 
handles of order 2 or less, so that we end up with a disk D, embedded in 
M2 and bounded by C. Now we can thicken this disk D into a canceling 
pair of a 2- and a 3-handle, as in figure 1.31. Thus, we get a 2-handle 
attached along C, which cancels our 1-handle, and then we are left with 
the new 3-handle instead: the 1-handle was traded for the 3-handle. See 
figure14 1.32 on the following page. 

r-1-1~ 
~2~ \ 

I I 
> 

1.31. Creating a pair of 2- and 3-handles 

High tradings. Handle trading can also be done on higher-order handles. Let 
h~ be a k-handle JDk X lDm-k+I in wm+J, glued along its attaching sphere 
sk-I x o. A parallel copy JDk x p (with p E sm-k) of the core of h~ deter
mines an element in 15 nk(W, M). However, since we assumed W to be an 
h-cobordism, all the groups nk(W, M) are trivial. Therefore there must be a 
map JDk+l ---+ w that sends a hemisphere of a uk+l to cover Dk X p, while 

14. Think of figure 1.32 as a continuation of figure 1.30 on this page. 

15. Remember that 7Tn (A, B) is the group of homotopy classes of all maps f: lD" ----+ A with a JD" sent 
into B. Such a map f represents the identity 0 if and only if there is a map JDn+l ----+ A such that a 
hemisphere of a JD"+ 1 is mapped as f: JD" ----+ A, while the rest is sent into B. 
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~;~ 
---~--==: : . . 

{f--~\ 
:..............:·······-....................................... :·~· . . 

c9 ! : 3 -handle \. 

L)~ 
1.32. Handle trading 

the rest is sent to M. With a bit of care we can arrange that this Dk+1 is 
sent entirely into a level Mp in between the k- and the ( k + 1) -handles. Fur
ther, if m ;::::: 2k + 3, then Dk+ 1 can be assumed embedded in Mp. The disk 
Dk+ 1 can then be thickened into a canceling pair of a ( k + 1)- and a ( k + 2)
handle, the ( k + 1) -handle will cancel the k -handle h~, and we are left with 
the ( k + 2) -handle. Thus, if m 2 2k + 3, then we can trade k -handles for 
( k + 2) -handles. 

Turning the decomposition upside-down. After eliminating all 0- and 1-
handles, we now eliminate them- and (m +I)-handles. For that, we turn 
the cobordism wm+l upside-down. 

Turning W upside-down is equivalent, in terms of Morse functions, to 
switching from f: W ---t [0, 1] to - f: W ---t [ -1, 0], which transforms a 
critical point of index k into a critical point of index m + 1 - k. 

In terms of handles, a same product Dk x nm-k+I can be viewed either 
as a k-handle Dk x JDm+l-k, attached "downwards", or as an (m + 1 - k)
handle JDk X Dm+J-k, attached "upwards". Thus, the belt sphere 0 X sm-k of 
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the k-handle is viewed as the attaching sphere ox sm-k of an (m +I- k)
handle, while the attaching sphere sk-l x o of the k-handle works as the 
belt sphere sk-I x 0 of an (m +I- k)-handle, etc. See figures 1.33-1.35. 

1.33. Attaching a 2-handle to A, or attaching a 1-handle to B? 

1.34. Viewing a handle upside-down 

Since turning the decomposition upside-down transforms ( m + I) -handles 
into 0-handles and m-handles into I-handles, we apply the techniques 
presented before and eliminate all (m +I)-handles as well as trade all m
handles for ( m - 2) -handles. 

The result of all the above maneuvers is that the handle decomposition of 
W has now been modified so that it contains no 0-, I-, m- or (m +I)
handles. 

Whitney trick in codimension 2. Finally, there is another detail, appearing 
when we apply the Whitney trick between 2- and 3-handles and between 
( m - I)- and ( m - 2) -handles. Namely, belt spheres of 2-handles and 
attaching spheres of (m- I)-handles have codimension 2, and their com
plements a priori seem like they might be non-simply-connected. 
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1.35. Turning a handle decomposition upside-down 

Spinning. In general, when one tries to apply the Whitney trick to submani
folds P2 and Qm-2, one cannot just assume that the disk D will be disjoint 
from Qm-2 , since it is not clear that Mm \ Q is simply-connected. Thus, one 
might need to untangle D by spinning it around Q, as is suggested in fi
gures16 1.36 and 1.37. 

D D 

1.36. Untangling the Whitney disk 

1.37. Untangling the Whitney disk: the movie 

16. Figure 1.37 should be understood as having time as one of its dimensions. One can then imagine 
the surface D twisting around the surface Q and crossing it once, at mid-time. 
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In the cases actually needed for the h-cobordism theorem, when m ~ 5 
and P and Q are attaching spheres or belt spheres, this situation does not 
actually arise: Assume for example that Qm-2 is the belt sphere of a 2-
handle; then the complement of Q is always simply-connected. Indeed, 
call M 1 the upper boundary just before this 2-handle was attached and 
M2 the one just after the attachment. To obtain M2 from M1, one deletes 
the attaching region 51 x JDm- 1 from M 1, and glues 102 x sm-2 instead, along 
their common boundary 51 x sm-2 • Our Q is the new 0 x sm-2 in M2 . 

If we remove the belt sphere Q = 0 x sm-2 from M2 , we can collapse there
maining (102 \ 0) X sm-2 to its boundary 51 X sm-2 in M1 n M2. On the other 
hand, if we remove the attaching circle 51 x o of the 2-handle from M 1, we 
can collapse the remaining 51 x (JDm- 1 \O) to the same boundary 51 x sm-2 • 

See figure 1.38. What becomes apparent is that M2 \ Q is diffeomorphic 
to M 1 \51 x o, but the simple-connectedness of a manifold of dimension 
at least 5 (such as M 1 ) cannot be ruined by removing a circle. Thus, the 
complement M2 \ Q of Q is simply-connected. 

2-handle part in M2 \ Q part in M1 

1.38. Complement of codimension-2 belt sphere is simply-connected 

Since P is here the attaching sphere 52 x o of a 3-handle 103 x 10m-2 , re
moving P as well from our M2 (of dimension ~ 5) will also preserve 
simple-connectedness, and we can now safely start hunting for Whitney 
disks embedded in the simply-connected complement of both P and Q. 

For the other codimension-2 case, when Q is the attaching sphere 5m-2 x o 
of a (m- 1 )-handle 10m-1 x JD2 and Pis the belt sphere 0 x s2 of a (m- 2)
handle 10m-2 x JD3 , all one needs to do is turn the decomposition upside
down and argue as above. 

Dimension 4. This reasoning fails in the happy case of dimension m = 4. 
When Pis the attaching 2-sphere of a 3-handle, and Q is the belt 2-sphere 
of a 2-handle, then both have codimension 2 inside their 4-dimensionallevel 
Mp; and even though both Mp \ P and Mp \ Q are simply-connected, the full 
complement M \ P U Q has a good chance to not be. Even if we somehow deal 
with this problem, and then even manage to embed the Whitney disk, in di
mension 4 the headaches are not all gone, since the resulting disk might have 
the wrong framing; this last issue is another peculiarity of the 4-dimensional 
case and is explained on page 57 ahead. 
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Note: Whitney trick-the technicality 

In what follows, we will explain why the Whitney trick can only be applied when 
the Whitney disk links intersection points of opposite signs. Incidentally, the dis
cussion will also make visible an extra obstruction for the 4-dimensional case. 

1.39. Pushing P along a Whitney disk while avoiding Q 

Let us take a closer look at the Whitney push, as in figure1 1.39. The push of P 
along the Whitney disk must be made so that, during the movement, we do not 

1. In figure 1.39, as in many others to come, when we run into trouble with the at-most-three dimen
sions that we can easily represent in a picture, we use dotted lines to suggest objects that exist in other 
dimensions. Thus, in figure 1.39, we used dotted lines to suggest that Q is a surface, but does not live 
in the same 3-dimensional slice as P (apart from the Whitney circle, where Q crosses through our 
slice). 
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bump into Q, since that would create undesired new intersections. In other words, 
we want to keep P and Q in separate realms while we push. (Of course, they will 
necessarily meet along the Whitney circle when P actually passes Q, but that is 
not what we worry about.) 

It turns out that it is all a matter of arranging and fitting bundles. Indeed, what is 
needed for such a push is a splitting of the normal bundle No;M of the Whitney 
disk D into complementary parts, one tangent to P and normal to Q, the other 
normal to P and tangent to Q; the existence of such a split allows us to keep P 
normal to Q all through the Whitney push. As we will see, the existence of such a 
splitfor No;M is governed by 1t:1 (~k(JR.n)) = Z2, corresponding to the two cases 
when the intersection points have opposite or same signs. 

Playing with bundles. Denote by p the dimension of P, by q the dimension of Q, 
and by m = p + q the dimension of their ambient M (usually the upper boundary 
Mp of the ascending cobordism Wp ). Let x' and x" be the two intersection points 
of P and Q on which we are focused. Denote the Whitney disk by D, and denote 
its normal bundle in M by No;M· As usual, think of No;M both as an (m- 2)
plane bundle on D and as a tubular neighborhood of D in M. This neighborhood, 
slightly enlarged, will contain the support of the isotopy that pushes P beyond Q: 
it is the place of change. For definiteness, pick a Riemannian metric on M, and 
arrange that P and Q are orthogonal at their intersection points, that No;M is 
orthogonal to T D, and so on. 

Denote by dp D the half-circle of a D contained in pI and by aQ D I the one con
tained in Q; clearly, dpDn()QD = {x',x"}. Thetangentbundle Tp toP splits 
over dp D naturally into Ta o and a part entirely contained in No 1M I a 0 . Denote 

p p 

the latter (p- 1)-subbundle of No; Mia 0 by Ep. Thus, Ep is tangent toP and 
p 

normal to D. See also figure 1.40. 

1.40. Fitting of bundles for the Whitney trick, I 
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On the other hand, the normal bundle NQ/M of Q splits over aQD into NaQo 1 o 

(contained in To) and a part entirely contained in No; Mia 0 . Denote the latter 
Q 

(p- I)-subbundle of No;Mia 0 by EQ. Thus, EQ is normal to both Q and D. 
Q 

At the intersection points x' and x" the two subbundles Ep and EQ match, and 
thus define a sub bundle E of No 1M, defined only along the whole Whitney circle 
a D. The bundle E is tangent to P and normal to Q. See figure 1.41. 

······· ......... 

1.41. Fitting of bundles for the Whitney trick, II 

Extension issues. We wish to extend E to a subbundle of No;M over the whole 
disk D. For that, we think of E as a (p- I)-plane field inside No;Miao· Since 
D is contractible, the entire bundle No; M must be trivial, and thus we can think 
of E as field of (p -I)-planes in aD x lRm-2 , that is to say, as a map aD--> 
~p-l(lRm-2 ), where~ denotes the Gra:ISmann space of all (p- I)-planes in
side lRm-2 . In this light, extending E across D means extending the plane field 
E: aD--> ~p-l(lRm-2 ) to a map E: D--> ~p-l(lRm-2 ). Therefore, E extends if 
and only if it determines the trivial element of n 1 (~p-l (lRm-2)). 

It is known that, either if n- k;:::: 2 or if k > n/2 and k;:::: 2, then we have 

n1(~k(1Rn)) = Z2. 

It is generated by any closed path drawn by a k-plane traveling inside lRn and 
coming back to its initial position with reversed orientation.2 (Of course, the k
planes are not oriented; here "reversed orientation" means that we pick a random 
orientation, we preserve it along the loop, and we compare at the end; if it flipped, 
we have a winner.) 

Therefore, to extend E over D, all we need is that, as we travel along the Whitney 
circle, E does not reverse orientation. In other words, the bundle E needs to be 
orientable. This happens exactly when the intersection points x' and x" of P and 
Q have opposite signs, as we will argue next. 

2. See for example N. Steenrod's The topology of fibre bundles [Ste51, Ste99, ch 22]. 
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Orientations. Remember that P, Q and Mare oriented; thus both Tp and NQIM 
are oriented bundles. Choose an orientation for D, inducing an orientation of 
() D; then both Tao and Nao1o get an orientation. Notice that, at the intersec
tion points x' and x", since we assumed P and Q to be orthogonal, the Whitney 
circle has "comers", and TaPol{x',x"} coincides with NaQo 1 ol{x',x"}. Further, at 
one intersection point their orientations must fit, while at the other they must be 
opposite. See figure 1.42. 

1.42. Along the boundary of the Whitney disk 

On one hand, over opD the bundle Ep fits in the split 

T PI a o = E P EB Ta o . p p 

On the other hand, over aQ D, the bundle EQ fits in the split 

NQIMia D = EQ EB Na DID· Q Q 

At the intersection points x', x" the normal bundle NQI M of Q coincides with the 
tangent bundle Tp of P; correspondingly, EQ and Ep are identified, and so are 
Ta o and Na D 1 D · p Q 

The bundle E can be extended across the disk D if and only if E is orientable, that 
is, if and only if Ep and EQ can be given orientations that induce a well-defined 
orientation of E. In other words, if there exist orientations for Ep and EQ that fit 
at both x' and x". 

To test, orient Ep as induced from the splitting Tpla 0 = Ep EB Ta 0 , and orient 
p p 

EQ as induced from the splitting NQI Mia 0 = EQ EB Na o 1 o. The bundle E is 
Q Q 

orientable if and only if these orientations of Ep and EQ either fit at both x' and 
x", or are opposite at both. 

On one hand, the intersection point x' has positive sign if and only if the orienta
tions of Tplx' and NQIMix' fit; similarly for x". Ontheotherhand,theorientations 
of Ta 0 and Na 0 1 0 fit at exactly one of x' or x", while at the other one they are 

p Q 

opposite. Therefore, either E is not orientable, or the intersection points x' and x" 
must have opposite signs. 

Framing obstruction in dimension 4. In the case of dimension 4, besides the inher
ent difficulty of finding embedded Whitney disks, there appears an extra problem: 
If P and Q are surfaces inside a 4-manifold, then the bundle-extension problem 
lives in 
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Indeed, ~1 (JR2 ) = 1RlP1 = 51 . Thus, the obstruction to extending E across a 
Whitney disk is now an integer, which we can call the framing obstruction. Its 
modulo 2 reduction vanishes if the intersection points are of opposite signs. 

Therefore, the h-cobordism program in dimension 4 runs into three problems: ( 1) 
the problem of embedding disks; (2) finding a disk disjoint from P and Q; (3) the 
right framing for that disk. And, indeed, there are cases when Whitney disks exist, 
but they all appear with the wrong framing. The spinning procedure, explained 
earlier and recalled in figure 1.43, can be used to repair the framing, but at the cost 
of introducing intersection points between the Whitney disk and P or Q ... 

D D 

> .... ~·"'' 

..... Q ./ 

1.43. Spinning the disk 

In dimension 4, there is no sidestepping these three difficulties while remaining in 
the realm of differentiability. 

Note: Diagonalizing chain complexes, and s-cobordisms 

In this note, we will explain in some detail how the diagonalization of the bound
ary operators ch in the proof of the h-cobordism theorem is achieved. We will set 
the problem in enough generality so that afterwards we can comment on the non
simply-connected version of the h-cobordism theorem, known as the s-cobordism 
theorem. 

Algebra: K-theory. We claimed earlier that, by sliding handles and creating han
dle pairs, we can eventually make the boundary operators ih: ck -t ck-1 appear 
as a diagonal of 1 's. Sliding handles has the same effect as changing basis from h~ 
to h~ ± h~. In terms of a matrix for ih, this means that we can change the matrix by 
adding/subtracting rows/columns. In other words, we can multiply by elemen
tary matrices I ± Eij; or more generally, for repeated slides, by I± mEij. Creating 
a pair of canceling handles is the same as extending the matrix of ch by a row and 
a column, with entries zero but for the new corner. We now generalize all this into 
an algebraic machinery. 

Let R be a ring with unit. Consider GLR ( n) the group of n x n invertible matrices3 

over R, and its subgroup ER ( n) generated by the elementary matrices I± aEij, 
with a E R. 

We can map GLR ( n) into GLR ( n + 1) by 

GLR ( n) ----+ GLR ( n + 1) : 

3. An R-valued matrix A is invertible if and only if its determinant detA is a unit (= invertible 
element) in R. For matrices with integer values, this means det A = ± 1, while for real matrices, it 
means det A fo 0. 
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This is called stabilization. Taking the direct limit, we obtain 

and 

and ER turns out to be a normal subgroup in GLR. Even more, ER is exactly the 
commutator4 [ GLR, GLR J . Therefore we can define the quotient 

which is thus the Abelianization of GLR . 

An interesting detail is that matrix multiplication induces the same operation in 
K1 (R) as "block addition":5 

A·B= [A B] inK1(R). 

Since K1(R) is Abelian, the above operation is written additively as A+ B, and 
the class of the identity matrix is denoted by 0. 

Higher K's. On the side, note that K, (R) is just one of many Kn 'sfrom algebraic K-theory. Its ori
gins are inf.H.C. Whitehead's torsion and groups Wh( G), used in the study of simple homotopy} 
and in Grothendieck's groups of projective modules. These ideas were extended by M. Atiyah 
and F. Hirzebruch's topological K-theory into a cohomology theory built with vector bundles; 
seeM. Atiyah's K-theory [Ati67, Ati89]. Then H. Bass algebraized it into algebraic K-theory 
by defining Ko(R) and K, (R) of a ring7 R; the reference is H. Bass's monograph Algebraic K
theory8 [Bas68]. The next step was taken by J. Milnor's definition of Kz (R) in his Introduction 
to algebraic K-theory [Mi171]. Finally D. Quillen's Higher algebraic K-theory [Qui73] defined 
all higher9 Kn(R) 's. A recent introduction to algebraic K-theory is J. Rosenberg's Algebraic 
K-theory and its applications [Ros94]. 

4. Foreverygroup G,itscommutatoristhesubgroup [G,G] = {aba-ib- 1 I a,b E G};thequotient 
G j [ G, G] is a commutative group, called the Abelianization of G. 

5. This should suggest links with the direct sum E E9 F of two vector bundles, just as the stabilization 
above is linked to the bundle-stabilization E E9lR. We will not pursue this, but it points to the reason 
why both topological and algebraic K-theory are called "K-theory". 

6. See the pages ahead. 

7. Ko(R) measures the stable obstruction to the existence of bases in projective modules over a ring R, 
while K, (R) measures stable obstructions to the uniqueness of bases, up to automorphisms. 

8. Bass's book also includes a nice study of K, (Z[G]) for finite groups G; these, as we will see shortly, 
are important in topology. 

9. Kn(R) is defined as follows: First, for a space A and for G a perfect subgroup (i.e., G = [G, G]) 
of n 1A, there is a technique called the plus-construction that kills G without altering the rest of the 
homology of A. Roughly, one adds 2--cells that kill the elements of G, then keeps on adding higher 
cells to kill every new homology class that is created by the preceding additions. The resulting space is 
denoted by At. (A mild version of the plus-construction will be used in section 2.3, on page 83.) For 
Kn(R), one starts with the classifying space ~GLR of GLR; its fundamental group is n, (~GLR) = GLR, 

and thus ER is a perfect subgroup of n,~. Thus we can build the space (~GLR)t . The K-groups 
R 

of R are defined as the homotopy groups of this space, specifically as Kn ( R) = 1tn ( ( ~GLR) t ) . For a 
R 

short review of classifying spaces, see the end-notes of chapter 4 (page 204). 
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Back to cobordisms. It is not too hard to see that, for R = Z, the group K1 (Z) is 
fully covered by the classes of matrices like 

In other words, every integral invertible matrix can be diagonalized by using ele
mentary operations and by increasing the matrix. In geometric terms, this means 
that, by sliding handles and by adding canceling pairs of handles, we can man
age to diagonalize the boundary operators ch. (The signs of the 1 's are irrelevant, 
since we can always switch the orientations of our handles.) 

Specifically (if, say, there are no 0-, 1-, m- and (m +I)-handles), we have the 
chain complex 

am-I as a4 a3 
0 ------+ Cm- 1 ------+ • • • ------+ C4 ------+ C3 ------+ C2 ------+ 0 . 

Since H*(W,M; Z) = 0, we must have Imdk+l = Kerdk; in other words, the 
above sequence is exact. 

Since d3 is onto and splits (its image Imd3 = C2 being free), there is a decomposi
tion of C3 as Imd4 EB Cokerd4 = Kerd3 EB Cokerd4; then d3 restricts to an invertible 
morphism Coker d4 -+ Im d3. Further, by the above remark on K1 (Z), this invert
ible a3 can be diagonalized via handle slides and handle creations. 

Going upwards, d4 has free image and thus splits, and restricts to an invertible 
d4: Cokerds -+ Imd4 which can be diagonalized, and so on upwards, till all the 
dk 's have been diagonalized; look also at the diagram 

as 
c4 

a4 
c3 

a3 
c2 -----+ 0 . . . . -----+ -----+ -----+ 

II a3 II 
Cokerd4 -----+ Imd3 

"" 
EB 

Cokerds 
a4 

Imd4 -----+ 
"" 

EB 
as 

Imds -----+ 
"" 

In the end, all handles are a-paired, and the proof of the h-cobordism theorem 
can proceed as outlined in the main text. 

Simple-homotopy type. The argument above-using K1 (Z) in the proof of the h
cobordism theorem-is somewhat of an overkill. Nonetheless, there is a powerful 
related statement that needs all this general abstract machinery, namely the non
simply-connected analogue of the h-cobordism theorem. That result is known as 
the s-cobordism theorem, with the "s" coming from "simple-homotopy''. 

For a statement analogous to the h-cobordism theorem to hold for non-simply
connected manifolds, one needs to strengthen the hypotheses: instead of merely 
asking that the inclusion M C W be a homotopy equivalence, we must now ask 
that it be a simple-homotopy equivalence. We start by explaining this notion: 
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Let A and B be two polyhedra (i.e., A and B are triangulated, they are simplicial 
complexes10). Then A and B are called simple-homotopy equivalent if A can be 
transformed into B by a finite sequence of elementary expansions and collapses, 
as in figures 1.44 and 1.45. (Of course, for this to have any chance of happening, A 
and B must first be homotopy-equivalent in the usual sense.) For convenience, we 
can also allow "internal" expansions or collapses, with simplices being created or 
crushed in the "insides" of A, not merely at free faces as suggested in the pictures. 
(One should think of an elementary expansion or collapse as a simplicial analogue 
of handle creation/ cancellation.) It is known that this notion of simple-homotopy 
equivalence does not depend on the chosen triangulations; and for simply-connec
ted spaces it actually coincides with homotopy equivalence. 

expansion 

> 
< collapse 

1.44. Elementary collapse I elementary expansion, I 

expansion 

> 
< collapse 

1.45. Elementary collapse I elementary expansion, II 

A good start for understanding simple-homotopy equivalence is to think about the 
statement: A and B are simple-homotopy equivalent if and only if there are simpli
cial embeddings of A and B into some JRN (with N 2 2max{dimA,dimB} + 1) 
so that A and B have simplicially-homeomorphic tubular neighborhoods in JRN. 
Roughly, A and B are simple-homotopy equivalent if they can be "nicely thick
ened" into being homeomorphic. 

Simple-homotopy for h-cobordisms. Consider an h-cobordism wm+I between 
Mm and Nm. We do not assume M to be simply-connected, but do assume that the 
inclusion M C W is a homotopy equivalence. In particular, n1 W is naturally iso
morphic to 1t1 M. We wish to determine whether M and W are simple-homotopy 
equivalent. 

10. We use simplicial complexes instead of cell complexes for simplicity. If one wishes, one can substi
tute "compact CW -complex" throughout. Simplicial complexes will be recalled in footnote 5 on page 
182. 
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For that, we pick a handle decomposition of W that describes W as a series of 
handles h~ attached to M x [o, e]. A little preparation cancels all 0- and ( m + 1)
handles, in the usual manner explained in section 1.6 (page 47). 

Threaded handles. For an argument similar to the h-cobordism theorem to proceed, 
we need to take into account the fundamental groups; that is to say, we must be 
careful with base-points and loops. Thus, we choose a random base-point x0 E M. 
Further, we link every handle h~ to the base-point by choosing a path 

c~: [0, 1] ----+ W 

from xo to the "center" 0 x o E Dk x Dm+I-k of the handle h~. We call threaded 

handle such a handle h~ endowed with a path c~ linking the base point to its center. 
The path c~ is, of course, considered only up to homotopy. 

Notice that there is an obvious action of n1M on threaded handles: for every£ E 

n 1M ~ n 1 Wand every threaded handle h~, the handle £ · h~ is just the result of 
adding an £-loop at the start of c~. 

Incidence numbers. Given a threaded k-handle h~ and a threaded (k- I)-handle 
h~- 1 , we now consider their incidence number (h~ I h~-l). This is still defined as 

the intersection number of the attaching sphere of h~ with the belt sphere of h~- 1 , 
but we construe this intersection "number" not merely as an integer from Z, but 
as an element of Z[n1M]. This is achieved by using the threads to twist the usual 
integer intersection numbers with n1M-data. 

Specifically, given any intersection point p where the attaching sphere of h~ meets 
the belt sphere of h~- 1 , we pick a random path inside h~ from the center of h~ to 

the point p, and then continue inside h~- 1 to the center of h~-i . (Up to homotopy, 

there is only one such path.) Using this path, we can now join c~ with the reverse 
of c~- 1 , and obtain a loop 

ck * ck-1 
IX p f3 

The loop c~ *r c~- 1 starts at xo, goes along c~ to the center of h~, then descends 

touching p to the center of h~- 1 , and finally comes back to x0 by going backwards 

along c~- 1 ; see figure 1.46 on the next page. This loop determines an element 
in n1 W, but since M c W is a homotopy-equivalence, we can think of it as an 
element of n1M. 

We can now redefine the incidence number of the handles h~ and h~- 1 as 

(h~ I h~- 1 ) = [:±[c~ *pC~- 1 ], 

with summation over all points p that the attaching sphere of h~ and the belt 
sphere of h~- 1 have in common. The signs are the usual intersection-signs coming 
from orientations; the addition is performed inside the group-ring Z[n1M]. 

Chain complex. Once endowed with these twisted incidence numbers, we define a 
chain complex { cko ak} with 

Ck = Z[n1Ml{ k-handles} . 
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xo 

1.46. Incidence numbers in the non-simply-connected case 

In other words, the module Ck is freely generated over the group-ring Z [n1 M] by 
the k-handles of w. We define the boundary maps ih: ck--; ck-I by 

ih(h~) = L(h~ I h~- 1 ) ·h~- 1 , 

using the n1M-twisted incidence numbers. The resulting homology groups 

Hk(C*) =Kerch /Imdk+I 

of this complex are, of course, modules over Z[n1M]. 

A good way to think about these Hk ( C*) is as the usual integral homology groups 
Hk (W, M; Z) of the universal covers W and M. Indeed, we have 

Hk(C*) = Hk(W,M;Z). 

The action of Z[n1M] = Z[n1 W] on the latter appears from the deck transforma
tions of the universal cover W --; W. 

Since M C W is a homotopy equivalence, so will be M C W, and thus we must 
have H*(W,M;Z) = 0. Hence 

Diagonalizing. The natural thing to do now is to try to diagonalize the dk 's. This 
is a problem in K1 (Z[n1Ml). Indeed, creating/canceling pairs of handles and 
sliding handles will modify the dk 's almost in the usual manner but for the use of 
coefficients from Z[n1M]. 

As a bit of algebra, we notice that inside every K1 (Z[Gl) there is a not-so-inte
resting part represented by the classes of diagonal matrices with entries ±g with 
g E G. We denote this subgroup by Uc . The remainder 

Wh(G) = K1 (Z[Gl) / Uc 

is called the Whitehead group of G, and we have an exact sequence 

0 ~ Uc ~ K1(Z[Gl) ~ Wh(G) ~ 0. 

In particular, any Z [ G]-valued matrix A determines a unique class [A] E Wh( G). 
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Note that Wh(G) = 0 for all finitely-generated free Abelian groups G = EB m'Z. 
Also, Wh(G) = 0 for all G = n1S fundamental groups of surfaces, orientable or 
non-orientable. 

Back to our manifolds, assume now that some operator ch: Ck --. Ck_ 1 happens to 
be an isomorphism. Then the element 

[ch] E Wh(n1M) 

is the complete obstruction to modifying rh through handle creations and handle 
slides so that its matrix become a diagonal with entries ±g with g E n1M. 

If indeed we have [ch] = 0 and we do modify its matrix to such a diagonal, then 
modifying it further into a diagonal of 1 's only amounts to changing the base
loops c~ (to kill the g's) and changing orientations (to eliminate minuses). 

In general, of course, the rh's are not isomorphisms. Nonetheless, one can climb 
up in the complex 

C!m Ci4 Ci3 C!z 
0 ---+ Cm ---+ · · · ---+ C3 ---+ C2 ---+ C 1 ---+ 0 

by restricting and splitting the various rh to get their nontrivial isomorphism-parts 

ch: Coker ak+l ~ Im ak 
in a coherent fashion throughout the chain complex, as we suggested earlier with 
the diagram on page 60. These isomorphism-parts determine elements [ak] E 
Wh( n 1M) that can be combined into the Whitehead torsion 

T(W,M) = L:(-I)k [ak] 
of the chain complex c*. 
As the notation already suggests, it turns out that this quantity does not depend 
on the choices made along the way, but only on the topology of the h-cobordism 
W. Moreover, we have: 

Lemma. The boundary operators ak of W can be diagonalized if and only if the torsion 
T(W, M) vanishes. o 

The s-cobordism theorem. Remember that a cobordism wm+ 1 between some Mm 
and Nm is called an h-cobordism if M C W is a homotopy equivalence. Going 
further, an h-cobordism W is called an s-cobordism if its torsion T(W, M) van
ishes. The name comes from "simple-homotopy'', and will be justified later on. 

Given an s-cobordism wm+ 1, we can diagonalize all the ak 's as above. After do
ing that, if the dimension m of M is bigger than 5, then we can apply the Whitney 
trick to transform algebraic intersections into geometric intersections, and thus 
eventually cancel all handles. 

Of course, since Mp is no longer simply-connected, the Whitney trick will now 
be applied only to intersection points with opposite "threaded" intersection num
bers; that is, two intersection points x' and x" can be cancelled if the intersection 
number at x' is +g, while at x" it is -g, for some g E n 1M. The ±-sign assures 
that the bundles fit, as explained earlier (page 54), while the g-part assures that 
the resulting Whitney circle is null-homotopic and thus bounds a disk A similar 
type of care must be taken when trading threaded !-handles for 3-handles, but it 
works. Eventually, all this yields: 
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s-Cobordism Theorem. Assume wm+i is an s-cobordism between Mm and Nm I 

with m 2: 5. Then W is diffeomorphic to the trivial cobordism M x [ 0, 1], and hence M 
and N are diffeomorphic. o 
More, when m 2: 6, every element T E Wh(niM) can actually be realized as 
the torsion of some h-cobordism W built on top of M. In particular, all the h
cobordisms that sit on top of M are classified up to diffeomorphisms by the ele
ments of Wh( n1M). 

A bit more on simple-homotopy. The same procedure used for defining the torsion 
of a cobordism W can be used to define the torsion of any simplicial inclusion 
A C B. Indeed, if something can be done with handles, it should be doable with 
simplices. Assume that A c B is a homotopy equivalence (and so n1A = n1B), 
think of B as obtained by adding simplices to A, and define the simplicial chain 
complex 

with corresponding boundary operators ih defined similarly to what we did pre
viously. We then define the torsion 

r(B,A) E Wh(n1A) 
in an analogous manner. 

The algorithm followed in the proof of the s-cobordism theorem can be used here 
as well, thinking of an elementary expansion as analogous to a handle creation, 
and of an elementary collapse as analogous to a handle cancellation. And there is, 
of course, a simplicial analogue of handle sliding (which is easiest to describe us
ing cellular decompositions instead of simplicial complexes). Further, since we are 
dealing with simplicial complexes (not manifolds) and simple-homotopy allows 
thickening to increase dimensions, the dimensional restriction for performing the 
Whitney trick does not appear, and we end up with: 

Lemma. The inclusion A c B is a simple-homotopy equivalence if and only if it is a 
homotopy equivalence and the torsion r( B, A) vanishes. o 
In particular, this explains the name of "s-cobordism": a cobordism W between M 
and N is an s-cobordism if and only if the inclusion M c W is a simple-homotopy 
equivalence. 

Furthermore, one can extend the above considerations from inclusion maps A C 
B to general maps A -----; B. Indeed, any map f: A -----; B can be viewed as an 
inclusion by using its mapping cylinder 

Mt =Ax [0,1] U B / {(x,1) = f(x)} 

and replacing f: A -----; B with the inclusion A x 0 C M 1 in order to define its 
Whitehead torsion11 

A homotopy equivalence f: A -----; B is called a simple-homotopy equivalence if it 
is homotopic to a composition of elementary collapses and expansions. We then 
have 

11. Of course, first f needs to be homotoped to a simplicial map. 
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Lemma. Let f: A ---+ B be a homotopy equivalence. Then f is a simple-homotopy 
equivalence if and only if its torsion T(j) vanishes. o 
Finally, we should mention that simple-homotopy type is in fact a topological invari
ant, and therefore does not depend on the choice of triangulations (or cell decom
positions) .12 

References. The s-cobordism theorem was proved independently around 1963 by 
D. Barden in his thesis The structure of manifolds [Bar63], as well as inJ. Stallings' 
On infinite processes leading to differentiability in the complement of a point 
[Sta65] (see also his Lectures on polyhedral topology [Sta67]), and B. Mazur's 
Relative neighborhoods and the theorems of Smale [Maz63]. 

The notion of simple homotopy type and Whitehead torsion were introduced by 
J.H.C. Whitehead's Simple homotopy types [Whi50]. A nice introduction to sim
ple-homotopy theory isM. Cohen's A course in simple homotopy theory [Coh73]. 
For an excellent discussion of torsions, read J. Milnor's Whitehead torsion [Mil66], 
where other versions (Reidemeister torsion) are also described and applied for ex
ample on 3-manifolds. A proof of the s-cobordism theorem can also be found in 
C. Rourke and B. Sanderson's Introduction to piecewise-linear topology [RS72]. 

Bibliography 

As a general reference for differentiable manifolds as seen from topology, the best 
reference is M. Hirsch's Differential topology [Hir76] or its corrected reprint 
[Hir94] (with the recommendation to skim through the technical chapters 2 and 
3 at first lecture; nonetheless, those chapters are one of the few places to see in 
detail why, say, immersed 2-disks in 5-manifolds can easily be made embedded, 
etc.) For a milder start, one can take delight in J. Milnor's Topology from the 
differentiable viewpoint [Mil65b, Mil97]. With a view toward more advanced 
topology, read A. Kosinski's Differential manifolds [Kos93]. Another introduc
tion to smooth manifolds is V. Guillemin and A. Pollack's Differential topology 
[GP74]. 

Cobordisms were studied by R. Thorn in his celebrated Quelques proprietes glob
ales des varietes differentiables [Tho54] (results first announced in [Tho53b]). He 
classified manifolds up to cobordism by using tools from algebraic topology, work 
that earned him a Fields Medal. A mild introduction can be found in M. Hirsch's 
Differential topology [Hir76, Hir94, ch 7], with the actual theory developed in 
R. Stong's Notes on cobordism theory [Sto68]. 

The generalized Poincare conjecture was proved using combinatorial methods by 
J. Stallings for dimensions m 2: 7 in Polyhedral homotopy-spheres [Sta60b] (ex
tended to m 2: 5 by E. Zeeman [Zee61]), then in the smooth case by S. Smale's 
Generalized Poincare's conjecture in dimensions greater than four [Sma61]. The 
h-cobordism theorem is due to S. Smale's On the structure of manifolds [Sma62], 

12. This was proved in R. Kirby and L. Siebenmann's Foundational essays on topological manifolds, 
smoothings, and triangulations [KS77] for topological manifolds, and in T. Chapman's Topological 
invariance of Whitehead torsion [Cha74] for general CW -complexes. For contrast, look also at J. Mil
nor's Two complexes which are homeomorphic but combinatorially distinct [Mil61]. 
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and earned him a Fields Medal. For a proof, one can also look at C. Rourke 
and B. Sanderson's Introduction to piecewise-linear topology [RS72, ch 6] (even 
though they discuss it in the piecewise-linear setting, it is easy to translate the 
main argument to the smooth setting). Another source is J. Milnor's Lectures on 
the h-cobordism theorem [Mil65a], but he uses Morse functions and no handles, 
which makes the proof less geometric and visual than it should be. Yet another 
account of the h-cobordism theorem is contained in A. Kosinski's Differential 
manifolds [Kos93]. 

The Whitney trick was first imagined by H. Whitney in The self-intersections of a 
smooth n-manifold in 2n-space [Whi44]. He used it to eliminate self-intersections 
of immersions, and prove that every m-manifold can be embedded in JR2m. 

Morse functions were devised by M. Morse's The critical points of a function of n 
variables [Mor31]. They can be found nicely explained in M. Hirsch's Differential 
topology [Hir76, Hir94, ch 6]. J. Milnor's book Morse theory [Mil63a] is devoted 
to the subject, and goes on to apply it to Riemannian geometry (Morse theory on 
spaces of geodesics). See also Y. Matsumoto's An introduction to Morse theory 
[Mat02]. 

It is worth noting that Morse theory admits a formulation that can be used to obtain the whole 
homology of the manifold directly from Morse data.13 This formulation allows itself for general
izations to infinite-dimensional settings, for example in various versions of Floer homology. (The 
latter are gaining a lot of prominence on 3-manifolds, from where they have strong ramifica
tions in the 4-dimensional realm.14) The finite-dimensional case is explained in this spirit-with 
a view toward infinite-dimensional applications-in M. Schwarz's Morse homology [Sch93], or 
in the third edition [Jos02, ch 6] ofJ. Jost's Riemannian geometry and geometric analysis. 

Closer to our subject, we should mention that the theory of handles for 4- (and 
3-) manifolds has become a powerful symbolic calculus with diagrams, known 
as Kirby calculus. As a preview, look ahead at the end-notes of the next chapter 
(page 91). An exhaustive exposition can be found in R. Gompf and A. Stipsicz's 
monograph 4-Manifolds and Kirby calculus [GS99]. 

Topology of manifolds. The theory of high-dimensional manifolds, with the help 
of the h-and s-cobordism theorems, grew into surgery theory. Surgery theory 
traces its origins to J. Milnor's Differentiable structures on spheres [Mil59], to 
M. Kervaire and J. Milnor's Groups of homotopy spheres [KM63], and to A. Wal
lace's Modifications and cobounding manifolds [Wal60]. A nice place to start is 
W. Browder's monograph Surgery on simply-connected manifolds [Bro72]. The 
non-simply-connected case gains a very heavily-algebraic flavor, and is presented 
by one of the main surgeons, C.T.C. Wall, in his hard-to-read Surgery on compact 
manifolds [Wal70, Wal99]. A recent treatment is A. Ranicki's Algebraic and geo
metric surgery [Ran02]. Some surgery can also be found at the end of A. Kosin
ski's Differential manifolds [Kos93]. 

13. One defines Ck = Z{ critical points of index k}, and lets ch count the number of gradient flow
lines that go from a critical point of index k to a critical point of index k - 1. The difficult part is to 
assign the appropriate sign to each flow-line. 

14. See also the references on page 475 at the end of chapter 10. 
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The issue of the various smooth structures on a topological (or PL) manifold rose 
its head with J. Milnor's On manifolds homeomorphic to the 7-sphere [Mil56b], 
where some of the twenty-eight distinct smooth structures on S7 were uncovered. 
More exotic spheres were uncovered by J. Milnor in Differentiable structures on 
spheres [Mil59]; then M. Kervaire's A manifold which does not admit any dif
ferentiable structure [Ker60] found a (triangulated) 10-manifold with no smooth 
structures whatsoever. 

Since the study of purely topological manifolds appeared unapproachable, extra 
structure was added, such as a nice triangulation15 (called piecewise-linear or PL 
structure). The problem of uniqueness for smooth structures was first studied 
along the gap between PL manifolds and smooth ones, was started by S. Cairns' 
The manifold smoothing problem [Cai61], then strengthened by R. Lashof and 
M. Rothenberg's Micro bundles and smoothing [LR65] and by M. Hirsch and 
B. Mazur in Smoothings of piecewise-linear manifolds [HM74]. The crown
ing achievement of this phase was the so-called Cairns-Hirsch theorem. A con
sequence was that there is no difference between PL and smooth up to dimension 
7. See also the references inside the end-notes of chapter 4 (page 207). 

The general existence issue for smooth structures on topological manifolds was 
breached by J. Milnor in Microbundles [Mil64], where he used microbundles as 
analogues of tangent bundles for topological manifolds. 

When the time was ripe, the naked homeomorphism finally opened itself to study 
through R. Kirby's Stable homeomorphism and the annulus conjecture [Kir69], 
and then grew into R. Kirby and L. Siebenmann's theory of smoothing topolog
ical manifolds of dimension at least 5, explained in their Foundational essays 
on topological manifolds, smoothings, and triangulations [KS77]. For exam
ple, up to dimension 7, the existence of a smooth structure on a topological m
manifold X depends solely on the vanishing of the Kirby-Siebenmann invariant 
ks (X) E H4 (X; Zz) . If one smooth structure exists, then all others are classified 
by the elements of H 3 (X; Z 2 ) . For manifolds of dimension 7 or higher, new ob
structions start to appear from the PL/ smooth gap. Of course, the theory fails in 
dimension 4. 

For more details on the smoothing theory of high-dimensional manifolds, see the 
end-notes of chapter 4 (page 207). A few exotic high-dimensional spheres are dis
cussed in the end-notes of the next chapter (page 97). 

15. A "nice" triangulation here means a triangulation in which the link of every vertex is simplicially 
equivalent to a sphere. 



Topological 4-Manifolds 
and h-Cobordisms 

Chapter 2 

A NY straightforward attempt to use the high-dimensional proof of the h
rt. cobordism theorem in the case of manifolds of dimension 4 fails, and 
thus a virtual juggernaut for the classification problem is lost. The failure 
is owing to the difficulty of embedding 2-disks in 4-manifolds, or, more 
to the point, to the problem of eliminating self-intersections of immersed 
disks. If we could solve that, we would modify any immersed disk to an 
embedded disk and hence proceed with the h-cobordism program as out
lined in the preceding chapter. 

In this chapter we will see what has been done to embed disks and thus 
prove a 4-dimensional h-cobordism theorem. The inevitable price to pay 
was dropping differentiability, and thus weakening the conclusion from 
diffeomorphisms to homeomorphisms. Thus, while the preceding chapter 
could be viewed as a glance into higher dimensions, one can think of this 
chapter as a quick visit with topological 4-manifolds. As far as rigor is 
concerned, this chapter is even more of a fairy tale than the previous. 

The chapter starts by presenting Casson handles, which are the main tool 
used for topologically embedding disks in 4-manifolds; indeed, the funda
mental technical result of M. Freedman proves that these wild creatures are 
topologically standard handles. Using this, the h-cobordism program can 
be followed through and Freedman's topological h-cobordism theorem for 
dimension 4 follows in section 2.2 (page 80). As is explained in the end
notes (page 96), Casson handles are rather easy to embed, justifying their 
earlier name of "flexible handles". 

-69 
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Embeddings of Casson handles are also used in section 2.3 (page 83) to 
show that every homology 3-sphere bounds a contractible topological 4-
manifold-a fake 4-ball. An important example of homology 3-sphere is 
the Poincare sphere, which is used to build the so-called Es -manifold. The 
higher-dimensional analogues of the Poincare sphere are actual exotic sphe
res and are described in the end-note on page 97. 

The chapter concludes with section 2.4 (page 89), in which the failure of 
the smooth h-cobordism theorem in dimension 4 is located around some 
twisted contractible sub-h-cobordisms. 

An end-note on page 91 briefly outlines the description of handle decom
positions of 4-manifolds known as Kirby calculus. Completing the tour of 
horizon, another end-note (page 101) takes a peek at the realm of 3-mani
folds. 

2.1. Casson handles 
Here is the plan: we try to transplant the high-dimensional proof of the h
cobordism theorem to the case of dimension 4; we fail, then we push our 
difficulties away to infinity, and thus we eventually succeed. 

Starting the h-cobordism program 

Imagine we are pursuing the h -cobordism program on a 5 -dimensional 
cobordism W between two 4-manifolds M and N, all simply-connected. 

Preparing the cobordism. As explained in section 1.6 (page 47), we start by 
eliminating any 0- or 5-handles that might appear in the handle decom
position of W. Then we trade all the !-handles for 3-handles and all the 
4-handles for 2-handles. We are left with a handle decomposition of W 
that contains only 2- and 3-handles. The corresponding chain complex is 
now simply a 

o -----+ c3 -----+ c2 -----+ o . 
Since H* (W, M; Z) = 0, the boundary operator a is an isomorphism and 
can be diagonalized (by handle slides and handle creations) to a diagonal 
of 1 's. This means that all 2- and 3-handles are paired by a into pairs h~, 
h~ so that a h~ = h~. 
Let 1/2 be the level in W that appears immediately after all 2-handles have 
been attached, but before any 3-handle is attached, as sketched in figure 2.1 
on the facing page. Thus, the ascending cobordism W11z contains just M 
and all 2-handles. In its ( 4-dimensional) upper boundary M11z are located 
both the belt spheres of the 2-handles and the attaching spheres of the 3-
handles. 
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The condition a h~ = h~ means that, algebraically, the attaching sphere of 
h~ has a nontrivial intersection number only with the belt sphere of h~ and 
that number is + 1. 

Keep in mind that in our context a 2-handle is now a copy of D 2 x D 3 , at
tached to M X [0,£] along S1 X D 3 ; its belt sphere is 0 X 52 • A 3-handle is a 
copy of D 3 x D 2 , attached along S2 x D 3; its attaching sphere is S2 x o. Thus, 
d h~ = h~ means that the corresponding spheres 0 X 52 and S2 X 0 have inter
section number + 1 inside the 4-manifold M1;2 • 

For the h-cobordism program to proceed, we now need to realize the al
gebraic intersection numbers of the attaching 2-spheres with the belt 2-
spheres as geometric intersections. That is, we need to eliminate all alge
braically-canceling intersections. 

I want to do the Whitney. For this purpose, as in the Whitney trick, we 
choose an attaching 2-sphere P of some 3-handle and a belt 2-sphere Q 
of some 2-handle, both living in M11z. We pick a pair of intersection points 
of opposite signs, then choose a path linking the two points inside P and a 
path linking the two inside Q. These two paths draw a circle, which must 
bound an immersed disk D inside M11z. See figure 2.2 on the next page. 
Assume for now that the complement M11z \ P U Q is still simply-connec
ted, so that D can in fact be immersed while avoiding both P and Q. 

If D were an embedded disk,1 then we could use the Whitney trick to elim
inate the two intersection points. However, modifying D to an embedded 
disk is no longer guaranteed by a simple dimension count: embeddings 
are no longer open and dense in the space of maps D --t M11z. Nonetheless, 
we can safely assume that D fails to be embedded only owing to transverse 
double-point singularities. 

1. Throughout this discussion we gloss over the framing problem that was detailed back in the end
notes of the preceding chapter (page 57). A more complete discussion would say "if D were an embed
ded disk with the right framing ... " 
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2.2. Immersed disk, wants to be a Whitney disk 

Clean-up. To simplify the setting, we will cut tubular neighborhoods of P 
and Q out of M,12 and think of D as immersed in the resulting 4-manifold 
with boundary, with a D sent to that boundary, as suggested in figure 2.3. 

2.3. Cutting out P and Q 

Even more, by cleaning away all the context, we will just think about a disk 
D immersed in some random simply-connected 4-manifold M with non
empty boundary, with a D being sent into aM. The immersion of D fails 
from being an embedding only through the existence of transverse double
points. 

These double-points are the enemy. 

A few tricks 

Before we can actually focus on the immersed disk D, we must first gather 
a few techniques. 

Creating self-intersections. To start things off, we observe that, for any sur
face S immersed in a 4-manifold, we can create more self-intersections at 
will. This can be done by pinching and twisting a kink, as suggested in 
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figure2 2.4. The sign of these self-intersections can be adjusted as needed 
(in the figure, run time upwards or downwards to get opposite signs). 

--------ll~-------
________ 9. ______ __ 

--------~--------
________ Q ______ __ 
________ fl ______ __ 

2.4. Creating a self-intersection 

Eliminating self-intersections. Imagine now that we have some immersed 
surface S in a 4-manifold, and that it has a self-intersection point. Choose 
a loop in S that is based at that double-point, leaves along one branch, and 
returns along the other branch, as in figure3 2.5. Be optimistic and assume 
for a moment that our loop bounds an embedded disk in the complement 
of S. 

2.5. Loop at a self-intersection of S 

Then we could create another self-intersection (of opposite sign) of S right 
on the boundary of the disk and end up with a Whitney situation:4 we can 
now push our surface along the disk and eliminate both self-intersections, 
as in figure 2.6 on the next page. 

2. In figure 2.4 we represent a surface in 4-dimensional space as the movie of a curve, with time 
running vertically. 

3. In figure 2.5 we represent creatures that escape in the fourth dimension by dotted lines. 

4. Again, assume the right framing of the disk. 
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2.6. Eliminating a self-intersection 

Therefore, if we wish to eliminate the self-intersections of S, it would be 
enough to hunt for disks that are bounded by such loops in S, based at the 
double-points. 

Finger moves. For a loop as above to have any chance of bounding an em
bedded disk in the complement of our surface S, that complement better 
be simply-connected. 

A method of reducing the fundamental group of the complement of S is 
the finger move suggested in figure 2.7 on the facing page. The name comes 
from imagining that we push our finger through a rubbery surface. 

If a finger move is made following a loop a in the complement, then it re
sults in killing the commutator5 [f3, a-1 f3a] in n 1 of the complement, where 
f3 is a loop around S. 

Commuting by a torus. That f3 and IX -I {31X commute in the complement of 
the fingered surface is not hard to see. First, model a small neighborhood of a 
self-intersection point as D 2 x D 2, with D 2 x 0 and 0 x D 2 representing the 
two branches of s. In the complement of s lives the torus 51 X 51 . One gener
ating circle of the torus is 51 x 1 and represents {3, while the other generating 
circle 1 x S 1 represents IX -I {31X, since the loop around the fingered branch is 
simply the translate of f3 along IX. But the fundamental group of a torus is 
commutative, and therefore f3 and IX -I {31X must commute. See figure 2.8 on 
the next page. 

By killing commutators, a finger move thus reduces the fundamental group. 
The price to pay, though, is that with each finger move we create a new pair 
of self-intersection points (see figure 2.9 on the facing page). 

5. The commutator [x,y] of two elements in a group is [x,y] = xyx- 1y- 1• It vanishes when x andy 
commute. 
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Introducing Casson handles 

We start with a "thin" version of the construction, then we "thicken" to the 
actual Casson handles. 

Growing a tower of failures. Consider an immersed disk D (a wannabe 
Whitney disk), inside a simply-connected 4-manifold M with non-empty 
boundary (with aD embedded in aM). The disk D has singularities as 
transverse double-points, as in figure 2.10. 

2.10. An immersed disk 

In all cases that actually concern us here, the fundamental group of the com
plement of D in M is a perfect group;6 if we destroy enough commutators 
in n 1 ( M \ D), then the fundamental group will disappear. Hence we can 
use finger moves to make the complement of D simply-connected. 

Now, for each self-intersection of D, choose a loop in D, based at the self
intersection, leaving along one branch and returning along the other. If 
one of these loops actually bounds an embedded disk in the complement, 
then the corresponding self-intersection can be eliminated, as we saw ear
lier. In general, all we can find is merely an immersed disk, with its own 
self-intersections. Still, for each chosen loop we pick such an immersed 
disk, as in figures 2.11 and 2.12 on the facing page. If we can eliminate the 
self-intersections of these new immersed disks, then the self-intersections 
of D would disappear as well. 

Think of this procedure as "pushing the problem away" a little: instead 
of having to deal with the self-intersections of the initial disk D, now we 
have to deal with the self-intersections of the new disks. While that seems 
only to make things worse, the wonderful idea of A. Casson was to keep 
repeating the procedure indefinitely, and thus "push the problem away to 
infinity". 

6. A group G is called perfect if G = [G,G],where [G,G] = {[x,y]l x,y E G}. 
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2.11. Immersed disk bounded by loop at double-point 

2.12. Growing a Casson handle: first stage 

Therefore, we continue: we perform finger moves on the second generation 
of immersed disks until the complement of the whole thing is simply-con
nected, then we pick loops at each self-intersection of the new disks, and 
choose for each an immersed disk, as in figure 2.13. 

Lather, rinse, repeat. Infinitely many times. 

2.13. Growing a Casson handle: second and third stages 
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Thicken to a Casson handle. Now imagine that the above process is carried 
out not with simple disks (copies of ID2 ), but with thickened disks (copies 
of ID2 x [)2 , attached along S1 x [)2 ): each of them is like a handle that is 
allowed to intersect itself. 

The model for such a self-intersection is suggested in figure 2.14: Start with 
JD2 x [)2 , and choose two small disks D' and D" inside JD2 . Then identify 
D' x [)2 with D" x [)2 by flipping factors: namely, identify each slice D' x p 
from D' x [)2 with p x [)2 from D" x [)2 • This is called a self-plumbing. 7 

11111111 

l 

2.14. Self-plumbing a handle 

Away from such self-intersections, our "thickened immersed disk'' looks 
very much like a 2-handle and is attached along its boundary region S1 x 
[)2 • Of course, we must also choose a suitable8 way to attach the thickening 
of S1 x o. We will not dwell on this here: have faith that there is a good way 
of attaching each of these thickened disks, so that what follows below will 
actually work. 

One reason behind this thickening procedure is that it creates more room to 
clean up. Think of the simple example in figure 2.15 on the next page-two 
distinct spaces that become identical after thickening. Another reason is, of 
course, trying to develop directly a handle theory better suited to the peculiar
ities of 4-manifolds. 

We now follow the infinite procedure described before and grow a tower 
of such thickened disks, each disk attempting to eliminate a double-point 

7. This is a particular instance of a slightly more general procedure called plumbing, which will be 
described a bit later, on page 86. 

8. The framing obstruction, explained back in the end-notes of the preceding chapter (page 57) must 
vanish. 
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2.15. A 'f. B, but Ax [0, 1] c::= B x [0, 1]. 

of the preceding generation, but itself adding new self-intersections, which 
the next generation will try to repair, and so on, to infinity. 

We want to end up with an object which, away from its attaching part to 
aM, does not have a boundary. In other words, we want the end-result to 
be an open set in Int M. The only part of boundary that we wish to keep 
is the "attaching part'', where the whole construction anchors itself to the 
boundary of M. Thus, for each immersed thickened disk D 2 x JD2 that we 
add to our tower, we immediately discard D 2 x 51 from its boundary (the 
other part of the boundary, 51 x JD2 , is used up when attaching it either to 
aM or to the preceding generation of disks). 

We carry out the above process for infinitely many steps, then take the 
union of all these thickened disks. The resulting monster is called a Casson 
handle.9 

The miracle 

What we did is that we pushed our problems away toward infinity. The 
miracle is that, when working with thickened disks as above, the procedure 
actually succeeds and our problems vanish. 

First, A. Casson proved around 1973 that every Casson handle is proper ho
motopic, relative to its attaching boundary, to D 2 x R2 (think R2 =IntlD2 ). For 
example, one can notice that all Casson handles are simply-connected: any 
loop must be contained in the tower obtained after finitely-many stages; 
and attaching the next stage will kill it. 

And then, in 1981, came the revolution: 

Freedman's Theorem on Casson Handles. Any Casson handle is homeomor
phic to a thickened disk D 2 x R2 and thus is a genuine (open) 2-handle, having 
as core a genuine topologically embedded 2-disk. o 
This very hard technical result led (comparatively) pretty quickly to a com
plete classification of topological 4-manifolds, which we will present later.10 

9. "Handle" because if the initial disk D were embedded, then its thickening would be a genuine 
2-handle; and a Casson handle tries to make up for the failure of D to provide a genuine handle. 
A. Casson himself called his creation flexible handles because they were easier to embed than actual 
handles; for a discussion of embedding Casson handles, look ahead at the the end-notes of this chapter 
(page 96). 

10. See section 5.2 (page 239) ahead. 
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Smooth sadness. Unfortunately, this type of wild botany is bound to fail in 
the smooth case. 

The simplest Casson handle known to be exotic (i.e., homeomorphic to 
[)2 x JR2 , but not diffeomorphic to it) is the one in figure 2.16 (with all self
intersections of the same sign).U There are infinitely-many non-diffeomor
phic Casson handles. 

2.16. The simplest exotic Casson handle. 

Keep in mind that a Casson handle is exotic only relative to its boundary: if 
we discard the attaching boundary, we are left with a very standard open 
4-ball. 

2.2. The topological h-cobordism theorem 
Putting the above result to work, we can now obtain topologically-embed
ded Whitney disks as easily as in high-dimensions and thus apply the Whit
ney trick to undo intersections. Therefore, the high-dimensional strategy 
for proving the h-cobordism theorem can be followed through and yields 
M. Freedman's 4-dimensional version of the theorem: 

Topological 4-Dimensional h-Cobordism Theorem. Let W5 be an h-co
bordism between M 4 and N 4 , with everybody simply-connected. Then we have 
a homeomorphism W c::: M x [0, 1], and in particular M and N are homeomor
phic. 

Note that the smooth version of the 4-dimensional h-cobordism theorem is 
false: W does not need be diffeomorphic toM x [0, 1]. The first counterex
ample was brought to light by S.K. Donaldson, and many others followed. 

11. If the self-intersections in figure 2.16 have varying signs, it is not known whether the resulting Cas
son handles are exotic. If all such were exotic, then it would follow that all Casson handles whatsoever 
are exotic. 
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Outline of proof. Before merely applying the h-cobordism program, 
we must first show that the 5-dimensional topological manifold Wad
mits a topological handle decompositionP This is far from trivial (so 
far we obtained handle decompositions from Morse functions, an in
herently differentiable object) and was proved in F. Quinn's Ends of 
maps. III. Dimensions 4 and 5 [Qui82]. 

Of course, if we start with smooth M and N, connected through a 
smooth W, then the point is moot. For our goals in this volume, since 
our focus is on smooth 4-manifolds, that is indeed quite enough. o 

Smoothness and handle decompositions. While we are talking about it, it is 
worth saying a few more words about handle decompositions. If the manifold 
is smooth, then a handle decomposition can be obtained from any Morse func
tion, as was explained in the preceding chapter. If the manifold is piecewise
linear (i.e., nicely triangulated), then one can use polyhedral regular neigh
borhoods to obtain one. If the manifold is merely topological, we can seek 
topological handle decompositions (i.e., decompositions into handles that are 
attached by homeomorphisms). If the dimension of the manifold is not 4, 
then it is known that it will always admit a topological handle decomposi
tionP In dimension 4 though, any such handle decomposition would have 
the handles attached via homeomorphisms of 3 -manifolds, but these can al
ways be deformed to diffeomorphisms, and thus exhibit our 4-manifold as 
a smooth manifold. Therefore, dimension 4 is the only dimension where the 
existence of a handle decomposition is equivalent to the existence of a smooth 
structure.14 

Spheres in dimension 4. A corollary of the topological h-cobordism theo
rem is, as one might expect: 

Topological 4-Dimensional Poincare Conjecture. If a topological 4-mani
fold 1:4 is homotopy-equivalent to S4 I then 1:4 is homeomorphic to S4 • 

Sketch of proof. One builds the cone on L, then argues that this cone 
is actually a topological 5-manifold, including at its vertex. After that, 

12. The original proof of M. Freedman in The topology of four-dimensional manifolds [Fre82] was 
more complicated: he took a 1-complex out of W, added a smooth structure on its complement (and 
thus obtained a handle decomposition), then used a non-compact version of the h--cobordism theorem 
due to L. Siebenmann. 

13. Indeed, if dim ~ 3, everything is smooth; if dim :::: 6, it was shown in R. Kirby and L. Siebenmann' s 
Foundational essays on topological manifolds, smoothings, and triangulations [KS77]; if dim = 5, 
it was done, as mentioned, in F. Quinn's in Ends of maps. III. Dimensions 4 and 5 [Qui82]. Compare 
with the end-notes of chapter 4 (smoothing of topological manifolds, page 221). 

14. This statement does not contradict what we said earlier: for the h-cobordism theorem one needs 
topological handle decompositions of 5-manifolds, and these always exist. 
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one cuts out a 5-ball from the cone, thus obtaining an h-cobordism 
between 1: and 54 . 

On the other hand, if 1: is assumed smooth, then one can instead use 
Wall's theorem on h-cobordisms (which we will prove later15) to get a 
smooth cobordism between 1: and 54 . o 

In contrast, the smooth version of the 4-d.imensional Poincare conjecture is 
very much wide open to this day, and there are not even methods in sight 
that one might hope would lead to a solution. We do not know whether 
there exist exotic 4-spheres; we are not even able to make an educated 
guess. 

Gluck twists. A series of possible counter-examples to the smooth Poincare 
conjecture in dimension 4 is obtained from the following surgeries on S4 : Let 
S be a 2-sphere embedded in S4 . A tubular neighborhood of S is a copy of 
S x D 2 • We cut this neighborhood out of S4 and then glue it back in by using 
a certain self-diffeomorphism of its boundary S x S1 . 

The only interesting automorphism of S2 x S1 is the following spinning: send 
(s, tJ) E S2 x S1 to16 (ei0 s, tJ); that is, as one travels around the 51 -factor, one 
simultaneously rotates the sphere-factorP 

Cutting the neighborhood S x D 2 out of S4 and gluing it back in by using the 
above automorphism is known as performing a Gluck twist18 on S. The result 
is proved to always be homotopy-equivalent to S4 ' and thus homeomorphic 
to S4 . However, in the vast majority of cases it is unknown whether the result 
is smoothly S4 or is an exotic 4-sphere. 

The only 2-spheres in S4 on which it is worth performing Gluck twists are the 
knotted spheres. Indeed, if s bounds a 3 -ball in S4 ' then the spinning of the 
Gluck twist can be extended across the bounded 3 -ball to yield a diffeomor
phism between the twisted 4-sphere and S4 . Nonetheless, 2-spheres in S4 

can exhibit knotting phenomena. (A sphere S in S4 is called knotted if it does 
not bound an embedded 3-ball in 54 .) Simple examples of knotted spheres 
can be built by spinning a !-dimensional knotted thread in the fourth dimen
sion, as in figure 2.17 on the next page. However, Gluck twists on this type 
of knotted spheres are known to never lead to exotic 4-spheres, since they 
also bound "spinnable" 3 -submanifolds. Besides these simple cases, little is 
known. 

15. See section 4.2 (page 155). 

16. Here, think of ff E 51 as being represented as an angle ff E [0, 2n], and view 52 as the Riemann 
sphere C U { oo}. Multiplying by eill merely means rotating the sphere by an angle of ff around the 
axis 0-oo. 

17. The group of self-diffeomorphisms of 52 x 51 up to isotopy is isomorphic to EB 3 Z 2 , generated by 
the antipodal of 52 , the reflection of 51, and the above spinning. 

18. This construction is due to H. Gluck's The embedding of two-spheres in the four-sphere [Glu62]. 
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... 

2.17. Building a knotted sphere in JR4 

2.3. Homology 3-spheres bound fake 4-balls 

Another fundamental result in the theory of topological 4-manifolds is the 
following: 

Freedman's Theorem on Fake Balls. Every 3-manifold ..E3 with the same 
homology as the 3-sphere 53 must bound a contractible19 topological 4-manifold, 
in other words, a fake 4-ball. 20 

A 3-manifold ..E3 has the same homology as 53 if and only if its only non
trivial homology groups are Ho ( ..E; Z) = Z and H3 ( ..E; Z) = Z. If ..E3 were 
also simply-connected, then it would be homotopy-equivalent to 53 and 
thus most likely homeomorphic to 53 . 

Sketch of proof The construction of a contractible .14 with a .1 = ..E 
proceeds as follows: we take the product 

..Ex[0,1] 

and we modify it by surgery until it becomes simply-connected, but 
without altering its boundary or its homology (such a procedure is 
known as the plus-construction). In other words, we modify ..E x [0, 1] 
to obtain not merely a homological copy of 53 x [0, 1], but a homotopy 
copy of 53 x [0, 1]. The resulting 4-manifold S will have boundary 
..E U ..E and be homotopy-equivalent to 53 . The procedure for obtaining 
Sis to add disks to ..Ex [0, 1] in order to kill n 1 , then kill the homology 
that we created by adding those disks. It is worth noting that the con
struction must make use of Casson handles. After building S, we will 
stack end-to-end infinitely-many copies of this creature, add a point, 
and the result will be .1. 

Make it simply-connected. Pick generators for n 1 (..E x [0, 1]) and repre
sent them as embedded disjoint circles £1, ... , Rn. Since the homology 
group H1(..E x [0, 1]; Z) vanishes, these circles must bound embedded 

19. Remember that contractible means homotopy-equivalent to a point. 

20. A fake 4-ball is a 4-manifold homotopy-equivalent to a 4-ball JD4 ; we certainly do not take this 
to include that its boundary be homotopy-equivalent to a sphere S3 . 
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surfaces F1, ... , Fn in ..Ex [0, 1]. Each such surface Fk induces a trivial
ization of the normal bundle of its boundary-circle .ek (see figure 2.18) 
and thus prescribes an embedding (up to isotopy) of 51 x JD3 into ..Ex 
[0, 1] as a tubular neighborhood of .ek. The boundary of 51 x JD3 is 
51 x s2 , the same as the boundary of 102 x s2 • We can therefore cut 
this 51 x JD3 out of ..E x [0, 1] and replace it with a copy21 of 102 x s2 • 

2.18. Framing from bounded surface 

The class [f.k] is now homotopically-trivial in the surgered manifold, 
since it bounds the newly added disk 102 x o. Repeating this for all 
.ek 1 s, we end up with a simply-connected manifold. The problem is that 
in the process of killing n 1 we created some new 2-homology: each of 
our glued-in 102 x s2 's brings in two new homology classes, one from 
Fk U (102 x o), and one from 0 x s2 1 as is suggested in figure 2.19. The 
class [ Fk U (102 x o) J has zero self-intersection (insured from the way 
we trivialized Ngk ). 

0 x s2 

2.19. New homology classes created 

21. An alternative way of seeing this modification is as follows: we are modifying I: x [0, 1] by a 5-
dimensional cobordism; specifically, we are attaching a 5 -dimensional 2-handle JD2 x nJ along lk to 
a thickening LX [0, 1] X [O,e); this modifies theupperboundarybydeleting the attaching region 51 X D3 

and replacing it with JD2 x sz . 
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Eliminate the 2-homology. Using Casson handles, one can show that 
each of the classes [ Fk U (JD2 x o) J can be represented by topologically
embedded spheres Sb all disjoint and whose complements are still sim
ply-connected. 22 

Each sphere Sk has zero self-intersection, and so its normal bundle is 
trivial. Therefore each Sk admits an embedding of 52 x JD2 around it. 
However, 52 x JD2 has the same boundary as JD3 x 51 , and thus we can 
cut the former out and glue the latter in.23 Repeating this for all Sk's 
results in the destruction of all 2-homology. Since the complement of 
the Sk's was simply-connected, the result will still be simply-connec
ted. 

Therefore, we have finally obtained a simply-connected 4-manifold 
with the same homology and boundary as L: x [0, 1]. We will denote 
this creature by S. 

Stack'em. To build L\, we attach one after the other countably-many 
copies of Sand compactify the result by adding one point "at infinity'', 
as in figure 2.20. Since each S is homotopy-equivalent to 53, so will 
be any finite stacking of S's, as it can be retracted into the right-most 
copy of S. It follows that L1 deformation-retracts to its added point oo, 
in other words, that L1 is contractible. 

00 

2.20. Building a contractible Ll bounded by I:. 

All we still need to argue is that L1 is in fact a manifold. The only 
region where this is an issue is, of course, around oo. Somehow the 

22. Technically, to embed the spheres we must use Casson's embedding theorem stated in the end
notes of this chapter (page 96). It is important there that the classes [Fk U (JD2 x o)] and [0 x s2] have 
zero self-intersections, but cross each other once. 

23. Alternatively, this can be viewed as attaching a 5-dimensional 3-handle JD3 x D 2 , which deletes 
the attaching region 52 x D 2 and replaces it by JD3 x s' . 
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homotopy-equivalence of all the S's that accumulate at oo with 53 , to
gether with local simply-connectedness and local contractibility at oo, 
make a neighborhood of the oo-point look like a cone on 53 (instead 
of, say, a cone on the homology 3-sphere I:). We have thus built a 
topological4-manifold, contractible and bounded by I:. o 

The Poincare homology 3-sphere and the E8-manifold 

A closed manifold with the same homology as a sphere is called a homology 
sphere. A closed 3-manifold I: is a homology sphere if and only if its 
first homology H1 (I:; Z) vanishes. Since H1 = nd [n1, nl], this ultimately 
depends on the fundamental group of I:: a 3-manifold I: is a homology 
sphere if and only if its fundamental group n 1 (I:) is a perfect group. 

In what follows, we will build an example of such a creature l:p, called the 
Poincare homology sphere. 

Historically, H. Poincare first conjectured that every homology 3 -sphere must 
be S3; then he discovered this nontrivial homology 3-sphere I:.p, and thus 
had to strengthen his conjecture by requiring simple-connectedness. In any 
case, the homology 3-sphere I:.p upon which Poincare stumbled turned out 
to be ubiquitous in low-dimensional topology and proudly carries his name. 

The Poincare 3-sphere will appear as the boundary of a 4-manifold. Af
terwards, we will cap this 4-manifold with one of Freedman's contractible 
Ll's to obtain a special closed 4-manifold, called the Es-manifold. 

Plumbing. To build l:p, start with eight copies of 52 . Build on each a disk 
bundle with Euler class +2, for example the unit-disk bundle JDT52 of its 
tangent bundle. We now have eight 4-manifolds with boundary, each con
taining a sphere of self-intersection +2. 

We "plumb" these according to the Es Dynkin diagram from figure 2.21. 
Each dot in the diagram stands for one of our eight disk bundles (labelled 
by the self-intersection of its zero-section), while each edge stands for a 
plumbing connection, as we explain next. 

2 
• 

2 
• 

2 
• 

2 
• 

2 

J 
2.21. The £8 diagram 

2 
• 

2 
• 

A plumbing is obtained through the identification suggested in figure 2.22 
on the facing page: We pick a small disk D' of center p' in one sphere 
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and a disk D" of center p" in another. Then locally the corresponding disk 
bundles over them look respectively like D' x D 2 and D" x D 2 . We prefer 
to write the latter as D 2 x D" because we identify it with D' x D 2 factor
by-factor as just re-written: fiber-factor with basis-factor and vice-versa (i.e., 
D' x 0 is sent to D 2 x p", and p' x D 2 to 0 x D", etc.). Further, when 
plumbing we take care of orientations so that the intersection of D' and D" 
is positive. 

2.22. Plumbing 

After plumbing our eight disk-bundles following the recipe from the Es
diagram (and after rounding corners), we obtain a smooth 4-manifold that 
we denote by 

PEs· 

It has non-empty boundary and is called the 4-dimensional £ 8 -plumbing. 

Homology. The manifold PEs contains eight spheres, each with self-inter
section + 2 and intersecting the other spheres either 0 or + 1. All this inter
section data is gathered in the 8 x 8 matrix 

2 1 
1 2 1 

1 2 1 

Es 
1 2 1 

1 2 1 1 
1 2 1 

1 2 
1 2 

which is called the intersection form24 of PEs. One can compute its deter
minant to be det E8 = + 1, and thus deduce that the E8 -matrix is invertible 
over Z. 

24. Intersection forms will be discussed in detail and generality in the next chapter, which starts on 
page 106. 
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Since our eight spheres generate H2(PEs;Z), it follows that the Es-matrix 
in fact governs the whole 2-homology of PEs. The invertibility of the inter
section form can then be used to show that the boundary of PEs has trivial 
1-homology, and thus must in fact be a homology 3-sphere.25 (As an alter
native, one could of course figure out directly that the fundamental group 
of a PEs is a perfect group.) 

This boundary 3-manifold, which we denote by 

L,p =aPEs I 

is the Poincare homology sphere that we set out to build. 

Alternatives. Another possible description of PEs is as follows: Consider the 
open 4-manifold Q described by the equation zi + z~ + z~ = £ in C3 . It is 
diffeomorphic26 to the interior lnt PEs of PEs. If we take a small ball D 6 in C3, 

then D 6 n Q ~ PEs' with boundary S5 n Q ~ l:.p. 

A different description of L.p is as the quotient L.p = S0(3)/A5 , where A5 

is the group of the sixty symmetries of the dodecahedron. In fact, L.p can be 
obtained directly by identifying with a twist the opposite faces of a dodecahe
dronP Thus, L.p is sometimes called the dodecahedral space. 

We should also mention that PEs is just the lowest-dimensional version of a 
series of Es -plumbings, whose boundaries are exotic ( 4k- 1) -spheres.28 

Many more homology 3 -spheres can be built as boundaries of plumbings. 29 

The E8 -manifold. Reversing orientation, L,p is still a homology sphere. By 
Freedman's result above, L:p must bound some contractible topological4-
manifold, a fake 4-ball 11. Then we can glue30 PEs and L1 along their com
mon boundary L,p, and thus obtain a closed manifold 

MEs = PEs u.Ep L1. 

25. Such an argument works in general. For every compact 4-manifold M, its boundary () M is 
a homology sphere if and only if the intersection form QM: H2 (M; Z) x H2(M; Z) ___, Z is unimo
dular (=has invertible matrix); the intersection form being unimodular establishes an isomorphism 
H 2 (M; Z) ~ H 2 (M, d M; Z), which forces the homology of() M to be trivial in dimensions 1 and 2. 
The full argument will be presented in the end-notes of chapter 5 (page 261). 

26. For a more general discussion of complex singularities (like zi + z~ + z§ = 0) and their topology, 
see J. Milnor's Singular points of complex hypersurfaces [Mil68]. See also a few comments on page 
318. 

27. This, in fact, is the original construction of H. Poincare. For several descriptions of .Ep and elegant 
proofs of their equivalence, read R. Kirby and M. Scharleman' s Eight faces of the Poincare homology 
3-sphere [KS79]. 

28. See the end-notes of this chapter (page 97). 

29. See the end-notes of chapter 5 (unimodular forms and homology spheres, page 261). 

30. We must take d ,1 to be .Ep, with opposite orientation to .Ep, because all boundary-gluings must be 
made through orientation-reversing homeomorphisms, as was explained on page 13. 
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This simply-connected topological 4-manifold is known as the £ 8-mani
fold. The striking fact is that ME8 cannot admit any smooth structures, as 
we will argue later.31 

2.4. Smooth failure: the twisted cork 

In contrast with the case of topological 4-manifolds, the smooth case of the 
4-dimensional h-cobordism theorem fails. Some insight on where this fail
ure occurs is provided by the following rather startling result: 

Theorem (C. Curtis, M. Freedman, W Hsiang and R. Stong). Let W5 be 
any smooth h-cobordism between M4 and N4 . Then inside W there exists a 
compact contractible sub-h-cobordism (with non-empty boundary) K5 , between 
some compact contractible submanifolds A 4 c M4 and B4 c N4 , such that W is 
a trivial cobordism outside K. That is, we have a diffeomorphism 

W\IntK ~ (M\IntA) x [0,1]. 

Further, K can be chosen so that it is diffeomorphic to the 5-ball D 5, that W \ K 
is simply-connected, and furthermore so that A and B are diffeomorphic through 
a diffeomorphism that, when restricted to the boundary a A = a B I is an involu-
tion.32 o 

2.23. Failure of the 4-dimensional h-cobordism theorem 

In other words, if M and N are h-cobordant, then N can be obtained from 
M by cutting out a compact contractib]e submanifold A and gluing it back 
in by using an involution of a A. The h-cobordism K somehow connects 

31. See section 4.4 (page 170). 

32. An involution of Z is any map f: Z --> Z so that f of = id. 
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A and its "reversed" version B. The fake 4-ball A is called an Akbulut 
cork. Several of these can be described quite explicitly in terms of handle 
diagrams. 

Even more, each Akbulut cork is surrounded by an exotic JR4 . We will 
revisit this result later33 during our discussion of exotic JR4 's. 

For us, the main point of this theorem is that smooth 4-manifolds (and the 
gap between the smooth and topological realm) are wrought with much 
subtlety, of which today we have a rather poor understanding. 

33. In section 5.4 (page 253). 
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Note: Kirby calculus 

One method of describing smooth 4-manifolds is through their handle decompo
sitions. This has been transformed into a calculus with link diagrams which is 
called Kirby calculus. An extensive discussion can be found in R. Gompf and 
A. Stipsicz's 4-Manifolds and Kirby calculus [GS99]. Here we will just sketch 
its rudiments. 

Handles. A 0-handle is simply a 4-ballJD4 , with boundary a 3-sphere S3 . If we 
deal with connected closed manifolds, then a single 0-handle is all we need.1 To 
this single 0-handle are attached 1-, 2-, 3- and 4-handles. Since the relevant 
attachments are done mostly to the boundary S3 = JR3 U { oo} of the 0-handle, we 
can picture these by diagrams in lR 3 . 

A !-handle is a copy of [ -1, + 1] x D 3 , to be attached to the 0-handle by gluing 
{ -1} x D 3 and { + 1} x D 3 to S3 (the "feet" of the 1-handle). If we are building an 
oriented manifold, then once we specify two 3-balls in S3 there is a unique way 
(up to isotopy) to glue a 1-handle to them (without ruining orientability). Thus, 
we can picture a 1-handle as in figure 2.24. 

2.24. Diagram for attaching a 1-handle 

Alternative. The same result as attaching a 1-handle can be obtained by removing a neighbor
hood of a disk. Namely, draw an unknotted circle in 53 = a D 4 and imagine it bounding a disk; 
push the interior of that disk inside the 4-ball, then remove a neighborhood of it. See figure 2.25 
on the following page. 

That the result is the same as adding a 1-handle can be argued as follows: If to a genuine 1-
handle we add a canceling 2-handle, then the whole thing can be collapsed back to the 4-ball; 

1. This is a handle decomposition of a closed manifold, not of a cobordism. Thus, one needs one 0-
handle, unlike in the case of a cobordism. In the cobordism case, all 0-handles were eliminated by 
absorbing them into the lower boundary. Here, a similar argument shows that all 0-handles can be 
absorbed into a single 0-handle. However, one needs at least one minimum for the Morse function, 
and thus one 0-handle must remain. 
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2-disk 

2.25. Removing a 2-handle, same as adding a 1-handle 

not adding the 2-handle is then equivalent to removing the collapsed 2-handle from the 4-ball. 
That is, adding a !-handle is the same as removing the 2-handle that cancels it, which is exactly 
the disk mentioned above. A consequence is that we can now represent a !-handle also by 
specifying the circle whose bounded disk is to be removed, as in figure 2.26. It is marked with a 
dot to distinguish it from later objects. 

0 
2.26. Alternative diagram for attaching a 1-handle 

A 2-handle is a copy of D 2 X D 2 , attached by gluing S1 x D 2 to S3 . To specify such 
an attachment, a first thing to describe is, of course, the image of S1 x o, specifically 
an embedded knot K in S3 . Second, we need to provide instructions for the way 
the "thickening" is to be glued around this knot K. This is done by specifying a 
framing2 of the knot, that is to say, a trivialization of the normal bundle NK/S3 of 
K, drawn as a parallel curve that might twist around K, and which determines 
how 51 X D 2 is to be identified with NK/S3, by showing where, say, 51 X 1 is to be 
attached, as on the left of figure 2.27. 

0 or 

2.27. Diagram for attaching a 2-handle: framed knot 

In fact, the framing is completely described (up to isotopy) by an integer, for ex
ample the linking number of K with its framing curve, or, equivalently, the inter
section number of the framing curve with a Seifert surface3 for K. Thus, one can 
specify the attachment of a 2-handle by drawing a knot and labeling it with an 
integer, as on the right of figure 2.27. 

2. Framings of knots are discussed in more detail in section 4.1 (page 147). 

3. A Seifert surface for a knot K is any oriented surface in 53 that is bounded by K. It can be used to 
define the linking number of two knots K and K' as the intersection number of K with a Seifert surface 
of K'. See page 147 for a better discussion. 
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It remains to attach the 3-handles and the 4-handles. If we are dealing with closed 
4-manifolds, then a single 4-handle is enough.4 It is not hard to see that the union 
of this 4-handle with the 3-handles is a copy of either D 4 (when there are no 3-
handles) or #kS1 x D 3 (when there are k 3-handles). This means that, if we try 
to build a closed 4-manifold, then, after attaching all our 1- and 2-handles to 
the 0-handle, we better end up with a 4-manifold with boundary either S3 or 
#kS1 X S2 . 

If the boundary does tum out to be as needed, then it is known that at this stage 
it does not matter how the 3- and 4-handles are attached: the result will be the 
same closed 4-manifold. 5 Therefore, to describe a closed 4-manifold, it is enough 
to describe the attachment of the 1- and 2-handles. (Keep in mind that a random 
Kirby diagram in general will not describe any closed 4-manifold: to be able to 
close it up, one needs that the resulting boundary be S3 or #k S1 x S2 .) 

Handle moves. A pair of canceling 1- and 2-handles can be represented as in fi
gure 2.28. Canceling the pair means deleting the couple from the diagram, while 
creating the pair means adding such a couple. 

~7) kv v or ( __ 8-=) 
2.28. Diagrams for a pair of canceling 1- and 2-handles 

Sliding a 2-handle over another 2-handle is achieved by band-summing the at
taching knots (and taking into account the framing of the handle over which we 
slide), as in the simple example from figure 2.29 on the next page. There are many 
ways to execute such a slide, and an alternative can be seen in figure 2.30 on the 
following page. If ha is the 2-handle being slid over hf3, then the slide in 2.29 
changes d the same way as changing basis in Hz(M; .Z) from ha to ha + hf3, while 
the slide in 2.30 changes ha to ha - hf3. 

For determining the framing of the slid handle, one should use the formula: 

framing(new ha) = (a± f3) · (a± {3) = a· a + f3 · f3 ± 2a · f3 

= framing(ha) + framing(hf3) ± 2linking(knot ha, knot hf3) . 

(In our pictures, the linking was zero.) 

It is worth noting that, in the absence of 1- and 3-handles, each 2-handle repre
sents a generator of Hz(M;.Z), and that the intersection form of M (see the next 
chapter) is exactly the linking matrix of the diagram (with self-linking given by 
the framing). Compare with the discussion of Whitehead's theorem, in section 4.1 

4. "Single 4-handle is enough" is the upside-down version of "single 0-handle is enough". 

5. This follows from the fact that every self-diffeomorphism of #kS 1 x 52 extends to a self-diffeomor
phism of #kS1 x JD3 , as was proved by F. Laudenbach and V. Poenaru in A note on 4-dimensional 
handlebodies [LP72]. 
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)0 ) 

2.29. Diagram for sliding a 2-handle over another, I; htX f---+ htX + hf3 

)0 ) ~+10 
'U 

2.30. Diagram for sliding a 2-handle over another, II; htX f---+ htX - hf3 

(page 140). It is unknown whether every simply-connected 4-manifold admits 
handle decompositions without 1- or 3-handles. 

An example of an actual Kirby calculus computation will appear in figure 4.10 on 
page 151, where it will be proved that (:JP2 # S2 x S2 ~ CJP2 # S2 x S2 . 

Examples, and 3-manifolds. As examples, the diagrams in figure 2.31 represent 
CJP2 and S2 x S2 • Since the connected sum of two 4-manifolds is represented 
by simply putting together (untangled) the Kirby diagrams of the two summands, 
this whole figure can be thought of as the diagram of CJP2 # S2 x S2 • 

2.31. The Kirby diagrams of CJP2 and s2 X S2 

The diagram in figure 2.32 represents the PE8 plumbing of eight spheres. It is a 
4-manifold with boundary, and its boundary is the Poincare homology 3-sphere 
L.p. While it could be closed-up to the closed topological manifold ME8 by using 
Freedman's mysterious fake ball.1, such a capping cannot be done smoothly; thus, 
the diagram does not represent any smooth closed 4-manifold. 

2.32. The Kirby diagram of PE8 (or of l:p) 

Nonetheless, this last example points us in another direction for using Kirby cal
culus: Since every 3-manifold is the boundary of some 4-manifold, we can use 
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a diagram of such a 4-manifold to describe its boundary 3-manifold (just as the 
diagram of PE8 above can be thought of as describing Lp ). Further, all 3-mani
folds are boundaries of 4-manifolds without 1- or 3-handles. (This follows from 
an intrinsically 3-dimensional interpretation of a Kirby diagram as describing a 
sequence of Dehn surgeries on S3 , that is, removals of solid tori-around the compo
nents of the diagram-from S3 and gluing them back using a twist of the boundary 
torus specified by the respective framing coefficient.) 

Of course, many 4-manifolds have the same boundary 3-manifold. For example, 
the diagram in figure 2.33 represents a simpler 4-manifold whose boundary is 
also the Poincare homology 3-sphere. 

2.33. Another diagram for :Ep 

Observe that the 4-manifold in figure 2.33 can also be closed-up using one of Freedman's fake 
4-balls. This yields a closed topological manifold that is homotopy-equivalent to ICJP2 but not 
homeomorphic to it; the result is denoted by * ICJP2 and admits no smooth structures either. We 
will encounter it again in section 5.2 (page 241). 

While two diagrams that represent a same 4-manifold must be related by the 
handle moves discussed above, if we want merely to preserve the boundary 3-
manifold, then we can also allow blow-ups and blow-downs (complex and anti
complex). This means that we are allowed to connect sum to our 4-manifold 
copies of {:JP2 's and (:1P 2 's or to split off such copies; indeed, this does not change 
the boundaries. Diagrammatically, this simply means adding or removing an un
knotted circle with framing ± 1 that is separated from the rest of the diagram. 

In other words, the set of all 3-manifolds coincides with the set of all Kirby dia
grams (with only 2-handles) modulo handle moves and blow-ups/blow-downs. 
This point of view has led to the so-called quantum invariants for 3-manifolds ob
tained from suitable invariants of knots and links. 

References. Kirby calculus (both 3- and 4-dimensional) found its origin in R. 
Kirby's A calculus for framed links in S3 [Kir78] and was then used extensively 
by R. Kirby, S. Akbulut, and R. Gompf, as well as many others. Kirby calculus, 
along with Casson's ideas, was used by M. Freedman when he proved his results 
in The topology of four-dimensional manifolds [Fre82] (later, in the book Topol
ogy of 4-manifolds [FQ90], Casson handles and Kirby calculus were dropped in 
favor of gropes). 

For a fuller discussion and applications of Kirby calculus, see R. Kirby's The 
topology of 4-manifolds [Kir89], and, for diagrams of complex surfaces, J. Harer, 
A. Kas and R. Kirby's Handlebody decompositions of complex surfaces [HKK86]. 
Most of the material from the latter is discussed in R. Gompf and A. Stipsicz's 



96 2. Topological4-Manifolds and h-Cobordisms 

4-Manifolds and Kirby calculus [GS99], which is currently the best reference for 
Kirby calculus. 

That all 3-manifolds appear as results of Dehn surgeries on 53 was proved by 
A. Wallace's Modifications and co bounding manifolds [Wal60] and, with an intrin
sic 3 -dimensional argument, by R. Lickorish' sA representation of orientable com
binatorial 3-manifolds [Lic62b ]. A simplification of the needed set of diagram
modifications for the 3-dimensional case appeared in R. Fenn and C. Rourke's On 
Kirby's calculus of links [FR79]. A beautiful intrinsic 3-dimensional discussion of 
diagrams and surgeries, including a nice proof of Lickorish's result, is contained 
in D. Rolfsen's classic Knots and links [Rol76, Rol90, Rol03]. 

The quantum invariants for 3-manifolds have their origin in E. Witten's Quan
tum field theory and the Jones polynomial [Wit89], with a heavily-algebraized 
but mathematically-sound version appearing inN. Reshetikhin and V. Turaev's 
Invariants of 3-manifolds via link polynomials and quantum groups [RT91]. A 
simplification and nice presentation is R. Kirby and P. Melvin's The 3-manifold 
invariants of Witten and Reshetikhin-Turaev for .sl ( 2, C) [KM91]. The literature 
on this topic is ever-growing, and the topic is certainly closer to knot theory and 
non-commutative algebra than to 4-manifolds. 

Note: Embedding Casson handles 

Casson handles are quite useful because they are easy to embed (and A. Casson 
himself named them "flexible handles"). It is thus worth stating Casson's main 
result: 

Casson's Embedding Theorem. Let M be a simply-connected 4-manifold, with non
empty boundary. Let /1 .... ,fn be immersions JD2 -7 M such that /klanz are disjoint 
embeddings into a M. 

Assume that, when i =f- j, we have intersection numbers6 fi · /j = 0. Further, assume 
there are classes tt1, ... , ttn E Hz ( M; Z) such that all a:k · fk = 1 but a:i · /j = 0 if i =/- j, 
and so that all self-intersections a:k · a:k are even. 

Then there must exist disjoint open sets (Casson handles) C1, ... , Cn such that: 

- we have proper7 homotopy equivalences ( Ck, ck n aM) "-' (JD2 X JR2' a JD2 X JR2); 

- Ck n aM are open tubular neighborhoods of the circles fk [a lD2J in aM; 
- fk is homotopic, relative to its boundary 51, to a map into Ck. D 

The role of the classes a:k is to help untangle various constructions along the way, 
somewhat similar to the use of transverse spheres in section 4.2 (page 149) ahead. 

6. These intersection numbers are well-defined when i f j: keep the disjoint boundaries f; [a D 2] 

and /j [a D 2] fixed, and perturb the interiors of the immersed disks until they become transverse; then, 
count. 

7. A map f: A ---> B is called proper if f- 1 [compact] is compact. If A and B are compact, the condition 
is automatically satisfied. A homotopy ft: A ---> B is called proper if the map f. : A x [0, 1] ---> B is 
proper, or if all ft 's are proper. 
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Furthermore, we in fact have homeomorphisms 

(cbcknaM) c::: (ID2 xJR2 , aJD2 xJR2), 

as M. Freedman later proved. 

97 

A typical use of the embedding theorem is as follows: one starts with a closed 4-
manifold M, removes a small 4-ball, then tries to embed Casson handles in the 
remaining 4-manifold with boundary. Topologically, the set made of the 4-ball 
together with the Casson handles is homeomorphic to the result of adding stan
dard 2-handles to the 4-ball. If the Casson handles managed to exhaust all the 
homology of M, then the leftovers (M without the 4-ball and all Casson handles) 
must be somewhat simple. Thus appears a topological decomposition of M. 

As an example, the embedding theorem leads to: 

Corollary. Let M be any simply-connected closed 4-manifold. For every 2-class f3 from 
H2 ( M; .Z) with f3 · f3 = 0 and for which we can find a class IX with IX • f3 = 1 and IX • IX 

even, there exists a sphere topologically-embedded in M that represents f3. o 
This has already been used in section 2.3 (page 83) to build Freedman's Ll's. 

Corollary. Let M be a simply-connected closed 4-manifold. Assume there are classes 
IX, if E H2 (M;.Z) such that IX· IX = 0 and if· if= 0 but IX· if= 1. Then there is an 
open set U in M such that U is homeomorphic to the complement of a topological 4-ball 
inside 52 x 52 , and so that IX and if belong to the image of H2 (U;.Z) into H2 (M;.Z). 
Moreover, IX and if can be realized as embedded topological spheres inside U, with only 
one crossing. o 
The above two constructions, and the conflict between their topological success 
but smooth failure, will be used in section 5.4 (page 250) to exhibit exotic JR4 's. 

Notes [Cas86, lecture I] from A. Casson's 1974lecture (where the above ideas were 
presented and proved) can be found in the volume A la recherche de la topologie 
perdue [GM86a], edited by L. Guillou and A. Marin. 

Note: Milnor plumbing and high-dimensional exotic spheres 

The plumbing procedure we have described for building the Poincare homology 
3-sphere has higher-dimensional analogues. There, instead of yielding a homol
ogy sphere, it actually yields smooth manifolds homeomorphic to 5m but not dif
feomorphic to it. In other words, it exhibits exotic spheres. Further, the set of all 
high-dimensional exotic spheres can be organized as a group E>m that can be ex
plicitly determined. These groups play an essential role in the theory of smooth 
structures on high-dimensional topological manifolds and will be encountered 
again in the end-notes of chapter 4 (page 207), where this topic is discussed. 

Plumbing along E8 • Start by taking eight copies of 52k and consider the unit-disk 
bundles 1DT52k of their tangent bundles. Plumb these according to the Es -diagram. 
The result will be a 4k-manifold PE~k, called a (Milnor) Es-plumbing. Its boundary 

L.~k-1 = () PE~k 
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is a homology sphere,8 but when k > 1 it is also simply-connected. Therefore 
r.:k- 1 is a homotopy (4k- I)-sphere, and, by using the generalized Poincare 
conjecture,9 it follows that it must be homeomorphic to S4k- 1 . 

2 2 2 2 2 2 2 

J 
2.34. The E8 diagram, again 

Assume that r.:k- 1 is diffeomorphic to S4k-1. Then we could smoothly glue D 4k to 
PE~k to obtain a smooth closed 4k-rnanifold of signature 8, but that is prohibited in 
all dimensions10 4k. Therefore r.:k-1 must be smoothly distinct from the standard 
sphere; it is an exotic ( 4k - 1) -sphere. 

Since L.fk-1 is homeomorphic to S4k-1 , we can still topologically attach D 4k to PE~k 
and obtain a topological4k-manifold11 

M4k = R4k u D4k 
E8 E8 I:.p • 

This manifold does not admit any smooth structures. 

Plumbing along Am and Kervaire spheres. An even simpler exotic sphere can be obtained in 
dimensions 4k + 1 as follows: Start with two copies of the disk bundle [)T5 2k+l of the tangent 
bundle to S2k+I and plumb them exactly once. The resulting (4k + 2)-manifold P;:+z has as 
boundary a smooth ( 4k + 1) -manifold that can be proved to be homeomorphic to a sphere. It is 
called the Kervaire sphere and will be denoted by 

,...4k+I 
~K • 

When k is even, the ( 4k + 1) -dimensional sphere I:ik+I is never diffeomorphic to S4k+I; it is an 
exotic sphere. When k is odd, I:ik+I is sometimes a standard sphere (for example for k = 1 ). 

More generally, one can plumb m copies of DT5 2k+l following the simple Am diagram in fi
gure 2.35 on the facing page, obtaining the manifold PA~+Z. Its boundary a PA~+Z is not always 
homeomorphic to a sphere. On one hand, when m + 1 = 0 (mod 8), it is known that a P;~+Z is 
diffeomorphic to S4k+I, while, on the other hand, when m + 1 = 3 or 5 (mod 8), it is proved that 
a P;~+Z is diffeomorphic to the Kervaire sphere I:ik+ 1 . 

The first Kervaire sphere to appear was I:l, in M. Kervaire's A manifold which does not ad
mit any differentiable structure [Ker60], where it was used in building a non-smoothable 10-
manifold (the first non-smoothable manifold ever created). 

8. Compare with the proof in the end-notes of chapter 5 (page 261). See also W. Browder's Surgery on 
simply-connected manifolds [Bro72, ch V]. 

9. Stated back on page 30. 

10. The reason for this prohibition is similar to the one behind the non-smoothability of Freedman's 
Es -manifold, ME8 • Intersection forms can be defined for all 4k -manifolds. A higher-dimensional ana
logue of Rokhlin's theorem, uncovered in M. Kervaire and J. Milnor's Bernoulli numbers, homotopy 
groups, and a theorem of Rohlin [KM60], excludes the existence of smooth 4k-manifolds with intersec
tion forms of signature 8, and in particular excludes the Es -form and prohibits Mt: from supporting 
any smooth structures. 

11. In fact, ME~ is a PL manifold; compare with the end-notes of chapter 4 (smoothing topological 
manifolds, page 207), especially page 220. 
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2 2 2 2 2 2 

2.35. The Am diagram 

The group of exotic spheres. High-dimensional exotic spheres can be organized as 
a group. For any dimension m 2 5, start with the set 

E>m 

of all smooth m-manifolds Em that are homotopy-equivalent to sm, considered 
up to smooth h-cobordisms. Since m 2 5, the generalized Poincare conjecture 
implies all these manifolds are in fact homeomorphic to sm. Thus, they represent 
exotic smooth structures on sm. 

Two exotic smooth structures (Sm, '') and (Sm, '") determine a same element of 
E>m if and only if they are smoothly h-cobordant, but the h-cobordism theorem 
implies that (Sm, '') and (Sm, '") are diffeomorphic. Further, the h-cobordism 
linking them must be trivial, and hence exhibit a smooth structure on sm x [0, 1] 
that coincides with ,, on sm X 0 and with ,, on sm X 1. The smooth structures ,, 
and ,, are called concordant. 

Thus, E>m can be called either the set of homotopy-spheres or the set of smooth 
structures on sm up to concordance. (Notice that there exist smooth structures 
that are diffeomorphic but not concordant.) 

Together with connected sums, the set E>m becomes an Abelian group. Its identity 
element is the standard smooth sphere sm. The inverse of any L, E E>m is L. 
Indeed, it is not hard to prove that, since L. # L can be realized as the boundary 
of ( L. \ ball) x [0, 1] as suggested in figure 2.36, and the latter can be shown to be 
contractible, the h-cobordism theorem implies that L. #L must be diffeomorphic 
to sm. 

2.36. L. #E is the boundary of (E.\ ball) x [0, 1 J 

For example, since the Kervaire spheres I:.ik+ 1 can be shown to have LK # I:.K ~ S4k+ 1, it follows 
that I:.K is either standard or it generates an order 2 subgroup in E>4k+l (certainly the latter when 
k is even). 

The group E>m is usually called the group of homotopy spheres in dimension m. 
One might also call it the group of exotic spheres or the group of smooth structures on 
sm. The groups E>m are always finite. The orders of some of these groups are listed 
in table IV on the following page, while a few actual groups are listed in table V 
on the next page. 
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IV. Orders for groups of smooth structures on sm 
m 5 6 7 8 9 10 11 12 13 14 15 16 17 

1em1 1 1 28 2 8 6 992 1 3 2 16256 2 16 

V. Groups of smooth structures on sm 
m 5 6 7 8 9 10 11 

Low dimensions. When m :::; 4, the set E>m can still be defined as the collection of smooth m
manifolds homotopy-equivalent to 5m, considered up to h -cobordisms. Clearly, we have el = 0 
and E>2 = 0. Since all topological manifolds of dimensions up to 3 admit unique smooth struc
tures, there are no exotic 3 -spheres, but one would need to be sure that the Poincare conjecture 
has indeed been proved to conclude that there are no fake 3-spheres and thus that E>3 = 0. 
Finally, since the topological Poincare conjecture holds in dimension 4, any 4 -manifold 1:4 ho
motopy-equivalent to 54 must be homeomorphic to it. Since 1:4 and 54 are linked by a smooth 
h-cobordism, we have that 8 4 = 0 as well, regardless of whether there are exotic 4-spheres 
hiding around. 

Example: dimension 7. Going upwards pastes= 0 and e6 = 0, the first dimen
sion where em is nontrivial is m = 7; we have 

e7 =Z2s· 

As it turns out, the generator of e 7 is exactly the exotic sphere I:"J, obtained earlier 
as boundary of the 8-d.imensional Es -plumbing PE~. In other words, 

s7 , :r:J,, :r:J, # :r:J,, . . . , #27 :r:J, 
is the complete list of smooth structures on S7 , up to concordance. We have diffeo

morphisms #28I:J, ~ S7 , as well as #kl::~ ~ #(28- k) 1::~. 

Notice that reversing orientations establishes diffeomorphisms between non-con
cordant smooth structures on S7 . Thus, the complete list of smooth structures on 
S7 , considered up to diffeomorphisms, counts exactly 15 elements: 

s7, :r:J,, ... , #14I:"J,. 

The only smooth structures on S7 that admit orientation-reversing self-diffeomor
phisms are # 14 I:J, and standard S7 • 

References. Plumbings were created by J. Milnor and presented in his mimeogra
phed notes Differentiable manifolds which are homotopy spheres [Mil58a], as well 
as in his Differentiable structures on spheres [Mil59]. A nice brief treatment is in 
W. Browder's Surgery on simply-connected manifolds [Bro72, ch V]. 

A different source of exotic spheres (Brieskom spheres, from singularities of com
plex hypersurfaces) will be mentioned in the end-notes of chapter 8 (page 318). 
In particular, we will notice there that all the plumbing examples above can be 
described by explicit equations in {:m. 

The groups em were defined and studied in M. Kervaire and J. Milnor's Groups 
of homotopy spheres [KM63], which is also considered as one of the founding 
papers of surgery theory. 
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Note: The world of 3-manifolds 

After visiting in chapter 1 the realm of high-dimensional manifolds, dominion of 
the h-cobordism theorem, and in this chapter the world of topological 4-mani
folds, it is now worth also taking a peek downwards, at the land of 3-manifolds. 
There too, embeddings of disks play a fundamental role in the theory. 

First of all, as we mentioned earlier, in dimension 3 there is no distinction between 
topological and smooth manifolds. This was proved 12 by E. Moise in his series 
Affine structures in 3-manifolds. I-VIII [Moi54], or in his book Geometric topol
ogy in dimensions 2 and 3 [Moi77a]; the proof was simplified by R.H. Bing's An 
alternative proof that 3-manifolds can be triangulated [Bin59]. 

Second, just as surfaces play an essential part in the topology of 4-manifolds, the 
middle dimension is essential for 3-manifolds as well. The middle dimension, 
though, happens to be 1 ~, which gives the fundamental group quite a promi
nence, but keeps surfaces at the forefront as well. The fundamental group is usu
ally non-commutative, and that gives a strong group-theoretic flavor to the theory, 
as you can sample from J. Stallings' Group theory and three-dimensional man
ifolds [Sta71]. Another standard reference for the classical theory is J. Hempel's 
3-Manifolds [Hem76]. 

As a show of strength of the fundamental group, the inevitably-known Poincare 
conjecture (1904) claims that, without fundamental group, nothing much happens 
in dimension 3: 

Poincare Conjecture (open?). The only simply-connected closed 3-manifold is 53 . 

A more general conjecture on the structure of 3-manifolds is W. Thurston's geo
metrization conjecture, which claims that all closed oriented 3-manifolds split into 
pieces that admit certain few Riemannian geometric structures. The geometriza
tion conjecture (and thus the Poincare conjecture as well) might have been proved 
in 2003 by G. Perelman, following the direction traced by R. Hamilton's program 
to deform Riemannian metrics along their Ricci-flow into hyperbolic metrics (i.e., 
metrics of constant sectional curvature -1 ). This remarkable proof is presented 
in G. Perelman's The entropy formula for the Ricci flow and its geometric appli
cations [Per02], with technical developments in [Per03b] and a further technical 
detail in [Per03a]. This differential-geometric proof is still under intense scrutiny 
at the time of this writing. 

The theory of geometric structures on 3-manifolds was founded by W. Thurston 
around 1977. One can start with P. Scott's exposition The geometries of 3-mani
folds [Sco83], then continue with W. Thurston's own Three-dimensional geom
etry and topology [Thu97], or with M. Kapovich' s Hyperbolic manifolds and 
discrete groups [KapOl]. 

12. Strictly speaking, Moise and Bing only proved that any topological 3-manifold admits an es
sentially unique triangulation. The surprising issue of triangulated manifolds having more than one 
smooth structure only became visible later, after J. Milnor's exotic 7 -spheres [Mil56b ]. The first proofs 
that 3-manifolds admit unique smooth structures are due to J. Munkres' Obstructions to the smooth
ing of piecewise-differentiable homeomorphisms [Mun59, Mun60b] and to J.H.C. Whitehead's last 
paper, Manifolds with transverse fields in euclidean space [Whi61]. 
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Going back into the prehistory of the subject, M. Dehn in his iiber die Topologie 
des dreidimensionalen Raume [DehlO] thought to have proved the following: 

Dehn's Lemma. Let N 3 be a 3-manifold and f: ID2 ----+ N be an immersion such that 
f I a JD2 is an embedding. Then f I a JD2 can be extended to an embedding of JD2 into N. o 

Dehn' s argument was incomplete though, and it took fifty years to find the correct 
proof. That was due to C.D. Papakyriakopoulos in On Dehn's lemma and the 
asphericity of knots [Pap57a]. 

In the same paper was proved the following very important result: 

Sphere Theorem. Let N be an orientable 3-manifold, and assume that n 2 (M) is non
trivial. Then there must be a homotopically-nontrivial embedding S2 ----+ N. o 
This theorem can be strengthened by the uniqueness result from F. Laudenbach's 
Surles 2-spheres d'une variete de dimension 3 [Lau73]: If two spheres embedded in 
a 3-manifold are homotopic, then they are in fact ambiently isotopic.B 

Further, C. D. Papakyriakopoulos proved in On solid tori [Pap57b] a result that 
is most useful in the form improved by J. Stallings' On the loop theorem [Sta60a], 
and combined with Dehn's lemma: 

Loop Theorem. Let M be a 3-manifold, and let S be a connected component of aM. 
Assume that the natural morphism n1 (S) ----+ n 1 (M) has nontrivial kernel. Then some 
nontrivial element of that kernel can be represented by a circle C embedded in S. Further, 
there is an embedding f: ID2 ----+ N with f [a ID2] = C. o 

It might be amusing to compare the above 3-dimensional statements to the 4-
dimensional Casson embedding theorem discussed in a previous note (page 96). 

In any case, the role played by these results in the theory of 3-manifolds can hardly 
be understated, even though, of course, since the 1960s many new methods have 
gained prominence in the field: foliations and laminations, and geometric struc
tures, especially hyperbolic ones. 

Apart from a few words on foliations and surfaces in 3-manifolds in section 11.3 
(page 491), and some on the Rokhlin invariant in the end-notes of chapter 4 (page 
224), we now leave the 3-dimensional realm. 
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Smooth 4-Manifolds 
and Intersection Forms 

Part II 



W E are now entering the domain of smooth 4-manifolds. This part 
is devoted to what could be called the classic smooth topology of 

4-manifolds. The discussion is centered around the main invariant 
of a 4-manifold, its intersection form. As the name suggests, this form 
describes how surfaces intersect inside the 4-manifold. After defining it in 
chapter 3, we look at a few simple examples, then build an elaborate but 
essential 4-manifold, the K3 complex surface. 

Afterwards, in chapter 4 (starting on page 139) we set out to explore the 
strong interactions between the intersection form and the topology of its 
underlying 4-manifold. We look at the homotopy type of a 4-manifold, 
at h-cobordisms between 4-manifolds (Wall's theorems), at characteristic 
classes of 4-manifolds, and at Rokhlin' s theorem. 

We open chapter 5 (starting on page 237) with statements about the alge
braic classification of forms. The influence of intersection forms on topol
ogy culminates with M. Freedman's classification of topological 4-mani
folds, which implies that if two smooth 4-manifolds have the same inter
section form, then they must be homeomorphic; nonetheless, they do not 
need to be diffeomorphic. The opening salvo illuminating the chasm be
tween topological and smooth 4-manifolds was shot by S.K. Donaldson, 
who showed that most intersection forms cannot correspond to smooth 4-
manifolds, even though they can be realized by topological 4-manifolds. 
As dessert, we conclude by building exotic R4 's. 
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Getting Acquainted with 
Intersection Forms 

Chapter 3 

l A JE define the intersection form of a 4-manifold, which governs inter
V V sections of surfaces inside the manifold. We start by representing ev
ery homology 2-dass by an embedded surface, then, in section 3.2 (page 
115), we explore the properties of the intersection form. Among them is 
unimodularity, which is essentially equivalent to Poincare duality. An im
portant invariant of an intersection form is its signature, and we discuss 
how its vanishing is equivalent to the 4-manifold being a boundary of a 
5-manifold. After listing a few simple examples of 4-manifolds and their 
intersection form, in section 3.3 (page 127) we present in some detail the 
important example of the K3 manifold. 

Given any closed oriented 4-manifold M, its intersection form is the sym
metric 2-form defined as follows: 

QM: H2(M;Z) X H2(M;Z) ~ z 
QM(a,f3) = (aU f3)[M]. 

This form is bilinear1 and is represented by a matrix of determinant ± 1. 
While over lR this is a recipe for boredom, since this intersection form is 
defined over the integers (and thus changes of coordinates must be made 
only through integer-valued matrices), our QM is a quite far-from-trivial 
object. 

1. Notice that QM vanishes on any torsion element, and thus can be thought of as defined on the free 
part of W ( M; Z); since our manifolds are assumed simply-connected, torsion is not an issue. -111 
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For convenience, we will often denote QM (a, {3) by a · f3. Further, we will 
identify without comment a cohomology class a E H2 (M; Z) with its Poin
care-dual homology class a E H2 (M; Z). 

For defining QM more geometrically? we will represent classes a and f3 
from H2 ( M; Z) by embedded surfaces Sa and S {3, and then equivalently 
define QM (a, {3) as the intersection number of Sa and sf3: 

QM(a, {3) =Sa· Sf3. 

First, though, we need to argue that any class a E H2 ( M; Z) can indeed be 
represented by a smoothly embedded surface Sa: 

3.1. Preparation: representing homology by surfaces 

It is known from general results3 that every homology class of a 4-manifold 
can be represented by embedded submanifolds. Nonetheless, we present 
a direct argument for the case of 2-classes, owing to the useful techniques 
that it exhibits. 

Simply-connected case. Assume first that M is simply-connected. Then by 
Hurewicz's theorem n2(M) ~ H2(M;Z), and hence all homology classes 
of M can be represented as images of maps f: S2 ---> M. The latter can 
always be perturbed to yield immersed spheres, whose only failures from 
being embedded are transverse double-points. These double-points can be 
eliminated at the price of increasing the genus. 

For example, by using complex coordinates, a double-point is isomorphic 
to the simple nodal singularity of equation z1z2 = 0 in C2 : the complex 
planes z 1 = 0 and z2 = 0 meeting at the origin. It can be eliminated 
by perturbing to z1z2 = £, as suggested in figure 3.1 on the facing page. 
(A simple change of coordinates transforms the situation into perturbing 
wf + w~ = 0 to wf + w~ = E.) 

More geometrically, imagine two planes meeting orthogonally at the origin 
of JR4 . Their traces in the 3-sphere S3 are two circles, linking once.4 We can 
eliminate the singularity if we discard the portions contained in the open 4-
ball bounded by S3 I and instead connect the two circles in S3 by an annular 

2. 'Think with intersections, prove with cup-products." 

3. For example, for any smooth oriented xm and any a E H* (X; :Z), there is some integer k so that 
ka can be represented by an embedded submanifold; if a has dimension at most 8 or codimension at 
most 2, then it can be represented directly by a submanifold; if xm is embedded in JRm+Z, then X is 
the boundary of an oriented smooth (m + 1)-submanifold in JRm+Z. These results were announced 
in R. Thorn's Sous-varietes et classes d'homologie des varieUs differentiables [Tho53a] and proved in 
his celebrated Quelques proprietes globales des varietes differentiables [Tho54]. 

4. Think: fibers of the Hopf map 53 -> (:JP1; the Hopf map will be recalled in footnote 34 on page 129. 
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ZJZz = 0 

3.1. Eliminating a double-point, I: complex coordinates 

sheet, as suggested in figure5 3.2. Thus, we replaced two disks meeting at 
the double-point by an annulus. A 4-dimensional image is attempted in 
figure6 3.3 on the following page. 

3.2. Eliminating a double-point, II: annulus 

5. On the left of figure 3.2, one circle is drawn as a vertical line through oo, after setting 53 = JR3 U oo. 

6. As usual, in figure 3.3, dotted lines represent creatures escaping in the fourth dimension. 
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.... ···· 
:-········ 

1
1 :I 

L_i 1 .... 1 

L.······· 

> 

3.3. Eliminating a double-point, III 

Either way, we can eliminate all double-points of the immersed sphere, and 
the result is then an embedded surface representing that homology class. 
Thus, all homology classes can be represented by embedded surfaces, but 
rarely by spheres. 

The failure to represent homology classes by smoothly embedded spheres is 
of course related to the failure of smoothly embedding disks. The natural 
question to ask is then: what is the minimum genus needed to represent a 
given homology class? We will come back to this question later? 

In general. The method above only works for simply-connected M4 's. An 
argument for general 4-manifolds has two equivalent versions: 

( 1) Since CJP00 is an Eilenberg-Maclane K ( Z, 2) -space, 8 it follows that 
the elements of H2 (M; Z) correspond to homotopy classes of maps M -+ 

cpoo . Since M is 4-dimensional, such maps can be slid off the high-dimen
sional cells of CJP00 and thus reduced to maps M -+ CJP2 . For any class 
a: E H2 (M; Z), pick a corresponding frx: M -+ CJP2 and arrange it to be 
differentiable and transverse to CJP 1 C CJP2 . Then j; 1 [ CJP 1] is a surface 
Poincare-dual to a:. 

(2) Equivalently, since CJP00 coincides with the classifying space9 ~U(1) 
of the group U ( 1), classes in H2 ( M; Z) correspond to complex line bun
dles on M, with a: being paired to Lrx whenever c1 (Lrx) = a:. If we pick a 

7. See ahead, chapter 11 (starting on page 481). 

8. An Eilenberg-Maclane K( G, m) -space is a space whose only non-zero homotopy group is 7tm = 
G; such a space is unique up to homotopy-equivalence. It can be used to represent cohomology as 
Hm(X; G) = [X; K(G, m)], where [A; B] denotes the set of homotopy classes of maps A-> B. 

9. A classifying space §gG for a topological group G is a space so that [X; §gG] coincides with the 
set of isomorphisms classes of G-bundles over X. A bit more on classifying spaces is explained in the 
end-notes of the next chapter (page 204). 
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generic section CT of La, then its zero set cr- 1 [ 0 J will be an embedded surface 
Poincare-dual to a. 

3.2. Intersection forms 

Given a closed oriented 4-manifold M, we defined its intersection form as 

where Sa and Sf3 are any two surfaces representing the classes a and (3. 

Notice that, if M is simply-connected, then H2(M;Z) is a free Z-module 
and there are isomorphisms H2 ( M; Z) ~ EB m Z, where m = b2 ( M). If M 
is not simply-connected, then H2(M;Z) inherits the torsion of H1(M;Z), 
but by linearity the intersection form will always vanish on these torsion 
classes; thus, when studying intersection form, we can safely pretend that 
H2 ( M; Z) is always free. 

Lemma. The form QM(a, {3) =Sa· Sf3 on H2(M; Z) coincides modulo Poincare 
duality with the pairing QM(a*, {3*) = (a* U f3*)[M] on H2(M; Z). 

Proof. Given any class a E H2 ( M; Z), denote by a* its Poincare-dual 
from H2(M;Z); we have a* n [M] = a. We wish to show that the 
pairing 

on H2(M;Z) defines the same bilinear form as the one defined above. 

We use the general formula10 (a* U {3*) [M] = a* [f3*n [MJ], from which 
it follows that QM(a*, {3*) =a* [{3], or 

QM(a*,f3*) = a*[Sf3]. 

Therefore, we need to show that 

a* [Sf3] = Sa · Sf3 • 

Since QM vanishes on torsion classes, it is enough to check the last 
formula by including the free part of H2(M; Z) into H2(M; JR) and by 
interpreting the latter as the de Rham cohomology of exterior 2-forms. 

Moving into de Rham cohomology translates cup products into wedge 
products and cohomology /homology pairings into integrations. We 
have, for example, 

QM(a*, {3*) = JM a* 1\ {3* 

for all2-forms a* I {3* E r(A2(TM)). 

and 

10. More often written in terms of the Kronecker pairing as (a* U {3*, [Ml) = (a*, f3*n [Ml). 



116 3. Getting Acquainted with Intersection Forms 

In this setting, given a surface Sou one can find a 2-form a* dual to Set 
so that it is non-zero only close to Set. Further, one can choose some 
local oriented coordinates { x1, x2, y1, y2 } so that Set coincides locally 
with the plane {y1 = 0; yz = 0}, oriented by dx1 1\ dx2 • One can 
then choose a* to be locally written a* = f(xl, xz) dy1 1\ dy2 , for some 
suitable bump-function f on lR2 , supported only around (0,0) and 
with integral jR2 f = 1. 

If S13 is some surface transverse to Set and we arrange that, around 
the intersection points of Set and s13 , we have s13 described by {x1 

0; xz = 0}, then clearly 

r a* = set . sf3 , 
lsfl 

with each intersection point of Set and s13 contributing ±1 depending 
on whether dy1 1\ dy2 orients s13 positively or not.11 o 

Unimodularity and dual classes 

The intersection form QM is Z-bilinear and symmetric. As a consequence of 
Poincare duality, the form QM is also unimodular, meaning that the matrix 
representing QM is invertible over Z. This is the same as saying that 

detQM = ±1. 

Unimodularity is further equivalent to the property that, for every Z-linear 
function f: Hz(M;Z) --> Z, there exists a unique a E Hz(M;Z) so that 
f(x)=a·x. 

Lemma. The intersection form QM of a 4-manifold is unimodular. 

Proof. The intersection form is unimodular if and only if the map 

QM: Hz(M;Z) ~ Homz(Hz(M;Z), Z) 

a f-----+ x t--t a · x 
is an isomorphism. We will argue that this last map coincides with 
the Poincare duality morphism. Indeed, Poincare duality is the isomor
phism 

a f-----+ a* , 
with a* characterized by a* n [M] = a. Assume for simplicity that 
H2 ( M; Z) is free.12 Then the universal coefficient theorem 13 shows that 

11. SeeR. Bott and L. Tu's Differential forms in algebraic topology [BT82] for more such play with 
exterior forms. 

12. If not free, a similar argument is made on the free part H2 (M;Z) / Ext(H, (M;Z); Z) of H2 (M;Z), 
which is all that matters since QM vanishes on torsion. 

13. The universal coefficient theorem was recalled on page 15. 
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we have an isomorphism 

H2(M;Z) ~ Hom(H2(M;Z), Z) 

a* x t---t a* [x] . 
Combining Poincare duality with the latter yields the isomorphism 

H2(M;Z) ~ Hom(H2(M;Z), Z) 

x t---t a*[x]. 

117 

However, as argued in the preceding subsection, we have QM (a, x) = 
a*[x], and therefore the above isomorphism coincides with the map 
QM. That proves that the intersection form QM is unimodular. o 

Further, the unimodularity of QM is equivalent to the fact that, for every 
basis { a1, ... , am} of H2(M; Z), there is a unique dual basis {,6 1, ... , ,6m} 
of H2(M;Z) so that ak · ,6k = +1 and ai · ,6j = 0 if i -=f. j. 

To see this, start with the basis {ar, ... ,am} in H2(M;Z), pick the familiar 
dual basis14 {at, ... ,a~} in the dual Z-module Hom(H2(M;Z), Z), then 
transport it back to H2(M;Z) by using Poincare duality (or QM) and hence 
obtain the desired basis {.Br. ... , ,Bm}. 

In particular, for every indivisible class a (i.e., not a multiple), there exists 
at least one dual class ,6 such that a · ,6 = + 1: complete a to a basis and 
proceed as above. (Of course, such ,6's are not unique: once you find one, 
you can obtain others by adding any'}' with a·'}'= 0.) 

Intersection forms and connected sums 

The simplest way of combining two 4-manifolds yields the the simplest 
way of combining two intersection forms. First, a bit of review: 

Remembering connected sums. The connected sum of two manifolds M 
and N, denoted by M#N, 

is the simplest method for combining M and N into one connected man
ifold, by joining them with a tube as sketched in figure 3.4 on the next 
page. Notice that the 4-sphere is an identity element for connected sums: 
M#S4 ~ M. 

Connected sums are described more rigorously by choosing in each of M 
and N a small open 4-ball and removing it to get two manifolds M 0 and 
N°, each with a 3-sphere as boundary, then identifying these 3-spheres to 
obtain the closed manifold M # N. 

14. Recall that, given a basis {eJ, ... , em} in a module Z, the dual basis {ej, ... , e;;.} in Z* is specified 
by setting e;(ek) = 1 and ei(ej) = 0 fori f= j. 
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3.4. The connected sum of two manifolds, I 

More about connected sums. The identification of the two 3-spheres must 
be made through an orientation-reversing diffeomorphism a M 0 ~ a N°, as 
was mentioned on page 13. Indeed, if M and N are oriented, then the new 
boundary 3 -spheres will inherit orientations. In order that the orientations of 
M and N be nicely compatible with an orientation of M # N, we must identify 
the 3 -spheres with an orientation flip. 

Furthermore, to ensure that M # N is a smooth manifold, this gluing must be 
done as follows: Choose open 4 -balls in M and N, then remove them. Embed 
copies of S3 x [0, 1] as collars to the new boundary 3 -spheres. Take care to 
embed these collars so that, on the side of M, the sphere S3 x 1 be sent onto 
a M 0 , with S3 X [ 0, 1) going into the interior of M 0 • On the N side, S3 X 0 
should be sent onto a N° and S3 x (0, 1] into the interior of No. Now identify 
the two collars S3 x [0, 1] in the obvious manner and thus obtain M # N, as 
in figure 3.5. This automatically forces the boundary-spheres to be identified 
"inside-out", reversing orientations, and further makes it clear that M # N is 
smooth.15 See figure 3.6 on the next page. The equivalence of this procedure 
with 'Joining by a tube" is explained in figure 3.7 on the facing page. 

_M_o ____.I"""' 1-==--_N_o M#N I 
3.5. Gluing by identifying collars 

Sums and forms. This connected sum operation is nicely compatible with 
intersection forms: 

Lemma. If M and N have intersection forms QM and QN, then their connected 
sum M # N will have intersection form 

QM#N = QM E9 QN · 

Proof. Since M 0 and N° can be viewed as M and N without a 4-
handle (or a 4-cell), and since 2-homology is influenced only by 1-, 2-
and 3-handles, it follows that the 2-homology of M # N will merely be 
the friendly gathering of the 2-homologies of M and N, intersections 
~ill D 

15. In fact, each time you read "A and B both have the same boundary, so we glue A and B along it", you 
should understand that the "gluing" is done via an orientation-reversing diffeomorphism a A ~ a B, 
and that a collaring procedure as above is used. This was already explained on page 13. For more on 
the foundation of these gluings, read from M. Hirsch's Differential topology [Hir94, sec 8.2]. 
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3.6. The connected sum of two manifolds, II 

J[ 
3.7. The connected sum of two manifolds, III 

Topological heaven. For topological 4-manifolds a converse is true: 

Theorem ( M. Freedman). If M is simply-connected and QM splits as a direct 
sum QM = Q' EEl Q", then there exist topological 4-manifolds N' and N" with 
intersection forms Q' and Q" such that M = N' # N". o 
This is a direct consequence of Freedman's classification that we will present 
later.16 Such a result certainly fails in the smooth case, and its failure spawns 
exotic17 JR4 's. 

Invariants of intersection forms 

To start to distinguish between the various possible intersection forms, we 
define the following simple algebraic invariants: 

16. See ahead section 5.2 (page 239). For a more refined topological sum-splitting result, we refer to 
M. Freedman and F. Quinn's Topology of 4-manifolds [FQ90, ch 10]. 

17. See ahead section 5.4 (page 250). 
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- The rank of QM: 

It is the size of QM 's domain, defined simply as 

rankQM = rank;z: H 2 (M;Z), 

or rank QM = dimR H2 (M; IR). In other words, the rank is the second 
Betti number b2 ( M) of M. 

-The s~gnature of QM: 
It is obtained as follows: first diagonalize QM as a matrix over IR (or 
Q), separate the resulting positive and negative eigenvalues, then sub
tract their counts; that is 

signQM = dimHi(M;IR)- dimH~(M;IR), 

where H'i are any maximal positive/negative-definite subspaces for 
QM . We can set partial Betti numbers b~ = dim H'i, and thus we can 
read sign QM = bi ( M) - b2 ( M). 

- The definiteness of QM (definite or indefinite): 

If for all non-zero classes a we always have QM (a, a) > 0, then QM is 
called positive definite. 

If, on the contrary, we have QM (a, a) < 0 for all non-zero a's, then 
QM is called negative definite. 

Otherwise, if for some a+ we have QM(a+, a+) > 0 and for some a_ 
we have QM(a_, a_) < 0, then QM is called indefinite. 

- The parity of QM (even or odd): 

If, for all classes a, we have that QM(a, a) is even, then QM is called 
even. Otherwise, it is called odd. Notice that it is enough to have one 
class with odd self-intersection for QM to be called odd. 

Signatures and bounding 4-manifolds 

A first remark is that signatures are additive: sign( Q' EB Q") = sign Q' + 
sign Q". In particular,18 

sign( M # N) = sign M + sign N . 

Another remark is that changing the orientation of M will change the sign 
of the signature: 

signM = - signM, 

since it obviously changes the sign of its intersection form: QM = -QM. 

18. The additivity of signatures still holds for gluings M Ua N more general than connected sums. 
This result (Novikov additivity) and an outline of its proof can be found in the the end-notes of the next 
chapter (page 224). 
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The signature vanishes for boundaries. More remarkably, the vanishing of 
the signature of a 4-manifold M has a direct topological interpretation: 

Lemma. If M4 is the boundary of some oriented 5-manifold W5 , then 

signQM = 0. 

Proof. Since the signature appears after diagonalizing over some field, 
we will work here with homology with rational coefficients. Thus, de
note by l: Hz(M;Q) ---+ Hz(W;Q) the morphism induced from the 
inclusion of M4 as the boundary of W5 . 

If bounding. First, we claim that if both a, f3 E Hz ( M; Q) have ltt = 0 
and l{3 = 0 then their intersection must be a· f3 = 0. Indeed, since a 
and f3 are rational, some of their multiples ma and nf3 will be integral. 
Then ma and nf3 can be represented by two embedded surfaces Sma 
and Snf3 in M. Since ltt = 0 and lf3 = 0, this implies that Sma and 
Snf3 will bound two oriented 3-manifolds Y ma and Ynf3 inside W. The 
intersection number a · f3 is determined by counting the intersections 
of the surfaces Sma and Snf3, then dividing by mn. However, the inter
section of Y~a and Y~f3 inside W5 consists of arcs, which connect pairs 
of intersection points of Sma and Snf3 with opposite signs, as pictured 
in figure 3.8. It follows that Sma · Sna = 0, and therefore a · f3 = 0, as 
claimed. 

M 

3.8. Bounding surfaces have zero intersection 

If not bounding. Second, we claim that for every a E Hz ( M; Q) with 
ltt -=/= 0 there must be some f3 E Hz(M; Q) so that a· f3 = +1 but l{3 = 0. 
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To see that, we notice that, since let f. 0 in H2(W; Q), there exists a 3-
class B E H3(w,aw; Q) that is dual19 to our ux E H2 (W;Q), i.e., has 
et · B = + 1 in W5 . Its boundary a B = f3 is a class in H2 (M; Q), and we 
have that et · f3 = let· B = + 1 and also that tf3 = 0. See figure 3.9 . 

·•············ ..... . 

··························· 

................... 
. .. 

3.9. A non-bounding class has a bounding dual 

Unravel the form. Finally, we are ready to attack the actual intersection 
form of M. Any class et that bounds in W, i.e., has let = 0, must have 
zero self-intersection et · et = 0. We are thus more interested in classes 
et that do not bound. 

Assume we choose some et E H2 (M; Q) so that let f. 0. Then there 
is some f3 E H2 ( M; Q) so that et · f3 = + 1, while l{3 = 0, and thus 
f3 · f3 = 0. Therefore the part of QM corresponding to {et, {3} has matrix 

Q«fi = [; ~] , 

which has determinant -1 and diagonalizes over Q as [ + 1] EB [ -1] . 
Since QM is unimodular, this means that QM must actually split as a 
direct sum QM = Q«fi EB Q..L for some unimodular form Q..L defined 
on a complement of Q{ et, {3} in H2(M; Q). Since the signature is addi
tive and one can see that sign Q«fi = 0, we deduce that we must have 
sign QM = sign Q..L . 

We continue this procedure for Q..L, splitting off 2-d.imensional pieces 
until there are no more classes et with let f. 0 left. Then whatever is still 
there has to bound in W, and hence cannot contribute to the signature. 
Therefore sign QM = 0. o 

19. A reasoning analogous to the one we made earlier for QM applies to the intersection pairing 
H2(W;Z) x H3(W,aW; Z)-> Z. In particular, it is unimodular, and thus we have dual classes; since 
we work over Q, the indivisibility of« is not required. 
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A consequence of this result is that, whenever two 4-manifolds can be 
linked by a cobordism, they must have the same signature. Indeed, if 
aW=MUN,thenO = sign(MUN) = -signM+signN. Thatis: 

Corollary. If two manifolds are cobordant, then they have the same signature. 
Signature is a cobordism invariant. o 

The signature vanishes only for boundaries. A result quite more difficult to 
prove is the following: 

Theorem ( V Rokhlin ). If a smooth oriented 4-manifold M has 

signQM = 0, 

then there is a smooth oriented 5-manifold W such that a W = M. 

Idea of proof. A classic result of Whitney assures that any manifold 
xm can be immersed in lR2m-I; in particular, our M4 can be immersed 
in JR7 • By performing various surgery modifications, we then arrange 
that M be cobordant to a 4-manifold M' that embeds in JR6 . Further
more, a result of R. Thom20 implies that M' must bound a 5-manifold 
W' inside JR6 . Attaching W' to the earlier cobordism from M to M' 
creates the needed W5 . A few more details for such a proof will be 
given in an inserted note on page 167. 0 

Therefore, the signature of M is zero if and only if M bounds. And hence: 

Corollary ( Cobordisms and signatures). Two 4-manifolds have the same sig
nature if a,nd only if they are cobordant. Signature is the complete cobordism in-
variant. o 

A consequence is that, unlike h-cobordisms, simple cobordisms are not 
very interesting: Every 4-manifold M is cobordant to a connected sum of CP2 's 
or of CP2 's or to 54 . Indeed, assume that signM = m > 0; then, since 
sign CP2 = 1 I it follows that M and # m CP2 must be cobordant; if m < 0 I 
use CP2 's instead. 

Simple examples of intersection forms 

Since the first example of a 4-manifold that comes to mind, namely the 
sphere 54 , does not have any 2-homology, it has no intersection form worth 
mentioning. Thus, we move on: 

20. The result was quoted back in footnote 3 on page 112. 
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The complex projective plane. The complex projective plane CIP2 has inter
section form 

Indeed, since H 2 (CIP2;Z) = Z{[CIP1l} where [CIP1] istheclassofaprojec
tive line, and since two projective lines always meet in a point, the equality 
above follows. 

The oppositely-oriented manifold CIP 2 has 

Q(:Jp2 = [-1] 

Sphere bundles. The manifold S2 X S2 has intersection form 

Q52x52 = [1 1] . 
We will denote this matrix by H (from "hyperbolic plane"). 

Reversing orientation does not exhibit a new manifold: there exist orienta

tion-preserving diffeomorphisms S2 x S2 ~ S2 x S2 , and they correspond 
algebraically to isomorphisms H ~ -H. 

The twisted product S2 x S2 is the unique nontrivial sphere-bundle21 over 
S2 . It is obtained by gluing two trivial patches (hemisphere) X S2 along the 
equator of the base-sphere, using the identification of the 52-fibers that 
rotates them by 27t as we travel along the equator. The intersection form is 

Q52x52 = [~ 1] · 

A simple change of basis in H2 (52 x S2 ; Z) exhibits the intersection form 
as 

Q 52 x 52 = [ 1 _ 1 J = [ + 1 J EEl [- 1 J . 

Even more, it is not hard to argue that in fact we have a diffeomorphism22 

s2 x S2 ~ CIP2 #CIP2 , 

and so we have not really encountered anything essentially new. 

21. Since an 52-bundle over 52 = [)21 U [)22 is described by an equatorial gluing map 51 -> S0(3), 
and n 1S0(3) = Z2, it follows that there are only two topologically-distinct sphere-bundles over a 
sphere. 

22. Quick argument: The equatorial gluing map 51 -> S0(3) of 52 x 52 can be imagined as follows: 
as we travel along the equator of the base-sphere, it fixes the poles of the fiber-sphere and rotates the 
equator of the fiber-sphere by an angle increasing from 0 to 2n. Then these fiber-equators describe 
a circle-bundle of Euler number 1, which thus has to be the Hopf circle-bundle 53 -> 52 . Hence 
the sphere-bundle is cut into two halves by a 3-sphere. Each of these halves is a disk-bundle of Euler 
number 1 and can therefore be identified with a neighborhood of ClP1 inside (:JP2 , but the complement 
of such a neighborhood is just a 4- ball. Taking care of orientations yields the splitting 52 x 52 = C['2 # 
CIT'2. 
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Connected sums. Of course, through the use of connected sums we can 
build a lot of boring examples, such as CJP2 # CJP2 # S2 x 52 , whose in
tersection form is the sum [ + 1 J EB [ -1 J EB H. (Incidentally, notice that this 
manifold has signature zero, and thus must be the boundary of some 5-
manifold.) 

The Ea-manifold. More interesting, though rather exotic, is Freedman's 
Es-manifold ME8 = PE8Ul:pL\. This topological 4-manifold was built ear
lier23 by plumbing on the £8 diagram and capping with a fake 4-ball. Its 
intersection form can be read from the plumbing diagram to be 

2 1 
1 2 1 

1 2 1 

QMEg 
1 2 1 

1 2 1 1 
1 2 1 

1 2 
1 2 

From now on, we will denote this matrix24 by £8 , and succinctly write 
QM = Es. The £8-manifold does not admit any smooth structures.25 

2 2 2 2 2 2 2 

3.10. The Es diagram, yet again 

An alternative algebraic description of this most important Es -form is the 
following: Consider the form Q = [ -1] EB 8 [ + 1] , with corresponding basis 
{eo, e1, ... , es}. The vector K = 9eo + e1 + · · · + es has K · K = -1; therefore 
its Q-orthogonal complement must be unimodular. This complement is the 
Es -form. In particular, we have Es EB [ -1] :=:::! [ -1] EB 8 [ + 1] . 

Lemma. The E8-form is positive-definite, even, and of signature 8. 

Unexpectedly, proof We will perform elementary operations on the 
rows and columns of the £ 8-matrix. This will be fun. 

23. See section 2.3 (page 86). 

24. Various people have slightly different favorite choices for their E8 -matrix, for example, the nega
tive of the above matrix. A brief discussion is contained in the end-notes of this chapter (page 137). 

25. This is a consequence of Rokhlin's theorem, see section 4.4 (page 170) ahead. 
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First of£ notice that these operations must be applied symmetrically, cor
responding to changes of basis in H2(M;Z). That is to say, when for 
example we subtract 3/2 times the first row from the third, we must 
afterwards also subtract 3/2 times the first column from the third col
umn. Indeed, since the matrix A of a bilinear form acts on H2 x H2 
by (x,y) f---t x1 Ay, any elementary change of basis I+ AEij on H2 will 
transform A into (I +AEji)A(I +AEij)· 

Denote by (1), (2), (3), (4), (5), (6), (7), (8) the eight rows/columns of 
the E8 -matrix, and let us start: We write down the E8 -matrix, then 
subtract 1/2 x (1) from (2): 

2 1 2 
1 2 1 3/2 1 

1 2 1 1 2 1 
1 2 1 1 2 1 

1 2 1 
then 1 2 1 1 . 

1 2 1 
1 2 

2 

1 2 1 
1 2 

Subtract 2/3 x (2) from (3),thensubtract 3/4 x (3) from (4): 
2 

3/2 

4/3 1 
1 2 1 

1 2 1 
1 2 1 

1 2 

2 
3/2 

then 

2 

5j 4 1 
1 2 1 

1 2 1 
1 2 

Subtract 4/s x ( 4) from (5), then subtract 1/2 x (8) from (5): 
2 

5/4 

6/s 1 
1 2 1 

1 2 
2 

2 

then 
7/10 1 

1 2 1 
1 2 

Subtract 10/7 x (5) from (6),thensubtract7/4 x (6) from (7): 
2 2 

3/2 

7/IO 
then 5/4 

7/IO 

4/7 1 
1 2 

2 

2 

1 • 

2 

2 

2 

We have diagonalized Es, and its signature is 8. It is positive-definite. 
Its determinant is detE8 = 2 · 3/2 · 4/3 · 5/4 · 7/10 · 4/7 · 1/4.2 1 and 
hence Es is unimodular, as claimed. o 
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A few more examples. ( 1) The intersection form of MEg# MEg is Es EB - Es. 
Algebraically, we have Es EB - Es ~ EB 8 H through a suitable change of basis. 
As it turns out, this corresponds to an actual homeomorphism26 

- 2 2 
MEg# MEg '::::: # 8 s X s . 

Hence the smooth manifold # 8 S2 x S2 can be cut into two non-smoothable 
topological 4-manifolds, along a topologically-embedded 3 -sphere. 

( 2) The intersection form of MEl(:JP2 is [ -1] EB 8 [ + 1], same as the intersec
tion form of CIP2 # 8 CIP2 . The two 4-manifolds, though are not homeomor
phic, and the manifold MEg#CIP2 does not admit any smooth structures.27 

( 3) The manifold MEg# MEg, with intersection form Es EB Es, is not smooth. 28 

Neither is MEg# MEg# S2 X S2 / nor is MEg# MEg# 2 S2 X S2. Howeve~ sud
denly MEg# MEg# 3 S2 x S2 does admit smooth structures, and in what fol
lows we will display such a smooth structure: 

3.3. Essential example: the K3 surface 

A less exotic example (than the E8-manifold) of a 4-manifold whose inter
section form contains E8 's is the remarkable K3 complex surface that we 
build next: 

The Kummer construction 

Take the 4-torus 

and think of each 51-factor as the unit-circle inside C. Consider the map 

cr: '1'4 -----t '1'4 cr(z1,Z2,Z3,Z4) = (z1,Z2,Z3,Z4) 

given by complex-conjugation in each circle-factor, as in figure 3.11 on the 
next page. The involution cr has exactly 16 = 24 fixed points, and thus the 
quotient 

will have sixteen singular points where it will fail to be a manifold. Small 
neighborhoods of these singular points are cones29 on JRJP3 . 

We wish to surger away these singular points of '1'4 j cr in order to obtain an 
actual 4-manifold. For that, we consider the complex cotangent bundle r;z 
26. This homeomorphism follows from Freedman's classification, see section 5.2 (page 239). A direct 
argument can also be made, starting with the observation that MEs# MEs is the boundary of (MEs \ 

ball) x [ 0, 1]. 

27. This follows, again, from Freedman's classification. 

28. This is a consequence of Donaldson's theorem, section 5.3 (page 243). 

29. Remember that the cone CA of a space A is simply the result of taking Ax [0, 1] and collapsing 
A x 1 to a single point (the "vertex"). 
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3.11. Conjugation, acting on S1 

of the 2-sphere. It is the 2-plane bundle over S2 with Euler number -2 (it 
has opposite orientation30 to the tangent bundle Tsz, whose Euler number is 
+2). Its unit-disk subbundle JDT;2 is a 4-manifold bounded by JRJP3 . 

Since a neighborhood of a singular point in '1'4 I CT has the same boundary as 
JDT;2 , we can cut the former out of '1'4 I CT and replace it by a copy of JDT;2 • 

The result of this maneuver is essentially to remove the singular point and 
replace it with a sphere of self-intersection -2 (the zero-section of JDT;2 ). 

We do this for all sixteen singular points. 

Such a desingularization of '1'4 I CT yields a simply-connected smooth 4-mani
fold. This manifold admits a complex structure (thus it is a complex sur
face) and is called the K3 surface. The name comes from Kummer-Kahler
Kodaira.31 The construction above is due to Kummer, which is why this 
manifold used to be known merely as the Kummer surface. 

Homology. The K3 surface has homology Hz(K3; Z) = E9 22.Z (superfi
cially, from 6 tori surviving from '1'4 , plus the 16 desingularizing spheres). 
Its intersection form is 

2 1 2 1 
1 2 1 1 2 1 

1 2 1 1 2 1 

QK3 
1 2 1 

1 2 1 1 1 
EB-

1 2 1 
1 2 1 

1 2 1 1 2 1 
1 2 1 2 

1 2 1 2 

and clearly it is better kept abbreviated as 

QK3 = E92(-Es) E93H. 

30. For a discussion of orientations for complex-duals, see the end-notes of this chapter (page 134). 

31. A. Weil wrote that, besides honoring Kummer, Kodaira and Kahler, the name" K3" was also chosen 
in relation to the famous K2 peak in the Himalayas: "[Surfaces) ainsi nommees en l'honneur de Kummer, 
Kahler, Kodaira, et de Ia belle montagne K2 au Cachemire." 
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Even if this manifold does not seem simple at all, it is in many ways as 
simple as it gets. We will see that K3 is indeed the simplest32 simply-connec
ted smooth 4-manifold that is not 54 nor a boring sum of CJP2, CJP2 and 
52 x 52 's. 

The desingularization, revisited. Let us take a closer look at the desingular
ization of '1'4 I CT that created K3 and try to better visualize it. 

Consider first a neighborhood inside '1'4 of a fixed point x0 of CT. It is merely 
a 4-ball, which can be viewed as a cone over its boundary 3-sphere 53 , 

with vertex at xo. The action of CT on this cone can itself be viewed as being 
thecone33 oftheantipodalmap 53 ---> 53 (which sends w to-w). Therefore, 
the quotient of this neighborhood of Xo by CT must be a cone on the quotient 
of 53 by the antipodal map, in other words, a cone on JRJP3. 

Furthermore, 53 is fibrated by the Hopf map,34 which makes it into a bun
dle with fiber 51 and base 52 . Then its quotient JRJP3 inherits a structure of 
lRJP1-bundle over 52: 

51 c 53 ------+ 52 

II 
JRJP1 c JRJP3 ------> 52. 

However, JRJP1 is simply a circle, so in fact we exhibited JRJP3 as an 51-
bundle over 52 • 

Now let us look back at the neighborhood of a singular point of 'I'4 ICT. It 
is a cone on JRJP3 , and we can think of it as being built by attaching a disk 
to each circle-fiber of JRJP3, and then identifying all their centers in order to 
obtain the vertex of the cone, the singular point. When we desingularize, 
we replace this cone-neighborhood in '1'4 I CT with a copy of lDT;2 • This can 
be viewed simply as not identifying the centers of those disks attached to 
the fibers of JRJP3, but keeping them disjoint. The space of the circle-fibers 
of JRJP3 is the base 52 of the fibration. Thus the space of the attached disks is 
52 as well, and thus their centers (now distinct) will draw a new 2-sphere, 
which replaced the singular point. 

We can thus think of our desingularization as simply replacing each of the 
sixteen singular points of '1'4 I CT by a sphere with self-intersection -2. 

32. We take "simple" to include "simple to describe". Smooth manifolds with simpler intersection forms 
already exist (e.g., exotic #m 52 x 52 's, see page 553), and exotic 54 's could always appear. 

33. Remember that the cone Ct of a map f: A ---> B is the function Ct: CA ---> CB defined by first 
extending f: A---> B to f x id: Ax [0, 1]---> B x [0, 1], then collapsing Ax 1 to a point and B x 1 to 
another, with the the resulting function Ct: CA ---> CB sending vertex to vertex. 

34. Remember that the Hopf map is defined to send a point x E 53 c C2 to the point from 52 = CJP1 

that represents the complex line spanned by x inside C2 . Topologically, the Hopf bundle 53 ---> 52 is 
a circle-bundle of Euler class + 1. Two distinct fibers will be two circles in 53 linked once (a so-called 
Hopf link, see figure 8.16 on page 318). The Hopf map 53 ---> 52 represents the generator of n 3 52 = Z. 
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Holomorphic construction 

A complex geometer would construct the Kummer K3 in a way that visibly 
exhibits its complex structure. Specifically, she would start with 1'4 being 
a complex torus~for example the simplest such, the product of two copies 
of C / (Z EB iZ). Such a 1f4 comes equipped with complex coordinates 
(w1, w2 ), and the involution u can be described as u(w1, wz) = ( -w1, -wz) 
(which is obviously holomorphic). 

As before, the action of u has sixteen fixed points, but, before taking the 
quotient, the complex geometer will blow-up35 1r4 at these sixteen points. 
This has the result of replacing each fixed point of u with a sphere of self
intersection -1 (a neighborhood of which looks like a neighborhood of 
ClP 1 inside CJP2 ). The map u can be extended across this blown-up 4-
torus: since she replaced the fixed points of u by spheres, she can extend u 
across the new spheres simply as the identity, thus letting the whole sphe
res be fixed by the resulting u. 
Only now will the complex geometer take the quotient by u of the blown
up 4-torus. The result is the K3 surface. The spheres of self-intersection 
-1 created when blowing-up the torus will project to the quotient K3 as 
themselves (they were fixed by u), but their neighborhoods are doubly
covered through the action of u; thus these spheres inside K3 have now 
self-intersection -2. 

Many K3's. This is the place to note that a complex geometer will in fact 
see a multitude of K3 surfaces. Indeed, "K3" is not the name of one complex 
surface, but the name of a class of surfaces.36 Any non-singular simply-con
nected complex surface with c1 = 0 is a K3 surface. 

For example, in the construction above, if we start with a different complex 
structure on 1'4 (from factoring C2 by a different lattice), then we will end 
up with a different K3 surface. All K3's that result from such a construc
tion are called Kummer surfaces. However, K3 surfaces can be built in 
many other ways. One example is the hypersurface of ClP3 given by the 
homogeneous equation 

4 4 4 4 0 
z 1 + Zz + z3 + z4 = 

(or any other smooth surface of degree 4). Another is the E(2) elliptic 
surface that we will describe in chapter 8 (page 301). 

This whole multitude of complex K3 surfaces, through the blinded eyes of 
the topologist, are just one smooth 4-manifold: any two K3's are complex
deformations of each other, and thus are diffeomorphic. Hence, in this book 
we will carelessly be saying "the K3 surface". 

35. For a discussion of blow-ups, see ahead section 7.1 (page 286). 

36. For instance, the moduli space of all K3 surfaces has dimension 20. 
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K3 as an elliptic fibration 

The K3 surface can be structured as a singular fibration over 52 , with gene
ric fiber a torus. A (singular) fibration by tori of a complex surface is called 
an elliptic fibration (because a torus in complex geometry is called an elliptic 
curve). A complex surface that admits an elliptic fibration is called an ellip
tic surface. The Kummer K3 is such an elliptic surface. Other examples of 
elliptic surfaces, as well as a different elliptic fibration on the K3 manifold, 
will be discussed later.37 

In any case, describing the elliptic fibration of K3 will help us better visual
ize this manifold. To exhibit it, we start with the projection 

51 x 51 x 51 x 51 --+ 51 x 51 

of 1I'4 onto its first two factors. After taking the quotient by the action of l7, 

this projection descends to a map 

1I'4 I (7 --+ 1I'2 I (7 • 

Its target 1I'2 I l7 is a non-singular sphere 52, as suggested in figure 3.12 (it 
seems like it has four singular points at the comers, but these are merely 
metric-singular, and can be smoothed over). 

) 

3.12. Obtaining the base sphere: 'JI'2 I (T = S2 

Aside from the comer-points of the base-sphere 1I'2 I l7, each of its other 
points comes from two distinct points (p, q) and (p, q) of 1I'2 identified by 
l7. Thus, the fiber of the map 1I'4 I l7 ---t 1I'2 I l7 over a generic point appears 
from l7 1S identifying two distinct tori p X q X 51 X 51 and p X q X 51 X 51 

from 1I'4 . The resulting fiber will itself be a torus. This is the generic fiber 
of 1I'4 I l7 ---t 1I'2 I l7. See also figure 3.13 on the following page. 

On the other hand, each of the four comer-points of the sphere 1I'2 I l7 comes 
from a single fixed point (p0, q0) of l7 on 1I'2. Thus, the fiber of 1I'4 I l7 ---t 

1I'2 I l7 over such a comer appears from l7's sending a torus po x qo x 51 x 51 

to itself. The quotient of this torus is again a cornered-sphere Gust as before, 
in figure 3.12), but now its comers coincide with the sixteen global fixed 
points of l7 on 1I'4. In other words, each such sphere-fiber contains four 

37. See chapter 8 (starting on page 301), which is devoted to these creatures. 
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of the sixteen singular points of the quotient '1'4 I cr, points where the latter 
fails to be a manifold. See again figure 3.13. 

l 

3.13. The map 1I'4 I cr -> 1I'2 I cr and its fibers 

This might be a good moment to notice that '1'4 I cr is simply-connected. It 
fibrates over 52, which is simply-connected, and any loop in a generic torus 
fiber can be moved along to one of the singular sphere-fibers and contracted 
there. The desingularization of '1'4 I cr into K3 does not create any new loops, 
and therefore the K3 surface is, as claimed, simply-connected. 

As explained before, we cut neighborhoods of the singular points out of 
'1'4 I cr and glue a copy of JDT;2 in their stead, thus replacing each singular 
point by a sphere; the result is the K3 surface. The projection '1'4 I cr ---+ 

']['2 I cr survives the desingularization as a map 

K3 ----t 52 • 

Indeed, since we only replaced sixteen points by sixteen spheres, we can 
send each of these spheres wherever the removed point used to go in 52 • 

The generic fiber of K3 -+ 52 is still a torus. However, there are now also 
four singular fibers, each made of five transversely-intersecting spheres: 
the old singular sphere-fiber of ']['4 I cr, together with its four desingulariz
ing spheres. A symbolic picture of this fibration is figure 3.14. 
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-2 -2 -2 -2 

! 
3.14. K3 as the Kummer elliptic fibration 

Observe that the main sphere of the singular fiber must have self-intersection 
-2. This can be can argued as follows: Denote by 5 the main sphere of a 
singular fiber and by 51, 52, 53,54 the desingularizing spheres. Recall how 
the main sphere 5 appeared from factoring by cr: doubly-covered by a torus. 
Imagine a moving generic torus-fiber F of K3 approaching our singular fiber: 
it will wrap around the main sphere twice, covering it. Also, the approaching 
fiber will extend to cover the desingularizing spheres once, and so in homol
ogy we have F = 25 +51+ 52+ 53+ 54. We know that F · F = 0 (since it is 
a fiber), and that each 5k · 5k = -2; then one can compute that we must also 
have 5 · 5 = -2. 

Finally, note that a neighborhood of the singular fiber inside K3 can be 
obtained by plumbing five copies of [)T;2 following the diagram from fi
gure 3.15. 

-2 -2 

)( 
-2 -2 

3.15. Plumbing diagram for neighborhood of singular fiber 
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Note: Duals of complex bundles and orientations 

The pretext for this note is to explain why the cotangent bundle r;2 (used earlier 
for building K3) has Euler class -2 rather than +2; that is to say, why r;2 and 
T5z have opposite orientations. 

Let V be a real vector space, endowed with a complex structure. There are two 
ways to think of such a creature: (1) we can view Vas a complex vector space, 
in other words, think of it as endowed with an action of the complex scalars C x 
V ~ V that makes V into a vector space over the field of complex numbers; or 
(2) we can view Vas a real space endowed with an automorphism I: V ~ V 
with the property that I o I = -id. One should think of this I as a proxy for the 
multiplication by i. The two views are clearly equivalent, related by 

I(v) = i·v. 

Nonetheless, they naturally lead to two different versions of a complex structure 
for the dual vector space. 

The real version. Let us first discuss the case when we view V as a real vector space 
endowed with an anti-involution I. As a real vector space, the dual of V is 

V* = HomlR (V; JR) . 

A vector space and its dual are isomorphic, but there is no natural choice of iso
morphism. To fix a choice of such an isomorphism, we endow V with an auxiliary 
inner-product ( · , · )lR . Then V and V* are naturally isomorphic through 

V ~ V*: v 1---t v* = ( ·, v)JR . 

If V is endowed with a complex structure I, then it is quite natural to restrict the 
choice of inner-product to those that are compatible with I. This means that we 
only choose inner-products that are invariant under I: we require that 

(Jv, Iw)JR = (v, w)lR . 

An immediate consequence is that we have (Jv, w)lR = -(v, Iw)JR. 

We now wish to endow the dual V* with a complex structure of its own. In other 
words, we want to define a natural anti-involution J* : V* ~ V* induced by I. 
Since an isomorphism V :::::: V* was already chosen, it makes sense now to sim
ply transport I from V to V* through that isomorphism. Namely, we define the 
complex structure J* of V* by 

J*(v*) = (Jv)*. 
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More explicitly, iff E V* is given by f(x) = (x, v)lR for some v E V, then 
(J* f)(x) = (x, Jv)JR. However, this means that (J* f)(x) = -(Jx, v)JR, and so we 
have 

J*J = -J(J.). 
Notice that we ended up with a formula that does not depend on the choice of 
inner-product. Hence we have defined a natural complex structure J* on the real 
vector space V* = HomlR ( V, JR) . 

The complex version. If, on the other hand, we think of the complex structure of V 
as an action of the complex scalars that makes V into a vector space Vc over the 
complex numbers, then a different notion of dual space comes to the fore. We must 
define the dual as Vc = Homc(V,C). 

This vector space comes from birth equipped with a complex structure, namely 

(i·f)(x) = if(x) 

for every f E VC'. To better grasp what this VC' looks like, we will endow Vc with 
an auxiliary inner-product. The appropriate notion of inner-product for complex 
vector spaces is that of Hermitian inner-products. This differs from the usual inner 
products by the facts that it is complex-valued, and it is complex-linear in its first 
variable, but complex anti-linear in the second. We have ( · , · )c : V x V ----> C 
with (zv, w)c = z(v, w)c , but (v, zw)c = z(v, w}c for every1 z E C. 

Any Hermitian inner product can then be used to define a complex-isomorphism 
of VC', though not with Vc, but with its conjugate vector space Vc. The latter 
is defined as being the real vector space V endowed with an action of complex 
scalars that is conjugate to that of Vc . That is to say, in Vc we have i · v = -iv. 
The complex-isomorphism with the dual is: 

Vc ...::_, VC': v ~-----+ v* = ( ·, v)c 

Notice that in the definition of v* we must put v as the second entry in ( ·, · )c , 
so that v* be a complex-linear function and thus indeed belong to VC'. 

Iff E VC' is given by f(x) = (x, v)c for some v E V, then we have (if)(x) 
if(x) = i(x,v)c = (x, -iv)c. Thismeansthatwehave 

i·v*=(-iv)*, 

which shows that the complex-isomorphism above is indeed between the dual VC' 
and the conjugate vector space Vc . 

Comparison. In review, if we view a complex vector space as (V, J), then its dual 
is (V*, J*) and the two are complex-isomorphic. If we view a complex vector 
space as Vc, then its dual is VC', which is complex-isomorphic to Vc . To compare 
the two versions, it is enough to notice that Vc translates simply as (V,-J). In
deed, as real vector spaces (i.e., ignoring the complex structures) V* and VC' are 

1. It is worth noticing that the concept of a real inner product compatible with a complex structure, 
and the concept of Hermitian inner product are equivalent: one can go from one to the other by using 
(v, w)c = (v, w)JR - i (iv, w)JR and (v, w)JR = Re (v, w)c . 
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naturally isomorphic. Specifically, the isomorphism HomlR (V, R) r::::J Holllc (V, C) 
sends f: V -+ R to the function f c : V -+ C given by 

fc(x) = Hf(x)- if(Jx)). 

The duals (V*, J*) and Vc thus differ not as real vector spaces, but because their 
complex structures are conjugate. This could be checked directly against the iso
morphism above, or, in the simplifying presence of an inner-product, we could 

simply write: J* ( *) ( . ) * d . * ( . ) * v = zv an l · v = -zv . 

Usage. We should emphasize that, while the "complex'' version of dual is certainly 
the most often used, nonetheless both these versions are important. 

As a typical example, consider a complex manifold X, which is endowed with a 
tangent bundle T x and a cotangent bundle T)(. Owing to the complex structure of 
X, the tangent bundle has a natural complex structure on its fibers. The complex 
structure on T)( is always taken to be dual to the one on T x in its "complex'' ver
sion: as complex bundles, we have T)( r::::J T x. In general for vector bundles with 
complex structures, the dual is usually taken to be the "complex'' dual. 

The "real'' version of dual is also used in complex geometry. Thinking now of the 
complex structure of Tx as J: Tx -+ Tx, we let it induce its own dual complex 
structure J* on T)(. We then extend J* by linearity to the complexified vector 
space T)( ®JR C. The advantage of such an extension is that now J* has eigenval
ues ±i, and thus splits the bundle T)( ® C into its ±i-eigenbundles as 

Tx ® C = A1,0 E9 Ao, 1 ' 

and hence separates complex-valued 1-forms on X into type (1,0) and type (0, 1). 
This is simply a splitting into complex-linear and complex-anti-linear parts: in
deed J* (IX) = -iiX if and only if IX(! x) = +i1X(X), and then IX E A1·0. 
The advantage of using J lies in part with clarity of notation: for a complex-valued 
creature, J will denote the complex action on its arguments (living on X), while i 
denotes the complex action on its values (living in C). 

More on complex-valued forms. Every complex-valued function f: X ---> C has its differential 
df E r(Ti0C) splitintoits (1,0)-parti.lf E f(A1•0) and its (0,1)-partaf E f(A0· 1). Hence, 
a f = 0 means that f's derivative is complex-linear, df(Jx) = i df, and thus that f is holomor
phic. 

By using local real coordinates (x1,y1, ... , Xm,Ym) on X such that Zk = Xk + iyk are local complex 
coordinates on X, we can define dzk = dxk + idyk and dzk = dxk- idyb and write A1•0 = 
C{dz1, ••. ,dzm} and A0• 1 = C{dz1, ... ,dzm}. Indeed, J*(dzk) = +idzk. 

The split 1\1 0 C = /\1•0 EB A0•1 further leads to a splitting of all complex-valued forms into 
(p, q) -types, as in 1\k 0 C = Ak,O EB /\k-1·1 EB · · · EB /\1·k- 1 EB A0·k. Specifically, 1\P·q is made of all 
complex-valued forms that can be written using p of the dzk 's and q of the dZk 's. For example, 
A2•0 contains all complex-bilinear 2-forms. 

The exterior differential d: r(Ak) --t f(Ak+ 1) splits, after complexification, as d = i.l +a with 
i.l: f(/\P·q) --t f(N+ 1.q) and a: f(/\P·q) --t r(I\P·q+1). Since aa = 0, this can be used to de
fine cohomology groups HP·q(X) = Kera /Ima (called Dolbeault cohomology), which offer 
a cohomology splitting Hk(X;C) = Hk· 0 (X) EB Hk- 1·1 (X) EB · · · EB H 1·k-1 (X) EB H0·k(X), with 
HP·q(X) ~ Hq·P(X); further, if X is Kahler, then the Hodge duality operator2 * will take 

2. The Hodge operator will be recalled in section 9.3 (page 350). 
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(p,q)-fonns to (m- q, m- p)-forms, and lead into complex Hodge theory; to just drop some 
names. Any complex geometry book will explain these topics properly; for example P. Griffiths 
and J. Harris's Principles of algebraic geometry [GH78, GH94]; we ourselves will make use of 
(p, q) -fonns for some technical points later on.3 Part of this topic will be explained in more detail 
in the end-notes of chapter 9 (page 365). 

Orientations. Every vector space with a complex structure (defined either way) is 
naturally oriented by any basis like { e1, ie1, ... , ek> iek} (or { e1, J e1, ... , ek> J ek} ). 
Thus its dual vector space, getting a complex structure itself, will be naturally 
oriented as well. However, the choice of duality matters: if our vector space V is 
odd-dimensional (over C), then the two versions of dual complex structure lead 
to opposite orientations of V's dual. Specifically, the real-isomorphism V ~ VC' 
reverses orientations, while V ~ ( V*, J*) preserves them. 

For complex manifolds and their tangent/ cotangent bundles, as we mentioned 
above, one uses the "complex" version of duality. Therefore, for a complex curve 
C (for example, S2 ) we have that the tangent bundle Tc and the cotangent bundle 
Tc, while isomorphic as real bundles, are naturally oriented by opposite orienta
tions. In particular, the tangent bundle T5z is the plane bundle of Euler class +2, 
while the cotangent bundle T;2 is the plane bundle with Euler class -2. 

For a complex surface M (for example, K3 ), the tangent and cotangent bundles 
do not have opposite orientations. Nonetheless, their complex structures are con
jugate, and this leads to phenomena like c1 (TM_) = -c1 (TM). 

Note: Positive £ 8, negative Es 
In some texts, the £8-form is sometimes described by the matrix 

2 -1 
-1 2 -1 

-1 2 -1 

Es ~ 
-1 2 -1 

-1 2 -1 -1 
-1 2 -1 

-1 2 
-1 2 

Correspondingly, the negative-Eg-form is sometimes written 

-2 1 
1 -2 1 

-2 1 

-Es ~ 
-2 1 

1 -2 
-2 

-2 
-2 

These alternative matrices are in fact equivalent with the ones presented earlier, 
because one can always find an isomorphism between the two versions: simply 
change the sign of "every other'' element of the basis. Then the self-intersections 

3. In section 6.2 (page 278), the end-notes of chapter 9 (connections and holomorphic bundles, page 
365) and the end-notes of chapter 10 (Seiberg-Witten on Kahler and symplectic, page 457). 



138 3. Getting Acquainted with Intersection Forms 

are preserved, but, if done properly, the intersections between distinct elements 
will all change signs. Peek back at the Es diagram for inspiration. 

Complex geometers always prefer to have + 1 's off the diagonal (thinking in terms 
of complex submanifolds, which always intersect positively), and so they will 
write - E8 in the version displayed above. 

More than this, certain texts prefer to switch the names of the Es- and negative
Es -matrices. Since what we denote here by - Es appears quite more often than 
Es, calling it Es does save some writing. 

Pick your own favorites. 
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Intersection Forms and 
Topology 

Chapter 4 

lATE explore in what follows the topological ramifications of a 4-mani
V V fold having a certain intersection form. The results discussed are classi
cal, such as Whitehead's theorem, Wall's theorems, and Rokhlin' s theorem. 
All classification results are postponed until the next chapter. 

We start by showing that the intersection form determines the homotopy 
type of a 4-manifold. This theorem of Whitehead is argued in two ways, 
once by using homotopy theory and once through a Pontryagin-Thorn ar
gument. The end-notes (page 230) contain a more general discussion of the 
Pontryagin-Thorn technique. 

In section 4.2 (page 149) we explain the results of C.T.C. Wall: first, if two 
smooth 4-manifolds are h-cobordant, then they become diffeomorphic af
ter summing with enough copies of S2 x S2 ; second, if two smooth 4-mani
folds have the same intersection form, then they must be h-cobordant. No
tice that this last result can be combined with M. Freedman's h-cobordism 
theorem to show that two smooth 4-manifolds with the same intersection 
forms must be homeomorphic. 

In section 4.3 (page 160) we discuss the characteristic classes of the tangent 
bundle of a 4-manifold. Most important among these is the second Stiefel
Whitney class w2 ( T M). Its vanishing is equivalent, on one hand, to the 
intersection form being even, and on the other hand, to the existence of 
a spin structure on M. Various definitions of spin structures and related 
concepts are explained in the end-notes, and we refer to their introduction 
on page 173 for an outline of their contents. 

-139 
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Section 4.4 discusses the integral lifts of wz ( T M), called characteristic ele
ments. These always exist, and their self-intersections are congruent mod
ulo 8 to the signature of M. A striking result of Rokhlin's states that if 
w2 (TM) vanishes and M is smooth, then the signature of M is not merely 
a multiple of 8, but of 16; the consequences of this fact pervade all of topol
ogy. For us, an immediate consequence is that Es can never be the intersec
tion form of a smooth simply-connected 4-manifold. 

Finally, we should also mention that the end-notes contain a discussion of 
the theory of smooth structures on topological manifolds of high dimen
sions (page 207). 

4.1. Whitehead's theorem and homotopy type 

It is obvious that, if two 4-manifolds are homotopy-equivalent, then their 
intersection forms must be isomorphic. A first hint of the overwhelming 
importance that intersection forms have for 4-dimensional topology comes 
from the following converse: 

Whitehead's Theorem. Two simply-connected 4-manifolds are homotopy-equi
valent if and only if their intersection forms are isomorphic. 

The result as stated was proved by J. Milnor, based on J.H.C. Whitehead's 
work. The rest of this section is devoted to a proof of this result.1 

Start of the proof. Take a simply-connected 4-manifold M: it has homol
ogy only in dimensions 0, 2 and 4. Therefore, by Hurewicz's theorem, 

nz(M) ~ Hz(M;Z). 

Since M is simply-connected, the latter has no torsion and thus is isomor
phic to some E9 m Z. Hence the isomorphism 1t2 ~ Hz can be realized by 
amap2 

f: 52 V · · · V 52 ---+ M . 

Such f induces an isomorphism on 2-homology, and thus on all homology 
groups but the fourth. 

To remedy this defect, we can cut out a small 4-ball from M and thus anni
hilate its H4. The remainder, denoted by M 0 , is now homotopy-equivalent 
to 52 V · · · V 52 : Indeed, the map f can be easily arranged to avoid the miss
ing 4-ball, and it then induces an isomorphism of the whole homologies of 

1. The next section starts on page 149. 

2. Remember that A V B is obtained by identifying a random point of A with a random point of B. 
(One can realize A VB as A x b U a x B inside A x B.) Thus, 52 V · · · V 52 is a bunch of spheres with 
exactly one point in common; it is called a bouquet of spheres. 
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the two spaces. Invoking a celebrated result of Whitehead3 implies that f 
is in fact a homotopy equivalence 

MD rv 52 V • • • V 52 . 

Since M can be reconstructed by gluing the 4-ball back to MD, we deduce 
that the homotopy type of M can equivalently be obtained from V m 52 by 
gluing a 4-ball104 to it: 

M rv V m 52 U 104 • cp 

The attachment of the ball is made through some suitable map 

cp : a 104 ----t v m 52 . 

In conclusion, the homotopy type of M is completely determined by the 
homotopy class of this cp; this class should be viewed as an element of 
n3(Vm52). 

To prove Whitehead's theorem, we need only show that the homotopy class 
of cp is completely determined by the intersection form of M. This can be 
seen in two ways, an algebro-topologic argument and a more geometric 
(but longer) argument. We present both of them: 

Homotopy-theoretic argument 

For the following proof, the reader is assumed to have a friendly relation
ship with algebraic topology; if not, skip to the alternative argument. 

At the outset, it is worth noticing that, through the homotopy equivalence 
M rv V m 52 Ucp 104, the fundamental class [M] E H4(M; Z) corresponds 

to the class of the attached 4-ball104 ; indeed, since the latter has its bound
ary entirely contained in the 2-skeleton V m 52 , it represents a 4-cycle. 

Think of each 52 as a copy of CP1 inside cpoo. Then embed 

52 v ... v 52 c CP00 X . . . X CP00 I 

and consider the exact homotopy sequence 

7!4( X m CP00 )---+ 7!4( X m CP00 , Vm 52)---+ 1t3 ( Vm 52)---+ 1t3 (X m CP00 ) • 

Since cpoo is an Eilenberg-MacLane K(Z, 2)-space, the only non-zero ho
motopy group of X m CP00 is n2 , and thus the above sequence exhibits an 
isomorphism 

3. The statement is: If between two simply-connected CW -complexes there exists a map that induces iso
morphisms on all homology groups, then this map must be a homotopy equivalence. Note that an abstract 
isomorphism of homologies is not sufficient. 
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The above 1t4 is made of maps D 4 --> X m ClP00 that take a D 4 to V m 52 . 

The isomorphism associates to cp: a D 4 --> V m 52 in n3 the class of any of 
its extensions _ D 4 ClPoo cp: -----+ Xm . 

Further, since the inclusion V m 52 c X m ClP00 induces an isomorphism 
on n2 's, a different portion of the same homotopy exact sequence implies 
that both n2 and n3 of the pair ( X m ClP00 , V m 52) must vanish. Therefore, 
Hurewicz's theorem shows that we have a natural identification 

n4( X m ClP00 , Vm 52) ~ H4( X m ClP00 , Vm 52; Z) . 

Through this identification, the class of ?p from n4 is sent to the class 

?p*[D4] E H4( XmClP00 , Vm52; Z), 

where ?p* is the morphism induced on homology by the map ?p. 

Moreover, since both H4 and H3 of V m 52 vanish, the homology exact 
sequence makes appear the isomorphism 

H4( X m ClP00 , Vm 52; Z) ~ H4( X m ClP00 ; Z) . 

For example, since ?p* [D4] represents a 4-class and its boundary is in
cluded in the 2-skeleton of X m ClP00 I it follows that ?p* [D4] can be viewed 
as a 4-cycle directly in H4 ( X m ClP00 ; Z). 

Owing to the lack of torsion, we also have a natural duality 

H4( X m ClP00 ; Z) = Hom(H4( X m ClP00 ; Z), Z) . 

This shows that, in order to determine ?p* [D4] in H4 , it is enough to eval
uate all classes from H4 on it. In other words, the class cp E n3 ( V m 52) 

(and thus the homotopy type of M) are completely determined by the set 
of values ak(o/*[D4l) for some basis {akh of H4 ( X m ClP00 ; z). 
Such a basis can be immediately obtained by cupping the classes dual to 
each 52 , that is to say, we have 

H 4 ( XmClP00 ; Z) = Z{wiUw1·} . . , l,J 

where Wk denotes the 2-class dual to CJP1 inside the kth copy of ClP00 • 

Furthermore, since 

H2 ( X m ClP00 ; Z) ~ H2 ( Vm 52; Z) ~ H2 (M0 ; Z) ~ H2(M;Z), 

we see that each class wk of X m ClP00 can in fact be viewed as a 2-class 
wk of M itself. 

Specifically, the inclusion t : V m 52 c X m ClP00 extends by ?p to the map 

X m ClP00 • 
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The wk's appear as the pull-backs wk = (t + ip)*wk and make up a basis of 
H2 (M;Z). 

Evaluating wi U Wj on ip* [104] inside X m ClP00 yields the same result as 
pulling Wi and Wj back toM, cupping there, and then evaluating on [104]: 

(wi U wj)(ip* [104]) ( (t + ip)* (wi U Wj)) [104] 

( (t + ip)*wi) U ( (t + ip)*wj) [104] 

- (wi U wk)[104]. 

However, as we noticed at the outset, the class [104] coincides with the 
fundamental class [M] of M, and hence 

(wiUWk)[104] = QM(Wj,Wk) · 

Since {WI, ... , Wm} is a basis in H2 ( M; Z), we deduce that the set of values 
QM(wi, wk) fills-up a complete matrix for the intersection form QM of M. 

On the other hand, as we have argued, by staying in X m ClP00 and eval
uating all the Wi U wj's on ip* [104] we fully determine the class of cp in 
1t3 ( V m 52 ) and thus fix the homotopy type of M. 

This concludes one proof of Whitehead's theorem. 0 

Pontryagin-Thorn argument 

We have seen that the homotopy type of M can be represented as the result 
of gluing a 4-ball 104 to a bouquet of spheres 52 V · · · V 52 by using some 
map cp: a 104 --t V m 52 . Thus, the homotopy type of M corresponds to 
the homotopy class of cp. We need to argue that cp is determined by the 
intersection form of M. 

A geometric way of seeing how the intersection form QM determines the 

attaching map cp: 53 ~ v m 52 

comes from what is known as the Pontryagin-Thorn construction. The lat
ter technique will be detailed in more generality in the end-notes of this 
chapter (page 230). 

The framed link. Pick some points PI, ... , Pm, one from each 2-sphere of 
V m 52 • Arrange by a small homotopy that cp be transverse to these points. 

Also, wiggle cp until each pre-image cp-I [pk] is connected.4 Then each Lk = 
cp-I [pk] is an embedded circle in 53 (a knot), and so the union 

L = LI U · · · U Lm 

is a link in 53 , as suggested in figure 4.1 on the following page. 

4. If "wiggle" is not convincing, read from the end-notes of this chapter (page 230). 
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·J 

4.1. Framed link, from attaching a 4-ball to 52 V · · · V S2 

The way this link L appears out of the map cp endows it with an extra 
bit of structure, namely a framing: For each Lb embed its normal bundle 
NLkfS3 as a subbundle of T53 over Lk. Since cp is transverse to Pk and can 
be assumed to be differentiable all around Lb it follows that dcp: T531Lk -----t 

T52IPk restricts to a map NLkfS3 ---t T52IPk that is an isomorphism on fibers, 
see figure 4.2 on the next page. The effect is that the normal bundle NLKfS3 

is thus trivialized. Such a trivialization of the normal bundle of Lk is called 
a framing of the knot Lk. Doing this for each Pk results in a framed link 
L = L1 U · · · U Lm. Also notice that each component of the link gains a 
natural orientation.5 

5. We have T531Lk = TLk EB NLkfS3; since 53 is oriented and NLkfS3 lifts an orientation from 52 (at the 
same time with the framing), this induces an orientation of hk . 
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·J 

4.2. Pulling-back a framing 

The linking matrix. We now focus on some simple numerical data that is 
expressed by our L. On one hand, for every two components Li and Lj, we 
have the linking numbers 

This integer measures how many times Li twists around Lj. 

More rigorously, one chooses in S3 an oriented surface Fj bounded by6 Lj 
and counts the intersection number of Fj with Li in S3 , as in figure 4.3. The 
linking number does not depend on the choice of Fj and is symmetric on link 
components: lk(Li, Lj) = lk(Lj, Li). 

4.3. Linking number of two knots 

We also have the self-linkings numbers lk(Lb Lk), induced from the fram
ing. These count the twists of the trivialization of Lk 's normal bundle. 

6. Such a surface always exists and is called an (orientable) Seifert surface for L1; we will say a bit 
more in a second. 
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The self-linking number can be defined by picking some section of NLdS3 

that follows the trivialization of NLdS3 given by the framing, then thinking 
of that section as drawing a parallel copy q of Lk in S3, and finally setting 
lk(Lb Lk) to equal the linking number lk(L~, Lk) of Lk with this parallel copy, 
as suggested in figure 4.4. In our context, this self-linking number can also be 
defined directly: since Lk = cp-1 [pk], pick a point p~ close to Pb and define 
lk(LbLk) = lk(cp-1[pk], cp- 1[pm. 

4.4. Self-linking number of a framed knot 

All these self/linking numbers can be fit together into a matrix 

[lk(Lj, Lj) ]i,j I 

which is called the linking matrix of the framed link L. 

On one hand, it turns out that this linking matrix is exactly the matrix of 
the intersection form of M, as we will argue shortly. On the other hand, 
a Pontryagin-Thorn framed-bordism argumenf can be used to show that 
the homotopy class of cp is entirely determined by this linking matrix. 

The intersection form. To see that the linking matrix of L indeed governs 
intersections in M, start by choosing for each Lk an oriented surface Sk 
inside D 4 that is bounded by Lb as in figure 4.5. 

52 v ... v 52 

4.5. Building intersections out of a link. 

7. See the end-notes of this chapter (page 230). 
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Such Sk 'sexist because, as we mentioned before, every knot Kin JR3 bounds 
an orientable surface that is bounded by K, called a Seifert surface forK. (If 
not convinced, draw a knot, then try to draw its Seifert surface.8 Take a peek 
at figure 4.6 for inspiration. In any case, this is merely a particular case of 
the general fact that homologically-trivial codimension-2 submanifolds must 
bound codimension-1 submanifolds.) To get the Sk 's above, one can start 
with Seifert surfaces in 53 for each Lkt then push their interiors into JD4 . 

4.6. A Seifert surface for the trefoil knot 

The fundamental fact to notice is that lk(Li, Lj) is in fact the intersection 
number Si · Sj of the corresponding surfaces in JD4 : 

Ik(Li, Lj) = si · sj. 

See figure 4.7 on the following page for an argument. 
Therefore, when rebuilding the homotopy type of M through attaching JD4 

to V m S2 via the map cp, each Sk has its boundary Lk collapsed to the point 
Pkt and thus creates a closed surface s;;. Since the intersection numbers 
Sj · Sj in (the homotopy type of) M are exactly lk( Li, Lj), we conclude that 
the linking matrix captures part of the intersection form of M. 
To conclude the proof, all we need to do is argue that the intersections of the 
Sj;'s in fact exhaust the whole intersection form of M. In other words, we 
need to argue that the Sj;'s represent a basis for Hz(M;Z). For this, recall 
that the homology H2 (M; Z) was generated by the classes of the spheres of 
V m S2 . The classes s;; intersect the classes of those spheres exactly once. 

Since the intersection form of M is unimodular, this implies that the s;; 's 
make up the dual basis9 to the basis exhibited by the spheres of V m S2 . 

This concludes the alternative proof of Whitehead's theorem. 0 

8. Be careful to not draw a non-orientable surface. 

9. Two classes it and f3 were called dual to each other if it· f3 = 1; see back on page 117. 
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l 

4.7. Linking numbers are intersection numbers of bounded surfaces 

Example. Let us conclude the discussion of Whitehead's theorem with a 
very simple example. If we take cp: 53 ---t 52 to be the Hopf map,1° then its 
link is the unknot11 with framing + 1, and the homotopy type obtained by 
attaching [)4 to 52 using this cp is none other than CP2 's. 

Upside-down handle diagrams. In a certain sense, the whole procedure from 
the above proof is an upside-down version of a handle decomposition: the 
framed link L is nothing but a Kirby diagram 12 for attaching 2-handles to 
D 4 . The closing of Sk into s; by collapsing Lk to Pk is homotopy-equiva
lent to gluing along Lk a disk with center Pk: the core of a 2-handle. Then the 
framings can be used to thicken this disk to an actual2-handle and eventually 
transform the whole procedure from gluing D 4 to V m S2 into attaching 2-
handles to D 4 along the link L in a D 4 . 

10. The Hop£ map was recalled back in footnote 34 on page 129. 

11. A knot K is called the unknot if it is trivial, or not knotted. Specifically, this means that K bounds 
some embedded disk. 

12. Kirby diagrams were explained back in the end-notes of chapter 2 (page 91). 
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However, the framed link L is just one of many Kirby diagrams that can be 
obtained through homotopies of cp. The intersection form (i.e., the homotopy 
class of cp) is far from determining precisely the shape of this link. Most 
of these links will not even lead to constructions that close-up to a smooth 
closed 4-manifold. (They always close-up as topological 4-manifolds by us
ing Freedman's fake 4-balls, since if one starts with a unimodular matrix, 
then the resulting boundary will be a homology 3 -sphere.13) The framed link 
L is just one of many diagrams for a handle decomposition of a creature ho
motopy-equivalent to M, but rarely of M itself. 

4.2. Wall's theorems and h-cobordisms 

We will now present a series of results due to C.T.C. Wall, which culmi
nates with the statement that, if two smooth simply-connected 4-manifolds 
have isomorphic intersection forms, then they are not merely homotopy
equivalent, but in fact are h-cobordant. Combining this with Freedman's 
topological h-cobordism theorem will yield immediately that, if two smo
oth simply-connected 4-manifold have the same intersection form, then 
they must be homeomorphic. 

Sum-stabilizations 

Two smooth 4-manifolds M and N are often h-cobordant without being 
diffeomorphic. To obtain a diffeomorphism, we can first "stabilize" the 
manifolds. A sum-stabilization14 of a 4-manifold means connect-summing 
with copies of S2 x S2 . The world of smooth 4-manifolds considered up to 
such stabilizations is considerably simplified: 

Wall's Theorem on Stabilizations. If M and N are smooth, simply-connected 
and h-cobordant, then there is an integer k such that we have a diffeomorphism 

M # k S2 X S2 ~ N # k S2 X S2 . 

Proof. Adding S2 x S2 's essentially allows us to go through with the 
h-cobordism theorem's program. This is owing to the fact that the new 
spheres can be used to undo unwanted intersections of surfaces, such 
as self-intersections of immersed Whitney disks. 

Imagine that two surfaces P and Q have an intersection point that we 
want to be rid of. First, since S2 x S2 contains two spheres meeting 
in exactly one point, we can join P with one such sphere by using a 
thin tube, as in figure 4.8 on the next page; the result is that P is now 

13. This last fact will be proved in the the end-notes of the next chapter (page 261). 

14. The name "stabilization" is in tune with, for example, stable properties of vector bundles-those pre
served after adding trivial bundles; or stable homotopy groups-the part preserved after suspensions. 



150 4. Intersection Forms and Topology 

meeting the other sphere in exactly one point. (A sphere meeting a 
surface P in exactly one point is sometimes called a transverse sphere 
for P.) 

Q Q 

) 

p 

4.8. Joining a sphere 

Second, we pick a path in P from the intersection point with Q to the 
intersection point with the transverse sphere. Then, using a thin tube 
following this chosen path, we can connect Q to a parallel copy of the 
sphere, as in figure 4.9. The intersection point of P and Q has vanished. 

Q 

) 
p 

4.9. Eliminating an intersection by sliding over a sphere 

Notice that none of these maneuvers changed the genus of either P or 
Q. Thus, one can use this procedure to eliminate self-intersections of 
immersed Whitney disks and proceed with the h-cobordism program. 

Finally, for dealing with the framing obstruction for the Whitney trick 
in dimension 4, which was observed back in the end-notes of chapter 1 
(page 57), one can connect-sum the Whitney disk with the diagonal or 
anti-diagonal sphere15 of an extra 52 x 52 , which changes the framing 
of the disk by ±2. Since having intersection points of opposite signs 
guarantees that the framing of a Whitney disk is even, summing with 
enough such diagonal spheres achieves the vanishing of the framing, and 
hence allows us to proceed with the Whitney trick. 

15. The diagonal sphere in 52 x 52 is the image of the embedding 52 ---> 52 x 52 : x f--> (x, x) and has 
self-intersection +2. The anti-diagonal sphere is the image of x f--> (x, -x), with self-intersection -2. 
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With luck, a same 52 x 52-term could be used for eliminating several 
(if not all) intersections.16 If not, add more. o 

An alternative argument (more economical with 52 x 52-terms) will be en
countered on page 157, in the middle of the proof of Wall's theorem on 
h -cobordisms. 

Of course 52 x 52 is not the only summand that can be used with similar 
effects as above. One might imagine that, for example, the twisted prod
uct 52 x 52 would work just as well. However, on one hand, summing 
with 52 x 52 's preserves the parity and signature of M, which is usually 
desirable; and, on the other hand, in many cases summing with 52 x 52 is 
nothing different, since one can prove directly that: 

Lemma. If M 4 has odd intersection form, then there is a diffeomorphism 

M # 52 x 52 ~ M # 52 x 52 • 

Idea of proof. Consider the simple case when M is CJP2 • For brevity, 
we use Kirby calculus, as outlined in the end-notes of chapter 2 (page 
91). Then, after two handle slides and a bit of clean-up, it is done, as 
shown in figure 4.10. For the general case, one would slide over some 
odd-framed handle of M, then use similar tricks to untangle and sepa-
rate 52 x 52 from M. 0 

0 0 0 m handle slide 0 handle slide 

1 ---+- 6 ---+-

0 
0 1 m 

1 of--

0 
4.10. Proof that CP2 # S2 X S2 "' CP2 #S2 x S2 

16. It is worth noting that in all known cases summing with just one copy of 52 x 52 is enough. Currently, 
there are no devices able to detect cases when more than one copy of 52 x 52 would be necessary. 
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Automorphisms of the intersection form 

Wall also investigated algebraic automorphisms of intersection forms, and 
the question of their realizability by self-diffeomorphisms of an underlying 
4-manifold. 

Algebraic automorphisms. Let us consider for a moment the intersection 
form as an abstract algebraic creature, a symmetric bilinear unimodular 
form 

Q: Z X Z-------* Z, 

defined on some finitely-generated free Z-module Z. An automorphism 
of Q is a self-isomorphism cp: Z ;:::::; Z that preserves the values of Q; that 
is to say, Q(x,y) = Q(cpx, cpy). 

The divisibility of an element x of Z is the greatest integer d such that x can 
be written as x = dxo for some non-zero x0 E Z. An element of divisibility 
1 is called indivisible. 

An element w of a Z-module endowed with a symmetric bilinear unimo
dular form Q is called characteristic if it satisfies 

Q(w,x) = Q(x,x) (mod 2) 

for all x E Z. Notice that, if Q is even, then the divisibility of any character
istic element must be even; further, if Q is even, then w = 0 is characteristic. 
An element is called ordinary if it is not characteristic. Whether some x E Z 
is characteristic or ordinary is called the type of x. 

Wall's Theorem on Automorphisms. If rank Q - I sign Ql ~ 4, then, given 
any two elements x', x" E Z with the same divisibility, self-intersection and type, 
there must exist an automorphism cp of Q so that cp( x') = x". o 

Since rank Q- sign Q is always even the condition rank Q- I sign Ql 2: 4 only 
excludes definite forms (when sign Q = ±rank Q) and forms with rank Q
I sign Ql = ±2 (which Wall calls near-definite). As we will see later}' the only 
excluded forms are H and [ + 1 J EB m [ -1 J and [ -1 J EB m [ + 1 J and all definite 
forms. Further, as far as smooth 4-dimensional topology is concerned, the 
only relevant definite forms are18 EB m [ + 1 J and EB m [ -1 J . 

The characteristic elements of an intersection form will continue to play an 
important role and will be visited again in section 4.4 (page 168) ahead. 

17. From Serre's classification of indefinite forms; see section 5.1 (page 238). 

18. This follows from Donaldson's theorem; see section 5.3 (page 243) ahead. 
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Automorphisms and diffeomorphisms. It is obvious that any self-diffeomor
phism of a 4-manifold induces an automorphism of its intersection form. 
The converse is true, but only after stabilizing once: 

Wall's Theorem on Diffeomorphisms. Let M be a smooth simply-connected 
4-manifold with QM indefinite.19 Then any automorphism of the intersection 
form of M # S2 X S2 can be realized by a self-diffeomorphism of M # S2 X S2 . 

Idea of the proof One identifies a concrete set of generators for the 
group of automorphisms of QM EB H, then one shows directly that each 
of these generators corresponds to a self-diffeomorphism. o 

Topological heaven. It should no longer come as a surprise that, if we weaken 
to the realm of topological 4-manifolds, stabilization is no longer necessary: 

Theorem (M. Freedman). Any automorphism of QM can be realized by a self
homeomorphism of M, unique up to isotopy. o 

Of course, the smooth version of such a result fails. 20 

Self-diffeomorphism from spheres. For amusement, we briefly mention a cou
ple of examples of self-diffeomorphisms of a 4-manifold. These are built 
around an embedded sphere 5 of self-intersection21 ±1 or ±2, and act on 
homology by [5] r---. -[5] and by fixing the Q-complement of [5]; in other 
words, they act as reflections on the homology lattice. Of course, finding such 
spheres is an endeavor in itself and often they do not exist.22 

Reflection on a ( ± 1) -sphere. A neighborhood of a ( + 1) -sphere 5 in M is 
diffeomorphic to a neighborhood of (]P1 in (:JP2 , and furthermore M = 
M' #(]P2, with 5 appearing as (]P1 in (]P2 . Our diffeomorphism acts on 
(:JP2 and fixes M'. We take coordinates [zo : z 1 : z 2] on (:JP2 and consider the 
complex conjugation cp0 : (:JP2 -+ (:JP2, with cp0 [zo : z1 : z2] = [z1 : z2 : z2]. 

Away from the projective line (]P1 = {zo = 0}, on (]P2 \ CJP1 = C 2, this con
jugation acts as (z1,z2) f---t (z1,z2), or, in real coordinates, (x1,y1, x2,y2) f---t 

(x1, -y1, x2, -y2). We pick a small4-ball D 4 aroru1d 0 E C2 and modify cp0 

as we approach D 4 by increasingly rotating the (y1,y2 )-plane by an angle 
growing from 0 ton, until cp0 becomes the identity on all D 4 ; see figure 4.11 
on the following page. We have built a self-diffeomorphism cp of CJP2 that 
flips CJP 1 but fixes a small 4-ball D 4 . If we think of M = M' #CJP2 as being 
built by cutting out D 4 from CJP2, then cp extends from CJP2 to the whole M 
by the identity. (For a ( -1) -sphere, reverse orientations.) 

19. Requiring that the intersection form of a smooth 4-manifold be indefinite is not a strong restriction, 
since in fact the only excluded forms are EB m [ ± 1] ; see section 5.3 (page 243) ahead. 

20. For example, a simple obstruction is that any automorphism of QM that can be realized by diffeo
morphisms must send Seiberg-Witten basic classes to basic classes (for these notions, see chapter 10, 
starting on page 375 ahead), but even that in general is not sufficient. 

21. For the extent of this inserted note, we will call such spheres (±I)- and ( ±2) -spheres. 

22. Nonetheless, recall that we did identify twenty ( -2)-spheres inside the K3 surface, see page 133. 
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lflo 

1 

4.11. Modification toward reflection on a ( -1) -sphere 

Reflection on a ( ±2) -sphere. A neighborhood of a ( + 2) -sphere S in M is dif
feomorphic to the unit-disk bundle DT52. We think of DT52 as { ( v, w) E 

IR3 x IR3 I I vi = 1, lwl :::; 1, v l_ w} and define a self-diffeomorphism 
cp: DT52 -+ DT52 by 

cp(v,w)={(cosD·v+ sinD· 1~ 1 w, cosD·w+ sinD·Iwl(-v)) ifwf=O 
(-v,O) ifw=O 

with D = (1- lwl)n. Specifically; each tangent vector w determines a great 
circle in S2 and we slide w along this circle by a distance depending on I w I : 
the shorter w is, the more we travel; see figure 4.12. The resulting cp restricts 
as the antipodal map on the sphereS = { ( v, 0)}, but as the identity on a DT52 

and thus can be extended by the identity to the rest of M, yielding a self
diffeomorphism cp of M. (For a (-2) -sphere, reverse orientations.) 

·· .. 

4.12. Reflection on a ( + 2) -sphere 
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Wall's theorem on diffeomorphisms plays an essential role in proving the 
fundamental result that we present next. 

Intersection forms and h-cobordisms 

Going quite further than Whitehead's theorem, C.T.C. Wall proved that two 
smooth manifolds with the same intersection form are more than merely 
homotopy-equivalent: 

Wall's Theorem on h -Cobordisms. If M and N are smooth, simply-connec
ted, and have isomorphic intersection forms, then M and N must be h-cobordant. 

If we combine with the earlier theorem on stabilizations, this yields: 

Corollary. If M and N are smooth, simply-connected, and have the same inter
section form, then there is an integer k such that we have a diffeomorphism 

0 

On the other hand, if we combine the above theorem on h-cobordisms with 
M. Freedman's topological h-cobordism theorem, then we deduce the fol
lowing most remarkable result: 

Corollary ( M. Freedman). If two smooth simply-connected 4-manifolds have 
isomorphic intersection forms, then they must be homeomorphic. o 

This came almost twenty years after Wall's results. Even today the attempt 
to strengthen the above to diffeomorphisms does not get farther than the 
preceding direct combination of Wall's old results. 

Because of this striking consequence, in what follows we will present a 
fairly complete proof of Wall's theorem on h-cobordisms; it will take the 
rest of this section. 23 

Proof of Wall's theorem on h-cobordisms 

Since M and N have the same signature, M UN has signature zero, and 
thus it must bound some 5-manifold; in other words, there is some ori
ented W5 that establishes a cobordism between M and N. 

The proof of the theorem consists in modifying this W (without changing 
its boundary) until it becomes simply-connected and homologically-trivial, 
in other words, until it becomes an h-cobordism from M to N. 

23. The next section starts on page 160. 
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Kill the fundamental group. The first step is to modify W5 to make it sim
ply-connected. We choose a set of generating loops £1, ... , Rn for 1t1 (W), 
realized as disjointly embedded circles. We will add disks to kill these ho
motopy classes. Specifically, for each .ek we take a tubular neighborhood 
51 x D 4 of .ek and cut it out. This leaves a hole with boundary 51 x S3 , which 
we fill by gluing-in a copy of 102 x S3 • In the resulting 5-manifold, the class 
of .ek is trivial. Repeating for all £k's yields a new cobordism between M 
and N, still denoted by W, that is simply-connected. 

Divide and conquer. Choose now a handle decomposition of W5 . Since 
W is connected, we can cancel all 0- and 5-handles. Further, since W 
is simply-connected, all its 1-handles can be traded for 3-handles, and, 
upside-down, all 4-handles for 2-handles. We end up with a handle de
composition of W that only contains 2- and 3-handles, and view W as 

W5 = M4 x [O,e] U {2-handles} U {3-handles} U N4 x [-e,O], 

which we split into the two obvious halves: on one side, M and the 2-
handles, on the other, N and the 3-handles, as on the left of figure 4.13. 
Looking upside-down at the upper half of W, instead of seeing the 3-
handles as glued to the lower half, we can view them as 2-handles glued 
upwards to N x [ -£,0]. 

~=i~~;r:~N 
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(\(\(\(\(\ MI/z 

M 
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4.13. The two halves of a simply-connected cobordism 

Hence the middle level M1;21 in between the 2- and the 3-handles, is a 4-
manifold that can be obtained either from M by adding regular 2-handles 
attached downwards, or from N by adding upside-down 2-handles at
tached upwards. 

The strategy for the remainder of the proof is the following: We will cut 
W into its two halves, then glue them back after twisting by a suitable self
diffeomorphism cp of M1;2 , as in figure 4.14 on the next page. This cut-and
reglue procedure will create a new cobordism from M to N. If we choose 
the right diffeomorphism cp, then the 3-handles from the upper half will 
cancel algebraically the 2-handles from the lower half. This means that 
the newly created cobordism between M and N will have no homology 
relative to its boundaries, and so will indeed be an h-cobordism from M 
toN. 
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On the frontier. Let us first clarify the shape of M1;2 • Think of it as obtained 
from M after adding the 2-handles of W. 

A 5-dimensional 2-handle is a copy of 102 x D 3 , to be attached by glu
ing 51 x D 3 to M4 . To attach such a 2-handle to M, we need to specify 
where the attaching circle 51 x o is being sent, but a circle in a 4-manifold 
is isotopic to any other embedded circle. We also need to specify how the 
"thickening" ofthe attaching circle is to be glued toM. Since24 n 1S0(3) = 
Z2, there are only two ways of doing that, depending on whether the 3-
disk D 3 in M twists an even or an odd number of times around the attach
ing circle.25 Therefore, to fully describe M11z all we need is to specify how 
many "odd" and how many "even" 2-handles are to be attached. 

Attaching a 2-handle 102 x D 3 deletes a copy of 51 x D 3 from M and, as 
a step toward M1;v replaces it with a copy of 102 x S2 • On one hand, if 
the 2-handle is even, then the disk 102 from 102 x S2 can be closed to a 2-
sphere of self-intersection 0: unite the disk with a small Seifert disk of the 
attaching circle in M; the self-intersection of such a Seifert disk in M is the 
same with the framing modulo 2 (compare with page 148 earlier). Hence, 
the result of adding this even 2-handle is the same as connect-summing 
with 52 x S2 • On the other hand, if the 2-handle is odd, then the disk closes 
to a sphere of self-intersection + 1, and one can see that attaching it is the 
same as connect-summing with 52 x s2 • In conclusion, we have 

M1;2 = M4 # m' 52 x 52 # m" 52 x 52 • 

We will assume in the sequel that no 52 x 52-terms are present. 

No twists, and a proof of Wall's theorem on stabilizations. The assump
tion that there are no 52 x 52-summands can be argued quite rigorously: 

24. Think of S0(3) as the space of all oriented orthonormal frames in R 3 • Thus, n 1 S0(3) will measure 
how many distinct trivializations of the 3-plane bundle S1 x R 3 exist. Some comments on n 1SO(m) 
will be made in the the end-notes of this chapter (page 177). 

25. Contrast this with what happens when, instead of building a 5-manifold as above, we build a 
4-manifold. The framing for attaching a 2-handle is then determined by an element of n 1 S0(2) = Z, 
an integer. 
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On one hand, if the intersection form of M is odd, then adding 52 x 52 or 
adding 52 x 52 produces the same result, as we mentioned a bit earlier.26 

On the other hand, if the intersection form of M is even, then a deeper 
result shows that M UN can be safely assumed to bound a 5-manifold 
that does not contain any odd handlesP This odd-less manifold should 
then be the one used as our W right back from the start of the argument. 

By the way, if we accept that we can indeed avoid 52 x 52 -summands, then 
we have stumbled upon another proof for Wall's theorem on stabilizations: 
from the lower half of W we have M1/2 = M # m S2 x 52 , while from the 
upper half we have M1;2 = N # m S2 x 52 , since M1;2 can also be obtained 
by attaching even 2-handles upwards to N. Therefore 

M#mS2 x 52 ~ N#mS2 x 52 • 

This was, in fact, C.T.C. Wall's original argument for this result. 

In any case, getting back to proving Wall's theorem on h-cobordisms, in 
what follows we assume that we have M1/2 = M 4 # m S2 x 52 . 

Negotiating the reunification. We are trying to find a self-diffeomorphism 
cp of M1;2 such that, after re-gluing W through it, the homology of W dis
appears. In other words, we wish to arrange cp so that the 3-handles from 
the upper half cancel algebraically the 2-handles of the lower half. 

Whether a certain cp is good or not for this purpose is entirely determined 
by the self-isomorphism cp* that cp induces on the 2-homology of M1;2 • 

Therefore, for finding a good diffeomorphism cp, we will proceed by rever
se-engineering: we will determine a good algebraic automorphism 

ip: Hz(M1;2; Z) ~ Hz(M1;2; Z), 

preserving the intersection form of M1;21 and then use Wall's earlier the
orem on diffeomorphisms to claim that ijS can be realized as cp* of some 
self-diffeomorphism cp of M1;2 • Wall's theorem on diffeomorphisms might 
require that we add an extra copy of 52 x 52 , but that can be achieved im
mediately by the creation in W5 of a (geometrically) canceling pair of a 2-
and a 3-handle--the trace of such a pair in M1;2 is exactly the required 
extra 52 x 52 -summand. 

Each 52 x 52 -summand in M1/2 appears from a 2-handle D 2 x JD3 , attached 
to M along 51 x JD3 • The belt sphere of this 2-handle is 0 x 52 • The homo
logical hole created by the addition of the 2-handle is represented by the 

26. Back on page 151. 

27. This result is due to V. Rokhlin, and states: Any spin 4-manifold with zero signature must bound a spin 
5-manifold. For the concept of spin manifold, look ahead at section 4.3 (page 162); the result itself will 
be restated on page 165. 
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first sphere-factor of 52 x 52 in M1;u while the belt sphere of the handle 
survives as the second factor of 52 x 52 and is filled by the handle itself. 

Looking now at the upper half of W5 , a 3-handle is a copy of JD3 x JD2 , 

attached to the lower half through 52 x JD2 • The attaching sphere of the 
3-handle is 52 x o. Therefore, if the 3-handle is to algebraically cancel a 2-
handle from the lower half, then the attaching sphere 52 x o of the 3-handle 
must intersect the belt sphere 0 x 52 of the 2-handle algebraically exactly 
once.28 Indeed, in ''handle homology'', we would then have d(3-handle) = 
( 2-handle). (Intuitively, view the 3-handle as algebraically filling the ho
mological hole 52 x 1 created by the 2-handle.) 

Algebraization. To translate everything into algebra, we proceed as fol
lows: We view M1;2 as 

M1;2 = M # m 52 x 52 , 

and we denote by txk the class of 52 x 1 and by 7i.k the class of 1 x 52 in the 
kth 52 x 52 -summand. The classes 7i.k are the classes of the belt spheres of 
the lower 2-handles, and they bound in the lower cobordism. We write 

H2(M1;2; .Z) = H2(M;.Z) EB .Z{txJ,7il, ... ,txm,lim}, 

with corresponding intersection form QM,1, = QM EB m H. 

Now we look at M1;2 from upwards as 

M1;2 = N # m 52 x 52 • 

This decomposition is obtained by adding upside-down 2-handles to N in 
the upper half of W. For trivial algebraic reasons, the 52 x 52 -summands 
added toN are just as many as those added toM, but the respective sum
mands in the two decompositions do not correspond by, say, a diffeomor
phism (unless M ~ N). 

Denote by f3k the class of 52 x 0 and by ~k the class of 0 x 52 in the kth 

52 x 52-summand of this latter splitting. The classes f3k are the classes of 
the attaching spheres of the upper 3-handles, and they bound in the upper 
cobordism. And we write 

H2(M1;2; .Z) = H2(N; .Z) EB .Z{f31, ~1' .•• , f3m, ~m}, 

with corresponding intersection form QM,12 = QN EB m H. 

A good self-diffeomorphism cP of M112 will be one that sends the class f3k 
onto lXkf thus guaranteeing that the attaching sphere f3k of each 3-handle 
has algebraic intersection + 1 with the belt sphere 7i.k of the corresponding 
2-handle. 

28. Requiring more, such as only one geometric intersection, i.e., that 52 x o from the 3-handle be sent 
to 52 x o from the 2-handle, implies that these 3- and 2-handles cancel. However, if we could do that 
for all handles, we would end with a diffeomorphism M 2!' N, which cannot happen in general. 
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The final dance. The hypothesis of this theorem states that the intersection 
forms of M and N are isomorphic. Denote by 

such an intersections-preserving isomorphism. Then we can extend cp to 

by setting 

and 

This extended ip is easily seen to still preserve intersections. Therefore, by 
Wall's theorem on diffeomorphisms, there must exist an actual self-diffeo
morphism cP of M112 that realizes ip as <P* = ip. 

Then, if we cut our W5 into its two halves and glue them back using this 
cP, then the resulting cobordism will be simply-connected and with no 2-
homology. That is to say, an h-cobordism between M and N. o 

4.3. Intersection forms and characteristic classes 

Time has come to comment on the other classical invariants of a 4-mani
fold, specifically on the characteristic classes of its tangent bundle. Only 
w2 (TM), e(TM) and PI (TM) are actually relevant in this realm. After first 
reviewing these, we will relate them to intersection forms. 

We start with the Stiefei-Whitney classes 

The class wk ( T M) measures the obstruction to finding a field of 4 - k + 1 
linearly-independent vectors over the k-skeleton of M. 

Skeleta. Remember that, for a cellular complex, its k-skeleton is the union of 
all its cells of dimension ::::; k, as in figure 4.15 on the facing page-similarly, 
for simplicial complexes (triangulations).29 For a manifold M, one can also 
think in thickened terms and view the k -skeleton of M as the union of all the 
handles of order ::::; k, in some handle decomposition of M; see figure 4.16 on 
the next page. Of course, the skeleta depend on the choice of cellular /handle 
decompositions. 

29. Simplices and triangulations are briefly recalled in footnote 5 on page 182 ahead. 
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• 

• 

0-skeleton I -skeleton 2-skeleton 

4.15. Skeleta of a torus, I: the cells 

C) 

C) 

0-skeleton 1-skeleton 2-skeleton 

4.16. Skeleta of a torus, II: the handles 

Orientations and the first Stiefel-Whitney class 

The class w1 (TM) measures the obstruction to finding a trivialization TM 
over the !-skeleton of M. It can be defined directly30 by its values on 
embedded circles C in M, namely by setting 

WI(TM) · C = 0 

WI(TM) · C = 1 

if and only if T M / c is trivial; 

if and only if TM/c is not trivial. 

Since a 4-plane bundle over a circle is either trivial or non-orientable, we 
observe that the first Stiefel-Whitney class merely detects orientation-rever
sing loops in M. Therefore WI is the obstruction to M being orientable. 

Along these lines, it is not hard to see that an orientation of M is equivalent 
to a choice of trivialization of T M over the 0-skeleton that can be extended 
over the 1-skeleton, considered up to homotopies. 

Since we restricted our attention to oriented 4-manifolds, this class is not 
very interesting to us. Quite the opposite, though, can be said about the 
next Stiefel-Whitney class: 

30. Since H 1 (M;Zz) = Homz2 (H1 (M;Zz), Zz), nothing is lost. 
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Spin structures and the second Stiefel-Whitney class 

The second Stiefel-Whitney class 

Wz(TM) E H2 (M;Zz) 

measures the obstruction to finding a 3-frame over the 2-skeleton. If w1 

was trivial and we picked an orientation of M, then by using this orienta
tion we can complete any 3-frame to a 4-frame. Therefore we can say that, 
for oriented manifolds, w2(TM) is the obstruction to trivializing TM over 
the 2-skeleton31 of M. 

The origin of the Z 2-coefficients of w2 is in32 n 1 SO( 4) = Z 2 . The generator 
of the latter is any path of rotations of angles increasing from 0 to 2n; if the 
angle keeps further increasing to 4n, then the resulting loop will be null
homotopic in S0(4). For trivializations of TM, it is best to think of S0(4) 
as the space of orienting orthonormal frames in IR4 . The class w2(TM) is 
obtained by patching together local obstructions over each 2-cell D of M: 
a trivialization of T M over the !-skeleton induces a map cp: a D ~ SO( 4); 
the trivialization extends across D if and only if cp extends over D, in other 
words, if cp represent the trivial element of 7tt SO( 4). 

Displaying w2(TM) as a cochain. Given a random trivialization of TM over 
the 1-skeleton of M, we can define a cellular cochain fJ for wz(TM) by as
signing 1 E Z 2 to any 2-cell D across which the chosen trivialization can
not be extended. This cochain will be trivial if and only if the trivialization 
extends over the 2-skeleton. Of course, one can try to go back and change 
the trivialization over the 1-skeleton, then check again. It turns out that all 
such changes modify our cellular cochain fJ by the addition of a coboundary. 
Further, our cochain turns out to be a cocycle. Therefore, the existence of a 
trivialization that extends is equivalent to the cohomology class of fJ being 
triviaJ.33 (Observe that such a discussion can very well be carried out with 
2-handles instead of 2-cells; the cocycle above assigns to each 2-handle the 
framing coeffident34 modulo 2 of its attaching circle. ) 

Look at surfaces. Since "2-skeleton" might not be your friendliest of no
tions, we can also rely upon 

Lemma. The second Stiefel-Whitneyclass w2 (TM) E H2 (M;Z2) is the obstruc
tion to trivializing T M over the oriented surfaces embedded in M. 

31. Keep in mind that, the manifold being oriented, T M can already be trivialized over the !-skeleton. 

32. The group SO( 4) is the group of orientation-preserving isometries of R 4 , i.e., its group of rotations. 

33. This is obstruction theory and is better explained in the end-notes of this chapter (page 197). 

34. Compare also with Kirby calculus, in the end-notes of chapter 2 (page 91). 
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Proof. Ononehand,wehave Hz(M;Zz) = Homz2 (Hz(M;Zz), Zz), 
and thus wz is completely determined by its values Wz · x on all mod
ulo 2 classes x E Hz(M;Zz). On the other hand, when H1(M;Z) 
has no 2-torsion (for example when M is simply-connected), we fur
ther have that Hz(M;Zz) = Hz(M;Z) ®;z:Zz,or,inotherwords,clas
ses in Hz ( M; Zz) are just modulo 2 reductions of integral classes from 
Hz ( M; Z). Therefore Wz is completely determined by its values Wz · 5 
on the oriented surfaces 5 of M. Furthermore, Wz ( T M) · 5 = Wz ( T M I 5 ) 

is precisely the obstruction to trivializing T M over 5. o 

Thus, when M is simply-connected, we can define wz(TM) directly by 

Wz(TM) · 5 = 0 

wz(TM) · 5 = 1 

if and only if T M I 5 is trivial, 

if and only if T M I 5 is not trivial, 

for each oriented surface 5 embedded in M. 

Look at self-intersections. By using the obvious splitting of T M over any 
surface 5 as TMI 5 = T5 E9 N5;M, we compute 

Wz(TM) · 5 = Wz(TMI5) 

= wz(T5 EB N5;M) 

= Wz(T5) + Wz(N5;M) + w1(T5) · WI(N5;M). 

Since both T5 and N51 M are orientable, the last term vanishes. More, since 
wz(T5) is the modulo 2 reduction ofthe Euler class x(5) = 2- 2genus(5), 
the first term on the right vanishes as well. We are left with wz(N5;M), 
which is the modulo 2 reduction of e(N51 M). The latter measures the self
intersection of 5 in M. We have proved: 

Wu's Formula. For all oriented surfaces 5 embedded in M, we have: 

Wz ( T M) · 5 = 5 · 5 (mod 2) . D 

This is the 4-dimensional case of the general Wu formula. 35 A verbose but 
more concrete alternative proof will appear on page 168 in the next section. 

A nice consequence of Wu' s formula is: 

Corollary. Ifwz(TM) = 0, then the intersection form of M is even. o 

The converse is true whenever H1 (M; Z) has no 2-torsion. 

35. Wu's formula is a general statement about Stiefel-Whitney classes; see for example J. Milnor and 
J. Stasheff's Characteristic classes [MS74]. 
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Spin structures. Since w2(TM) is the obstruction to trivializing TM over the 
2-skeleton of M, in the spirit of the earlier re-definition of orientations, we 
can define the concept of spin structure: 

A spin structure on M is a choice of trivialization of T M over the 1-skele
ton that can be extended over the 2-skeleton, considered up to homotopies. 
Various alternative ways of defining spin structures and related matters are 
contained in the end-notes of this chapter.36 A manifold endowed with a 
spin structure is called a spin manifold.37 

Then we can state that w2(TM) = 0 if and only if M admits a spin struc
ture. The simplest examples of spin 4-manifolds are 54 , 52 X 52 , and the 
K3 surface. In general: 

Corollary (Spin structures and even forms). Any 4-manifold without 2-tor
sion, for example simply-connected, admits spin structures if and only if its inter-
section form is even. o 

Action of H1 (M;Z2) on spin structures. Lets be a spin structure on M, 
described by a trivialization of T M over the !-skeleton of M (for some fixed 
triangulation of M). Choose a class a: E H 1 (M; Z 2 ) and represent it by its 
dual unoriented 3 -submanifold Ytt in M. Arrange that Ytt does not touch 
any vertex of M 's triangulation and is transverse to all its edges. Then one 
can define a new spin structure a: · s on M by twistings's trivialization over 
each edge e that meets Ytt through the addition of a 2n-twist each time e 
meets Ytt. For every loop C in the !-skeleton that bounds a 2-simplex D, the 
intersection of Ytt and D occurs along arcs linking the intersections points of 
C and Ytt; therefore there must be an even number of such intersection points, 
and so the trivialization offered by a:· s along C differs from s 's by an even 
number of 2n -twists; hence the trivialization of a: · s still extends across D -it 
is indeed a spin structure. 

The resulting action of H 1(M;Z2) on the set of all spin structures of M is 
free and transitive.38 Therefore, after fixing a spin structure on M, this action 
establishes a bijective correspondence between the elements of H 1(M;Z2) 

and the set of all spin structures on M (the correspondence depends on the 
choice of "base" spin structure). In particular, if M is simply-connected and 
has w2(TM) = 0, then M admits a unique spin structure. 

36. For the more usual, differential-geometric definition, see the end-notes of this chapter (page 174); 
see also section 10.2 (page 383) ahead. A homotopy-theoretic definition is presented in the end-notes 
of this chapter (page 204). 

37. Often, one calls "spin manifold" any manifold that admits a spin structure, even if no specific 
structure has been chosen, instead of more honestly naming it, for example, "spinnable manifold". 

38. The action of a group G on a set S is called transitive if for every two elements s' and s" of S there 
is some g E G so that g · s' = s". The action is called free if we can have g · s = s for some s E S only 
wheng= 1. 
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Signatures and bounding spin-manifolds. In the context of spin structures, 
an important result is the spin version of the bounding theorem from sec
tion 3.2 (page 123). The latter stated that all zero-signature 4-manifolds 
must bound some oriented 5-manifold. For spin 4-manifolds, the follow
ing refinement is true: 

Theorem ( V. Rokhlin ). If a closed 4-manifold M is endowed with a spin struc
ture and has 

signQM = 0, 

then there exists a spin 5-manifold W5 that is bounded by M so that the spin 
structure of W induces the spin structure of M. o 

Spin structures on 5-manifolds are defined exactly as for manifolds of di
mension 4: they are trivializations of Tw over the 1-skeleton that extend 
over the 2-skeleton.39 A spin structure on W5 induces a spin structure 
on a W by using an outward-pointing trivialization of the normal bundle 
Na w ;w to obtain a trivialization of Taw over its 1-skeleton, etc. 

In particular, it follows that: 

Corollary (Spin cobordism ). If two spin 4-manifolds M and N have the same 
signature, then they can be linked by a cobordism W5 that is a spin 5-manifold, 
and its spin structure induces on M and N their respective spin structures. o 

Notice that we have already relied on this result in the proof of Wall's theo
rem on h-cobordisms (page 157). 

Third Stiefel-Whitney class 

The third Stiefel-Whitney class wz(TM) E H 3 (M;Zz) turns out to be rather 
uninteresting: 

On one hand, if M is orientable and admits spin structures, equivalently 
if both wr (TM) and wz(TM) vanish, then w3(TM) must vanish as well. In
deed, any spin structure offers a trivialization of T M over the 2-skeleton, 
and since the group n2S0(4) is trivial, this trivialization can always be ex
tended across the whole 3-skeleton40 of M. 

39. More geometrically, a 5-manifold W admits spin structures if and only if every surface embedded 
in W has trivial normal bundle. As we saw, a 4-manifold M admits spin structures if and only if every 
surface embedded in M has normal bundle of even Euler class. 

40. Indeed, think of S0(4) as the space of orthonormal frames in R4 . Take a 3-cell E with TMiaE 
trivialized. The trivialization determines a map a E -> SO( 4), which, since n 2 SO( 4) = 0, must be 
null-homotopic and thus extend to a map E -> SO( 4); but the latter is just a trivialization of TM IE. 
The relation between the ?TkSO(m) 'sand Wk 'sis probably best viewed under the light of the concepts 
presented in the end-notes of this chapter, on page 197 and page 204. 
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Since we can always choose handle decompositions of M with exactly one 
4-handle and then shrink that 4-handle toward a point, we deduce that ev
ery spin 4-manifold M has TM trivial over M \{point}; such manifolds are 
called almost-parallelizable.41 

In general, the values of w3 ( T M) E H3 ( M; Z-2) do not matter-they are 
determined by the other characteristic classes of M, as will become clear a 
bit ahead, from the Dold-Whitney theorem. 

The Euler class 

The fourth and last Stiefel-Whitney class w4 (TM) E H4 (M;Z2) is not the 
only remaining obstruction to trivializing T M over the whole M. In fact, if 
Misoriented, then w4 (TM) can be refined to the integral Euler class 

e(TM) E H4 (M;Z) = Z. 

The Euler class counts the self-intersections of M, viewed as the zero-sec
tion inside the manifold T M. Equivalently, it counts the zeros of a generic 
vector field on M, and we have e(TM) = x(M). If e(TM) = 0, then TM 
admits a nowhere-zero section. Clearly though, all simply-connected 4-
manifoldshave e(TM) = 2+rankQM and hence e(TM) > 0. 

Signatures and the Pontryagin class 

Another relevant class is the Pontryagin class 

Pl(TM) E H4 (M;Z) = Z. 

It is defined in terms of Chern classes as p1 (TM) = -c2(TM ®C) and can 
be interpreted as the obstruction to finding three C-linearly-independent 
global sections in T M ® C. 

More obscurely, the Pontryagin number also coincides with -3 times the al
gebraic count of triple-points of a generic immersion42 M4 ----> JR6 . 

On a 4-manifold the Pontryagin class is completely determined by its in
tersection form, owing to the 4-dimensional instance of F. Hirzebruch' s 
celebrated signature theorem: 

Hirzebruch's Signature Theorem. For every closed 4-manifold M we have 

Pl(TM)=3signQM. D 

41. A manifold is called parallelizable if its tangent bundle is trivial over the whole manifold. An 
example of parallelizable 4-manifold is 51 x 53 ; there are no simply-connected examples. 

42. See R. Herbert's Multiple points of immersed manifolds [HerSt]; also proved in R. Kirby's The 
topology of 4-manifolds [Kir89, ch IV]. 
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Signatures and bounding manifolds, revisited. We quoted earlier43 the fact 
that, if a 4-manifold has vanishing signature, then it must bound an oriented 
5-manifold. A proof of that statement can be assembled by using the signa
ture theorem, together with the above interpretation of PI in terms of triple
points of immersions. 

First, one builds an immersion of M into JR6 (by using immersion theory, it 
is enough to build a candidate for the normal bundle of the immersed M 
inside JR6 , and thus the problem is reduced to a characteristic class compu
tation). Such an immersion will have double-points, forming surfaces in M, 
and will have isolated triple-points. Since 3 sign QM = p1 ( M), and the latter 
is an algebraic count of these triple-points, we conclude that the triple-points 
cancel algebraically. Furthermore, there is a modification of M inside JR6 that 
geometrically eliminates all these triple-points44 and changes M merely by a 
cobordism inside JR6 . After that, the double points can be eliminated without 
obstruction (think of our method for eliminating double-points of surfaces in 
4-space45 and cross with JR2 ), and this further changes M by a cobordism 
inside JR6 • We end up with a 4-manifold embedded in JR6 . Since the result 
is homologically-trivial and embedded, it must bound a 5 -manifold W in
side46 JR6 . Putting together the cobordisms used to modify M with this last 
5-manifold yields a filling 5-manifold for our initial4-manifold.47 

That's it, the bundle is done 

The above-mentioned characteristic classes completely determine T M as a 
vector bundle. In fact, only wz, e and PI are needed: 

Dold-Whitney Theorem. If two oriented 4-plane bundles over an oriented 4-
manifold have the same second Stiefel-Whitney class w2, Pontryagin class p1 and 
Euler class e, then they must be isomorphic. o 

All these three characteristic classes can be related to intersection forms. In 
review, by using the partial Betti numbers bi we can write, for every sim
ply-connected 4-manifold M, 

e(TM) = bi(M) + b2(M) + 2, 

pr(TM) = bi(M) - b2(M), 

and recall that w2(TM) vanishes exactly when QM is even. 

43. See back in section 3.2 (page 123). 

44. Somewhat in the spirit of figure 11.7 on page 486. 

45. Look back at figure 3.1 on page 113. 

46. Owing to a general result of R. Thorn, stated back in footnote 3 on page 112. 

47. SeeR. Kirby's The topology of 4-manifolds [Kir89, ch VIII] for the full argument. 
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4.4. Rokhlin's theorem and characteristic elements 

We continue the story of the second Stiefel-Whitney class w2 (T M), but this 
time by focusing on the integral classes that reduce to it. Afterwards, we 
state a fundamental theorem for topology in general, namely Rokhlin's the
orem: a smooth spin 4-manifold can only have a multiple of 16 as its sig
nature. 

Characteristic elements of the intersection form 

We defined w2(TM) E H 2 (M; Z 2 ) as the obstruction to trivializing TM over 
the 2-skeleton of M. We now look at representations of the class w2 (TM) 
by oriented surfaces and integral classes. 

Make it a surface. Assume that w2 (TM) can be realized as an oriented sur
face I: embedded in M. In other words, assume that [I:] E H2(M;Z) is 
(Poincare-dual to) an integral lift w of the class w2 . Such a surface I: with 

I:= w2(TM) (mod 2) 

is called a characteristic surface of M, while its class w E H2 (M; Z) is 
called a characteristic element.48 Characteristic elements are certainly not 
unique: just add to such a w any even class 2ry to obtain another integral 
lift of w2 . Remember that we encountered characteristic elements before, 
in Wall's theorem on the automorphisms of an intersection form.49 

Wu, again. Take now a random surface S in M. The obstruction to trivial
izing TM overS is then given by w2(TM) · S (mod 2) or, in other words, by 
I:· S (mod 2). We have already seen that this coincides modulo 2 with the 
self-intersection S · S, but we prove it once again using a slightly different 
argument. 

Wu's Formula. Let M be a simply-connected 4-manifold. An oriented surface 
I: is characteristic if and only if 

I:· S = S · S (mod 2) 

for all oriented surfaces S inside M. 

Proof. Let T E f(Ts) be a vector field tangent to S, and let v E 

r ( N 5; M) be a field normal to S . If T and v are generic, then they are 
zero only at isolated points of S. Arrange that T and v are never zero at 
a same point of S. Pick a vector field T* complementary to T in T5 , so 

48. Another customary name is characteristic class, but we will use "characteristic element" throughout, 
to avoid any chance of confusion with characteristic classes of the tangent bundle. 

49. See back in section 4.2 (page 152). 
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that y* is zero only at the zeros50 of T. Also pick a complement v* to v 

in N51 M that is zero only at the zeros of v. Then the vector field T* + v* 

is nowhere-zero on S. The 3-frame { T, v, T* + v*} can be completed 
to a full 4-frame of T M, well-defined on S away from the zeros of T 

and the zeros of v. 

Against extending this frame across the remaining points of S lies a 
Z 2 -obstruction: indeed, a neighborhood of a singularity is a copy of 
102 \ 0, and the frame-field around 0 defines a map f: S1 -----+ SO( 4); the 
frame-field can be extended across 0 if and only iff is homotopically
trivial in n1 SO( 4) = Z2. It is not hard to argue that the obstructions at 
various singularities can be added together, 51 and thus yield a global 
Z 2-obstruction to extending the frame-field over the whole surface S. 
Since T* + v* is nowhere-zero, this obstruction comes entirely from the 
zeros of T and v. 

Since T and v were chosen generic, their zeros are simple, and thus the 
obstruction can be computed as 

obstruction = # {zeros of T} + # {zeros of v} (mod 2) . 

However, the number of zeros of a tangent vector field like T is equiva
lent modulo 2 to x( 5), which is always even and thus disappears from 
the above formula. We are left with the number of zeros of the normal 
vector field v, which is equivalent modulo 2 to S · S. In conclusion, 

obstruction = S · S (mod 2) . 

However, the same obstruction can also be seen to be w2(TMis) 
w2 (TM) · S = L · S (mod 2), and this concludes the proof. o 

It might be amusing to look back at page 163 and compare the two proofs 
that relate w2 to self-intersections-the version above is essentially just a 
more concrete version of the computations made there. 

In any case, the property that w2 · x = x · x (mod 2) for all x E H 2 (M;Z) 
completely determines the class w2 ( T M) inside H2 ( M; Z2) . In particular, if 
we find an integral class wE H2(M; Z) satisfying 

W · X = X · X (mod 2) 1 

then the modulo 2 reduction of w must be w2 (TM): we have found a char
acteristic element of the intersection form. 

50. For example, pick a complex structure on T5 and define r* = iT. 

51. For example, by using an argument similar to the classic Poincare-Hop£ theorem on indices of 
vector fields: if the sum of indices is zero, then there is a nowhere-zero vector field. Here, since T and 
v are generic, the indices are ± 1; further, since we are dealing with a 4-plane bundle over a surface, 
the sum of indices only matters modulo 2. 
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They do exist. Characteristic elements (and hence characteristic surfaces) 
exist in all 4-manifolds: 

Lemma. On every 4-manifold M, there always exist integral classes w such that 

for all x E H2(M;Z). 
W · X = X · X (mod 2) 

Proof. This is a purely algebraic argument. Let Q: Z x Z -+ Z be a 
symmetric bilinear unimodular form, defined over a free Z-module Z. 
We can build its modulo 2 reduction by taking Z" = Z j2Z and Q" = 
Q (mod 2). We obtain a symmetric Z 2-bilinear unimodular form 

Q" : z" x z" -----t z2 . 
The unimodularity of Q" over Z 2 translates as the following property: 
for every Z 2-linear function f: Z" -+ Z 2 there must be some element 
Xf E Z" so that f( ·) = Q"(xf, ·).However, since (a+ b)· (a+ b) = 
a· a + b · b + 2a · b = a· a + b · b (mod 2), we notice that the corre
spondence X 1----7 Q" (X, X) is additive, and thus is z2 -linear. Therefore 
there must exist an element w" E Z" so that Q" ( x, x) = Q" ( w", x); in 
other words, we have 

w" · x = x · x (mod 2) for all x E Z" . 

Since the element w" E Z" = Zj2Z represents a coset of Z, there must 
be integral elements w E Z whose modulo 2 reduction is w". In other 
words, there always exist characteristic elements for Q, i.e., elements 
W E Z with W · X = X · X (mod 2) for all X E Z. D 

The existence of integral lifts of w2(TM) is important also because of spin<= 
structures (complexified spin structures). As we will see later52 the exis
tence of w 's is equivalent to the existence of spin<= structures on M; the 
latter will play an essential role in Seiberg-Witten theory. 

Rokhlin's theorem 

First, an algebraic argument shows that: 

Van der Blij's Lemma. For every characteristic element w we must have 

sign QM = w · w (mod 8) . o 

We prove this statement in the end-notes of the next chapter (page 263).53 

In particular, it follows that every spin manifold (for which we can always 
pick w = 0) must have signature multiple of 8. Surprisingly, more is true: 

52. In section 10.2 (page 382). 

53. The reason for this postponement is not the difficulty of the argument, but merely its reliance on 
the classification of algebraic forms, which is discussed in the next chapter. 
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Rokhlin's Theorem. If M4 is smooth and has w2 (TM) = 0, then its intersec-
tion form must have 

sign QM = 0 (mod 16) . D 

In part for reasons of space, proofs of this theorem are exiled to the end
notes of chapter 11 (one proof starting on page 507, another starting on 
page 521). 

Three's company. Notice that we have already encountered several statements 
due to V. Rokhlin: one from page 123 (about zero-signature manifolds bound
ing), one from a few pages back (about zero-signature spin-manifolds spin
bounding), and the one right above. 54 In this volume, only the last result will 
be called "Rokhlin's theorem". 

Smooth exclusions. A first consequence of Rokhlin's theorem is that Es can 
never be the intersection form of a smooth simply-connected 4-manifold: 
indeed, £8 is an even form with signature 8. In particular it follows that, 
as we claimed earlier, the Es-manifold MEg does not admit any smooth 
structures at all. 

Historically, we should note that, even though it was clear from Rokhlin's 
theorem that the Es -form would never appear as the intersection form of a 
smooth 4-manifold, it was not known until Freedman's work that the Es
form does nonetheless appear as the intersection form of a topological 4-
manifold. Indeed, recal1 55 that the definition of MEg involves Freedman's 
contractible L\ 's, whose construction in tum needs Freedman's major result 
on Casson handles. 

More generally, since Es has signature 8 and H has signature 0, we deduce: 

Corollary. If M is smooth and has no 2-torsion, for example when M is simply
connected, and its intersection form is 

QM = E9 ±m Es E9 n H , 
then m must be even. D 

As we will see shortly, all even indefinite intersection forms do in fact fall 
under the jurisdiction of this corollary. 

We should note that the absence of 2-torsion is essential: the complex En
riques surface (doubly-covered by K3) has intersection form-Es E9 H but 
fundamental group 7TI = Z2; its 2-torsion allows the intersection form 
to be even without w2 vanishing, and hence Rokhlin's theorem does not 
apply. 

54. Furthermore, all three results appeared in the same four-pages-long paper, New results in the theory 
of four-dimensional manifolds [Rok52]. 

55. From section 2.3 (page 86). 
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It is also worth noting the fact that, for the thirty years between Rokhlin's 
and Donaldson's work, no new methods of excluding intersection forms 
from the smooth realm were discovered. Indeed, Rokhlin in the 1950s ex
cluded E8 from ever being the intersection form of a smooth 4-manifold, 
but the form E8 EEl Es was only excluded by Donaldson in the 1980s. 

Other consequences. Rokhlin' s theorem is a fundamental result in topology. 
Its consequences extend quite far, as we will comment in the various notes 
at the end of this chapter. For example, Rokhlin's theorem sends its ten
tacles into dimension 3 (the Rokhlin invariant, defined in the end-note on 
page 224), as well as into high dimensions (the Kirby-Siebenmann invari
ant, governing whether a topological manifold admits smooth structures, 
see the end-note on page 207); the theorem is essentially equivalent to the 
fact that for big n we have 7tn+3 sn = Z24 instead of Z12. 

Rokhlin's theorem also admits generalizations in dimension 4, such as: 

Corollary ( M. Kervaire & ]. Milnor). Let M be any smooth 4-manifold. If L: 
is a characteristic sphere in M, then we must have: 

signM = L: · L: (mod 16) . o 

This last result was put to use for determining which characteristic ele
ments cannot be represented by embedded spheres, and a fuller discussion 
will be carried through in section 11.1 (page 482). 

An even further generalization of Rokhlin's theorem, due toM. Freedman 
and R. Kirby, is the formula 

signM = l:·l: + 8Arf(M,l:) (mod 16), 

involving general characteristic surfaces L: and needing a correction term 
Arf( M, L:), with values in Zz and depending only on the homology class 
of L:. This last statement will be fully explained and proved in the end
notes56 of chapter 11. Since the Freedman-Kirby formula will be proved 
from scratch, in particular it will offer a complete proof of Rokhlin's theo
rem. If one wishes so, one can skip ahead and read it right now. 57 

56. Statement and heuristics starting on page 502 and detailed proof starting on page 507. An alterna
tive spin-flavored proof starts on page 521. 

57. It is recommended, though, to first visit with the end-notes of chapter 10 (the characteristic cobor
dism group, page 427) and the end-notes of chapter 11 (the Arf invariant, page 501). This late placement 
of the proof of Rokhlin's theorem owes more to reasons of space organization of this volume, than to 
logical structure. 
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Introduction 

Half of the following notes can be viewed as comments on the concept of spin 
structure. Part of this emphasis can be justified by the foundational role that their 
complex cousins-spine structures-play in the definition of the Seiberg-Witten 
invariants that we will encounter in chapter 10. Another (non-disjoint) half of the 
notes can be viewed as comments on Rokhlin's theorem. 

In the main text we defined spin structures as extendable trivializations. The more 
usual definition is in terms of a reduction of the structure group of T M to the group 
Spin( 4). The first note (page 174) is devoted to explaining this definition. For this 
purpose, the concept of cocycle defining a vector bundle is first introduced. The 
note ends with a comment on the non-spin case and with the definition of principal 
bundles and their relation to spin structures. 

The second note (page 181) contains a hands-on proof that the two definitions of 
spin structures are indeed equivalent. It is a direct argument involving triangula
tions and cover spaces, and was included owing to its absence from the standard 
literature. 

The third note (page 189) develops the concept of cocycle for a bundle in its natu
ral context: Cech cohomology. We develop this notion just enough to encompass 
bundle cocycles, but not general sheaf-cohomology. This leads in particular to 
concrete representations of the Chern class of a complex line bundle and of the sec
ond Stiefel-Whitney class of an oriented vector bundle, together with its relation 
to spin structures. 

The fourth note (page 197) is a quick presentation of obstruction theory for bun
dles; this is a method for encoding the obstacles to building a section of a fiber 
bundle into suitable cohomology classes. To this is added, in the fifth note (page 
204), the concept of classifying spaces for G-bundles. Besides relating these to 
spin structures and w2 ( T M), both obstruction theory and classifying spaces are 
needed in the subsequent note. 
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The sixth note (page 207) presents the theory of endowing topological manifolds 
with smooth structures, as developed among others by S. Cairns, J. Munkres, J. Mil
nor, M. Hirsch, B. Mazur, R. Kirby, and L. Siebenmann. For this, tangent bundles 
for topological manifolds are defined. In dimensions at least 5, a suitable reduc
tion of their structure group (a smoothing of the bundle) can be integrated to a 
smooth structure on the manifold itself. The obstacles toward this group reduc
tion are investigated using classifying spaces and obstruction theory, and lead to 
the Kirby-Siebenmann invariant as primary obstruction, as well as to higher ob
structions. This theory is weak in dimension 4, but the Kirby-Siebenmann invari
ant is still defined, and we conclude the note (page 221) by commenting on its 
4-dimensional behavior, its strong relation to Rokhlin's theorem, and with a nod 
toward exotic JR4 's. 

We should mention that this note on smoothing theory is a node in the parallel threads of this 
volume. Inwards, it is a far-reaching consequence of Rokhlin's theorem; a full understanding of 
it is helped by reading the earlier note on exotic spheres, at the end of chapter 2 (page 97), and 
the notes ahead on obstruction theory (page 197) and on classifying spaces (page 204). Outwards, 
it underlies Freedman's classification to be presented in the next chapter. It offers the right con
trasting background for the results on smooth 4-manifolds that come from gauge theory, starting 
with Donaldson's theorem in section 5.3 (page 243) and passing through the exotic R 4 's of sec
tion 5.4 (page 250); and it further motivates the Freedman-Kirby generalized Rokhlin theorem to 
be explained at the end of chapter 11 (page 502). 

The seventh note (page 224) presents briefly the Rokhlin invariant of 3-manifolds 
that appears as a consequence of Rokhlin's theorem. Along the way, the Novikov 
additivity of signatures for 4-manifolds glued along their boundaries is stated. 

The eighth note (page 227) presents the groups that appear by considering two 
manifolds equivalent if they are cobordant. The oriented cobordism group and 
the spin cobordism group are displayed. 

The ninth note (page 230) explains the Pontryagin-Thorn construction. This tech
nique was already used during the geometric proof of Whitehead's theorem and 
is placed here in its proper place, as a framed cobordism theory. Relations with 
homotopy groups of spheres are outlined. 

Finally, on page 234 are gathered the usual end-of-chapter bibliographical com
ments. The next chapter starts on page 237; for the sake of continuity the reader is 
strongly recommended to skip all these notes at a first reading and resume reading 
there. 

Note: Spin structures, the structure group definition 

The customary definition of a spin structure is in terms of the Spin group, namely 
as reduction of the structure group of TM from S0(4) to its simply-connected 
double-cover Spin( 4). In this note we discuss this definition. The equivalence 
with the definition presented in the main text will be detailed in the next note 
(page 181). The structure group approach will also be taken up in section 10.2 
(page 382), where we will present spine structures in order to define the Seiberg
Witten invariants. 
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Describing vector bundles by using cocycles. A vector bundle E of rank k over xm 
(also called a k-plane bundle over X) is an open (m + k)-manifold E together 
with a map p: E-+ X such that its fibers p-1[x] are vector spaces isomorphic to 
JR.k, and p locally looks like projections U x JR.k -+ U. In other words, there is an 
open covering {Utt} of X and an atlas of maps 

{ Cf'tt: p- 1 [utt] ~ utt x JRk} , 

with pr1 o Cf'tt = p, and so that the overlaps Cf'tt o cp~ 1 are described by 

(x, w) f------7 (x, gttf3(x) · w) 

for some suitable change-of-coordinates functions1 

gttf3: utt n u 13 -----. GL(k) , 

thus ensuring that the JRk-factors are identified linearly. 

The maps gttf3 are in fact all that is needed to describe E: One can just glue-up 
E from trivial patches utt X JR.k by identifying (x, Wtt) from Utt X JRk with (x, wf3) 
from Uf3 X JRk whenever Wtt = gttf3(X) · Wf3. 

For an open covering {Utt} of X together with a random collection of maps 

{gttf3: utt n u 13 -----. GL(k)} 

to actually define a k-plane bundle, certain simple compatibility relations need to 
be satisfied. These are: 

These three can be contracted into just one condition: 

gttf3(x) · gf3'Y(x) · g'Ytt(x) = id. 

The latter is called the cocycle condition. Any collection {Utt,vgtt{3} satisfying it 
will be called a cocycle. (The name of "cocycle" comes from Cech cohomology; 
this setting will be detailed in the note on page 189 ahead.) 

As a simple example of cocycle defining a bundle, if { CJ>tt: Utt ~ U~ c JRm} is an 
atlas of charts for the smooth manifold xm, then the cocycle 

gttf3(x) = d(Cl>tto4>~ 1 )lx, 
made from the derivatives of the overlaps, defines the tangent bundle T x of X. 

Sections. Given a sections: X-> E of some bundle E-> X, we can use the charts {cpa: Elu. ~ 
Ua x Rk} to express s in coordinates. We obtain a collection of maps {sa : Ua -> Rk} given by 
sa = cpa o s. The various local maps Sa are compatible through the relations 

sa(x) = gafl(x) · sfl(x) • 

Conversely; in terms of cocycles alone, given a set of maps {Sa: Ua -> Rk}, if they satisfy the 
above compatibility with some cocycle {gafl}, then they define a section in the vector bundle 
described by {gafl}. 

Morphisms. Bundle morphisms can be described in terms of cocycles as well. Consider two 
bundles E' -> X and E" -> X with fibers Rm and Rn, both over a same base X endowed with 

1. In case one finds the notations GL(m) and SO(m) somewhat obscure, they are reviewed later, in 
section 9.2 (page 333). 
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a covering { Ua} . Let E' be described by charts { rp~} and E" by { rp~}, inducing corresponding 
cocycles {g~Jl: Ua n Ufl -+ GL(m)} and {g~fl: Ua n Ufl -+ GL(n)}. Consider any linear bundle 
morphism j : E' -+ E", covering the identity X -+ X. The morphism f can be expressed as a 
collection of maps {fa: Ua -+ Hom(lRm, lRn)} obtained by writing f in coordinates through the 
formulae rp~(f(w)) = fa(x) ·rp~(w) for all wEE' and x = p(w) EX. These fa'ssatisfythe 

relations f, ( ) , ( ) , ( ) f ( ) a X • gafl X = gafl X • J fl X • 

Conversely; in terms of cocycles alone, given a set of maps {fa: Ua -+ Hom(lRm, lRn)}, if they 
satisfy the above compatibility with some cocycles {g~fl} and {g~fl}, then they must define a 
bundle morphism from the bundle defined by {g~fl} to the one defined by {g~fl} . 

Two GL(k)-valuedcocycles {g~.B} and {g~~}, associated to a same covering {Ua}, 
describe the same bundle (up to isomorph1sms) if and only if there exists a collec
tion of maps {fa: Ua --t GL(k)} such that 

g~,B(x) = fa(x) · g~,B(x) · f.B(x)- 1 • 

Indeed, these fa's are just a description in local coordinates of a vector-bundle 
isomorphism between the bundles defined by {g~.B}' and {g~.B}. 

By ignoring the underlying vector bundles, we will say directly that two cocycles 
{g~.B} and {g~.B} are isomorphic whenever they can be linked with fa's as above. 

For comparing two cocycles {g:'.B'} and {g:".B"} associated to two different cov
erings {U~,} and {uz,} of M, we can first move to the common subdivision 
{ U~, n uz,}, then proceed as above. 

Keep in mind that any bundle over a contractible set must be trivial, and thus, if 
one starts with a covering {Ua} of X by, say, disks, then such a covering can alone 
be used to describe all bundles over X. 

Reductions of structure groups. Let E be a k-plane bundle, and let G be some sub
group of GL(k). If we manage to describe E using a G-valued cocycle g~.B: Ua n 
U.B --t G, then we say that we have reduced the structure group of E from GL(k) 
to its subgroup G. 

This notion can also be described in terms of cocycles alone: Given some cocycle 
ga,B: Ua n U.B --t GL(k), we say that we reduced its structure group to G if we can 
find a G-valued cocycle g~.B: Ua n U.B --t G so that {g~.B} is isomorphic to {ga,B}. 

For example, every vector bundle E can be endowed with a fiber-metric (i.e., an 
inner product in each fiber, varying smoothly from fiber to fiber). Then, by restrict
ing our choice of charts Cfa: E I Ua ~ Ua x JRk to those Cfa 's that establish isometries 
between the fibers of E and JRk (with its standard inner product), we are led to a 
description of E by an O(k)-valued cocycle 

ga,B: Ua n U.B -----+ O(k) . 

We then say that a fiber-metric has reduced the structure group of E from GL(k) 
to its subgroup O(k). 

If our bundle is orientable and we choose an orientation, then, by further restrict
ing the cpa's to those providing orientation-preserving isometries from the fibers of 
E to JRk, we obtain a SO(k)-valued cocycle forE 

ga,B: Ua n U.B -----+ SO(k) . 
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We say that an orientation has further reduced the structure group of E from O(k) 
to its subgroup SO(k). 

A spin structure on E can itself be described as a further "reduction" of the struc
ture group of E from SO(k) to the group Spin(k). However, since Spin(k) is not a 
subgroup of GL(k), this "reduction" has to be developed abstractly, at the level of 
cocycles and not directly on the vector bundles. 

Definition of a spin structure. While the notion of spin structure can be developed 
for general vector bundles E, for concreteness in what follows we will restrict to 
the case of the tangent bundle of a 4-manifold. The extension to the general case 
should be obvious enough. 

Start with an oriented 4-manifold M and pick a random Riemannian metric on it. 
This reduces the structure group of TM to S0(4), and thus TM can be described 
by an S0(4)-valued cocycle {Ua, ga,s} with 

ga,B: Ua n U,s -----.SO( 4) . 

The group SO( 4) is connected, but has fundamental group 

n1S0(4) = Zz. 

This fundamental group is generated by a path of rotations of angles increasing 
from 0 to 2n. On the other hand, if one keeps rotating until reaching 4n, then the 
resulting loop in SO( 4) will be null-homotopic; this can be observed in figure 4.17 
on the following page, if properly interpreted. In conclusion, a loop £: S1 ---7 SO( 4) 
is homotopically-trivial if and only if it twists JR4 by an even multiple of 2n, and 
nontrivial if it twists by an odd multiple. 

The fundamental group is unfolded in S0(4) 's universal cover, specifically in the 
Lie group 

Spin(4), 

which double-covers2 SO( 4). 

Ledger. One can think of the Spin group as a method for bookkeeping 2n-rotations: Consider 
a random loop 1!: [0, I] ---> S0(4), with 1!(0) = 1!(1). On one hand, if I! is homotopically-trivial, 
then it can be lifted to a loop£ in Spin(4), with C(O) = C(l). On the other hand, if I! describes a 
rotation of 2n, then it can only be lifted to an open path with £ ( 0) = -£ (I) . 

A spin structure on M is defined as a lift of the S0(4)-cocycle {ga,s} of TM to 
a Spin(4)-valued cocycle, considered up to isomorphisms. Specifically, given the 
SO( 4) -cocycle 

of T M, we lift these maps against the projectio:t;J. Spin( 4) ---7 SO( 4) to get maps3 

'ffa,s: Ua n l!,s. ~ Spin(4) : 

2. Asabitofhelpinvisualizing Spin(4)---> S0(4) with its 7tJS0(4) = Zz,onecaninvokeforamoment 
the thought of 52 ---> RJP2 . Or, even better, of 53 ---> RJP3 . "Better", because in fact 53 = Spin(3) and 
RJP3 = S0(3). In dimension 4, we have Spin(4) =53 X 53 and S0(4) =53 X 53/±!. 
3. Such a lift is always possible: choose the covering {U~} so that all u~ n U/3 's are simply-connected. 
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8----~ 

4.17. n1SO(n) = Z2 (when n::::: 3) 

The problem is that, since Spin( 4) --+ SO( 4) is a double-cover, on triple-intersec
tions U" n u13 n U'Y such lifts a priori satisfy merely the conditions 

gct{3 . gh . g')'ct = ± id . 

The appearance of an actual minus-sign makes {gct{3} fail from being a cocycle. 

Hence, the manifold M is said to admit spin structures if and only if one can find 
a good S0(4)-cocycle {Uct. gct{3} of TM that can be lifted to Spin(4)-valued maps 
{ Uct, gctf3} for which no minus-signs appears in the equality above, and which thus 
make up a Spin(4)-cocycle. 

No oddities. Intuitively; a Spin( 4) -valued cocycle Ua!l} for T M exists if and only if odd mu1-
tiples of 27t can be a voided when gluing up T M . Explicitly; take a circle C bounding a disk in 
M and imagine that there are a few locally-trivialized patches Ua x R 4 of TM covering C that, 
when matched up, describe a rotation of 27t when travelling along C (see figure 4.18 on the next 
page). Then, since these patches describe the nontrivial class in n 1 S0(4) = Z 2 , they and their 



4.5. Notes 179 

4.18. A non-extendable trivialization of T M over the circle C 

gluing maps g.fl cannot be used toward lifting to a Spin(4)-cocycle. This will be made more 
clear later. 

Homotopic simplifications. Choosing an orientation on M reduces the structure group of TM 
from the disconnected group 0( 4) to the connected group SO( 4). Choosing a spin structure on 
M reduces the structure group of T M to the simply-connected group Spin( 4). This process of 
homotopy-simplification of the structure group ends here. We already have 7tz SO( 4) = 0 (and 
thus n2 Spin(4) = 0). Further asking of a Lie group G to have n3 G = 0 would force G to be 
contractible, and thus the bundle to be topologically trivial. 

In the remainder of this note, we will comment on what happens when M does 
not admit spin structures and explain the principal bundle point-of-view on spin 
structures. The latter will help us argue in the next note (page 181) that the two def
initions of spin structures, the one with cocycles and the one with trivializations, 
are indeed equivalent. The third note (page 189) will develop bundle cocycles in 
their natural habitat, Cech cohomology. The fourth note (page 197) will present 
a smattering of obstruction theory and apply it to spin structures, while the fifth 
note (page 204) will present the homotopy-theoretic point-of-view on spin struc
tures. Some consequences of the cocycle definition of spin structures (spinor bun
dles, Dirac operators) will be outlined in section 10.2 (page 382), as a quick prelude 
to the introduction of spine structures. The standard reference for spin structures 
is B. Lawson and M-L. Michelson's Spin geometry [LM89]. 

When not spinnable. The existence of a spin structure is equivalent to the vanish
ing of wz(TM). We wish to note what happens when no spin structures exist, that 
is, when wz(TM) ::J. 0. In the cocyclepoint-of-view, this means that every Spin(4)
valued maps {faf3}, lifted from the SO( 4) -cocycle of T M, must have triples a, [3, 1 
with Ua n U13 n U1 non-empty and such that gaf3(x) · g131 (x) · g1a(x) = - id. 

We pick an integral lift IQ E H2 (M;Z) of wz(TM) and represent IQ by an embed
ded oriented surface 1: in M. Since the characteristic surface 1: is the incarna
tion of the obstruction to the existence of a spin structure on M, there exist spin 
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structures away from I:, on the complement M \I:. None of these outside spin 
structures can be extended across I:. (In terms of cocycles, we can arrange that the 
failing triples a:, (3, ')'occur when and only when we go around I:.) 

In the trivializations point-of-view, such an outside spin structure on M \ I: offers 
a trivialization of T M over the !-skeleton, which restricts to a trivialization of T M 

over small circles surrounding I: (e.g., fibers of the normal circle-bundle SNr.;M 
of I: in M). Since the outside spin structure cannot extend across I:, it follows 
that the trivialization of TM over each such circle around I: must describe a twist 
of 2n, as in figure 4.19. In the note ahead on Cech cohomology (page 196), this 
description will be made rigorous by using a concrete representation of wz(TM). 

4.19. Outside spin structure, not extending across a characteristic surface ..E 

Principal bundle point-of-view. For any group G, a principal G-bundle is a lo
cally-trivial fiber bundle with fiber G and structure group G. In other words, a 
principal G-bundle over X is a space Pc together with a projection map p: Pc ____. 
X so that there is some covering { Ua:} of X and maps (/)a:: p- 1 [Ua:] ~ Ua: x G, 
with pr1 o cpa: = p and so that the overlaps CfJ{3 o cp; 1 are described by formulae 
(x, 'Y) f----+ (x, ga:§_ · 'Y) for suitable functions ga:{ Ua: n u 13 ____. G, acting on G by 
multiplication. Hence Pc ____. X can be obtained by gluing trivial pieces Ua: x G ____. 
Ua: using the G-cocycle {ga:f3} I identifying (x, I' a:) E Ua: X G with (x, 1'{3) E uf3 X 

G if and only if 'Ya: = ga:f3(x) · /'{3. 

Notice that, unlike a vector bundle, a principal G-bundle does not admit any 
global sections, unless it is triviaL4 

Bundle of frames. For example, the S0(4)-valued cocycle {ga:f3} of TM acts directly 
on the group SO( 4) itself. Then, by gluing trivial pieces Ua: x SO( 4), one obtains 
from {ga:f3} a principal S0(4)-bundle 

Pso(4) ____. M · 

4. The fibers of PG may look like G, and G itself acts on them, but they are merely "affine" copies of 
G, without, for example, a specified identity element. A global section in PG can be viewed as offering 
a coherent choice of identity element, and thus yields an isomorphism PG ~ X x G. 
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The bundle Pso(4) depends only on TM, not on the particular choice of S0(4)
cocycle {g.x,B}· Geometrically, one should think of Pso(4) ____. Mas the bundle of 
orienting orthonormal frames of T M. 

A local section T: U ____. Pso(4) is a frame-field in TM over U. It is thus equivalent 
to a trivialization of TM over U. In particular, a trivialization of TM over the 1-
skeleton Ml 1 of M is the same as a section Ml1 ____. Pso(4). The trivialization is 
extendable over the 2-skeleton Ml 2 if and only if the corresponding section of 
Pso(4) can be extended across Ml 2 . 

Spin structures. Assume now that the S0(4)-cocycle {ga,B} lifts to some Spin(4)
valued maps {g.x,B} that satisfy the cocycle condition. Then we can use this lifted 
cocycle to glue a principal Spin(4)-bundle 

Pspin(4) ____. M 

from trivial pieces U.x x Spin(4). More, the double-cover Spin(4) ____. S0(4) defines 
fiber-to-fiber a natural map Pspin(4) ____. Pso(4), fitting in the diagram 

Spin(4) c 'Pspin(4) ------+ M 

21 21 II 
S0(4) c 'Pso(4) ------+ M. 

The map Pspin(4) ____. Pso(4) is itself a double-cover of Pso(4). 

A spin structure can thus be redefined as a principal Spin(4)-bundle Pspin(4) that 
double-covers the bundle Pso(4) (and fits in the diagram above). 

Note: Equivalence of the definitions of a spin structure 

In what follows, we will prove hands-on the equivalence between defining spin 
structures as extendable trivializations of T M and defining them as lifted Spin( 4)
cocycles. Reading the preceding note is, obviously, a requisite. 

Of course, more streamlined arguments exist. (Here is the best one: both the exis
tence of an extendable trivialization and of a Spin( 4) -cocycle are equivalent with 
the vanishing of w2(TM); the end.) Nonetheless, in what follows we favor a con
crete approach, which is rather expensive; we choose to present it here owing to 
its absence from the literature. 

Our argument is rather long and involves some careful play with triangulations, 
principal bundles and double-covers, but the basic idea is pretty straightforward: 
Let E ____. D 2 be a vector bundle over a disk, with fiber JR4 . Since D 2 is contractible, 
E must be trivial; for definiteness fix a reference trivialization E ~ D 2 x JR4 . 

Consider some other random trivialization cp: Els1 ~ 51 x JR4 over the bound
ary of the base. Think of cp as a field of frames in E over a D 2 , that is to say, 
as a map cpr 51 ____. S0(4). The trivialization cp will extend across all D 2 if 
and only if the frame-field CfJJ can be extended over D 2 • That happens if and 
only if the loop CfJJ in SO( 4) is homotopically-trivial, that is to say, if and only if 
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cpr S1 ----+ SO( 4) can be lifted to a closed loop o/r S1 ----+ Spin( 4) (and not to an 
openpath o/r [0,1]---+Spin(4),with <p1(o) = -<p1(1)). 

Throughout this note, assume that M has been triangulated, in other words, ex
hibited as a simplicial complex.5 Denote by Mit the 1-skeleton of M, by Ml 2 

the 2-skeleton, and so on. Further, for any bundle E over M, denote by Elk the 
restriction of E to the k-skeleton of M (and not the k-skeleton of the manifold E). 

From cocycles to trivializations. Assume first that a SO( 4) -cocycle {gall} of T M 

lifts to some maps {gall} that actually satisfy the cocycle condition. Then a cor
responding principal Spin(4)-bundle Pspin(4 ) is well-defined. We will show that 
the existence of the bundle Pspin(4) implies that TM can be trivialized over the 2-

skeleton Mlz· Specifically, we will show that the frame-bundle Psa(4) admits a 

section over Ml 2 . For that, we define a section 1' of Pspin(4) over Ml2 and project 
it to a section of Pso(4). The section :Y is defined using a simplex-by-simplex con
struction. 6 

We start with the vertices of M and define each :Y(vertex) in some random manner 
as an element of Pspin(4) in the fiber above it. 

Any edge e of M is contractible, and thus Pspin(4) IE is trivial. Choose some triv

ialization Pspin(4) IE >':::! e x Spin( 4). The section :Y is already defined at the end
points (vertices) of e. By looking through the trivialization, we see that the fact 
that Spin(4) is connected implies that :Y can always be extended over e, and thus 
eventually across the whole 1-skeleton MIt. 

There remain the 2-simplices. Any 2-simplex Dis contractible and thus Pspin(4) lo 
can be trivialized as D x Spin ( 4) . The section :Y is already defined over the edges 
that make up the boundary aD. Looking through the trivialization and using that 
Spin( 4) is simply-connected allows us to extend :Y over D, and eventually across 
the whole 2-skeleton Ml2 . 

The resulting section 1': Ml2 ----+ Pspin(4) can be projected through the double-cover 

Pspin(4 ) ----+ Psa(4) to a section T: Ml 2 ----+ Psa(4). The latter is a field of frames in 

TM thattrivializes TM over Ml2 . 

Notice that, since we have n2S0(4) = 0 (and thus n2Spin(4) = 0), a bit more can be done: the 
section T of Pspin(4) can be further extended across the 3-skeleton of M, yielding a trivialization 

ofT M over Ml 3 , which can be viewed as a trivialization over M \ {point}. 

5. A triangulation is a decomposition of M into simplices. A 0-simplex, or vertex, is a point. A !
simplex, or edge, is a copy of [0, 1]; its faces are its endpoint-vertices. A 2-simplex is a triangle (interior 
included); its faces are its three edges. A 3-simplex is a tetrahedron (interior included); its faces are 
the obvious four 2-simplices. A 4-simplex is whatever you want to call what follows; its faces are 3-
simplices. If a simplex is part of a triangulation, then all its faces must be simplices of the triangulation. 
All simplices of a triangulation of M must be embedded in M and must either have exactly a whole 
sub-simplex(= face, or face-of-face, or ... ) in common with another simplex or be disjoint from it. In 
short, a triangulation of M means making M look like a polyhedron with simple "triangular" faces. 

6. This simplex-by-simplex method is just a most simple application of the method of obstruction theory, 
which will be explained in generality in the note on page 197 ahead. If you do not like the word 
"simplex", you can substitute "handle" or "cell" throughout. 
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Uniqueness. It is worth noting that the trivialization T of T MIt that we obtained above is uniquely 
determined, up to homotopies, by the spin structure Pspin(4) . Indeed, assume two random sec
tions i' and i" of Pspin(4) are given over Mit· We will define a homotopy between them over 
the 1-skeleton of M. For that, we view a homotopy as a section of the bundle Pspin(4) x [0, 1] ----> 

M x [0, 1] that limits to i' over M x 0 and to i" over M x 1 . Since i' and i" are given, such 
a section is already defined over the vertices of M x [0, 1]. It can be extended across the edges 
connecting M x 0 with M x 1, using as above that Spin(4) is connected. Then it can be ex
tended over the 2-simplices of M x [0, 1] by using that 1tJ Spin( 4) = 0. Thus, we have defined 
a homotopy between i' and i" over M[ 1 . This descends to a homotopy between the induced 
trivializations T1 and T 11 of T M, proving uniqueness. 

In conclusion, a spin structure defined via cocycles determines an extendable trivi
alization of TMI1 , unique up to homotopies. 

From trivializations to cocycles: Preparation. The converse argument involves a 
rather cumbersome setup that will allow us to link 1-skeletons and trivializations 
to cocycles and their lifts. It will take the rest of this note (through page 189). 

Assume that M has been endowed with a fixed triangulation !Y. For definiteness, 
fix a Riemannian metric on M. We will prove that any trivialization of T M 11 that 
extends across Ml2 defines a Spin(4)-cocycle for TM. 

First, remember that any triangulation !Y admits a dual cellular decomposition !Y*. 

Given a triangulation !Y of M4 , its dual cellular decomposition !Y* is obtained by taking the 
barycentric subdivision7 :Y' of !Y, then, for each (4- k)-simplex Lla of !Y, defining its dual 
k-cell .1: in !Y* by taking the union of all k-simplices of !Y' that touch the barycenter of Lla. 
For example, the vertices of !Y* are the barycenters of the 4-simplices of !Y, the 1-cells of 
!Y* are arcs normal to the 3-simplices of !Y (and link the vertices of !Y* ), while the 4-cells of 
!Y* are neighborhoods of the vertices of !Y. See figure 4.21 on the following page. The dual 
cellular decomposition is an especially nice cellular decomposition, in that it fails from being a 
triangulation only by using more general "polygonal" cells rather than just "triangular" simplices; 
otherwise, all cells are embedded, etc. (On the side, note that dual cellular decompositions can be 
used to offer a nice visualization of Poincare duality.) 

4.20. Barycentric subdivision of a 2-simplex 

7. The barycenter of a simplex Ll is simply a canonical center for it. The barycenter of a vertex is the 
vertex itself. The barycentric subdivision :Y' of !Y is obtained by taking as new k-simplices every join 
of the barycenter of an old k-simplex of !Y with the barycenter of a face and the barycenter of a face of 
that face and... For example, a 2-simplex in :Y' is the triangle that appears by joining the barycenter 
of a triangle of !Y with the center of one of its edges and with the vertex at one end of that edge. See 
figure 4.20. The join of two subsets A and B of Rn is the union of all segments that start in A and end 
in B. 
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4.21. Cellular decomposition dual to a triangulation 

Since we have to deal with trivializations of T M over the 1-skeleton MIt and their 
extendability over the 2-skeleton Ml2 , we will only use cocycles {Ua, gaf3} of TM 
that are nicely compatible with the chosen triangulation f7 of M. 

Namely, we will take the Ua 's to be small neighborhoods of the 4--cells L\~ of the 
dual decomposition ,?7* of M. The 4--cell L\~ is a closed set surrounding a vertex 
Va and touching the barycenters of all 4-simplices that contain Va. In particular, 
each edge E of f7 links the center of Ua with the center of u13 and passes through 
the overlap Ua n u13 . The latter intersection is just a small neighborhood of the 
3-cell (dual to E) that L\~ and L\~ have in common. 

Since each Ua is contractible, TMiua is trivial. Using the Riemannian metric of M, 
we choose trivializations . T I ~ U lR4 

Cfa· M Ua ~ a X 

that are isometries on the fibers. We compare these trivializations over Ua n u13 
and obtain transition maps 

gaf3: Ua n U13 -----+ SO( 4) with 

These will be the cocycles { Ua, gaf3} of TM that we will consider. Notice that these 
cocycles depend essentially only on the choice of trivializations cpa over the Ua 's. 

Trivializations and partial Spin-bundles. Given any trivialization 

E>: TMit ~ Mit X lR4 

of TM over the 1-skeleton of M, we express E> in coordinates with respect to the 
charts cpa: TMiua ~ Ua x lR4 . Namely, we describe E> by a collection of S0(4)
valued maps Ta:, defined on the part of the 1-skeleton of M that is included in Ua, 
which we denote by Ua It (see figure 4.22 on the next page). 

Specifically, the maps 

are defined by the equations Ta: ( x) · w = cpa ( e-1 ( x, w)) and will satisfy compati
bility relations 

Ta = ga:f3 · Tf3 . 
An alternative view of the Ta: 'sis as defining a section 
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4.22. Open set UIX, and the !-skeleton of M 

corresponding to the frame-field induced by the trivialization e. 
Considerarandomliftofthemaps TIX: U~~<lt---> S0(4) to some maps 

T~~<: U~~<lt ~ Spin(4). 

Given such a collection {T~~<}, we can correspondingly choose lifts 

gaf3: Ua n Uf3 ~ Spin(4) 

of the gaf3 'sin such manner as to fit the various Ta 's, namely so that 

Ta = ga(3 · Tf3 . 

185 

Since this fitting amounts merely to a choice of sign for each gaf3 and owing to the 
special shape of our covering {U~~<}, such a lift can always be made. 

Of course, {g~~<f3} is most likely not a cocycle. Whether it is or not depends only on 
the T~~<'s, not on the random lifts T~~<· To see this, consider two random lifts {T~} 
and { T%}. They can differ at most by a collection of signs Ea E Z2 = { -1, + 1} 
with T% = Ea T~. The corresponding transition maps are then related by g~f3 = 
£~~< Ef3'ff'a(3. Clearly, we have l/.(3 · ~"f · g~a = + 1 if and only if g~f3 · g~"f ·ira = + 1. 
In particular, when one choice of Ta's leads to a cocycle, then so will any other 
choice, and the various choices lead to isomorphic cocycles, i.e., a unique spin 
structure. 

By definition, the maps gaf3 satisfy gaf3 = gji1. Therefore, if we avoid all triple 
intersections Ua n u(3 n Ury I then the lifts ga(3 can be used to define a principal 
Spin( 4) -bundle away from the Ua n u(3 n Ury Is. In particular, we get a bundle 

Pspin(4) It 
well-defined over the 1-skeleton of M. 

Of course, Pspin(4) It is a double-cover of Pso(4) lv built fiberwise from the projec
tion Spin(4) ---> S0(4). Furthermore, the maps Ta can be viewed as defining a 
section T: Mit---> Pspin(4) It· 

Trivial versus nontrivial covers. Since the bundle Pspin(4) It defined above is a 
principal bundle, having a section T implies that it is a trivial bundle over Mit· 
Nonetheless, it can project in a nontrivial way onto Pso(4) It· In what follows we 
will investigate how this nontriviality can be detected. Since Pspin(4) It ---> Pso(4) It 
is a cover projection, fundamental groups will play a prominent role in the argu
ment. 
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Restrict to the boundary aD of a fixed 2-simplex D. Since both 1So(4) Ia 0 and 
Pspin(4) lao admit sections T and 1', they are trivial, and thus Pso(4) lao ~ aD x 
S0(4) and Pspin(4)lao ~aD x Spin(4). Therefore 

n1(Psa(4)lao) = ZEE!Zz and n1(Pspin(4)lao) = Z · 

Denote by d the double-cover map 

d: Pspin(4) Ia o -----+ Pso(4) Ia o , 

fitting in the diagram 

1Spin(4)lao ----+ 1So(4)lao z ----+ ZEE!Zz 
d d* 

1 1 or, on n1's: 1 1prl 
av av z z 

Being a cover map, d's induced morphism d* must be injective. We deduce that 
there are only two choices: either 

or 

The case d*(l) = 1 EBO corresponds to the case when the cover Pspin(4)lao-:-+ 

Pso(4) lao is trivial, while d*(l) = 1 ED 1 happens when the fiber of Pspin(4) lao 
twists once as we go around a D, as suggested in figure8 4.23. 

Pspin(4) lav 

4.23. Trivial and nontrivial covers 

To better visualize how this can happen, consider the trivial bundles S1 X S3 and S1 X RJP3 over 
S1 . There are two possible double-cover projections d of S1 X S3 onto S1 X RJP3 that both com
mute with the bundle projections and hence fit in a diagram 

s1 x s3 -----> s1 x RJP3 

1 
d 

1 
One possible double-cover is the obvious one, the product of the identity on S1 with the double
cover S3 -> RJP3 . The other can be seen as follows: start with [0,1] x S3 and glue the ends 
0 X S3 and 1 X S3 using the antipodal map on S3 ; project each S3 to RJP3 to get a double-cover 
of S1 X RJP3 . However, since the antipodal of S3 is homotopic to the identity, what we glued is 
still S1 X S3 . The first map has d*(l) = 1 Ell 0, while the second has d*(l) = 1 Ef)l. In fact, this 
example is pretty close to our concerns, since S3 = Spin(3) and RJP3 = S0(3). 

8. Owing to dimension-reduction, figure 4.23 is misleading: on both sides, the space 1'spin(4) Ia D should 
be the same trivial bundle over a 0 . 
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Detecting nontriviality with cocycle candidates. The two cases d* ( 1) = 1 EEl 0 and 
d* ( 1) = 1 EEl 1 are detected both by the lifted Spin ( 4) -valued maps gaf3 and by the 
section T of Pspin( 4) 11 . We shirt with the gaf3 's. 

Since D is a 2-simplex of M, it is surrounded by three of the open sets from 
our covering, say Ua, u 13 and U-y, with the center of D right in the middle of 
Ua n uf3 n U-y I as suggested in figures 4.24 and 4.25. 

4.24. Set-up for equivalence argument, I 

uf3 

u"~ 

4.25. Set-up for equivalence argument, II 

We claim that, for the indices tX, f3, '}' around D, we have 

gaf3 · gf3'Y · g-ya = + 1 

if and only if the cover Pspin(4) Ia 0 ____, Pso(4) Ia 0 is trivial, that is to say, if and only 
ifd*(1) =lEBO. 

Assume first that the product of the gaf3 's around D is + 1. Then the gaf3 's can 
safely be used to extend Pspin(4) lao over D as a bundle Pspin(4) lo, fitting in 

Pspin(4)lao C 'Pspin(4)1D Z _______, 0 

dl 1 or,onn1's: d•l l· 
c prz _______, z2 
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Thus the only possibility for d* is 

d*(1)=1ffi0. 

Conversely, assume that d*(1) = 1 ffi 0. Then Pspin(4) lao ----> Pso(4) lao must be 
the trivial double-cover, with 

Pspin(4)1av ~ Pso(4)1av x {-1,+1}. 

Therefore it can be extended to a double-cover P of Pso(4) across the whole D, 
with Plav = Pspin(4) laD· Such a double-cover, when projected down to D, can 
only have as fibers copies of Spin ( 4) . Moreover, since P projects to Pso( 4) I D, its 
cocycle must project to the cocycle gtXfl of Pso(4). Further, since P ----> D is glued 
over aD by the gtXfl 's, it must be that it is glued over the whole D by the g1Xf3 's. 
This in particular implies that the gtXfl 's, since they glue an actual bundle over D, 
must be a genuine cocycle over D, and thus 

giX{l. gfl'y. g'YIX = +1 • 

In conclusion, gtX.fl · gf31 · g1 1X = + 1 if and only if d* ( 1) = 1 ffi 0. 

Detecting non triviality with trivializations. Now we will see how to distinguish 
between the two cases d* ( 1) = 1 ffi 0 and d* ( 1) = 1 ffi 1 by using the trivialization 
8: TMI1 ~ Ml1 X lR4 . 

The trivialization C9 expresses itself through the section T of Pso(4) 11 , with local 
coordinates TIX: UIX----> S0(4). Recall that we chose random lifts TIX: UIX----> Spin(4) 
and then picked the maps gtXf3 in such manner as to ensure that the TIX 's would 
define a section in the partial Spin(4)-bundle Pspin(4) 11 that is glued by the gtXfl's. 

Over the boundary a D, we have the diagram 

z ------> z ffi z2 
a. 

or, on 1t1's: r. r r r. 

aD av z= z 
Since from commuting we must have that T*(1) = d*(1), it follows that either 
T*(1) = 1 ffi 0 or T*(1) = 1 ffi 1. 

Trivialize Pso(4) over D as D x S0(4) and use the inclusion 

Pso(4) lao c Pso(4) lv ~ D x S0(4) 

to obtain from T: aD----> Pso(4) lao a map To: aD----> S0(4). Then the section T 

of Pso(4) lao can be extended to a section of Pso(4) over all D if and only if the 
induced map To: aD ----> SO( 4) is homotopically-trivial. In other words, if and 
only if we have T* (1) = 1 ffi 0 and not 1 ffi 1. 

In conclusion, the trivialization C9 of T M over the 1-skeleton can be extended over 
the 2-simplex D if and only if d* ( 1) = 1 ffi 0. 
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Final twirl. Gathering our toys, we notice that we have proved the statement: 

Given a trivialization 8 of TMI 1 , it can be extended over a 2-simplex D surrounded by 
the open sets Ua' uf3' u'Y if and only if Saf3 . Sf3'Y . g'YIX = + 1. 

In particular, if 8 is a trivialization of T M over the !-skeleton that extends across 
the whole 2-skeleton, then it can be used to define lifted maps {Saf3} that will 
constitute a Spin(4)-cocycle. 

The proof is concluded: an extendable trivialization defines a unique Spin ( 4)
cocycle, up to isomorphisms. 

Note: Bundles, cocycles, and Cech cohomology 

In this note we describe the Cech cohomology of a manifold, with constant coef
ficients in an Abelian group G. Then we extend this concept, on one hand, to 
non-Abelian groups and, on the other hand, to non-constant coefficients. (We will 
not take the next step of defining the general cohomology of a sheaf.) 

This will enable us to present a cocycle defining a bundle as a Cech cocycle that de
fines a cohomology class in H1 (M; C00GL(k)). Consequently, H1 (M; C00GL(k)) 
can be viewed as the set of all k-plane bundles over M, up to isomorphisms. This 
approach will allow us to get concrete descriptions of a few characteristic classes 
and will be used to touch upon the obstruction and uniqueness of spin structures 
onM. 

eech cohomology. One should think of Cech cohomology as a cohomology theory 
that uses open coverings and the way their open sets assemble (intersect) patching
up the manifold M, in order to detect the topology of M. 

Let {Ua} be a covering of M by open sets, and G an Abelian group. We consider 
collections of G-valued functions defined on intersections of the Ua 's. Pick an 
integer n and choose a set of locally-constant functions 

cp = { o/ao ... IXn: Uao n ... n Uan ---> G}' 
each defined on the intersection of n + 1 of the open sets Ua . This collection is 
called a Cech n-cochain with values in G. We denote by 

en( {Ua}; G) 

the Abelian group of all such Cech n-cochains. 

The coboundary operator b: en -+ cn+l sends each cp to an (n + 1)-cochain bcp, 
a set of functions defined on intersections of n + 2 of the Ua 's, each described as 
an alternating sum of restrictions of cp's. Namely, we set 

(bcp)IXo ... IXn+i: Uao n. 0. n Uan+i ---> G 

(bcp)IXQ ... IXn+i(x) = I)-l)k%o ... lik ... 1Xn+i(x) 

(where ak signals the removal of txk ). 

If an n-cochain cp has bcp = 0, then cp is called a Cech cocycle. If cp = btx for some 
( n - 1) -chain tx, then cp is called a Cech coboundary. The Cech cohomology group 
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H* ( { UIX}; G) of the covering { UIX} of M is then defined in the usual fashion, as 
cocydes modulo coboundaries: 

fin({UIX};G) = {fPECn({UIX};G) lbfP=O} / {o~I~Ecn-I({UIX};G)}. 

A priori these groups depend on the chosen open covering { UIX}. Eliminating this 
dependence, the Cech cohomology group of M is defined as the direct limit 

H*(M;G) = ~H*({UIX},G) I 

taken over refinements of the open cover. 

If M is a manifold, then H*(M; G) coincides with the usual singular cohomology 
of M, as we will prove directly in an instant. 

Taking the direct limit is rather unpleasant, and it is almost never done. Indeed, 
it is enough to consider a fine enough covering, for example a covering { UIX} of 
M by contractible open sets, with all intersections UIX0 n · · · n UIXn contractible as 
well.9 For such coverings we have H* (M; G) = H* ( {UIX}; G). 

Simple examples. The group H0 ({UIX};G) comes from 0-cocycles, that is to say, 
from collections lp = { o/IX : UIX ----+ G} of locally-constant functions defined on the 
UIX 'sand satisfying Olp = 0. In this case, the cocycle condition is 

OfP = 0 

and therefore immediately 

H0 ( { UIX}; G) = {locally-constant functions M ----+ G } . 

Hence fiO detects the components of M: if M is connected, then fiO(M; G) =G. 

The first group H1 ( {UIX}; G) comes from 1-cocydes, that is to say, from families 
lp = { o/1Xf3 : UIX n uf3 ----+ G} satisfying Olp = 0 I where 

Olf = o -{::::=:} lfiX"f = o/1Xf3 + o/f3"r on UIX n uf3 n U1 . 

In particular, notice that a 1-cocyde must satis~ the skew-symmetry lf1X{3 = -lpf31X. 
These 1-cocydes yield cohomology classes in H 0 ( { UIX}; G) by considering them 
up to the addition of a coboundary. That is, for any two cocydes lp1 and lp11 , we 

have: [ lf'] = [ lf"] in HI -{::::=:} o/~{3 = o/~{3 +fiX - !{3 

for some 0-cochain f = {!IX : UIX ----+ G} . 

And the usual suspects. We now prove directly that nothing new is obtained: 

Lemma. If X is a simplicial complex (e.g., a triangulated manifold), then 

H*(X; G) = H*(X; G) I 

where on the right we have the simplicial cohomology of X. 

9. A typical geometric method for building such coverings is to pick a Riemannian metric on M and 
choose geodesically convex open sets for the Ua 's. A more topological method would use a triangulation 
of M and take the Ua 's to be the stars of the vertices of M. 



4.5. Notes 191 

Proof. For every vertex v of X we define its star, denoted by star(v), as the 
union of all simplices of X that contain v. List the vertices of X as { v a:} and 
define the open sets Ua: as 

Ua: = interior of star(va:) . 
Then we have that 

Ua:o n ... n UIXn =J. 0 if and only if Va:o• ... 'Va:n span ann-simplex. 

See also figure 4.26. 

4.26. Linking Cech cochains with simplicial cochains 

Each of these intersections is connected, and therefore every Cech n-cochain 
cp is constant on it. Thus, a Cech n-cochain cp simply assigns to every n
simplex (va:0 , ••• , Va:n) of X an element o/a:o ... a:n of G, and hence corresponds 
bijectively to a simplicial n-cochain. 

Finally, it is not hard to check that the Cech and simplicial coboundary opera
tors correspond perfectly, and thus 

H* ( {Ua:}; G) = H*(X; G). 

Going to the limit with the coverings is not a problem, e.g., by using subdivi-
sions of the simplicial complex. o 

Even though nothing new appears at the outset, Cech theory admits a remarkable 
extension from coefficients in a group to coefficients in a presheaf and leads to the 
sheaf cohomology that is essential in complex geometry. We will not fully pursue 
that avenue, but the reader is encouraged to consult P. Griffiths and J. Harris's 
Principles of algebraic geometry [GH78, GH94]. 

Another remarkable extension of the theory is to non-commutative groups: 

Non-commutative Cech cohomology. One should notice that the whole cohomol
ogy apparatus depends on G being Abelian, and thus the extension to the non
Abelian case will have serious restrictions. Namely, H 1 ( M; G) ceases to be a group 
and H2 (M; G) ceases to be altogether. However, since vector bundles are glued 
using non-commutative groups such as GL(k), SO(k), U(k), we do need to pur
sue this direction. Thus, let G be a non-Abelian group, written multiplicatively. We 
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can define Cech cochains just as before. However, when it comes to defining the 
coboundary operator, we need to be careful. 

We are only interested in HI ( M; G), so let cp = { cpiX{3 : UIX n u13 ----+ G} be a G
valued 1-cochain. Switching from additive to multiplicative writing, we write 

(6cp)IX{)'Y = CfJIX{). CfJ{)'Y. C{J'YIX" 

A 1-cocycle must then be any cp with ( 6cp )1Xf3'Y = 1 for every lt, {3, 'Y. In particular, 
every cocycle has cp1X{3 = cp~1· 
Now let f = {fiX: UIX ----+ G} be a 0-cochain. Its coboundary is, naturally, 

(6f)IX{3 = Ia • ft • 
Nonetheless, when it comes to defining when two 1-cochains cp' and cp" are co
homologous, that is, when cp' and cp" are considered to differ by 6 f, the non
commutativity of G makes essential a specific choice of order. The right one is: 

[m'J = [m"J {::::==? m1 + m11 f-I T T TIX{)=JIX.TIX{)" {3" 

Then we can define in the usual manner the Cech cohomology set fii ( {UIX}; G) 
of the covering {UIX}, and thereafter its limit fii (M; G) =~{II ( {UIX}; G). Since 
the coboundaries cannot be expected to make up a normal subgroup of the cocy
cles, this fii is not a group, but merely a set with a distinguished element, the 
class of the trivial cocycle given by 11X{3 = 1. 

The similarities with the cocycles that glue bundles should be obvious by now. 
Nonetheless, to fully engulf that case we need to extend the notion of cochain a bit 
to allow for non-locally-constant functions. 

Non-constant cochains. We extend the notion of cochain. Namely, given a topo
logical group G and a covering {UIX} of M, we define a continuous n-cochain 
cp = { cpiX0 ... 1Xn} as a collection of continuous functions 

cpiXO···IXn : UIXO n ... n UIXn ---> G . 

The rest of the theory flows just as before and leads to what one should properly 
call the Cech cohomology with coefficients in the sheaf of continuous G-valued functions, 
and denote it by something like 

H* (M; C0 ( G)) . 

Notice that, if G is a discrete group (such as .Z), then the cochains will be forced to 
be locally-constant, and so in particular H* (M; C0 (Z)) = H*(M;Z). 

Assuming that M is a smooth manifold and G is a Lie group, we can further require 
the cochains to be made of smooth functions, thus leading to the Cech cohomology 
with coefficients in the sheaf of smooth G-valued functions, 

H*(M; C00 (G)) . 

It is important to note that, if one merely chooses G to be the additive groups lR 
or C, then nothing much happens, since it is proved that fin ( M; coo (JR.)) = 0 for 
every n 2 1. 
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Finally, note in passing that, if M and G happen to be complex manifolds, then we can require 
the cocycles to be holomorphic. This leads to the Cech cohomology with coefficients in the sheaf 
of holomorphic G-valued bundles, denoted by H* (M; 0( G)). If one then takes G to be the ad

ditive group C then fin ( M; O(C)) -usually denoted by H" (M; 0) -is very much nontrivial, 
and plays an essential role in complex geometry 

A further generalization of Cech cohomology allows, in a sense, for the coefficient
group G to vary from point to point, and that leads to sheaf cohomology, but not 
in this volume. For ramifications in complex geometry, seeP. Griffiths and J. Har
ris's Principles of algebraic geometry [GH78, GH94]. For algebraic topology 
applications, seeR. Godement's Topologie algebrique et theorie des faisceaux 
[God58, God73]. For topological use in combination with differential forms, see 
R. Bott and L. Tu's Differential forms in algebraic topology [BT82]. 

Finally, we reached the bundles. We now combine the two extensions above, al
lowing both non-commutative groups and non-constant cochains. Assume that G 
is a subgroup of GL(k). Then 

H1 (M; C00 (G)) 

is the set of all k-plane bundles with structure group G, up to isomorphisms. Its 

distinguished element [ { liX,B}] is the trivial bundle M x JRk --+ M. 

To convince ourselves, let us notice that a class in H1 ( M; coo (G)) is determined 
by a G-valued 1-cochain 

that is coclosed, meaning that we must have giX,B · g,B,. · g,.IX = 1. Two such cocycles 
g' and g11 define a same class if they differ by a coboundary, that is to say, 

[g'] = [g"] <==? g~,B = fiX . g~,B . f{i I 

for some collection {fiX : UIX --+ G}. However, this defines nothing but a smooth 
vector bundle, unique up to isomorphisms and with structure group G, as was 
explained back on page 176. 

More generally, for any group G the set H1 ( M; coo (G)) is the set of all principal 
G-bundles, with distinguished element M x G --+ M. 

Let us now look at a few examples: 

Complex line bundles. Since any complex-line bundle can be endowed with a Her
mitian metric, which reduces its structure group from GLc( 1) to U ( 1) = S 1 , it 
becomes clear that 

is the set of all smooth10 complex-line bundles on M. Since S1 is Abelian, the 
set H 1 (M; C00 (S 1)) turns out to be a group; its operation corresponds to tensor 
products of line bundles. 

Further, S1 = lR/Z fits into the exact sequence of groups 
2TC· 

0 ----+ Z: ----+ JR ~ S I ----+ 0 

10. For holomorphic line bundles on a complex manifold M, one would look at H1 ( M; 0 ( C*)) , usually 

denoted by H 1 ( M, 0*). 
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(with the groups Z and lR written additively, but si written multiplicatively). 
This short exact sequence leads, as usual, to a long exact sequence in cohomology, 
part of which is: 

· · · ---dii(M; C00 (lR))----+ f.ri(M; C00 (SI))----+ 

----+ H2(M; C00 (Z)) ----+ H2(M; C00 (lR)) ----+ · · · 

Since f.rn(M;C00 (lR)) = 0 and frn(M;C00 (Z)) = Hn(M;Z), exactness provides 
an isomorphism 

In terms of bundles, this isomorphism is established by sending a line bundle L to 
its first Chern class: 

In particular, this proves (again) that every 2-class of M can be represented by a 
smooth complex-line bundle on M, and thus (by taking the zero-locus of a generic 
section) by a surface embedded in M. 

Cech cocyclefor Chern. By explicitly following the isomorphism H1 (M; C00 (S1)) ;:::; H2 (M; Z), 
we obtain a concrete description of a cocycle for c1 ( L): Let L be a complex-line bundle, defined 
by a cocycle {gall} with values in 51 • Lift each map gail: Ua n U!l -->51 to some map ~ail: Ua n 
U!l --> lR so that ga!l(x) = eZntJ.p(x) and ~ail = -~!la. The cocycle condition gail· gil?· g7a = I 
only lifts to ~ail + {f!l? + ff?a E z 0 Then define the Cech 2-cocyde {Call?: Ua n u!l n u? --> z} 
by setting 

Call? = ffa!l + ~!l? + ff7a • 
Its cohomology class is c1 (L) E H2(M;Z). This exhibits c1 (L) as essentially a cohomological 
bookkeeping of the 2n rotations used while building L. (For that matter, so is wz ( L), but only 
modulo 2.) 

Orientable vector bundles. Since every k-plane bundle can be endowed with a 
fiber metric, the set 

fri (M; C000(k)) 

is still the set of all k-plane bundles on M. A vector bundle is orientable if its 
structure group can be reduced to SO(k). The exact sequence 

0----+ SO(k) ----+ O(k) ~ Z2----+ 0 

(with Z 2 = { -1, + 1} written multiplicatively) leads to an exact sequence of sets11 

.. ·----+ H0 (M;Z2)----+ fri(M; C00SO(k))----+ 

----+ f.ri(M; C000(k)) ~ HI(M;Z2). 

The map denoted WI is the assignment of the first Stiefel-Whitney class 

E f------.+ wi(E). 

By exactness, if a bundle E E fri (M; C00 0(n)) has WI (E) = 0, then E must come 
from f.ri ( M; coo SO( n)), that is to say, E can be oriented. If a bundle is orientable, 
then its various orientations are all classified by the elements of H0 (M; Z 2). 

11. An exact sequence of sets (each with a distinguished element) means that the image of one map 
coincides with the preimage of the distinguished element through the next map. 
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Cech cocycle for Wt (E). Specifically, if E is defined by the O(k) --cocycle {g«,B}, then WJ (E) E 
H1 (M;Z2) is determined by the z2 -valued Cech 1--cocyde { detg«,B}. 

Spin structures. An oriented k-plane bundle (with k at least 3) is said to admit a 
spin structure if its SO(k)-cocycle lifts through the double-cover Spin(k) --+ SO(k) 
to a Spin(k)-valued cocycle. The exact sequence 

0 ----+ Z 2 ----+ Spin(k) ----+ SO(k) ----+ 0 

(with Zz = { -1, + 1} written multiplicatively) leads to an exact sequence 

· · ·----+ H1 (M;Zz)----+ H1 (M; C00Spin(k))----+ 

----+ H1 (M; C00SO(k)) ~ H2 (M;Zz). 

The map Wz above simply ascribes the second Stiefel-Whitney class 

E ~---> w2 (E) . 

By exactness, if a bundle E E H1 (M; C00SO(k)) has wz(E) = 0, then E must come 
from a Spin(k)-cocycle from H1 (M; C00Spin(k)). Further, the spin structures on a 
bundle E with w2 (E) = 0 are classified by H 1(M;Z2 ). 

Cech cocyclefor w2(E). Let {gap: UIX n Uf3--+ SO(k)} be a cocycle for an oriented 
bundle E. Assuming that the UIX n uf3 's are all simply-connected, we can always 
lift the maps g1Xf3 to maps 

with gtX{3 = g~IX1 . The product gtXf · gf3'Y · g"ftX will take values in Zz = { -1, + 1}. 
We can then define a Zz-valued Cech 2-cochain { W1Xf3"f: UIX n uf3 n u')' --+ Zz} by 
setting 

Clearly, the cochain { w1Xf3"f} measures the failure of the g1Xf3 's to define a spin struc
ture on E. Moreover, { wtXf3"f} is a cocycle: indeed, it is not hard to check that 

is constantly + 1. The cocycle { w1Xf3"f} represents in Cech cohomology the second 
Stiefel-Whitney class of E: 

This can be argued indirectly by using the fact that the vanishing of both Wz (E) 
and of [ w 1Xf3"f J are equivalent to the existence of a spin structure on E --+ X. Indeed, 
if [ wtXf3"f J = 0, that means that wtXf3"f is a co boundary. In other words, there must 
be a Zz-valued 1-cochain { E1Xf3: UIX n uf3 --+ Zz} so that W1Xf3"f = E1Xf3 . Ef3'Y . e')'IX. 
However, that implies that (EtXf3 · gtXf3) · (ef3'Y · gf3'Y) · (e'YIX · g"ftX) = +1 or, in other 
words, that the EtXf3 's represent the corrections needed to make the gtX{3 's into a gen
uine Spin(4)-cocycle. Thus, [wtXf3"f] = 0 if and only if E admits a spin structure. 
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Simplicial cocycle for w2(E). Passing the identity 

wz(E) = [wttf3'Y] 

through the isomorphisms between Cech and simplicial cohomology exhibited 
earlier, leads to the uncovering of a simplicial cocycle D for w2 (E): 

Triangulate the base X and use for all cocycles the covering Utt = star(vtt) cor
responding to the vertices Vtt of X. Then a triple intersection ult n uf3 n u'Y is 
non-empty if and only if it corresponds to a 2-simplex (vtt, vf3, v1 ) (and in that 
case the interior of (vtt, Vf3, v'Y) is included in ult n uf3 n U'Y). 

Choose a random lift of the S0(4)-cocycle {gttf3} of E to some set of Spin(4)
valued maps {gttf3} . Then the simplicial 2-cocycle D for Wz (E) is defined by as
signing to every 2-simplex (vtt, Vf3, v1) the Z 2-value of the product gttf3 · gf3'Y · g1tt. 

Switching from writing Zz = { -1, + 1} multiplicatively to the more familiar ad
ditive writing Zz = { 0, 1}, we translate to having D assign 0 to D if and only if 
gttf3 · gf3'Y · g1tt = + 1, and assign 1 if and only if gttf3 · gf3'Y · g1tt = -1. 

Around a characteristic surface. Let us focus on the case of 4-manifolds M and 
their tangent bundles T M. Using the above description of a simplicial cocycle D for 
wz(TM), we can imagine a characteristic surface of Mas a surface that manages 
to cross an odd number of times exactly those 2-simplices that D assigns to 1. 

An even better way to see this is probably in the slightly different setting used 
in the proof of equivalence of the spin structure definitions (preceding note, page 
181), as is recalled in figure 4.27. Recall that in that case the Utt 's were small neigh
borhoods of the 4-cells dual to the vertices of M. 

4.27. Drawing a characteristic surface 

Assume now that D is a 2-simplex, surrounded by the open sets Utt, u13 , U1 , 

with gttf3 · gf3'Y · g1tt = -1. Then the 2-celll:: dual to D is part of a simplicial chain 
that describes a (modulo 2) homology class Poincare-dual to w2 (TM). 

With a bit of luck in choosing the lifts gttf3, the union of all these distinguished 
dual 2-cells will make up an actual (unoriented) embedded surface in M ('1uck" 
is needed, because a priori there might be problems at the vertices). With a bit 
more luck, the surface 1: will be orientable, in which case it represents an integral 
homology class dual to wz(TM), and thus is deserving of the name "characteristic 
surface". 
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This picture also has the advantage of exhibiting a characteristic surface I: as sur
rounded by 2n-twists of TM, as was mentioned earlier (page 179) and is recalled 
here through figure 4.28. Away from I:, the maps gtxf3 are a genuine cocycle and 
thus define a spin structure on the complement M \ I:; clearly, this spin structure 
on M \ I: cannot be extended across I:. 

4.28. Outside spin structure, not extending across a characteristic surface I: 

Note: Obstruction theory 

In this note, we give a short presentation of obstruction theory. On one hand, this 
will shed light on several constructions already seen in this chapter. On the other 
hand these techniques will be needed in the note on page 207 ahead, where the 
theory of smooth structures on topological manifolds is explained. 

Obstruction theory deals with the problem of existence and uniqueness of sections 
of fiber bundles, encoding it into cohomology classes with coefficients in the ho
motopy groups of the fiber. At the outset, the case of a vector bundle E is unin
teresting, since there always exist sections. However, obstruction theory can be 
applied to bundles associated to E, such as its sphere bundle SE (uncovering the 
obstruction to the existence of a nowhere-zero section in E), or the bundle Pso(E) 

of frames in E (uncovering obstructions to the existence of a global frame-field in 
E, that is, obstructions to trivializing E), or bundles of partial frames-the result
ing obstructions turn out to be the usual characteristic classes of E. In particular, 
from this note we will gain yet another point-of-view on the characteristic classes 
of a 4-manifold. 

The argument to follow has two main components, each propelling the other: on 
one hand, defining things through cell-by-cell extensions and climbing from each 
k-skeleton to the (k + 1) -skeleton; on the other hand, meshing the issue of extend
ing sections with the issue of their uniqueness up to homotopy. 

Set-up. A fiber bundle E with fiber F over a manifold X is a space E and a map 
p: E -+ X so that X is covered by open sets U over which the restriction of p to 
p-1 [U] looks like the projection U x F -+ U. 
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Assume that that the fiber F is connected; furthermore, assume that F's first non
trivial homotopy group12 is TCm (F). (If m = 1, assume further that n 1 (F) is 
Abelian.) 

Moreover, choose a random cellular decomposition13 of X. We denote by X I k the 
k-skeleton of X, and by Elk the restriction of E to Xlk (not the k-skeleton of the 
space E). Also, let £Tik denote the restriction of £T to Xlk. 

Free ride, up to the m-skeleton. We try to define a section £T of E by defining it 
over the vertices of X, then try to extend £T over the 1-skeleton of X, then over 
the 2-skeleton, and so on, cell-by-cell. This plan proceeds without problems until 
we attempt to extend from them-skeleton across the (m +I)-skeleton. 

Indeed, to reach the m-skeleton, we start by defining £T(vertex) in any random 
way. Then, assuming £Twas already defined over the k-skeleton of X, we try to 
extend £T across the ( k + 1) -cells of X: For every (k + 1) -cell C, we notice that the 
restriction Elc is trivial (since Cis contractible)14 and hence Elc ~ C x F. Our 
£T, already defined on the k-sphere ac, induces a map ac-+ F. Then £Tiac can 
be extended across C if and only if the induced map a C -+ F is homotopically
trivial. However, as long as k :S m - 1, we have nk (F) = 0 and thus every map 
a C -+ F can be extended over C, and hence so can £T. Therefore, we can always 
define sections £T over the m-skeleton of X. 

Uniqueness so far. Let us investigate for a second the dependence (up to homo
topy) of the resulting £Tim on the choices made along the way; again, we split the 
problem in stages between the k- and (k + 1 )-skeletons. 

Take k and assume that £Tis fixed over Xlk, then let £T1 and £T11 be two extensions 
of £T from Xlk across Xlk+I· A homotopy between £T'Ik+1 and £T"Ik+l means 
a section cP in the product-bundle p x id: E x [0, 1] -+ X x [0, 1], defined over 
(XIk+1 ) x [0, 1] and limiting to £T1 on X x 0 and to £T11 on X x 1. 

We choose the obvious cellular decomposition of X x [0, 1] induced from the cho
sen decomposition of X, with each j-cell C of X creating two j-cells C x 0 and 
Cx 1 inXx [O,l],anda (j+l)-cellCx [0,1]. 

Certainly cP must be defined to be £T1 x 0 on (XIk+l) x 0 and to be 0"11 x 1 on 
(XIk+1 ) x 1. Furthermore, since £T1 and £T11 were taken to coincide over the k-ske
leton of X, it follows that, for every j -cell C of X with j :S k, we have £T' I c = 0"11 I c. 
We can then extend cP across the (j + 1) -cell C x [0, 1] simply as £T x id. Therefore, 
for fully extending cP across (XIk+1 ) x [0, 1], we need only extend cP across those 

12. Remember that the homotopy group nk(A) is the set of all homotopy-classes of maps sk---> A, with 
a suitable group operation. An element f E nk(F) is trivial if and only iff: sk ---> A can be extended 
to a map J: [)k+ 1 ---> A. Whenever k is at least 2, the group nk (A) is Abelian. 

13. Handle decompositions would work just as well. Just substitute the word ''handle" for "cell" in all 
that follows. Or one could use a triangulation of X (as recalled back in footnote 5 on page 182) and 
substitute "simplex" for "cell" throughout. 

14. Technically, since the cell C is not necessarily embedded along o C, one should view Elc as the 
pull-back t* E, where t: C ---> X is the "inclusion" of the cell in X. 
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(k + 2)-cells of X x [0, 1] that are of shape D x [0, 1] for some (k + 1 )-cell D of X. 
Compare with figure 4.29. 

4.29. Toward a homotopy between two sections 

Notice that <P is already defined over the whole boundary d ( D x [0, 1]). Thus, <P 
restricted to the (k + 1 )-sphere a(D x [0, 1]) determines an element of nk+l (F). 
It follows that <P extends across D x [0, 1] if and only if the class of <Pia(ox [O,l]) in 
7tk+l (F) is trivial. 
Therefore, since all homotopy groups of F were assumed trivial up to dimension 
m, it follows that the extension of cr up to the (m- I)-skeleton of X must be 
unique up to homotopy. However, when we extend cr from the ( m - 1) -skeleton 
across them-skeleton, the various options can differ over each m-cell by elements 
of 7tm (F) . We will come back to this issue. 

Across the (m + 1)-cells: obstruction cocycles. In any case, our fibre bundle E ---. 
X admits a section cr defined over the m-skeleton of the base. When attempting 
to extend cr from the m -skeleton across the ( m + 1) -skeleton, obstructions appear. 
Indeed, if Dis a (m + 1)-cell, then crlao might describe a nontrivial element in 
7tm (F), and then our cr will not extend across D. Compare with figure 4.30 on the 
following page. 
To measure this, we define the function 

U cr : { ( m + 1) -cells of X} -----> 7tm (F) D ~ [crlao], 

which takes an ( m + 1) -cell D to the element of 7tm (F) that is determined by 
crlao through some random trivialization Elo ;:::;:; D x F. We can then extend Ucr 
by linearity, and think of it as a 7tm (F) -valued15 cellular ( m + 1) -cochain on X. 

15. In truth, the twists of our fiber bundle E --> X might twist the way the 7tm 's of the various fibers 
can be assembled together. Thus, to get a well-defined map tJ, one must in fact use twisted coefficients 
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4.30. Obstruction to extending a section 

This cochain U cr is in fact coclosed. Indeed, on every ( m + 2) -cell B, we have 

(t5Ucr)(B) = Dcr(aB) = [o-laaB] = 0, 

where a denotes taking the homological boundary and we use that a a = 0. We 
call D cr the obstruction co cycle of a-. Our chosen section a- will extend over the 
(m + 1 )-skeleton if and only if Ocr = 0. 

Even when the cocycle Ucr happens to be nontrivial, we can still try to go back 
and change the way a- was defined over them-skeleton of X, and maybe the new 
version cr' will have Ucr' = 0 and hence extend. We need to revisit the issue of 
uniqueness of sections of Elm: 

Uniqueness, revisited: difference cochains. Given any two sections o-1 and o-11 of E 
defined over them-skeleton, they cannot differ homotopically over the (m- I)
skeleton. Therefore there must exist a homotopy K between o-'lm-1 and o-"lm-1 . 

We try to extend this K to a homotopy <P between o-'lm and o-"lm· As before, we 
view <Pas a partial section of Ex [0, 1] --+X x [0, 1] and set <P to be o-'lm x 0 on 
(XIm) x 0 and o-"lm x 1 on (XIm) x 1, and thereafter extend it across (XIm-l) x 
[0, 1] by spreading Kover it, thus linking o-'lm-1 X 0 with o-"lm-1 x 1. 

To extend this to a full homotopy between a-' I m and a-'' I m, we need only extend <P 
across every (m + 1)-cell C x [0, 1] that corresponds to some m-cell C of X. The 

(better known as local coefficients) that twist 1tm (F) by the action of n1 (X) on the fibers of F. Let us 
assume that X is simply-connected and move on as if nothing happened ... 
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homotopic difference between cr' and cr" can be encoded in the obstruction to this 
extension, namely in the function 

d(cr~cr"): {m-cellsof X}-----+ nm(F) C ~-------> [<Pia(cx[o,l])]. 

This d(cr~cr'') can be extended by linearity and defines a nm(F)-valued16 cellular 
m-cochain on X. It is called the difference cochain of cr' and cr". 

The homotopy K between cr'lm-1 and cr"lm-1 can be extended to a full homotopy 
between cr' and cr" if and only if d(cr~cr") is identically-zero. However, a different 
choice of homotopy K: cr'lm-1 "' cr"lm-1 might be a better choice toward obtain
ing a homotopy between cr'l m and cr" I m. We will come back to this issue. 

Back to obstruction cocycles: primary obstructions. We return to the extension 
problem, to see how different choices of sections over Xlm influence our chances 
of extension across Xlm+1. Let cr' and cr" be two sections of Elm and choose 
a random homotopy K between cr'lm-1 and cr"lm-1. Consider the bundle Ex 
[0, I] --> X x [0, I] and denote by cr~cr" its section defined as cr' x 0 over Xlm x 0, 

as cr" xI over Xlm xI, and asK over (XIm-1) x [0, I]. 

Notice that this section cr~cr" is defined over the whole m-skeleton of the base 
X x [0, I]. We can therefore define its obstruction cocycle ifCTicCT". We observe that 
this cocycle is made of three distinct parts: (I) the obstruction to extending cr' x 0 
across the ( m + I) -cells D x 0 of X x 0, which can be identified with if CT' (D); ( 2) 
the obstruction to extending cr" x I across the ( m + I) -cells D x I of X x I, which 
can be identified with if CT" (D); finally, ( 3) the obstruction to extending K across the 
( m + I) -cells of shape C x [0, I], which can be identified with d ( cr~cr") (C). 

Take any (m +I)-cell D of X and consider the (m + 2)-cell D x [0, I] of X x [0, I]. 
Apply the above decomposition of ifCTk" to a(D x [0, I]). On one hand, since iffT~CT'' 
is a cocycle, it must vanish on every boundary and in particular on a ( D x [0, I]) . 
On the other hand, we have a(D x [0, I]) = Dx I U DxO U (a D) x [0, I], and we 
can evaluate the parts of if(T~CT" on these pieces. We end up with if(}", (D), ifCT" (D), 
and d ( cr~cr") (aD). Gathering up and keeping track of signs, we obtain the equality 
if CT' (D) - if CT" (D) = d ( (T~(T/1) (a D) I which translates to 

if(}", - if(}"" = t5 d( o{cr") . 

The conclusion is that different choices of sections in Elm change the correspond
ing obstruction cochain by a coboundary. It follows that the obstruction cocycle 
determines a well-defined cohomology class 

[if(}"] E Hm+1 (X; nm(F)). 

This class depends only on the bundle E --> X and not on the choice of section cr. 
Moreover, this class is trivial if and only if there is some m-cochain d such that 
if(}" = bd. In that case, we can change cr over the m-skeleton of X to a section cr' 
with d(crcr') = d, and then the new cr' will have obstruction cocycle if(}", = 0: it 
will extend across Xlm+1· 

16. Again, in general one needs twisted coefficients. 



202 4. Intersection Forms and Topology 

In conclusion, E ---+ X admits sections over the ( m + I) -skeleton of X if and only 
if the class [OJ vanishes. We call this class the primary obstruction17 of E ---+ X. 

Back to uniqueness: difference cocycles. If the primary obstruction [OJ vanishes, 
then conceivably there exist several distinct sections of Elm that extend across the 
(m +I)-skeleton of X. 

Assume that o-'lm and u''lm are two such extendable sections of Elm and take K to 
be some homotopy between o-'lm-1 and o-''lm-1 · We have Orr' -Orr'' = t5 d(ufcu"), 
but since both o-1 and a-'' were assumed extendable, their obstruction cocycles van-

ish, and thus t5 d(o-~u'') = o. 
In other words, the difference cochain is now in fact a cocycle. 

Further, the difference cochain d( o-~o-11 ) can in this case be understood as represent
ing the whole obstruction cocycle 0 rr~cl' of the section ufcu" across the ( m + I) -ske
leton of X x [0, I]. We can then apply the previous results about obstruction cocy
cles to this d(ufc£T''). It follows that changing the choice of homotopy K: £T'Im-1 rv 

o-''lm-1 merely modifies d(ufcu'') by the addition of a coboundary. Therefore, the 
difference cocycle itself determines a well-defined cohomology class 

[d(u~u'')] E Hm(X; nm(F)) . 

This class depends only on the extendable sections £T' and u" and not on the choice 
of homotopy K. Furthermore, if [d( a-' a-'')] = 0, then there exists a choice of K that 
can be extended to a full homotopy cp between o-'1 m and u" I m. 

Conclusion. For every fiber bundle E ---+ X whose fiber F has its first nontrivial 
homotopy group in dimension m, the primary obstruction 

[OJ E Hm+ 1(X;nm(F)) 

vanishes if and only if there are sections of E ---+ X defined over the m-skeleton of 
X that extend across the (m +I)-skeleton. 

Moreover, if [OJ = 0 and one chooses some extendable section £T, then all other 
sections a-' of Elm that extend across Xlm+t are classified up to homotopy by the 
elements of 

via their corresponding difference classes [d(o-o-1)] 

Application: trivializing the tangent bundle. We will now apply the method of 
obstruction theory to the problem of trivializing the tangent bundle T M of an ori
ented 4-manifold M. Since a trivialization of T M over some subset U of M is 
equivalent to a field of frames over U, the problem becomes one of finding sec
tions in the bundle offrames Pso( 4) of T M. 

The fiber of Pso(4) is the Lie group S0(4), which is,connected and has 

nlS0(4)=.Zz, nzS0(4)=0, n3S0(4)=.ZEBZ. 

17. "Primary", because the project can conceivably be continued by attempting to further extend across 
higher skeleta, until we exhaust all X. 
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Therefore, when applying the obstruction theory method, we first encounter a pri
mary obstruction in H2 ( M; n 1 SO( 4)) . This obstruction class is none other than 
the Stiefel-Whitney class 

w2(TM) E H 2(M;Z2). 

Hence, if w2(TM) = 0, then Pso(4) admits a section over the 2-skeleton of M, in 
other words, TM can be trivialized over Ml2 . Two such sections of Pso(4) over 

Mb differ by difference cocycles from H 1 (M;Z2). Such trivializations of TM over 
Mb are, of course, spin structures on M. 

Assuming that w2(TM) vanished and we did choose a section of 1So(4) over Ml2 , 

we can now try to further extend it over M. Since 7t2S0(4) = 0, extending across 
the 3-skeleton encounters no problems. The next significant obstruction appears 
in H 4 ( M; n3 SO( 4)), and it can be identified as the pair 

(e(TM), P1(TM)) E H 4 (M; ZEBZ), 

made from the Euler class e(TM) and the Pontryagin class P1 (TM). 

The Euler class appears as the obstruction to extending a nowhere-zero vector field 
over all M, that is to say, e(TM) is the primary obstruction to defining a section in 
the 3-sphere bundle STM of TM; thus, it belongs to H4 (M; n3 S3). 

That the pair ( e, p1) fully catches the secondary obstruction can be argued directly 
by computing characteristic classes of 4-plane bundles over S4 that are built using 
equatorial gluing maps from 1t3 SO( 4); an exposition can be found in [Sco03]. 

If, besides w2 ( T M) being trivial, we also have that both e ( T M) and p 1 ( T M) vanish, 
then the tangent bundle T M can be completely trivialized, T M ::::::: M x JR4. This 
happens for example with S1 X S3 , but never for simply-connected 4-manifolds. 

Similar results apply for general oriented 4-plane bundles over 4-manifolds. In 
particular, notice that moving along these lines one can quickly obtain a proof of 
the Dold-Whitney theorem (stated on page 167). 

Application: characteristic classes. The obstruction-theoretic approach was in fact 
the one initially used by E. Stiefel and H. Whitney when they discovered charac
teristic classes. 

Given a vector bundle E -t X with fiber JRk, consider the Stiefel bundle Vj(E) -t 

X of all j-frames in E. Then the corresponding primary obstruction [Dj] of Vj(E) 
appears in Hk-j+ 1 and determines the Stiefel-Whitney classes by18 

w . (E)= {[Dj] ifk-j+1isevenand<k E Hk-j+1(X;Z2). 
k-J+ 1 [Dj] (mod 2) if k- j + 1 is odd, or j = 1 

Thus, each class wk-j+ 1 reveals itself as an obstruction to defining a field of j
frames in E over the ( k - j + 1) -skeleton of X. 

18. The modulo 2 reduction in the following formula is done because in those cases TJ appears at the 
outset with twisted :Z-coefficients. Still, if we know all the wj's, no information is lost through this 
reduction. 
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Finally, if E -7 X is oriented, then for j = 1 the full obstruction of V1 (E) = SE is 
caught by the Euler class 

e(E) = [fll] E Hk(X,Z), 

which measures the obstruction to defining a nowhere-zero section of E over the 
k -skeleton of X. 

A similar approach can be used for Chern classes. 

References. Classic obstruction theory, including a description of Stiefel-Whitney 
and Chern classes, is presented inN. Steenrod's The topology of fibre bundles 
[Ste51, Ste99, part III], and is still the best introduction. For a recent discussion of 
obstruction theory, see for example J. Davis and P. Kirk's Lecture notes in alge
braic topology [DKOl]. 

We will use obstruction theory again in the note on page 207 ahead, where we 
will explore the obstructions to the existence of smooth structures on topological 
manifolds. 

Note: Classifying spaces and spin structures 

In what follows, we will define spin structures in terms of maps to classifying 
spaces. We will start by saying a few words about the spaces o%'G that classify all 
fiber bundles with structure group G, then describe a spin structure on a bundle 
E -7 X astheliftofitsclassifyingmap X -7 o%'SO(m) to a map X -7 o%'Spin(m). 

Part of this note will be better understood if one first reads the preceding note 
(starting on page 197) on obstruction theory. 

This and the preceding note can be viewed both as a continuation of the survey of 
spin structures from earlier notes, and as preparing the ground for the theory of 
smoothing topological manifolds that will be explained in the next note (starting 
with page 207). 

Fiber bundles and classifying spaces. A (locally-trivial) fiber bundle E with fiber 
F over a manifold X is a space E and a map p: E -7 X so that X is covered by 
open sets {U~t} and over each Uit the restriction of p to p- 1 [U~t] looks like the 
projection uit X F -7 ult . 

The fiber bundle E is said to have structure group G, or is called a G-bundle, 
if over every overlap uit n uf:l the two trivializations p- 1 [U~t] ~ ult X F and 
p- 1 [Uf:l] ~ u13 x F are related by a self-homeomorphism of (U~t n u13 ) x F act
ing by (x,f) f------+ (x, glt13 (x) ·f), where gitf:l is a map gitf:l: Uit n u 13 -7 G and G is 
a group acting on F by homeomorphisms. 

For every topological group G there exists a space ,%' G, called the classifying space 
of G, and for every fiber F on which G acts there exists a G-bundle 

G"F G -----+ ,%' G 

with fiber F, called the universal bundle of fiber F and group G. The spaces 
o%'G and G"FG are unique up to homotopy-equivalence. The reason for the names 
"classifying" and "universaln is that that all G-bundles over any X are classified 
by the homotopy classes of maps X -7 o%'G. 



4.5. Notes 205 

This means that for every G-bundle E --+ X with fiber F there must exist a map 
C:: X --+ !!IJG so that E is isomorphic to the pull-back through C: of the universal 
bundle 6"FG --+ !!IJG; in other words, C: can be covered by a bundle morphism~' 
fitting in the diagram 

E -------+ 0fG 

1 
X __L_. !!11 G I 

so that ~ is a G-homeomorphism on the fibers. Further, two bundles E' and 
E" are isomorphic if and only if their corresponding maps C:', C:": X --+ !!IJG are 
homotopic. In brief, the set of all G-bundles can be identified with the set [X, !!IJG] 
of homotopy classes of maps X --+ !!11 G. 

Construction. The classifying space f!lJG can be built as follows: Take G and start joining19 it 
to itself, building G * G, then G * G * G, then G * G * G * G, then. . . In the limit, we obtain the 
space t&'G = G * G * G * · · · . The group G acts freely on t&'G, and we can then build the quotient 
space f!lJG = t&'G I G, which is the classifying space of G. The bundle t&'G --> f!lJG is the universal 
bundle that classifies all principal G -bundles. To get the universal bundle for some other fiber F, 
pick somecocycle for t&'G--> f!lJG, let it acton F, and glue t&'pG with it. More generally, if E is any 
contractible space on which G acts freely, then the map E --> E I G is a principal G -bundle, and 
in fact, up to homotopy equivalence, E --> E I G coincides with t&'G --> f!lJG. This construction is 
due to J. Milnor's Construction of universal bundles. II [Mil56a]. 

Vector bundles. A vector bundle of fiber JR.k over X is a fiber bundle with group 
GL(k). Then its classifying space can be determined to be 

!!IJGL(k) = :9Yk(lR00 ) I 

i.e., the Grai.Smann space of all k-planes in lR00 , defined as lim:9Yk(JR.m) when 
---> 

m --+ oo. The universal bundle 6"JRkGL(k) is the vector bundle over !!IJGL(k) that 
has as fiber over a point P E :9Yk(lR00 ) the actual k-plane P. Intuitively, all twists 
and turns that a fiber of a vector bundle over X might have can be retrieved by 
positions of k-planes in lR00 , and a description of these positions yields the clas
sifying map. More rigorously, one can show that for every bundle E --+ X there 
exists a bundle F --+ X so that E EB F ~ X x JRN, and thus the fibers of E can be 
identified with k-planes in lRN. For example, if X has dimension m, then one can 
use N = m + k + 1 and :9Yk(JR.m+k+l) instead of the full :9Yk(lR00 ). 

A similar approach works for complex bundles and shows that f!lJGLc (k) is the complex GraB
mannian ~k(C00 ). In particular, complex-line bundles are classified by maps to f!lJGLc(l) = 

ClP00 • For line bundles on 4-manifolds, it is enough to consider maps to CJP2 . 

19. The join A * B of two spaces A and B is defined as follows: take A x B x [0, 1 J, then collapse A x 0 
to a point and B x 1 to another point. The join is easiest to visualize if we imagine both A and B as 
embedded in general position in some high-dimensional RN; then A * B is the union of all straight 
segments starting in A and ending in B. For example, the join of two !-simplices (segments) will be 
a 3-simplex (a tetrahedron). 



206 4. Intersection Forms and Topology 

Metrics. The group GL(k) is homotopy-equivalent to20 O(k). Since the whole 
theory is homotopy-flavored, it follows that ~GL(k) and ~O(k) are homotopy
equivalent, and thus a GL(k)-bundle is the same thing as an O(k)-bundle. In 
down-to-earth terms, this simply means that every vector bundle admits a fiber
metric. 

Orientations. If the vector bundle is oriented, then its structure group can be fur
ther refined from O(k) to SO(k). In terms of classifying spaces, the inclusion 
SO(k) C O(k) induces a map21 

S: ~SO(k)--+ ~O(k). 

Finding an orientation for a bundle E is the same as finding a lift of its classifying 
map~: X--+ ~O(k) to a map ~s: X--+ ~SO(k), fitting in 

X -----+ ~SO(k) 

II ~· ls 
X~ ~O(k). 

The mapS: ~SO(k) --+ ~O(k) is itself a fiber bundle with fiber O(k)/SO(k) = 
.Z2. We can pull this bundle back over X by using the map~: X--+ ~O(k), and 
hence transform the problem of finding a lifted map ~s into the problem of finding 
a global section in the pulled-back bundle ~* S --+ X from 

~*S -----+ ~SO(k) 

1 ls 
X ~ ~O(k). 

The fiber of ~* S --+ X is of course still .Z2 . 

The obstruction to the existence of a section in ~* S can then be attacked by obstruc
tion theory, similar to the outline from the preceding note.22 This yields as unique 
obstruction the first Stiefel-Whitney class 

w1(E) E H 1(X;.Z2). 

If one such section (i.e., an orientation of E) is chosen, then all other sections, up 
to homotopy, are classified by the elements of H0 (X; .Z2); in other words, you can 
change the orientation on each connected component of X. 

Spin structures. The group SO(k) is double-covered by the Lie group Spin(k), and 
the double-cover projection Spin(k) --+ SO(k) induces a map of classifying spaces 

Sp: ~Spin(k) --+ ~SO(k). 

20. Indeed, if we think of a matrix A E GL(k) as a frame in JRk, then we can apply the Gram-Schmidt 
procedure to split A as a product A = T · R of an upper-triangular matrix T and an orthogonal matrix 
R E O(k); since all upper-triangular matrices make up a contractible space, the claim follows. 

21. Notice that /flSO(k) can be represented as the Gra1Smannnian of all oriented k-planes insideR"". 

22. A rather special case of obstruction theory, since one plays with n0 (fiber). 
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This map is a fiber bundle. Its fiber is denoted SO(k) I Spin(k) and it is an Eilen
berg-Maclane K(Z2,l)-space. This means that nt(SO(k)ISpin(k)) = Z 2 is its 
only non-zero homotopy group.23 

A spin structure on an oriented bundle E is the same as a lift of its classifying 
map S": X --+ @SO(k) to a map ssp: X --+ f%Spin(k), made against the map 
Sp: @Spin(k) --+ f%SO(k). Equivalently, by pulling back over X, 

S"* Sp -----+ f%Spin(k) 

1 lsp 
X ~ f%SO(k), 

we see that a spin structure on E is the same as a global section of the bundle 
S"* Sp--+ X, whose fiber is SO(k) I Spin(k). 

After applying obstruction theory to this setting, it turns out that the unique ob
struction to the existence of such a section is the second Stiefel-Whitney class 

w2(E) E H2(X;Z2). 

Characteristic classes. It is worth noting that, avoiding any obstruction theory, the characteristic 
classes of a vector bundle E --+ X can be viewed directly as pull-backs of cohomology classes of 
the appropriate classifying space. Indeed, we have isomorphisms between the cohomology rings 
of the !JBG 'sand polynomial rings generated by the various characteristic classes (endowed with 
suitable degrees). Specifically, 

H* (&BO(k); Zz) = Zz [w1, wz, ... , wk] 

H* (&BSO(k); Zz) = Zz [wz, ... , wk] 

H*(&BS0(2i); Z) = Z(p1,p2, ... ,p;-~oe] 

H*(&BS0(2i+l); Z[I/zl) = Z[I/zl[p1,p2, ... ,p;] 

H*(&BU(k); Z) = Z(cJ,Cz, ... ,ck], 

where wi E Hi is the jlh Stiefel-Whitney class of the corresponding universal bundle 6"IRk, while 
Pi E H4i is its m1h Pontryagin class, e E H2i is the Euler class, and ci E H2i is the l' Chern class 
of the universal complex bundle 6"ck. The difference between the S0(2i) and S0(2i + 1) cases 
is owing to the fact that in the first case e U e = p;, while in the second e = 0; further, the ring 
Z[I/z] is needed to kill the 2-torsion (and Q orR could be used instead). Indeed, remember 
that Pi(E) = ( -I)ic2i(E ®C), but that the classes c2i+I (E ®C), which are all of order 2, escape. 
See also D. Husemoller's Fibre bundles [Hus66, Hus94, ch 17] 

Note: Topological manifolds and smoothings 

In what follows, we will outline the theory of topological manifolds and of their 
smooth structures. The theory works best in dimensions 5 or more, where it of
fers complete answers on the existence and classification of smooth structures on 
topological manifolds. The theory is quite weaker in dimension 4, but it is still 
relevant. 

Requisites for understanding this note are the two previous notes, namely the one 
on page 197, where the rudiments of obstruction theory were presented, and the 

23. Since Spin(k) --+ SO(k) is a cover map, we have 'Ttm (Spin(k)) = 'Ttm (SO(k)) for all m 2:: 2. 
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one on page 204, where general fiber bundles and their classifying spaces were 
explained. The groups of homotopy spheres Gm, described in the end-notes of 
chapter 2.5 (page 97), will also make an appearance. On the other hand, if one 
skips the paragraphs on smoothing bundles, then one merely needs the simple 
definition of a general fiber bundle, which can be read from the beginning of the 
note on page 204. 

Historically, at first the realm of purely topological manifolds and pure homeo
morphisms seemed unapproachable, so mathematicians attacked the gap between 
smooth and piecewise-linear (PL) manifolds, meaning manifolds structured by a nice 
triangulation (where "nice" means that the link24 of every vertex is required to 
be simplicially-homeomorphic to a standard polyhedral sphere; such triangulated 
manifolds are also called combinatorial manifolds). Success with smoothing PL man
ifolds started with S. Cairns and continued with M. Hirsch and B. Mazur, which 
completely elucidated the gap between PL and smooth. The door on smoothing 
topological manifolds was opened by J. Milnor, who introduced the right concept 
of tangent bundle for a topological manifold. Finally R. Kirby breached the barrier 
toward the study of topological manifolds, and together with L. Siebenmann clar
ified the gap between topological and PL manifolds. See also the bibliographical 
comments on page 67 at the end of chapter 1, as well as the references ahead on 
page 219. 

Since we are focused on 4-manifolds while the gap between PL and smooth mani
folds only starts to make its presence felt in dimension 7, in our presentation below 
we will shortcut the PL level and discuss smoothing theory only in terms of the 
gap between topological and smooth manifolds. 

Tangent bundles for topological manifolds. Remember that a topological manifold 
of dimension m is merely a separable metrizable topological space that locally 
looks like lR m; in other words, X is covered by open sets U that are homeomorphic 
to lRm. 

For smooth manifolds, one of the most useful objects used in their study is the 
tangent bundle, which gives the infinitesimal image of the manifold and thus ap
proximates its structure by simpler spaces. A suitable analogue for topological 
manifolds can only prove useful. 

A first idea would be to pick for each x E X a small open neighborhood Ux home
omorphic to lRm and consider it as the fiber of T x at x, as in figure 4.31 on the next 
page. Parts of nearby such fibers would get identified just as the corresponding 
open sets in X: the fiber Ux over x and the fiber Uy over y have their common 
part Ux n Uy identifiable, as suggested in figure 4.32 on the facing page. 

Such a tangent "bundle" has fiber lR m and has an obvious "zero section'' i sending 
x E X to x E Ux = Txlx· This creature is not a bundle: neighboring fibers 
cannot be identified with each other, since only parts of them overlap. However, 
it is conceivable that, by restricting to smaller neighborhoods of the zero-section 

24. Think of the link of a vertex v essentially as the (simplicial) boundary of a small simplicial neigh
borhood of v. Specifically, take all simplices (T that contain v and take the faces of (T that do not touch 
v; the union of all such faces makes up the link of v. 
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Q ri(x) :_:;:; 

--------~-------

1 
--.-~------.~X----------

4.31. Building a tangent bundle, I 

4.32. Building a tangent bundle, II 

and deforming our structure by homotopies, one would end-up with a genuine 
fiber bundle, with fiber JRm. If, for the resulting bundle, we take care to identify 
each fiber above x with JRm in such manner that x corresponds to 0, then the 
structure group of the bundle would be the group of all self-homeomorphisms 
cp: JR.m ~ JR.m that fix the origin, cp(O) = 0. Let us denote this group by 

TOP(m). 

Thus, our proposed tangent structure appears to induce a TOP( m) -bundle. 

The only real problem with such an approach is that the construction does not 
appear canonical, since the choice of neighborhoods/fibers Ux is random. It is 
important that each topological manifold have a canonical tangent bundle T x. In 
order to achieve this, the main observation is that what really matters is what hap
pens around x-whatever Ux has been chosen to be, the most important part of 
T x lx is the immediate neighborhood of x E T x lx and how it relates to its neighbor
ing fibers. Thus, one should consider, instead of the whole Ux's, just their germs 
at x. This idea was concretized in J. Milnor's notion of a microbundle, which he 
introduced in Microbundles [Mil64]. 

Microbundles and the topological tangent bundle. A k-microbundle i; on X is a 

configuration i;: X ~ E ~ X , 

made of a topological space E (called the total space), together with two maps, 
i: X ---+ E (called the zero section) and p: E ---+ X (called the projection). These are 
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required to satisfy two properties: ( 1) i must behave like a section, so we have 
poi = id; and (2) E ----+ X must be locally trivial, i.e., for every x E X, there is 
a neighborhood Vx of i(x) in E such that Plvx: Vx ----+ M looks like a projection 
U x JRk ----+ U. Notice that, as suggested in figure 4.33, nothing is required far from 
i[X) or on the overlaps of the various local "charts": only parts of the fibers match. 

j' 
------------------------------------------------x 

4.33. A microbundle 

You should think of a microbundle as a fiber bundle in which all that matters 
is what happens around the zero section, or as a vector bundle in which we are 
focused near the zero-section and all requirements of linearity have been dropped. 
Indeed, microbundles behave pretty much like vector bundles: they can be pulled
back, direct sums are defined, etc. We leave such amusements to the reader . 

. , p' ., p" 
Two k-microbundles ~': X ~ E' -----+ X and ~": X ~ E" -----+ X are called 
isomorphic if there are neighborhoods W' of i'[X) in E' and W" of i"[X) in E" 
and a homeomorphism cp: W' ~ W" fitting in the diagram 

x~ w' ~x 

II 
i' p' 

~ l ~ II 
·II 

X~ 
II 

W"~X. 
Of course, any actual bundle with fiber JRk is a k-microbundle, and two isomor
phic fiber bundles are also isomorphic as microbundles. 

Further, inside every microbundle actually lies a genuine bundle: 

Kister-Mazur Theorem. For every k-microbundle X~ E ~X there is a neigh
borhood W of i[X] in E such that Plw: W----+ X is a locally-trivial fiber bundle with fiber 
JRk and zero-section i. The contained fiber bundle is unique up to isomorphism, and even 
up to isotopy. 

Idea of proof The crux of the argument is J. Kister's result that the space 
of topological embeddings JRk ~ JRk that fix the origin can be deformation
retracted to the space of homeomorphisms JRk ~ lRk that fix the origin. Thus, 
the partly-matching "charts" of a microbundle can be reduced and deformed 
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to get a small global genuine bundle. See J. Kister's Microbundles are fibre 
bundles [Kis64]. o 

Thus, to every k-microbundle is associated a canonical fiber bundle with group 
TOP(k) and fiber JR.k. Microbundles have the advantage that they are easy to 
describe. Thus, if we define a canonical tangent microbundle for a topological m
manifold, then we can pass it through Kister-Mazur to obtain a canonical tangent 
bundle, with structure group TOP( m). 

The tangent microbundle of a topological manifold X is defined simply as 

X~XxX~X, 
where L1 is the diagonal map x f----7 (x, x) and pr1 is the projection (x,y) f----7 x. 

Close to the diagonal L1[X], the fibers of pr1 are just copies of neighborhoods of 
points in X. They are stacked next to each other according to their position in X: 
indeed, z' E pr11 [x'] and z" E pr11 [x"J are close to each other in X x X if and 
only if pr2 (z') and pr2 (z") are close to each other in X. See also figure 4.34. 

/ 

/ MxM 

M 

4.34. The tangent microbundle 

We can then define the topological tangent bundle 

Ttop 
X 

of the topological m-manifold X to be the TOP(m)-bundle contained inside the 
tangent microbundle of X. One can prove that, if X happens to be a smooth 
manifold and hence is endowed with a tangent vector bundle T x, then T x and 
r;P are isomorphic fiber bundles. 

Using the topological tangent bundle for smoothing. Start with a topological m
manifold X. Embed xm into some large25 lRN and choose a neighborhood W of 

25. To build an embedding of a topological manifold in some RN, the easiest way is as follows: When 
X is compact, cover xm by open sets U1, ... , Un, each homeomorphic to an open subset of R m through 
embeddings /k: Uk C Rm; extend each /k to a continuous maps fie: M ---> Rm, then gather all of them 
together to get an embedding (ft, ... , J,.) : M ---> Rmn. In general, by dimension theory one can find an 
open covering {Ua} of X so that at every point of X no more than m + 1 of the Ua 's meet; eventually 
one gets an embedding in Rm(m+l). 
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X in JRN that retracts to X, i.e., for which there is map r: W---+ X so that rlx = id. 
See figure 4.35. 

4.35. X embedded as a Euclidean neighborhood retract 

Build the tangent bundle T~P of X and then use the retraction r to pull it back 

over the whole W; denote the total space of the result by r* T~P. 
*Ttop 

r x 

1 1 
W ___.!____. X . 

The total space of this pulled-back bundle can also be viewed as sitting on top of 
X, through the composition r*T~P ~ W ~X; in reverse, X can be embedded 

in r* T~P through the composition of the inclusion X C W with the zero section 

of the bundle r* T~P ---+ W. We have the following remarkable property: 

Lemma. The space r* T~P is homeomorphic to X x JR. N, with X c r* T~P corresponding 
to X x 0 c X x JRN. 

Idea of proof As a first approximation, think in terms of vector bundles: As
sume that X was a smooth manifold, and T x its tangent bundle. Smoothly 
embed X in JRN, then choose a tubular neighborhood W ~ Nx;JRN, which 
retracts to X through the bundle projection r: Nx;JRN ---+ X. Then r* T x ---+ X 
is isomorphic to the bundle Tx EB Nx;JRN = TJR.N lx = X x JRN. 

We can use a similar argument for our lemma if we start with a better W. 
Namely, we could start with an embedding of X into a large-enough JRN, so 

that X admits a topological normal bundle N~JJRN in JRN, and take W to be 
the total space of N~jJRN and r be its projection. o 

Microbundle proof. Without choosing a nice W and getting involved with topological normal 
bundles, one can also use a general aiglllT!ent, which is easiest to state in terms of microbundles: 
Consider T~op as the m -microbundle X ~ X x X ~ X. The pull-back over W has total space 
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4.36. Smoothing X x JRN by using the tangent bundle of X 

r*T~op = { (w, r(w),x) E W x X x X}, projection p: r*T~op---> W, p(w,r(w),x) = w, and zero

section i: W ---t r*T~op, i(w) = (w, r(w), r(w)). First, notice that the total space r*T~op is naturally 

homeomorphic to X x W, by sending (w,r(w),x) to (x, w). This homeomorphism r*T~P ~ 
X x W sends i[X] to .1[X]. Then, by translating the inclusion X x W C X x RN through the 
map X x RN ---t X x JRN: (x, v) ~---+ (x, v- x), we obtain an embedding of r*T~P into X x JRN 
that sends i[X] to X x 0. While this is a bit less than the statement of the lemma, all further 
developments could be slightly modified to be happy with this version. 

Owing to this lemma, if we manage to make the total space r* T~P into a smooth 
manifold, then that means that we have endowed X x lR N with a smooth structure. 
We would be a bit closer to smoothing X itself. 

As mentioned, the tangent bundle T~P is a fiber bundle'over xm with fiber lRm 
and structure group TOP( m). Denote now by 

DIFF(m) 

the group of diffeomorphisms cp: lRm ~ lRm with cp(O) = 0. If we could reduce 
the structure group of T~P from TOP(m) to DIFF(m), then the pull-back r*T~P 
would be a bundle over W whose fibers are glued by smooth maps from DIFF( m). 
Since W is open in lRN, it is itself a smooth manifold. The base being smooth and 
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the fibers being smoothly-matched, it follows that the total space of r* T~P ---> W 

would itself be a smooth manifold. However, r* T~P is homeomorphic to X x lR N, 

and therefore the latter inherits a smooth structure. 

Milnor's Smoothing Theorem. Let X be a topological m-manifold. If its tangent 
bundle T~P admits a DIFF(m)-structure, then,for N big enough, X x JRN must admit 
a smooth structure. o 

This was proved26 by J. Milnor's Microbundles [Mi164], first announced in Topo
logical manifolds and smooth manifolds [Mil63c]. 

We postpone the investigation of the existence of DIFF( m) -structures on T~op for 
later. In the mean time, let us see how to get rid of the JRN -factor, so that we may 
end up with a smooth structure on X itself. 

Structures on products and products of structures. The following results are due 
to R. Kirby and L. Siebenmann. The first statement below is analogous to the 
Cairns-Hirsch theorem, which dealt with the PL case. 

Product Structure Theorem. Let X be a topological m-manifold, with m at least 5. 
If X x JRN admits a smooth structure, then this structure must be isotopic to a product 
smooth structure on X x JRN, coming from a smoothing of X crossed with the standard 
smooth structure on lR N . o 

Note that the isotopy conclusion above is stronger than a mere diffeomorphism 
between the two smooth structures on X x lR N. 

Isotopies of smoothings. For convenience, call (; the given smooth structure on X x RN, by 
s the resulting smooth structure on X, and by s x std the product structure on X x RN. The 
existence of an isotopy between (; and s x std means two things: First, that (; and s x std are 
concordant, meaning that there exists a smooth structure on (X x RN) x [0, 1] that coincides 
with(; near (X x RN) x 0 and with s x std near (X x RN) x 1. Second, that there is a smooth 

map h: (X X RN) X [0, 1] ----> (X X RN, /;) so that each slice. ht = h( ·, t): X X RN X {t} __::_, 
X x RN is a diffeomorphism onto X x RN smoothed by (;. Thus, h0 is the identity map from 
(X x [0, 1], /;) to itself, while h1 is a diffeomorphism from (X x [0, 1], s x std) to (X x [0, 1], /;), 
and h1 is the isotopy between them. 

Notice the dimensional restriction m ;::: 5 that appears in the statement of the 
theorem. Its appearance is owing to the inevitable reliance of the proofs on the 
h-cobordism theorem (and its non-simply-connected cousin, the s-cobordism the
orem). This is what prevents smoothing theory from fully applying to 4-dimen
sional manifolds. 

Proving the product theorem. The essential tool for proving the product structure theorem is the 
following handle-smoothing technique: Assume we have a smooth manifold V"' and a smooth 
embedding of a thickened sphere sk- 1 X [O,e) X IRm-k C ym (think of Sk-1 X [O,e) as a collar on 
sk-1 in JDk ). Further assume that this smooth embedding can be extended as a topological em
bedding fo: JDk x JRm-k C vm of an open k-handle into V. We say that the handle fo can be 
smoothed in V if there is an isotopy ft between fo and a map ft that restricts to a smooth em
bedding of the closed k-handle ft: lDk x vm-k C vm, and so that ft fixes fo outside a compact 
neighborhood of JDk x vm-k. See figure 4.37 on the facing page. 

26. Proved before the discovery of the Kister-Mazur theorem. 
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fo I 
I 

4.37. Smoothing a handle 

It turns out that the property of a handle fo to be smoothable is invariant under concordance: 

Handle Smoothing Theorem. Let fo be an open k-handle in vm as above, and let wm be a smooth 
manifold (of same dimension) containing vm. Assume that there is an isotopy F: JDk x JRm-k x [0, 1 J ~ 
W so that F ( · , 0) = fo, that F moves the attaching sphere smoothly, and that F ( · , 1) is a handle in W 
that can be smoothed in W. If m 2': 5, then fo itself can be smoothed inside V. o 
See also figure 4.38. This theorem is due toR. Kirby and L. Siebenmann, see Foundational essays 
on topological manifolds, smoothings, and triangulations [KS77]. An essential ingredient for 
proving this handle smoothing theorem is, of course, the h-cobordism theorem. A consequence 
of it is the following stability property: 

Corollary. Let fo: JDk x JRm-k C vm be some open k-handle as above and assume that m 2': 5. If the 
product-handle fo x id: JDk x JRm-k x R C V x R can be smoothed inside V x R, then fo itself can be 
smoothed inside V. 

The proof of the product structure theorem then uses a chart-by-chart induction. Since each chart 
Cl>: U ~ U' C Rm endows U with a smooth structure, this means that in each chart we can use 
handle decompositions, with handles that are then smoothed and made to fit on the overlaps of 
the charts. 27 

4.38. Handle smoothing theorem 

27. It is worth noticing how, even when investigating purely topological manifolds, it is the differential 
world that offers the local tools, which are then extended by careful patching and matching. 
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In conclusion, by combining Milnor's smoothing theorem with the Kirby-Sieben
mann product structure theorem, we obtain: 

Corollary. Let xm be a topological m-manifold, with m at least 5. If its topological 
tangent bundle T~P admits a DIFF(m)-structure, then X must itself admit a smooth 
structure. o 
In other words, we are able to "integrate" an infinitesimal differentiable structure 
on the tangent bundle to a differentiable structure on the manifold X itself. 

It is now time to see what obstructions appear when trying to smooth the tangent 
bundle of a topological manifold xm: 

Smoothing bundles: the setting. The topological tangent bundle T~P is a bun
dle with fiber lRm and group TOP(m); we wish to reduce its structure group to 
DIFF(m). The method of choice will be obstruction theory, applied to classifying 
spaces. Thus, for a better understanding of the following, it is recommended to 
first read the earlier notes (on page 197 and on page 204). 

At the outset, we should remark that the group D/FF(m) of self-diHeomorphisms of Rm fix
ing the origin is homotopy-equivalent with the more familiar group GL( m) of invertible matri
ces. Indeed, if 'Pi: Rm ~ Rm is a diffeomorphism with 'Pi (0) = 0, then the Alexander iso
topy q>t(x) = ttp(tx) provides a deformation of 'Pi to cpo = dcpilo E GL(m), and thus contracts 
DIFF( m) to GL( m). This implies that a fiber bundle with structure group DIFF( m) is nothing 
but a vector bundle. Therefore, to reduce the structure group of the tangent bundle T~ap from 
TOP( m) to DIFF( m) means merely to organize T~P as a vector bundle. 

The group TOP(m) has a classifying space denoted by !18TOP(m). As a conse
quence, the tangent bundle T~P is described by a classifying map 

T: X-----+ !18TOP(M) . 

The group DIFF(m) has a classifying space28 !18DIFF(m). The natural inclusion 
DIFF(m) c TOP(m) induces a fibration 

Y: !18DIFF(m) -----+ !18TOP(m) 

with fiber TOP(m)/DIFF(m). Then endowing the tangent bundle T~P with a 
DIFF( m) -structure is the same as lifting the classifying map T to a map Tsm: X ---> 

!18DIFF(m) that fits in 
X -----+ !18DIFF(m) 

II ly 
X ~ !18TOP(m) 

We can pull the fibration Y: !18DIFF( m) -----+ !18TOP( m) back over X as 

T*Y -----+ !18DIFF(m) 

1 ly 
X ~ !18TOP(m) , 

and then smoothing T~P is equivalent to finding a section in this pulled-back fi
bration T*Y. The fiber of T*Y---> X is TOP(m) jDIFF(m). 

28. ~DIFF(m) is the same (homotopy-equivalent) with ~GL(m) = ~O(m) = ~m(R00 ). 
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Think of all this as a setting on which to use obstruction theory. We start with 
a random smoothing of the tangent bundle over the vertices of some cellular de
composition of X, viewed as a section of T*Y over the 0-skeleton of X. We then 
strive to extend this section cell-by-cell across all X. When extending from the 
k -skeleton of X across the ( k + 1) -skeleton of X, obstructions appear in 

Hk+ 1 (X; nk(TOP(m)IDIFF(m))). 

Further, if a given section CT of T*Y over the k-skeleton is extendable across the 
( k + 1) -skeleton, then the elements of 

Hk(X; nk(TOP(m)IDIFF(m))) 

classify up to homotopy all other sections over the k-skeleton that are extendable 
across the ( k + 1) -skeleton and are homotopic to CT over the ( k - 1) -skeleton. 

In terms of smooth structures on T~P or, equivalently when m 2': 5, in terms of the 
induced smooth structures on xm, any homotopy of a section of T*Y corresponds 
to a concordance of smooth structures on X. Two smooth structures s' and s" on 
X are called concordant if there is a smooth structure on X X [0, 1] that is s' on 
X X 0 and is s" on X X 1. Keep in mind that smooth structures can be diffeomor
phic without being concordant; simple examples come from manifolds that do not 
admit orientation-reversing diffeomorphisms. (Furthermore, in high-dimensions 
concordance implies isotopy.) 

Hence, obstruction theory can be used to clarify the existence and classification 
up to concordance of smooth structures on topological manifolds of dimension at 
least 5. Of course, in order to effectively put obstruction theory to work, we need 
to determine the homotopy groups of the fiber TOP( m) I DIFF( m). 

Smoothing bundles: computing the homotopy groups. This paragraph is rather 
dense and very sketchy. It can be safely skipped; the next paragraph starts on 
page220. 

High homotopy. Let us apply the above obstruction theory setting to the case of the 
sphere sn. Since the topological manifold sn admits smooth structures, no obstruc
tions appear. Further, the only non-zero classifying cohomology group Hk (X; nk) 
appears when k = n, in which case we have 

Hn(sn; nn(TOP(n)IDIFF(n))) = nn(TOP(n)IDIFF(n)). 

Therefore, for n 2': 5 we have 

{smooth structures on sn} ~ 1tn (TOP( n) I DIFF( n)) 

(smooth structures considered up to concordance). That is to say: 

Lemma. When n 2': 5, we have nn(TOP(n)IDIFF(n)) =en, where en denotes the 
group of homotopy n-spheres. o 
The groups en have been presented in the end-notes of chapter 2 (page 97). They 
are defined as the set of all smooth homotopy n-spheres, considered up to h
cobordisms and with addition given by connected sums. We have seen that, when 
n 2': 5, the set en can be understood as the group of concordance classes of smooth 
structures on sn; hence we could call en "the group of exotic n-spheres". These 
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groups can be computed using surgery methods. All groups 8n are finite, and the 
first nontrivial one is 8 7 = Zzs . 

Further, after using stabilizations TOP(k) c TOP(k + 1), we are led to: 

Theorem. For all n and m with 5 :::; n :::; m + 1, we have 

nn(TOP(m)jDIFF(m)) = 8n. 

This theorem follows from the delicate result that, for n :::; m + 1 and m 2: 4, we have 

nn(TOP(m+ 1)/DIFF(m+ 1), TOP(m)jDIFF(m)) = 0. 

The cases when m 2: 5 were proved in R. Kirby and L. Siebenmann's Foundational essays on 
topological manifolds, smoothings, and triangulations [KS77]. The cases when m = 4 were 
cleared in F. Quinn's Ends of maps. III. Dimensions 4 and 5 [Qui82] for n :::; 3; in his Isotopy 
of 4-manifolds [Qui86] for n = 5; and in R. Lashof and L. Taylor's Smoothing theory and 
Freedman's work on four-manifolds [LT84] for n = 3,4. 

D 

Low homotopy. We now need to compute the low-dimensional homotopy groups 
of TOPjDIFF. For n 2: 5, we have used sn to evaluate nn. For n :::; 4, we 
can instead increase the dimension of sn by thickening it to sn X IRk such that 
n + k 2: 5. Then, after using stabilizations, we have 

{smooth structures on sn x IRk} ~ nn (TOP(m)jDIFF(m)) 

for all m 2: 4. However, smooth structures on the open manifold sn x IRk are hard 
to approach directly. Instead, one considers smooth structures on sn x 'JI'k. On 
one hand, by climbing the universal cover IRk -+ 'JI'k, it is clear that each smooth 
structure on sn X ']I'k induces a smooth structure on sn X IRk. 

The fundamental fact is that, conversely, the smooth structures on sn x IRk corre
spond to smooth structures on sn x 'JI'k, more precisely to homotopy smooth struc
tures on sn X ']I'k. A homotopy smooth structure on a topological m-manifold xm 
is a homotopy equivalence xm rv vm with some smooth m-manifold vm (same 
dimension). 

This converse is a consequence of the celebrated torus unfurling trick of R. Kirby, which first 
appeared in Stable homeomorphisms and the annulus conjecture [Kir69], and was used in our 
context in R. Kirby and L. Siebenmann's On the triangulation of manifolds and the Hauptver
mutung [KS69] (see also Foundational essays ... [KS77]). 

When n + k :::; 6, the homotopy smooth structures on sn x 'JI'k (thought of as 
smooth structures on Dn x 'JI'k relative to the boundary) are known by surgery 
theory to be classified by the elements of H 3-n (1I'k; Z 2). Thus, for n 2: 4 there is 
only one homotopy smooth structure on sn x 'JI'k, the standard one. For n :::; 2, all 
structures are known to be finitely-covered by the standard one (and thus can be 
standardized after climbing a finite cover of 'JI'k ). Finally, for n = 3 there is at most 
one structure that is not covered by the standard one. Therefore the conclusion is 
that, for all small n not 3, we have 

nn(TOP(m)jDIFF(m)) = 0 

and; moreover, that n3 (TOP( m) / DIFF( m)) has either one or two elements. 
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As was first noticed by L. Siebenmann, it turns out that n3 cannot be trivial, and 
hence 

n3(TOP(m)jDIFF(m)) = Z2. 
If one accepts everything else that was claimed above, then, for proving this non
triviality of n3, we need only exhibit one topological manifold of dimension less 
than 7 that does not admit any smooth structures. 

In dimension 4, Freedman's Es-manifold MEs is an example, as follows from 
Rokhlin's theorem. For dimensions higher than 4, we also have: 

Lemma. The topological manifold MEs x sk does not admit any smooth structures. 

Proof. Assume that MEs X sk admits a smooth structure. Then, by writing 
sk = JRk U { oo}, we obtain a smooth structure on MEs x JRk. We apply the 
product structure theorem and deduce that MEs x lR admits a smooth struc
ture. Consider the projection map pr2 : MEs x lR-+ JR. Then, since MEs x lR 
is smooth, we can perturb pr2 over MEs x (0, oo) so that it becomes smooth 
over MEs x (e, oo) but remains unchanged on MEs x ( -oo, 0). Pick a positive 
regular value c > e of pr2 ; then pr;- 1 [ c] is a smooth 4-manifold. Since MEs 

has w2 = 0, so must pr;- 1 [c ]. However, pr;- 1 [ -1] = ME , and hence the 5-
• 8 

manifold pr;- 1 [ -1, c] is a cobordism between MEs and the smooth manifold 
pr;- 1 [ c ]. Since signatures are cobordism-invariants, it follows that the smooth 
4-manifold pr;- 1 [ c] has signature 8, but w2 = 0. This, of course, is forbidden 
by Rokhlin' s theorem. o 

The manifolds MEs x sk do not admit PL structures either. More important, no
tice the fundamental role that Rokhlin's theorem plays29 in the nontriviality of 
n3 (TOP(m) jDIFF(m)). 

What was omitted. A more detailed discussion would of course have taken into account the 
intermediate piecewise-linear level between smooth and topological, and infinite stabilizations. 

Stabilization means considering everything up to adding trivial bundles. This embeds TOP(m) 
into TOP(m + 1) and in the limit yields the group TOP= ~ TOP(m), with its own classifying 
space ~TOP. Similarly DIFF(m) stabilizes to DIFF = ~DIFF(m), with classifying space 
~DIFF. The group of piecewise-linear self-homeomorphisms of lRm that fix 0 is denoted by 
PL(m), stabilizing to PL and with classifying space ~PL. The inclusions TOP C PL c DIFF 
lead to fibrations ~PL-> ~TOP and ~DIFF-> ~PL, with corresponding fibers TOP/ PL and 
PLjDIFF. 

Between smooth and PL: The study of the smooth/PL gap was attacked by S. Cairns in The man
ifold smoothing problem [Cai61]. Then R. Thorn's Des varietes triangulees aux varietes diffe
rentiables [Tho60] suggested that the smoothing problem should admit a setting in terms of ob
struction theory A natural simplex-by-simplex obstruction theory was developed by J. Munkres' 
Obstructions to the smoothing of piecewise-differentiable homeomorphisms [Mun59, Mun60b] 
(see also his [Mun64] and [Mun65]). A different obstruction theory was outlined in M. Hirsch's 
Obstruction theories for smoothing manifolds and maps [Hir63], and also proved a product 
structure theorem for the smooth/PL gap. Then appeared J. Milnor's Microbundles [Mil64]. 
All this led to an obstruction theory based on the classifying spaces ~DIFF and ~PL, de
veloped by M. Hirsch and B. Mazur and eventually published in the volume Smoothings of 

29. Of course, R. Kirby and L. Siebenmann's result that n3(TOPjDIFF) = Z2 was proved before 
M. Freedman built the fake 4-balls that are used in the construction of ME8 • Nonetheless, their exam
ples also rest upon Rokhlin's theorem. 
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piecewise-linear manifolds [HM74]. (A quick comparison of Munkres' and Hirsch-Mazur's 
approaches can be read from J. Munkres' Concordance of differentiable structures-two ap
proaches [Mun67].) 

The passing of the smooth/PL gap depends on the fiber DIFF / PL, which has homotopy groups 

1tn(DIFFjPL) =0 foralln5,6, and 1tn(DIFFjPL) =E>n foralln?_5. 

For proving the triviality of 'Ttn in low-dimensions, the cases n = 1, 2 are boring, the case n = 3 
follows from J. Munkres's Differentiable isotopies on the 2-sphere [Mun60a] and S. Smale's Dif
feomorphisms of the 2-sphere [Sma59]. The case n = 4 was proved by J. Cerf's series of papers 
La nullite de no (Dif£53 ) [Cer64], later published in the volume Surles diffeomorphismes de la 
sphere de dimension trois (r 4 = 0) [Cer68a]. The cases n = 5, 6 follow from the computations 
of E>n in M. Kervaire and J. Milnor's Groups of homotopy spheres [KM63]. 

Thus, the first non-zero homotopy group of DIFF jPL is~ = Zzs, coming from Milnor's exotic 
7 -spheres; geometrically, this first group corresponds to the existence of PL 8 -manifolds that 
cannot be smoothed; an example is the 8 -dimensional topological manifold Ml8 built by Es
plumbing eight copies of JDT54 and capping with an 8 -disk, see back on page 98. In general all 
Mi8k 's are PL and non-smoothable. 

Between PL and topological: For the study of topological manifolds, some important steps along 
the way were B. Mazur's On embeddings of spheres [Maz59, Maz61], followed by M. Brown's A 
proof of the generalized Schoenflies theorem [Bro60], then A. Cemavskil's Local contractibility 
of the group of homeomorphisms of a manifold [Cer68b, Cer69]. Then came R. Kirby's already 
mentioned torus unfurling trick, in Stable homeomorphisms and the annulus conjecture [Kir69], 
which was then put to work together with L. Siebenmann. 

The passing of the PL/topological gap is governed by the fiber TOP /PL. The latter was shown 
to be an Eilenberg-Maclane K(Zz; 3) -space, that is to say, 

n3(TOPjPL) = Zz and nn(TOPjPL) = 0 for all n f= 3 • 

This can be read from R. Kirby and L. Siebenmann's Foundational essays on topological mani
folds, smoothings, and triangulations [KS77]. Examples of topological ( 4 + k) -manifolds that 
do not admit any PL structure are all ME8 x sk and ME8 x I'k. A recent exposition of the 
PL/topological gap can also be read from Y. Rudyak's Piecewise linear structures on topolog
ical manifolds [RudOl]. 

The evaluation of the homotopy groups of TOP/ PL rests upon the determination of all homo
topy PL structures on sn x I'k (viewed as structures on lDn x I'k relative to the boundary). These 
were cleared using surgery by A. Casson, then by W-e. Hsiang and J. Shaneson's Fake tori, the 
annulus conjecture, and the conjectures of Kirby [HS69], based on the surgery techniques devel
oped byC.T.C Wall's On homotopy tori and the annulus theorem [Wal69b] (see also Surgery on 
compact manifolds [Wal70, Wal99, ch 15]). 

Smoothing bundles: the Kirby-Siebenmann invariant. Reviewing the results out
lined in the preceding paragraph, we can now state: 

Theorem. For every n and m with 5 ::::; n ::::; m + 1, we have: 

nn(TOP(m)/DIFF(m)) = 0 for3 =/= n::::; 6 

n3(TOP(m)jDIFF(m)) = Zz 

nn(TOP(m)/DIFF(m)) = E>n forn 2:5 

where E>n is the group of homotopy n-spheres.30 0 

30. For those who skipped the preceding paragraphs: The groups of homotopy spheres E>n have been 
presented in the end-notes of chapter 2 (page 97). They can be defined for n ?_ 5 as the set of smooth 
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We can now apply obstruction theory to study smoothings of topological mani
folds of dimension at least 5, via smoothings of their topological tangent bundles. 

Since the first dimension with a nontrivial homotopy group is n = 3, it follows 
that the primary obstruction to endowing the topological tangent bundle of X 
with a DIFF(m)-structure appears as a class in H4 (X; Z2). It is called the Kirby-
Siebenmann invariant and is denoted by , 

ks(X) E H 4 (M;Z2). 

The existence of this first obstruction rests upon Rokhlin's theorem. Further, the 
difference cocycles are elements of H3 (X; Z 2 ) . 

Past dimension 7, higher obstructions appear from Hn+1(X;E>n), the first one 
from H8 (X;Z28 ). Higher difference cocycles live in Hn(X;E>n), the first ones in 
H7 (X;Z2s). 

Bringing in the intermediate PL level, we should say: The Kirby-Siebenmann invariant ks(X) E 
H4 (X;Zz) is the complete obstruction to endowing a topological manifold xm of dimension 
m 2: 5 with a PL structure. If such a structure exists, all other PL structures are classified up 
to concordance (and thus isotopy) by H 3 (X; Zz). The higher obstructions from Ift+l (X; E>n) 
govern the possibility of endowing a PL manifold xm with a smooth structure and do not appear 
until m = 8. Notice also that every PL 7 -manifold admits exactly 28 distinct smooth structures, 
up to concordance. 

Since Z2 and all the E>n 's are finite, a consequence is that any topological manifold 
of dimension not 4 admits at most finitely-many distinct smooth structures. 31 

Another consequence of the theory is that, for all m 2: 5, any topological manifold 
homeomorphic to lRm admits a unique smooth structure. Since the cases m :::; 3 
are similar, this leaves JR4 as the only possible support of exotic structures. 

Conclusion. If the Kirby-Siebenmann invariant ks(X) vanishes and m :S 7, then 
the tangent bundle of xm admits a DIFF( m) -structure. If moreover m 2: 5, then 
this bundle structure can be integrated to a smooth structure on X itself. For ex
ample, all simply-connected topological 5-manifolds admit smooth structures.32 

Moreover, if X admits some smooth structure, then all other smooth structures 
on X are classified (up to concordance/isotopy, via difference cocycles) by the el
ements of H 3 (X; Z 2 ) . Starting with dimension 8, beside ks (X) appear higher ob
structions to the existence of smooth structures, living in the groups Hn+l (X; E>n). 

The case of dimension 4. The Kirby-Siebenmann invariant can certainly still be 
defined in dimension 4. However, lacking the power of the (smooth) h-cobordism 
theorem behind it, it mainly has negation power. 

For a topological 4-manifold M, the Kirby-Siebenmann invariant 

ks(M) E H4 (M;Z2) 

structures on sn considered up to concordance, with addition defined by connected sums; all groups 
E>n are finite, and the first nontrivial one is 8 7 = Zzs . 

31. The cases of dimension 2 and 3 being handled, of course, separately. 

32. Since H4 (X5;Zz) = H1(XS,Z) = 0. 
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is simply a Z2 -valued invariant: it is either 0 or 1. Its value is strongly related to 
Rokhlin's theorem (and its generalizations). Specifically, ks(M) detects whether a 
smooth structure on M is prohibited by Rokhlin's or not. 

Evaluating the Kirby-Siebenmann invariant. Let M be any topological 4-manifold 
with no 2-torsion in Ht (M; Z) and with even intersection form QM (such a mani
fold can safely be called a "spin manifold"). We have: 

ks(M) = k signM (mod 2). 
In particular, ks ( ME8 ) = 1. 

More generally, regardless of the parity of QM, if a characteristic element of M can 
be represented by a topologically embedded sphere :E, then we have 

ks(M) = l(signM- :E ·:E) (mod 2). 

This is related to the Kervaire-Milnor generalization of Rokhlin' s theorem. 

Finally, via the Freedman-Kirby generalization of Rokhlin's theorem, we have, for 
every topological 4-manifold M with an embedded characteristic surface ;r;, 

ks(M) = l(signM- :E ·:E) + Arf(M,:E) (mod 2), 

where Arf(M, :E) is a Z 2-invariant that measures the obstruction to representing 
:E by a sphere, and depends only on the homology class of :E. The Freedman
Kirby theorem will be discussed and proved in the end-notes of chapter 11 (page 
502); it is readable anytime. 

When Kirby-Siebenmann vanishes. If M admits a smooth structure, then ks(M) = 0. 
The converse is false: if ks(M) = 0, then M might still not admit any smooth 
structures. Such examples were uncovered starting with Donaldson's work33 and 
they are not rare. Nonetheless, if ks(M) = 0, then the 5-manifolds M x lR or 
M X 51 do admit smooth structures. Further, without increasing dimension, if 
ks ( M) = 0, then for m big enough the stabilization M # m S2 x 52 must admit a 
smooth structure. 

On the other hand, it was proved that all open 4-manifolds can be smoothed. In 
particular, any closed 4-manifold M can be endowed with a smooth structure off 
a point. 

In the case when ks(M) = 0, then, since M #m S2 x 52 can be smoothed, such a 
smoothing-off-points for M can be made in a controlled fashion: 

Theorem (F. Quinn). If M is a topological 4-manifold with ks(M) = 0, then there is 
a finite set of points Pt, ... , Pm in M and a smooth structure on 

M\ {pt.·· .,pm}, 

such that, for each k, on one hand there is a neighborhood Uk of Pk in M, and on the other 
hand there is a self-homeomorphism o/k: 52 x S2 ,'::::'. 52 x 52 (isotopic to the identity), a 
neighborhood U' of hk [52 V 52] in S2 x 52; and we have a diffeomorphism 

uk \ Pk ~ u' \ cpk[S2 v S2] . 

33. See ahead section 5.3 (page 243). 
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In other words, the complement of each Pk is locally smoothed like the complement of a 
displacement of S2 V S2 in S2 x S2 . o 
See the left side of figure 4.39. This result was proved in F. Quinn's Smooth 
structures on 4-manifolds [Qui84] and can also be read from M. Freedman and 
F. Quinn's Topology of 4-manifolds [FQ90]. 

(]p2 

~1-------
M 

~1-----
M • Pk • Pk 

4.39. Almost-smoothing a 4-manifold with ks(M) = 0 

Since S2 x S2 #CJP2 = #2 CJP2 #CJP2 , the theorem can immediately be restated by 
instead using displacements of CJP1 in CJP2 and diffeomorphisms 

uk \ Pk ~ u~ \ £PdCJP1] 

(some of which which could reverse orientations). See the right side of figure 4.39, 
and also think in analogy with blow-ups of complex manifolds.34 

A fundamental remark to be made in this context is that both S2 x S2 \ (/Jk [52 V 52] 

and CJP2 \ (/Jk [ CJP1] are open smooth 4-manifolds that are homeomorphic to JR4 . 

This implies that, if M has ks(M) = 0 but is not smoothable, then these open 
manifolds must exhibit non-standard smooth structures on JR4 • In other words, 
they must be exotic JR4 's. This, in part, explains why the discovery of exotic JR4 's 
had to wait for Donaldson's work.35 Exotic JR4 's will be discussed in section 5.4 
(page 250) ahead. 

When Kirby-Siebenmann does not vanish. If ks(M) = 1, then M does not admit any 
smooth structures. If ks(M) = 1, then stabilizations do not help: ks(M #mS2 x 
S2) will still be 1, and all the M # m S2 x S2 's will be non-smoothable. Indeed, the 
Kirby-Siebenmann invariant is nicely additive: 

ks(M Ua N) = ks(M) + ks(N). 

34. Blow-ups are described in section 7.1 (page 286) ahead. 

35. Of course, it also had to wait for A. Casson's and M. Freedman's work. Nonetheless, one can still 
ask whether the existence of exotic R4 's can be obtained as a consequence of Rokhlin' s theorem while 
avoiding Donaldson's theory or equivalents. No. 
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In particular ks(M # N) = ks(M) + ks(N), and so, if ks(M) = 1, then ks(M # 

m S2 x S2 ) = 1. Another important property to note is that the Kirby-Siebenmann 
invariant is unchanged by cobordisms.36 

The invariant ks misses most of the wildness of dimension 4: for example, the 
Kirby-Siebenmann invariant of ME8 # ME8 vanishes; but the latter has intersec
tion form Es EEl Es, which is excluded from the smooth realm by the results of 
Donaldson: Kirby-Siebenmann's does not see what Rokhlin's does not exclude. 

Note: The Rokhlin invariant of 3-manifolds 

The Rokhlin theorem has major consequences beyond dimension 4. As we have 
seen in the preceding note (starting on page 207), in high-dimensions it is funda
mentally implied in the non-existence of smooth structures on topological mani
folds. In dimension 3, the Rokhlin theorem permits the definition of invariants for 
3-manifolds, which are the topic of this note. The invariants for 3-manifolds are 
a Z 2-invariant 

p(L.) E Zz 

for homology 3-spheres L., and a z16-invariant 

Jl(N) E Z16 

for 3-manifolds N endowed with spin structures. 

Preparation: additivity of signatures. We have already seen that, if we connect
sum two 4-manifolds M and N, then we have QM#N = QM EEl QN, and as a 

consequence sign ( M # N) = sign M + sign N . 

Intersection forms can also be defined for 4-manifolds with non-empty bound
ary, but they will not be unimodular unless the boundary is a homology sphere.37 

Then the additivity properties above are easy to prove for two manifolds M and 
N whose boundaries are a same homology sphere with opposite orientations: if 
we glue M and N along their boundaries, then QM UaN = QM EEl QN and hence 

sign(M Ua N) = signM + signN. 

Examples. For ex'!_mple, the 4-manifo1d38 PEs has intersection form E8 and signature 8. The 
manifold PEs UEp PEs is a closed 4-manifold with intersection !_orm Es EB -Es "" EB 8 H and 
signature 0. Because of signature-vanishing, we expect PEs UEp PEs to bound a 5-manifold, and 

indeed, _j_t is the boundary of PE8 x [0, 1], as in figure 4.40 on the facing page. It turns out that 
PEg UI:p PEs is none other than # 8 52 x 52 . (Notice that, since L,p does not have an orientation

reversing self-diffeomorphism, a manifold like PEg UI:p PEg does not exist.39) 

36. In fact, the topological cobordism group o:r of oriented topological 4-manifolds is o:r = Z EB 
Zz, with isomorphism given by M ,_, (signM, ks(M)). Cobordisms groups will be discussed in the 

note on page 227 ahead. 

37. This will be fully proved in the end-notes of the next chapter (page 261). 

38. Recall that PE8 denotes the Es -plumbing and is bounded by the Poincare homology sphere L.p; 

see section 2.3 (page 86). 

39. A roundabout argument: PE8 UEp PEs would be a smooth 4-manifold with definite intersection 
form Es EB Es. However, that is excluded by Donaldson's theorem (see section 5.3, on page 243 ahead). 
Thus, this 4-manifold does not exist, and therefore L.p cannot admit an orientation-reversing self
diffeomorphism. 



4.5. Notes 225 

If two 4-manifolds have boundaries that are not homology spheres, then the ad
ditivity of the intersection forms ceases to hold. Nonetheless, signatures are still 
additive: 

Novikov's Additivity Theorem. Let M and N be two 4-manifolds with non-empty 
boundaries. Assume that their boundary 3-manifolds aM and aN admit an orientation
reversing diffeomorphism a M ~ a N. Then the closed manifold M Ua N, built by 
identifying the boundaries a M and a N, has signature 

sign(M Ua N) = signM + signN. 

Outline of proof. Denote by Y3 the (unoriented) boundaries of M and N as 
well as the resulting 3-submanifold in M Ua N. Take a random element tx. E 
H 2 (M Ua N), represented as surface transverse to Y. Then the intersection 
tx. n Y is a 1-cycle in Y. 

On one hand, if tx. n Y is non-trivial in Ht (Y3; Z), then it admits a dual class 
f3 E H2 (Y; Q). (Notice that we must use rational coefficients, but that is no 
problem: signatures were defined by diagonalization over a field.) The class 
f3 can be included as a class in M Ua N. Since f3 in M Ua N can be pushed 
off itself by using some nowhere-zero vector field normal to Y in M Ua N, it 
follows that f3 · f3 = 0 in M Ua N. Therefore, the span of tx. and f3 in H2 ( M Ua 
N;Q) has intersection form 

whose signature is zero and thus does not contribute to sign(M Ua N). 

On the other hand, if tx. n Y is homologically-trivial, then one shows, using 
a Mayer-Vietoris argument, that tx. must in fact be a sum tx. = lXM + lXN of 
classes from M and N. Therefore the contribution of tx. to the signature of 
M Ua N is caught in sign M and sign N. o 

The complete proof can be found in R. Kirby's The topology of 4-manifolds 
[Kir89, ch II]. 

If two 4-manifolds are glued on only parts of their boundaries, then the additivity of the signa
ture ceases to hold. Nonetheless, there is a well-determined correction term, see C.T.C. Wall's 
Non-additivity of the signature [Wal69a]. 

The Rokhlin invariant of homology 3-spheres. On 3-manifolds spin structures 
can be defined in the same way as on 4-manifolds. Since every 3-manifold N 
is parallelizable (i.e., TN is a trivial bundle), it admits spin structures. As in di
mension 4, the group H 1 (N; Z 2 ) acts transitively on the set of spin structures. In 
particular, if H 1 (N; Z 2) = 0, then N admits exactly one spin structure. Moreover, 
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every spin 3-manifold N bounds a (smooth) spin 4-manifold M with the spin 
structure of M restricting to the chosen spin structure40 of N. 

Let I:3 be a homology 3-sphere. Let M be a smooth spin 4-manifold bounded by 
I:. Being spin, the manifold M must have an even intersection form. Since I: is a 
homology 3-sphere, the intersection form of M must be unimodular. Thus, using 
van der Blij' s lemma, its signature must be a multiple of 8: 

signM = 0 (mod 8) 

(from the same algebraic argument41 as for closed 4-manifolds). In other words, 
the residue of sign M modulo 16 is either 0 or 8. 

We can then define the Rokhlin invariant of I: by 

p(I:) = l signM (mod 2) . 

Due to Rokhlin's theorem, this is a well-defined invariant of I:, which does not 
depend on the choice of the bounded 4-manifold M. Indeed, if I: also bounds 
another spin 4-manifold M', then M and M' can be glued along I: yielding a 
closed spin 4-manifold M Ur M', which must have 

sign(M Ur M') = 0 (mod 16), 

and thus signM- signM' = 0 (mod 16). 

For example, since it bounds P£8 whose signature is 8, the Poincare homology 
3-sphere I:p must have p(I:p) = 1. 

The Rokhlin invariant of Z2-homology 3-spheres. Assume now that the 3-mani
fold N is a Z 2-homology sphere, i.e., a closed 3-manifold with 

H 1(N;Z2) = 0. 

Then N admits a unique spin structure. Pick some smooth spin 4-manifold M 
that is bounded by N, with compatible spin structures. The intersection form of 
M is still even, but no longer unimodular, and so the best we can do is define the 
Rokhlin invariant (or p-invariant) of N by 

fl(N) = signM (mod 16) . 

A similar reasoning as above shows that it is well-defined, independent of M. 

The Rokhlin invariant of spin 3-manifolds. Finally, if N is just a random closed 
3-manifold, then we can choose a spin structure .son N, find a spin 4-manifold 
M that is spin-bounded by N, and define the invariant 

fl(N) = signM (mod 16) . 

This is an invariant that depends on the chosen spin structure .s. 

Two easy properties of the Rokhlin invariants, in any of the above versions, are: 

and fl(N' #N") = fl(N') + fl(N"). 

40. In the language of the next note (cobordism groups; page 227), we are saying that [}~pin = 0. 

41. For the proof of van der Blij's lemma, see the end-notes of the next chapter (page 263). 
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Vice-versa: proving Rokhlin's theorem from p-invariants. The reason why the p
invariant of a spin 3-manifold is a well-defined invariant modulo 16, rather than 
modulo 8, is Rokhlin's theorem. Surprisingly, one can also go in reverse: If one 
proves by other means that the p-invariant is well-defined modulo 16, then from 
this fact one can deduce Rokhlin' s theorem for 4-manifolds. 

This brief and elegant proof of Rokhlin' s theorem can be discovered hidden as an 
appendix toR. Kirby and P. Melvin's The 3-manifold invariants of Witten and 
Reshetikhin-Turaev for .s l ( 2, C) [KM91]. Specifically, one starts with a presenta
tion of the 3-manifold as a Kirby link diagram, then defines the JJ-invariant in 
terms of that diagram and proves that it well-defined by using only Kirby calcu
lus.42 

References. The Rokhlin invariant first appeared, in a more general setting, in 
J. Eells and N. Kuiper's An invariant for certain smooth manifolds [EK62]. Some 
early properties are explored in F. Hirzebruch, W. Neumann and S. Koh's Differ
entiable manifolds and quadratic forms [HNK71]. 

The Rokhlin invariant can be refined into the much more powerful Casson invari
ant of homology 3-spheres, to the exposition of which is devoted S. Akbulut and 
J. McCarthy's Casson's invariant for oriented homology 3-spheres [AM90]. This 
was extended by K. Walker to an invariant of rational homology 3-spheres in An 
extension of Casson's invariant [Wal92], and then finally to general 3-manifolds 
in C. Lescop's Global surgery formula for the Casson-Walker invariant [Les96]. 
A recent survey of such invariants is N. Saveliev's Invariants for homology 3-
spheres [Sav02]. In a different direction, the Casson invariant admits a gauge
theoretic interpretation in terms of Donaldson's instantons, as was noticed by 
C. Taubes' Casson's invariant and gauge theory [Tau90], and, even further, it is 
the Euler characteristic of an instanton-based homology theory built in A. Floer's 
An instanton-invariant for 3-manifolds [FloSS]. However, all this is beyond the 
scope of the present volume. 

Note: Cobordism groups 

If we consider two m-manifolds as equivalent whenever there is a cobordism be
tween them, then we separate manifolds into cobordism classes, and these can be 
organized as an Abelian group. 

Oriented cobordismgroup. Consider the set of all oriented m-manifolds, together 
with the empty manifold 0. Think of xm and ym as equivalent if and only if they 
are cobordant, i.e., if there is an oriented manifold wm+ 1 such that a W = Xu Y. 
The equivalence classes make up an Abelian group 

oso 
m 

called the oriented cobordism group in dimension m. Its addition comes from 
disjoint unions, [X]+ [Y] = [XU Y], as suggested in figure 4.41 on the next page. 

42. A quick overview of Kirby calculus was made in the end-notes of chapter 2 (page 91). 
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4.41. Cobordisms: [X] + [Y] = [ Z] in 0~0 

The identity element in 0~0 is given by 0 = [0]. Any bounding m-manifold 
represents 0, and thus in particular the identity can also be represented by the 
m-sphere sm-since sm bounds Jl)m+l' we have [sm] = [0]. 

The inverse in 0~0 is given by reversing orientations: we have -[X] = [X], as 
argued in figure 4.42. 

X 

4.42. Cobordisms: [X] + [X] = 0 in 0~0 

It is worth noticing that X U Y is always cobordant to X# Y. This can be seen, for 
example, by using the boundary sum43 (X x [0, 1]) q (Y x [0, 1]) as in figure 4.43. 
Thus, connected sum corresponds to addition in 0~0 : 

[X]+ [Y] = [X#Y]. 

The diffeomorphisms X #Sm = X reflect as [X] + 0 = [X]. 

__ ,Y 

4.43. Cobordisms: [X]+ [Y] = [X#Y] in 0~0 

Cobordism ring. Further, all the groups 0~0 can in fact be put together to make up the oriented 
cobordism ring 0~0 , with multiplication given by [X] · [Y] = [X x Y], and unit the element 
[+point] E 0~0 . 

As examples, it is easy to see that ogo = 7L, of0 = 0 and 0~0 = 0. It is a 
nontrivial result that 0~0 = 0. We have already mentioned that a 4-manifold is 

43. Boundary sums were recalled back on page 13. 
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the boundary of some oriented 5-manifold if and only if its signature is zero. It 
follows that r.SO 

u 4 =Z, 

with isomorphism given by [ M] f--t sign QM. A generator of 0~0 is (:JP2 . 

More cobordism groups are collected in table VI. The generator of 0~0 is the manifold y 5 de
scribed by the equation44 (xo + x1 + xz) (yo+···+ y4) = £ in RJP2 x RJP4. The generators of 
0~0 are (:JP2 X (:JP2 and (:jp4 . The generators of 0~0 are Y5 X (:JP2 and y 9, the latter being de
scribed by the equation (xo + x1 +xz)(y0 + · · · +y8) =£in RJP2 x RJP8. The generator of Of~ is 
Y 5 X Y 5 . The generator of off is Y 11 , given by the equation ( Xo + ... + X4) (yo + ... + Ys) = £ 

in RJP4 x RJP8 . Keep in mind that Cartesian product organizes E9 0~0 as a graded ring. 

VI. Oriented cobordism groups 

m 0 1 2 3 4 5 6 7 8 9 10 11 

0 sa 
m z 0 0 0 z Zz 0 0 ZE9Z Zz E9Zz Zz Zz 

Spin cobordism groups. The "SO" from the notation 0~0 comes from the fact that 
an orientation of xm is the same as a reduction of the structure group of T x to 
SO( m). The oriented cobordism group is not the only cobordism group-indeed, 
one can define a cobordism theory for most types of structure on manifolds. 

In particular, the spin cobordism group 

o~in 

is defined by starting with m-manifolds endowed with spin structures and con
sidering X and Y as equivalent if and only if together they make up the boundary 
of a spin ( m + 1) -manifold W, with the spin structures on X and Y induced from 
the one on W. 

In low-dimensions45 we have ofpin = Zz, O~pin = Z 2, and O~pin = 0. In dimen-
sion 4, we have 0 spin _ z 

4 - ' 

with isomorphism given by [M] f--t 1~ sign QM (always an integer, by Rokhlin's 
theorem). The generator is the K3 surface. 

More groups are collected in table VII. The generator of O~pin is K3. The generators of O~pin are 
JHJP2 and an 8-manifold K} such that #4 JC is spin cobordant to K3 x K3. 

VII. Spin cobordism groups 

m 0 1 2 3 4 5 6 7 8 
o~in z Zz Zz 0 z 0 0 0 ZE9Z 

44. The role of £ in the equation is merely to eliminate the singularities that would appear for = 0. 

45. Defining spin structures for 1- and 2-manifolds requires first stabilization (because n 1SO(n) be
gins to be Zz only for n 2': 3 ). Thus, for !-manifolds C we will look at trivializations of Tc E&]R2 , 

while for surfaces S, we look at Ts E&]R. These low-dimensional spin structures and their cobordisms 
will be discussed in more detail in the end-notes of chapter 11 (page 521). 



230 4. Intersection Forms and Topology 

Uses. The application of such cobordism results usually follows this pattern: In 
order to prove a general statement about manifolds, first prove that it is invariant 
under cobordisms, then prove that the statement holds on the generators. 

For example, the signature sign QM is an oriented-cobordism invariant, and such 
an argument is used in M. Freedman and R. Kirby's A geometric proof of Rochlin's 
theorem [FK78] to prove Rokhlin's theorem; we will present two versions of that 
argument in the end-notes of chapter 11 (page 502 and page 521). 

The most famous results first proved via cobordism arguments are Hirzebruch's 
signature theorem and the Atiyah-Singer index theorem. 

References. Cobordism groups were first studied by R. Thorn's Varietes differen
tiables cobordantes [Tho53b] and fully detailed in his Quelques proprietes glob
ales des varietes differentiables [Tho54]. That 0~0 is trivial was proved in A. Wal
lace's Modifications and cobounding manifolds [Wal60] orR. Lickorish's A repre
sen~ation of orientable combinatorial 3-manifolds [Lic62b]. Both 0~0 = 0 and 
O~pzn = 0 were first proved by V. Rokhlin in New results in the theory of four
dimensional manifolds [Rok52]. 

R. Kirby's The topology of 4-manifolds [Kir89] contains geometric proofs of 
the low-dimensional cobordism statements mentioned above. A general study of 
cobordisms can start with chapter 7 of M. Hirsch's Differential topology [Hir76, 
Hir94], then continue with R. Stong's monograph Notes on cobordism theory 
[Sto68]. 

As far as we are concerned, we will also encounter the spine cobordism group and 
the characteristic cobordism group, both discussed in the end-notes of chapter 10 
(page 427); the two are in fact isomorphic. Also, in the note that follows, we will 
explore the framed version of cobordisms. 

Note: The Pontryagin-Thorn construction 

In what follows, we will present the Pontryagin-Thorn construction, which relates 
homotopies of maps to framed bordisms of submanifolds. An instance of this 
method was encountered in the proof of Whitehead's theorem,46 and the follow
ing should shed some extra light on that argument. It is also of independent inter
est, since it adds geometric content to homotopy groups of spheres. In particular, 
it was during the pursuit of this method that Rokhlin discovered his celebrated 
theorem. 

The construction. Let f: xm+k----) sm 

be any map, considered up to homotopy. Pick your favorite point p in sm, then 
modify f slightly to make it smooth and transverse to p. The preimage K = 

f- 1 [p] is now a k -submanifold of xm+k. Moreover, the differential d f: T x ___, Tsm 
inducesamap df: NK;x ___, Tsmlp = Rm,whichisanisomorphismonfibersand 
thus trivializes NKIX· A submanifold together with a trivialization of its normal 
bundle is called a framed submanifold. 

46. Back in section 4.1 (page 143). 
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In the reversed direction, let K be any k-submanifold of xm+k with trivial normal 
bundle. Assume that a trivialization of its normal bundle NK;x has been chosen. 
This means that there is a projection f: NK;x ____. lRm that is an isomorphism on 
fibers. Think off as defined on a tubular neighborhood NK;x of K in X and 
compactify its codomain lRm to sm by adding a point oo. Then f: NKIX ____. sm 
can be extended on X\ NK;x simply by setting flx\NK;x = oo, thus yielding a 
map f: xm+k ____. sm. 

The correspondence K ~ f becomes bijective if we consider f only up to homo
topies, and K only up to framed bordisms. Specifically, two k-submanifold K' 
and K" of xm+k, both with trivialized normal bundles, are called framed bordant 
if there exist both a ( k + 1) -submanifold K of X x [ 0, 1] such that d K = K' x 0 U 
K" x 1, and a trivialization of the normal m-plane bundle Nj( 1 xx [o,1] of K such 
that it induces the chosen trivializations of NK' ;x and NK" ;x when restricted to 
K 's boundary. See figure 4.44. 

4.44. A framed bordism 

Lemma (Pontryagin-Thom Construction). We have the bijection 

[xm+k, sm] ::::::: o.;amed(xm+k) I 

where the former denotes the set of homotopy classes of maps X ____. sm, while the latter 
denotes the set of framed bordism classes of k -submanifolds of X. 

Sketch of proof. That K 1----7 f 1----7 K is the identity is obvious. That /1 1----7 K 1----7 

fo is the identity up to homotopy is shown by using the Alexander homotopy 
ft(x) = t/1 (tx) that links f1 with fo = d/1 lo (use coordinates on sm = lRm U 
oo that set pat 0). Finally, apply the Pontryagin-Thom construction again to 
establish a correspondence between (k + 1)-submanifolds of X x [0, 1] and 
functions X x [0, 1] ____. sm. Interpret the former as framed bordisms and the 
latter as homotopies. o 

Lemma. The bijection 
Sm ~ r.framed(sm+k) 7tm+k ~ ~~k 

is an isomorphism of groups. 

The group structure on the latter is the obvious bordism addition, 

K' +K" = K' UK" c sm#sm =sm. 

D 
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Notice also that the bigger m becomes when compared to k, the less relevant the 
restriction to manifolds that embed in sm becomes. In other words, the stable 
k-stem is given by abstract framed bordisms 

1. sm r.framed 
~ 1tm+k ~ ~Lk ' 
m 

where the latter is the cobordism group of k-manifolds endowed with a stable 
trivialization of their tangent bundle.47 

Whitehead, revisited. Some claims made during the proof of Whitehead's theorem should now 
be clearer. First, going from nm+k(sm) to nm+k(sm V · · · V sm) is trivial: just consider framed 
bordisms of several distinct (each maybe disconnected) submanifolds. After that, it is now ob
vious that any map f: sm+k -+ sm can be arranged to have f- 1 [p] connected (compare page 
143), because it is easy to devise a framed bordism to a connected k-submanifold (connected 
sum inside sm comes to mind). Similarly, the statement that the linking matrix of L determines 
the homotopy class of cp (page 146) can now be made rigorous, because the linking matrix is in
variant under framed bordisms (allow the splitting of link components into disconnected pieces). 
It is in fact the only invariant, as will be suggested below. 

References. The Pontryagin-Thorn construction was created in the 1940s by L. Pon
tryagin, who used framed bordisms to compute homotopy groups of spheres, 
see his papers The homotopy group 1tn+J(Kn) (n ~ 2) of dimension n + 1 of 
a connected finite polyhedron Kn of arbitrary dimension, whose fundamental 
group and Betti groups of dimensions 2, .. . ,n -1 are trivial [Pon49a], and Ho
motopy classification of the mappings of an (n + 2)-dimensional sphere on an 
n-dimensional one [Pon50], or the book [Pon55] translated as Smooth manifolds 
and their applications in homotopy theory [Pon59]. 

Then, after the development by J.P. Serre of more powerful methods for com
puting homotopy groups,48 R. Thorn in Quelques proprietes globales des var
ietes differentiables [Tho54] went backwards and used computations of homotopy 
groups in order to compute cobordism groups.49 Framed bordisms are explained 
in a friendly manner in J. Milnor's Topology from the differentiable viewpoint 
[Mil65b, Mil97], but see also A. Kosinski's Differential manifolds [Kos93]. 

Application: homotopy groups of spheres. In what follows we will put to work the 
Pontryagin-Thorn construction to offer geometric interpretations of certain simple 
homotopy groups of spheres. While this is how the homotopy groups below were 
first computed by L. Pontryagin and V. Rokhlin, the Pontryagin-Thorn construc
tion is a very weak method for evaluating homotopy groups when compared to 
Serre's later methods. 

Lemma. 

47. A stable bundle is a bundle considered up to additions of trivial bundles. A stable trivialization of 
the tangent bundle TK means an isomorphism TK E9)Rm >:::: Rm+k, corresponding to a virtual embed
ding in sm+k with N K(sm+k trivialized as K X Rm. 

48. See J.P. Serre's Homologie singuliere des espaces fibres. III. Applications homotopiques [Ser51]. 

49. For a first taste of this approach, start with M. Hirsch's Differential topology [Hir76, Hir94, ch 7]. 
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Sketch of proof Not that this is not clear for all sorts of reasons, but it can 

also be argued in terms of framed bordisms: o.tamed(sn) contains framed 
points; the framing of a point X E sn is a trivialization of Tsn lx considered 
up to homotopy, in other words, an orientation of TMfx· Comparing it with 

the fixed orientation of sn exhibits the elements of o.tamed (sn) as points with 
signs. The isomorphism framed 

0.0 (Sn) ~ Z 

is given simply by counting those points with signs. (Of course, on one hand 
this is just a very roundabout way of getting to the degree of a map sn ----+ sn; 
on the other hand, though, this is just the easiest instance of a pattern that we 
will see developing below.) D 

Lemma. 7t3 S2 = z I and 7tn+ 1 sn = z2 when n 2: 3 . 

Outline of proof For 1t3 S2 , we are looking at o.{"amed (S3), which contains 
framed links in S3 . Each component of the link has a framing, determined by 
an integer, which can be added together to yield the isomorphism 

0.{"amed(S3) ~ Z. 

The framing is determined by an integer because we are talking about trivial
izations of 2-plane bundles over copies of S1, and n 1S0(2) = Z. As soon 
as the codimension increases, though, we have n 1SO(n) = Z 2 (detecting 
whether the bundle twists by an even or odd multiple of 2n), and thus 

o.{"amed(sn+l) ~ z2 when n 2: 3, 

which concludes the argument: D 

Lemma. 7tn+2 sn = Z2 . 

Outline of proof Consider surfaces embedded in sn+2. Every surface S has 
a skew-symmetric bilinear unimodular intersection form on Ht(S;Z), given 
by intersections of 1-cycles. It descends to an intersection form modulo 2 on 
Ht(S;Z2)· 

Using the embedding of s in sn+2 I we can define a quadratic enhancement q 
of the intersection forms, namely a map q: H1 (S;Z2)----+ Z 2 with 

q(x + y) = q(x) + q(y) + x · y (mod 2) . 

Such a q is defined as follows: represent .e E Ht ( S; Z2) by a circle embedded 
in S and consider the framing of Ns;sn+z over .€: it is determined by a Z2-
framing coefficient, and we define q(f) to be that coefficient. 

Any quadratic enhancement has an associated Z2 -invariant, called its Arf 
invariant, which can be defined swiftly by setting 

Arf(q) = l:q(ek) q(l\) 

for any choice of basis {et, ... , em, e1, ... , em} of H1 (S; Z2) such that the only 
non-zero intersections are ek · ek = 1. A more thorough discussion of the 
algebra of the Arf invariant is made in the end-notes of chapter 11 (page 501). 
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In any case, the Arf invariant is the only framed bordism invariant and estab-
lishes the isomorphism framed 

0 2 (Sn) ~ Zz, 

and thus concludes the argument. D 

All of the above computations are due to L. Pontryagin and can be read from his 
book [Pon55], translated as Smooth manifolds and their applications in homo
topy theory [Pon59]. 

Finally, at the limits of Pontryagin-Thom's applicability, we have: 

Theorem. ?Tn+3 sn = Zz4 when n ~ 5. D 

This is already serious business and was first discovered by V. Rokhlin. While 
studying the problem of ?Tn+3 sn by using framed bordisms of 3-manifolds, V. Rok
hlin first concluded that nn+3 sn = Z12. His mistake stemmed from thinking that 
a certain characteristic element in a 4-manifold could be represented by an embed
ded sphere. This was not the case, he corrected his mistake in New results in the 
theory of four-dimensional manifolds [Rok52], and in the process discovered his 
theorem on the signature of almost-parallelizable 4-manifolds. The whole story 
can be followed in the volume Ala recherche de la topologie perdue [GM86a], 
edited by L. Guillou and A. Marin, with French translations of the relevant papers 
of Rokhlin, commentaries, etc. 

For completeness, even though they were never obtained using the Pontryagin
Thom construction, we also state: 

Theorem. ?Tn+4 sn = 0 I ?Tn+5 sn = 0 I ?Tn+6 sn = Zz when n is big. 

In particular it follows that of•med = 0. This is not in contradiction with 0~0 = Z, because 

not all 4-manifolds appear in of•med, but only those that can be embedded in a sphere with 
trivial normal bundle, in other words, only those 4 -manifolds M whose tangent bundle is stably
trivial, i.e., T M EBlKn = Rn+4 for some n. These M 'shave vanishing Pontryagin class, and thus 
vanishing signature. 
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ted complexes induces isomorphisms on homology, then it is a homotopy equiv
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Whitehead's Combinatorial homotopy [Whi49a]; its proof can be found, for ex
ample, in A. Hatcher's Algebraic topology [Hat02, ch 4] or E. Spanier's Algebraic 
topology [Spa66, Spa81, ch 7]. 

C.T.C. Wall's theorem on algebraic automorphisms of intersection forms was pub
lished in On the orthogonal groups of unimodular quadratic forms [Wal62], and 
his work continued with the identification of generators in On the orthogonal 
groups of unimodular quadratic forms. II [Wal64a]. The theorem on diffeomor
phisms is contained in Diffeomorphisms of 4-manifolds [Wal64b]. His theorems 
on stabilizations and h-cobordisms appeared in On simply-connected 4-mani
folds [Wal64c]. The proof of the latter as outlined in this volume is from R. Kirby's 
The topology of 4-manifolds [Kir89, ch X]. 

Characteristic classes of vector bundles are masterfully described in J. Milnor 
and J. Stasheff's Characteristic classes [MS74]. Their chapter 12 presents the 
obstruction-theoretic view that we favored above. For the foundations of that 
view, one should look back at N. Steenrod's wonderful The topology of fibre 
bundles [Ste51, Ste99, part III]. Another standard reference for bundle theory in 
general is D. Husemoller's comprehensive Fibre bundles [Hus66, Hus94]. The 
Dold-Whitney theorem appeared in A. Dold and H. Whitney's Classification of 
oriented sphere bundles over a 4-complex [DW59]. The definition of spin struc
tures as extensible trivialization is due to J. Milnor's Spin structures on manifolds 
[Mil63b]. 

Hirzebruch's signature theorem is a general statement about signatures and char
acteristic classes in all dimensions multiple of 4 and appeared in F. Hirzebruch's 
On Steenrod's reduced powers, the index of inertia, and the Todd genus [Hir53], 
then in the book Neue topologische Methoden in der algebraischen Geometrie 
[Hir56], which eventually became the famous monograph Topological methods 
in algebraic geometry [Hir66], last printed as [Hir95]. It is worth noting that the 
4-dimensional case of the signature theorem was also proved in V. Rokhlin's New 
results in the theory of four-dimensional manifolds [Rok52]. The proof of the gen
eral case can be read in chapter 19 of J. Milnor and J. Stasheff's Characteristic 
classes [MS74]. 

Vander Blij's lemma appeared in F. van der Blij's An invariant of quadratic forms 
mod 8 [vdB59]. 

A theorem of Rokhlin's. Rokhlin's theorem was published in a four-page paper, 
New results in the theory of four-dimensional manifolds [Rok52] {where it was 
also proved that if sign = 0, then the manifold bounds). It was translated in 
English in 1971. A French translation of this and three other remarkable papers 
of Rokhlin can be read as [Rok86] in the volume A la recherche de la topologie 
perdue [GM86a], edited by L. Guillou and A. Marin, where they are followed by 
a commentary [GM86b] that makes the dense style of Rokhlin easier to follow. 

Rokhlin discovered his theorem by studying homotopy groups of spheres using 
the Pontryagin-Thorn (framed-bordisms) approach, and by first mistakenly stat
ing that 7tn+3 sn = .zl2; he then found his mistake, stated his theorem, and cor
rected to 7tn+3 sn = .z24. 
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Most later proofs or textbook-treatments of Rokhlin's theorem actually deduce it 
from 1tn+3 sn = z24, with the latter fact obtained through the impressive machin
ery set up by J.P. Serre's Homologie singuliere des espaces fibres. III. Applications 
homotopiques [Ser51] for computing homotopy groups, thus setting aside the 
direct geometric approach of Rokhlin's papers. For this homotopy-theoretic ap
proach to proving Rokhlin's theorem, seeM. Kervaire and J. Milnor's Bernoulli 
numbers, homotopy groups, and a theorem of Rohlin [KM60]. 

Rokhlin's theorem was generalized successively by M. Kervaire and J. Milnor in 
On 2-spheres in 4-manifolds [KM61] (see also section 11.1, page 482), and further, 
along an unpublished outline of A. Casson from around 1975, by M. Freedman 
and R. Kirby in A geometric proof of Rochlin's theorem [FK78]. The latter state
ment and its proof from scratch (thus in particular proving Rokhlin's theorem as 
well) will be discussed in the end-notes of chapter 11, with a warm-up starting on 
page 502 and a detailed proof on page 507.50 Alternative proofs of a similar flavor 
can be read in L. Guillou and A. Marin's Une extension d'un theoreme de Rohlin 
sur la signature [GM86c] andY. Matsumoto's An elementary proof of Rochlin's 
signature theorem and its extension51 by Guillou and Marin [Mat86], both inside 
the same wonderful volume A la recherche de la topologie perdue [GM86a]. It 
has been reported that V. Rokhlin was himself long aware (1964) of these gener
alizations, but only published them in Proof of a conjecture of Gudkov [Rok72], 
when he found an application. 

Another version of the proof is found in R. Kirby's The topology of 4-manifolds 
[Kir89, ch XI], where a nice streamlined argument with spin structures is used. 
This alternative proof is also explained in this volume, in the end-notes of chap
ter 11 (page 521). 

A third and surprising proof of Rokhlin's theorem that starts with the ,u-invariants 
of 3-manifolds can be read from the appendix of R. Kirby and P. Melvin's The 3-
manifold invariants of Witten and Reshetikhin-Turaev for .sl(2,C) [KM91]; it 
was briefly mentioned back on page 227. 

50. The reason for the exile of the proof of Rokhlin' s theorem to chapter 11 is mainly one of space: even 
though logically that proof would better fit with the present chapter, the current group of end-notes is 
already quite extensive. 

51. The word "extension" from the last two titles refers to a refinement of the Kirby-Siebenmann for
mula from a Zz -equality to a Z4 --equality, with the extra residues appearing only from non-orientable 
characteristic surfaces. 



Classifications and 
Counterclassifications 

Chapter 5 

THE time has come to look at the algebraic classification of (abstract) sym
metric integral unimodular forms. Afterwards we will classify topologi

cal 4-manifolds through their intersection forms (Freedman), but will no-
tice that smooth manifolds are not so well-behaved (Donaldson). The chap
ter concludes with a presentation of exotic JR4 's. 

We start with the statement of J.P. Serre's classification of indefinite forms, 
followed by a frightening count of definite forms. The classification of in
definite odd forms is further argued in the end-notes on page 262. The 
end-notes also contain a proof of van der Blij's lemma, on page 263. 

In section 5.2 (page 239) we present the striking result of M. Freedman 
that completely classifies simply-connected topological manifolds: for ev
ery even form there is exactly one topological manifold having it as inter
section form, while for every odd form there are exactly two. The smooth 
realm is not that well-behaved: indeed, almost no definite forms can be rep
resented by smooth 4-manifolds; this result of S.K. Donaldson and other 
exclusions from the smooth realm are presented in section 5.3 (page 243). 

The collision between the smooth and topological realms spawns exotic 1R4 . 

These open manifolds homeomorphic but not diffeomorphic to 1R4 appear 
whenever the smooth theory is in conflict with the topological theory. In
deed, there are plenty of them: there are in fact uncountably-many exotic 
JR4 's, as we will see in section 5.4 (page 250). 

-237 
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5.1. Serre's algebraic classification of forms 
Intersection forms in themselves are just a topological incarnation of an 
otherwise abstract algebraic entity: a symmetric bilinear unimodular form 

Q:ZxZ---t?L, 

defined on some finitely-generated free ?L-module Z. As such, one can try 
to explore the various shapes of such creatures, without worrying about 
any geometric content. 

Indefinite forms 

The algebraic classification is quite successful in the case of indefinite sym
metric bilinear unimodular forms: 

Serre's Classification Theorem. Let Q' and Q" be two symmetric bilinear uni
modular forms. If both Q' and Q" are indefinite, then Q' and Q" are isomorphic 
forms if and only if they have the same rank, signature, and parity. o 

In terms of concrete representatives, this becomes: 

Corollary. Let Q : Z x Z ----t 7L be a symmetric bilinear unimodular form. 

- If Q is indefinite and odd, then in a suitable basis it can be written 

Q = ffim [+1] ffin [-1] . 
- If Q is indefinite and even, then in a suitable basis it can be written 

Q = E9 ±m Es E9 n H . o 

The reason for the relative simplicity of the classification of indefinite forms 
lies with the following nontrivial property: 

Meyer's Lemma. Let Q: Z x Z ----t 7L be a symmetric bilinear unimodular form. 
If Q is indefinite, then there exists an element x0 E Z so that 

xo · Xo = 0. D 

From this result can be quickly deduced the above classification of indef
inite forms that are odd, as is explained in the end-notes of this chapter 
(page 262). Also, van der Blij's lemma can then be easily proved, see the 
end-notes of this chapter (page 263). 

Example. A simple and rather random application of the algebraic classifica
tion of indefinite forms is the following: Start with a random smooth 4-mani
fold. Then M #CJP2 #ClP2 will have indefinite odd intersection form, and 
thusmusthave QM#CJP2#(::Jp2 = ffip [+1] ffiq [-1], with p+q = b2(M) -2 
and p - q = sign M. Wall's theorem on stabilizations implies that, for an ap
propriate k, we have a diHeomorphism M #CJP2 # kS2 X S2 ~ # pCJP2 # 
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qClP2 # k52 x 52 . However, we also have 52 x 52 #CJP2 ~ #2CJP2 #CJP2, 

and so we end up with 

Hence, no matter how complicated M might have been, we managed, by 
adding enough projective planes, to completely dissolve M into triviality. 

In comparison to indefinite forms, definite forms are complexity itself: 

Definite forms 

There is no classification of definite forms. One has, of course, boring ex
amples like EB m [ + 1 J , or Es EB [ + 1 J , or Es EB E8 ... ; but besides these ,I the 
sheer number of definite forms is simply enormous. 

Consider, for example, positive-definite even forms. From van der Blij's 
lemma, their rank is always a multiple of 8. Counting how many forms 
we have, for rank 24 we get 24 distinct forms; for the next available rank, 
32, there are already more than eighty million of them; for rank 40, there 
are more than 1051 , and most likely that is a gross underestimate.2 The 
situation for definite odd forms is similar. At least we can celebrate the 
fact that, for every fixed rank, it is known that there are only finitely-many 
forms representing it. .. 

We gather our information about algebraic forms in table VIII. 

VIII. Classification of integral symmetric unimodular forms 

II indefinite (positive) definite 

odd m[+1] Elln[-1] too many 

rank I 8 16 24 32 40 
even E!l±mEs E!lnH 

# 11 2 24 > 107 » 1051 

5.2. Freedman's topological classification 

The remarkable fact is that all the overwhelming wealth of algebraically
possible intersection forms can actually be incarnated into topological 4-
manifolds: 

1. Two further examples, T4k and the Leech lattice, are defined in the end-note on page 264. 

2. For further comments on this count, see the end-notes of this chapter (page 264). 
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Freedman's Classification Theorem. For any integral symmetric unimodular 
form Q, there is a closed simply-connected topological 4-manifold that has Q as 
its intersection form. 

- If Q is even, there is exactly one such manifold. 
- If Q is odd, there are exactly two such manifolds, at least one of which does 

not admit any smooth structures. 

If we restrict to smooth 4-manifolds, this most remarkable theorem reduces 
to a statement that we have already presented,3 specifically: 

If M and N are smooth simply-connected 4-manifolds with isomorphic intersec
tion forms, then M and N must be homeomorphic. 

Indeed, Freedman's classification result above has no bearing on the diffeo
morphic classification of 4-manifolds, and none either on the existence of 
smooth structures. 

Example. Take the non-smoothable Es -manifold, MEs . On one hand, the con
nected sum ME #ME has intersection form Es EB Es and is also non-smooth-s 8 --
able, as we will see shortly. On the other hand, the manifold MEs # MEs has 
intersection form Es EB - E8 ~ EB 8 H, and therefore must be homeomorphic 
to #852 X 52 : -- 2 2 

ME8#MEs ~ #8S X S . 
Thus, it can inherit a smooth structure from the latter. 

In the second case of Freedman's theorem, for odd forms, the two non
homeomorphic 4-manifolds M and *M that represent a same form can be 
distinguished by their Kirby-Siebenmann invariants:4 we have ks ( M) = 0 
and ks( *M) = 1. Then *M is certainly non-smoothable, but M could also 
be non-smoothable. 5 

Sketch of proof of Freedman's classification. 
Existence. Let Q be an abstract symmetric unimodular bilinear form 
over a Z-module Z. Then it can be realized as the intersection form 
of a simply-connected 4-manifold PQ with non-empty boundary, ob
tained by suitably plumbing disk-bundles over spheres. Since Q is uni
modular, the boundary L = () PQ must be a homology 3-sphere. Then 
so is its oppositely-oriented version 1:, and the latter must bound some 
fake 4-ball .1. We can then glue .1 to PQ and obtain a closed oriented 

3. See back in section 4.2 (page 155). 

4. The Kirby-Siebenrnann invariant was explained back in the end-notes of the preceding chapter 
(page 221); it is a Zz -valued invariant that must vanish for manifolds that admit smooth structures. 

5. We can distinguish M and *M by saying that M x S1 admits a smooth structure, while ( *M) x S1 

does not. Ditto forM x Rand ( *M) x JR. 
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simply-connected topological 4-manifold MQ = PQ Ua Ll, whose in
tersection form is exactly Q. This argument will be presented in more 
detail in the end-notes of this chapter (page 260). 

If plumbings are not to one's taste, one can always start with a framed 
link in 53 whose linking matrix is Q, then add a 2-handle to each com
ponent of the link while respecting the framing (as in Kirby calculus, 
see the note on page 91, at the end of chapter 2); one ends up again 
with a 4-manifold with intersection form Q and boundary a homol
ogy 3-sphere, which can be capped with a contractible Ll. 

Uniqueness. If the manifolds admit smooth structures, then, as men
tioned above, the result was already proved earlier, as a consequence of 
Wall's theorem on h-cobordisms and Freedman's topological h-cobor
dism theorem. For the general case, when the manifolds do not neces
sarily admit smooth structures, the result follows using surgery tech
niques of C.T.C. Wall and the Kirby-Siebenmann invariant. (An impor
tant role in Freedman's argument is played by the fake CP2 that we 
build next.) o 

An example: CP2, and fake ClP2 • We will be leaving the realm of topo
logical 4-manifolds pretty soon. Before we do, we wish to build the two 
manifolds prescribed by Freedman's theorem to represent the form [ + 1 J . 
One of them is ClP2 , the other is a non-smoothable 4-manifold homotopy
equivalent to CJP2 . The latter is called a fake CJP2 and denoted by * CJP2 . 

Take the 4-ball JD4 . To its boundary 53 we will attach a 2-handle JD2 x JD2 

by identifying the boundary of the core JD2 x o to a knot K in 53 . Since we 
must attach the whole leg 51 x JD2 of the handle, this means that besides 
the destination K of the attaching circle, we also need to choose a precise 
way to attach around K its thickening. In other words, we need to pick a 
framing6 for the knot. This can be specified by an integer describing how 
many twists occur along the knot, measured with respect to any oriented 
Seifert surface bounded by K. Notice that the core of the handle attaches 
to this Seifert surface and yields a closed surface, whose self-intersection is 
exactly the chosen framing, see figure 5.1 on the following page. 

If we choose to attach a 2-handle to the unknot with framing + 1, the result 
can be seen to be a disk bundle over a sphere (the base sphere is created by 
gluing the core of the handle to a disk bounded by the unknot). The Euler 
class of this disk bundle is + 1 (like the framing). Therefore its boundary is 
the Hopf bundle; specifically, it is a 3-sphere. If we cap this 3-sphere with 
another 4-ball, then the resulting manifold will be CJP2 . 

6. Compare with Kirby calculus, described in the end-notes of chapter 2 (page 91). 
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5.1. Attaching a 2-handle creates a surface 

On the other hand, if, instead of using the unknot, we attach our 2-handle 
to the (right) trefoil knot with framing + 1 (see figure 5.2), then the bound
ary of the resulting manifold turns out to be Poincare homology 3-sphere 
Lp. Its reverse Lp bounds a contractible topological4-manifold, a fake 4-
ball ,1. If we attach ,1 to our construction, what we obtain is a simply-con
nected 4-manifold with intersection form [ + 1 J . By Whitehead's theorem, 
the result is homotopy-equivalent to ClP2 ; but it is known to not be homeo
morphic to it: we obtained a fake ClP2 , which will never admit any smooth 
structures. We denote it by * CJP2 . 

0 
(:Jp2 fake CJP2 

5.2. CJP2 , and fake CJP2 

If we choose some other random knot K in S3 and attach a 2-handle to it 
with framing + 1, then the boundary of the result will still be a homology 3-
sphere, and thus there will exist a fake 4-ball that can be used to cap it off to 
a closed 4-manifold. The intersection form of this topological 4-manifold 
is still [ + 1 J and thus, by Freedman's classification, must be homeomorphic 
to either CJP2 or *CJP2-there are no other options. 

More stars. This manifold * CJP2 can be used to create more pairs of non
homeomorphic manifolds with the same intersection form. For example, both 
CJP2 #MEg and ( * CJP2 ) #MEg have the same intersection form [ + 1] EB Es, 
but their Kirby-Siebenmann invariants differ: we have7 ks ( CJP2 #MEg) = 1 

7. Here, we use the additivity of the Kirby-Siebenrnann invariant and that ks(ME8) = 1. See the 
end-notes of the preceding chapter (page 221). 
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but ks ( ( * (::JP2) # ME8) = 0. The form [ + 1] E9 Es is deEnite, and from Don
aldson's results (see ahead) neither of its manifolds can admit smooth struc
tures. The sum-stabilization (:JP2 # MEs # S2 x S2 is still not smooth, and 
no further stabilizing can help. However, ( * (::JP2) #ME # S2 X S2 must be 

- 8 
homeomorphic to # 10(:JP2 #C:JP 2 and thus admits smooth structures. As 
another example, the 4-manifolds (::JP2 # MEs and ( *(:JP2) #ME are non
homeomorphic, with intersection form [ + 1 J E9 - E8 ~ [ + 1 J E9 8l-1] . The 
manifold (:JP2 #ME is non-smoothable, but ( * (:JP2 ) #ME is homeomorphic 

- 8 8 
to (:JP2 # 8 CJP 2 and thus admits smooth structures. 

This *-operation can be extended to all topological manifolds M with odd 
intersection forms, with *M characterized by any homeomorphism ( *M) # 
(::JP2 ~ M # ( * (:JP2 ) that preserves the splitting QM E9 [ + 1 J ofthe intersec
tion forms. Of course, ks( *M) =1- ks(M). 

5.3. Donaldson's smooth exclusions 

As we have seen, all abstract candidates for intersection forms are actually 
realized by topological 4-manifolds, including the overwhelming crowds 
of definite forms. However, if one focuses on smooth manifolds, then most 
intersection forms are in fact excluded. 

Besides a few old exclusions obtained from Rokhlin's theorem, the revela
tion came with S.K. Donaldson's remarkable application of differential ge
ometry to smooth 4--dimensional topology, which ushered in a whole new 
stage in the development of smooth 4-dimensional topology. 

Definite forms 

For smooth manifolds the definite forms essentially disappear from the pic
ture. Only one year after after M. Freedman's revolution, S.K. Donaldson's 
counter-revolution followed in 1982: 

Donaldson's Theorem. The bilinear symmetric unimodular forms 

EBm[+l] and EBm[-1] 

are the only definite forms that can be realized as intersection forms of a smooth 
4-manifold. 

Thus, if a simply-connected smooth manifold has a definite intersection 
form, then it must be homeomorphic to either #m CJP2 or #m CJP 2 • 

It might be striking that, between Rokhlin's theorem (1952) and Donaldson's 
(1982), no new intersection form exclusions from the smooth realm appeared. 
Thus, while it had been clear for a while that Es is not representable by a 
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smooth 4-manifold, the possibility survived that, say, Es EB Es could be. Af
ter Donaldson, we know that it cannot (and in particular, MEg# MEg is non
smoothable). However, in a certain sense Rokhlin's theorem, through its far
reaching consequences, belongs to the topology of manifolds of all dimen
sions, while Donaldson's is confined to dimension 4. 

Combining Donaldson's theorem with Freedman's classification of topolog
ical manifolds and Serre's algebraic classification of forms yields the suc
cinct corollary: 

Corollary. Two smooth simply-connected 4-manifolds are homeomorphic if and 
only if their intersection forms have the same rank, signature, and parity. o 

A more concrete version is: 

Every smooth simply-connected 4-manifold is homeomorphic to either #m CJP2 # 
nCJP 2 or8 #±mMEg#nS2 x S2 . 

However, since many of the # ±m MEg# n S2 x S2 's are non-smoothable, 
this last statement is somewhat unsatisfactory. Fleshing out precisely which 
are and which are not smoothable is what the 11/s- and 3/2-conjectures try 
to do, as we will see shortly. 

The proof of Donaldson's theorem uses differential geometry, specifically 
gauge theory, and it was the first of many results that came from that area. 
As the reader will certainly notice, the flavor of the argument is from a 
completely different planet than those encountered so far. 

Sketch of proof of Donaldson's theorem. Assume M is a smooth 4-
manifold whose intersection form is negative definite.9 Assume that 
M is simply-connected (Donaldson's methods work best in the simply
connected setting; this restriction disappears when using Seiberg-Wit
ten theory, and a proof of the theorem using the latter techniques will 
be presented later.10) 

Endow M with some Riemannian metric and build on M a complex
plane bundle 

with structure group SU(2) and Euler class + 1. We consider the col
lection of all SU(2)-connections11 A on E that satisfy the curvature 
equation p+ _ 0 A- . 

8. Of course, a negative coefficient of ME8 should be understood as reversing the orientation. 

9. The positive-definite case follows from the negative-definite one after reversing orientation. 

10. In the end-notes of chapter 10 (page 454). 

11. The differential-geometric concept of "connection" is reviewed in chapter 9 (page 331). The whole 
part 4 of this volume is devoted to these differential-geometric approaches to smooth topology. Thus, 
the argument sketched here might be easier to follow after passing once through that part. 
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Here, FA is the End(E)-valued curvature 2-form of A, and F;t is the 
self-dual part of FA. Such a connection is called an instanton or an 
anti-self-dual connection. 

In fact, we consider the solutions A of the equation only up to gauge 
equivalence, i.e., up to automorphisms of the bundle E. It is proved 
that, for a generic metric and slight perturbation of the equation, the 
moduli space 

9Jt = { [A l I F;t = 0} 

of (gauge classes) of solutions is in fact an open smooth 5-manifold, 
away from a few isolated singular points PI· ... , Pm where 9Jt fails to 
be a manifold. 

The singular points have neighborhoods which are cones on CP2 . The 
number m of singular points is exactly half the number of homology 
classes of M that have self-intersection -1: 

m = i#{a E H2(M;Z) I a·a = -1} 

(half, because both +a and -a are in there).12 

The fundamental fact is that 9Jt can be compactified by adding our 4-
manifold Mas boundary to 9Jt. This happens because we can find, for 
each x E M, a sequence of anti-self-dual connections whose curvatures 
are concentrating closer-and-closer to x, and so one can think of that 
sequence in 9Jt as converging to the actual point x of M. In fact, for 
every divergent sequence of anti-self-dual connections, there is a subse
quence whose curvatures concentrate at some x E M, and so one can 
indeed think of Mas the boundary13 of 9Jt. 

Therefore, by adding Mas boundary to 9Jt, and then by cutting neigh
borhoods of the singular points out of it, we end up with a cobordism 
between, on one side, our 4-manifold M, and, on the other side, m+ 
copies of CP2 and m_ copies of CP2 (with the number m of singu
lar points split as m = m+ + m_, depending on orientations), as in 
figure 5.3 on the following page. 

12. The singularities appear from reducible solutions (compare with the general discussion in chap
ter 9, page 331 ahead), in this case anti-self-dual connections on E that come from connections on a 
complex-line bundle L in a decomposition E = L E9 L • . Such a decomposition is equivalent to a choice 
of Chern class IX = CJ ( L) such that IX • IX = -1 . (Of course, choosing IX or -IX leads to the same 
decomposition.) It turns out that to every such decomposition corresponds (up to gauge) exactly one 
reducible anti-self-dual connection. Therefore, the count of singular points is the same as a count of 
IX 's as above. 

13. Of course, one actually needs to prove that a complement of a big compact set in !m is diffeomor
phic to M x (0, 1), so that we can add M x 0 to !m as the smooth boundary of !m, with M x [0,1) 
becoming a collar of M = a !m in !m. 
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5.3. The 1-instanton moduli space for negative-definite QM 

Since M together with the CP2's make up the boundary of a 5-mani
fold, their total signature must be zero. Since the signature-contribu
tion of a copy of CP2 is + 1, while a copy of CP2 contributes -1, we 
must have 

signM = m+- m_. 

Since QM is negative-definite, we get signM = -b2(M), and thus 

b2(M) = - signM = -m+ + m_ :::; m+ + m_ = m :::; b2(M), 

which forces b2(M) = m. 

However, m was half the number of classes IX with IX • IX = -1 . The 
unimodularity of QM implies that, if IX • IX = -1, then QM must split as 

QM = [ -1 J EB Q' . 

Using up all such IX's available, we end up with QM = m [ -1] EB Q(m). 
Since m = b2(M), the IX'S must in fact exhaust all of QM, and hence 
QM = EB m [ -1 J , which concludes the proof. o 

Please do not be misled by the breezy outline above, but keep in mind that 
we swept under the rug a whole elephant of hard analysis on which the 
above argument is founded. 

A complete alternative proof using Seiberg-Witten theory will be detailed 
in the end-notes of chapter 10 (page 454). 
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Indefinite even forms 

As far as representing indefinite forms by smooth manifolds, the odd ones 
are settled as each of them are realized by some #m CIP2 #n CIP 2 . On the 
other hand, even forms are subject to exclusions. 

Algebraically, the even forms must all be of shape Q = EEl ±m E8 EEl n H. 
Rokhlin's theorem restricts the even forms corresponding to smooth 4-
manifold to those with an even number of E8 's, that is, to 

Q = EEl ±2m E8 EEl n H . 

Further, by Donaldson's result, they must contain at least one H to avoid 
definiteness. 

Notice that increasing the number of H's is not a problem: just connect sum 
with a copy of 52 x 52 . Thus the question becomes: What is the minimum 
number of H's needed for a form as above to become representable by a 
smooth 4-manifold? It is conjectured that: 

The 11/s-Conjecture (open). Every smooth 4-manifold M with even intersec
tion form must have 

b2(M) 2': V lsignMI 

or, equivalently, we must have n 2': 3 I m I, i.e., at least three H 's for every couple 
of E8 'sin QM. 

If this conjecture were true, an immediate consequence would be:14 

Every smooth simply-connected 4-manifold is homeomorphic to either of 

#mCIP2 #nCIP 2 or #±mK3#n52 x 52 • 

However, without the 11/8-conjecture proved, we do not know whether a 
statement of this type might not need to involve some mysterious smooth 
4-manifolds in order to cover the topological ground between, say, #m K3 
and # ( m + 1) K3 . 

An even stronger open conjecture applies to irreducible 4-manifolds: 

The 3/z-Conjecture (open). Let M be a smooth 4-manifold M with even inter
section form. Assume that M is irreducible, i.e., that it does not split into a connected 
sum of simpler 4-manifolds (not homeomorphic to 54 ). Then we must have 

x(M) ;:::: ~ lsignMI 

or, equivalently, we must haven ;:::: 4lml - 1, i.e., about four H's for every couple of 
Es 'sin QM. 

14. Remember that the intersection form of K3 is EB ( -2)Es EB 3H. 
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Keep in mind that our understanding of exactly who the collection of all irre
ducible 4-manifolds might be has receded in recent years.15 

A first step toward the 11/s-conjecture was: 

Theorem ( S.K. Donaldson). The forms 

H and HEB H 

are the only even forms that appear from smooth 4-manifold with b:{ = 1 or 
b:{ = 2. In other words, if lml ;:::: 1, then n;:::: 3, i.e., if there is an Es, there must 
be at least three H 's. o 

Therefore, after 54 and # n 52 x 52 , the K3 surface has the simplest even 
intersection form. 

Donaldson and others continued to use instantons and develop a whole 
machinery of invariants for smooth 4-manifolds. Then, in 1994, N. Seiberg 
and E. Witten introduced their monopoles in 4-dimensional topology. The 
Seiberg-Witten monopoles are much easier to manipulate than instantons, 
but contain essentially equivalent information. Indeed, all the results ob
tained using instantons were re-proved, usually more easily, by using Sei
berg-Witten theory. We will discuss the latter theory in some detail starting 
with chapter 10 (page 375). 

By studying the shape of the moduli space of solutions to the equations of 
Seiberg and Witten, M. Furuta proved:16 

Furuta's 10/s-Theorem. Every smooth 4-manifold M with even intersection 
form must have 

or, equivalently, we must have n > 2lml + 1, i.e., at least two H's for every 
couple of Es 'sin QM. D 

Finally, a recent refinement: 

Theorem ( M. Furuta, Y. Kametani and H. Matsue ). The form EB ±4 E8 EB 5 H 
is not the intersection form of any smooth 4-manifold. o 

The overall current situation for even forms is summarized in figure17 5.4 
on the next page. 

15. For a while, one entertained conjectures such as: all irreducible 4-manifolds are complex surfaces 
(with either orientation), then that they all are symplectic manifolds (with either orientations). Exam
ples of irreducible 4-manifolds that are neither complex nor symplectic have left us with no current 
conjecture. Compare with the comments on page 553. 

16. The Seiberg-Witten equations are built on top of a choice of spine structure on M. If QM is even, 
then M admits a spin structure, which can be thought of as a very special type of spine structure, and 
this confers extra symmetry to the Seiberg-Witten moduli space, leading to Furuta's result. 

17. In figure 5.4, FKM denotes the Furuta-Kametani-Matsue theorem we just stated 
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#of H's 

#of Es's after Rokhlin' s theorem 
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1 
00000000000000000000000000000000 
9 
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3 
2 
1 
0 #of H's 

#of Es's after Donaldson's theorems 
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0000000000000000000000000000 
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#of H's 

#of Es's after Furuta's theorems 
FKM 000000000000000000 
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0000000000000000000000 

000000000000000000000000 
•0000000000000000000000000 

0000000000000000000000000000 

#of H's 

#of Es's with faith in the 11/s-conjecture 

0000000000000 
0000000000000000 

0000000000000000000 
0000000000000000000000 

•0000000000000000000000000 
0000000000000000000000000000 

#of H's 

5.4. Smooth exclusions of indefinite even forms EB ±m Es EB n H 
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5.4. Byproducts: exotic JR4 's 

Once Donaldson's exclusions appeared, it became clear that there must ex
ist exotic JR4's. An exotic JR4 is a smooth open 4-manifold that is homeo
morphic to JR4 but not diffeomorphic to it. There are two sources of exotic 
JR4's: 

On one hand, they appear from the clash between the topological success 
of the h-cobordism theorem and its smooth failure: as we will see, every 
Akbulut cork18 is surrounded by an exotic JR4 . These exotic JR4 's can be 
embedded inside standard lR4 , and thus are called small exotic JR4 's. 

On the other hand, another suite of exotic JR4 's appears from the collision 
between the topological success of connected-sum-splitting and its smooth 
failure. The resulting exotics do not embed in standard lR4 , and in fact con
tain a compact set that cannot be surrounded by any smoothly embedded 
3-sphere. They are called large exotic JR4 's. 

To split or not to split 

An exotic JR4. Consider the smooth 4-manifold19 

E = CP2 #9CP2 • 

Its intersection form is QE = [ + 1] E9 9 [ -1] . For a suitable choice of basis,20 

QE can also be written as 

QE = - Es E9 [ -1] E9 [ + 1 J . 

Topologically, this corresponds to a split E = ME #CP2 #CP2 . Nonethe-
- 8 

less, smoothly separating a copy of CP2 #CP2 from E is not possible, since 
MEs is not smoothable, owing to Rokhlin' s theorem. 

We might then try to split off at least the [ + 1] -term, seeking a smooth con
nected-sum decomposition E = N #CP2 , for some smooth 4-manifold N. 
However, this must fail as well. Indeed, the needed smooth manifold N 
would have intersection form - Es E9 [ -1] , which is definite and thus ex
cluded by Donaldson's theorem. This failure crystallizes into the existence 
of an exotic lR4 : 

Denote by IX an element of H2 ( E; Z) that spans the [ + 1] -term of 

QE = - Es E9 [ -1] E9 [ + 1 J 

18. Akbulut corks were encountered earlier in section 2.4 (page 89). 

19. The manifold E happens to be a complex surface, known as the rational elliptic surface. 

20. Titis follows since the two forms havj'! the same rank, signature and parity. For a concrete basis, 
if ek denotes the class of CJP 1 in the kth copy of CJP 2 inside E = CJP2 #9CJP2 , then the element 
tt = 3eo - e1 - · · · - e9 spans the [ + 1] in QE = - Es E9 [ -1] E9 [ + 1] . 
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Assume first that a can be represented by a smoothly-embedded 2-sphere 
S in E. Then a neighborhood of S would look like a disk-bundle on S~ 
with Euler number + 1. In other words, a neighborhood of S in E would 
be diffeomorphic to a smooth tubular neighborhood of (:JP1 inside (:JP2 , 

with boundary a copy of 53 and complement a standard 4-ball. Then we 
could cut S and its neighborhood out of E, and glue-in that 4-ball instead, 
thus obtaining a smooth 4-manifold N with intersection form - E8 EB [ -1 J , 
whose existence is prohibited. 

Therefore a cannot be represented by a smoothly-embedded sphere in E. 
Nonetheless, by using Casson handles we can represent a by a topologically
embedded sphere I: in E. More, the Casson handle itself provides a nice 
neighborhood U of I: in E. Topologically, U is just a + 1 disk-bundle over 
52 , and therefore it is homeomorphic to a subset of CJP2 . Hence, by using 
an embedding of U into CJP2 , we can transport the topological sphere I: 
from E to CJP2 . From Freedman's work (applied to open manifolds) it fol
lows that the complement of I: in ClP2 must be homeomorphic to an open 
4-ball. The ball CJP2 \ I: inherits a smooth structure from its embedding in 
CJP2 , but this ball cannot be smoothly-standard: we have stumbled upon 
an exotic JR4 . See figure 5.5, then figure 5.6 on the next page. 

5.5. Finding an exotic R.4 inside (::JP2 , 1 

Indeed, the open set CJP2 \ r; cannot be diffeomorphic to JR4 : In standard 
JR4 , every compact subset can be surrounded by a smooth 3-sphere. If we 
had CJP2 \ I: ~ JR4 , then its compact subset CJP2 \ U could be surrounded 
inside CJP2 \ r; by some smooth 3-sphere Z. This Z would live inside U, 
and in there Z would separate I: from the end of U. Since U can also 
be viewed as a part of E, we could then transport Z to E. That would 
mean that I: is surrounded in E by a neighborhood bounded by the smooth 
3-sphere Z. This neighborhood could then be cut out of E and replaced 
by a standard 4-ball. However, this creates a forbidden manifold N with 
QN = - E8 E9 [ -1 J . Therefore, there cannot be such a smooth 3 -sphere Z, 
and hence CJP2 \I: is not diffeomorphic to lR4 . 
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5.6. Finding an exotic JR4 inside CP2 , II 

Notice that this exotic JR4 embeds in ClP2 • Peculiarly enough, it does not 
embed in ClP2 . Indeed, the exotic JR4 identified here is not diffeomorphic 
to an oppositely-oriented copy of itself. For convenience, denote an exotic 
JR4 obtained as above by lElR~lP2 • 

Also observe the deep relationship between the minimum genus needed for 
smoothly representing a fixed homology class and the peculiarities of smooth 
4-d.imensional topology. This minimum genus problem will be explored fur
ther in chapter 11 (starting on page 481). 

Other large exotic lR4 's. Similarly to the above, we can alternatively start 
with the manifold ClP2 # 10 ClP 2 

and write its intersection form as 

- Es EB [ -1] EB H . 

We then represent two classes a and It that span H by two topological 
spheres I:IX and I:it, which can then be transported (together with their 
surrounding Casson handles) into 52 x 52 , where they cut out an exotic JR4 

as their complement, as in figure 5.7 on the facing page. 

Another example can be obtained if we start with the K3 surface, whose 
intersection form is 

QK3 = EB 2( -Es) EB 3H, 
and we represent the classes generating EB 3 H by topologically-embedded 
spheres, transport them to #3 52 x 52 , and look at their complement-we 
have another sighting of an exotic JR4 . 
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5.7. Finding an exotic JR4 inside 52 x 52 

Many other such constructions can be imagined, but it is not clear if these 
variations can be made so as to yield diffeomorphic exotic JR4 's or not. It is 
clear though that none of them embeds in standard JR4 , since each contains 
some compact set K that cannot be surrounded by a smooth 3-sphere, and 
thus cannot be smoothly embedded inside a standard 4-ball. 

Exotic padding of corks 

While the large exotic JR4 's above are relatively easy to exhibit, they are 
hard to describe explicitly (say, in terms of a-necessarily infinite-handle 
decomposition). By contrast, small exotic JR4 can be described explicitly.21 

These small exotic JR4 's appear in any nontrivial h-cobordism, where they 
surround the corresponding Akbulut cork, see figure 5.8. More precisely, 
we can enrich our earlier statement on corks (from section 2.4, page 89) as 
follows: 

5.8. Exotic JR4 's surrounding Akbulut corks 

Theorem. Let W5 be any smooth h-cobordism between M4 and N4 so that W 
is not diffeomorphic to M x [0, 1]. Then there is an open sub-h-cobordism U5 

that is homeomorphic to JR4 x [0, 1] and contains a compact contractible sub-h
cobordism K5 , such that both W and U are trivial cobordisms outside K. In other 

21. See for example R. Gompf and A. Stipsicz's 4-Manifolds and Kirby calculus [GS99, ch 9]. 
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words, we have diffeomorphisms 

W\K ~ (M\K) X [0,1] 

5. Classifications and Counterclassifications 

and U \ K ~ (U n M \ K) x [0, 1] 

(the latter can be chosen to be the restriction of the former). Furthermore, the open 
sets U n M and U n Nat U's ends are homeomorphic to R.4 • If the h-cobordism 
W is not trivial, then the open sets U n M and U n N must be exotic R.4 's. o 

In conclusion, exotic R.4 's can be found underlying all the peculiarities of 
smooth 4-dimensional topology. Every time the topological and smooth 
worlds collide, an exotic R.4 is spawned, and there is quite a lot of them: 

Let them multiply 

Countably-many exotic R.4 's. Consider two random exotic R.4 's, denoted 
by ER.~ and ER.~. In each, smoothly embed a path 

1 A: [0, oo) -----t ER.~ and 'YB: [0, oo) -----t ER.~ , 

both going toward infinity, as in figure 5.9. Discard the start-points 1 A ( 0) 
and 'YB (0); the remainder of the paths have open tubular neighborhoods 
UA and UB, both diffeomorphic to ( 0, oo) x R. 3 ; the boundaries of such 
neighborhoods are copies of R.3 (think of a test-tube shape). 

We can then build the end sum 

ER.~ Q ER.~ 

lElR~ Q lElR~ 

5.9. End summing two exotic JR4 's 
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by removing UA from lElR~ and UB from lElR~ and gluing together the 
newly-appeared boundary-JR3 's. This creates a new 4-manifold, homeo
morphic to JR4 but not diffeomorphic to it. 

For example, since lElR~JP2 does not embed in ClP2 while lElR~JP2 does not 
embed in ClP2 , this implies that their end sum lElR~JP2 q lElR~JP2 will embed 
in neither CJP2 nor CJP2 . We have created a new exotic JR4 . 

One can also build repeated end sums of n copies of a same exotic lEJR4 , de
noted by q n lEJR4 , or even of countably-many copies, denoted by q oo lEJR4 . 

One can then show that: 

Theorem (R. Gompf). No two of q n lElR~JP2 are diffeomorphic. 0 

We have thus exhibited countably-many distinct exotic JR4 ' s. However, this 
is just a meek beginning: 

Uncountably-many exotic lR4 's. We will use standard 4-balls of various 
radii to cut uncountably many new exotic JR4 's inside a given exotic JR4 : 

Pick some large exotic lR4 , for example lElR~JP2 , and denote it by lEJR4 • Then 
choose some homeomorphism 

h: lR4 ~ lEJR4 

between standard JR4 and our exotic lEJR4 . Denote by 

lElR~ = h [D4 (p) J 

the image through h of the standard open 4-ball D 4 (p) of radius p in JR. 4 . 

See figure 5.10 on the next page. Since lEJR4 is large, there is a compact set K 
in lElR4 that cannot be surrounded by any smooth 3-sphere. Nonetheless, 
there must be some po big enough so that K C lElR~0 • Then all bigger lElR~ 's 
are smoothly distinct: 

Theorem (C. Taubes ). If lEJR4 denotes the exotic JR.4 that we built earlier inside 
CJP2 , then, for any two distinct s, t > p0 , the slices lEJR.i and lEJR.j are never 
diffeomorphic. 

Therefore, there are uncountably-many distinct exotic JR4 's. 

Proof. Recall how lEJR4 = lElR~JP2 was built: we first identified a topo
logical 2-sphere 1:~ in E = CJP2 #9 CJP2 that spanned the orthogonal 
complement of - Es EB [ -1 J in QE, then we transported 1:~ to CJP2 , 

where its complement lEJR4 = CJP2 \ 1:~ was our large exotic JR4 • The 
sphere 1:~ came together with a tubular neighborhood U that could 
be embedded around 1:~ both in E and in CJP2 . The compact set 
K = CJP2 \ U cannot be surrounded by any smooth 3-sphere in lEJR4 . 
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5.10. Slicing new exotic R4 's 

5.11. Remembering ERtr2 

Choose a homeomorphism h: R.4 ~ lER.4 , then build the cuts lER.~ = 

h [lD4 (p) J and pick po so that K be contained in lER.~0 • Denote by 

~~ = h [53 (p)] 

the image through h of the standard 3-sphere of radius p. Thus each 
~~ bounds lER.~ inside lER.4 . See again figure 5.10. In particular, K is 
surrounded by the topological 3-sphere ~~0 • 

Choose two random s and t with po < s < t, and assume that lER.i 
and lER.j are diffeomorphic. We will argue that this cannot happen. 

Building a brick. Denote by cp a diffeomorphism 
4 ~ 4 

q>: lER.s ---t lER.t . 

Choose some random x between s and t. Between ~i and ~l sits 
the open annulus A = lER.j \ lER.i, homeomorphic to 53 x (0, 1) and 
contained in lER.j. This annulus can be pulled back through cp to an 
annulus cp-1 A = cp- 1 [lER.j \ lER.i], contained in lER.i and bounded 
on one side by~~ and on the other by the 3-sphere cp- 1 [~iJ. See fi
gure 5.12 on the next page. 
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X 

w 

5.12. Slicing a double-edged segment 

Consider the open 4-manifold W caught between cp- 1 [I:~] and ..Ei: its 
two ends A and cp- 1A are diffeomorphic. Notice that we can use the 
diffeomorphism cp: cp- 1 A ~ A to glue end-to-end countably many 
copies of this W. 

Let us stack. Remember that IEIR4 \ IEIRi is a neighborhood of the 2-
sphere ..E~ and that it sits inside U. Therefore it can be transported 
back to E = CJP2 # 9 CJP 2 , together with all its contents. Also notice 
that U \ ..E~ = IEIR4 \ K. 

Inside E, we see ..E~ separated from the rest of E by the annulus A, 
as in figure 5.13. If we cut out from E the smaller neighborhood U' = 
IEIR4 \ IEIRj of ..E~, we are left with an open 4-manifold, whose inter
section form is - E8 EB [ -1 J and that has the annulus A as its end. To 
this end we can now attach a stack of countably-many copies of W 
glued end-to-end, as in figure 5.14 on the next page. The result is a 
smooth open 4-manifold, with periodic end and with intersection form 
-Es EB [-1]. 

5.13. Preparing the stump 
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5.14. Building an open manifold with periodic end 

It turns out that the end-periodicity offers just enough regularity at in
finity to permit a version of the argument of Donaldson's theorem to 
be applied to this open manifold. The analysis of anti-self-dual connec
tions on manifolds with periodic ends proceeds similarly, and thus it 
leads to the same exclusions of intersection forms as for closed 4-mani
folds. Specifically: 

Theorem (C. Taubes ). Let M 0 be a smooth open simply-connected 4-mani
fold with only one end. Assume that the end of M 0 is periodic. If the inter
section form QMo of M 0 is definite, then it has to be isomorphic to either 
E9m [-1] or E9m [+1]. o 

In particular, this shows that our open manifold with intersection form 
- E8 E9 [ -1] cannot exist. The contradiction stems from our supposed 
ability to build a periodic end for it, which was a consequence of our 
assumption that JER; ~ JERi. Therefore each of the JERi's must be 
smoothly distinct. o 

A corollary of these results is that every open 4-manifold with ends home
omorphic to S3 x R will admit uncountably many distinct smooth struc
tures.22 In particular, any closed 4-manifold M admits uncountably many 

22. Existence of at least one smooth structure is a consequence of work of M. Freedman and F. Quinn; 
see Topology of 4-manifolds [FQ90]. For uncountably-many, see R. Gompf's An exotic menagerie 
[Gom93]. 
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smooth structures on M \ {point}. It is unknown whether all open 4-mani
folds admit uncountably-many smooth structures.23 

An argument similar to the above can be applied to small exotic R.4 's and 
yields series of uncountably many exotic R.4 's, all smoothly-embedding in 
standard R. 4 . 

Even more, there is a maximal (or universal) exotic R.4 in which all possible 
exotic R.4 's embed smoothly. 

It is also worth noting that every exotic JER.4 becomes standard after cross
ing with a line: we have JER.4 x R. ~ R.5 . This diffeomorphism induces a 
smooth nowhere-zero vector field on R.5 , but not much is known concretely 
about such descriptions. 

Finally, one could ask the question: Does building exotic R.4 's need Donaldson, 
or could exotic R.4 's be exhibited as a consequence of Rokhlin's exclusions? The 
answer is negative, and one reason was touched upon in the end-notes of 
the preceding chapter (smoothing topological manifolds, page 221). Specif
ically, a theorem of F. Quinn allows us to find, for every non-smoothable topo
logical 4-manifold with vanishing Kirby-Siebenmann invariant, an exotic 
R.4 inside CP2 or S2 X S2 ; since in dimension 4 the Kirby-Siebenmann in
variant only excludes what Rokhlin's theorem (or its generalizations) pro
hibits, it follows that other methods are needed to prove these R.4 's to be 
exotic. 

23. Keep in mind that a closed 4-manifold can admit at most countably-many smooth structures. 
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Note: Plumbing topological4-manifolds into existence 

Let Q: Z x Z ---t 7L be any symmetric bilinear form, not necessarily unimodular. 
By plumbing, we will build a simply-connected 4-manifold PQ with non-empty 
boundary and intersection form Q. Then we will prove that a PQ is a homology 
3-sphere if and only if Q is unimodular. When that happens, we know there 
exists a fake 4-ball ,1 that can be glued to PQ and thus yield a closed topological 
4-manifold with intersection form Q. 

Plumbing manifolds with arbitrary intersection forms. Let Q be a random sym
metric bilinear integral form and express it as an m x m matrix [ aij] . We will use 
the airdata as a plumbing recipe for building PQ. 

Pick m copies of 52 and denote them by St •... , Sm. On each Skt build the 2-disk 
bundle Ek of Euler class akk; then Sk · Sk = akk as submanifold of Ek. 

Now, plumb the bundles Ei and Ej aij-times; for example, if aij = 2, plumb Ei 
and Ej twice, arranging for their cores Si and Sj to meet positively; if aij = -2, 
also plumb twice, but in such a manner that Si and Sj meet negatively. Call EQ 
the resulting smooth 4-manifold (with non-empty boundary). 

Clearly, Hz(EQ;Z) is generated by them classes St • ... ,Sm, and their intersec
tions are given by the aij's. Therefore, the intersection form of EQ is Q. 

The problem with EQ is that, if any of the aij's (with i I j) is differentfrom -1, 0, 
or 1, then EQ is not simply-connected. Indeed, whenever two bundles Ei and Ej 
are plumbed more than once, a loop is created, as hinted in figure 5.15. 

5.15. Plumbing may create loops 
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The fundamental group of EQ is free, with n generators for each ( n + 1) -plumbing 
of a pair of the Ek 's. (The fundamental group of a EQ is not free, but at least 
n 1 (a EQ) ---+ n 1 ( EQ) is surjective.) Represent the generators of n 1 ( EQ) as circles 
disjointly-embedded in a EQ. Attach to each such circle a 2-handle JDZ x D 2 • This 
will kill n 1 (EQ) without creating new 2-homology. (Notice that the result de
pends on the way we glue these handles, i.e., on their framing.) 

Call the result PQ. It is a simply-connected smooth 4-manifold whose intersection 
form is Q. Its boundary a PQ is in general not simply-connected. Nonetheless, as 
we will argue next, if Q is unimodular, then at least a PQ is a homology 3-sphere. 

Unimodular makes homology spheres. 

Lemma. Let M 4 be an oriented 4-manifold with boundary and let Q be its intersection 
form. Assume H1 (M; Z) = 0. Then aM is a homology 3-sphere if and only if Q is 
unimodular. 

Proof. On one hand, Poincare duality offers an isomorphism 

Hz(M,aM; Z) :::::; Hz(M;Z). 

Since H1 (M; Z) = 0, the universal coefficient theorem (page 15) implies 
that Hz(M;Z) = Hom(Hz(M;Z), Z),andhencewefurtherhaveanisomor-

phism Hz(M,aM; Z) :::::; Hom(Hz(M;Z), Z). 

On the other hand, the intersection form Q: Hz ( M; Z) x Hz ( M; Z) ---+ Z can 
be viewed as a morphism 

Q: Hz(M;Z) ~ Hom(Hz(M;Z), Z) . 

The pairing Q is unimodular if and only if the morphism Q is an isomor
phism. 

Let j: M c ( M, aM) be the inclusion and consider the diagram: 

Hz(M; Z) ----+ Hz(M, aM; Z) 
j. 

lQ ~ lPD 
Hom(Hz(M;Z), Z) = Hom(Hz(M;Z), Z). 

An easy argument using the commuting of this diagram shows that Q is in
jective or surjective if and only if j* is as well. Thus, the intersection form Q 
is unimodular if and only if j* is an isomorphism. 

However, j* fits into the homology exact sequence 

H3 (M,aM; Z) ~ H2 (aM;Z) ~ Hz(M;Z) 

~ Hz(M,aM; Z) ~ H1(aM;Z) ~ H1(M;Z), 

where i: aM c M is the inclusion. We assumed H1 ( M; Z) = 0; further, by 
Poincare duality H3(M,aM; Z) :::::; H 1(M;Z) = Hom(H1(M;Z); Z) = 0. 
Thus, the above sequence reduces to 

0 ~ Hz(aM;Z) ~ Hz(M;Z) ~ Hz(M,aM; Z) ~ H1(aM;Z) ~ 0. 
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Exactness implies that Ker j* = Im i*, but the morphism i* is injective. Hence, 
j* is injective if and only if Hz(dM;Z) = 0. Exactness also implies that 
Imj* = Kerd*, but()* is surjective. Hence, j* is is surjective if and only if 
H1(dM;Z) = 0. 

In conclusion, Q is unimodular if and only if d M is a homology sphere. D 

Higher plumbings. The construction of PQ can, of course, be replicated in all higher 4k-dimen
sions (just as we did for PE8 in the end-notes of chapter 2, back on page 97), by starting with 
JD2k -bundles over 2k-spheres. When k 2': 2, the result of plumbing has additionally the property 
that1 n 1 (iJ Et{) = n1 (Et{), and thus, after adding 2-handles, the resulting 4k-manifold pdk will 

in fact have simply-connected boundary. If moreover Q is unimodular, then iJ pdk is not only a 

homology sphere, but in fact a homotopy sphere, and thus must be homeomorphic to S4k-i . For a 
more rigorous discussion of this case, see W. Browder's Surgezy on simply-connected manifolds 
[Bro72, ch V]. Compare also with the end-notes of chapter 2 (plumbing exotic spheres, page 97). 

Closed 4-manifolds. Given a symmetric form Q, we build the 4-manifold PQ. If 
Q is unimodular, then() PQ is a homology 3-sphere, and by Freedman's theorem 

on fake 4-balls (page 83) its reverse () PQ must bound a fake 4-ball L\. Then we 
can build the closed topological 4-manifold 

MQ = PQ UaL1, 

whose intersection form is, of course, Q. 

This concludes a complete argument for the existence part of Freedman's classifi
cation theorem. 

Note: Classification of indefinite odd forms 

If we accept the hard result of Meyer's lemma, then the classification of all indefi
nite odd forms follows pretty easily. In this note we will present the proof of this 
part of Serre's classification theorem. 

Recall that Meyer's lemma stated that, for every indefinite bilinear symmetric uni
modular form Q: Z x Z ---+ Z, there must exist an element x E Z so that 

Q(x,x) = 0. 

We can, of course, assume that this x is indivisible, i.e., not a multiple of some 
other element. Then, since Q is unimodular, there also exists some y so that 

X·y=l. 

Denote by Z _i the Q-orthogonal complement of the span of x and y. Clearly the 
restriction of Q to this Z _i is still unimodular. 

If y · y is even, then since Q was odd Q I z_!_ must be odd. Therefore there is some 

element z E z_i so that z · z is odd, but then (y + z) · (y + z) = y · y + z · z will 
also be odd, and we still have x · (y + z) = 1. Therefore, maybe after replacing y 
withy+ z, we can always assume that y · y is odd. 

1. In dimension 4, we merely have a surjection n1 iJ E~ ----> n1 E~. 
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It follows that the restriction of Q to A = Z{ x, y} is described by 

Q I A = [ ~ o~d] · 
Since fork E Z we have (y + kx) · (y + kx) = y · y- 2k, that means that there is a 
suitable k so that, after changing basis from { x, y} to { x, y + kx}, we write 

Further, we have 
QIA = [~ ~] . 

( x - (y + kx)) · ( x - (y + kx)) = -2 x · y + (y + kx) · (y + kx) = -1 , 

( x - (y + kx)) · (y + kx) = x · y - (y + kx) · (y + kx) = 0 . 

Therefore, if we change to the basis { x - (y + kx), y + kx}, then we get 

QIA = [ -~ ~] . 

Recall that Z = A ffi Z j_. If Q I z_i is indefinite, then we can discard A and re
peat the whole procedure above anew on zj_. If Qlz_i happens to be positive
definite, then the Q-orthogonal complement of y + kx is Z{ x- (y + kx)} ffi Zj_, 
over which Q must be indefinite. We can then discard y + kx and restart the pro
cedure above on Z{ x- (y + kx)} ffi Z j_. If Qlzj_ is negative-definite, then Q is 
indefinite on the complement of x - (y + kx). 

Repeating this algorithm, until we eventually exhaust all of Z, proves that Q can 
always be written as 

Q= EBm[-1]EBn[+1] 

Note: Proof of van der Blij's lemma 

Let Q: Z x Z _, Z be a symmetric bilinear unimodular form, defined over a 
free Z-module Z. A characteristic element for Q is any ~ E Z such that for all 
x E Z we have~· x = x · x (mod 2). Vander Blij's lemma states that for every 
characteristic element we have the congruence~·~= sign Q (mod 8). 

Any two characteristic elements ~' and ~11 must differ by an even element, ~11 = 
~' + 2y. Then we have 

~II . ~II = (~/ + 2y) . (~/ + 2y) 

= ~/ . ~/ + 4 (~' . y + y . y) 

= ~1 • ~1 (mod 8) , 

since~'· y + y · y = 0 (mod 2) and thus must always be even. 

Therefore, every symmetric bilinear unimodular form Q: Z x Z -> Z has a mod 
8 invariant determined by the self-intersection~·~ (mod 8) of any characteristic 
element~· In what follows, we prove that this modulo 8 invariant coincides with 
the signature. 

(1) Assume first that our form Q is odd and indefinite. Then, by using the classifi
cation proved in the preceding note, we must have 

Q=ffim[+1]EBn[-1]. 
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If { et, ... , e;t, ej, ... , e;;} is the corresponding basis of Z, then it is clear that 

JQ = et + · · · + e;t + ej + · · · + e;; 

is in fact a characteristic element of Q. Its self-intersection is exactly sign Q. Thus 
for every characteristic element JQ1 of Q we must have JQ1 • JQ1 = sign Q (mod 8). 

(2) If Q is not odd indefinite, then by adding [ -1 J and [ + 1 J we obtain a new form 

QE9[+1)E9[-1). 

This new form is odd indefinite, and thus the above argument applies to it. There
fore, for every characteristic element JQ0 of Q E9 [ -1 J E9 [ + 1 J , we must have that 
JQ0 ·JQ0 = sign(QE9[-1)E9[+1]) (modS)= signQ (mod8).Now,ifwechoose 
some characteristic element JQ of Q and we add e+ and e- to it (where e± span 
the new [ ± 1 J -terms), then we do obtain a characteristic element 

J£.0 = JQ + e+ + e-

o£ Q E9 [ -1) E9 [+1). Therefore signQ = (JQ + e+ +e-)· (JQ + e+ +e-) (mod 8) 
but (JQ + e+ + e-) · (JQ + e+ + e-) = JQ · JQ, which concludes the argument. o 

Note: Counting definite forms 

In this note, we add a few details about the count of all symmetric unimodular 
forms that are definite. Along the way, two more examples of definite forms (the 
Leech lattice and the r4k's) are defined. For counting even definite forms, one uses 
the Minkowski-Siegel mass formula. Similar results exist for odd definite forms, 
but we will not discuss them here. 

A consequence of van der Blij's lemma is that an even positive-definite form al
ways has rank divisible by 8. Denote by !28k the set of isomorphism classes of 
even definite forms of rank 8k. For any Q E !28k, we denote by gQ the order ( = 
cardinality) of the automorphism group Aut( Q) of Q. Often enough, this group is 
huge. 

Minkowski-Siegel Mass Formula. If !28k is the set of isomorphism types of even 
positive-definite forms of rank 8k, then we have 

1 1 4k-1 

L - = 21-8k (4k)' B2k TI Bj ' 
QE.Elsk gQ · j=l 

where the Bn 's are the Bernoulli numbers. 0 

A first thing to notice is this result does not offer a direct count of forms, but a 
count where each form is weighed by its "mass" 1 I gQ, which can be very small. 

The Bernoulli numbers Bn are a sequence of rational numbers that at first are less 
than 1, but soon enough begin to grow tremendously.2 Therefore, the numbers 
provided by the Minkowski-Siegel formula quickly start getting very big. A few 
numerical examples are presented in table IX on the next page. 

co B 2n 
2. The Bernoulli numbers are defined by the identity x ~ = 1 - ~2 - [; ( -1 t (2nX) 1 • 

e 1 n=O n . 
Here are a few values: B1 = I/6, B2 = I/3o, B3 = 1/42, B4 = l/3o, B5 = 5/66, B6 = 691/2730, B7 = 7/6, 

B8 = 3617/sw, B9 = 43867/798, B10 = 174611/33o, B11 = 854513/138. Various explicit general formulae exist. 
The Bernoulli numbers are intimately connected with s -functions. 
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IX. Numbers from the Minkowski-Siegel formula 

k = 1, rank= 8 10_9 . 1.4352 ... 
k= 2, rank= 16 10-18 . 2.4885 ... 
k= 3, rank= 24 10-15 .7.9369 ... 
k= 4, rank= 32 107 . 4.0309 ... 
k= 5, rank= 40 1051 . 4.3930 ... 

The typical use of the formula is as follows: Choose a list of forms Q1, ... , Qn from 
!28k, determine each of their automorphism groups, compute the sum L 1 I gQk; if 
you achieved the same total as that from the Minkowski-Siegel formula, then your 
list must in fact exhaust all of !28k. 

Let us inspect a few low ranks: 

(1) For rank 8, the E8-form has 1Aut(E8) I = 214 · 35 ·52 · 7 which numerically is 

1Aut(E8) I = 696,729,600. 

After comparison with the Minkowski-Siegel number, it turns out that E8 is the 
only form of rank 8. A most remarkable fact is that the E8 -lattice is highly symmet
ric: the subgroup of Aut(E8) made from orientation-preserving automorphisms is 
a simple group, of order 174, 182,400 = 212 · 35 . 52 . 7. 

(2) For rank 16, there are two isomorphism types, E8 E9 E8 and r16. 

Definition of Tt6. In every rank 4k, there is a positive-definite form T4k defined as follows: con
sider the standard basis e,, ... , e4k in Euclidean R 4k, endowed with the standard inner product. 
Then r4k is the lattice spanned by all e, + ei together with i ( e1 + · · · e4k). In rank 8, Ts is just 
another description of £8 . The Tsk 's are even, wile the T4k+4 's are odd. 

(3) The list of twenty-four forms of rank 24 was determined by H-V. Niemeier in 
1968, published as Definite quadratische Formen der Dimension 24 und Diskrimi
nate 1 [Nie73]. They include among them the Leech lattice QLeech whose automor
phism group has order !Aut( QLeech) I = 222 · 39 · 54 · 72 · 11 · 13 · 23. Numerically, 
this is merely _ 

!Aut( QLeech) I - 8, 315,553,613,086,720,000. 
Therefore the Leech form has a very small contribution to the Minkowski-Siegel 
number. 

Definition of the Leech lattice. Consider e,, ... , ezs to be the standard basis of R 25 . Endow R 25 

with the Lorentzian inner product (x,, . .. ,Xzs) · (y,, . .. ,yzs) = X1Y1 + · · · + Xz4Y24- XzsY25· 
Consider also the vector of odd coordinates w = (3,5,7, ... ,49,51). Since w · w = -1, its 
orthogonal complement w.L is a positive-definite subspace for our inner product. The Leech 
lattice is made of the integral points of w.L. Another remarkable fact is that Aut( QLeech) /Center 
is a simple group, of order 4,157, 776,806,543,360,000 = 221 · 39 ·54 · 72 · 11 · 13 · 23. 

(4) For rank 32, the Minkowski-Siegel number is bigger that 4 · 107. Since every 
form has at least two automorphisms, we conclude that we have at least 80 million 
distinct forms. However, as the example of the Leech lattice seems to suggest, this 
is likely to be a gross underestimate! 
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A starting reference for this type of material can be J.P. Serre's Cours d'arithmeti
que [Ser70, Ser77], translated as A course in arithmetic [Ser73]; or your favorite 
monograph on sphere-packings. As a general reference on forms, see J. Milnor 
and D. Husemoller's Symmetric bilinear forms [MH73]. 
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After the birth of Seiberg-Witten theory, in a lecture in 1994, P. Kronheiemer ex
plained how to use the Seiberg-Witten equations to obtain Donaldson's exclusions; 
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Soon after, C. Taubes found uncountably many in Gauge theory on asymptoti
cally periodic 4-manifolds [Tau87]. Uncountably many small exotic JR4 's were 
later exhibited inS. DeMichelis and M. Freedman's Uncountably many exotic 
JR4 's in standard 4-space [DMF92]. The universal exotic JR4 which contains all 
others is due toM. Freedman and L. Taylor's A universal smoothing of four-space 
[FT86]. A two-parameter family of exotic JR4 's, including both small and large ex
otics, was built in R. Gompf's An exotic menagerie [Gom93], together with handle 
decompositions of some exotic JR4 's. Other explicit descriptions are contained in 
Z. Bizaka and R. Gompf's Elliptic surfaces and some simple exotic JR4 's [BG96]. 

3. The two thought at first that they had built the same example, until they started arguing whether 
the exotic JR4 embeds in standard aR4 : Freedman's did, Kirby's did not. .. 
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The theorem on Akbulut corks and small exotic JR4 's that we stated started with a 
preprint of C. Curtis and W. Hsiang, then was improved together with M. Freed
man and R. Stong in A decomposition theorem for h-cobordant smooth simply
connected compact 4-manifolds [CFHS96], with further contributions by R. Mat
veyev in A decomposition of smooth simply-connected h-cobordant 4-manifolds 
[Mat96], by R. Kirby in Akbulut's corks and h-cobordisms of smooth, simply con
nected 4-manifolds [Kir96], and by Z. Bizaca in A handle decomposition of an 
exotic JR4 [Biz94]. 

A more comprehensive discussion of exotic JR4 's can be found in R. Gompf and 
A. Stipsicz's 4-manifolds and Kirby calculus [GS99, ch 9]. 







A Survey of Complex 
Surfaces 

Part III 



AL closed oriented 2-dimensional manifolds split as connected sums 
of tori. In dimension 3, W. Thurston's geometrization conjecture 
claims that all closed oriented 3-manifolds split into pieces that ad

mit certain few Riemannian geometric structures, and it might have been 
proved in 2003. 

For a while in 4-dimensional topology one entertained the conjecture that 
all closed oriented 4-manifolds might be decomposable as connected sums 
of complex algebraic surfaces (with complex or opposite orientations). The 
discovery of an indecomposable symplectic non-complex 4-manifold shat
tered that claim. The next conjecture proposed was that all closed oriented 
4-manifolds might split as connected sums of symplectic manifolds (with 
induced or opposite orientations), but then an indecomposable 4-manifold 
that does not admit any symplectic structures was found. . . Alas, the cur
rent state of affairs is that there is no conjecture whatsoever. 

Even though complex surfaces might have fallen from their conjectured 
high-status in 4-dimensional topology, they still offer a wide collection of 
essential examples. This part is devoted to their survey. 

After an introductory chapter 6 that attempts to convey a smattering of 
complex geometry, in chapter 7 (starting on page 285) we outline the Enri
ques-Kodaira classification of complex surfaces, and then comment on the 
difference between the complex and the smooth points of view. 

Then, in chapter 8 (starting on page 301), we describe in some detail elliptic 
surfaces (of which K3 is an example) and finish by culling from them in
finite families of homeomorphic but non-diffeomorphic simply-connected 
4-manifolds. This latter chapter is the more thorough of this rather cursory 
third part. 
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Running through 
Complex Geometry 

Chapter 6 

l A JE now try to briefly cover some background on complex geometry, to 
V V help us make sense of the following chapters, but to also maybe get 
some vague intuition about these objects. Thus, not all concepts and state
ments presented in this very short chapter will actually be needed in the 
subsequent chapters. We attempted to make this exposition as comfortable 
as possible to read (as an example, we obsessively avoided using the word 
"divisor", and several concepts are only partly defined, if at all). 

Be aware of the sometimes confusing terminology: owing to the superposition 
of the real and complex perspectives, a complex 2-manifold is called a curve, 
a complex 4-manifold is called a surface, and an oriented real plane becomes 
a complex line. A bit of attention and the context should be enough to clear 
any confusion. 

6.1. Surfaces 

Zoology. Complex surfaces come in several species. A complex analytic 
surface is a 4-manifold admitting complex-holomorphic changes of coor
dinates. A projective analytic surface is an analytic surface that can be 
embedded in a projective space ClPm. A complex algebraic surface is a 
complex surface defined by homogeneous polynomial equations in some 
complex projective space1 ClPm. Every algebraic surface is also an analytic 
surface. Conversely, by Chow's theorem, all analytic projective surfaces are 

1. All non-singular abstract algebraic surfaces are projective. 

-275 
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algebraic. (There are analytic surfaces that are not algebraic, such as those 
supported by 53 x 51, but we will not discuss these in the sequel.) The 
projective algebraic and projective analytic worlds are essentially equiva
lent (bundles, sheaves, and all other global creatures) as a consequence of 
J.P. Serre's famous GAGA paper.2 

A complex analytic surface M is Kahler if it admits a Riemannian metric 
highly-compatible with the complex structure. This compatibility can be 
expressed in several equivalent ways: One can say that a complex surface 
M is Kahler if it admits a Riemannian metric that makes M locally look like 
Euclidean C2 up to second order.3 One can also say: a complex surface M 
is Kahler if it admits a Riemannian metric whose Levi-Civita connection V' 
is C-linear, i.e., it satisfies Y'v(iw) = i Y'vw. One can even say: a complex 
surface M is Kahler if it admits a compatible symplectic structure. 

A symplectic structure on a 4-manifold M is any diHerential2-form w that 
is nowhere-degenerate, i.e., w 1\ w is nowhere-zero and orients M, and is 
closed, i.e., dw = 0. A symplectic structure w is said to be compatible 
with a complex structure if it is invariant under complex multiplication, i.e., 
w(iv, iw) = w(v, w), and is positive on complex directions, i.e., w(v, iv) > 0. 
In this case w defines a Riemannian metric on M by (v, w) = w(v, iw). The 
form w is called a symplectic form. On a Kahler surface, it is called a Kahler 
form. Note that there exist 4-manifolds that admit both complex structures 
and symplectic structures, but the two are never compatible and thus these 
manifolds are not Kahler. 4 

A complex surface M is Kahler if and only if it has b1 ( M) even. Thus, 
all simply-connected complex surfaces are in fact Kahler. Further, all Kah
ler surfaces admit complex-deformations5 to ones for which the class [w] 
is integral, in which case they embed in some projective space and thus 
are algebraic. (Notice that complex-deformations induce diffeomorphisms 
of the underlying smooth manifolds.) Conversely, all projective surfaces 
inherit a Kahler structure from their ambient ClPm. 

We choose to be blind. In what follows, we will view complex surfaces as 
essentially smooth 4-manifolds with some extra rigidity structure added. 
''Projective analytic", "algebraic" or ''Kahler", it will all be the same to us, 
and when we say complex surface we will mean "complex analytic alge
braic projective Kahler ", with little distinction. Oh, the horror ... 

2. Geometrie algebrique et geometrie analytique [Ser56]. 

3. More than second order kills the curvature, which is extremely restrictive. 

4. For example, the Thurston-Kodaira manifold (a torus-bundle over a torus), see W. Thurston's Some 
simple examples of symplectic manifolds [Thu76]. 

5. Roughly, two complex surfaces are deformations of each other if they appear as fibers of some 
holomorphic surjective map E -> [)2 , usually required to be smoothly-submersive. 
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symplectic smooth 4-manifolds 

6.1. Cutting the 4-manifold cake 

Further, all the complex surfaces that we will consider will be projective, 
closed and simply-connected. All will be non-singular (i.e., genuine 4-mani
folds), but we will consider singular curves inside them. (We will take the 
term "curve" to always mean "irreducible curve".) 

6.2. Curves on surfaces 
Complex curves. An (irreducible) curve inside a complex surface is a closed 
complex submanifold (possibly singular) of real dimension 2, which can
not be split as the union of two simpler closed complex submanifolds. Note 
that two distinct curves always intersect positively, but a curve can have 
negative self-intersection. 

To underline the rigidity of the complex world, it is worth mentioning 
right from the start that in a complex surface each homology class can be 
represented, up to smooth isotopy, by at most finitely-many distinct non
singular complex curves. If further the surface is simply-connected, then 
each class can be represented, up to isotopy, by at most one non-singular 
complex curve. 

Only part of the cohomology of M can be represented by linear combina
tions of curves in M. For making this part visible, the usual method is to 
look at H2 (M; C), think of it as de Rham cohomology, and split it accord
ing to the type6 of the differential 2-forms representing the various classes. 

6. This split was mentioned in the end-notes of chapter 3 (page 136) and will be better explained in the 
end-notes of chapter 9 (page 365). We review: Pick local local real coordinates (xJ,yJ, x2,y2) on M so 
that, for ZJ = XJ + iy1 and Z2 = x2 + iy2, we have that (z1, z2) are local complex coordinates on M. 
Then define dzk = dxk + i dyk and dzk = dxk - i dyk. The span of all combinations of p of the dzk 's 
and q of the dzk 's inside AP+q(Tk) 181 C makes up the space AP·q of complex-valued forms of type 
(p,q). These lead to the cohomology groups HP·q(M). 
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Specifically, 

Relevant for us here is type ( 1, 1): a complex-valued 2-form is a ( 1, 1)
form if it can be written locally as a = fu dz1 1\ dz1 + /12 dz1 1\ dzz + /z1 dzz 1\ 

dz1 + !z2 dz2 1\ dz2, for any local complex coordinates (z1, zz). As an exam
ple, any Kahler form can be written w = ~ dz1 1\ dz1 + ~ dzz 1\ dZz, and thus 
is always of type ( 1, 1). Corresponding to the above split of forms, we have, 
for cohomology: 

H2(M;C.) = H2,0(M) EB H1,1(M) EB H0,2(M) I 

where the H 1• 1 ( M) -summand comes from ( 1, 1) -forms. While thinking of 
H 2 (M; Z) as a lattice inside H2 (M; C.), we have: 

Lefschetz Theorem on ( 1, 1) -Classes. The integral points of H 1• 1 ( M) are ex
actly those classes of H 2 (M; Z) that can be represented by Z-linear combinations 
of complex curves. 7 D 

Intersections of curves. The intersection form of a complex surface M has 
a special behavior on curves: 

Hodge Signature Theorem. If M is a Kiihler surface with Kiihler form w, then 
the intersection form QM restricted to H 1• 1 ( M) n H2 ( M; R) is negative-definite 
on the orthogonal complement of [w]. o 
Geometric Hodge Signature Theorem. If L and E are such that L · L > 0 and 
L · E = 0, then either E · E < 0, orE is homologically-trivial (or torsion). o 
Here, LandE are Z-linear combinations of complex curves, but can also 
be thought of as Chern classes of holomorphic line bundles, as we will see 
shortly. 

6.3. Line bundles 
Holomorphic line bundles. While every class from H2 (M; Z) can be repre
sented by smooth complex-line bundles, not all classes from H2 (M; Z) can 
be represented by holomorphic line bundles,8 but only those that also belong 
to H 1•1(M). 

Further, in general there are non-isomorphic holomorphic line bundles with 
the same Chern class, but if one assumes that H 1 (M; Z) = 0 (e.g., if M is 

7. A linear combination of complex curves of M is called a divisor on M. We have avoided introducing 
too many new terms, including "divisor", which has made certain statements somewhat cumbersome, 
but hopefully more comfortable to read for non-specialists. 

8. A holomorphic bundle is a complex vector bundle glued-up by using a cocycle {g~fl} in which each 
map g~fl: U~ n UfJ -> GLc (n) is holomorphic. In other words, the changes of coordinates are holomor
phic. Cocycles were already encountered in the end-notes of chapter 4 (definition of spin structures, 
page 174). 
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simply-connected, as we agreed), then a line bundle is completely deter
mined by its Chern class. For convenience, we will therefore denote by 
the same letter a holomorphic complex-line bundle and its first Chern class. 
Thus, we will write L' + L" to denote L' 0 L", as well as mL for L ®m and 
-L for L* =I. 

Holomorphic sections. On one hand, a holomorphic line bundle L always 
admits meromorphic sections (such a section is not everywhere-defined, hav
ing points called poles where it explodes toward infinity). For any such sec
tion f, the linear combination of curves Zeros (f) - Poles (f) (zeros and poles 
counted with multiplicities) represents exactly the Chern class c1 ( L). 

Of curves and bundles. In fact, complex geometry is so rigid that the pairs 
( L, f) (up to scalar multiples of f) are in bijection with such linear combi
nations of curves. In other words, for every D = L: ak Ck with Ck complex 
curves in M and ak E Z, there exists a unique holomorphic line bundle L 
with c1 (L) = [D] and a meromorphic9 section f of L, unique up to scalar
multiplication, with e-1[0]- g- 1[oo] =D. 

On the other hand, a holomorphic line-bundle L might not admit any holo
morphic sections. A bundle L has a holomorphic section if and only if its 
Chern class c1(L) can be represented as a linear combination of curves in 
M, all with positive coefficients.10 This ensures that there is a meromorphic 
section of L that has no poles, and thus is a genuine holomorphic section. 
When dealing with holomorphic bundles, we will denote by r ( L) the space 
of all holomorphic sections of L. 

Ample line bundles. In case the line-bundle L has at least two linearly
independent holomorphic sections, we can pick a basis {fo, ... , fN} of 
f(L) over C, and define the map 

cPL: M --~ ClPN cPdx) = [fo(x): · · ·: fN(x)] . 

In general, the map cPL is not defined over the whole M (and thus the 
dashed arrow above); it is undefined at the common zero-locus of the sec
tions fo, ... .fN. (A different choice of basis in r( L) merely changes cPL by 
an automorphism of CJPN, and therefore the map cPL depends essentially 
only on L.) 

Notice that the higher the tensorial power, the more holomorphic sections a 
bundle might have: if {fi }i are linearly independent holomorphic sections of 
L, then {fi Q9 Jj h,j are linearly-independent sections of 2L = L Q9 L. Of course, 
if there are none to start with . .. 

9. If all ak ::::: 0, then f will be a holomorphic section of L. 

10. A divisor with all coefficients positive is called an effective divisor. 
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A line bundle L is called ample if there is some m such that cPmL is well
defined over the whole M and further is an embedding of M. A method for 
detecting ample bundles is offered by: 

Grauert's Criterion. A line bundle L on M is ample if and only if for every 
curve C in M there is some n such that nL I c has a holomorphic section that has 
at least one zero, but is not everywhere-zero on C. o 

The canonical bundle. Of fundamental importance throughout algebraic 
geometry is the canonical bundle of a complex manifold M, denoted by 
KM . It is the line-bundle 

with11 c1 (KM) = -c1 (TM). In terms of complex-valued forms, we also 
have 

As usual, we will denote the Chern class c1 (KM) (called the canonical class 
of M) by the same symbol KM as the line bundle itself. As an elementary 
example, for the projective plane ([]P2 we have J<ClP2 = -3 [<C:JP 1]. 

The tangent bundle T M is a complex bundle and hence satisfies 

Therefore, by using the Hirzebruch signature theorem and the fact that KM 
is -c1 (T M), we deduce: 

Lemma. For every complex surface M we have: 

KM · KM = 3 sign M + 2 X ( M) . D 

Thus, the self-intersection number of the canonical class is determined by 
the topology of M. 

Complex, or almost. The above equality is the only obstruction to the exis
tence of an almost-complex structure on M, i.e., of a complex structure on the 
fibers of T M, not necessarily corresponding to any holomorphic charts on M. 
Namely, for every class K E H 2 (M;Z) such that K · K = 3 signM + 2x(M), 
there exists an almost-complex structure J such that c1 (TM,!) = -K. We will 
discuss almost-complex structures in more detaillaterP 

11. The reason for the minus sign in Ct (TM) = -Ct (TM) was explained in the end-notes of chapter 3 
(complex duals, page 134). 

12. See section 10.1 (page 376), and the end-notes of chapter 10 (page 420). 
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Pluri-genera. For the canonical bundle, the maps cPm~: M --~ (]pN are 
called the pluri-canonical maps. The numbers 

are called the pi uri-genera of M. (In particular, they give the complex di
mension N = Pm(M)- 1 ofthe codomain of cPmK .) 

M 

The first of these, P1 ( M) = dim r ( KM), is at times denoted by pg and called 
the geometric genus13 of M. For Kahler surfaces, we have 

where the "+ 1" comes from the Kahler class [ w ]. (In particular, all Kahler 
surfaces have bi odd.) Thus P1(M) = Hbi(M)- 1) and is determined 
by the intersection form of M; by contrast, the higher pluri-genera have no 
known smooth/ topological interpretation.14 

Genus of curves. The canonical class KM is also important because it deter
mines the genus of all curves in M: 

Adjunction Formula. If C is a non-singular curve in M, then we must have: 

Proof. Since both Tc and Nc; M are complex bundles, we compute: 

-KM· C = c1(TM) · C = cl(TM[c) 

= c1 (Tc E9 Nc;M) = c1 (Tc) + c1 (Nc;M) 

= x(c) + c ·c. D 

As a simple example of applying the adjunction formula, since l<cJPz 
-3 [CJP1] and since every non-singular curve in CJP2 that is defined by a 
polynomial equation of degree d must represent the class d [CJP1], it must 
be a real surface of genus 

g=Hd-1)(d-2). 

In particular, all non-singular quadrics in CJP2 are spheres (rational curves), 
while all non-singular cubics are tori (elliptic curves). 

13. Historically, the geometric genus pg was the first one to arise and is the one that gave the name of 
"genera" to all Pn. 

14. They are nonetheless diffeomorphism-invariants, compare ahead with section 7.5 (page 296). 
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The Riemann-Roch theorem. For estimating the number of holomorphic 
sections a line-bundle might have, an invaluable resource is the celebrated 
Riemann-Roch theorem: 

Riemann-Roch Theorem. Let L be a holomorphic line-bundle on a complex 
surface M. We have: 

dime f(L) + dime f(KM- L) ~ !(L · L - KM · L) + x(O), 

where x( 0) = A ( KM . KM + x( M)) and is always an integer.15 0 

From Riemann-Roch it follows that, if L · L > 0, then for some m E Z the 
bundle mL must have holomorphic sections. More precisely: 

Coroiiary. If L · L > 0, then either nL or -nL has a holomorphic section when 
n is big enough. The two cases are separated by any ample H: 

- If L · L > 0 and L · H > 0, then nL must have a section for large n. 

- If L · L > 0 and L · H < 0, then -nL must have a section for large n. o 

And finally: 

Nakai's Criterion. A line-bundle L is ample if and only if 

L · L > 0 and L · C > 0 for every curve C. 0 

To be or not to be nef. Since to ask a bundle to be ample is to ask a lot, we 
can, inspired by the Nakai criterion above, define a weaker concept: a line 
bundle L is called nef16 if it intersects all curves non-negatively: 

L · C ~ 0 for every curve C. 

A first property (easy but not obvious) is that 

Lemma. If L is nef, then L · L ~ 0. 0 

One should think of a nef line bundle as a bundle that is "almost ample". 
This concept of "nefness" will play a crucial role in the classification of com
plex surfaces that we will present next. 

15. The actual Riemann-Roch theorem is the equality X(f(L)) - X(f(!;_)) = !(L · L- KM · L), 
where X (r( L)) is the Euler characteristic of the cohomology of the sheaf of holomorphic sections 
of L, while x(f(!;_)) = x(O) denotes the Euler characteristic of the cohomology H*(M;O) of the 
sheaf of holomorphic functions on M (or, if you prefer, the Euler characteristic of the Cech coho
mology H* ( M; O(C)), using the notation from the end-notes of chapter 4, page 193). The version 
presented above is obtained after combining with Serre duality, then dropping the mysterious term 
dime H 1 (M; f(L)) by weakening to an inequality, and finally quoting M. Noether's formula for x(O). 
For a proof that indeed KM · KM + x(M) is a multiple of 12, see Noether's lemma in section 10.7 (page 
422). 

16. The word "nef' is the abbreviation coined by M. Reid for "numerically eventually free", which 
is related to free linear systems. Post factum, we could also read "nef' as "numerically effective" (an 
effective divisor is a linear combination of curves with all coefficients positive). 
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6.4. Notes 
Note: Nef as limit of ample 

It can be shown that, in the appropriate context, "nef' is the boundary of "ample". 

For that, extend to real coefficients and consider all classes a E Hz(M;JR) that can 
be written as a= [,akCk for some curves Ck and coefficients ak E JR. Such a class 
a is called nef if a · C 2': 0 for every curve C. The class a is called ample if it has 
a · a > 0 and a · C > 0 for every curve C. Then we have: 

Lemma. If a is nef then, for every rational £ > 0 and every ample class h, we have that 
a + eh is an ample class. o 

Therefore, nef classes are limits of ample classes. Even more, nef classes make up 
a convex cone (called the nef cone, and usually denoted by Nef) inside Hz(M; JR.), 
whose interior consists exactly of all ample classes. 

Indeed, consider the effective classes, i.e., those that can be represented as a = 
[,akCk with all ak > 0. Their collection makes up the effective cone (usually 
denoted by Ef) inside Hz(M;JR). Then one can view the nef cone as the dual cone 
of the effective cone, in the sense that v E Nef if and only if v ·a 2': 0 for all a E Ef. 
The interior of Nef is defined by the condition v ·a > 0 for all a E Ef, which 
describes precisely the ample classes. 
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One could hardly have been more fleeting and superficial than we have. For dig
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C. Peters and A. Van de Ven's Compact complex surfaces [BPVdV84] or its sec
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ters on algebraic surfaces [Rei97]. 





The Enriques-Kodaira 
Classification 

Chapter 7 

w.E outline in this short chapter the classification of complex surfaces, 
due to F. Enriques and K. Kodaira. As usual, we restrict to the sim

ply-connected case. Even so, the classification is incomplete, leaving a 
vast realm of complex surfaces (surfaces of "general type") unexplored. 
Nonetheless, besides those, the K3 surfaces will find their proper place 
alongside rational, ruled, and elliptic surfaces. 

We organize the classification around the nef/ ampleness of the canonical 
bundle KM. Thus, we start by explaining the blow-down construction and 
use it to reduce the classification to the case when KM is nef. In section 7.2 
(page 292), by measuring how far KM is from being ample (using the so
called numerical dimension), we split complex surfaces into K3's, proper 
elliptic surfaces, and surfaces of general type. A minuscule discussion of 
surfaces of general type is made on page 293. In section 7.3 (page 294) 
is presented the more customary statement of the classification in terms 
of Kodaira dimension, while in section 7.4 (page 295) the classification is 
restated, in the case of Kahler surfaces, in terms of the intersection of KM 
with the Kahler class [ w ]. 

Finally, looking back toward smooth topology, in section 7.5 (page 296) we 
compare the complex and the smooth points-of-view; surprisingly, many 
complex devices are in fact smoothly visible: numerical dimension, Ko
daira dimension, pluri-genera, blow-downs and canonical bundles are all 
invariant under diffeomorphisms of complex surfaces. 

-285 



286 7. The Enriques-Kodaira Classification 

7.1. Blow-down till nef 
If M is a complex surface and KM is ample, then for m big enough the pluri
canonical maps <PmK offer embeddings of Min projective spaces. While 

M 

in general we cannot expect KM to be ample, we can still try to modify M 
to arrange that KM become nef. This is the start of the classification scheme. 

Remember that KM would be nef if KM · C 2: 0 for all curves C. Thus, when 
trying to make KM nef, we will wish to eliminate all negative intersections 
of KM. We can do this by blowing-down everything we can. This blow
down process is founded on 

Blow-Up I Blow-Down Lemma. Let M' be a complex surface, and E a complex 
curve in M'. If E is a sphere with E · E = - 1, then there exists another complex 

surface M and a map cr: M' ~ M 

that contracts E to a point p and is biholomorphic1 on the complement of E. 

Conversely, if M is a complex surface and p is any of its points, then there ex
ists another surface M', containing a complex curve E of genus zero and self
intersection E · E = -1, and a map cr: M' ~ M as above, with cr[ E] = p and 
cr:M'\E~M\{p}. o 

We call M' the blow-up of M at the point p, and we call M the blow-down 
of E from M'. Any complex curve E that is a sphere and has self-intersec
tion E · E = -1 is called a ( -1)-curve (or exceptional curve) of M'. 

Construction. Given a complex surface M and a point p E M, in order to 
build the blow-up Mr we start by choosing a small neighborhood U of p, 
which we holomorphically parametrize as a neighborhood of the origin in 
C2 , with p = (0, 0). Then we take a copy of CJP1 (a sphere) and think of it 
as the space of all complex lines £ in C2 that pass through the origin p. We 
build 

U' = { (x, £) E U x ClP1 I x E £} . 

Observe that U \ p and U' \ (p x ClP1) are biholomorphic. Therefore we 
can cut U out of M and replace it by U'. The result is the blow-up M', and 
its ( -1) -curve is just the sphere E = p x ClP 1 from U'. 

The difficult part of the above lemma is certainly its first part, namely, prov
ing that as soon as you find a complex sphere of self-intersection -1, you 
can view your complex surface as the blow-up of a simpler surface. 

The intuitive picture of blowing-up at a point p is that we replace p by 
representatives of all the complex lines passing trough p, in other words, 

1. A map is called biholomorphic if it is holomorphic and has an inverse that is holomorphic as well. 
It is the appropriate isomorphism in the complex category, just as diffeomorphisms were for smooth 
manifolds, etc. 
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that we replace p by a copy of CP1 ~ 52 . All the lines that used to cross 
through p are now passing through their corresponding direction in the 
added CP1, and thus are now disjoint. See figures2 7.1 and 7.2 on the fol
lowing page. 

(T 

M M' 

7.1. Blow-up at a point, 1 

Of course, a blow-up I down will modify the canonical class. 

Lemma. If(]': M' ---+ M is the blow-down of a ( -1) -curve E, then we have 

KM' = (]'*KM +E. D 

Topological interpretation. Choose some local complex coordinates cen
tered at p and take a small round neighborhood U of p. The complex 
lines f of C2 intersect U as disks Dg, centered at p. Thus, we can view 
the neighborhood U of p as built from the disks D g after identifying their 
centers with p. The disks D g are disjoint away from p, and their boundary
circles cover the 3-sphere d U and spell out the Hopf fibration3 53 ---+ CP1 . 

Thinking of CP1 as the space { £} of complex directions in C2 , we can view 
the map d U ---+ CP1, given by x ~----> f whenever x E d Dg, as a circle-bundle 
projection. 

To obtain from the disks Dg the blown-up set U' rather than U, we can 
simply not identify the centers of the D/s, but keep them distinct. The 
centers of the Dg's, since they are parametrized by the f's, will draw a 
copy of CP1 inside U'. In other words, we can define U' to be the total 
space of the disk-bundle over CP 1 with fibers Dg ~----> f. Its boundary is 
still the Hopf bundle with total space 53 , and thus we can cut U out of M, 
leaving a hole with boundary 53 that we fill-in by gluing U' instead. The 
new manifold is the blow-up M'. 

Since the disk bundle Dg ~----> f can be viewed as the normal bundle of CP1 

in CP2 1 this leads to: 

2. Of course, keep in mind that dimensions have been reduced: a complex line is a real plane. 

3. The Hopf map was recalled in footnote 34 on page 129. 
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7.2. Blow-up at a point, II 

Lemma. Topologically, the blow-up of M at a point p is the connected sum 

M' = M#ClP2 , 

with the ( -1) -curve appearing as ClP 1 c ClP 2 . 

Sketch of proof The preceding discussion falls short of being a proof of 
the lemma mainly by not arguing why we need CJP2 rather than CJP2 . 

Instead of a direct argument, we prefer a slightly different approach, 
essentially an inside-out version of the previous description. (More 
straightforward arguments can be found in the literature.4) 

As above, start by taking a point p in M and surround it by a 4-ball 
U, sliced into disks Dg by the complex lines f crossing through p. Its 
boundary is sliced into circles, and so on. 

4. For example, seeR. Gompf and A. Stipsicz's 4-Manifolds and Kirby calculus [GS99, sec 2.2]. 
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On the other hand, pick your favorite point q of CIP2 and a random 
projective line CIP1 inside CIP2 , so that q does not belong to CIP1 . 

Consider now all projective lines £ in CIP2 that pass through q: they 
are all disjoint away from q, and each intersects CIP1 in exactly one 
point. In other words, aside from q every point x of CIP2 belongs 
to a unique projective line fx that contains both x and q, and this 
line intersects CIP1 in a unique pointy = fx n CIP1 . Hence the map 
CIP2 \ { q} ---> CIP1 given by x f----+ y is a well-defined bundle projection, 
whose fibers are the punctured spheres fy \ { q}. If we surround q by 
a small round neighborhood Uq (disjoint from CIP1 ), then we obtain a 
bundle CIP2 \ Uq ---> CIP1 whose fibers are the 2-disks fy \ Uq. See also 
figure 7.3 . 

• M 

1 
~·· : ) 

7.3. Topological blow-up 

Choose the 4-ball Uq in CIP2 in such manner that it is sliced by the pro
jective lines passing through q in the same way as the neighborhood U 
of p in M is sliced by the complex lines there. In other words, choose 
Uq so that it is identifiable with U in a manner that respects their cross
ing lines. Since both q in CIP2 and p in M sit like 0 in C2 , lines and all, 
this is not hard to achieve. (Since we are trying to describe a blow-up, 
these lines are of course essential.) 
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The resulting identification of U with Uq induces an identification of 
their boundary 3-spheres aU and a Uq, again in a manner that pre
serves the crossing lines (as circle-fibers, oriented by the complex ori
entation of their respective lines). 

In particular, M \ U and CJP2 \ Uq have the same fibered boundary, 
and we can try to glue one to the other. However, for gluing we need 
to use an orientation-reversing diffeomorphism of the boundaries. Since 
we do not wish to alter the identification of a U with a Uq, we choose 
to reverse orientation by flipping the orientation of the whole CJP2 \ Uq 
(think of this as "turning CJP2 \ Uq inside-out"). Indeed, we have 

a ( M \ U) = a U = aTTq = a ( CJP2 \ Uq) = a ( CJP2 \ Uq ) , 

and hence M \ U and CJP2 \ Uq can be glued to each other in a manner 
that respects the fibered identification of a U with a Uq. The resulting 

manifold M' = M \ u Ua CJP2 \ Uq 

simply describes M #CJP2. 

We need to argue that it also describes the blow-up of M. Review 
what happened: we removed a neighborhood U of p and replaced 
it by U' = CJP2 \ Uq. For each complex line f that crossed through p, 
this has the effect of replacing a small disk De (centered at p) with a 
corresponding disk f \ Uq from ClP2 \ Uq (which can be thought of as 
centered at its intersection point with CJP1 ). The main difference, as 
far as these complex lines are concerned, is that now they do not inter
sect each other at p anymore, but instead travel through CJP2 and pass 
through distinct points of ClP1 . This sounds like a blow-up. o 

When M is a complex surface, the manifold M #CJP2 is diffeomorphic to 
the complex blow-up M' of M. Thus, we can extend the nomenclature 
and, for every smooth 4-manifold M, call the connected sum M #CJP2 
the topological blow-up of M, whether or not M admits complex struc
tures. (By way of contrast, notice that connect-summing with CJP2 has no 
complex-geometric analogue.5) 

Conversely, whenever one finds a sphere S embedded in some smooth 4-
manifold M and having self-intersection S · S = -1, then M must split off 
a copy of CJP2 and can be written as 

M = N#CJP2 

for some smooth 4-manifold N (which we can happily call the topological 
blow-down of S from M). Indeed, a tubular neighborhood of S in M is 

5. Connect-summing with ClP2 is sometimes called an anti-complex blow-up. 
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diffeomorphic to a neighborhood of ClP 1 in ClP2, and its boundary must 
be a (Hopf) 3-sphere splitting M into N and ClP2 . (Similarly, if one finds 
a sphere with self-intersection + 1, then one can split off a copy of CJP2 and 
write M = N #CJP2 .) 

We now get back to the classification of complex surfaces: 

Make it nef. If Eisa ( -1)-curve in M, then the adjunction formula dic
tates that we must have KM · E = -1. Therefore, blowing E down from 
M will eliminate a curve with negative intersection with KM: a small step 
toward making KM nef. 

Even more, ( -1) -curves are easily detected through their intersections: 

Lemma. If C · C < 0 and KM · C < 0, then C is a ( -1) -curve in M. o 

Thus, if a curve C has negative intersection with KM, all we still need before 
being able to blow it down is that it have negative self-intersection. How
ever, the Hodge signature theorem6 shows that QM is negative-definite 
over most curves, and so it seems likely that in most cases C · C < 0. 

The miracle is that, indeed, we can always get rid of all negative intersec
tions of KM just by blowing-down everything we can: 

Minimal Model Theorem. Let M be a simply-connected complex surface. Then 
there is a chain of blow-downs 

such that either: 

KMm is nef; 

Mm is a CJP 1-bundle over CJP1; 

Mm = ClP2 • D 

Surfaces that blow-down to CJP2 are called rational surfaces, while CJP1-

bundles over CJP1 are called ruled surfaces.7 The latter are diffeomorphic 
to either8 S2 X S2 or S2 X S2 = CJP2 #CJP2 • 

Notice that KMm being nef implies that Mm is minimal with respect to blow
downs. Any surface obtained from blowing M down till no further blows 

6. The Hodge signature theorem was stated back on page 278. 

7. Remember that we restricted the discussion to simply-connected complex surfaces. In general, a 
ruled surface is a CJP1-bundle over a complex curve of any genus. 

8. On one hand, we have 7IJ S0(3) = 'll.z and hence only two 52-bundles over 52 . On the other hand, 
since 7IJ U( 1) = 7l. (think: twists along the equator of the sphere-fiber), there are 'll.-many distinct sim
ply-connected ruled surfaces. The usual way to describe them is as the projectivization of Ln Ell~ --> 

CJP1 , where Ln is the complex-line bundle of Chern class n; these are called Hirzebruch surfaces and 
are often denoted by lFn. All of them are deformation-equivalent to either lFo = CJP 1 x CJP1 or to 
lF1 = (CJP2)' (which is rational). 
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are possible is called a minimal model of M. If M is neither rational nor 
ruled, then such a minimal model is guaranteed to be unique and can be 
called the minimal model of M. 

We further investigate the case when KM is nef: 

7.2. How nef: numerical dimension 
Recall that KM would be ample if and only if we had both KM · KM > 0 
and KM · C > 0 for every curve C. After blow-downs, our KM is now nef, 
meaning that we have KM · KM ~ 0 and KM · C ~ 0. 

The second stage of the classification is to determine how far KM is from 
being ample. To measure this, we introduce the numerical dimension of M, 
denoted by num( M) and defined by the following three cases: 

- num(M) = 0: for every curve C, we have KM · C = 0; 

- num(M) = 1: there is a curve C with KM · C > 0, but KM · KM = 0; 

- num(M) = 2: there is a curve C with KM · C > 0, and KM · KM > 0. 

What eventually emerges is the following: 

Classification Theorem for KM Nef. Let M be a simply-connected complex 
surface, whose canonical bundle KM is nef We have: 

- If num( M) = 0, then M is a K3 surface. 

- If num(M) = 1, then M admits a (singular) fibration M ---t CIP1, with 
generic fiber a torus. 

- Ifnum(M) = 2, then Miscalled of general type. o 

A K3 surface is a complex surface whose underlying smooth 4-manifold is 
the one we built in section 3.3 (page 127). From the perspective of algebraic 
geometry, there are many K3 surfaces. Their proper definition is: a complex 
surface is a K3 surface if it is simply-connected and has KM = 0. They are 
all diffeomorphic, but span a moduli space of dimension 20. 

Elliptic surfaces. A holomorphic fibration of a complex surface M with 
tori as generic fibers is called an elliptic fibration of M. (The name owes to 
the fact that a complex curve diffeomorphic to a torus is called an elliptic 
curve.) A concrete example of an elliptic fibration was explored earlier,9 on 
the Kummer K3. 

A complex surface that admits an elliptic fibration is called an elliptic sur
face. Keep in mind that, besides the generic torus-fibers, a random elliptic 
fibration will contain singular, as well as multiple, fibers. 

9. See back in section 3.3 (page 131). 
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Not all elliptic surfaces have num(M) = 1: many of the K3's are elliptic, as 
is the rational surface CP2 #9 CP2 . In consequence, complex surfaces with 
num(M) = 1 are deserving of the name proper elliptic surfaces. 

Elliptic surfaces are pretty well-understood, and the whole next chapter10 

is devoted to them. 

Surfaces of general type. Surfaces of general type are the great unknown 
territory. Many things are known about them, but nothing amounting to 
any classification scheme. 

Fibrate it. For example, similar to organizing an elliptic surface as a fibration 
by tori, if we start with a random surface M, then, maybe after blowing-up 
a few times, we can always organize M as a singular fibration over (:JP1 (if 
simply-connected), with the singularities of the curve-fibers merely simple 
double-points. Such a fibration is called a Lefschetz fibration. For surfaces of 
general type, it is known that the genus of the generic fiber must be at least 
2. Besides this fact, at the outset not much information can be gleaned from 
such an approach.11 

The pluri-genera Pm(M) cannot be used to distinguish surfaces of general 
type anymore than topological invariants, since we have 

Lemma. If M is a complex surface of general type, we have 

P (M) _ 6m2 -6m-1 · M + 4m2 -4m-1 (M) m - 4 stgn 4 X . 0 

We are thus mostly left with numerical questions. For example: 

Theorem. Let M be a surface of general type, minimal with respect to blow
downs. Then we must have: 3 sign M + Zx(M) > 0, x(M) > 0, and12 

2signM- 6x(M)- 12 ~ 12signM ~ 9signM + x(M). o 

WonderfuL 

Boring examples of surfaces of general type are C' x C", with C' and C" 
complex curves of genus at least 2. These, of course, are not simply-con
nected. 

An isolated example of a simply-connected surface of general type is the 
Barlow surface, which is homeomorphic to CP2 # 8 CP2 but not diffeomor
phic to it. There are plenty more simply-connected surfaces of general type, 
as shown by the following result: 

10. The next chapter starts on page 301. 

11. S.K. Donaldson showed that every symplectic 4-manifold can be organized (maybe after a few 
blow-ups) as a (smooth) Lefschetz fibration. See the the end-notes of chapter 10 (page 416). 

12. The first inequality is called the Noether inequality, while the second is the Bogomolov-Miyaoka-Yau 
inequality. 
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Theorem ( U. Persson). For every pair m, n of integers satisfying 3m+ 2n > 0, 
m + n > 0 and 

2m- 6n- 12 < 12m < 8m- _iQ_(m + n) 213 - - V3 I 

there exists a minimal simply-connected complex surface M of general type, with 
signM = m and x(M) = n. o 

These surfaces are obtained as branched double covers of ruled surfaces, by 
using a careful control of the singularities of the branch locus. 

The complex surfaces provided by this result are unfortunately quite big: 
for example, they must have bi ( M) 2: 587. The situation for small simply
connected surfaces of general type is unknown. Thus, we better leave this 
unfriendly neighborhood. 

7.3. Alternative: Kodaira dimension 

Equivalent to the numerical dimension used in the classification theorem 
above, one can use the better-known Kodaira dimension. 

Recall the pluri-canonical maps 

cpmK : M --~ CJPN' 
M 

which were defined using holomorphic sections of mKM. We define the 
Kodaira dimension of M as: 

kod(M) = max{ dime (image cpmK ) I m » o} . 
M 

An equivalent definition is in terms of the asymptotics of the pluri-genera 
Pm (M), namely 

kod(M) = k if and only if Pm(M) rv mk form» 0. 

This translates into the following four cases: 

- kod(M) = -oo: iffor all m we have Pm = 0; 

- kod( M) = 0: if there is an m with P m f= 0, and { P m} is bounded;B 

- kod(M) = 1: if {Pm} isunbounded,but {Pm/m} is bounded; 

- kod(M) = 2: if {Pm/m} is unbounded. 

The Kodaira dimension effects the same partition of complex surfaces as 
the numerical dimension: 

Theorem. If KM is nef, then kod(M) = num(M). 0 

Therefore one can rewrite the classification theorem by substituting Ko
daira dimension instead of numerical dimension: 

13. In this case, each Pm is either 0 or 1. 
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Classification Theorem. Let M be a simply-connected complex surface. Then: 

- lfkod(M) = -oo, then M is rational or ruled. 
- lfkod(M) = 0, then M is a K3 surface. 
- lfkod(M) = 1, then M is a (proper) elliptic surface. 
- Ifkod(M) = 2, then M is of general type. o 

Notice that, since the Kodaira dimension is defined for all surfaces, not nec
essarily minimal with respect to blow-downs, the above theorem does not 
require preparatory blow-downs. Indeed, kod(M) is invariant with respect 
to blow-ups/downs, and so are all the pluri-genera Pm(M). Also, the Ko
daira dimension can be -oo, and, as stated above, that happens exactly for 
rational and ruled surfaces. 

More than this, the Kodaira dimension can be defined for complex mani
folds of any dimension. For example, it splits complex curves into three 
classes: rational curves (spheres) if kod( C) = -oo, elliptic curves (tori) if 
kod( C) = 0, and curves of higher genus if kod( C) = 1. This can be used in 
combination with: 

Iitaka's Conjecture14. if M is a complex surface that fibrates over a curve C 
with generic fiber F, then kod(F) +kod(C):::; kod(M). D 

A simple consequence is that, as claimed, all products C' x C" of two curves 
of genera at least 2 must be surfaces of general type. 

Finally, it is also worth mentioning that the pluri-genera are very powerful 
devices by themselves, and the simplest example is: 

Castelnuevo's Criterion. A surface M is rational if and only if P2 ( M) = 0. 0 

7.4. The Kahler case 
In case we have a Kahler structure on M and we understand the class of 
the Kahler form, the classification can be simplified somewhat. First, some 
general comments about Kahler surfaces: 

Assume that M is a projective surface, i.e., M is embedded in some (]pN. 

The projective space (]pN is endowed with a canonical Kahler metric (the 
Fubini-Study metric). Its Kahler form w(:JPN represents the Poincare-dual of 
a hyperplane H in (]pN, for example H = CJpN-l c CIPN. By restricting 
this standard Kahler structure of (::JpN to M, we obtain an induced Kahler 
structure on M. The class [ w] of M 's Kahler form is dual to any hyperplane 

14. The full Iitaka conjecture is that the inequality above is true for all complex dimensions and is of 
course still open. The particular statement above is proved. 
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section, i.e., it is dual to the curve in M that is cut out by H. In other words, 
[w] = [M n H]. For a general Kahler surface, the class [w] needs not be 
integral, but a complex deformation can take care of that. 

Also, since we can integrate w over every curve C and get j w > 0, it 
follows that we must have [ ] C c 

w. >0 

for every curve C in M, even for singular ones. In particular, if the Kahler 
class [w] is integral, then it is ample. 

A priori, the Kahler class [w] and the canonical class KM have nothing in 
common. Nonetheless, for minimal Kahler surfaces, their relation dictates 
the position of M in the classification scheme: 

Kahler Classification. Let M be a Kiihler surface, and w its Kahler form. lf M 
is minimal with respect to blow-downs, then: . 

- KM · [w] < 0 if and only if M is rational or ruled. 

- KM · [w] = 0 if and only if M is a K3 surface. 

- KM · [w] > 0 and KM · KM = 0 if and only if M is proper elliptic. 

- KM · [w] > 0 and KM · KM > 0 if and only if M is of general type. D 

7.5. Complex versus diffeomorphic 

How does the other-worldly classification presented so far compare against 
the smooth topology of 4-manifolds? 

First, by using Freedman's theorem, we can quickly identify the topological 
types that can occur through complex surfaces: 

Theorem (Topological types). If M is a simply-connected complex surface, 
then M must be homeomorphic either to 

#m(:JP2 #nCJP 2 or #mK3 # nS2 x 52 . o 

Of course, not all the latter manifolds admit complex structures. For exam
ple, #3 CJP2 admits almost-complex structures, but none of them can even be 
symplectic}S let alone integrable. Others, like (:JP2 #(:JP2 , do not even admit 
almost-complex structures. 

Second, a count of complex structures: 

Theorem (Number of complex structures). Any simply-connected 4-mani
fold supports at most finitely-many distinct complex structures (up to complex 
deformations). o 

15. An argument that # 3 (:JP2 cannot be symplectic is outlined in footnote 11 on page 491. 
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Next, we quote results that show that most of the objects encountered in 
the Enriques-Kodaira classification are in fact diffeomorphism invariants, 
and therefore should be visible in the smooth topology of surfaces. All the 
remarkable results that follow were proved using gauge theory, either in 
the Donaldson or Seiberg-Witten flavor. (The condition kod(M) ~ 0 that 
appears in some of the statements mainly ensures that there is a unique 
minimal model Mm of M.) 

Theorem (Smooth ( -1) -curves). If M is a complex surface with kod( M) ~ 0, 
then every smoothly-embedded sphere S with S · S = -1 is homologous to a 
complex ( -l)-curve (maybe with the opposite orientation). o 

Therefore a complex surface M with kod(M) ~ 0 splits smoothly as N # 
CIP2 if and only if M can be blown-down to a surface diffeomorphic to N. 

As a consequence, it can be shown that, if M has kod(M) 2:: 0, then every 
smoothly-embedded sphere S with S · S 2:: 0 must in fact be homologically 
trivial. On the other hand, a complex surface is rational or ruled if and only 
if it contains a homologically-nontrivial smoothly- embedded sphere S with 
s. s 2:: 0. 

Theorem ( Kodaira dimension). If M and N are diffeomorphic complex sur
faces, then they must have 

kod( M) = kod( N) . o 

This last statement is also known as the Van de Ven conjecture. 

Corollary (Numerical dimension). If M and N are diffeomorphic complex 
surfaces that are minimal with respect to blow-downs, then they must have 

num( M) = num( N) . D 

Theorem (Pluri-genera ). If M and N are diffeomorphic complex surfaces, then 
they must have fi ll Pm(M) = Pm(N) or a m. D 

Theorem (Canonical class and ( -1) -curves). Let M and N be complex sur
faces, with kod(M) ~ 0. Let 

be an orientation-preserving diffeomorphism. Let Mm be the minimal model of M, 
and Nm the minimal model of N. Let Ej"1, ... ,E~ be the (-!)-curves of M 
that were blown-down to get Mm; similarly let Ef", ... , E~ be the curves of N 
blown-down to get Nm. Pull the canonical class of Mm back to M and denote it 
by KMm; similarly for KNm . Then we have: 

p = q and j* Ejl = ±Ef and j* KNm = ±KMm . D 
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Notice how one must use the pull-back KMm of the canonical class of a min
imal model of M and not KM itself. Indeed, KM is not a diffeomorphism 
invariant. 

Finally, we have: 

Conjecture (open). Two simply-connected complex surfaces are diffeomorphic 
if and only if they are complex deformations of each other. 

The open part of this conjecture is the same with the unfinished part of the 
classification: the realm of surfaces of general type. Obviously, all known 
creatures abide by this conjecture. The conjecture fails for non-simply-con
nected surfaces. 
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7.6. Notes 
Bibliography 

The classification of complex surfaces was outlined by F. Enriques, see for exam
ple his book Le superficie algebriche [Enr49]. This was set on a solid basis and 
further refined by K. Kodaira in the series of papers On compact complex analytic 
surfaces. I-III [Kod63] and On the structure of compact complex analytic surfaces. 
I-IV [Kod68]. 

The classification scheme that we presented, in terms of intersections of KM, fol
lows the outline of M. Reid's Chapters on algebraic surfaces [Rei97]. Presenting 
the classification in this way is in tune with recent developments in higher-dimen
sional complex geometry, specifically the Mori theory of complex 3-folds. 

The standard reference for complex surfaces is W. Barth, C. Peters and A. Van de 
Ven's Compact complex surfaces [BPVdV84]. This classic recently got a second 
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classical proof of the classification can be found in A. Beauville's Surfaces al
gebriques complexes [Bea78], translated as Complex algebraic surfaces [Bea83, 
Bea96]. Of course, one cannot skip citing P. Griffiths and J. Harris's bible Princi
ples of algebraic geometry [GH78, GH94] for a general introduction to complex 
algebraic geometry, including surface theory. 

A more detailed topologically-minded survey of surfaces of general type, includ
ing constructions of (non-simply-connected) examples, can be read from R. Gompf 
and A. Stipsicz's 4-Manifolds and Kirby calculus [GS99, sec 7.4]. 

The Barlow surface was constructed by R. Barlow's A simply connected surface of 
general type with pg = 0 [Bar85] and was proved to be an exotic (:JP2 # 8 CJP2 in 
D. Kotschick' s On manifolds homeomorphic to CJP2 # 8 CJP2 [Kot89]. 

The simply-connected examples of surfaces of general type mentioned were con
structed in U. Persson's Chern invariants of surfaces of general type [Per81]. See 
also U. Persson, C. Peters and G. Xiao's Geography of spin surfaces [PPX96]. 

For the comparison between the complex and smooth worlds, many of the re
sults quoted have been obtained through the use of Donaldson theory and some 
are gathered in R. Friedman and J. Morgan's book Smooth four-manifolds and 
complex surfaces [FM94a]. Finiteness of the number of complex structures on a 
smooth manifold is due toR. Friedman and J. Morgan's Complex versus differ
entiable classification of algebraic surfaces [FM89] and their Smooth four-mani
folds and complex surfaces [FM94b]. 

Hard work on the smooth classification of elliptic surfaces was essential to the 
results quoted. This was painfully achieved through R. Friedman and J. Mor
gan's On the diffeomorphism types of certain algebraic surfaces. I & II [FM88], 
their Smooth four-manifolds and complex surfaces [FM94a], then J. Morgan 
and K. O'Grady's Differential topology of complex surfaces [M093], S. Bauer's 
Some nonreduced moduli of bundles and Donaldson invariants for Dolgachev 
surfaces [Bau92] and his Diffeomorphism types of elliptic surfaces with pg = 1, 
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R. Friedman's Vector bundles and S0(3)-invariants for elliptic surfaces [Fri95], 
and J. Morgan and T. Mrowka's On the diffeomorphism classification of regular 
elliptic surfaces [MM93]. 

The invariance of the Kodaira dimension (Van de Ven conjecture) was proved in 
R. Friedman and Z. Qin's On complex surfaces diffeomorphic to rational surfaces 
[FQ95], in V. Pidstrigach and A. Tyurin' s The smooth structure invariants of anal
gebraic surface defined by the Dirac operator [PT92], and in V. Pidstrigach's Some 
glueing formulas for spin polynomials and a proof of the Van de Ven conjecture 
[Pid94]. 

The impact of Seiberg-Witten theory becomes quite apparent when one sees how 
easy it is to prove all the above results using the Seiberg-Witten invariants in
stead of Donaldson's. For example, the smooth invariance of the canonical class 
KM, pluri-genera, and ( -1) -curves can be read from R. Brussee' s The canonical 
class and the C"" properties ofKiihler surfaces [Bru96] and from R. Friedman and 
J. Morgan's Algebraic surfaces and Seiberg-Witten invariants [FM97], both using 
Seiberg-Witten theory. See also C. Okonek and A. Teleman's Les invariants de 
Seiberg-Witten et la conjecture de van de Ven [OT95b] and The coupled Seiberg
Witten equations, vortices, and moduli spaces of stable pairs [OT95a]. 

A nice survey is R. Friedman's Donaldson and Seiberg-Witten invariants of alge
braic surfaces [Fri97]. 



Chapter 8 

Elliptic Surfaces 

""C'ROM the point-of-view embraced in this volume, simply-connected com
rplex surfaces are either trivial (ruled/rational surfaces), have already 
been discussed (the K3 surface), seem too big and are not understood (sur
faces of general type), or are discussed in this chapter (elliptic surfaces).1 In
deed, in the sequel we will build all simply-connected smooth 4-manifolds 
that support complex structures admitting elliptic fibrations. Then we will 
notice that they cluster into infinite families of homeomorphic but non
diffeomorphic 4-manifolds. 

We start by presenting the simplest elliptic surface, the so-called rational 
elliptic surface, supported by CJP2 # 9 CJP 2 . In section 8.2 (page 306) we 
present the fiber-sum construction, which is used to build new elliptic sur
faces. After that, section 8.3 (page 310) explains the logarithmic transforma
tion, which essentially cuts out a fiber's neighborhood, twists it m times, 
then glues it back in. By applying these two techniques, all manifolds sup
porting simply-connected elliptic surfaces are obtained. 

Then, in section 8.4 (page 314), we explain the classification of elliptic sur
faces up to homeomorphisms and up to diffeomorphisms, which leads 
to examples of 4-manifolds supporting infinitely-many smooth structures 
(these are obtained from each other through logarithmic transformations). 

1. [I]t is written that animals are divided into (a) those that belong to the emperor; (b) embalmed ones; (c) those 
that are trained; (d) suckling pigs; (e) mermaids; if) fabulous ones; (g) stray dogs; (h) those that are included in 
this classification;[ ... ] - J.L. Borges [Bor99]. 

-301 
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8.1. The rational elliptic surface 

Finding tori in CJP2 • A random polynomial of degree d, homogeneous 
in the complex coordinates z0,zi,z2 of ClP2 , defines a complex curve C 
(maybe singular) in CJP2, whose homology class is [C] = d [CJPI]. 

Since KCJPz = -3 [CJPI], the adjunction formula2 

x(C) + c · c = -KCJPz · c 
implies that, if c is non-singular, then x( C) = 3d - d2 I and thus the genus 
of Cis g(C) = !(d- l)(d- 2). 

In particular, any non-singular curve of degree 3 must be a torus. 

Building a fibration. Consider two generic polynomials P and Q, homoge
neous of degree 3. The two curves defined by P and Q in CJP2 are two tori, 
which must have 9 = 3 x 3 points PI, ... , P9 in common. 

The family of curves described by 

{ sP + tQ I [s : t] E ClPI} 

is a family of elliptic curves (some of them singular), all passing through 
PI· ... , p9, as suggested in figure 8.1. Aside from PI· ... , p9, each point of 
CJP2 belongs to exactly one of these curves, and thus we can define a map 

ClP2 \{pi, ... , p9} ---t ClPI 

that sends x to [s : t] whenever x belongs to the curve sP + tQ = 0. See 
figure 8.2 on the next page. To extend this map over PI· ... , p9, we blow
up at these nine points (thus separating the tori) and end up with a well
defined map 

as sketched in figure 8.3 on the facing page. 

8.1. Pencil of curves 

2. From section 6.3 (page 281). 
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l 
---------------CD:'I 

8.2. Pencil of curves, and its projection 

II 
-

l 
------------------------------cPI 

8.3. Blown-up pencil 
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8.4. Fishtail fiber 

collapsing L 
orcle~ 

1' 
c· 

>I --+> I E---> 0 

8.5. Apparition of the singularity 

Singular fibers. This map is a fibration, with generic fiber a torus. Among 
the fibers must be singular ones as well, and these can be of several types. 
The most common are the fishtail and the cusp singular fibers: 

- The fishtail fiber is the most frequent. It consists of a sphere with a 
point of transverse self-intersection, as in figure 8.4. 

The fishtail appears from the collapse of a homologically-nontrivial 
circle in the generic fiber, as outlined in figure 8.5. (Such a collapsing 
circle is called a vanishing cycle, i.e., a circle that bounds a disk of self
intersection -1 embedded in the fiber's complement, as pictured in 
figure 8.6 on the next page.) 

- The cusp fiber is a sphere as well. It is embedded with a singular point 
whose neighborhood looks like a cone over the trefoil knot, see fi
gure 8.7 on the facing page. 

A cusp appears from the collapse of two vanishing cycles, i.e., two 
circles, generators of Ht (torus) in the generic fiber (think "meridian'' 
and "longitude"). 

The singular fibers that appear in a particular fibration CJP2 #9 CJP2 ---+ CJP1 

depend on the concrete choice of polynomials P and Q. For a generic 
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T 

8.6. Vanishing cycle 

··························· 

8.7. Trefoil knot, and cusp fiber 

choice, only fishtail fibers appear. Nonetheless, besides fishtails and cusps, 
there are other singular fibers upon which one can stumble, and a complete 
list will be displayed in the end-notes of this chapter (page 319). 

For most constructions to follow we will like to have a cusp fiber around
its presence will ensure that the result of various procedures is independent, 
up to diffeomorphisms, from the various choices made along the way. 3 

The manifold CJP2 #9 CJP2 is the simplest example of an elliptic surface. It 
is called the rational elliptic surface and is denoted by E ( 1). (Keep in mind 
that E ( 1) does not denote a specific elliptic fibration; it merely denotes 
the manifold CJP2 #9 CJP2 viewed as an elliptic surface, i.e., endowed with 
some elliptic fibration over CJP1 .) 

3. Compare with R. Gompf's Nuclei of elliptic surfaces [Gom91a], and with a statement on page 537. 
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-------------- (:Jpl 

8.8. An elliptic fibration 

Homology. The 2-homology of E ( 1) has the natural basis {eo, e1, ... , e9} com
ing from copies of CJP 1 inside each of the ten projective planes. In this basis, 
the intersection form of E ( 1) is 

QE(l) = [+1] EB9 [-1] . 

If, instead, we choose the basis { 3eo - e1 - · · · - e9, e9, e1 - e2, e2- e3, 

e7 - es, -eo+ e6 + e7 + es}, then the intersection form has matrix 

QE(l) = [~ -n EB -Es. 

... ' 

This rewriting of QE(l) helps to see how the K3 surface can be obtained from 
two copies of E ( 1), as we will see shortly. Observe that the first element 
3e0 - e1 - e2 - · · · - e9 of the basis above is the class of E ( 1) 's fiber-a cubic 
torus, blown-up nine times. 

All other simply-connected elliptic surfaces can be obtained (up to diffeo
morphisms) starting from E(1) and using two techniques: fiber-sums and 
logarithmic transformations. 

8.2. Fiber-sums 

Smooth construction. We start with a random elliptic fibration 

E(1): CJP2 #9CJP2 ~ CJP1 

that contains a cusp fiber. We will cut out a tubular neighborhood of a 
generic fiber and glue together two copies of such a carved-out E ( 1). Then, 
we repeat. 

Pick a generic torus fiber F, sitting over some point x = p[F] in CJP1. Take 
a small disk D around x and cut out of E ( 1) the fibered tubular neigh
borhood E I v = p-I [ D] of F. Since E I v ~ '['2 x JD2 , the remainder is a 
4-manifold with boundary '1'2 x S1 . We then glue two copies of such a 
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butchered E(1) along their boundaries,4 as suggested in figure 8.9. The 
result, called the fiber-sum of E ( 1) and E ( 1), will be denoted by 

E(2) = E(1) #fiber E(1) . 

When building E(2), we respected the fibered structure of its components, 
and therefore the result still fibers over CP1 and thus is itself an elliptic 
surface. 

glue 

8.9. Fiber-summing two elliptic fibrations 

It turns out that E(2) is diffeomorphic to the K3 surface: 

E(2) ~ K3. 

Thus, we now have two descriptions of the K3 manifold: the Kummer 
construction from section 3.3 (page 127) and the fibered-sum construction 
above. Of course, the two versions, while diffeomorphic, display quite dif
ferent elliptic fibrations.5 

Repeating the fiber-sum procedure yields a whole family of manifolds 

E ( n) = #fiber n E ( 1 ) , 

which all fiber over CP1 and are simply-connected elliptic surfaces. Start
ing with a fibration E(1) that contained a cusp fiber ensures that, as smooth 
4-manifolds, the resulting E ( n) 's are uniquely determined by n and do not 
depend on the auxiliary choices made during construction. 

The canonical class of E ( n) is 

KE(n) = (n- 2) [F], 

where F denotes a generic fiber. (In particular, KK3 = 0.) 

4. Using an orientation-reversing diffeomorphism, coming from an orientation-preserving identifica
tion of the torus fibers, times complex-conjugation on 51 • 

5. For example, look at the singular fibers: E(2) can be arranged to have only fishtails and cusps, while 
the Kummer K3 has singular fibers of type 10 , made from five spheres. 
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Homology. For other classical invariants of the E ( n) -manifolds, we have 

signE(n) = -8n, 

with b2 ( E ( n)) = 12n - 2 and bi ( E ( n)) = 2n - 1. Therefore, when n is even, 
the intersection form is even and can be written 

QE(evenn) = EEl n( -Es) EEl (2n- l)H, 

while when n is odd we have 

QE(oddn) = EEl (2n -1) [+I] EEl (IOn -1) [-1] 

Holomorphic construction. It is certainly not at all clear that the result of a 
fiber-sum construction as described above would admit any complex struc
tures. Indeed, a complex geometer would use an altogether different pro
cedure to obtain a complex manifold diffeomorphic to our E(n) 's. Namely, 
in order to build E(n), she would take an n-fold cyclic cover of E(l), 
branched over two regular fibers.6 

This can be described as follows: Consider the map 

C()n: CIP1 -t CIP1 C()n(z) = zn, 

with 0 and oo as fixed points. Visually, cpn takes the 2-sphere CIP1 and 
wraps it n times around itself, fixing the north and south poles, as pictured 
in figure 8.10. 

8.10. Branched cover CP1 ----> CP1 I as an onion peel 

Arrange that E(l): CIP2 #9CIP 2 ~ CIP1 have regular fibers over 0 and 
oo. We then build the pull-back cp~ E ( 1) of the fibration E ( 1). It turns out 
that the result is exactly the earlier n-fold fiber-sum: 

E(n) = cp~ E(l). 

6. An n-fold branched cover is a map f: M --> N and a subset B C M (called the branch locus) 
so that fiM\B is an n-fold cover map, and around each b E B there are charts so that f acts by 
f(z, w) = (zP, w) for some integer p > 0 (z E C). 
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In other words, E ( n) can be defined directly as the set 

E(n) = {(z,e) E ClP1 x E(1) I p(e) = zn}. 
The latter is clearly an n -fold cover of E ( 1), branched along the regular 
fibers over 0 and oo, and it describes a complex surface. 

To see that this construction is indeed diffeomorphic to the n-fold fiber
sum of E ( 1) described earlier, arrange that all singular fibers of E ( 1) sit 
over a big disk D in ClP1 that does not contain either 0 or oo. Then ClP1 \ D 
is a disk with no singular fibers over it, and so E ( 1) lcJPI \D is diffeomorphic 
to the trivial fibration '1'2 x ( ClP 1 \ D) -----* ClP 1 \ D. We like to think of 
ClP1 \ D as a small disk and view E ( 1) I 0 as E ( 1) from which a small tubu
lar neighborhood E ( 1) I CJPI \D of some regular fiber has been cut out. In 
other words, we view E ( 1) I 0 as containing most of E ( 1) . 
On one hand, since D does not touch either 0 or oo, its preimage under (/Jn 

is made of n disjoint disks in ClP 1, and thus the pull-back cp~ ( E ( 1) I 0 ) is 
diffeomorphic ton disjoint copies of E(1)1 0 . On the other hand, comple
mentarily, the preimage of CJP1 \ D can only be CJP1 with n disks cut out, 
and thus the pull-back cp~ ( E ( 1) lcJPI \D) will be diffeomorphic to the trivial 
'1'2-fibration over ClP1 with n disks cut out (trivial, because it is a genuine 
bundle, over a contractible base). In conclusion, we exhibited cp~ E(1) as 
made from n copies of E(1)1 0 , glued-up by an ambient trivial fibration. 
See figure 8.11. 

E(n) 

111 rl rl rllllll rl rl rlllllll rl rl rllllll rl rl rill 

! 

CJPI 

8.11. Pulling-back then-fold fiber-sum 

£(1) 

lllllllllllllllllrl rlrlll 

! 

CJPI 

Thinking of E ( 1) I 0 as the complement of a thin tubular neighborhood of a 
regular fiber of E ( 1) and imagining that the disk CJP1 \ D (and thus also its 
preimage through cp) is made ever smaller, should help visualize that E ( n) 
is indeed then-fold fiber-sum of E(1). 
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8.3. Logarithmic transformations 
We will take an elliptic fibration 

E ~ ClP1 I 

8. Elliptic Surfaces 

cut out a tubular neighborhood Elv of a generic torus fiber, then glue in 
its stead an m-times twisted version of Elv· One effect is the creation of a 
multiple fiber, specifically, a fiber that (while still being a torus) is covered 
m times by surrounding generic fibers. 

Smooth construction. Fix an integer m > 1. Choose a small disk D in 
CJP1 and consider the fibered set Elv = p-1 [D]. Assume that Elv contains 
only regular fibers of E. Choose some smooth parametrization of Elv as 
JD2 X 51 X 51. Take Elv out of E, then cut open the second circle-factor of 
E I D to obtain a copy of 102 x 51 x [0, 1 J. Rotate one end of this cylinder by 
an angle of 2n/m, then glue back, as suggested in figure 8.12. 

, .......... 
• 

...... .... 

r .......... 
• 

...... ..... ...... 

I I 

...... l..-' , ....... 
• ..._ I~ 

...... .... 

...... ..... one new fiber 

8.12. Logarithmic transformation 

The result is a new fibration E~ ---+ D. Everywhere but at the center the 
new fibers of E~ areobtainedfromgluing p old fibers of Elv---+ D "end-to
end". In fact, away from the center, this new fibration is isomorphic with 
the old Elv: 

E~ID\0 ~ EID\0. 
Therefore E~ can be plugged back into E and fill the gap created when we 
removed E I D. 

The elliptic fibration resulting from replacing Elv with E~ is called the 
logarithmic transformation of E with multiplicity m, and is denoted by 

Em ---t ClP1 • 
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If the initial elliptic fibration E contained a cusp fiber, then the resulting Em 
is independent, up to diffeomorphisms, of the various choices made along 
the way. 

What is new in Em is the central fiber Fm of E~, which is now covered m 
times by the fibers around it. Indeed, the new fibers of E~, which appeared 
from gluing m cut-open old fibers end-to-end, are twisting m times around 
the unchanged central fiber Fm. See figure 8.13. 

This Fm is called a multiple fiber, and we will say that it has multiplicity m. 
Homologically, we have 

[F] = m [Fm], 

where F denotes a generic fiber. Look also at figure 8.14. 

8.13. Replacement piece with multiple fiber 

F 

······· 

........................................ 

8.14. Logarithmic transformation (of multiplicity 2) 

Notice that this whole construction is merely a 4-dimensional version of cre
ating a multiple fiber in a Seifert 3-manifold (i.e., a 3-manifold fibered by 
circles) by using Dehn surgery. The dimension is raised from 3 to 4 by cross
ing with s1 • 
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In what follows, 
E(n)p,q 

will denote the surface E(n) to which two logarithmic transformations 
have been applied, of multiplicities p and q. While more than two log
arithmic transformations can certainly be performed, they cease to yield 
simply-connected elliptic surfaces. 

Furthermore, if one performs logarithmic transformations of multiplicities 
having some nontrivial common divisor, then the result again ceases to be 
simply-connected. Thus, when writing E ( n) p, q, we will always assume that 
p and q are coprime integers. 

The order in which the logarithmic transformations are performed does not 
matter. Thus, when writing E ( n) p, q we will also assume that p < q. Finally, 
since a logarithmic transformation of multiplicity 1 has no smooth effect (in 
the presence of a cusp fiber), we will write: 

E(n)I,l = E(n) and E(n)l,q = E(n)q. 

Thus, the writing "E(n)p,q" will include the cases when two, one, or no 
multiple fibers have been created in E(n). 

The surface E ( n) p, q has canonical class 

KE(n)p.q = (n- 2)[F] + (p -l)[Fp] + (q -l)[Fq]. 

Homology. We still have signE(n)p,q = -8n, and b2(E(n)p,q) = 12n- 2, 
and bi ( E ( n) p, q) = 2n - 1, just as we had for E ( n); but the intersection form 
remains even if and only if n was even and both p and q are odd. 

It is important to note that the smooth logarithmic transformation can be 
generalized to more general gluings of F x D back into E \ F, which use 
various self-diffeomorphisms of the boundary 3-torus. These generalized 
logarithmic transformations will be presented in section 12.1 (page 536), in 
the context of their effect on the Seiberg-Witten invariants. 

Finally, we should mention that logarithmic transformations admit an al
ternative smooth description using the rational blow-down construction of 
R. Fintushel and R. Stern. See the end-notes of chapter 12 (page 547). 

Holomorphic construction. Of course, so far it is far from clear why the re
sult of the above procedure would still be a complex surface. The problem 
is that, while the parametrization E/v ~ D X 51 X 51 can be done by a dif
feomorphism, it cannot be made holomorphically: the complex structure 
of the torus-fibers is not constant. To make clear the complex-holomorphic 
nature of logarithmic transformations, we must proceed with a bit more 
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caution, and find a suitable holomorphic replacement for the parametriza
tion of Elv· 

Start with a generic fiber F of p: E -----t (]P1 and pick a small disk D in CJP1 

around p[F], parametrized as the unit-disk D 2 in C. Assume that every 
fiber over this D 2 is regular. Each fiber is a torus, but its complex structure 
might change from fiber to fiber. 

Nonetheless, if we choose a point in an elliptic curve and declare it to be 
the identity element, then we effectively organize our torus as an Abelian 
group (isomorphic to the group S1 x 51). We pick such identity elements 
in each fiber over D 2 through the use of a random holomorphic section 

e: D 2 -----t EIJ0 2. 

As a consequence, each fiber Elx is now viewed as a group with identity 
e(x). Further, we locate the elements of order m in Elx, i.e., those t E Elx 
for which we have 

m·t=e(x) 
in the group structure of Elx· 

These order-m elements specify a m2-fold trivial cover of D 2 inside El[)2. 

We choose a branch of this covering via a holomorphic section 

T: D 2 -----t El[)2 I 

and hence we can write 
m · T(x) = e(x) . 

Consider now the map 

(/Jm: D 2 -----t D 2 ({Jm(z) = zm. 

Away from the center of D 2 , qJm is a simple m-fold cover of D 2 \0. Then 
we pull-back the fibration of El[)2 through (/Jm to get a new holomorphic 

fibration * (E I ) D 2 qJ m [)2 ----t • 

To make holomorphy even more obvious, we can exhibit W = cp~ ( E I [)2) 
as 

which fibrates over D 2 through the projection on the first factor. Its fiber 
over any z E D 2 is identical with the fiber of El[)2 over zm. Specifically, for 
every z =!= 0, each of the fibers of W over the m points 

2nifm 2·2m/m (p-l)·2ni/m z, e · z, e · z, ... , e · z 

is identifiable with the fiber of E I [)2 over zm. Indeed, if we take the action of 
Zm on W that is generated by the map sending (z, t) E W to (e 2nifm • z, t), 
then the resulting quotient of W by this action would simply be E 1[)2 again. 

Instead, consider the action of Zm generated by the map 

(z, t) 1----+ (e 2nifm • z, t + T(zm)) . 



314 8. Elliptic Surfaces 

With this action, at the same time with jumping from one copy of the fiber 
to the next (by going from z to e2nif m • z), we also jump "up" inside the fibers 
(through translation by T). See figure 8.15. 

z 
T 

t=::t:t=t==:l=+=l .... t 

w 

V///11 

~ 
a same fiber of WI Zm 

w 

8.15. Quotient for logarithmic transformation 

The quotient W /Zm is a new fibration over D 2 , which has a multiple fiber 
on top of 0. More, the restriction of W /Zm over D 2 \0 is isomorphic to 
EllDz\o· Therefore, if we remove the fiber F = Elo from E and identify 
EllDz\0 with (W /Zm) llDz\0 , then we effectively replace F by the new mul
tiple fiber in the center of W /Zm. The resulting elliptic fibration Em thus 
described is clearly a complex surface. 

8.4. Topological classification 

Remember that we agreed that writing E(n)p,q implies that p < q and p 
is coprime to q; further, multiplicity 1 is smoothly-irrelevant, and we have 
E(n)t,q = E(n)q and E(n) 1 = E(n). Also, we always assume that our 
E ( n) p. q 's contain a cusp fiber. 

All these E ( n) p. q 's are sufficient to cover all the ground we need: 
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Theorem (B. Moishezon ). Any simply-connected elliptic surface that is mini-
mal with respect to blow-downs is diffeomorphic to some E ( n) p, q. o 
Indeed, it is known from complex geometry that simply-connected mini
mal elliptic surfaces are classified, up to complex deformations, by their 
geometric genus pg = ! (bi - 1) and by the multiplicities of their two multi
ple fibers. Since complex deformations induce diffeomorphisms, and since 
pg(E(n)p,q) = n- 1, it follows that the E(n)p,q 's represent all smooth types 
of simply-connected elliptic surfaces. 

Next, we divide these complex surfaces into types, first up to homeomor
phisms, then up to diffeomorphisms. 

The homeomorphic classification follows from computing their intersec
tion forms and using Freedman's classification: 

Homeomorphic Classification. A simply-connected elliptic surface E ( n) p, q is 
homeomorphic to some E(m)r,s if and only if 

- n = m and is odd; 
- n = m and is even, and further pq and rs have the same parity. 7 

In particular, all the surfaces E (odd n) p, q are homeomorphic to E ( n), while the 
surfaces E (even n) p, q are homeomorphic either to E ( n) or to E ( n) 2 . o 

The smooth classification of elliptic surfaces appears from combining the 
positive results coming from complex geometry (complex deformations), 
with the negative results yielded by differing gauge-theoretic invariants.8 

While the homeomorphic classification above might give hope that many of 
the E ( n) p, q 's, while distinct as complex manifolds, could be diffeomorphic 
to each other, they are in fact all smoothly distinct: 

Diffeomorphic Classification. An elliptic surface E ( n) p, q with n ~ 2 is dif
feomorphic to some E ( m) r, s if and only if 

n = m and p = r and q = s . 

In particular, E ( n) P is diffeomorphic to E ( n )r only when p = r, and coincides 
with E(n) only when p = 1. 

All the surfaces E ( 1) P are diffeomorphic to each other and to E ( 1) . Aside from 
multiplicity p = 1, a surface E ( 1) p, q is diffeomorphic to some E ( 1) r, s if and only 
if p =rand q = s. D 

Combining the above two classifications provides us with a startling series 
of examples: 

7. If pq is odd, then E(even )p.q is spin; if pq is even, then it is not. 

8. See later, section 10.6 (page 413); compare with the gluing results from section 12.1 (page 532). 
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Corollary (Exotic elliptic surfaces). 

- For any odd n 2: 2, the 4-manifolds E ( n) p, q are all homeomorphic but not 
diffeomorphic. 

-For any even n 2: 2, the 4-manifolds E(n)p.q with pq even are all homeo
morphic but not diffeomorphic; similarly for the manifolds E ( n) p, q with pq 
odd. o 

Thus, each of the elliptic surfaces E(n)p.q is a topological4-manifold that 
admits infinitely many distinct smooth structures. We didn't even travel too 
far into the wild: all of them are nice complex surfaces ... 

In particular, to obtain a simple example of a 4-manifold with two distinct 
smooth structures, take CP2 #9 CP2 , fibrate it, and choose two torus fibers 
in it. Then perform logarithmic transformations of multiplicities 2 and 3 on 
them: the resulting 4-manifold will be homeomorphic but not diffeomor
phic to CP2 #9 CP2 • Other multiplicities yield other smooth structures. 

Of course, each example of two homeomorphic manifolds that are non
diffeomorphic leads to a nontrivial h-cobordism, thus illustrating the fail
ure of the smooth h-cobordism theorem in dimension 4. 
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Note: Decomposability 

A somewhat older trend in the study of the topology of complex surfaces was 
the study of almost-complete decomposability. A 4-manifold M is called almost
completely decomposable if connect-summing with one copy of (:JP2 is enough to 
make M #(]P2 smoothly split ("dissolve") as #m ClP2 #n ([]P2 . 

A series of results of R. Mandelbaum and B. Moishezon have shown that many 
complex surfaces are indeed almost-completely decomposable. For example, all 
surfaces that appear as hypersurfaces in CIP3 have this property, as proved in 
R. Mandelbaum and B. Moishezon's On the topological structure of non-singular 
algebraic surfaces in (:JP3 [MM76]; and so do all simply-connected elliptic sur
faces, as proved in B. Moishezon's Complex surfaces and connected sums of 
complex projective planes [Moi77b ], as well as all complete intersections, see 
R. Mandelbaum and B. Moishezon's On the topology of simply connected alge
braic surfaces [MMSO]. See also R. Mandelbaum's expositions Decomposing ana
lytic surfaces [Man79] and Four-dimensional topology: an introduction [ManSO]. 
In particular, 

E(n)p.q #(:IP2 ~ #2n(::IP2 #(IOn- 1) ([::JP 2 . 

A similar result for non-simply-connected elliptic surfaces is obtained in R. Man
delbaum's Lefschetz fibrations of Riemann surfaces and decompositions of com
plex elliptic surfaces [Man85]. 

In a similar spirit, R. Gompf' s Sums of elliptic surfaces [ Gom9lb] proved that, 
given any two elliptic surfaces E' and E", their connected sum E' # E" is diffeo
morphic to either # m CIP2 # n ([::JP 2 or K3 # m S2 X S2 . For splittings of manifolds 
M' # M", with M' and M" complex surfaces, seeR. Gompf' s On sums of algebraic 
surfaces [Gom88]. 

Of course, these results are to be contrasted with the above existence of infinitely 
many smooth structures on homeomorphic elliptic surfaces and to be compared 
with Wall's result about sum-stabilizations from section 4.2 (page 149). A conclu
sion is that the wildness of 4-manifolds is quite delicate: even a little more room 
is enough to make it all wither into triviality. 

Note: Knots, complex singularities, sometimes spheres 

The fact that the singularity of a cusp fiber (inside an elliptic surface) is a cone on 
the trefoil knot is not an isolated case. 
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Let P(zo, z1) be any two-variable complex polynomial whose zero-set 

z = { (zo,z,) E C2 I P(zo,z,) = 0} 

has an isolated singularity at (0, 0). Then a neighborhood in Z of the singularity 
must be the cone on a link K in 53 . In fact, K = Z n 53 (for small enough radius). 

Therefore, every singularity of a complex curve inside a complex surface can be 
described topologically as the tip of a cone on a link. As a most simple example, 
the nodal singularity zoz1 = 0 (two complex lines meeting at a point; equivalent to 
z5 + ZI = 0) is the cone over the simple Hop£ link in figure1 8.16. The singularity 
described by z6 + ZI = 0 is the cusp singularity, a cone on the trefoil knot. 

co 
8.16. The Hopf link 

Higher-dimensional cases. Singularities in higher dimensions exhibit higher-di
mensional knotting and linking phenomena, and in certain cases the knotted man
ifolds are exotic spheres. 

As a first example, the Poincare homology sphere2 I:.p appears in C3 as { zg + zj + 
z~ = 0} n S5 . Perturbing the equation to zg + zj + z~ = e still draws I:.p in S5 , but 
now the "interior" complex surface { zg + zj + z~ = e} n D 6 is non-singular and 
diffeomorphic to the Es -plumbing PEs. 

Creatures obtained in this manner from simple equations of shape 

z60 + ... + Zhn = 0 

in cn+l are sometimes homology 3-spheres or exotic (2n- I)-spheres. In these 
cases, they are called Brieskorn spheres and are denoted by I:.(q0, ... , qn). 

Consider such a sphere-candidate 

I:.2n-! = {z60 + ... +zhn = 0} n s2n+l 

with all exponents qi 2: 2. Its study starts by looking at the non-singular perturba
tion v2n = { z6° + ... + Zhn = E} n D 2n+2. This is a 2n-manifold whose boundary 
is diffeomorphic to I:.. Having even dimension, V has an intersection form Qv on 
Hn(V;Z) (which is skew-symmetric when n is odd). Further, the interior of Vis 
diffeomorphiC tO the entire affine hypersurface { z6° + · • · + Zhn = 1 } in en+ l 1 and 
thus is known to be ( n - 1) -connected. It follows that the boundary I:. = o V is a 
homology I exotic sphere if and only if the form Qv is unimodular.3 

1. Compare also with the standard desingularization of the double point back in section 3.1 (page 112), 
especially with figure 3.2 on page 113. 

2. Described back in section 2.3 (page 86). 

3. To see this, combine the (n- I)-connectedness of V with an adaptation of the argument from 
the end-notes of chapter 5 (homology spheres as boundaries, page 261), together with the generalized 
Poincare conjecture when dim I: ~ 5. 
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One case when unimodularity is guaranteed is when two of the exponents qi are 
coprime to all others. For example, in dimension 7 we have that 

1:(5, 3, 2, 2, 2) 

coincides with the exotic 7 -sphere I:'j, presented in the end-notes of chapter 2 
(page 97). (Remember that I:'j, appeared as the boundary of the E8-plumbing PE8 , 

and that it generates the group E>7 = Z 28 .) 8 

Boundaries of plumbings. Other Brieskom manifolds also can be viewed as boundaries of plumb
ings. For example, the manifolds I:.(q, 2, ... , 2) coincide with the boundaries of the Aq-1 -plum
bing P,r- 1 built from q- 1 copies of[)Tsn (again, see the notes on page 97). When the number 
n + 1 ar~ariables is even and q = 0 (mod 8), then I:.(q, 2, ... '2) is diffeomorphic to a standard 
sphere S4k+I. On the other hand, when n + 1 is even but q = 3 or 5 (mod 8), then I:.(q, 2, ... , 2) 
is diffeomorphic to a Kervaire sphere I:. i_k+ 1 , boundary of PJk+2 . The Kervaire spheres are some
times trivial, but never when k is even. For example, while £(3, 2, 2, 2, 2, 2) is an exotic 9-sphere, 
I:.(3, 2, 2, 2) is the standard 5-sphere 55 ; nonetheless its embedding in 57 c C4 is knotted, just as 
I:.(3, 2) is a standard circle, but embedded in 53 C C2 as a trefoil knot. (On the other hand, when 
the number of 2 'sis even the Brieskom manifold is not homeomorphic to a sphere.) 

The reference for the higher-dimensional material is E. Brieskom's Beispiele zur 
Differentialtopologie von Singularitiiten [Bri66], or F. Hirzebruch and K. Mayer's 
monograph O(n) -Mannigfaltigkeiten, exotische Sphiiren und Singularitiiten 
[HM68]. 

For the general theory of hypersurface singularities, see J. Milnor's classic Sin
gular points of complex hypersurfaces [Mil68]. A more recent monograph is 
A. Dimca's Singularities and topology of hypersurfaces [Dim92]. 

Away from the complex realm, also take a look at R. Fox and J. Milnor's Singular
ities of 2-spheres in 4-space and cobordism of knots [FM66]. 

Note: Classification of singular fibers 

Since one cannot but be curious about the types of singular fibers that can occur 
inside a (minimal) elliptic fibration, their complete classification, due to K. Kodaira, 
is gathered in table X on the following page. 

Fiber 10 is just a generic elliptic fiber, that is to say, a torus. Fiber h is the fishtail 
fiber. Fiber h (with k ~ 2) is made from a "ring" of k spheres and is called the 
necklace fiber. Fiber II is the cusp fiber. Fiber III is made of two spheres with one 
common point where they are tangent. Fiber W is made of three spheres meeting 
each other at a transverse triple point. The other fibers are obtained by connecting 
spheres at transverse double-points, as suggested in their diagrams. In particular, 
remember that we have already encountered fiber I0 as the singular fiber in the 
Kummer construction of K3 in section 3.3 (page 127). 

Multiplicities. Assume that a singular fiber has irreducible components Sk. In the elliptic fibra
tion we can imagine regular fibers F approaching our singular fiber, so that in homology we have 
[F] = E mk[Sk] for some appropriate (homological) multiplicities mk. (For example, in the Kum
mer construction, we noted that the central sphere of 10 was covered twice by an approaching 
regular fiber; thus, it had multiplicity 2.) Since the regular fibers F are disjoint from our singular 
fiber, we must have [F] · [Sk] = 0 for all k. fu fact, these latter conditions (together with the 
intersections of the various Sk 's) determine completely the multiplicities mk. 
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X. Kodaira classification of fibers of minimal elliptic surfaces 
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Given the diagrams of some of the fibers in table X on the preceding page, notice 
that we can use them as a recipe for plumbing4 disk bundles over spheres (with the 
specified Euler class) and obtain a copy of a neighborhood of the corresponding 
singular fiber inside its elliptic fibration. 

Monodromies. Around each fiber there is a unique monodromy. That is, if the fiber 
F is projected by E --+ (:JP1 to a point x, then we look at a small circle C around x 
in (:JP1 : the restricted fibration Elc can be thought of as being built from '1'2 x [0, 1] 
with the end-tori '1'2 x 0 and '1'2 x 1 identified by a twist. This twist is called the 
monodromy of E around the fiber F. 

More precisely, one should be aware of orientations and consider the twist only up 
to isotopy, that is to say, as an element of the mapping class group of '1'2 (i.e., the 
group of orientation-preserving self-diffeomorphisms of '1'2 up to isotopy). The 
mapping class group of the torus is simply SL(2, Z) -think action on H1 ('1'2 ; Z). 
Thus the monodromies can be pictured as integral unimodular 2 x 2 matrices. 

All the monodromies that can appear around fibers in a minimal elliptic surface 
are exhibited in table XL Notice that the seemingly random nomenclature from 
table X on the preceding page seems to find some justification when inspecting 
the corresponding monodromies. 

XI. Monodromies of singular fibers 

Io: [ 1 1] I* . [ -1 -1] 0 . 

h: [ 1 ~] I* . 1 . 
[ -1 -1] -1 

h: [ 1 n I* . k . [ -1 -k] -1 

II: [ -~ 1] II* : [ 1 -~] 

III: [ -1 1] III* : [ 1 -1] 

W: [ -1 -~] W*: [ -~ -1] 

4. Plumbing was described in section 2.3 (page 86). 
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See Compact complex surfaces [BPVdV84, BHPVdV04] if you crave more. For a 
topological discussion of these fibers, seeR. Kirby and P. Melvin's The Es-mani
fold, singular fibers and handlebody decompositions [KM99]. 
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Gauge Theory on 
4-Manifolds 

Part IV 



N ow has come the time to look at gauge theory, an approach to 
smooth topology that is founded on differential geometry. The more 
it was followed, the more it ruined any optimism in a near-future 

classification of 4-manifolds, and displayed in full view our current igno
rance of smooth 4-manifolds. 

One can safely say that, among all dimensions, smooth dimension 4 is cur
rently the least understood. Historically, manifolds of dimensions 5 and 
higher became well-understood between 1950-1970, in dimension 3 great 
progress was made between 1950-1980 and steadily ever since (in 2003 
even the Poincare conjecture might have been proved), while topological 
4-manifolds were essentially killed in 1981 by Freedman's classification. 
However, for smooth 4-manifolds, starting after 1982 and getting worse 
after 1994, we just seem to get dizzier in a whirlpool of amazing creatures. 
The lens that made the whole bestiary visible is gauge theory. 

For this final part of the book, we start in chapter 9 by preparing the ground: 
we explain the general strategy of gauge theory, then we review a bit of dif
ferential geometry, and finally we take a glance at Donaldson's invariants. 

In chapter 10 (starting on page 375), we move on to the Seiberg-Witten 
invariants and see how they apply to the smooth topology of 4-manifolds. 
These invariants are best understood in the special case of complex and 
symplectic manifolds. Furthermore, the farther away one moves from the 
complex realm, the less powerful gauge theory becomes. 

Chapter 11 is devoted to the problem of determining the smallest genus 
needed for representing a homology class by smooth surfaces. Here, the 
celebrated Seiberg-Witten adjunction inequality has allowed great progress 
to be made. For contrast, we start the chapter with a glance at the pre-gauge 
approach stemming from Rokhlin' s theorem. 

Finally, in chapter 12 (starting on page 531) we present the disturbing sur
gery construction of R. Fintushel and R. Stern, which empowers one to 
easily produce infinite series of homeomorphic but non-diffeomorphic 4-
manifolds. 
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Prelude, and the 
Donaldson Invariants 

Chapter 9 

~HE chapter starts with an outline of the general approach of gauge the
.1 ory to smooth topology, followed by a review of a few basic differential
geometric notions. Finally, the setting of Donaldson theory is sketched, but 
only to leave it aside in favor of Seiberg-Witten theory, whose exposition 
will start in the next chapter and dominate the rest of the book. 

We start by drafting the general strategy of gauge theory. Then, in section 
9.2 (page 333) we present a smattering of differential geometry, quickly ex
plaining the concepts of connection and curvature, in a perspective cen
tered on parallel transports. In section 9.3 (page 350) we explain how di
mension 4, from the point-of-view of a differential geometer, is special: 2-
forms split into self-dual and anti-self-dual 2-forms. Finally, section 9.4 
(page 353) takes the quickest of glances at the Donaldson invariants, which 
are based on anti-self-dual connections on bundles. 

Besides a discussion of the equivalence between the Donaldson and Sei
berg-Witten theories (page 370), the end-notes contain discussions of anti
self-dual connections on line bundles (page 357) and of the relation of anti
self-duality to holomorphic bundles (page 365), both of which will be im
portant technically in the later study of Seiberg-Witten theory (the first will 
be used for dealing with reducible Seiberg-Witten solutions, the second 
for understanding the Seiberg-Witten equations on Kahler and symplectic 
manifolds.) 

-331 
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9.1. Prelude 

Terminology. In physics, a local gauge is a local trivialization of a vector 
bundle. A (local) change of gauge is a change of local trivialization. The 
group of (global) changes of gauge, or in short the gauge group, is the 
group of symmetries (automorphisms) of the bundle. Two creatures are 
called gauge equivalent if they belong to the same orbit of the gauge group. 
Gauge theory is the study of gauge-independent creatures on vector bun
dles, such as connections, curvatures, sections, considered up to the action 
of the gauge group. 

General strategy. Often, solutions of equations contain topological infor
mation. Consider the following two elementary examples: 

(A) Let f: xm -----+ yn be a map between compact oriented manifolds. Then, 
for a generic y E N, the space of solutions to the equation f(x) = y is 
a compact submanifold of X, and it determines a class in H*(X;Z); this 
class is the pull-back f* [Y] and depends only on the homotopy class of f. 
(B) Let E -----+ X be an oriented vector bundle over a compact oriented man
ifold X. Then, for a generic section f: X -----+ E, the space of solutions to 
the equation f ( x) = 0 is a compact submanifold of X, and it determines 
a class in H*(X;Z); this class is the Poincare-dual of the Euler class e(E), 
and depends only on the bundle E. 

We wish to apply a similar approach to a more sophisticated setting, involv
ing vector bundles on M and certain partial differential equations govern
ing creatures on these bundles (connections, curvatures, sections). We will 
consider the solutions of the PDEs only up to automorphisms of the bundles, 
i.e., only up to the action of the gauge group. The gauge classes of solutions 
will make up what we will call the moduli space M. We will wish to extract 
invariants of the base manifold M from this moduli space M, and a good 
candidate would be the homology class that 9Jl might determine inside its 
ambient space. 

To apply such a program, one typically needs to check several conditions: 

- The situation is "like" a finite-dimensional one (i.e., it involves elliptic 
operators and it has Fredholm linearizations; in particular, these con
ditions raise the chances that 9Jl be a manifold, not to mention that 
the Atiyah-Singer index theorem can be applied). 

- We have compactness for the moduli space M, or a reasonable com
pactification. 

- We are able to orient 9Jl (else we only get modulo 2 invariants). 
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- We manage to avoid reducible solutions (these are solutions with non
trivial stabilizer1 under the action of the gauge group, which create 
singularities in the quotient space VJt). 

If these conditions are met, then the oriented solution space VJ1 determines 
a homology class m of some larger configuration space Q:. If we manage to 
avoid reducible solutions, then when varying various choices made along 
the way (such as Riemannian metrics) we only change VJ1 by a cobordism, 
and thus the class m is unchanged: it is an invariant of the base manifold 
M. Then, by evaluating various natural cohomology classes of Q: on m, we 
obtain numerical invariants of the smooth manifold M. 

Of course, in certain instances information about M is obtained from a di
rect study of the space VJ1 itsel£.2 In those cases the reducible solutions are 
often the carriers of information. 

Shortcut, anyone? Note that the rest of this chapter and the beginning of 
the next can be skipped at a first reading. By trusting that the strategy 
above can be used to define an invariant of 4-manifolds, called the Sei
berg-Witten invariant, the reader can jump from here and start reading 
again with the main results governing the behavior of these Seiberg-Wit
ten invariants, in section 10.4 (page 404). See you later. 

9.2. Bundles, connections, curvatures 
In this section we review a few concepts from differential geometry that 
will be used for defining both the Donaldson invariants (in section 9.4) and 
the Seiberg-Witten invariants (in the next chapter). 

We present the concepts of cocycle defining a vector bundle, 3 of connection 
on a bundle, and of its curvature. Peculiarities of our exposition might be 
that we use cocycles as replacements for principal bundles and that we base 
the intuition for connections and curvatures on parallel transports. We start 
with reviewing a few classical Lie groups, keeping it all to a minimum: 

Lie groups 

Remember that a Lie group G is a smooth manifold organized as a group. 
The tangent space at the identity element 1 E G is denoted by g and called 
the Lie algebra of G. 

1. When a group G acts on a set S, the stabilizer of x E S is the subgroup of G made of those g E G 
that keep x fixed. 

2. For example, Donaldson's theorem and Furuta's IO/s-theorem, see back section 5.3 (page 243); see 
also the Seiberg-Witten proof of Donaldson's theorem, in the end-notes of the next chapter (page 454). 

3. This was already encountered back in the end-notes of chapter 4 (definition of spin structures, page 
174), but not in the main text; thus, we must review. 
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Real groups. The general linear group 

GL(n) 

is the group of automorphisms of the real vector space JRn, that is to say, all 
n x n invertible matrices. Its Lie algebra 

gt(n) = End(JRn) 

is the algebra of endomorphisms of JRn, i.e., of all n x n matrices. The 
special orthogonal group 

SO(n) 
is the subgroup of GL( n) consisting of all orientation-preserving Euclidean 
isometries of JRn, i.e., the rotations of JRn. Its Lie algebra 

so(n) 
is made of all skew-symmetric endomorphisms of JRn. It can also be iden
tified with A2 (JRn) (thinking of v 1\ w E A2 both as defining the oriented 
plane JR{ v, w} and as being tangent to the path of rotations that rotates v 
toward w with unit angular speed). 

Complex groups. On the complex side of the world, the complex general 
linear group 

GLc(m) 

is the group of (:-linear automorphisms of em, i.e., all m x m complex 
invertible matrices. The unitary group 

U(m) 

is the group of e-linear automorphisms of em that preserve the standard 
Hermitian inner product4 on em. The complex determinant detc p of any 
p E U(m) belongs to the unit-circle 51 C C. The special unitary group 

SU(m) 

is made of all elements of U(n) of determinant +1. We will identify the 
complex space em with JR2m in the standard way, and thus have inclusions 

GLc(m) c GL(2m) and U(m) c S0(2m). 

Finally, two simple low-dimensional examples: 

S0(2) = U(l) =51 c e and SU(2) = S3 c HI 

the latter acting by quaternion multiplication on the right. 5 

4. The Hermitian product on em is defined by (v, w)c = L Vk. wk. It is C-linear in the first argument 
and C-anti-linear in the second. 

5. We identify C2 = H by (z1,zz) = ZJ + zzj, and thus complex-scalars quatemion-multiply on the 
left, while SU{2) is modeled by unit-quaternions multiplying on the right. For more on Lie groups 
and quaternions, see the end-notes of the next chapter (quaternions and spinors, page 432). 
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Spin groups. Since for all n ~ 3 we have6 n 1 SO( n) = Z 2 , this means that 
the double cover of SO(n) will be simply-connected. The cover can be 
organized as a Lie group and is known as the spin group 

Spin(n) . 

A complexified version of this is the complex spin group 

Spine (n), 

defined as SpinC(n) = U(l) x Spin(n)j±l. The complex spin group ad
mits a copy of U(n) as a subgroup. The complex spin group will be revis
ited in the next chapter. 

Vector bundles 

A vector bundle E of rank k over xm (also called a k-plane bundle over X) 
is an open ( m + k) -manifold E together with a map p: E -+ X such that 
the fibers p - 1 [ x J are vector spaces isomorphic to lR k, and p locally looks 
like projections U x JR.k -+ U. In other words, there is an open covering 
{Ua:} of X and an atlas of maps 

{ q:>a:: p- 1 [Ua:] ~ Ua: X lRk} ' 

having pr1 o q:>a: = p, and so that every overlap q:>a: o q:>~ 1 is a map (x, w) f----+ 

(x, ga:f3(x) · w) for some change-of-coordinates function 

ga:f3 : Ua: n u13 -----t GL(k) , 

thus ensuring that the JRk-factors are identified linearly. 

Cocycles. The maps g«f3 are in fact all that is needed to describe E: One can 
just glue E up from trivial patches Ua: x JR.k, by identifying (x, wa:) from 
Ua: X JR.k with (x, Wf3) from Uf3 X JR.k if and only if Wa: = ga:f3(X) · Wf3. 

For an open covering { Ua:} of X together with a random collection of maps 

{ga:f3: Ua: n u13 -----t GL(n)} 

to actually define a k-plane bundle on X, certain simple compatibility rela
tions need to be satisfied. These are: 

All three can be contracted in a single condition 

ga:f3(x) · gf30(x) · g0a:(x) = id. 

The latter is called the cocycle condition. Any collection { Ua:, ga:f3} satisfy
ing it will be called a cocycle. A more thorough discussion of this concept 

6. That n 1 SO(n) = Z2 was pictured in the end-notes of chapter 4 (spin structure definition, page 178). 
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was made in the two end-notes at the end of chapter 4, on page 174 (while 
defining spin structures) and on page 189 (via Cech cohomology). 

G-bundles. For vector bundles E defined as above, GL(k) is called the 
structure group of E, and we sometimes call E a GL(k) -bundle. If we man
age to redefine E by using a cocycle {gap} whose values are all contained 
in a subgroup G of GL(k), then we say that we reduced the structure group 
of E to G, or that E is now a G-bundle. 

Orientations. A typical example is to define a bundle E by using a cocycle 
whose identifications gap(x) all have positive determinant. This is known 
as an orientation of E. 

Metrics. Another example comes from endowing the fibers of E with a 
smoothly-varying inner product, called a fiber-metric; in this case, the struc
ture group of E can immediately be reduced to O(k). If further E can be 
oriented, then the group can further be reduced to SO(k), and E becomes 
an SO(k)-bundle. In particular, as soon as we endow an oriented mani
fold M4 with a Riemannian metric, its tangent bundle becomes an S0(4)
bundle, described by an S0(4)-valued cocycle. 

Complex structures. If the vector bundle E can be endowed with a linear 
anti-involution J: E ~ E, covering the identity of the base X and such 
that J o J = -id, then we think of this J as a proxy for multiplying with 
the imaginary-unit i E C. In effect, the fibers of E become complex vector 
spaces, with i · v = J(v). This reduces the group of E to GLc_; such a 
bundle E is called a complex bundle. 

If further E is endowed with a J -invariant fiber-metric (called a Hermit
ian metric), then E becomes an U(m)-bundle. In particular, if M 4 is en
dowed with an almost-complex structure J: T M ~ T M, then, after picking 
a compatible Riemannian metric, its tangent bundle T M can be described 
by using an U ( 2) -cocycle. 

Parallel transport 

Over any contractible piece D of xm, the restriction E J 0 must be trivial, 
i.e., EJ 0 ~ D x Rn. In particular, over any embedded curve c: [0,1] ~X, 
the bundle EJc is trivial. Given such a curve c, we could then choose a 
favorite trivialization Elc ~ [0, 1] x Rn. This, in particular, means choosing 
a distinguished isomorphism Elc(O) ~ Elc(l) between the fibers at the ends 
of c. 
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Pushing things toward globalization, imagine that we choose trivializations 
of E over each curve7 in X, make these choices in a coherent fashion, and 
then wonder whether we can patch these thin trivializations into a trivial
ization of the whole bundle E over X. 

Parallel transports. Cleaning up this idea a bit, imagine that we somehow 
choose, for every curve c: [0, 1] ---> X, a favorite isomorphism 

Tc: Elc(O) ~ Elc(l) · 

A minimal condition of coherence would be that, if c': [0, 1] ---> X and 
c": [1,2] ---> X are two paths that follow each other (i.e., c'(1) = c"(1)), 
then 

Tc'* c" = Tc" o Tc' ' 

where c' * c" is the obvious join [0, 1] U [1, 2] --->X of the two paths. 

We call such a choice T a parallel transport on E: once an element e E E I x 

and a path c from x to y are chosen, we can now transport e to a well
determined element Tc(e) in Ely· In general, of course, the result depends 
heavily on the chosen path c. See figure 9.1 on the following page. 

For any two paths c' and c" from x to y, the difference Tc' (e) - Tc" (e) will 
measure the failure of the parallel transport from corresponding to a global 
trivialization of E ---> X. Thus, properly studied, the parallel transport can 
uncover the intrinsic nontriviality8 of the bundle E. 

Case of G-bundles. If E happens to be structured as a G-bundle, then we 
naturally wish to restrict to parallel transports that act by isomorphisms 
from G. For example, if our bundle is oriented and endowed with a fiber
metric (thus being an SO(n)-bundle), then we wish the parallel transport 
to preserve that structure, that is to say, act by isometries 

( Tc ( e'), Tc ( e")) = ( e', e") , 

and preserve orientations. If our bundle E has a complex structure, then 
the parallel transport should be C -linear. 

Parallel sections. Given a parallel transport T on E ---> X, for every path 
c starting at x and every e E Elx, there is a unique section 0' of E that is 
defined on c, starts with9 0'(0) = e, and is drawn by the parallel transport 
of e over c. In other words, 0' is defined by 

O'(t) = Tcl[o,t] (e) · 

7. The curve can be embedded or not. When c is not embedded, we trivialize the pull-back c* E -> 

[0, l]o In particular, for each loop at x EX, we choose an automorphism of the fiber Elx 0 

8. This, of course, is just an obscure and vague way of referring to the Chern-Weil method of obtaining 
characteristic classes of E from the curvature of a random connection on Eo 

9. For simplicity, we denote by cr(t) the value of cr at the point c(t) of the path c 0 
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Elx 

--... ....... 

X y 

X 

9.1. Parallel transport, depending on path 

Such a section CT is called parallel over c, or the parallel lift of c at e. 

Connections 

Parallel transports are certainly not the most comfortable objects to play 
with. We wish to move toward infinitesimal versions, which will behave 
like derivatives and allow us to do calculus on bundles. 

Covariant derivatives from parallel transport. Given a parallel transport 
T, we wish to measure how much does a random section CT: X ---+ E fail 
from being r-parallel at x E X, in the direction of the vector w E Txlx. For 
that, we choose a random path c: [0, 1] ---+ X representing w, that is to say, 
a curve c so that x = c(O) and w = ft lt=/(t). Then we can measure the 
infinitesimal deviation of CT from being parallel by using the quantity 
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X w 

9.2. Covariant derivative, from parallel transport 

This is called the covariant derivative of cr in the direction w. It is simply 
the derivative of cr with respect to T, in the w-direction. See figure 9.2. 
In particular, a section cr is parallel over a path c if and only if 'VA.c cr = 0 

dt 
everywhere on c. 

If V E f(Tx) is a vector field on X and cr E f(E) is a section of E, then the 
covariant derivative defines a new section 

'Vv cr E f(E) . 

The covariant derivative can therefore be viewed as a map 

'V: f(Tx) x f(E) -----> f(E) . 

Further, if we have the covariant derivative 'V given to us, then the parallel 
transport can be recovered immediately, by integration. Therefore, from 
now on we will think of the covariant derivative as the primary creature, 
and start all over: 
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Covariant derivatives. We call covariant derivative any map 

v: r(Tx) x r(E) -----+ r(E) 

satisfying the following properties: 

\7 is R -bilinear;10 

V'fv(J = f · Y'v(J for all functions f: X ----+ R; 

Y'v(J = df(V) · (J + f · \lv(J for all functions f: X----+ R. 

In fact, there is a completely equivalent concept that manages to express all 
this in an even more succinct language: 

Connections. A covariant derivative \7 is equivalent to a map 

satisfying the Leibnitz property 

d\l (f . (J) = f . d\l (J + (J ® d f 
for all sections (J E r( E) and functions f: X ----+ R; here d f E r ( T~) is the 
usual exterior derivative of f, viewed as a 1-form. Setting 

Y'v (J = (d9 (J) (V) 

immediately makes apparent the equivalence of d9 with \7. 

The operator d9 is called a connection11 on the bundle E, since it can be 
used to "connect" the fibers of E through the associated parallel transport: 
after fixing a curve from x to y, one can essentially identify E I x with Ely. 

Often enough in this volume, we will get overenthusiastic and also call 
"connection'' the covariant derivative \7 _12 Be forewarned that the nota
tion itself will sooner-or-later become confused, with \7 and d9 used in
terchangeably. 

Connections and plane fields. Of course, we can view the total space of the 
bundle E as a manifold. Then we should also glance at its tangent bundle 
TE. Since E is split into vector-space fibers, we immediately notice a special 
field of n-planes in T£, the field of vertical planes, then-planes tangent to 
the fibers. 

10. The property that 'Vv+w<7 = 'Vv<7 + 'Vw<7 does not follow from the properties of the parallel 
transport as defined here. Nevertheless, we postulate it for covariant derivatives. 

11. Physicists, for reasons of their own, like to call dv a "gauge potential". 

12. As it happens, the terminology is unsettled, and often in the literature "connection" and "covariant 
derivative" are used as synonyms. 
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Since each fiber Elx is a vector space (and the tangent space Tvlv to any 
vector space V is canonically identified with the vector space V itsel£13), 

we can identify the vertical plane field with the pulled-back bundle p* E. 
(In other words, for each e E E we can identify (T(Eir(eJ)) le with Elp(e) .) 
Thus, we have a canonical embedding 

p*E C TE 

that sets p* E as the sub bundle of TE drawn by the vertical plane field. 

Horizontal ambiguities. The vertical plane field p* E does not have a canoni
cal complement in TE. Of course, any such complement would be isomor
phic to p*Tx, but there is no canonical embedding of p*Tx in TE, except 
along X itself: 

TEix = TxEFJE, 
where X is understood as the submanifold of E drawn by the zero-section. 

From connections to horizontal fields. On the other hand, if we choose a con
nection d\1 on E, then d\1 induces a unique global splitting 

TE = p*E E9 p*Tx. 

Indeed, for any e E Elx and w E TxiXI we can build a path c: [0, 1] ----+ 

X with c(O) = x and tangent to w. We then lift c to a unique section 
lT: [0, 1] ----+ E that starts at CT(O) = e, covers c and is parallel for d\1; in 
particular it has V'wlT = 0. Seeing lT as a curve in the manifold E, we 
notice that its tangent vector ii3 = ft lt=o lT(t) ate is independent of choices 
and depends only on w. Further, if we vary w E T xI x, then the map w ~-t ii3 
definesalinearembedding Txlx C TEie· Itsimageiscomplementarytothe 
vertical plane p* E le at e. Globally, we obtain a bundle embedding 

p*Tx c TE 

whose image is complementary to p* E, and thus exhibits a splitting h = 
p*E E9 p*Tx. 

From horizontal fields to connections. Conversely, choose a horizontal plane 
field 1i in TE, meaning a plane field 1i that is complementary to the ver
tical plane field p* E. Require that 1i be invariant under scalar multiplica
tions, as in figure 9.3 on the following page. Then it turns out that in effect 
you have chosen a connection d'il on E. 

This can be seen as follows: The choice of 1i induces a splitting of TE as 

TE = p* E E9 1{ I 

13. For each v E V, we have V ;::; Tvlv by sending w E V to the tangent vector at v of the curve 
to---> v+t·w. 
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X 

9.3. Connection, as horizontal plane field 

and in particular determines a well-defined projection along 'H, from TE 
onto the vertical plane-field p* E. Since each fiber p* Ele can be identified 
with the fiber E I p(x), this vertical projection Tr ----+ p* E induces a bundle 
map pr: TE ----+ E, fitting at the top of the diagram 

p* E c Tr -----t E 

1 1 pr 1p 
E E ~X. 

This map pr is fiberwise-surjective and restricts to p* E as a fiberwise-iso
morphism, thus displaying p* E anew as a pull-back of E. 

Furthermore, the projection pr determines a connection on E: for every sec
tion CT: X ----+ E, its covariant derivative Y'vCT is evaluated by first using the 
differential dCT: Tx ----+ Tr to get a tangent vector dCT(V) to E, then project
ing the latter through pr to E: 

Y'vCT = pr(dCT(V)) . 

Conclusions. We have argued that 

Lemma. A choice of connection dv on E is equivalent to a choice of horizontal 
plane field 1t in TE that is scalar-multiplication invariant. o 
The parallel sections of dv are exactly those sections of E that are tangent to 
dv's horizontal plane field 'Hv inside Tr. Clearly, we can find such parallel 
sections over any curve in X, and this yields dv's parallel transport. 
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Finding parallel sections over more solid pieces of X runs into obstructions. 
In the extreme, the search for a global parallel section becomes the question 
of whether the horizontal plane field 1{\l is integrable. 14 

Flat connections. If 1i\l happens to be integrable, then the corresponding 
connection d\l is called flat, and the manifold E is foliated by leaves trans
verse to the fibers. Furthermore, if X happens to be simply-connected, then 
any bundle E on X that admits a flat connection must be trivial and is triv
ialized by the induced foliation. 

In general, the obstruction to the horizontal plane field being integrable is 
measured by the curvature F\l of the connection, which we will encounter 
soon enough. See also figure 9 .4. 

9.4. This is not a flat connection 

Difference of two connections. Imagine given two random connections d' 
and d" on E. It follows from their properties that they must differ by a 
1-form whose values are linear endomorphisms of the fibers of E. That is: 

d'cr- d"cr = A· cr for some A E r(End(E) 0 T)(), 

where End( E) = E 0 E* is the bundle of linear endomorphisms of the fibers 
of E. One can think of A simply as the derivative of the difference of the 

14. A k-plane field (or subbundle) Pin Tz is called integrable on Z ifitis everywhere tangentto a well
defined family of k-dimensional submanifolds of Z, that is, if for each z E Z there is a k-submanifold 
Lz such that PILz = hz. A plane field Pis integrable if and only iffor every two sections V, W E f(P) 
their bracket [V, WJ takes values only from P. (A !-dimensional plane field, i.e., a line field, is always 
integrable.) An integrable plane field determines a foliation of Z (with leaves the Lz 's above), while 
a nowhere-integrable plane field on a 3-manifold is called a contact structure. Foliations will be 
discussed again in section 11.3 (page 492) (for unrelated reasons). 
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two associated parallel transports T 1 and r" (remember that End(lRn) = 
g((n) ). 

The space Conn( E) of connections onE is thus an affine space, modeled on 
the space of sections f(End(E) 0 T)(). In other words, 

Conn( E) = {d\7} + r(End(E) 0 T)() I 

for any particular connection d\7 on E. 

Case of G-bundles. If the bundle E happens to be a G-bundle, then the 
natural parallel transports to be considered on E are those that act through 
elements of G. 

Therefore, since connections (covariant derivatives) are obtained by taking 
derivatives of the parallel transport, these must act by elements of the Lie 
algebra g. In particular, any two connections d' and d", compatible with 
the G-structure of E, will differ by a 1-form whose values are endomor
phisms of the fibers that act by elements15 of g. We call G-connections 
those connections on a G-bundle E that respect its G-structure. 

For example, if E is endowed with a metric and becomes an SO( n) -bundle, 
then we wish its connections to act by elements of .so ( n), i.e., by skew-sym
metric endomorphisms. This means simply that a SO(n)-connection must 
satisfy 

Notice that this is just the derivative of the required metric-compatibility 
(e', e") = \ Tc(e'), Tc(e")) of the parallel transport. An SO(n)-connection is 
often called a metric connection on E. 

Local expression. Imagine that our bundle is trivial, E ~ X x lRn. Then E 
admits global fiber-coordinates, and we can define its flat connection by 

dflatcr = (dcr1, ... ,dcrn), 

where on the right we have the usual exterior derivatives of the compo
nents crk: X ---t lR of the section cr with respect to the trivialization. 

If our bundle is not trivial, then the flat connection dflat cannot be defined, 
since there are no global coordinates on the fibers. Nonetheless, given a 
local trivialization Elu~ ~ Ua x lRn, there is an associated local flat connec
tion dflat lu~ on Elu~. Further, every global connection d\7 on E must differ 

15. Rigorously, by using a G-<:ocycle for E, one lets it act, instead of on Rn, on the Lie algebra g 
(by using the adjoint action of Gong). The resulting bundle is denoted g(E) (or ad E). The global 
difference between two G-<:onnections is a section of g(E) ® T)(. (Notice that g!(E) = End(E), and 
that, if G is a subgroup of GL(n), then g(E) will be a subbundle of End( E); also notice that, if G is 
Abelian, then g(E) is the trivial bundle X x g.) 
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from dflatlu, by a local End(JRn)-valued 1-form, and therefore we canal
ways write in local coordinates 

dvlTI U, = dflat cT' + Aa . cT' 

for some suitable local 1-form 

Aa E f(gr(n) ® TxluJ . 

One can think of the form Aa either as a matrix-valued 1-form or as a 1-
form-valued matrix, acting on the local coordinates lTa = ( lTf, ... , ~) of 
the section lT in the chosen local coordinates of E over Ua. 

Local patching. The various local forms Aa are related by formulae of shape 

Aa = gaf3 · dgf3a + gaf3 · Af3 · gf3a / 

where dgaf3 is the matrix made from the differentials of the matrix-compo
nents of the change-of-coordinates map gf3a = g;;J, and the multiplication is 
multiplication of matrices. 

The case of G-bundles. If our bundle E is a G-bundle, then we prefer to 
choose a set of local trivializations compatible with the G-structure of E. In 
this case, every G-connection dv can be written dvlTI u, = dflat lTa + Aa · lTa 
for a suitable local form 

Like exterior derivatives. The visible kinship of a connection dv with the 
usual exterior derivative d can be pursued further, by extending dv to act 
onE-valued k-forms. Define inductively operators 

dv: r(E®Ak(Tx))-----+ f(E®Ak+ 1(Tx)) 

by using the Leibnitz property16 

dv ( lT ® a:) = ( dvlT) A a: + lT ® ( da:) 

for all a: E f(Ak) and lT E f(E). 

Unlike the exterior derivative though, in general the operators dv do not 
satisfy anything liked d = 0. Which is another way to stumble upon curva
tures, as we will see shortly. 

16. Often in the literature one writes £-valued k-forms as sections of Ak 0 E, which forces the Leibnitz 
relation to be written d\1 (a 0 CT) = (da) 0 CT + ( -1 )ka II (d'VCT), with an unpleasant sign-correction 
depending on the degree k of a. 
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Torsion-free connections. Before that, though, notice that the case E = T)( 
stands apart. Indeed, each connection dv on the cotangent bundle T)( of X 
is a map 

dv: f(T)() ----t f(Tx ® T)() . 

By skew-symmetrization, it induces an operator 

Altdv: f(A1(T)()) ----t f(A2 (Tx)). 

It is then natural to ask a further compatibility condition from the connec
tions that act on the cotangent bundle T)(: we ask that the induced operator 
f(A1) ---+ f(A2 ) coincide with the usual exterior derivative d: 

Altdv = d. 

Such a nice connection is known as a torsion-free connection on T)(. 

It is best to think of this torsion-free condition as ensuring that the con
nection dv is compatible with the fact that, unlike most other bundles, T)( 
admits special local fiber-coordinates coming from chart-coordinates on the 
base-manifold X itself. 

The Levi-Civita connection. A manifold xm is called a Riemannian man
ifold if its tangent bundle T x is endowed with an inner product on its 
fibers (a Riemannian metric), and thus becomes an SO(m)-bundle. In 
this case, for connections on T x it is natural to restrict attention to SO( m)
connections. 

However, the metric also establishes a bundle-isomorphism T x ~ T)(, and 
thus any connection on T x is a connection on T)( as well. Thus, it is also 
natural to ask that our connections be torsion-free. 

In fact, for every Riemannian metric on X, there is exactly one torsion-free 
SO( m) -connection dv on T x. It is called the Levi-Civita connection of 
the metric. Specifically, the Levi-Civita connection must satisfy the two 
properties: 

a~ (V, W) = (\72 V, W) + (V, \72 W) , 

[V, W] = Y"vW - Y"wV. 

This second condition, by invoking the bracket [V, W] of the two vector 
fields V and W, encodes that \7 is torsion-free. 

The bracket [V, W] is fully characterized by its bilinearity and its vanishing 
whenever V and W are induced from local coordinates { x1, ... , Xm} on X, 
so that, say, V = a~- and W = a~-. If E1, ... , Em is any local frame of 

' I 
vector fields in Tx induced from local coordinates on X, then the torsion-
free condition becomes merely the symmetry \7£. E1· = \7E Ei. 

' I 
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Curvatures 

If we apply the connection operators d\1 twice, as in 

then the result is not trivial (as it would be for the usual exterior derivative 
d), but instead yields the curvature 2-form of \7. That is, we have 

for some suitable endomorphism-valued global 2-form 

acting on sections of E. The form F\1 is called the curvature form17 of \7. 

If E is a G-bundle, then the curvature of a G-connection will only act by 
endomorphisms that belong to18 g. 

Flat connections. If our bundle E is trivial and we are looking at the flat 
connection dflat induced from some trivialization E ~ X x lRn, then of 
course we have dflat dflat = 0, and thus the curvature is lftat = 0. 

In general, we call flat any connection d\1 whose curvature vanishes identi
cally. This is in fact equivalent to the connection being locally isomorphic to 
dflat, or to the horizontal plane field Ji\1 in TE being integrable. Moreover, 
if the base manifold X is simply-connected and the bundle E admits a flat 
connection, then E must be trivial. 

Characteristic classes. The detection of triviality through curvatures goes fur
ther: By extracting various global differential forms on X from the curvature 
F\1 of any random connection on E, one obtains closed forms that represent 
all the characteristic classes of E in de Rham cohomology19 This is called the 
Chern-Weil method. See for exampleS. Kobayashi and K. Nomizu's Foun
dations of differential geometry [KN69, KN96, vol. II, ch. XII]. 

17. Geometers would likely denote Fv by something like Rv (with "R" from "Riemann"), while the 
physicists would denote it by FA, where A = {A.} are the local !-forms defining \1 with respect 
to local trivializations. Just as they call the connection a "gauge potential", its curvature Fv would be 
known to physicists as a "gauge field". 

18. Rigorously, one builds the bundle of Lie algebras g(E), and sees Fv as a section of g(E) rSI A2 (T)(). 
(If G is Abelian, then g(E) =X x g, and Fv is simply a g-valued 2-form.) 

19. Cohomology with IR-coefficients, thus torsion and the Stiefel-Whitney classes are not visible. 
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Local expression. If the connection is expressed locally as 

d'\1 I Ua = dflat + Aa 

for some suitable gt(n)-valued 1-form Aa over Ua, and its curvature FV' 
is written locally as r I _ r -IX 

r'\1 · CT uiX - ra · u 1 

where Fa is a local matrix-valued 2-form, acting on the local coordinates 
CTa of cr over Ua; then these local curvature forms are described explicitly 
by 

where dAa is the n x n matrix built from the differentials of the compo
nents of Aa, while Aa 1\ Aa is obtained by multiplying the matrix of 1-
forms Aa with itself, in a combination of matrix multiplication and exterior 
product of forms. 

Local patching. The various local representations Fa are related by Fa = gaf3 · 
Ff3 · gf3a. In particular, if the structure group G of E is Abelian then F'V is 
simply a global matrix-valued 2-form on X. 

A consequence of the explicit formula above is that the curvature 2-form 
F'\1 satisfies the following 

Bianchi Identity. D 

This can be expressed coordinate-free as follows: The connection d'\1 onE 
induces a connection onE*, and thus defines a connection20 onE 0 E* = 
End( E). If we denote the latter still by d'\1, then the Bianchi identity can be 
written d r _ 0 '\1 r'\1 - . 

In particular, it follows that, if the structure group G of E is Abelian, then F'V 
is a matrix of closed 2-forms. 

Curvature from covariant derivative. The curvature can be defined direc
tly in terms of the covariant derivative, through the formula: 

F'\1 (V, W) · cr = Y'v Y'vcr - Y'w Y'wcr - V[v,w]cr, 

where [V, W] is the bracket of the vector-fields V and W. The endomor
phism 

F'\l(V, W)lx: Elx ---t Elx 
depends only on the values of V and W at x. 

In particular, if E1, ... , En is any local frame of vector fields in Tx induced 
from coordinates on X, then we can write simply 

F'\1 ( Ei, Ej) . (T = V'E \i'E.CT - V'E· V'E· (T • 
' I I ' 

20. On E*, by (dvf)(e) = d(f(e)) - f(dve); then on E ® E* by dv (f ®e) = (dv f)® e + f ® (dve). 
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Thus, in a certain sense the curvature measures the failure of mixed second 
derivatives from commuting. 

Curvature from parallel transport. The curvature can also be expressed di
rectly in terms of the parallel transport. 

Given two vectors v, wE Txlp based at some p EX, we pick some coordi
nates { x1, ... , Xm} on X around p such that, say, the coordinate x1 goes in 
the v-direction while x2 goes in the w-direction. Using these local coordi
nates, we build a little square loop along the v- and w-directions. Namely, 
we start at p and go a length of E in the Xz -direction, then a length of E in 
the x 1 -direction, then backwards a length of E in the (- x 1 ) -direction, and 
finally a length of E in the ( -x2)-direction, and end up back at p. 

We now pick our favorite vector e in the fiber E I P above p and use the par
allel transport along our square path to move it to another vector 10 (e) of 
EIP' as in figure 9.5. The difference 10 (e)- e measures the failure of the par
allel transport to trivialize E over the (x1, xz)-plane in the neighborhood 
of p. 

9.5. Curvature, from parallel transport 

To get a quantity independent of the various choices, we push it to an infin
itesimal one by shrinking the square, and thus obtain the curvature: 

F'V(v,w) ·e =lim~ (10(e)- e). 
£->0 £ 
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In particular, this shows again that, if we are dealing with a G-bundle, then 
the endomorphism-part of Fv must act through elements of g. 

Examples. Consider a complex-line bundle L endowed with a Hermitian 
metric. Then the structure group of L is U ( 1) . Since U (1) = S 1, its Lie 
algebra is simply u(l) = iR. This implies that any U(l)-connection on L 
has as curvature a global imaginary-valued 2-form 

Fv E if (A2 (T)()) . 

From the Bianchi identity it follows that F'V must be a closed 2-form. Fur
ther, in de Rham cohomology Fv represents the Chern class of L: 

[Fv] = -2nic1(L). 

(This is the simplest instance of the Chern-Weil method.) 

Aside from the neat case of line bundles, in general the curvature is a very 
complicated object. Indeed, one of the technical advantages of Seiberg
Witten theory over Donaldson's is that the former uses connections on 
complex-line bundles, while the latter deals with connections on SU(2)
or S0(3)-bundles. 

When the manifold X is endowed with a Riemannian metric, the study of 
the curvature Fv of the Levi-Civita connection on T x is made mostly after 
reducing it to various simpler creatures, by taking traces. Thus, one talks 
about sectional curvature, Ricci curvature, etc. The only one that we will 
encounter later is the scalar curvature, which is the function 

seal : X ---+ R 

foranylocalorthonormalframe e1, ... ,em in Tx. (The value scal(p) is best 
imagined as an average of the sectional curvatures at p.) 

In figure 9.6 on the next page is pictured the parallel transport on the 2 -sphere 
with its standard Riemannian metric. The curvature of the sphere (of unit 
radius) turns out to be constant, F = [ _1 1], which leads to the constant scalar 
curvature seal = + 2. Notice that the GauBian curvature is + 1. 

9.3. We are special: self-duality 

When viewed from the perspective of differential geometry, 4-manifolds 
have a unique distinguishing property: the Hodge star-operator 

*: Ak(TM) ---+ A4-k(TM) 

takes 2-forms to 2-forms. This is remarkable for a differential geometer 
because curvatures are also differential 2-forms of various flavors. 
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9.6. The sphere is curved 

In this section we will review a few of the consequences of this distinguish
ing property of 4-manifolds. As will later become apparent, self-duality 
and its ramifications thoroughly permeate the underpinnings of gauge the
ory in dimension 4, both in its Donaldson and Seiberg-Witten flavors. 

The Hodge duality operator. If we endow an m-manifold xm with a Rie
mannian metric, then the orientation of X endows it with a top differential 
form volx, called the volume form of X. Locally we have 

volx lx = e1 A ... A em 

for any orienting orthonormal frame { e1, ... , em} of T)( I x. The Hodge op-
erator 

*: Ak(T)() ----+ Am-k(T)() 

is defined by the equality 

a: A * f3 = (a:, {3) · volx . 

for all a:, f3 E r ( Ak). In particular, we have a: A * a: = I a: 12 . volx. 

The meaning ofthe Hodge operator is, roughly, that if f31x E Aklx is dual to 
an oriented (m- k)-plane P, then* f31x will be dual to its oriented orthog
onal complement Pj_. Not surprisingly, the Hodge operator can be used to 
prove the Poincare duality for de Rham cohomology. 

The case of dimension 4: self-dual/ anti-self-dual. On a 4-manifold M, 
the most interesting part of * is its action of 2-forms. We have 

*: A 2 (TM.) ----+ A2 (TM), 

determined concretely by the property that *(e1 A e2 ) = e3 A e4 if and only 
if { e1, e2, e3, e4 } is an orienting orthonormal frame in TM. 
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Since** = id, the operator* on A2 has eigenvalues ±1 and splits A2 (TM_) 
into its eigenbundles, denoted by 

A~(TM:) and A~(TM:). 

A section in A~ ( TM:) is called a self-dual 2-form, while a section in A2_ ( TM:) 
is called an anti-self-dual 2-form. 

Every 2-form IX splits into self-dual and anti-self-dual parts 

IX = a+ +IX- , 

with *a+ = a+ and *IX- = -IX-. More, every self-dual 2-form is orthogo
nal, with respect to the wedge-product, to every anti-self-dual 2-form: for 
any a+ E f(A~) and {3- E r(A2_) we have 

a+ 1\ {3- = 0 . 

This follows since a+ 1\ {3- = (*a+) 1\ (- * {3-) = -a+ 1\ {3-. 

A 2-form IX is self-dual at x if and only if there is some orienting orthonor
mal frame { e1, e2, e3, e4 } in TM: I x such that we can write 

IX I x = p ( e 1 1\ e2 + e3 1\ e4) 

for some real constant p. In general, for a random orienting orthonormal 
frame { e1, e2 , e3 , e4 } in TM: at x, we have 

A~(TM:)Ix = lR{e1e2 +e3e\ e1e3 +e4e2 , e1e4 +e2e3}. 

DeRham cohomology. The splitting of bundles 

A2 (TM:) = A~(TM:) EB A~(TM:) 

descends in de Rham cohomology to a splitting 

H 2 (M;JR) = H~(M;lR) EB H:_(M;JR). 

On one hand, since a self-dual 2-form a+ has *a+ = a+, we deduce that 

JM a+ 1\ a+ = JM Ia+ 12 · volx > 0. 

Similarly, for an anti-self-dual 2-form IX- with *IX- = -IX-, we have 

JM IX- 1\ IX- ~ - JM Ia -1 2 · volx < 0 . 

Furthermore, remember that we always have a+ 1\ IX- = 0. Since the 
wedge-product on 2-forms becomes the intersection form QM on cohomol
ogy classes, we deduce that H~ ( M; lR) is a maximal positive-definite sub
space for QM, while H?:_ ( M; lR) is a maximal negative-definite subspace. In 
particular, we recover the partial Betti numbers 

bi(M) = dimH~(M;lR) and b:Z(M) = dimH:_(M;lR), 
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and hence we can write 

signM = bi(M)- b2(M), 

b2 (M) = bi(M) + bi(M). 
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The partial Betti number bi plays an essential role in gauge theory. As 
preparation, more consequences of Hodge duality and the influence of 
bi ( M) will be developed in the end-notes of this chapter (page 357). 

Lie and bundles. The vector space A2 (1Rn) is canonically isomorphic to the 
Lie algebra .so ( n) of the rotation group SO( n). In particular 

A2 (JR4 ) = .so(4) . 
The bundle splitting 

corresponds fiberwise to the exceptional Lie algebra isomorphism 

.so(4) = .so(3) EB.so(3). 

At the level of Lie groups, the latter integrates to 

· Spin(4) = SU(2) x SU(2) 

and can thus be linked to both spin structures and complex geometry. This 
isomorphism doubly-covers a map S0(4) ---t S0(3) x S0(3) that fits in the 
diagram: 

Spin(4) = SU(2) x SU(2) 

l l l 
S0(4) -------+ S0(3) x S0(3) . 

The latter map can be used to project the SO( 4) -cocycle of T M onto two 
S0(3)-cocycles, which in fact glue exactly the bundles A;_ and A2_. 

On the other hand, if one can lift the S0(4)-cocycle of TM to a Spin(4)
cocycle, i.e., a spin structure, then this can be projected to two SU(2)
cocycles that will glue the bundles of spinors. We will discuss this again 
in section 10.2 (page 382). 

9.4. The Donaldson invariants 

After reviewing the previous basic differential-geometric notions, we can 
now briefly outline the setting of the invariants defined by S.K. Donaldson. 
They follow the general methodology suggested at the beginning of the 
chapter. 
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Minimize the energy. Let M be a closed oriented 4-manifold, endowed 
with a Riemannian metric. Take a complex-plane bundle 

Ek---* M 

with structure group SU(2). Such bundles are fully classified by their sec
ond Chern class k = c2(Ek) E ?L.. Consider an SU(2)-connection dA onE: 
its curvature FA is an End(Ek)-valued 2-form. It is natural to consider its 
"energy", as given by the Yang-Mills functional 

YM(dA) = JM IFA 1
2 volM, 

and then try to minimize it. 

One can think of this as a non-Abelian analogue of Hodge theory: in the latter, 
one tries to minimize the energy of an exterior form that represents a fixed 
cohomology class, and ends up with harmonic forms. 

The critical points of YM are described by the Euler-Lagrange equations 

dA FA = 0 and dA *FA = 0, 

where dA denotes the induced connection on End(Ek)-valued forms. The 
first equation d A FA = 0 is always satisfied, it being the Bianchi identity. 
While searching for solutions of the second equation, one can simplify the 
quest by focusing on the special cases when * FA is a multiple of FA. This 
can happen only if either *FA = FA (self-dual case) or *FA = -FA (anti
self-dual case). 

Furthermore, on one hand we can evaluate 

YM(A) = JM jFJj 2 + !Fil 2 
I 

while on the other hand we get 

c2(E) = s;z /M-IFf !2 + !Fi !2 

from the Chern-Weil method. 

Therefore, when c2 (E) = 0, the absolute minima of the Yang-Mills func
tional are the flat connections; when c2 (E) < 0, the absolute minima are 
the connections with Fi = 0; when c2(E) > 0, the absolute minima are 
the connections with fA+ = 0. The latter equality means that FA = Fi and 
hence that the curvature of dA is anti-self-dual. 

The difference between the last two cases is merely a matter of orientations, 
so we pick the case when c2 (E) = k > 0 and look for connections with 
anti-self-dual curvature. These are called k-instantons, or more directly 
anti-self-dual connections. 
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The moduli space. We thus set ourselves to study the moduli space VJtk of 
all connections on Ek that satisfy the equation 

f+- 0 A - I 

considered up to gauge-equivalence. 

If bi(M) ~ 1, then, for a generic Riemannian metric on M, the space 6 of 
all anti-self-dual connections on Ek will contain no reducible solutions.21 

Therefore, for a generic metric, the quotient of the solution space 6 by the 
gauge group <i#(Ek) of automorphisms of Eb i.e., the moduli space VJtb will 
be a finite-dimensional orientable smooth manifold, of dimension 

dimVJtk = 8k- 3(1- b1 + bt) . 
Certain further choices allow us to choose and fix an orientation of VJtk. 

The moduli space VJtk is almost never compact. However, it can be com
pactified in a reasonable way, such that the compactification 9Jlk carries a 
fundamental class [ 9Jlk]. It is worth noting that this compactification al
ways involves the base-manifold M in a nontrivial way,22 as well as the 
moduli spaces of lesser k's. 

The invariants. The natural cohomology classes of 9Jlk are parametrized 
through certain maps 

fl( Hj(M; JR) --> H4-j ( 9Jlk; JR) . 

If b1 + bt is odd, then VJtk is even-dimensional, and one defines invariants 

qp,r(tt) = frmk] JJz(tt)P JJo(pointY 

that depend on tt E Hz(M;JR). If b1 + bt is even, then we set all qp,r = 0. 
These qp,r turn outto be polynomialfunctions on Hz(M;JR) and are called 
the Donaldson (polynomial) invariants of M. 

A priori these polynomials depend on the choice of Riemannian metric, but, 
if we further require that bt (M) ~ 2, then any two generic metrics can 
be connected through a path of metrics for which there are no reducible 
solutions.23 The moduli spaces for various metrics will be cobordant, and 
therefore the invariants will not depend on the metric, but only on the base
manifold M. 

21. In this setting, a reducible solution is an anti-self-dual connection that preserves a splitting of Ek 
into a sum of two complex-line bundles. For the role of bi in avoiding reducibles, see the end-notes of 
this chapter (anti-self-dual connections on line bundles, page 357), especially page 364. 

22. Recall the earlier discussion from section 5.3 (page 243), where the compactification of ;;]'£1 was 
done by adding as its boundary exactly the manifold M. 

23. Again, see the end-notes of this chapter (page 364). 
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Finally, observe that not all applications of Donaldson theory come from 
these invariants qp, r. Some come from a careful study of the moduli space 
itself, as we saw happen in section 5.3 (page 243), with Donaldson's theo
rem. 

Epilogue, toward Seiberg-Witten theory. One can somehow intuitively un
derstand why Donaldson theory might offer deep results about the topol
ogy of a 4-manifold M: for example, on one hand Donaldson theory is 
an analogue of Hodge theory and the whole construction is natural; and, 
on the other hand, the compactifications of its moduli spaces always in
volve the base-manifold M itself. In contrast, it is intuitively quite un
clear why Seiberg-Witten theory, the simpler but much different equivalent, 
does give such deep insights into 4-dimensional topology. 

The origins of the latter do not shed much light either: In 1994, follow
ing their work on N = 2 super-symmetric Yang-Mills theory, N. Seiberg 
and E. Witten proposed their invariant of 4-manifolds. They claimed that 
it would be equivalent to Donaldson's invariants based on physical argu
ments (the quantum field theory they were considering had a scale param
eter t; when t ---+ 0 one got essentially the Donaldson invariants, while 
when t ---+ oo one got the Seiberg-Witten invariants). 

Mathematically, there is a hard program due to V. Pidstrigach and A. Tyurin 
for proving the equivalence of the two theories, which has essentially been 
carried through in a long series of papers of P. Feehan and T. Leness. Thus, 
if one trusts the equivalence of the two theories, then maybe one should let 
Seiberg-Witten theory borrow from whatever intuitive meaning one had 
managed to lay upon Donaldson's ... 

In any case, all results obtained using Donaldson theory can be proved 
again, usually easier, by using Seiberg-Witten theory. For example, in the 
end-notes of the next chapter (page 454), we will explain the Seiberg-Wit
ten proof of Donaldson's theorem on definite intersection forms. 

More than that, Seiberg-Witten theory led to striking new results, which 
seemed out of reach while using instantons. Shortly after their appearance, 
most unanswered questions that were raised in the instanton period were 
quickly solved. Further, Seiberg-Witten theory has managed to completely 
transform our image of the world of smooth 4-manifolds, by bringing to 
light all over the place overflowing infinities of smooth structures on home
omorphic manifolds. 

Thus, starting with the next chapter (starting on page 375) we leave Don
aldson theory behind and focus exclusively on its Seiberg-Witten cousin. 
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Note: Anti-self-dual connections on line bundles 

In what follows, we study the simplest case of instantons: the case of anti-self-dual 
connections on complex-line bundles. While these do not lead to any 4-manifold 
invariants (indeed, their moduli space is either empty or a single point1), they play 
a fundamental role in both Donaldson and Seiberg-Witten theories. 

Anti-self-dual connections on line bundles are the place where bi enters gauge 
theory to never leave it again. Indeed, in both theories, anti-self-dual connections 
on line bundles correspond to reducible solutions. According to the general program 
outlined at the beginning of the chapter, we should try to avoid them. Thus, this 
whole note is concerned with finding, and then avoiding, these simple instantons. 
The techniques employed are elementary gymnastics with self-dual/ anti-self-dual 
2-forms. 

Notations. In what follows, we will denote by 

nk = r(Ak(TM)) 

the space of global k-forms on M. In particular, 0.0 = {!: M ---> lR}. We will also 
denote by [lk I u the space of local k-forms defined on U. 

The exterior derivative acts as a collection of maps d: [lk ---> [lk+ 1 . When we need 
to make obvious to which such map we are referring, we will write 

dik: nk ____, nk+l . 

If M is endowed with a Riemannian metric, then i\2 (TM) splits into self-dual and 
anti-self-dual parts. We will correspondingly denote Oi = f(A}:(TM)), thus 
completing a splitting 

Accordingly, the operator dj 1 : 0.1 ---> 0.2 splits into dl 1 = d+ EB d-, with 

d+: n1 ___, n~ 

d+ IX= (dtx )+ 
and 

d-: n1 ___, n~ 

d-IX = (dtx)-

1. If M is not simply-connected and has H 1(M;R) f= 0, then the moduli space is either empty or a 
copy of the torus H 1 (M;R)/H1(M;Z). 
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Finally, we adopt the slightly illogical notation-convention customary in gauge 
theory: we will denote a connection by2 A, acting through the operator dA and 
the covariant derivative VA, and with curvature FA. 

Connections and curvatures. Let L be a complex-line bundle, endowed with a 
Hermitian fiber-metric or, equivalently, with a U( 1) -structure. Further, assume 
that {gall: Ua nUll ---;51 } is its U(1)-cocycle. A U(1)-connection A on Lis an 

operator dA: f(L) ___, f(L) . 

It is determined by a family of local imaginary-valued 1-forms Aa E i 0 1 1 Ua, with 

dA crlua = d~ + Aa · ~, 

where era : Ua ---; C is the representation of cr in local coordinates of L over Ua. 

The local 1-forms Aa are related to each other by Aa = All + g;:J dgall' where 
dgall is the imaginary-valued 1-form representing the differential3 of gall· If the 
Ua 's are simply-connected, then we can represent the gall's as gall = eifafl for 
suitable functions fall: Ua n Ull ---) lR, and then the coordinate-change is written 
Aa = All + i dfall· 

The curvature FA of a connection A is given locally by FA I Ua = dAa + A a 1\ Aa, 
but in our context that becomes simply 

FAIUa = dAa · 

More, since Aa = All+ i dfall' it follows that dAa = dAil, and thus FA is a global 
imaginary-valued 2-form, which furthermore is closed. In de Rham cohomology, 
the form FA represents the Chern class of L. In review: 

FA E i02 , dFA = 0, [FA] = -2nic1(L). 

Conversely, given any random closed 2-form <P E i 0 2 so that [ <P] = - 2n i c1 ( L), 
there must exist a connection A on L with FA = <P. Indeed, pick a random con
nection A 0 on L, with curvature FAo. Let <P be any closed imaginary 2-form with 
[<P] = -2ni c1 (L). Then <P- FAo must be cohomologically-trivial, that is to say, 
there exists some 1-form cp E 0 1 so that <P- FAo = i dcp, but then A = A 0 + icp is 
a connection on L whose curvature is exactly FA = <P. 

In conclusion, denoting by Conn ( L) the space of U ( 1) -connections of L, we have: 

Lemma. The map taking a connection to its curvature, 

Conn(L) ___, { <P I <P E i02 , d<P = 0, [<P] = -2ni c1 (L)} 

A f----.+ FA , 
is always surjective. o 

Of course, this map is not injective. To remedy that, we need to consider our 
connections only up to the action of the gauge group ~(L) of L. 

2. This has its origins in physics, where the connection is concretely understood as the family of local 
1-forms A = {A a} that describes the gauge potential of the field FA . 

3. A map g: U--> 51 has differential dg: Tu --> T51. Since T51 =51 x iR, this dg can be viewed as a 
section in TiJ lSI iR, in other words, as an imaginary-valued 1-form dg E i01lu. 
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Gauge transformations. The gauge group, i.e., the group of automorphisms of the 
U(1)-bundle L, can be described simply as 

~(L) = {g: M __, s1}, 

acting on L by complex-multiplication. We prefer to see its action on the sections 
of L as an action by pull-backs:4 for every cr E f(L), the section g · cr is described 
by 

(g • cr)(x) = g(x)- 1cr(x). 

If M is simply-connected, then every g E ~(L) can be written as g(x) = eif(x) for 
some f: M __,JR. Up to translations by 2n, this identifies ~(L) with 0°, that is 
to say, ~(L) = oPj{f: M __, 2nZ}. 

The gauge group has an induced action on connections; in terms of covariant 
derivatives, we have 

That is, the connection g · A is described by 

\i'w·A)CT = (g·\i'A)vcr = g- 1(\70(gcr)) = g- 1g(\70cr) + g- 1dg(V)cr 

\i'Ocr + g- 1dg(V) cr, 

and therefore 
d(g·A) = dA + g-ldg. 

In the simply-connected case, when we can write g = eif, this becomes simply 

(eif) ·dA = dA + idf. 

Simply-connected or not, every g E ~(L) can locally be written as g = eif, and we 
deduce that ~ ( L) always acts trivially on curvatures: 

fig·A) =FA· 

In conclusion, the curvature is a gauge-invariant of connections. 

If two connections A' and A" on L have the same curvature FA' = FA", then their 
local forms must differ by a closed 1-form. Namely, there exists some cp E 0 1 so 
that A'= A"+ icp and dcp = 0. 

Assume that M is simply-connected, or at least that H 1 (M; JR) = 0. Then cp must 
also be an exact 1-form; in other words, there exists a function f: M __, lR so 
that df = cp. Then g = eif is a gauge transformation that takes A" to A', i.e., 
A' = g · A". Thus, two connections have the same curvature if and only if they 
are gauge-equivalent. We have proved: 

Classification Lemma. If M has H 1(M;JR) = 0 (e.g., when M is simply-connected), 
then the map taking a connection to its curvature, 

Conn(L) / ~(L) ~ { cp I cp E i02, dcp = 0, [cp] = -2ni c1 (L)} 

[A] 1----t FA I 

is a bijection. If M has H 1 ( M; lR) -=/:- 0, then this map is nonetheless a surjection. o 

4. This is merely an aesthetic choice, which will make certain formulae look more pleasant later on. 
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Non-simply-connected case. If M has H 1(M;R) i= 0, then a connection on Lis completely 
determined up to gauge by its curvature form, together with its holonomy along a basis of cycles 
(circles) for H 1 (M; R). The holonomy of a connection along a loop is the parallel transport along 
that loop. In the case of a U(l)-bundle, the holonomy is merely a rotation by some angle fJ. 
Thus, a connection A on L is determined up to gauge-equivalence by its curvature FA and by 
its holonomy angles f11, ••• , thetab, (M) E 51 along a basis of H1 (M; R). In other words, for any 
fixed A0 the solutions to the equation FA = FAo make up a torus in Conn(L) /<§(L), isomorphic 
to H 1(M;R)/H1(M;Z). 

Anti-self-dual connections. A connection A E Conn(L) is called anti-self-dual if 
and only if its curvature FA is an anti-self-dual 2-form, or in other words if 

F+ -0 A- . 

To investigate the problem of finding (or avoiding) anti-self-dual connections, we 
will prove that the self-dual part of the curvature classifies connections just as well 
as the whole curvature form: 

Classification Lemma II. If M has H 1 (M; JR.) = 0 (e.g., when M is simply-connected), 
then the map taking a connection to the self-dual part of its curvature, 

Conn(L) / Cff(L) ~ { cp+ I cJ> E i02 , dcl> = 0, [cJ>] = -2ni c1 (L)} 

[A] f---+ Ft I 

is a bijection. If M has H 1 (M; JR.) -=/=- 0, then this map is nonetheless a surjection. 

Proof. The proof rests on the observation that, for any 1-form tX., we have 

a+ tX. = o ~ dtX. = o . 
It is clear that dtX. = 0 implies J+tX. = 0. For the converse, take any 1-form tX. 
and start with Stokes': 

0 = J d(tX.I\diX) = J diXI\diX 

= J (a+ IX + a- IX) 1\ (a+ IX + a- IX) 

= J (a+ IX) 1\ (a+ IX) + ( a-IX) 1\ ( a-IX) , 

after using that 0~ and 0~ are wedge-orthogonal. Further: 

= J (a+ IX) 1\ ( * (a+ tX.)) + (a- IX) 1\ (- * ( a-IX)) 

= J ld+IXI2- J ld-IXI2 . 
Therefore, a+ IX = 0 if and only if a-IX = 0. In particular, if a+ IX = 0 I then 
diX = 0. By linearity it follows that, for any two 1-forms IX and f3 I if a+ IX = 
J+f3,then diX = df3. 

If applied to the local forms Aao describing a connection A, this immediately 
shows that the map 

FA f---+ FJ 
must be a bijection. Combining it with the earlier classification lemma, this 
concludes the proof. o 
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A bit of Hodge theory. As mentioned, once M is endowed with a metric, then one 
can define its Hodge star-operator *: Ak(T'M_) ----+ A4-k(TM). Acting on 2-forms, 
it splits 0 2 into its ( ± 1) -eigenspaces, namely Ot and 0~ . Moreover, by using 
the star-operator we can define the (formal) adjoint to the exterior differential d, 
specifically 

with d* =- *d*. 
Its fundamental properties are: 

and d* d* = 0. 

When we wish to specify which one of the operators d* : ok ----7 ok-1 we have in 
mind, we will write d* lk. 

Any exterior k-form IX with both diX = 0 and d*IX = 0 is called a harmonic k
form. A harmonic k-form is uniquely characterized by its minimizing the length 
II IX 11 2 = J M I IX 12 volM among all closed k -forms IX that representthe same cohomol
ogy class. In other words, a harmonic form offers a minimal representative for 
each cohomology class in Hk ( M; lR) . 

Even more, a harmonic representative always exists and is unique. Therefore, if 
we denote by 

J[k ( M) = {IX E ok 1 diX = o, d* IX = o} 
the space of all harmonic k-forms on M, then we can state 

DeRham's Theorem. On any Riemannian manifold M we have isomorphisms 

J[k(M) ~ Hk(M; IR). 

One of its consequences is the splitting 

ok = J[k(M) EB Im(dlk- 1) EB lm(d*lk+1), 

which is orthogonal with respect to the chosen Riemannian metric on M. 

D 

In the special case of 2-forms on 4-manifolds, we denote by J{_'f ( M) the space of 
all harmonic 2-forms that are self-dual, and by J[}:(M) the space of all harmonic 
anti-self-duals. These J{_'f and J[}: catch the whole 2-cohomology of M: 

Lemma. On any Riemannian 4-manifold M we have the splitting 

J-{2 ( M) = J{_'f ( M) EB J{}: ( M) 
and, correspondingly, 

0~ = J{~(M) EB Imd+ and 

Proof We prove that Ot = J{_'f EB Im d+ . Assume f3 E Ot is orthogonal to 
Im d+ . This means that, for all IX E 0 1, we have 

0= j(f3,d+1X) = !j(f3,d1X+*d1X) 

= ! J (f3, diX) + 1 J ( * {3, diX) 

= J ({3, diX) = J ( d* {3, IX) . 
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Since this happens for all a's, it implies that d* f3 = 0. Further, since f3 is 
self-dual, this implies that df3 = 0. Therefore f3 is harmonic, and we have the 
orthogonal splitting 0~ = Ji'f: EB Im a+. Similarly, 0~ = J{}: EB Im a- . 
Adding 0~ to 0~ yields 

0 2 = Ji'j:(M) EB Ji3:(M) EB Imd+ EB Imd-. 

This compares with the earlier de Rham splitting 0 2 = Ji2 (M) EB Imd EB 
Im d* through the formulae a+ = ~ ( d + d* *) and a- = ~ ( d - d* *), and 
therefore J-{2 = Ji'j: EB J{}: . · 0 

An important consequence of the splitting 0~ = Ji'j:(M) EB Imd+ is that Imd+ 
is an (infinite-dimensional) subspace of 0~ of codimension dim Ji'f: ( M) = bt ( M). 

Self-dual parts of curvatures. We have seen from the classification lemmata that 

{ FJ I A E Conn(L)} = { ¢+ I <P E i02 , d<P = 0, [<P] = -2ni c1 (L)} . 

In what follows, we wish to better locate this space among all imaginary-valued 
self-dual 2-forms from iO~. 

Every two connections A' and A" on L differ by a global 1-form <p E 0 1, so that 
dA' = dA" + i<p. The corresponding curvatures differ by d<p, as FA' = FA" + i d<p. 
Therefore 

{FA I A E Conn(L)} = {FAo} + Imd, 
and hence 

{FJ I A E Conn(L)} = {F]o} + Imd+. 

However, 0~ = Ji'j:(M) EB Imd+, and thus the codimension of Imd+ inside 0~ 
must be bt ( M) . It follows that: 

Lemma. For any Hermitian complex-line bundle L over a Riemannian 4-manifold M, 

we have that { FJ I A E Conn(L)} c iO~ 
is an affine subspace of i 0~ of codimension bt ( M) . 0 

Finding and avoiding anti-self-dual connections. Let us denote by 

ff(L) ={FA I A E Conn(L)} 

the subspace of i 0 2 formed by the curvatures of all U ( 1) -connections on L. As 
we have seen, this is simply the set of all closed 2-forms <P E i 0 2 that represent 
the class -2ni c1 (L). Thus, it does not depend on the Riemannian metric on M. 

On the other hand, if we denote by 

s::+(L) = { FJ I A E Conn(L)} 

the space of all self-dual parts of U ( 1) -curvatures on L, then this affine space 
space does depend on the choice of metric of M. 

Indeed, the choice of metric induces the splitting A2 =A~ EB A~, and thus deter
mines §+ ( L) as the projection of § ( L) onto 0~ : 

§+(L) = pr+ [ff(L)J c iO~. 
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ff(L) 

9.7. Yet another picture 

We are now ready to investigate the solutions to the equation 

FJ = 0, 

which describes the anti-self-dual connections on L. 

A first remark is that, if M has H 1 (M; JR) = 0, then either all the anti-self-dual 
connections on L are unique up to gauge-equivalence, or none exists.5 

A second remark is that the equation FJ = 0 has solutions if and only if the affine 
subspace ff+ ( L) is a linear subspace of i 0~, in other words, if and only if 

0 E ff+(L) I 

where 0 denotes the constantly-zero 2-form. The actual space ff+ ( L) depends in 
an essential fashion on the choice of Riemannian metric on M . 

• o 

iO~ iO~ 

anti-self-dual connections exist anti-self-dual connections do not exist 

9.8. Instanton, no instanton 

A happy case. Assume that c1 (L) · c1 (L) > 0. Then there cannot be any 2-forms a 
so that both [a] = c1 (L) and a+ = 0. Indeed, if such a form existed, we would 
have a=-* a, and hence 

0 < c1 (L) · c1 (L) = j a 1\ a = j a 1\ (-*a) = - j lal 2 ::; 0, 

which is impossible. Therefore: 

5. In general, when H 1 (M; JR) I 0, the anti-self-dual gauge-classes are parametrized by the torus 

H1(M;lR)/H 1 (M; Z). 
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Lemma. If c1 ( L) · c1 ( L) > 0, then for every Riemannian metric on M there are no 
anti-self-dual connections on L. o 
Of course, for c1 ( L) to have positive self-intersection, it is first necessary that 
bi(M) 2: 1. 

Enters Mr Betti. For the general case, recall that bi ( M) is the codimension in i 0~ 
of the affine subspace §+ ( L). 

If bi ( M) = 0, then §+ ( M) = i 0~ and in particular there always exist anti-self
dual connections on L, and they are all gauge-equivalent. 

A look back at Donaldson's theorem. This explains why, in the proof of Donaldson's theorem,6 

for a simply-connected 4-manifold M with negative-definite intersection form, the count of sin
gularities of !m1 was ! {a E H2 (M; Z) I a· a = -1}: Each such class a corresponds to a splitting 
E =La EB L; of the SU(2)-bundle E (with czE = 1) into a sum of complex-line bundles with 
ci(La) =a. Since bi(M) = 0, the bundles La and L; eachadmitananti-self-dualconnection, 
Aa and -Aa, unique up to gauge-equivalence. The two add up to a reducible anti-self-dual con
nection Aa EB -A a on E. The factor i appears because of the symmetry La EB L; = L"'.a EB L_a. 
Since a reducible anti-self-dual connection on E is defined to be one that splits into two connec
tions as above, this shows that we have in fact detected all reducible !-instantons on M. 

If bi ( M) 2: 1, then for a generic metric one expects for §+ ( L) to miss 0 E i 0~, 
and thus for anti-self-dual connections to be avoidable via perturbations of the 
metric. If further bi ( M) 2: 2, then one even expects to be able to avoid anti-self
dual connections on generic paths of metrics. Both these expectations are indeed 
met, and we state: 

Reducible Solutions Lemma. 

- If bi (M) = 0, then, for every Riemannian metric on M, the bundle L must admit 
anti-self-dual connections. 

- If bi ( M) 2: 1, then, for a generic metric, L admits no anti-self-dual connections. 

- If bi(M) 2: 2, then, given any two Riemannian metrics go and g1 on M, each 
without anti-self-dual connections on L, they can be connected by a path of metrics 
gt so that none of them admits anti-self-dual connections on L. 

Sketch of proof. Notice that the splitting 

A2 (TM) = A~(TM) EB A~(TM) 
depends only on the conformal class7 of the Riemannian metric. 

Remarkably, the converse is also true: Consider a random splitting 

A2 (TM) = E+ EB E-

into a direct sum of a subbundle E+, positive-definite for the wedge-product, 8 

and a subbundle E- that is negative-definite, and so that E+ and E- are 

6. See its outline back in section 5.3 (page 243). 

7. Two Riemannian metrics g' and g" are called conformally equivalent if they measure angles in the 
sameway;thatis,ifthereisapositivefunctionf: M-> (O,oo) sothatwehave g'(v,w) = f(x)g"(v,w) 
for all v, wE TM!x, x EM. 

8. A subspace Z C A2 (TM)Ix is positive-definite for the wedge-product if, for every 2-form a E Z, 
we have that the 4-form a II alx orients TM!x in the same way as the chosen orientation of M. 
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wedge-orthogonal. Then there exists a Riemannian metric on M, unique up 
to conformal equivalence, for which i\~(TM) = E±. 

Therefore, the problem of finding a Riemannian metric on M for which L ad
mits no anti-self-dual connections becomes the problem of finding a suitable 
splitting i\2 (TM) = £+ EB E- so that the projection along f(E-) of Sf"(L) 
onto f(E+) does not touch the zero-section 0 E f(E+). In fact, all we need 
is. to find a suitable maximal positive-definite sub bundle £+ because then E
will just be its wedge-complement. Of course, this problem needs only be 
solved fiberwise, in each i\2 1 x. 

The full argument can be read from C. Taubes' Self-dual Yang-Mills connec
tions on non-self-dual 4-manifolds [Tau82], or from S.K. Donaldson and 
P. Kronheimer's The geometry of four-manifolds [DK90, ch 4]. o 

Why do we care? Since anti-self-dual connections on complex-line bundles corre
spond to reducible solutions for both Donaldson and Seiberg-Witten theories (and 
thus justifies the name we gave to the previous lemma), their avoidance for generic 
metrics ensures that the moduli spaces are non-singular manifolds. 

Further, being able to connect two metrics while avoiding reducible solutions im
plies that the corresponding moduli spaces are connected by cobordisms, and thus 
their cobordism class is independent of the Riemannian metric. This guarantees 
that we obtain invariants that depend only on the smooth structure on M, not on 
the particular choice of Riemannian metric. 

Note: Donaldson theory and complex geometry 

Donaldson theory is strongly related to complex geometry, and in what follows 
we will try to clarify this. The main point is that an anti-self-dual connection on a 
bundle will organize the bundle as a holomorphic bundle. 

The notions outlined in what follows will also be of help for understanding the 
relationship between Seiberg-Witten theory and complex/symplectic geometry, 
which will be explained in the end-notes of the following chapter, on page 457 and 
on page 465. 

Complex-valued forms. Let M be a complex surface. The bundles i\k ® C of 
complex-valued forms on Mall split according to type into i\p,q's, depending on 
the number of dz's and dz's needed. While this was already mentioned back on 
page 136, inside the notes at the end of chapter 3, it will be explained again here: 

Forms of degree 0. We denote by i\ 0· 0 the bundle of complex-valued 0-forms i\ 0 ® 
C = i\0•0 . Its sections are all smooth functions f: M ~C. There is no splitting 
here, so we move on: 

Splitting forms of degree 1. If we think of i\1 ®Cas complex-valued 1-forms, i.e., as 
maps T M ~ C that are fiberwise-linear, then, since both T M and C are endowed 
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with complex structures, it only makes sense to split A1 ® C into C-linear and 
C-anti-linear forms: 

with 
A1·0 = {a:: TM--+ C I a: is C-linear} 

A0· 1 = {a:: TM --+ C I a: is C-anti-linear} . 

Correspondingly, every complex-valued function f: M --+ C has its exterior dif
ferential df E f(TM ®C) split into a (1, 0)-part a f E f(A1·0) and a (0, 1)-part 
a f E f(A0• 1): 

If a f = 0, this means that f's derivative is complex-linear, and thus 

f holomorphic . 

In such cases, a f represents the complex derivative of f. 
In effect we have split the (complexified) exterior differential d: f(A0z ®C) --+ 

f(A1 ®C) into two operators 

with 
a: f(A0·0) ---t f(A1·0) 

a: f(Ao,o) ---t f(A0,1). 

The operator a is called the Cauchy-Riemann operator on M (but many other 
versions and generalizations are called the same, as we will see shortly). 

Using local real coordinates {x1.y1, x2.y2} on M, chosen such that z1 = x1 + iy1 
and z2 = x2 + iy2 are local complex coordinates on M, we can define the complex
valued 1-forms dzk = dxk + i dyk and dzk = dxk - i dyk. Then we have locally 

A1·0 = C{dz1, dz2} and A0· 1 = C{d:Z1, dz2}. 

Splitting higher forms. The splitting A1 ® C = A1·0 EB A0· 1 further leads to a split
ting of all complex-valued forms into (p, q) -types. Specifically, we can define AP· q 
as made of all complex-valued forms that can be written locally by using exactly 
p of the dzk 's and q of the dzk 's. Then we have 

10 ® c = Ak,O EB Ak-1, 1 EB ... EB A1,k-1 EB AO,k I 

by summing up all AP,q's with p + q = k. 

For example, complex-valued 2-forms split as 

A2 ®C = A2,o EB A1,1 EB Ao,2. 

These terms can be described coordinate-freely by thinking of any a: E f(A2 ®C) 
as a bilinear skew-symmetric map a:: T M x T M --+ C. Then we have: 

A2·0 = {a:: TM x TM--+ C I a: is C-bilinear}, 

A1•1 ={a:: TM x TM--+ C I a:(iv, iw) = a:(v,w)}, 

A0·2 = {a:: TM x TM --+ C I a: is C-bi-anti-linear} . 

The (0, 2)-forms are conjugate to the (2, 0)-forms: A0·2 = A2·0, while the bundle 
of ( 1, 1) -forms is self-conjugate. 

If M is a Kahler surface, with Kahler form w(v, w) = (iv, wh~, then always 

wEf(A1·1). 
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Splitting differentials. The higher-order differentials d: f ( Ak ® C) -t r ( Ak+ 1 ® C) 
split accordingly: 

dl(p.q) =a+ a with 
d: r(AP·q) ----+ f(AP+l.q) 

a: r(AP·q) ----7 r(Ap.q+l), 

where dl(p,q) den~tes here the restriction of d to sections of AP·q c AP+q ®C. 
These operators a: r(Ap,q) -t r(Ap,q+l) can be defined directly by recursion 
through the formula 

which allows one to backtrack to the basic operator a: r(A0·0) -t f(A0· 1) dis
cussed earlier. Similarly for the i)'s. Of particular importance for us will be the 
operator a: r(A0· 1) -t r(A0,2). 

Finally, notice that, just as we had d d = 0, we also have 

a a= o. 

(This leads to the Dolbeault cohomology Hp,q (M) of M, but notfor us.) 

Almost-complex case. Note that the splitting A 1 ® C: = A 1•0 EEl A0• 1 can be defined in the same 
way on any manifold M that is merely almost-complex.9 In that case, since there are no complex
coordinates on M, the AP·q 's should not be described using dzk 's and d.Zk. Further, while 
d: f(A0 ®C) -----> f(A1 ®C) does split into a+;), the higher-order exterior differentials are 
no longer exhausted by the corresponding sum a+;) (there are extra terms involving the Nijen
huis tensor N, which measures the failure of the almost-complex structure from being induced 
by holomorphic coordinates on M), and hence;);) i= 0. In fact, we have;);) = 0 if and only 
if the almost-complex structure is integrable, i.e., if it corresponds to a complex structure on M. 
This latter statement is the celebrated Newlander-Nirenberg theorem. We will make use of the 
almost-complex case when discussing the Seiberg-Witten equations on symplectic 4-manifolds 
later, in the the end-notes of the next chapter (page 465). 

Relations with self-dual/anti-self-dual 2-forms. Assume that M is Kahler, endowed 
with a Riemannian metric both with (iv, iw) = (v, w) and so that the 2-form 
w(v, w) = (iv, w) is closed. From the metric, on M appears another fundamental 
split of 2-forms, specifically into self-dual and anti-self-dual 2-forms 

A2 =A~ EBA~. 

The two splits are related through: 

Lemma. On every Kiihler surface M with Kahler form w, we have: 

A~ ® c = A 2· 0 EB A O, 2 EB c w I 

A~ ®C = A1• 1 n w..L. 

9. Almost-complex structures will be properly discussed later, in section 10.1 (page 376). 
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Proof. We compute directly, in local coordinates: 

dz1 1\ dzz = (dx1 1\ dxz- dy1 1\ dyz) + i(dx1 1\ dyz- dxzl\ dy1) 

dz1 1\ dz1 = -2i dx1 1\ dy1 

dz1 1\ dzz = (dx1 1\ dxz + dy1 1\ dyz) - i (dx1 1\ dyz + dxzl\ dy1) 

dzzl\ dz1 = (dx1 1\ dxz + dy1 1\ dyz) + i (dx1 1\ dyz + dxzl\ dy1) 

dz2 1\ dzz = - 2i dxz 1\ dyz 

dz1 1\ dzz = (dx1 1\ dxz- dy11\ dyz)- i(dx1 1\ dyz- dxzl\ dy1) 

and, after noticing that w = ~ (dz1 1\ dz1 + dz2 1\ dz2 ), the result follows. o 

It is worth comparing this lemma with the Hodge signature theorem.10 

Also notice that this result still holds for merely almost-complex manifolds, with w still defined 
by w(x,y) = (Jx,y). One would not use dzk 'sin its proof, but some proxy fiber-coordinates in 
TA1181C. 

Holomorphic bundles. A holomorphic bundle E over a complex surface M is a 
bundle defined by a cocycle {ga:~} of transition functions ga:~: Ua: n U~ --+ GLc (n) 
that are required to be holomorphic. For every holomorphic bundle E we can define 
the operator11 

through the two properties 

- aE (f ·£T) = £T0 (a f) + f · aElT, for every f: M--+ C and£ E f(E); 

- aE£Tiu = 0 if and only if £Tis a holomorphic section of Elu· 

This operator is well-defined precisely owing to the fact that the g a:~' s are all holo
morphic. 

The same formulae (but allowing for complex-valued forms in place of the f's 
above) can be used to extend a to general E-valued exterior forms, as operators 

aE: r(E0Ap.q) ---+f(E0Ap,q+1), 

and we always have 

Connections and holomorphic structures. For a smooth complex bundle E --+ M 
over a complex surface M, a complex connection A onE is a C-linear operator12 

dA: f(E) ----+ f(E 0 Tk) . 

The splitting Tk 0 C = A1•0 EB A0• 1 induces a corresponding splitting of the con
nection as13 

with 
()A: f(E) ----+ f(E 0 A1•0) 

a A: f(E) ----+ f(E 0 A0• 1) . 

10. The Hodge signature theorem was stated back in section 6.2 (page 278). 

11. Here, E 181A0•1 = E181c A0•1 . 

12. Here, E 181 TA1 = E 181JR TA1 = E 181c (TA1 181JR C). 

13. Here, E 181 A0• 1 = E 181c A0• 1 . 
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If E were a holomorphic bundle, then the operator a E would distinguish its spe
cial sections: the holomorphic sections. On our merely smooth complex bundle, 
the partial connection a A also distinguishes certain sections of the smooth bundle 
E. This analogy can be taken further. In fact, a structure of holomorphic bundle 
on E is equivalent to a suitable choice of connection: 

Integrability Theorem. A connection A on a smooth complex bundle E over a complex 
surface M defines a holomorphic structure on E if and only if 

dAdA =0, 

and in this case the holomorphic structure of E has aE = a A . 0 

The operators a, aE and a A are all called Cauchy-Riemann operators. 

The converse of this integrability theorem holds true as well: 

If E is a holomorphic bundle, then there exist connections A on E such that a A = aE. 
Such connections A are called compatible with the holomorphic structure of E. This 
remains true if we endow E with a Hermitian fiber-metric and require A to be a 
U ( n) -connection. 

Curvatures. Since the composite a A a A is part of dAdA = FA, one should expect 
that the integrability condition above be translatable as a condition on the curva
ture of A. Specifically, if we think of the curvature FA as a section of End( E) ®JR 
A2 = End(E) ®c (A2 ®C), and since 

a A a A : r (E) _____, r ( E ® A o, 2 ) , 

then it follows that what we need is that the projection of FA on E ® A0• 2 be trivial. 

Corollary. A connection A on the smooth complex bundle E over a complex surface M 
defines a holomorphic structure on E if and only if 

F 0,2- 0 A - . 0 

Choosing a Hermitian fiber-metric on E and restricting to U ( n) -connections on E 
preserves the truth of this statement. 

Furthermore, since for a U(n )-connection A its curvature FA must act by elements 
of u(n), in that case we have F} 0 = - (FJ' 2)*. This implies: 

Lemma. For a U(n)-connection A on E to define a holomorphic structure on E, its 
curvature FA must be a section of End( E)® Au. o 
In other words, FA must be a ( 1, 1) -form. 

Anti-self-duality and holomorphy. Assume again that M is a Kahler surface, with 
Kahler form w. By comparing the splittings 

A2 ® C = A2•0 EB A1• 1 EB A0•2 and A2 = A~ EB A2_ , 

as applied to the curvature 2-form FA, we notice that 

F+ - F2,o + (F+)I, I + F0,2 and A - A A A 
Therefore, the vanishing of FJ would ensure that the curvature is a (1, 1)-form. 
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Corollary. Let E be a smooth Hermitian complex bundle over a Kiihler surface. Then any 
anti-self-dual U(n)-connection A on E defines a holomorphic structure on E. o 

Since all self-dual ( 1, 1) -forms are spanned by w, it follows that 

(Fj) 1•1 = i(FA,w)·w, 

and therefore we also have the converse: 

Corollary. Let E be a holomorphic Hermitian bundle E over a Kiihler surface. Then a 
U ( n) -connection A, compatible with the holomorphic structure of E, is anti-self-dual if 
and only if 

0 

Conclusion. These results show the very strong relation between complex geom
etry and Donaldson theory. Indeed, Donaldson invariants have been especially 
successful in exploring complex surfaces. 

The alliance of gauge theory with complex geometry remains true for Seiberg-Wit
ten theory and will be discussed later.14 Remarkably, in the case of Seiberg-Witten 
theory, the alliance can even be stretched into the almost-complex domain, at least 
as long as we remain under the spell of a symplectic structure.15 

References. The results of this note are due toM. Atiyah, N. Hitchin and I. Singer 
in their classic Self-duality in four-dimensional Riemannian geometry [AHS78], 
and can also be found explained in S.K. Donaldson and P. Kronheimer's The 
geometry of four-manifolds [DK90]. The integrability theorem can be proved 
as a consequence of the Newlander-Nirenberg theorem (on the integrability of 
almost-complex structures) or can be proved directly, under the assumption of 
real-analyticity, by complexifying and using Frobenius' s theorem. 

For the Newlander-Nirenberg theorem, refer to the original paper Complex ana
lytic coordinates in almost complex manifolds of A. Newlander and J. Nirenberg 
[NN57], or, in book-format, see L. Hormander's An introduction to complex anal
ysis in several variables [Hor66, Hor90] or G. Folland and J. Kohn's The Neu
mann problem for the Cauchy-Riemann complex [FK72]. A quick proof of the 
Newlander-Nirenberg theorem under the simplifying assumption that everything 
is real-analytic can be read from S. Kobayashi and K. Nomizu's classic Founda
tions of differential geometry [KN69, KN96, vol. II, app. 8] . 

Note: Equivalence between Donaldson and Seiberg-Witten 

In what follows, we will very briefly outline the relation between the Donald
son and Seiberg-Witten theories, and their conjectured, and almost-fully proved, 
equivalence. 

14. See the argument in the end-notes of the next chapter (Seiberg-Witten on Kahler, page 457). 

15. See section 10.5 (page 409), and the argument in the end-notes of the next chapter (page 465). 
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The Donaldson side. While pursuing their work on the minimum genus problem, 
P. Kronheimer and T. Mrowka in their Recurrence relations and asymptotics for 
four-manifold invariants [KM94b] uncovered a deep symmetry of the Donaldson 
polynomial. 

They called a 4-manifold M of (Donaldson) simple type if the polynomials satisfy 

qp,r+2 = 4qp,r. 

A large class of 4-manifolds are of simple type, and it is conjectured that all sim
ply-connected ones might be so. 

In any case, if M is of simple type, then all the information of the Donaldson 
invariants is enclosed in qp,o and qp,l· One can then define CJp = qp,o if p = hi+ 
1 (mod 2) and CJp = ! qp, 1 if p = hi (mod 2) and build the Donaldson (formal) 
power series: 

Kronheimer and Mrowka showed that the whole information of the Donaldson 
polynomials is actually caught in a few coefficients and homology classes: 

Kronheimer-Mrowka Structure Theorem. If M is of Donaldson simple type and 
bi(M) 2: 2, then the Donaldson series can be written 

:I)M(a) = eia·a r>i. eK;·a 

for some rational coefficients ai E Q, and finitely-many classes Ki E H 2 (M; Z). o 

The classes Ki are called (Donaldson) basic classes. Their remarkable relevance to 
smooth topology became apparent through their role in the adjunction inequality 

X( 5) + 5 " 5 :S Ki " 5 1 

which holds true for all homologically-nontrivial embedded connected surfaces 5 
with 5 · 5 2: 0 and offers lower bounds on the genus needed to represent a given 
homology class by an embedded surface. (The Seiberg-Witten counterpart of this 
result will be discussed in chapter 11.) 

The equivalence. N. Seiberg and E. Witten created their invariant as a physically
equivalent method for evaluating the Donaldson invariants. The equivalence of 
the two theories is summed-up into 

Witten's Conjecture (almost proved). If M is of Donaldson simple type and has 
bi(M) 2: 2, then 

where v(M) = 2 + ~ x(M) +¥sign M, the summation is over all K E H 2 (M; Z) with 
K · K = 2x(M) + 3 signM, and S'WM(x) E Z denotes the value of the 5eiberg-Witten 
invariant on K. 

In particular, this implies that all the Donaldson basic classes must satisfy 

Ki · Ki = 2x(M) + 3 signM, 

while the coefficients ai are merely ai = 2v(M) S'WM(Ki). 



372 9. Prelude, and the Donaldson Invariants 

References. The mathematical program to prove this conjecture was outlined in 
V. Pidstrigach and A. Tyurin's Localisation of the Donaldson's invariants along 
Seiberg-Witten classes [PT95], and most of it has been carried through in a still
growing series of papers by P. Feehan and T. Leness, with the strategy outlined in 
PU(2) monopoles and relations between four-manifold invariants [FL98a], then 
developed in [FL98b, FLOlb, FLOla, FL02b, FL02a], and recently surveyed in On 
Donaldson and Seiberg-Witten invariants [FL03]. 

Even this partial proof of the Witten conjecture has yielded fruits, see for exam
ple P. Kronheimer and T. Mrowka's Witten's conjecture and property P [KM04] 
where they prove the longstanding property-P conjecture for knots. 

Seiberg-Witten theory will be explained in the next chapter, and then the Seiberg
Witten side of the above conjecture will become more clear. 
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of global Riemannian geometry [Pet99], while a beautiful comprehensive one is 
M. Berger's Riemannian geometry during the second half of the twentieth cen
tury16 [Ber98, BerOO]. 

In 1982, just one year after M. Freedman's 1981 classification of topological 4-mani
folds, instantons and gauge theory entered 4-dimensional topology with a bang, 
through S.K. Donaldson's thesis An application of gauge theory to four-dimensio
nal topology [Don83]. The latter contained the result discussed earlier in section 
5.3 (page 243), about definite intersection forms. See also the references back on 
page 266, at the end of chapter 5. 

The polynomial invariants were defined in S.K. Donaldson's Polynomial invari
ants for smooth four-manifolds [Don90]. Many more mathematicians joined the 
instanton party, among them J. Morgan, P. Kronheimer, T. Mrowka, R. Fintushel, 
R. Stern ... 

A comprehensive reference for Donaldson theory is S.K. Donaldson and P. Kron
heimer's The geometry of four-manifolds [DK90]. For a focus on applying gauge 

16. Note that M. Berger's more recent volume A panoramic view of Riemannian geometry [Ber03] is 
not an expansion of the text mentioned above. 
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theory to complex surface, read R. Friedman and J. Morgan's Smooth four-mani
folds and complex surfaces [FM94a]. 

In 1994, Seiberg-Witten theory entered the scene. Since this theory was similar 
in spirit but much easier to manipulate, the Donaldson theory experts were able 
to use their bag of tricks on the Seiberg-Witten invariants, and they very quickly 
obtained a series of astonishing results, which will be discussed in the next chap
ters. Nonetheless, after that explosion the rhythm began to slow down, and the 
front-lines moved rather toward 3-manifolds, with Seiberg-Witten-Floer homol
ogy theories, etc. 





The Seiberg-Witten 
Invariants 

Chapter 10 

lATE introduce the Seiberg-Witten invariants. As background, we start 
V V by looking at almost-complex structures on 4-manifolds, and their 
stronger relatives, symplectic structures. Then, in section 10.2 (page 382), 
we present the common generalization of both almost-complex structures 
and spin structures, specifically spine structures. On top of a choice of 
spine structure, we then write in section 10.3 (page 396) the Seiberg-Witten 
equations and explain how one extracts a 4-manifold invariant from them. 
Section 10.4 (page 404) contains the main properties that govern the behav
ior of these invariants. After that, in section 10.5 (page 409) we detail the 
remarkable behaviour of the Seiberg-Witten invariants on symplectic 4-
manifolds, then in section 10.6 (page 412) we make a few comments on the 
complex case. Indeed, gauge theory is most useful in the close-to-complex 
realm. 

The main text of the chapter will detail only the Seiberg-Witten theory ar
guments that follow from applying the Lichnerowicz formula (stated on 
page 393); it is remarkable how many results follow from this invaluable 
formula. Proofs involving other techniques are exiled to the end-notes; for 
the contents of the end-notes, we refer to their introduction on page 415. 

Note that a truly hasty reader can skip many technical details and just faith
fully jump ahead to section 10.4 (page 404). In the next chapter (starting on 
page 481) we will explore the use of Seiberg-Witten theory in studying the 
problem of the minimum genus needed for representing a homology class 
by an embedded surface. 

-375 
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10.1. Almost-complex structures 

If M is a complex surface, then T M is a complex-plane bundle. For a general 
4-manifold M, if TM can be organized as a complex bundle,1 we say that 
M was endowed with an almost-complex structure. 

An almost-complex structure is called integrable if it corresponds to a com
plex structure on the manifold itself. Of course, most almost-complex struc
tures are not integrable.2 In fact, organizing TM as a complex bundle is a 
simple problem in homology, while covering M with holomorphic coordi
nates is a most delicate and rigid problem. 

The usual way to represent an almost-complex structure is to define in each 
fiber of TM a multiplication by the complex-scalar i. This is achieved by 
specifying a fiber-preserving automorphism J of the tangent bundle that is 
an anti-involution: 

J: TM ~ TM J(l(v)) = -v. 

Given such a J, the bundle T M becomes a complex bundle through the 
complex-scalar action (a+ ib) · w = aw + b](w). Intuitively, it is best to 
think of J as a field of prescribed n/z-rotations. 

Being a complex bundle, (TM, l) has Chern classes. While c2(TM) is just 
the Euler class e(TM) = x(M), the first Chern class is quite important and 
is denoted by 

It is always a characteristic element of M, and finding a good candidate for 
c1 (J) is all that is needed to ensure the existence of a corresponding J, as 
we will see shortly. 

Mimicking complex geometry, we can define the canonical bundle K1 = 
defc TM. More useful in this chapter will be its dual, the anti-canonical 
bundle 

Kj = defc ( T M, l) . 
This is a complex-line bundle of Chern class c1 (Kj) = c1 (TM, l). Often, we 
will denote the class c1 (Kj) directly by Kj or even by K*. 

J -holomorphic curves 

Given an almost-complex structure Jon M, a surfaceS embedded in M is 
called a J-holomorphic curve (or pseudo-holomorphic curve) if its tangent 
bundle is J -invariant: 

J[Ts] = Ts. 

1. Thinking of Mas already oriented, we always require that the complex structure of TM induce the 
chosen orientation of M. 

2. Whether an almost-complex structure is integrable is governed by the Newlander-Nirenberg theo
rem, stated ahead in footnote 42 on page 465. 
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J -holomorphic curves try to play the role that complex curves played for 
complex surfaces, but they are truly successful only on symplectic mani
folds, where one can control their areas. 

Given a J -holomorphic curve, we can always embed its normal bundle 
Ns;M in TMis in such a way that Ns;M is itself /-invariant. In this case 
both Ts and Ns;M appear as complex-line bundles, and the proof of the 
complex adjunction formula transcribes verbatim from page 281, and we 
get: 

Adjunction Formula. If M is an almost-complex 4-manifold and S is a J -holo
morphic curve in M, then we have: 

x(s) + s · s = K*. s, 
where K* denotes the Chern class c1 (f). D 

Thus, the genus of a J -holomorphic curve is completely determined by its 
homology class. 

Be forewarned that later in this chapter we will also encounter an adjunction 
inequality, which applies to random embedded surfaces in 4-manifolds. To 
help avoid confusion, we will often call the above statement the "complex ad
junction formula", and the latter the "Seiberg-Witten adjunction inequality'. 

Finally, notice that the embedding of a J -holomorphic curve S in M en
dows S itself with an almost-complex structure /Irs' which is always in
tegrable and thus organizes S as a complex curve. Often one thinks of a 
J -holomorphic curve as a map f: S c M, and quite often one allows f to 
be merely an immersion or have singularities, just like complex curves. 

Existence of almost-complex structures 

Almost-complex structures are very flexible, and their existence is a mere 
problem in homology: 

Existence Theorem. Assume M admits an almost-complex structure J. Then 
the Chern class of J must satisfy 

c1 (f) · c1 (!) = 3 sign M + zx(M) , 

and c1 (!) must be a characteristic element of M, i.e., an integral lift of wz(TM). 
Furthermore, bt ( M) + b1 ( M) must be odd. 

Conversely, if there exists an integral lift w of w2 ( T M) so that 

w·w = 3signM + 2x(M), 

then M admits an almost-complex structure J with Chern class c1 (!) = w. More
over, assuming either that M is simply-connected or has indefinite intersection 
form, such a class w does exist whenever bt ( M) + b1 ( M) is odd. o 
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The proof is detailed in the end-notes of this chapter (page 420). 

Even without satisfying the condition w · w = 3 signM + 2x(M), from any 
characteristic w one can nonetheless obtain a partial almost-complex struc
ture Jl3 , well-defined over the 3-skeleton of M (or, if you prefer, over M \ 
{point}) and havingtheChemclass3 c1 (!13 ) = w. As we will see in the next 
section, such an almost-complex structure on the 3-skeleton is nothing but 
a spine structure on the manifold M. 

Almost-complex structures, Riemannian metrics, 2-forms 

In what follows we will see that almost-complex structures, exterior 2-
forms, and Riemannian metrics, when suitably compatible, in fact deter
mine each other. 

From almost-complex structures to 2-forms. A Riemannian metric on M 
is said to be compatible with the almost-complex structure J (or is called a 
Hermitian metric for J) if J acts by isometries, 

(lx, Jy) = (x,y) . 

In particular, J becomes skew-symmetric, (Jx, y) = -(x, Jy). A mani
fold endowed with a compatible pair of an almost-complex structure and a 
Riemannian metric is called almost-Hermitian manifold.4 Such compatible 
metrics always exist. 

The presence of a metric on M establishes an isomorphism T M ~ TM. This 
isomorphism transports the canonical identity5 HomR ( T M, T M) = TM 0 
TM to an isomorphism Hom(TM, TM) ~ TM 0 TM. Specifically, an endo
morphism f: TM --t TM is identified with the bilinear form £X1(x,y) = 

(f(x), y). Further, under the identification Hom(TM, TM) ~ TM 0 TM 
the skew-symmetric endomorphisms of T M correspond precisely to the el
ements6 of A2(TM) c TM 0 TM. 

Applying this to the almost-complex structure J: T M --t T M itself, we ob
tain the exterior 2-form 

w(x,y) = (lx,y), 

3. Since the Chern class is an element of H2 (M;Z), it is determined only by interactions inside the 
3-skeleton of M, and thus c1 (!1 3 ) is a well-defined element of H2 (M;Z) even though Jl3 is not glob
ally defined on M. In other words, take c1 (!1 3 ) E H2 (MI3 ; Z) then pass it through the isomorphism 
H2 (MI 3 ; Z) ~ H2(M;Z). 

4. If J were integrable, it would be called a Hermitian manifold. Kahler surfaces are particular instances 
of Hermitian manifolds. 

5. Given two finite-dimensional vector spaces V and W, the canonical isomorphism Hom(V, W) = 
v• Q9 W is established by sending each linear map f: V -> W to the vector L: e; Q9 f ( ek) in v• Q9 W, 
for some random basis { ek} of V. 

6. This can also be viewed as a consequence of the canonical isomorphism so(4) ~ A2 (R4 ). 
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which is called the fundamental 2-form of J. 

On the other hand, the presence of the Riemannian metric splits A2 into 
self-dual/ anti-self-dual parts. Since J is assumed to respect the orientation 
of M, the fundamental 2-form must always be a self-dual2-form: 

w E f(A~(TA1)). 

Indeed, at every point x of M, and for every choice of orthonormal basis 
{ e1, ez, e3, e4} of TMix so that Je1 = ez and Je3 = e4, we have 

wlx = e1 1\ e2 + e3 1\ e4 , 

where ek = ( · , ek) make up the dual frame of TM. The fundamental form 
w has constant length vfi. 

The bundle A~ splits as 
A~(TA1) = lRw E9 K*, 

where K* is identified with the anti-canonical bundle of J. 

From 2-forms to almost-complex structures. Conversely, consider a fixed 
Riemannian metric on some 4-manifold. Then each nowhere-zero section 
of A;_ determines an almost-complex structure on M. Specifically, after 
rescaling such a section to a 2-form w of constant length V2, we define 
the corresponding almost-complex structure J by the equation 

(fx,y) = w(x,y). 

Then w becomes the fundamental form of J, and the anti-canonical bundle 
K* of J appears as the complement of w in A;_. 

Therefore, in the presence of a metric, compatible almost-complex struc
tures on M correspond perfectly to sections in the sphere-bundle 

SA~(TA1) I 

made from spheres of radius vfi. This creature is known as the twister bun
dle7 of M. Its S2 -fiber can also be thought of as the quotient SO( 4) / U ( 2). 

In light of all this, it follows that a good way to visualize an almost-complex 
structure J is as a global field of rotations of angle njz in the fibers of T M. 

7. SeeM. Atiyah, N. Hitchin and I. Singer's Self-duality in four-dimensional Riemannian geometry 
[AHS78] for a study of this bundle. Its total space itself admits an almost-complex structure, obtained 
by lifting the almost-complex structure of M and combining it. with the natural complex structure of 
the fibers 52 = CJP1 . This almost-complex structure on the twistor space is sometimes integrable, and 
then allows to translate the smooth geometry of M into the complex geometry of the twistor 3-fold. 
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From almost-complex structures and 2-forms to metrics. In the absence of 
any metric, we say that a random 2-form w E f(A2 (TM)) is compatible 
with a given almost-complex structure J if we have 

w(Jx, Jy) = w(x,y) . 

We say that w tames J if w is positive on any complex-plane of J: 
w(x,fx) > 0. 

If both above conditions are met, then w and J define a Riemannian metric 
on M through the formula 

(x,y) = w(x,fy). 

This metric is compatible with J, and w becomes f's fundamental 2-form 
(in particular, w becomes self-dual). 

In conclusion, any two of J, w and ( · , · ) , when suitably compatible, de
termine uniquely the third. 

Symplectic manifolds 

Symplectic, between almost-complex and Kiihler. Consider a 4-manifold 
M endowed with an almost-complex structure J, a compatible Riemannian 
metric, and the corresponding fundamental 2-form w. 

Almost-complex case. We already mentioned that, at every point x of M and 
for every choice of orthonormal basis { e1, ez, e3, e4} of TMix so that Je1 = ez 
and ]e3 = e4, we have 

wlx = el 1\ ez + e3 1\ e4 . 

The above is a pointwise equality. While it certainly can be extended locally 
by using some localframe field { E1, Ez, E3, E4} with JE1 = Ez and JE3 = E4 
and w = E1 1\ E2 + E3 1\ E4, this frame field will usually not correspond to 
any coordinates on the manifold M itself. The closer we get to making such 
an extension correspond to coordinates on M, the more special the triplet 
(w, J, (·, ·)) mustbe. 

Symplectic case. If the basis { e1, e2, e3, e4 } of TM I x can be extended around x 
as a local frame field { dx1, dxz, dx3, dx4} that comes from some local coor
dinates { x1, Xz, X3, X4} on M and such that we have 

w = dx1 1\ dxz + dx3 1\ dx4 , 

then w must be a closed 2-form around x. If we can do this around every 
point of M, then w is globally closed, 

dw = 0. 
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In this case, w is called a symplectic structure on M. Such a manifold 
M, together with the compatible metric and almost-complex structure, is 
known as an almost-Kahler manifold. 

Kiihler case. If local frame fields { dx1, dxz, dx3, dx4} as above can be found 
so that, furthermore, we have 

J(dxl) = dxz and 

then the Levi-Civita connection V' must in fact be C-linear with respect to 
J; that is to say, we have V'v (Jw) = J(V'vw). It follows that the fundamental 
form w must be parallel:8 

V'w = 0. 

Even more, it turns out that the almost-complex structure J must be inte
grable. In other words, our 4-manifold M is in fact nothing but a Kiihler 
surface. 

Symplectic, directly. Without reference to any metric or almost-complex 
structure, an exterior 2-form w on a 4-manifold M is called a symplectic 
structure if it is closed and non-degenerate, that is to say, if both 

dw =0 and w!\w>O, 

where the last relation means that the 4-form w !\ w is nowhere-zero and 
compatible with the orientation9 of M. 

Given any symplectic structure w on M, there always exist both compatible 
Riemannian metrics and almost-complex structures Jon M, unique up to 
homotopy. Thus, the previous almost-Kahler configuration can be rebuilt. 
In particular, every symplectic structure has a well-defined Chern class 

This Chern class could also be defined directly as the class of the sub bundle 
of A~ that is complementary to w. 

Notice that, if M admits any symplectic structure w, then, since the class 
[w] has positive self-intersection, we must have 

bi(M) ~ 1. 

Keep in mind that the classes c1 ( w) and [w] a priori have no relationship.10 

8. Parallel for the connection induced on A2 . 

9. A 4-form 1(1 is said to be compatible with the orientation of M if 1(1 is everywhere a positive multiple 
of local forms e1 1\ e2 1\ e3 1\ e4 for { e1, ez, e3, e4} local orienting frames. 

10. Nonetheless, compare with the classification of Kahler surfaces, section 7.4 (page 295). 
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A symplectic structure on a M offers, for every compatible almost-com
plex structure and Riemannian metric, a perfect control over the area of all 
J -holomorphic curves:11 

Area(S) = h w = [w]· S. 

This happens because of the equality vo15 = e A J e = w I 5 for any random 
unit-length e E T$. Therefore, on one hand the area of a J-holomorphic 
curve is constant, on the other hand a J -holomorphic curve is never homo
logically-trivial. 

In many respects, the almost-complex structures that are tamed by sym
plectic forms are as-close-as-it-gets to the complex world. Symplectic 4-
manifolds have been a very fruitful subject of recent research. Nonetheless, 
their presence in this volume is meager. 

In the following section, by moving in the opposite direction-away from 
Kahler surfaces-we will generalize almost-complex structures until they 
become available on every 4-manifold. Such structures are known as spine 
structures. 

spine 4-manifolds 

10.1. Cutting the 4-manifold cake, II 

10.2. Spine structures and spinors 
In this section we describe the ingredients that are needed for merely writ
ing the Seiberg-Witten equations. The equations are built on top of a choice 
of spine structure. The latter is the offspring of crossing spin structures 
with almost-complex structures. An advantage is that, unlike any of its 

11. Controlling the area of J -holomorphic curves is essential in proving Gromov' s compactness theo
rem, which is stated in the end-notes of this chapter (page 471). 
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parents, a spine structure always exists on every 4-manifold. On the other 
hand, every spin structure is a spine structure and every almost-complex 
structure is a spinC structure. After having presented one of the parents 
above, we start with a very brief review of the other progenitor below: 

Spin structures, hurriedly revisited 

We have met spin structures before, in section 4.3 (page 162). There, we 
defined them in terms of partial trivializations of T M. After that, in the 
extensive notes at the end of chapter 4, we explained the equivalence with 
a more common differential-geometric definition.12 It is the latter, cocycle
based version, that we now favor, and we review it below: 

Playing with cocycles. Pick a random Riemannian metric on M; this ex
hibits the tangent bundle TM as an S0(4)-bundle, glued-up by an S0(4)
valued cocycle 

with maps defined on the overlaps of some open covering { Ua} of M. Such 
a collection of transition-functions satisfies the cocycle condition 

ga[3(x) · g[31 (x) · g1a(x) = id. 

If M has w2 (TM) = 0, then this S0(4)-cocycle of TM can be lifted to a 
cocycle with values in the simply-connected group 

Spin(4) 

that doubly-covers SO( 4). That is to say, there will exist maps laf3 fitting 
in the diagram 

UanU13 --t 

II g«~ 
UanU13 ~ 

Spin(4) 

l 
S0(4) 

and so that the laf3's themselves still satisfy the cocycle condition 

Such a lifted cocycle is called a spin structure on M and is considered only 
up to cocycle-isomorphisms. 

12. The note on page 174 explained cocycles and the definition of spin structures in those terms. The 
note on page 181 proved the equivalence of the extendable-trivializations definition with the cocycle
based definition. The note on page 189 put cocycles (and spin structures) in their natural habitat, Cech 
cohomology. The note on page 204 described spin structures in terms of classifying spaces. 
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Bundles, connections, and Dirac operators. Using the isomorphism 

Spin(4) = SU(2) x SU(2), 

we can immediately project any Spin(4)-cocycle onto two SU(2)-valued 
cocycles. These can then be used to glue-up two SU(2)-bundles with com
plex-plane fibers, denoted by 

s- -+M and s+--+ M. 

These are called the bundles of spinors of our spin structure. A section in 
one of these bundles is called a spinor field. 

It happens that these spinor bundles s± always come from birth equipped 
with a bit of extra structure, namely a so-called Clifford multiplication 

TM xs+ ~s-. 

For every fixed v E T M, if we look at the map s+ --+ s- : cp f-----+ v • cp 
and combine it with its adjoint s- --+ s+, then we will bring to light the 
defining property of this Clifford multiplication: we must always have 

V•(V•lp) = -lvl 2 ·cp. 

(Clifford multiplication can be modeled by quaternion multiplication.) 

On the other hand, the Riemannian metric on M endows T M with its Le
vi-Civita connection \7. This connection lifts and then projects through the 
diagram13 

SU(2) <--
P-

Spin(4) 

1 
S0(4) 

-------> 
P+ 

SU(2) , 

first from S0(4) up to Spin(4), and then to the two copies of SU(2). Hence, 
it generates an SU(2)-connection \7± on each of the spinor bundles s±. 
Combining this connection \7+: r(S+) --+ r(S+ 0 TM) with the Clifford 
multiplication T M X s+ --+ s-: ( v, cp) f-----+ v • cp yields the Dirac operator 

Specifically, V can be described as 

'Dcp = L>k • \let o/ 

for any local orthonormal frame { e1, e2, e3, e4} in T M. 

13. In fact, V' lifts and then projects through the diagram of Lie algebras corresponding to the diagram 
of Lie groups that is exhibited above. 
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The Dirac operator is a linear first-order elliptic differential operator, whose 
symbol is the Clifford multiplication, and whose (complex) index14 is 

Index D = -k signM. 

The Dirac operator (and its many versions) is, in many ways, the essential 
elliptic operator. 

The importance of these notions in differential geometry can hardly be 
understated. For example, the Dirac operator played an essential role in 
the proof of the Atiyah-Singer index theorem. Look at B. Lawson and M
L. Michelson's Spin geometry [LM89], while we proceed to twist all the 
above with complex scalars: 

Spine structures 

We briskly describe a complexified version of spin structures. These have 
two fundamental advantages: they exist on every 4-manifold, and they col
laborate well with (almost-)complex structures. 

Definition and existence. If Wz ( T M) f= 0, then there are no global spin struc
tures on M. In other words, every lift gat> of the maps gaf3: Ua n Uf3 -----> 

SO( 4) to SpinC ( 4) can merely be expected to satisfy 

gaf>(x) · gf31 (x) · g1a(x) = ± id, 

and the appearance of some minus signs is inevitable. 

This can be corrected if, instead of attempting to lift to Spin( 4), we lift to its 
complexified version, to the group Spine ( 4). This complex spin group can 

be defined as SpinC(4) = U(1) x Spin(4) / ±1. 

As such, it admits a natural double-cover projection 

Spine (4) ----+ U(1) x S0(4), 

which over S0(4) looks like Spin(4) -----> S0(4), while over U(l) = S1 it 
looks like the squaring double-cover U ( 1) -----> U (1) : z ~ z2 . These two 
parts can be separated into two projections 

U(1) ~ Spinc(4)----+ S0(4). 

Now, given any S0(4)-cocycle {gaf3} for TM, we can lift it to some collec
tion of SpinC ( 4) -valued maps g~f' that will fit in the diagram 

Ua n Uf3 ----+ Spine ( 4) 
II g~~ 1 

Ua n Uf3 ~ S0(4). 

14. For every (complex-)linear differential operator P: r(E) ---> f(F), its index is defined as Index P = 

dime Ker P - dime Coker P, or, if one prefers, dime Ker P - dime Ker P* . 
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If, moreover, these lifted maps satisfy the cocycle condition 

g~f3 (X) · gp1 (X) · g~a (X) = id 1 

then the Spine ( 4) -cocycle {g~f3}, considered only up to cocycle-isomor
phisms, will be called a spinC structure on M. The beauty is that we have: 

Lemma. Every smooth 4-manifold admits spine structures. 

Proof Choose a characteristic element w (an integral lift of w2 ( T M) ) 
and represent it as an embedded characteristic surface ~ in M. As 
was mentioned before, 15 the complement M \ ~ always admits a spin 
structure, and such a spin structure cannot be extended across~-

Think of such a spin structure as a trivialization of TM over the 1-
skeleton of M \ ~ that extends across the 2-skeleton of M \ ~' but 
not across disks normal to ~. This outside trivialization can then be ar
ranged to offer a trivialization of T M over the fibers of the circle-bundle 
SNr;;M of ~'s normal bundle. Its non-extendability across ~means 
that the trivialization of T M over each such circle must describe the 
nontrivial element of 1t1 S0(4) = Z2, that is to say, it must undergo a 
rotation of 2n, as suggested in figure 10.2. 

10.2. Outside spin structure, not extending across a characteristic surface .E 

The surface ~ is the obstacle to extending the outside spin structure on 
M \~across all M. To cross~' we need to somehow effect a 2n-twist. 
If we think in terms of spine structures, then we have a new degree 
of freedom coming from the '5 1-factor of Spine ( 4). Therefore we can 
now extend the outside spin structure of M \ ~ as a spine structure s 
across all M, by passing across ~through the use of a 2n-twist in the 
'5 1-factor. o 

15. In the end-note on page 179, and better argued in Cech-cohomological terms in the end-note on 
page 1%, both inside chapter 4. 
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A proof of a different flavor, using cocycles and Cech cohomology, will be 
detailed in the end-notes of this chapter (page 423). 

In any case, notice that the argument hinges on the fact that the Stiefel
Whitney class can always be lifted to some integral class w. Even more, 
when H2(M;Z) has no 2-torsion, e.g., when M is is simply-connected, 
then the resulting spine structure is uniquely determined by the homology 
class w of the chosen characteristic surface L. 

Also notice that, whether wz(TM) vanished or not has no bearing on the 
argument. Indeed, if wz(TM) = 0 and M admits a spin structure, then, by 
using the natural map 

Spin(4) C U(1) x Spin(4) ---+ Spine(4) 

(which is in fact an inclusion), we can transport the spin structure {gall} to a 
canonical spine structure {g~(:l}. In other words, spin structures are exactly 
those spine structures {g~ll} for which all maps16 det g~ll : Ua n Ull -t U ( 1) 
are constantly 1. Spine structures are generalized spin structures. 

On the other hand, there is an alternative definition of spine structures, 
noticed by R. GompfP A spine structure on a manifold X is an almost
complex structure on the 2-skeleton of X that can be extended across the 
3-skeleton of X. In particular, this implies that any almost-complex struc
ture defines a canonical spine structure. Spine structures are generalized 
almost-complex structures as well. 

We will explore the link to almost-complex structures in more detail later, 
but first we need to introduce a new creature: 

The determinant line bundle. Remember the natural map 

Spine (4) ~ U(1) 

induced by U(1) -t U(1): z 1---t z2 . Given a spine structures= {g~ }, it 
can be projected to a U ( 1) -valued cocycle { det g~f3}, which can then ~e let 
act on C and thus glue-up a complex-line bundle 

.C-tM. 

This is called the determinant line bundle of the spine structure s. Its Chern 
class c1 (.C) is called the Chern class of the spine structure, denoted by 

c1(s) = c1(.C). 

This class is always a characteristic element of M and coincides with the w 
used in the proof of the existence lemma. 

16. Remember that we denoted by det the natural projection Spine (4) -+ U(l) induced by the squar
ing U(l)-+ U(l): z ,_. z2 . 

17. SeeR. Gompf's Spin C.-structures and homotopy equivalences [Gom97, p 48] 
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Building the determinant line bundle. To better visualize £ in relation to its 
spinC structure .s, we can proceed as follows: 

In the spirit of the existence proof above, first we represent the class c1 (.s) 
by a characteristic surface 1: embedded in M, then we endow M \1: with 
a non-extendable spin structure corresponding to .s. Then we can view the 
determinant line bundle £ of .s as that bundle which records the U(l)
twists used while extending the outside spin structure across 1: as the 
spinC structure .s. 
Moreover, the determinant bundle £ also admits a direct description in 
terms of the embedding of the surface 1: in M: Start with its normal bundle 
Nr:.;M and think of Nr:.;M both as an oriented-plane bundle (and thus as a 
complex-line bundle) p: Nr:.; M ---t 1: and as a tubular neighborhood of 1: 
in M. Then pull-back the bundle N r:.; M over itself to get p* N r:.; M, as in 

p*Nr:.;M -----> Nr:.;M 

1 
M ~ Nr:.;M 

p 
-----> 

We think of the resulting p* Nr:.; M as a complex-line bundle defined over 
the neighborhood Nr:.;M of 1: in M. 

Notice that this bundle p* Nr:.; M is trivial off .E. Indeed, consider its canon
ical section J: Nr:.;M ---t p*Nr:.;M given by J(v) = (v, v): away from 1:, the 
section J is nowhere-zero, and thus trivializes p*Nr:.;M over Nr:.;M \1:, as 
in figure 10.3. 

p*N:E/M 

M 

10.3. Building a line bundle of Chern class [ E] 

We are thus looking at a line bundle p*Nr:.;M defined over Nr:.;M c M and 
canonically trivialized away from .E. We can then take the trivial bundle 
(M \ 1:) x C and, above Nr:.;M \1:, glue it to p*Nr:.;M by using the latter's 
trivialization J. 
The result is a complex-line bundle defined over the whole manifold M, 
endowed with a section (the obvious extension of J) that is zero only at .E. 
This means that we have built a line bundle£ of Chern class c1 (£) = [1:]. 
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Labeling spine structures. We need a comfortable way to refer to the vari
ous spine structures on a 4-manifold. 

Chern classes. On one hand, if H 2(M;Z) has no 2-torsion,18 e.g., when M 
is simply-connected, then the Chern class c1 (.s) determines uniquely the 
spine structure .s. Since this volume is focused on simply-connected 4-
manifolds, we will often refer to a spine structure .s by its Chern class c1 (.s) 
by using the canonical bijection between characteristic elements and spine 
structures 

{spine structures} ~ { w E H2 (M; Z) I w = w2 (TM) (mod 2)} , 

which technically is available only in the 2-torsion-free case. 

Transitive action of H 2 ( M; Z). On the other hand, the set of spine structures 
can also be parametrized by the whole cohomology H2(M; Z): 

{spine structures} ~ H 2 (M; Z) . 

This correspondence is not canonical, as it depends on the choice of a ref
erence spine structure.19 Nonetheless, this parametrization has the advan
tage of working just as well in the presence of 2-torsion. 

The correspondence is established as follows: First fix a random spine struc
ture .s0 = {g~13 }. Then, for each class£ E H2(M; Z), we can twist .s0 by the 
cocycle P-a:f3} of a complex-line bundle Le of Chern class£, thus obtaining 
a new Spine ( 4) -cocycle { Aa:f3 · g~f3}. We denote this spine structure by 

.So+£. 

Note that the corresponding cocycle for the determinant bundle is twisted 
by A~f3' and therefore that we have 

and hence 

Also observe how, if H2 (M; Z) contains classes a with 2a = 0, then .s0 +a 
is a spine structure distinct from .s0, even though their Chern classes coin
cide: c1(.s0 +a)= c1(.s0). 

18. Equivalent to saying that H1 (M; Z) has no 2-torsion. 

19. One says that the set of spine structures is a H2 (M;Z)-torsor, or that H2 (M;Z) acts freely on 
spine structures, or that the set of spine structures is an affine copy of H2 ( M; Z), or even that the set 
of spine structures is an W(M; Z)-principal bundle over a point. As long as we know what we are 
talking about ... 
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Complex interactions. Besides their existence on every 4-manifold, spine 
structures have another advantage over spin structures: spine structures 
collaborate well with the complex world. 

Indeed, any almost-complex structure J (together with a compatible Rie
mannian metric) reduces the cocycle of TM to a U(2)-cocycle. The group 
U(2) can be described as being SU(2) enriched with the determinants from 
the unit-circle S1, as in 

U(2) = S1 x su(2) 1 ±1 . 

Furthermore, since we have a natural inclusion S1 c SU(2) I it follows that 
U ( 2) can be embedded diagonally inside 

Spine(4) = S1 X SU(2) X SU(2) I ±1 

by using the canonical inclusion map 

U(2) c Spine(4): [A, p] f-----> [A, p, A] . 

Therefore, if M is endowed with an almost-complex structure J, then its 
induced U(2)-cocycle can be viewed directly as a Spine (4)-cocycle, and 
thus defines a canonical spine structure, denoted by 

sf . 

We will call such a spine structure an almost-complex spine structure. 

The determinant line bundle of such a spine structure sf is exactly the anti
canonical bundle Kj of the corresponding almost-complex structure J: 

L51 = Kj, and hence Ct (sf) = Ct (J) . 

Conversely, given a random spine structure s on M, we can check whether 
it corresponds to an almost-complex structure by merely verifying whether 
we have 

ct(s) · Ct(s) = 3signM + 2x(M). 

(In a similar vein, a spine structure s can be recognized as corresponding 
to a spin structure by checking whether c1 ( s) = 0.) 

Moreover, every spine structure on M induces a partial almost-complex 
structure Jl3 , defined over the 3-skeleton of M and with Ct (!13) = c1 (s). 
This is further explained in the end-notes of this chapter (page 426). 

If our 4-manifold happens to be a complex surface, or a symplectic man
ifold, or in some other way associated with a distinguished almost-com
plex structure J, then the induced spine structure sf is a natural choice for 
parametrizing all other spine structures with respect to it, and thus writing 
all other spine structures as translates sf+ e bye's from H2 (M; Z). 
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Spinor bundles. Just as we had spinor bundles s± associated to spin struc
tures, so too their generalizations, spine structures, have their own associ
ated bundles. 

On one hand the complex spin group is 

Spine (4) = 51 X SU(2) X SU(2) I ±1 I 

while on the other hand we have 

u(z) = S1 x su(z) 1 ±1 . 

It follows that there are two natural projections 

U(2) f---- SpinC(4) -----+ U(2) 
P- P+ 

[z, s- J +---~ [z, s+· s- J f-----+ [z, s+ J . 

Using these projections, the cocycle .s = {g~.B} can be projected onto two 
U(2)-cocycles {P± (g~13 )}, which can then be used to build two complex
plane bundles, denoted by 

w- ----+ M and w+ ----+ M . 

These bundles are called the bundles of complex spinors or the bundles of 
coupled spinors (coupled, as it were, with£). 

More specifically, we will call w+ the bundle of self-dual spinors and w
the bundle of anti-self-dual spinors. (The more customary name in the liter
ature is bundle of positive/negative spinors.) Their structure group being 
U(2) means that w+ and w- naturally come equipped with a Hermitian 
fiber-metric. The sections of w± are called (coupled) spinor fields. 

Alternatively, one can write directly w± = s± 0 .t:}/2. Even though they do 
not exist globally on M, the bundles s± and .t:}/2 do exist locally on M. This 
formula exhibits £ as the determinant line bundle of the spinor bundles, i.e., 
£ = detc w+ = detc w-, thus justifying£ 's name. In particular, we have 
Ct(W±) = Ct(.s). 

It is worth noticing that, when the spine structure .s corresponds to some 
almost-complex structure J, then the associated spinor bundles can be de
scribed as 

and 

Clifford multiplication. Just as for spin structures, every spine structure 
comes equipped with a Clifford multiplication 

TMxw+ ~w-. 

A concrete quatemion-based description of Clifford multiplication will be 
presented in the end-notes of this chapter (page 432). 
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The Clifford multiplication and its adjoint T M X w- ~ w+ combine in 
the defining property that, for every v E TMix and cp E w+ lx, we have 

V•(v•cp) = -lvl2·cp. 
All complex morphisms from w+ to w- are caught by this Clifford action: 

Holllc(w+, w-) ~ TM ®C I 

meaning that, for every complex-linear morphism f: w+ -----7 w- I there 
exists a unique field v E f ( T M ® C) so that f ( cp) = v • cp. Turning this 
around, we could write T M ®JR C = (W+) * ®c w- and think of the spinor 
bundles as a decomposition of T M into complex bundles. 

The Clifford multiplication extends in the obvious way to all tensor-powers 
of TM, and in particular to exterior forms. In particular, there is an induced 
action i\2 X w+ ~ w+ of 2-forms on self-dual spinors. This action turns 
out to be trivial for anti-self-dual forms, and thus it remains relevant only 

in itS Self-dual part A 2 w+ o w+ 
1~+ X ---+ . 

The latter action catches all trace-free endomorphisms of w+: we thus have 

Endo(W+) ~ ii\~(TM), 

where Endo(W+) = {f E Holllc (w+' w+) I trace f = 0}. This means that 
for every trace-free complex-linear endomorphism f: w+ ----+ w+ there 
exists a self-dual2-form tX E f(A:;_) so that f(cp) = itX. cp. 

Connections and Dirac operators. Unlike the case of spin structures, for 
endowing the complex spinor bundles w± with connections, the Levi-Ci
vita connection 'V alone is not enough. Indeed, our data is now twisted by 
the line bundle £. 

Connections. We choose a random U(l)-connection A on£. Then, by trav
elling along the diagram20 

U(I) 

det r 
U(2) P- SpinC(4) P+ U(2) ~ ------+ 

1 
S0(4) 

we can combine A with 'V inside Spine ( 4), and then project the result onto 
two U(2)-connections 'VA on w+ and w-. 

20. In fact, by traveling along the associated diagram of Lie algebras. 
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If one likes to think in terms of the local equality w± = s± 0 .C/2, then we 
have v A = v± + A l/z, where v± are the connections induced by v on s±. 

Dirac operators. The spinor connection V'A: r(W+) ---+ r(W+ 0 TM) com
bines with the Clifford multiplication T M X w+ ---+ w- to yield the cou
pled21 Dirac operator 

vA: r(w+)----+ qw-). 

Locally, it is described by the formula 

vAcp = LeP V'~cp 
for any local orthonormal frame { e1, e2, e3, e4 } in T M. 

Again, writing locally W± = s± 0 £ '/z, we can also define 1)A = 1) 0 A '/2, 
where 1) is the canonical Dirac operator of the spinor bundles s±. 

The Dirac operator is a first-order linear elliptic operator and satisfies: 

Unique Continuation Property. If cp E r(W+) is zero on an open set and we 
have VA cp = 0, then cp must vanish globally. o 

The similarity with the Cauchy-Riemann operators does not stop here. In 
fact, a good way of thinking about Dirac operators is exactly as generalized 
Cauchy-Riemann operators. 

The symbol of VA is the Clifford multiplication, and its (complex) index is 

IndexVA = k(c1(.s) ·c1(.s) -signM). 

Since c1 ( .s) is a characteristic element, this formula always yields an integer. 

The Lichnerowicz formula. We now state a truly fundamental formula: 

Lichnerowicz Formula (coupled). For every spine structure on M, and any 
connection A on its determinant line bundle .C, we have: 

(VA)* pA q> = (V'A )* V'Acp + i seal ·q> + ~FJ • q>, 

where ( v.A) * is the formal adjoint of the Dirac operator pA; ( \7 A)* is the formal 
adjoint of the connection V'A on w+ induced by A; seal denotes the scalar cur
vature of M; and FJ • cp denotes the Clifford action of the curvature 2-form FA of 
A on cp. D 

Adjoint, you say. Given two bundles E and F on M, endowed with fiber
metrics, and given an operator P: f(E) ---> f(F), we say that an operator 
P*: f(F) ---> f(E) is the formal adjoint of P if and only if 

jM(Ptx, f3) volM = jM(tx, P*f3) volM 

21. Coupled, as it were, with A . 
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for all sections IX E f(E) and [3 E r(F). The word "formal" is used only be
cause the spaces of smooth sections r (E), r (F) are not complete (not Hilbert). 

The Lichnerowicz formula is one of many similar formulae known under 
the name of Weitzenbock-type formulae. Their most frequent use is for 
proving vanishing results by using what is known as the Bochner tech
nique.22 

All gauge-theoretic proofs that will be presented in the main text of this 
chapter will be consequences of the above Lichnerowicz formula. Indeed, 
the Lichnerowicz formula has a remarkable range of applications to Sei
berg-Witten theory. As we will see, it is used to prove that the Seiberg-Wit
ten moduli space is compact and that it is non-empty for at most finitely
many spine: structures. The same formula will also show that the Seiberg
Witten invariants vanish on manifolds of positive scalar curvature and will 
be used to argue that the invariants vanish on connected sums. Another 
consequence is the behavior of the invariants under blow-ups. The formula 
is even used in proving the celebrated adjunction inequality that controls 
the genus of embedded surfaces, as we will see in the next chapter. 

Of course, at this early moment we still need to define the Seiberg-Witten 
invariants. For that, we introduce a few more creatures: 

Leftovers. We need to briefly discuss the squaring map (J': w+ ---t i A~ I the 
curvature form FA of the connection A on £,, and the gauge group r.1 ( £,) 
of£, with its action both on Conn(£) and on r(W+). 

The squaring map. The squaring map is the unique fiber-preserving map 

cr: w+ ---t iA~(TM.) 

that for every qJ E w+ satisfies the equality 

cr(qJ)•qJ = tJqJJz·qJ. 
While the squaring map has gained prominence especially after the birth of 
Seiberg-Witten theory, it was known and used before.23 

An alternative for defining the squaring map is encoded in the formula 

cr(<p) = <p® <p* -11<fJI 2 id. 

Specifically, a fixed spinor <p E w+ can be viewed as acting on other spinors 
through the c -linear endomorphism <p ® <p* : w+ ----+ w+ described by tfJ 1----+ 

(tp, <p)c · <p. Its trace-free part is <p ® <p* -11<fJI 2 id. The squaring map cr 
points to the imaginary 2-form cr( <p) whose Clifford action on w+ is the 
same as this trace-free action of <p. 

22. See the end-notes of this chapter (page 474) for more Weitzenbock-type formulae and a few vanish
ing results. 

23. See for example B. Lawson and M-L. Michelson's Spin geometry [LM89, sec IV.lO]. 
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It is easy to check that 

If we restrict cr to the 3-sphere of radius 2 inside the fiber w+lx, then its 
image will be the 2-sphere of radius v'2 inside ii\?-+ lx. Hence, if we ignore 
scaling constants 2 and v'2, then we see that the restriction of the squaring 
map to sphere-fibers is exactly the Hopf map. 24 Moreover, since we have 

cr(rtp) = r2cr(tp) 

for every r E JR., we can think of the whole cr as a "squared-cone" on fiber
wise Hopf maps. 

A more concrete, quaternion-based, description of cr will be presented in 
the end-notes of this chapter (page 432). 

The curvature form. Another object relevant for the Seiberg-Witten equa
tions is the curvature form FA of the U(l)-connection A on£. 

Since the Lie algebra of U( 1) = S1 is simply i JR., the curvature FA must 
be an imaginary-valued 2-form. Furthermore, the Bianchi identity dictates 
that FA be closed. In de Rham cohomology, the form FA represents the 
Chern class c1 (.s). In review, we have: 

dFA = 0 I 

The gauge group. Finally, the gauge group r.ff(£) of£ is merely the space of 
all U(l)-valued functions on M: 

r.ff(£) = {g: M --t S1} • 

It has the technical advantage (over Donaldson theory) of being Abelian. Its 
action on £ induces both an action on the connections of £ and an action 
on the spinor fields of w+ . 
We prefer to work our way backwards, from w+ toward £. The action 
of some g: M --t S1 on a spinor field tp E r(W±) is expressed directly by 
scalar multiplication: 

(g · cp)(x) = g(x)-1cp(x). 

(We define this action by anti-multiplication for purely aesthetic reasons. It 
makes the formula for the action on connections look a bit better.) 

Since£ = detc w± (or since w± = s± ® £ 112), the corresponding action 
of r.ff(£) on sections s of£ must be described by 

(g · s)(x) = g(x)-2 s(x). 

24. The Hopf map was recalled in footnote 34 on page 129. 
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This induces a pull-back action on the U(l)-connections A on£, given by 
g · dA =go dA o g-1, and written explicitly as 

g·A =A+ 2g-1dg I 

where dg: M ----t iiR is the differential of g: M ----t S1 . This can be seen 
directly by computing: 

(g·dA)(s(x)) = (godAog- 1)(s(x)) = g(x)-2 ·dA(g(x)2 ·s(x)) 

= g(x)-2 · (d(g(x) 2 ) · s(x) + g(x)2 · dAs(x)) 

= g(x)-2 • 2g(x) dg(x) · s(x) + dAs(x) . 

In particular, if g = eif for some f: M ----t IR, then (eif) ·A= A+ 2i df. 

A more detailed study of connections and curvatures on complex-line bun
dles, and of the action of the gauge group on them, was made in the end
notes of the preceding chapter (page 357). 

10.3. Definition of the Seiberg-Witten invariants 

In this section we discuss the Seiberg-Witten equations and the method 
through which they yield numerical invariants of smooth 4-manifolds. 

After choosing a spinG: structures on M, with associated spinor bundles 
w± and determinant line bundle £1 the objects of interest in what follows 
will be pairs 

(cp,A) I 

where cp E r(W+) is a self-dual spinor field and A E Conn(£) is a U(l)
connection on£. Namely, we will look at solutions (cp,A) to a couple of 
mildly-non-linear elliptic partial differential equations and consider such 
solutions only up to the action of the gauge group Cd(£) described earlier. 

The Seiberg-Witten equations are: 

{ vA cp = o 
Fj = cr(cp). 

As explained before, VA denotes the Dirac operator induced by A, while 
FA is the imaginary-valued curvature 2-form of A, and Fj = ! (FA+ *FA) 
is its self-dual part. Finally, cr: w+ ----t iA~ is the squaring map. 

The moduli space 

The solutions ( cp, A) to the Seiberg-Witten equations are called (Seiberg
Witten) monopoles. The monopoles form a subspace 6 inside the infinite
dimensional configuration space r(W+) x Conn(£). 
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It is easy to check that the Seiberg-Witten equations are invariant under 
the action of the gauge group W(£) = {g: M ----t S1}. Therefore 6 is a 
~#(£)-invariant slice of r(W+) x Conn(£). It thus makes sense to factor 
everything by the action of the gauge group, hence obtaining the moduli 
space 

Obviously, this moduli space depends on the choices of spine structure and 
Riemannian metric. 

Reducible solutions. The stabilizer25 of ( cp, A) under the action of W is triv
ial, unless cp = 0. Since every constant function g(x) = eitJ acts trivially on 
all connections on £, it is not hard to see that the stabilizer of a solution 
(0, A) is isomorphic to S1 . Such monopoles (0, A) create singularities in 
the moduli space, and, in analogy with Donaldson theory, are called re
ducible solutions. 

When cp = 0, the Seiberg-Witten equations simply become the equation 

F+ -o A - I 

whose solutions are all anti-self-dual connections on £. As such, this equa
tion was studied at length in the end-notes of the preceding chapter (page 
357). We have seen there that, if bt ( M) ~ 1, then all solutions can be 
avoided for a generic metric. If further bt ( M) ~ 2, then all solutions can 
be avoided over any generic path of metrics. (As explained there, the role 
of bt is that it represents the codimension of an affine subspace of r (A~) 
that can be missed by perturbing the metric.) 

In particular for us, if bt ~ 1, then reducible monopoles do not appear 
at all for a generic choice of Riemannian metric. In this case the action of 
!#(£) on the solution space 6 is free, and hence the orbit space 9J1 has a 
better chance of being well-behaved. Indeed: 

They are manifolds. One proves that, away from the reducible solutions, 
the moduli space is a manifold. Therefore: 

Theorem. 

- If bi(M) ~ 1, then, for a generic Riemannian metric, the Seiberg-Witten 
moduli space 9J1 is either empty or is a smooth manifold of dimension 

dim9J1 = i(c1 (s?- 2x(M)- 3 signM) . 

- If bi(M) ~ 2, then, for every two generic metrics go and g1 and every 
generic path gt connecting them, all corresponding moduli spaces 9.nt are 
smooth manifolds (maybe empty) and draw a smooth cobordism between 9J10 

and 9J11 . o 

25. The stabilizer of (cp, A) is the subgroup {g: M---> 51 I g. cp = cp & g. A= A} of~(£) 0 
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The proof of this theorem will be discussed in detail in the end-notes of this 
chapter (page 439). 

Alternatives. For proving that VJt is a manifold, the standard development 
of the theory usually involves, instead of perturbing the metric alone, also 
perturbing the second Seiberg-Witten equation to FJ = cr( cp) + i q+ for some 
parameter q+ E f(A;_). In fact, this is the approach that we will take in the 
end-notes. This perturbative approach is also fruitful for the application of Sei
berg-Witten theory to symplectic manifolds, where a suitable q+ is grown to 
infinity, as will be seen in the end-note on page 465. A proof that it is sufficient 
to perturb only the Riemannian metric and not the equations can be read from 
T. Friedrich's Dirac operators in Riemannian geometry [FriOO, app A], after 
some background help from D. Ebin's On the space of Riemannian metrics 
[Ebi68]. 

The main consequence of the above theorem is that, when bt (M) ~ 2, the 
Seiberg-Witten moduli space 9J1 determines a well-defined bordism class 
inside r(W+) x Conn(£) / r.§, which depends only on the manifold M 
and on the choice of spine structure .s, but not on the Riemannian metric. 
Therefore, by evaluating various cohomology classes on 9J1, we can obtain 
numerical invariants of the 4-manifold M, which will depend only on the 
Chern class c1 (.s). 

Most of them are empty. At most finitely-many spine structures are actu
ally worth investigating: 

Finiteness Theorem. The Seiberg-Witten moduli space is non-empty for at most 
finitely-many spinC structures. 

Proof We first obtain a bound on the curvature FA of any solution 
(q>, A), then remember that [FA] = -2ni Ct (.s) and restrict to positive
dimensional moduli spaces to conclude that c1 (.s) must be confined to 
a finite subset of H 2 ( M; Z). 

Integral Curvature Bound. If ( q>, A) is a solution to the Seiberg-Witten 
equations, then we must have: 

2v'2 IIFJ II :::; II seal II , 
where II ·II denotes the L2-norm 11~11 2 = JM 1~1 2 vo~. 

Proof of the integral curvature bound. Choose any solution ( q>, A) 
of the Seiberg-Witten equations. Then VA q> = 0 and Fj = cr( q>) . 
Plugging this into the Lichnerowicz formula 

(VA)* VA q> = (VA)* VAq> + ~seal ·q> + !FJ • q> 

yields immediately 

. 0 = (VA)* VAq> + ~ scal·q> + ~ I£PI 2 · q>. 



10.3. Definition of the Seiberg-Witten invariants 

Take the inner-product with cp to get 

0 = (('VA)* 'VAcp, cp) + !(seal·cp, cp) + ! lcpl 4 • 

Then integrate over M (using the Riemannian volume volM, which 
we drop from notation) and use that ('VA)* is adjoint to 'VA: 

0 = j I'VAcpl2 + ! j seal·lcpl2 + ! j I'PI4 . 

We rearrange this equality by separating the seal-term, then use 
the Cauchy-Schwarz inequality on the right and something-not
worth-a-name on the left: 

i J I'PI4 < J I'VAcpl2 + ! J I'PI4 = 

i J (-seal) I'PI2 ~ i (j (seal)2r2 (/ I'PI4r2. 

Dropping the middle and canceling gives 

However, Ia-( cp) I = 2-Jz I cp 12 and a-( cp) = Fj, so we write: 

2J2 (/1Ft l2f 2 ~ (/ (seal)2f 2, 

which, when written in terms of L 2-norms is exactly the statement 
claimed above. o 

We now relate IIFJII to c1(£). 

Lemma Z. Let a be any closed 2-form on a 4-manifold. Then: 

[a J · [a J = I Ia+ 112- lla-112 · 
Proof of lemma Z. Using that a+ 1\ a- = 0, that *a+ = a+ and 
*a- = -a-, and that f31\ * f3 = lf31 2, we compute 

[a]·[a] = Jal\a = j(a++a-)1\(a++a-) 

= j a+ 1\ a+ + j a- 1\ a-

= ja+l\(*a+) + ja-1\(-*a-) 

= j la+l2- j la-12, 
which yields the promised formula. 0 

399 
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We apply this lemma to FA and, since dn [FA] = c1 (£),we get 

4n2cl (s? = liFt 11
2 -I IF; 11

2 s liFt 11
2 s ~ llscaiii 2 · 

We have obtained an upper bound on c1 (s) · c1 (s), depending only on 
the geometry of M. 

For a lower bound on c1 (£) · c1 (£),we notice that it only makes sense 
to look at those moduli spaces that are expected to be of positive di
mension. Using the formula dimM = Hc1(s) 2 - 2x(M)- 3signM), 
we conclude that 

2x(M)- 3signM S c1(s) · c1(s) S 32~2 llscaJII 2 . 

Therefore only finitely-many choices of c1 (s) from the integral lattice 
H 2 (M; Z) have any chance to yield non-empty moduli spaces. o 

Remember that, after we stated that 9J(: was a manifold, we also claimed 
that we will obtain numerical invariants of (M,s) by evaluating cohomol
ogy classes on M. That requires a couple more properties forM: 

They are compact. Of course, for anything like "evaluate cohomology clas
ses on 9)(:" to work, we need 9J1 to be compact. The miracle is that: 

Compactness Theorem. The moduli space 9J(: is always compact. 

Idea of proof. First we obtain a pointwise a priori bound on I cp I : 

Pointwise Curvature Bound. If ( cp, A) is a solution of the Seiberg-Witten 
equations, then either we have 

I cp 12 S max {- seal ( x)} 
xEM 

or cp is identically-zero. 

Proof of the pointwise curvature bound. First off, notice that if a 
function f: M ~ lR has a local maximum at some p E M, then 
it must have ( 11 f) (p) 2 0, where 11 = - E dek dek is the Laplace 
operator.26 

We apply this to the function x f-----1 I cp ( x) 12 . We choose a orthonor
mallocal frame { e1, e2, e3,e4} in TM, and we compute: 

11(lcpl2) =- L:aekdek(cp,cp)JR 

= - L dek 2('\l~cp, cp) 
= -I: 2(\7~'\l~cp, cp) - I: 2('V~cp, 'V~cp)' 

26. Since "'-f = -trace Hessian (f), and a maximum at p implies that all the eigenvalues of Hessian(!) 
are non-positive, it follows that ("'-f)(p) 2: 0. 
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where we have used that 'VA is compatible with the fiber-metric of 
w+. We rearrange to 

~(lcpl 2) + 2 I: /v~cp/ 2 = - L:2\'V~'V~cp. cp). 

Assume now that p E M is the absolute maximum point of lcpl 2 . 

Then ~(lcpl 2) lr 2:: 0. Hence at p we must have 

-2I:('V~'V~cp, cp)lp 2:: 0. 

On the other hand, one can check directly (by inner-product with 
test-spinors tp, integration over M, and using that on compact 
manifolds divergences integrate to zero) the following fact: If the 
chosen local frame { e1, ez, e3, e4} in T M is such that at p the Levi
Civita connection has 'Veiejlp = 0 (so-called geodesic coordinates at 
p ), then we have 

('VA)* 'VAcp = - L 'V~ 'V~cp. 
Therefore, at the maximum point p, we must have 

2(('\?A)*'VAcp, cp)Rip 2:: 0. 

On the other hand, starting again with the Lichnerowicz formula 

(VA)* VA cp = ('VA)* 'VAcp + ~ scal·cp + !F}• cp 

applied to a Seiberg-Witten solution ( cp, A) exactly as in the proof 
of the integral curvature bound (page 398), we are led to 

0 = (('VA)* 'VAcp, cp) + ~scaJ·Icpl 2 + ~ ICJJI 4 • 

At the maximum point p, the first term is positive and that forces 

~ scal(p) lcp(p)l 2 + ~ lcp(p)l 4 :S 0. 

Assume now that cp is not everywhere-zero. Then cp(p) i=- 0 and 
we can cancel, obtaining 

lcp(p)l 2 :S - scal(p). 

Since- scal(p) :::; max{- scal(x)} and lcp(x)l :S lcp(p)l, the result 
follows. D 
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Once this pointwise bound on I cp I has been obtained, one uses a stan
dard (but too long to explain here) "elliptic bootstrapping'' argument 
to bound all higher derivatives of both cp and A, and thus deduces the 
compactness of the moduli space. D 

Therefore, 9J1 determines a well-defined homology class in its ambient. 
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They are orientable. Since we crave for more than merely a homology class 
modulo 2, we should be happy that: 

Orientability Theorem. The manifold 9J1 is orientable. Its orientations corre-
spondtoorientationsofthevectorspace H1(M;JR) ® H~(M;lR). o 
This result will be proved in the end-notes of this chapter (page 447). 

The arbitrary nature of a choice of orientation of 9J1 will make its presence 
felt in a lot of sign ambiguities in later formulae. 

The invariant 

Having thus obtained from the Seiberg-Witten equations some very nice 
moduli spaces, it can be further shown that the natural ambient of 9Jt, the 
space of all connection-and-spinor pairs modulo gauge-equivalence, has 
the homotopy type of CIP00 (when M is simply-connected). Therefore, the 
cohomology ring of this ambient is Z[u] for a degree-2 class u. Hence, if 9J1 
is even-dimensional, then we can evaluate the appropriate class u U · · · U u 
on it and obtain a numerical invariant of M. Thus, we call 

SWM(.s) = jfJJC uk 

the Seiberg-Witten invariant of the spine structure .s. It will depend only 
on M and c1 (.s). 

If the dimension of 9J1 is odd, then all we can do is define 

SWM(.s) = 0 I 

and no information is obtained. Notice that the moduli space is odd-dimen
sional if and only if bt is even, and then the Seiberg-Witten invariants are 
blind. 

The discussion in the non-simply-connected case is similar. The moduli spaces 
are either all even- or all odd-dimensional, depending only on whether 

bt(M) + b1(M) + 1 

is even or odd. In particular, if bi ( M) + b1 ( M) is even, then the homology 
class of 9Jt is trivial and the Seiberg-Witten invariants tell us nothing. 

A bit more about this cohomology-evaluation procedure is explained in the 
end-notes of this chapter (page 452). 

Simple type. This whole issue of evaluating cohomology classes on 9J1 in 
order to obtain numerical invariants of M might prove to be rather moot: 

Simple 'Ijrpe Conjecture (open). For any simply-connected 4-manifold with 
bt ~ 2, if the the Seiberg-Witten moduli space 9J1 is non-empty, then it must be 
zero-dimensional, and thus consist of finitely-many isolated points. 
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If this conjecture were somehow proved, then for obtaining a numerical 
invariant from the Seiberg-Witten equations it would be enough to merely 
count (with signs) their solutions. 

A large class of 4-manifolds for which the above conjecture is proved to 
hold are all the symplectic manifolds. Further, there is no known example 
of a simply-connected manifold with bt ~ 2 that has higher-dimensional 
moduli spaces. 

On the other hand, there are plenty of examples, both of non-simply-con
nected manifolds and of manifolds with bt = 1, that each have Seiberg
Witten moduli spaces of arbitrarily-high dimensions. 

A 4-manifold for which only zero-dimensional moduli spaces appear is 
said to be of (Seiberg-Witten) simple type. 

It is interesting to notice that the zero-dimensional moduli spaces occur 
exactly for those spin<= structures for which 

c1 (s) · c1 (s) = 2x(M) + 3 sign M. 

These are exactly the spin<= structures s1 that are induced from almost-com
plex structures. Notice that in particular bt(M) + b1 (M) would again have 
to be odd for any information to be obtainable.27 

If the above conjecture turns out to be correct, then one could think of the 
Seiberg-Witten invariant as an invariant not of spin<= structures on 4-mani
folds, but rather of their almost-complex structures. 

Conclusion. In what follows, we will assume that the simple type conjec
ture is true. We will entirely restrict the discussion to simply-connected 
manifolds M with bt(M) ~ 2. (While the invariants are quite useful and 
well-understood when bt ( M) = 1, we will not discuss that case here.) 

Specifically, our assumptions imply that, for every spin<= structures on M, 
the corresponding moduli space 9J1 is either empty or a finite set of points. 
It can be oriented, and then the algebraic count of its points is independent 
of the auxiliary Riemannian metric. Hence this count, denoted by 

SWM(s), 

depends only on the spin<= structure s and on the smooth topology of M. 
For us, this will be the Seiberg-Witten invariant. 

We are ready to start investigating its properties: 

27. Remember that if M admits an almost-complex structure, then bi(M) + b1 (M) must be odd. 
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10.4. Main results and properties 

As announced earlier, we tried to make it possible to start reading this chap
ter right here, and in this manner skip all technicalities related to the defi
nition of the Seiberg-Witten invariants. Indeed, all one needs is trust that 
something called "the Seiberg-Witten invariant'' exists as described below. 
The rest of this chapter, up to the start of the end-notes, could be viewed as 
a survey of Seiberg-Witten theory. 

The invariants. The Seiberg-Witten invariant is the map 

SWM: {spine structures on M} ------+ 7L, 

with SWM (.s) defined by counting with signs the solutions of the Seiberg
Witten equations for the spine structure .s, considered up to gauge-equiva
lence: 

SWM(.s) =#({solutions (cp,A) of DAcp = 0 and FJ = cr(cp)} / ~(£)). 

This count is well-defined when bi(M) ;::: 2. (It is still quite manageable 
when bt ( M) = 1, but for simplicity we avoid that case.) 

Characteristic version. In case H2 (M; 7L) has no 2-torsion (for example if M 
is simply-connected), then we can uniquely identify each spine structure .s 
on M by its Chern class c1(.s), which is always an integral lift of w2 (TM)· 
Thus we can think of the Seiberg-Witten invariant as a map defined on the 
characteristic elements of M: 

(Even when H2 (M;7L) has 2-torsion, and thus several spine structures 
correspond to a same Chern class, one can still obtain an invariant defined 
on characteristic elements, by summing over all corresponding spine struc
tures.) 

Parametrized version. An alternative version is to use the parametrization of 
spine structures by the elements of H 2 (M;7L), once an "origin" is chosen. 
That is to say, after choosing your favorite spine structure .s0 , you can view 
the Seiberg-Witten invariant as a map 

SWM(.s0 + ·): H2 (M;7L) ------+ 7L 

by using the free transitive action of H2 (M; ?L) on the set of all spine struc
tures. The latter uniquely lists all spine structures on M as .s0 + e for e E 

H2. Recall that we have c1 (.s0 +e) = c1 (.s0) + 2e. 
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Basic classes. A class K E H2 (M;Z) such that SWM(K) i= 0 is called a basic 
class. Since at most finitely many spine: structures have non-empty moduli 
spaces, things are pretty tight: Every manifold M has at most finitely-many 
basic classes. 

We are now ready to review the main results that govern these invariants: 

Involution. Immediately, by complex-conjugating the spine: structure and 
everything it might support, we get: 

Involution Lemma. If bi ( M) 2: 2, we have the symmetry: 

D 

Scalar curvature. The possible Riemannian geometries of M have influ
ence on the invariants: 

Vanishing Theorem for Positive Scalar Curvature. If the 4-manifold M 
has bi ( M) 2: 2 and it admits a Riemannian metric of everywhere-positive scalar 
curvature, then 

Proof. Once again, we use the Lichnerowicz formula (page 393), 

(VA)* vA cp = C~lA )* "VAcp + ! seal ·cp + ~Ft. cp. 

The argument will be, an instance of what is usually called the Bochner 
technique, i.e., obtaining vanishing results from Weitzenbock-type for
mulae.28 

Exactly as in the proof of the integral curvature bound (page 398), we 
assume that (cp,A) is a Seiberg-Witten monopole, so that VAcp = 0 

and F} = cr( cp) . We plug into the formula, use that cr( cp) • cp = ~ I cp 12 • 

cp, then take the inner-product with cp and integrate over M: 

0 = JM I\1Acpl2 + ! JM seal·icpl2 + ! JM icpl4 . 

After staring at this formula we see that, if there are any monopoles 
( cp, A) on M, then the scalar curvature seal must be somewhere neg
ative. (If seal were everywhere-zero, then the only monopoles would 
be those with cp = 0, but those are reducibles and were avoided in the 
first place.) Of course, this vanishing result also follows directly from 
the pointwise curvature bound on page 400. o 

28. More examples of Bochner-technique results are quoted in the end-notes of this chapter (page 474). 
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Connected sums. From a stretching argument, we get: 

Vanishing Theorem for Connected Sums. Assume that the 4-manifold M 
smoothly splits as a connected sum 

M = N'#N", 

with both bi ( N') ;:::::: 1 and bi ( N") ;:::::: 1. Then 

SWM =:0. 

Sketch of proof. This is proved by metrically-stretching the length of 
the connecting cylinder 

53 X [0,1] 

between N' and N" in N' # N". When stretching, the geometry of N' # 
N" becomes on average dominated by the connecting cylinder 53 x 
[0, 1], which is easily arranged to have positive scalar curvature. This 
implies that all Seiberg-Witten solutions must vanish on this cylinder. 

Therefore any solution on N' # N" must come from a solution on N' 
and a solution on N". In other words, for every spin<= structure on M 
we have 

!m:N' # N" = !m:N' X 9JtN11 • 

When writing this equality, we use that every spin<= structure sN'#N" on 
N' # N" can be nicely split as sN'#N" = sN' # sN" for some spin<= struc
tures sN' on N' and sN" on N". Their Chern classes add in the obvious 
manner. 

Since x(N' #N") = x(N') + x(N")- 2, the dimension formula (page 
397) leads to 

dim9JtN'#N" = dim9JtN' + dim!m:N" + 1 . 

Assume for simplicity that N' # N" is of simple type, and thus that 
the only interesting moduli spaces are those of dimension 0. However, 
!m:N'#N" having dimension zero implies that one of !m:N' or !m:N" must 
have (virtual) dimension -1, which means that it is empty. This is 
ensured by the fact that both N' and N" have bi ;:::::: 1, and thus the 
moduli spaces are either empty or manifolds of the expected dimen
sion. 

The conclusion is that !m:N'#N" must be empty for every spin<= struc
ture on M. (Compare also with the stretching argument in the proof of 
the adjunction inequality in the end-notes of the next chapter, on page 
496.) 0 

This vanishing result is often used to show that manifolds with nontrivial 
Seiberg-Witten invariants are indecomposable as smooth connected sums. 
For example, if M has nontrivial invariants, then it cannot split into a sum 
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of two symplectic manifolds (which must both have bi ~ 1 owing to their 
symplectic class). 

A drawback of this vanishing property is that the Seiberg-Witten invariants 
are powerless on most connected sums, and thus no consequences (like mini
mum genus for embedded surfaces) can be obtained from them. Nonetheless, 
S. Bauer and M. Furuta29 have obtained a refinement of the Seiberg-Witten 
invariant in terms of equivariant cohomotopy that does survive connected 
sums and can thus be used in such cases. 

Close to complex. The Seiberg-Witten invariants collaborate well with the 
complex realm. For instance, we have: 

Blow-Up Formula. Let M be simply-connected, with bi (M) ~ 2, and of Sei
berg-Witten simple type.30 Let {Ki} be the basic classes of M. Then the (topologi
cal) blow-up 

has basic classes { Ki ± E}, where E is the class of the ( -1) -curve CIP 1 c CIP2 . 

We have 

Sketch of proof Similarly to the strategy used for the vanishing theo
rem for connected sums, we start by stretching the connecting cylinder 
53 x [0, 1 J between M and CIP2 , and thus reduce the moduli space to 

9)1M#CJP2 = 9)1M X 9)1CJP2 · 

However, CIP2 is simply-connected and has bi = 0. Therefore, from 
results proved in the end-notes of the preceding chapter (page 357), 
up to gauge-equivalence there is exactly one reducible solution (0, A) 
on CIP2 • Furthermore, since CIP2 admits a metric of positive scalar 
curvature, no other monopoles appear. Therefore 

m1cJP2 = {point} 

and hence 9J1M#CJP2 ~ 9J1M. 

Finally, if all non-empty moduli spaces of M (corresponding to the Ki 's) 
were 0-d.imensional, then the only moduli spaces of M #CIP2 with 
expected non-negative dimension are those corresponding to Ki ± E, 
for which dimm1cJP2 = -1 and dim9J1M#CJP2 = 0. o 

29. SeeS. Bauer and M. Furuta's A stable cohomotopy refinement of Seiberg-Witten invariants: I & II 
[BF04] and S. Bauer's exposition Refined Seiberg-Witten invariants [Bau03]. 

30. Simple type means that M has non-zero Seiberg-Witten invariants only for spine structures in
duced from almost-complex structures. There are no known examples of simply-connected manifolds 
with bi 2': 2 that are not of simple type. 
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When M is not of simple type, a similar blow-up formula holds, but its 
proof is more delicate.31 

Seiberg-Witten theory also collaborates well with the "dose-to-complex" 
realm of symplectic manifolds (keep in mind that all Kahler surfaces are 
symplectic manifolds). A first instance of this is: 

Non-Vanishing Theorem for Symplectic. Let M be a simply-connected 4-
manifold with bi ( M) ~ 2. If M admits a symplectic structure w, then KM_ = 
c1 ( w) is a basic class, and 

D 

See the next section for a more thorough discussion of the symplectic case, 
and the end-notes of this chapter (page 465) for a proof. 

Combining the non-vanishing result above with the earlier vanishing for 
connected sums yields: 

Corollary ( Symplectics are irreducible). If M is any 4-manifold admitting 
a symplectic structure, then it cannot smoothly split as a connected sum M = 
N' #N" with bi(N') ~ 1 and bi(N") ~ 1. o 

Genus bounds. A most remarkable feature of the Seiberg-Witten equations 
is that they give minimum genus bounds for all embedded surfaces that 
represent a given homology class. 

Adjunction Inequality. Let M be a smooth 4-manifold with bi(M) ~ 2. Let 
S be any connected surface embedded in M such that either: 

- S · S ~ 0 and S is homologically nontrivial; 

- M is of simple type (e.g., symplectic), and S is not a sphere. 

Then,for every basic class K of M, we must have: 

x(S) + S·S::; -IK·SI. D 

Since both S · S and K • S depend only on the homology class of S, this 
means that the inequality offers upper bounds on the Euler-Poincare char
acteristic x( S) of a surface representing a fixed homology class. Notice that 
x(S) = 2- 2genus(S), and hence the inequality offers a lower bound on 
the genus needed for representing a fixed homology class. A more thor
ough discussion of this result will be taken up in the next chapter (starting 
on page 481), which is devoted to the problem of the minimum genus of 
surfaces. 

31. See for example R. Fintushel and R. Stem's outline in Immersed spheres in 4-manifolds and the 
immersed Thorn conjecture [FS95]. 
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Backwards usage. The adjunction inequality can also be applied backwards: 
If one knows the genus of some embedded surfaces in M, then one might 
determine the basic classes of M, or at least get restrictions on them. 

For example, if M contains a torus T of self-intersection 0, then for every 
basic class K we must have K · T = 0. By looking at characteristic elements 
orthogonal to T, certain exclusions should appear. Such an argument can 
be used together with a good understanding of the K3 surface to show that 
its only basic class is its canonical class.32 

Another example of such backwards use of the adjunction inequality is: 

Corollary( Vanishing from spheres). If M contains a homologically-nontrivial 
embedded sphere S with S · S 2: 0, then SWM = 0. o 

Gluing formulae. Finally, note that the Seiberg-Witten invariants satisfy 
various gluing formulae for cutting and gluing 4-manifolds along 3-mani
folds. The simplest cases, when we glue along a 3-torus, will be stated 
in section 12.1 (page 532). More general cases involve the Seiberg-Witten
Floer homology of the 3-manifold and will not be discussed in this volume. 

10.5. Invariants of symplectic manifolds 

The Dirac operator, as all elliptic operators, is closely related to the Cauchy
Riemann operators. Thus, it should be of no surprise that the best use of 
the Seiberg-Witten invariants occurs close to the complex world. (As an 
example, we have already seen the blow-up formula above.) 

The Seiberg-Witten invariants are very well understood on Kahler surfaces, 
but one can actually extend this control a bit farther from the complex 
realm, namely to all symplectic 4-manifolds. 

The results of this section are due to E. Witten in the Kahler case, and have 
been painfully extended to the symplectic realm by C. Taubes. 

Review. For the readers who skipped over the beginning of this chapter, we 
rapidly review a few notions that were explained in section 10.1 (page 376). 

An almost-complex structure on M is any fiber-preserving automorphism 
J: TM ___. TM that mimics multiplication with i by satisfying J(Jv) = -v. 
We require that J orients TM in the same way as the chosen orientation of 
M. Denote by KM_ both the anti-canonical bundle33 KM_ = detc(TM,J) and its 
Chern class c1 (KM.) = c1 (TM, J). 

32. Explained for example in T. Lawson's survey The minimal genus problem [Law97]. 

33. It is worth noticing that, while complex geometry prefers to deal with KM, gauge theory is better 
written in terms of its dual bundle KM:. 



410 10. The Seiberg-Witten Invariants 

A symplectic structure on M is any exterior 2-form w E r(A2(TM-)) with 
both w 1\ w > 0 and dw = 0. Notice that all symplectic manifolds automati
cally have bi 2:: 1, since the class of w has positive self-intersection. 

An almost-complex structure J is called compatible with a symplectic form 
w if w(x,y) = w(Jx, Jy) and w(x, Jx) > 0. Any symplectic structure admits 
such compatible almost-complex structures, and they are unique up to homo
topies. In particular, the anti-canonical bundle KM of any such compatible 
almost-complex structure depends only on w. 

Preparation. Assume that M has a fixed symplectic structure w and pick 
some compatible almost-complex structure J. The almost-complex struc
ture J determines a distinguished spine structure .s1 with determinant line
bundle £ = KM_. Using this .s1, we can parametrize all other spine struc
tures .s on M by writing them as translations .s = .s1 + e, withe running 
over H 2(M;Z). In terms of their Chern classes, this becomes c1 (.s1 +e) = 

KM_ + 2£. Thus the set of all spine structures on M can be written { KM_ + 
2£ I e E H2(M;Z)}, and we consider the latter as the domain of the Sei
berg-Witten invariant SWM: 

SWM: {KM. + 2£ I e E H2 (M;Z)}----+ Z. 

The expected dimension of the corresponding moduli spaces is 

dim9J1KM+2e = KM_ · e + e ·e. 

First results. An important result for symplectic 4-manifolds is: 

Simple Type Theorem. All symplectic 4-manifolds having bi 2:: 2 are of Sei-
berg-Witten simple type. o 
Specifically, this means that SWM ( KM_ + 2£) can be nonzero only when 

e · e = -KM. ·e. 

Further, we have already stated C. Taubes' result that 

The class KM_ is a basic class, and we have34 SWM(±KM_) = ±1. 
This is strengthened by the following restriction: 

Lemma. If SWM(KM_ + 2e) -1= 0, then e must satisfy the inequalities 

0 :::; e · [ w] :::; - KM_ · [ w] , 

with equality allowed only for e = 0 and e = - KM_. 0 

In particular, since the K3 surface has KK_3 = 0, these results show that 

Corollary (Seiberg-Witten on K3 ). The only Seiberg-Witten basic class of the 
K3 manifold is the trivial class 0, with value SWK3 (0) = ±1. o 

34. This result will be proved in the end-notes of this chapter (page 465). 
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Example. This can be put to use to exhibit two homeomorphic but non-diffeo
morphic manifolds: Build the manifold K3 # CJP 2 (the blow-up of K3 ). Its 
intersection form is odd indefinite and isomorphic to the intersection form of 
#3 CJP2 #20CJP2 • Then Freedman's classification implies that the manifolds 

K3#CP 2 and #3CP2 #20CP2 

must be homeomorphic. However, the Seiberg-Witten invariants show that 
they are not diffeomorphic: Indeed, K3 #CP2 has basic classes ±E, while 
#3 CP2 #20CP2 must have trivial Seiberg-Witten invariants, since it can be 
easily split into a connected sum of two manifolds with bi 2: 1. 

Seiberg-Witten and J-holomorphic curves. We have reached some of the 
most remarkable results about the Seiberg-Witten invariants on symplectic 
manifolds: they can be interpreted as Gromov-type invariants that count 
the J -holomorphic curves of M. Recall that a J -holomorphic curve is any 
surface S whose T5 is J -invariant. 

The stunning relation of J -holomorphy to Seiberg-Witten theory is: 

Taubes' Theorem. Let M be a symplectic 4-manifold with symplectic form 
w and with bi(M) ~ 2. Assume that, for some £ E H2 (M;Z), we have 
S'WM(Kt + 2e) -I 0. Then, for any generic choice of almost-complex structure 
J compatible with w, only finitely-many J -holomorphic curves will represent the 
class£. Further, we have: 

S'WM(Kt + 2e) = #{ J-holomorphic curves of class£} . 

Of course, this count of J-holomorphic curves is an algebraic count,35 and 
thus one needs first to assign the appropriate sign to each curve. This is a 
delicate issue (especially for counting multiply-covered tori) which we will 
not pursue. 

We should mention though that, in case M is actually Kahler, then all 
curves have positive sign. The argument in the Kahler case is detailed in 
the end-notes of this chapter (page 457). We should emphasize though that 
the requirement that J be generic is important. A Kahler structure is rather 
special and therefore the above result might not apply directly to that case. 

As far as arguing for the general symplectic case, the best we can do is 
provide a vague outline: 

Idea of proof. Taubes uses a deformation of the Seiberg-Witten equa
tions, pushing them closer and closer toward a Cauchy-Riemann oper
ator on the line bundle Le of Chern class£. In the end, a Seiberg-Witten 

35. For a bit more on this Gromov-type invariant, see the end-notes of this chapter (page 471). 
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solution corresponds through this deformation to an (almost-)holomor
phic section of Le, and thus the section's zero-set will in the limit be a 
J -holomorphic curve representing e. The analysis involved is heroic, 
and the full proof fills up a 400-page book.36 o 

At the very least, from Taubes' theorem we know that, if S'WM ( K'M + 2£) =/= 
0, then the class e can be represented by at least one J -holomorphic curve. 

In particular, we notice that both K'M and - K'M can always be represented 
by J -holomorphic curves. With a bit of care, this leads to 

Corollary. Let M be a symplectic manifold with bi ( M) 2: 2 and assume that 

K'M·K'M < 0. 

Then, for a generic almost-complex structure J, there exists an embedded J -holo
morphic sphere S with S · S = -1. Therefore S can be blown down37 and yields 
a decomposition M = N #(:JP2 

involving some other symplectic 4-manifold N. o 

Finally, since the general symmetry SWM( -K) ± SWM(K) can in our 
case be written SWM(K'M +2e) = ± SWM(K'M +2(KM- e)), we can com
bine it with Taubes' theorem and obtain a symplectic analogue of Serre 
duality: 

Corollary. If SWM(K'M + 2e) =/= 0, then for a generic J we have: 

#{J-holomorphic curves of class e} 
= ± #{J-holomorphic curves of class KM- e} . o 

The proof of some of the results above in the special case of Kahler surfaces 
is contained in the end-notes of this chapter (page 457), followed by an 
argument that SWM ( ±K*) = ± 1 for general symplectic manifolds (page 
465). 

10.6. Invariants of complex surfaces 

The Seiberg-Witten invariants are completely understood on complex sur
faces. However, to quote from R. Friedman and J. Morgan's [FM99]: the 
geometric interest of the Seiberg-Witten moduli spaces of a surface X is in a cer
tain sense inversely proportional to the interest in X itself as an abstract surface. 
In other words, the more well-understood X is, the richer the structure of 

36. C. Taubes' Seiberg-Witten and Gromov invariants for symplectic 4-manifolds [TauOOa]. 

37. Blowing-down a J -holomorphic ( -1) --<urve can always be done so as to preserve symplectic 
structures. Similarly, a blow-up of a symplectic manifold is still symplectic. 
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the Seiberg-Witten invariants is; and the more arcane X is, the less light is 
shed by them. 

If the complex surface is Kiihler, then it is also symplectic, and all the con
siderations from the preceding section automatically apply. However, ob
serve that the suitable "generic /" often does not correspond to the actual 
complex structure of the surface. 

We certainly have 

SWM(±KM) = ±1' 
as well as the blow-up formula: 

Let M be simply-connected, with b{ 2:: 2, and of Seiberg-Witten simple type. 
Let { Ki} be the basic classes of M. Then the blow-up M #(::JP2 has basic classes 
{ Ki ± E}, where E is the class of the ( -1) -curve. 

In light of this, it enough to concern ourselves with complex surfaces that 
are minimal with respect to blow-downs. Among these, the rational and 
ruled are not very interesting. We are left with the elliptic surfaces and the 
mysterious surfaces of general type. 

Elliptic surfaces. First, the rational elliptic surface E ( 1) = CJP2 #9 CJP 2 has 
b{ = 1 and admits a metric of positive scalar curvature. 

Past this case, the basic classes of the elliptic surfaces E ( n) are all multiples 
of the generic torus fiber F, specifically 

{ k [ f] I k = n (mod 2); I k I :S n - 2} . 

The corresponding values of the Seiberg-Witten invariant are 

(n-2) 
SWE(n) (k[FJ) = ± lkl . 

In particular, again, the only basic class of a K3 surface is its canonical class 
KK3 = 0, with invariant ± 1 . 

For E ( n )p, q, first recall38 that a logarithmic transformation of multiplicity m 
creates a multiple fiber Fm with [Fm] = ~ [F]. Consider the elliptic surface 
E(n)p,q, with n 2:: 2 and gcd(p,q) = 1. Denote by [Fpq] the integral class 
[Fpq] = ;q [F]. Then the basic classes of E(n)p.q can be listed as 

{k[Fpq] I k = npq- p- q (mod 2); lkl :S npq- p- q}, 

(n-2) 
SWE(n)p,q (k[Fpql) = ± lkl . 

and we have 

38. From section 8.3 (page 310). 
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Notice that, in terms of the class [Fpq], the canonical class of E(n )p,q can be 
written 

KE(n)p,q = (npq- p- q)[Fpq]· 
Thus, all basic classes are rational multiples pKE with IPI :::; 1. A first step 
toward the proof of this result will be made in the end-notes of this chapter 
(page 463). 

These results can be used to show that the various E(n)p,q are non-diffeo
morphic even while many are homeomorphic, and thus exhibit infinite fam
ilies of homeomorphic but non-diffeomorphic 4-manifolds, as we stated 
back in section 8.4 (page 314). 

We will revisit these results in section 12.1, in the context of generalized 
fiber sums (page 534) and generalized logarithmic transformations (page 
536), along with other gluing results for the Seiberg-Witten invariants. In 
particular, the above formulae for the Seiberg-Witten invariants of elliptic 
surfaces will get a concise rewriting, which is much easier to remember. 

General type surfaces. For complex surfaces of general type, the Seiberg
Witten invariants see little: the only basic classes of such a surface M are 
±KM, with values39 ± 1. Nonetheless, this still implies that ±KM is a dif
feomorphism invariant, and in this manner have been found examples of 
homeomorphic but non-diffeomorphic surfaces of general type, smoothly 
distinguished by the divisibility of their canonical class.40 

39. We will prove this in the end-notes of this chapter (page 462). 

40. See W. Ebeling's An example of two homeomorphic, nondiffeomorphic complete intersection sur
faces [Ebe90]. 
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Introduction 

The first note (page 416) is a brief presentation of Lefschetz pencils and fibrations. 
These are singular fibrations on 4-manifolds, somewhat similar to elliptic fibra
tions, whose existence is essentially equivalent to a symplectic structure. We also 
quote the recent extension of such structures to all 4-manifolds with bi ~ 1. 

The second note (page 420) proves the existence results for almost-complex struc
tures that were stated in section 10.1, namely that the existence of an almost-com
plex structure is equivalent to finding a candidate for its Chern class, and that in 
most cases this is equivalent to bi ( M) + b1 ( M) being odd. 

The third note (page 423) presents a few more details on spine structures. It starts 
with a Cech cohomology argument that every 4-manifold admits a spine struc
ture (reading the earlier note about Cech cohomology, on page 189, is a requi
site). Then it shows how the spinor bundles can be viewed as creatures parallel 
to the bundles of self-dual/ anti-self-dual 2-forms (thus justifying the names of 
"self-dual/ anti-self-dual spinor" that we have preferred over the more customary 
"positive/negative spinor"). After that, it notes that every spine structure induces 
an almost-complex structure on the 3-skeleton of M, thus complementing the in
duction of a spine structure by an almost-complex structure. 

The fourth note (page 427) contains a description of the spine cobordism group 
(reading the note about cobordism groups on page 227 should help). It is identi
fied with the so-called characteristic cobordism group (of 4-manifolds and char
acteristic surfaces), and the latter is evaluated using an argument that relies on 
Wall's theorems. The latter cobordism group will be used in the end-notes of the 
next chapter (page 502) to prove Rokhlin's theorem and its generalizations. 

The fifth note (page 432) uses the division algebra of quaternions to obtain concrete 
descriptions of the Lie groups, bundle cocycles, and connections associated with 
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spine structures. It ends with comments on the case when the spine structure 
comes from an almost-complex structure, and in particular proves that, in the Kah
ler case, there is a connection on £ so that the Dirac operator is just y'2(a E9 a*). 

The sixth note (page 439) proves many of the statements made in section 10.3 (page 
396) about the Seiberg-Witten moduli space. Notice that a detailed discussion of 
the reducible Seiberg-Witten solutions was included back in the end-notes of the 
preceding chapter (page 357): indeed, a reducible monopole is simply an anti
self-dual connection on £. Also, the proof of compactness was outlined in the 
main text. In this note, after taking on faith that Vll's natural ambient r(W+) x 
Conn(£) / ~(£) is an infinite-dimensional manifold, we prove that VJ1 is itself a 
finite-dimensional manifold, compute its dimension, and show that it is orientable. 
We also comment on how to obtain invariants when VJ1 is not zero-dimensional. 

The seventh note (page 454) presents the Seiberg-Witten-based proof of Donald
son's theorem.1 Since the proofinvolves the study of the moduli space VJ1 around 
the inevitable reducible solution, reading the preceding note is a requisite. 

The eighth note (page 457) proves that, on a Kahler manifold, the Seiberg-Witten 
monopoles correspond to complex curves representing a given homology class. 
A requisite is reading the end-notes of the preceding chapter (page 365), about 
complex-valued form, a-operators, and holomorphic bundles. 

The ninth note (page 465) extends the discussion to the case of symplectic manifold. 
It only proves the simplest result, specifically that S'WM ( K*) = ± 1. 

The tenth note (page 471) describes the better setting for Taubes' theorem, which 
relates the Seiberg-Witten invariants on a symplectic manifold with a count of 
I -holomorphic curves. 

The eleventh and last note (page 474) presents a few general differential-geometric 
results coming from Weitzenbock-type formulae through the use of the Bochner 
technique. These formulae are similar to the coupled Lichnerowicz formula (page 
393) that we used extensively inside the chapter. 

Note: Lefschetz pencils and fibrations 

Definitions. A (topological2) Lefschetz fibration on a simply-connected 4-manifold 
M is a smooth map f: M --t S2 whose genericfiber f- 1 [x] is a surface S. The map 
f is allowed to have isolated critical points, modeled in local complex coordinates 
by 

(or, if you prefer, by f(wl, wz) = w1wz), see figure 10.4 on the facing page. Thus, 
while the generic fiber is a surface of fixed genus, some fibers of f are surfaces 
immersed in M with double-points. It can be assumed that each fiber of f has at 
most one singularity. Examples of Lefschetz fibrations with torus fibers are elliptic 
fibrations with fishtail singular fibers. 

1. Donaldson's theorem was presented in section 5.3 (page 243); it states that the only definite intersec
tion forms of a smooth manifold are the diagonal ones. 

2. "Topological", as opposed to "holomorphic". 
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10.4. Singularity in a Lefschetz fibration 

A Lefschetz pencil on M is a map f: M ---t 52 , not defined at a number of base
points b1, ... , bm, such that f defines a Lefschetz fibration on its domain and so 
that, around each base-point, f is modeled in local complex coordinates by 

J(zl,zz) = z1/zz 

(or, if you prefer, J(zbzz) = [z1 : zz], thinking 52 = ClP1 ). The fibers off are 
punctured surfaces, to which one adds the base-points to obtain closed surfaces, 
called the fibers of the pencil. See figure 10.5. Near a base-point, the fibration 
looks like the slicing of C2 into the complex planes passing through the origin, as 
suggested in figure 10.6. Notice that if one blows-up a Lefschetz pencil at all its 
base-points, then one obtains a Lefschetz fibration. 

! 
--------------------cpl 

10.5. Lefschetz pencil 

10.6. Lefschetz pencil around a base-point 
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The origin of Lefschetz pencils lies with S. Lefschetz's study of algebraic varieties in L'Analysis 
situs and et la geometrie algebrique [Le£24]. Namely; for a complex algebraic variety V embed
ded in a projective space (]pm, one takes a fixed projective subspace B ~ (]pm-2 of (]pm and 
considers all hyperplanes H'J:-1 in (:Jpm that contain B. This family of hyperplanes cuts V into 
slices V n H;._, all passing through the base-locus V n B, as in figure 10.7. Since the hyperplanes 
{H;._} are naturally parametrized by A E (:JP1, this defines a map f: V --> CJP1 (not defined 
at V n B) by sending all of V n H;.. to A. If V is non-singular and B is generic, then the fibers 
V n H;.. only exhibit simple singularities and f is a Lefschetz pencil. The class of each V n H;.. 
is Poincare-dual to the Kahler class [ w J of V, for the Kahler structure inherited from ClPm . For 
an exposition of S. Lefschetz's geometric approach to algebraic geometry; seeK. Lamotke's The 
topology of complex projective varieties after S. Lefschetz [Lam81]. 

10.7. Lefscetz pencil from hyperplane sections 

A nice introduction to Lefschetz pencils can be found in R. Gompf and A. Stip
sicz's Kirby calculus and 4-manifolds [GS99, ch 8]. 

Lefschetz on symplectics. The relevance of Lefschetz pencils for 4-dimensional 
topology is that they are essentially equivalent to symplectic structures. 

First, we have: 

Theorem ( R. Gompf). If M admits a Lefschetz pencil whose fiber is homologically non
trivial, then it admits a symplectic structure w, positive on all fibers. o 
If the Lefschetz pencil is not a Lefschetz fibration, i.e., it has at least one base-point, 
then the fibers are automatically homologically-nontrivial: blow-up the base point 
and notice that the exceptional sphere has intersection + 1 with each fiber. The 
symplectic form w is built by pulling back the volume form of S2 and perturbing 
it with a 2-form positive on the fibers. The argument can be read from R. Gompf 
and A. Stipsicz's Kirby calculus and 4-manifolds [GS99, sec 10.2]. 

It is much more difficult to prove the converse: 

Theorem ( S.K. Donaldson). Let M be a symplectic manifold with [ w] integral. Then, 
for sufficiently big k, there exists a Lefschetz pencil on M whose fibers represent the class 
k [ w] and on which w is positive. 3 

Since every symplectic form can be slightly perturbed so that [w] is rational and 
then replace w by a multiple mw, the condition on the integrality of [w] is not 
very restrictive. 

3. In particular, there exists an almost-complex structure J compatible with w for which all fibers are 
J -holomorphic. 
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Once [w] is integral, one can build a line bundle L--. M with c1(L) = [w] and 
take on L a connection with curvature form -2rciw. Together with an almost
complex structure J on M, this connection induces a Cauchy-Riemann operator 
a on the sections of L. However, since J is not integrable, holomorphic sections 
of this bundle (i.e., s E T(L) with as = 0) are almost certainly non-existent.4 

Nonetheless, with a lot of hard work, one proves that, once k is large enough, there 
must exist two global sections s', s" of u~k that are approximately holomorphic, i.e., 
with as « as. Then the zeros of the family of sections { t' s' + t" s" I [t' : t"] E CIP1} 

can be used to describe the fibers of a Lefschetz pencil on M. 

The almost-holomorphic techniques were developed in S.K. Donaldson's Sym
plectic submanifolds and almost-complex geometry [Don96b ], with the existence 
of the pencils announced in Lefschetz fibrations in symplectic geometry [Don98] 
and achieved in Lefschetz pencils on symplectic manifolds [Don99]. It is worth 
noting that, as k increases, the corresponding Lefschetz pencil becomes unique up 
to isotopy, as was showed in D. Auroux's Asymptotically holomorphic families 
of symplectic submanifolds [Aur97]. 

Beyond symplectic. When M does not admit a symplectic structure, then one can 
use a singular symplectic structure in its stead. Specifically, if bi ( M) 2 1, then 
for a generic Riemannian metric on M, there exists a closed self-dual 2-form w 
that is zero only along a few circles embedded in M. Since w defines a symplectic 
structure on M \ {circles}, we call it a near-symplectic form. 

The study of such structures, in connection with the Seiberg-Witten invariants and 
their interpretation in terms of J -holomorphic curves, is currently being pursued 
by C. Taubes.5 Independently, D. Auroux, S.K. Donaldson and L. Katzarkov, in 
their recent Singular Lefschetz pencils [ADK04], use such structures to build fibra
tions on general 4-manifolds. 

Namely, define a singular Lefschetz pencil to be a map f: M --. 52 (not defined 
at a few base-points) together with a 1-submanifold Z of M, so that: (1) f is a 
Lefschetz pencil away from Z; and (2) around each point of Z there are local real 
coordinates (x1, X2, X3, t) on M with Z = { (0, 0, 0, t)} so that f is described by 

j(x1, X2, X3, t) = XI - X~- X~ + it 
for some suitable complex coordinate on 52 . In fact, it can be arranged that f takes 
each circle from Z to the equator of 52 . 

One can describe geometrically such a singular Lefschetz pencil f: M --. 52 as 
follows: split 52 into two hemispheres Dt and n:_ and a thin neighborhood 
51 x [ -e, e] of the equator. Then f describes two genuine Lefschetz pencils on Di 
that are linked through f-1 [51 x [ -e, e]]. When crossing in M from over Dt to 
over n:_, the fibers of one pencil are modified into the fibers of the other by the 
addition of a few 1-handles, one for each circle of Z that is crossed. The picture 
of this crossing is the one from figure 10.8 on the following page. 

4. An integrable almost-complex structure can be characterized as being one for which, around each 
point, there exist two holomorphic functions /1, fz : U -> C with d /J, d fz linearly-independent. 

5. See the references on page 473. 
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fiber over JD:_ 

fiber over JD~ 

10.8. Singular Lefschetz pencil around a zero-circle 

Every 4-manifold with bi 2:: 1 admits such a structure: 

Theorem (D. Auroux and S.K. Donaldson and L. Katzarkov). Let M be a 4-mani
fold endowed with a closed self-dual 2-form w that is zero along a family of embedded 
circles Z. Assume that [w] is integral. Then, for k odd large enough, there exists a 
singular Lefschetz pencil f: M-+ 52 whose fibers represent k[w]. 

Conversely, given a singular Lefschetz pencil f: M -+ 52 so that there exists a cohomol
ogy 2-dass positive on its fibers, one can find a near-symplectic form with zero-locus Z 
and positive on the fibers of f. o 
This is a very recent result, 6 and its impact on 4-dimensional topology cannot be 
gauged at the time of this writing. 

Note: Existence of almost-complex structures 

In what follows we prove the results stated in section 10.1 (page 376), showing that 
almost-complex structures are very flexible and their existence is a mere problem 
in homology. 

The good Chern class. An immediate property: 

Lemma. Assume M admits an almost-complex structure J. Then we must have 

c1 (J) · Ct (J) = 3 signM + 2x(M), 

and Ct (J) is a characteristic element of M, i.e., an integral lift of wz (T M). 

Proof. Let E be any complex-plane bundle. Then we have w2 (E) = c1(E) 
(mod 2) and also Pt (E) = -cz(E ®JR. C) = -cz(E EB E*) = Ct (E) · Ct (E) -
2cz(E). In the case E = (TM,J),wehave Pt(TM) = 3signM (byHirzebruch's 
signature theorem7) and Cz(TM) = e(TM) = x(M). 0 

6. October 2004. 

7. Hirzebruch's signature theorem was stated in section 4.3 (page 166). 
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The converse is true as well. It was proved in W-t. Wu's Surles classes caracteris
tiques des structures fibrees spheriques [Wu52, ch IV], and in F. Hirzebruch and 
H. Hopf's Felder von Fliichenelementen in 4-dimensionalen Mannigfaltigkeiten 
[HH58]: 

Lemma ( W-t. Wu; F. Hirzebruch and H. Hop£). Let M be an oriented 4-manifold. If 
there is characteristic element IQ such that 

IQ · IQ = 3 signM + 2x(M), 

then M admits an almost-complex structure J such that ci (J) = IQ. 

Sketch of proof. We build a complex-plane bundle E ___, M with CJ (E) = IQ 

and c2 (E) = x(M). A good way to build E is to start with the complex-line 
bundle Lyz_ of Chern class CJ ( Lyz_) = IQ, then modify Eo = Lyz_ E9 ~ by picking 
a small 4-ball D4 c M, cutting EoiJD4 out of E and gluing it back in using 
a suitable SU(2)-twist on the fibers of EolaJD4. This leaves c1 unchanged but 
modifies Cz at pleasure. The full argument is reviewed in [Sco03]. 

Having obtained such a complex bundle E, its characteristic classes are the 
same as those of TM: wz(E) = wz(TM), e(E) = e(TM) (since cz(E) = x(M)), 
and PI (E) = PI (TM) (since PI (E) = ci (E) · ci (E) - 2cz(E) and IQ · IQ = 
Pl (TM) + 2x(M) ). Then, by using the Dold-Whitney theorem,8 we conclude 
that, as real bundles, E and T M must in fact be isomorphic. Through any such 
isomorphism, one can transport the complex structure from the fibers of E to 
an almost-complex structure on M. o 

In particular, this lemma implies that, if M has indefinite intersection form and ad
mits almost-complex structures, then the almost-complex structure on M is never 
alone: By Meyer's lemma,9 there are classes a with a· a = 0; then, if IQ is a good 
characteristic element, then every IQ + 2ma will also be the Chern class of some 
new almost-complex structure on M. 

As another testimony to the flexibility of almost-complex structures, we also have the following 
converse to the adjunction formula: If yz_ is a good candidate for the Chern class of an almost
complex structure and S is any embedded surface that satisfies the adjunction formula for :yz_, 
i.e., if it has x( S) + S · S = :yz_ • S, then there must exist an almost-complex structure J both with 
c 1 ( T M, J) = :yz_ and so that S becomes J -holomorphic. See C. Bohr's Embedded surfaces and 
almost complex structures [BohOO]. 

Notice also that, even if the condition IQ · IQ = 3 signM + 2x(M) fails, in the proof 
above one still gets an isomorphism between E and T M over the 3 -skeleton of M 
(or, if you prefer, over M \ {point}). In other words: 

Lemma. For every characteristic element IQ of M, there is a partial almost-complex struc
ture Jl3 over the 3-skeleton of M, with CJ (!13) = IQ. o 

Such an almost-complex structure, even though only partially-defined, does offer 
enough data to be lifted and extended to a unique spine structure across all M. 

8. The Dold-Whitney theorem (1959) was stated on page 167. 

9. Meyer's lemma was stated on page 238. 
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Finding Chern classes. We now explore what conditions need to be met for finding 
good candidates IQ for the Chern class of an almost-complex structure. 

Noether's Lemma. If the 4-manifold M admits an almost-complex structure, then it 
must be that bi ( M) + b1 ( M) is odd. 

Often,thislemmaiswritten10 c1(M)2 + c2(M) = 0 (mod 12). 

Proof. If M admits an almost-complex structure J, then we must have 

c1(J) ·c1(J) = 3signM + 2x(M), 

and c1 (J) must be a integral lift of w2(TM) (a characteristic element of M). 
Furthermore, by van der Blij's lemma (page 170), we have 

c1 (J) · c1 (J) = sign M (mod 8) , 

and thus signM = 3 sign M + 2x(M) (mod 8), which rearranges as 

signM + x(M) = 0 (mod 4). 
Further, we have 

signM = bi(M) - b2(M), 

x(M) = bi(M) + b2(M) - 2b1(M) + 2, 
and hence 

2bi(M) - 2b1(M) + 2 = 0 (mod 4). 

Therefore bi(M)- b1(M) + 1 = 0 (mod 2). 0 

Lemma. Assume M is a smooth simply-connected 4-manifold. Then M admits almost
complex structures if and only if bi ( M) is odd. 

Proof. Since M is smooth, the intersection form must be of shape either 
QM = E9 m [ -1] E9 n [ + 1] or QM = E9 2m Es E9 n H. In both cases, the parity 
of bi ( M) coincides with the parity of n. Thus, assuming bi is odd, we write 
n = 2n1 + 1. 

If QM can be written 
QM = E9m [-1] E9 (2n' + 1) [+1] 

for some basis «1, ... , «m, {3r, ... , f32n'+l' then the element 

I:!!.= [>k + 3f31 + I)3f32k + f32k+l) 

is characteristic (since IQ · x = x · x (mod 2) ), and its self-intersection is IQ • 

IQ = -m+9+9n1 +n'. Since signM = 2n1 +1-m and x(M) = 2+2n1 + 
1 + m, itfollows that IQ · IQ = 3 sign M + 2x(M). 

If QM can be written 
QM = E9 ±2m Eg E9 (2n 1 + 1) H, 

then we notice that, QM being even, any class with even self-intersection will 
be a characteristic element. We have signM = ±16m and x(M) = 2 +16m+ 

10. The formula known as Noether'sjormula states that, for a complex manifold M, we have x(O) = 
-{z (KM · KM + x(M)). Here x(O) denotes the Euler characteristic of the cohomology H*(M; 0) of 
the sheaf of holomorphic functions on M; or, if you prefer, of the Cech cohomology fl• (M; O(C)) in 
the notation of the end-notes of chapter 4 (page 193). We encountered x(O) in the statement of the 
Riemann-Roch theorem, in section 6.3 (page 282). 
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4n1 + 2. Therefore 3 sign M + 2 x( M) must be a multiple of 8, say 3 sign M + 
2x(M) = 8p. Pick a basis {tx,a} for your favorite H in QM. Then 

I:!Z = 2ptx + 2« 

has self-intersection IQ · IQ = 8p and is characteristic. D 

This last statement can be generalized to the non-simply-connected case as a par
tial converse of Noether's lemma above. For example, if QM is indefinite, then 
b1 ( M) + bt ( M) being odd ensures the existence of an almost-complex structure. 

On the other hand, the manifolds # k S1 X S3 with k odd all have bl + bt odd, but 
if k 2:: 3 there are no good candidates for c1 (J) and thus these manifolds admit no 
almost-complex structures. 

Note: SpinC structures-existence and other extras 

In this note we gathered together a few leftover details concerning spine struc
tures. We start with a rigorous Cech-flavored argument proving that every 4-
manifold admits a spine structure. Then we underline the parallelism between 
spinors and 2-forms, with, for example, self-dual spinors sitting atop self-dual 2-
forms. Finally, we show that a spine structure induces a partial almost-complex 
structure over the 3-skeleton. 

Spine structures always exist. We will explain an alternative proof that all 4-
manifolds admit spine structures. The proof still rests essentially on the fact that 
w2 ( T M) can be lifted to an integral class. This was proved to always be possible 
back in section 4.4 (page 168). The argument that follows is based on cocycle
presentations of bundles, and understanding some details of it requires first read
ing the note on Cech cohomology on page 189 at the end of chapter 4. 

Failure to spin. Imagine we attempt to build a spin structure on M. We endow M 
with a Riemannian metric, take the resulting SO( 4) -cocycle {ga:,B: Ua: n U.s -----7 

SO( 4)} of T M and lift it to some maps 

ga:,B: Ua: n U.s -----7 Spin( 4) 

so that ga:,B = g~;. In general, ofvcourse, these maps fail from being a cocycle, and 
their failure is measured by the Cech 2-chain 

Wa:,B'y = ga:,B · g,61 · g')'tt 

with values in Z 2 = { -1, + 1}. In Cech cohomology, the cochain { Wa:,B'Y} rep
resents the Stiefel-Whitney class w 2 (TM) E H 2(M;Z2), as was explained in the 
end-notes of chapter 4 (page 189). 

Failure to square-root. Now, pick some integral lift IQ E H 2 (M; Z) of w2(TM) (a 
characteristic element). We can express this class by building a complex-line bun
dle £ with Chern class 

If we endow £ with some Hermitian inner product on its fibers, then we transform 
£into a U(l)-bundle, which can thus be defined using a U(l)-valued cocycle 

fa:,B: Ua: n U.s -----7 U(l). 
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Remember that U( 1) is merely the group 51 of unit complex numbers. 

Imagine now that we try to build a square-root of£, i.e., that we are looking for a 
complex-line bundle £ 112 such that 

£1/2 ® £1/2 = £ . 

Such a square-root exists if and only if we can lift the cocycle { Cctf3} against the 
double cover U(1) --> U(1): z ~---t z2 to a collection of maps Vfct(3: Uct n u13 --> 

U(1) that themselves satisfy the cocycle condition. Of course, in general all we get 
for our effort is a collection of maps that satisfy 

Vfctf3(x) · Vff3-y(x) · Vf-yct(x) = ± id. 

We can !?easure the failure of the v'ectf3 's from being a cocycle by using the Zz-
valued Cech 2-cochain _ r;; r;; . r;; 

cctf3'Y - v Cctf3 · v Cf3-y · v C-yct . 

This cocycle represents in H2(M; Zz) the modulo 2 reduction of c1 (£) = !Q, in 
other words, wz(TM) itself. 

The class of { cctf3ry} also measures the obstruction to the existence of a square-root 
C/2. Indeed, a bundle C/2 exist if and only if there exists a candidate a for its 
Chern class, in other words, if we have c1 (£) = a+ a for some a. However, that 
simply means that c1 (£) = !Q be an even class, and thus that wz(TM) = 0. 

Match them. In conclusion, the obstruction { Wctf3ry} to the existence of a spin struc
ture and the obstruction { cctf3ry} to the existence of a square root of £ are cohomol
ogous in W(M; Zz). This implies that, with a little care, we can match the failures 
of {gctf3} and { v'ectf3}. Namely, we can arrange that the minus signs appearing in 
the failed cocycle test of {gctf3} correspond exactly to the minus signs from the 
failed cocycle test of { v'£ctf3}· 

Indeed, since {wctf3ry} and {caf3ry} bothrepresenttheclass wz(TM) in H2 (M;Zz), 
they differ by at most a Cech coboundary. That is, there is a family of functions 
Ectf3: ult n uf3 ----> Zz = { -1, + 1} so that 

Wctf3'Y = Cctf3ry · Ectf3 Ef3ry Eryct . 

Then we can modify the failed-cocycle { v'£ctf3} of C/2 to 

Vf~f3 = Ectf3 Vfctf3 , 

and then we will have gctf3 · gf3'Y · g-yct = v'£~(3 · v'£~'Y · v'e~ct, as claimed. 

Cancel them. In this case, we can multiply the Spin(4)-valued family {gctf3} and 
the U(1)-valued family { v'£~13 } inside the group 

Spine (4) = U(1) x Spin(4) / ±1 

to get a true Spine ( 4) -cocycle 
s = { v'£~(3 . gctf3} . 

Such a cocycle, considered up to isomorphisms, is called a spinC structure on M, 
and £ is its determinant line bundle. We have just proved that every 4-manifold 
admits spine structures. o 
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2-torsion. Notice that, given a line bundle .C with c1(.C) = w2 (TM) (mod 2), the 
failed-cocycle for .C 1/2 is unique up to isomorphisms, unless H2 (M;Z) has 2-
torsion. (Think for a second that .C actually admits a square-root bundle _cl/2; such 
a square-root is characterized by 2c1 (£ 112 ) = c1 (.C). In the absence of 2-torsion, 
this condition determines c1 (.C 1h), and thus £ 1/2 itself, uniquely.) 

Cohomological view. The double-cover Spine (4) ----> 51 x S0(4) fits into the exact 

sequence 0 _____, Zz _____, Spine ( 4) _____, 51 x SO( 4) _____, 0 

with Zz included as { [ -1, -id], [1, id]}. In Cech cohomology, this leads to an 
exact sequence (of sets) 

· · · _____, H 1 (M; Zz) _____, H1 ( M; coo Spine ( 4)) _____, 

_____, H1(M; C00 S1) E8H1(M; C00S0(4)) _____, H 2 (M;Zz). 

The last map can be determined to be the map that sends a pair ( L, E), made of an 
U(1)-bundle Land an S0(4)-bundle E, to the class c1 (L) + wz(E) (mod 2). 

Therefore the oriented bundle E admits a spine structure if and only if its Stiefel
Whitney class w2 (E) can be lifted to an integral class c1(L). On the other hand, 
if E and L are thus compatible, then the various Spine ( 4) -cocycles to which the 
pair ( E, L) can be lifted are classified by the part of H 1 ( M; Zz) coming from the 
2-torsion of H 1 ( M; Z), as can be seen after a careful study of the beginning of the 
exact sequence. 

Relations .with self-duality. There is a Lie-group diagram that is worth mention
ing, since it exhibits the bundles of spinors as parallel to the bundles of 2-forms. 

The diagram stems partly from the isomorphism 

S0(3) = SU(2) I ±1 . 

Since U(2) = 51 X SU(2) I ±1, there is a natural map U(2) ----> S0(3). On the 
other hand, the exceptional Lie algebra isomorphism 

.so(4) = .so(3) E8.so(3) 

integrates to a map S0(4) ----> S0(3) x S0(3), and thus yields two natural projec
tions SO( 4) ----> S0(3). These projections fit into the commutative diagram 

U(2) ~ Spine(4) ------> U(2) 

1 P- 1 P+ 1 
S0(3) ~ S0(4) ~ S0(3). 

Notice that, by lifting the SO( 4)-cocycle {gaf3} of TM to a Spine ( 4 )-cocycle {g~13 } 
and then projecting the latter to the two copies of U(2) above, we obtain the two 
cocycles {P± (g~13 )} of the spinor bundles w±. 
On the other hand, by projecting the S0(4)-cocycle {gaf3} directly to the two 
copies of S0(3) above, we obtain two S0(3)-cocycles {A.±(gaf3)}. These can be 
used to glue-up two 3-plane bundles, which turn up to be none other than the 
bundles A}JTA1) of self-dual/anti-self-dual 2-forms. This last fact stems from 
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the fact that A2 (JR4 ) = so(4) and thatthebundle A2 (TA1) cannaturallybeviewed 
as glued through the adjoint action of SO( 4) on its Lie algebra. 

In conclusion, we have the diagram 

w- a U(2) -- SpinC(4) ----t U(2) G w+ 

1 
P-

1 
P+ 

1 1cr 
A2__ S0(3) 

L 
S0(4) A+ S0(3) A2 a -- ----t G + 

0 
TM 

where we used "G" to show which bundles are induced from whose cocycles. 
Notice how the squaring map cr: w+ ----> iA;_ completes the diagram in a rather 
pleasing way. 

In light of the above diagram, one can think of the spinor bundles w± as creatures 
parallel to the bundles Ai (TA1) of self-dual/ anti-self-dual 2-forms. Owing to this 
peculiarity of dimension11 4, we prefer to call w± the bundles of self-dual/anti-self
dual spinors, instead of the more customary name of positive/ negative spinors. 

From spine structures to partial almost-complex structures. Let cp be a generic 
self-dual spinor field. Being a section of a 4-plane bundle over a 4-manifold, its 
zeros are isolated. Then the map 

rM ___, w-: v ~------+ v. cp 

determines an isomorphism away from the zeros of cp: 

TMioffzeros ~ w- · 
Using this isomorphism, the complex structure of w- can be pulled-back to a 
complex structure on T M, well-defined off the zeros of cp. In other words, it defines 
an almost-complex structure on M \ {zeros of cp}, which is essentially the same 
thing as an almost-complex structure Jl3 over the 3-skeleton of M. 

The Chern class of this partial almost-complex structure is exactly12 

CJ (!1 3) = CJ (s) . 

More, its fundamental 2-form wl 3 essentially coincides with cr( cp), but rescaled: 

)2w13 = cr(cp)/lcr(cp)l. 

It is well-defined, just as Jl 3 is, away from the zeros of cp. 

Further, by computing e(W+) one notices that there exist nowhere-zero spinor 
fields cp E f(W+) if and only if the spinC structures corresponds to a genuine 
almost-complex structure, and the latter can be fully recovered as above (up to 

11. As well as following the terminology of M. Atiyah, N. Hitchin and I. Singer's Self-duality in 
four-dimensional Riemannian geometry [AHS78]. 

12. Technically, c1 (!13 ) E H2 (MI 3 ;.Z) while c1 (s) E H2 (M; .Z). Nonetheless, the inclusion Ml3 C 
M induces a natural isomorphism on H2 . This is the succinct way to say that 2--co/homology is 
influenced only by 1-, 2-, and 3--cells, not by 4--cells. 
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homotopy). Indeed, as we mentioned before, in the almost-complex case, we have 
the complex isomorphism w- ~ (TM, l). 

Note: The spine and characteristic cobordism groups 

In the end-notes of chapter 4 (page 227), we defined the oriented cobordism group 
0~0 and the spin cobordism group [)~pin. We can now also define a spine version 

r.SpinC 
~ ~4 . 

It is generated by 4-manifolds endowed with spine structures. Two such spine 
manifolds M' and M" are considered equivalent if there is a 5-manifold W with 
a W = M' U M" and such that W is endowed with a spine structure that restricts 
to the chosen spine structures on each of M' and M". 

In the end-notes of the next chapter (page 502), this cobordism group and its eval
uation will be used to prove Rokhlin' s theorem and its generalizations. 

Characteristic cobordisms. Using the interpretation of spine structures in terms 
of outside spin structures extended across a characteristic surface X:, we remark 
that the spine cobordism group can be defined alternatively as follows: 

The group [)~pine is also the cobordism group generated by 4-manifolds M with a 
chosen characteristic surface X: and a spin structure on the complement of X:. Two 
such pairs ( M', X:') and ( M", X:") are considered equivalent if they can be linked 
by a 5-manifold W5 with a chosen unoriented 3-submanifold Y3 Poincare-dual 
to W2 ( T w) I so that a w = M' u M" and a y = I:' u X:" I and so that there exists a 
spin structure on W \ Y which restricts to the chosen spin structures on M' \ X:' 
and M" \X:". See figure 10.9. 

E." 

] 
10.9. Characteristic cobordism 

The latter description defines what is better known under the name of character
istic cobordism group and is usually denoted by 

r.char 
~ ~4 . 

As such, it was evaluated in A geometric proof of Rochlin's theorem [FK78]: 
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Theorem ( M. Freedman and R. Kirby). In dimension 4, the correspondence given by 
( M, I:) 1---t (sign M, -A (I: · I: - sign M)) establishes an isomorphism 

o~har = z EB z . 
The generators of [)~har are (CJP2, CJP1) and (CJP2 #CJP2, #3 CJP1 #CJP 1). 

Described directly in terms of spine structures, the isomorphism between the 
spine cobordism group and Z EB Z is (M,.s) 1---t (signM, i(c1 (.s) 2 - signM)). 

The rest of this note (till page 432) is taken by the proof of the above theorem. 

Proof that ofjfinC = z E9 z. We think in terms of characteristic cobordisms and 
define the morphism 

D(M,I:) = (signM, i(I: ·I:- signM)). 

Recall that a characteristic surface is any oriented surface I: embedded in M that 
is dual to wz(TM), or, equivalently, that satisfies 

L · X = X • X (mod 2) 

for all homology 2--classes x of M. Owing to van der Blij's lemma, every charac
teristic surface satisfies I:· I: = sign M (mod 8). 

The map Dis well-defined: Assume (M, I:) is the characteristic boundary of (W, Y). 
We want to show that I:· I: = 0. Perturb Y to Y' such that Y and Y' are transverse, 
and such that I: and I:' = a Y' are transverse as well. The intersection of Y with 
Y' consists of a family of !-dimensional arcs and circles; each arc must connect 
two intersection points of I: and I:' with opposite signs. Therefore I:· I:' = 0. Of 
course, the latter is just the self-intersection number of I:. On the other hand, we 
proved earlier13 that the signature of a boundary always vanishes, and therefore 
sign M = 0. In conclusion, 

n(a(w, Y)) = (o, o) . 

It immediately follows that, if ( M', I:') and ( M", I:") are characteristically cobor
dant,then D(M',I:') = D(M",I:"). 

The map D is certainly additive, in other words, it is a group morphism: indeed, the 
group operation of a cobordism group is disjoint union (or connected sum), and it 
is easy to check D's additivity. 

The map D is surjective, since 

D(CJP2,CJP1) = (1,0), 

D(CJP2 #CJP2, #3 CJP 1 #CJP 1) = (0, 1) . 

To prove that D is an isomorphism of groups, all we still need to prove is that D is 
injective. In other words, we need only argue that 

13. See section 3.2 (page 120). 
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Lemma ( M. Freedman and R. Kirby). If ( M, I:) is a characteristic pair such that 
sign M = 0 and I: · I: = 0, then there is a pair ( W5, Y3) such that 

(M,I:) = d(W,Y) I 

with Y dual to w2 ( T w) and with W \ Y endowed with a spin structure that restricts to 
the chosen spin structure of M \ I:. 

Proof. First, if M is not simply-connected, we will add 2-handles and reduce 
to the case of simply-connected manifolds. Then we will connect-sum with 
enough copies of S2 x S2 till our manifold simplifies to either # m S2 x S2 or 
# m S2 x S2 # S2 x S2 • We will then correspondingly cap it off with either 
# m D 3 x S2 or # m D 3 x S2 # D 3 x S2 . During all of this, we will also track 
what happens with I:, and in fact it is the latter that will dictate how the 
capping is to be done. The proof rests on the four theorems of C.T.C. Wall 
discussed back in section 4.2 (page 149). 

Make it simply-connected. Pick a handle decomposition of M that contains ex
actly one 0-handle and one 4-handle. Since M \ I: is endowed with a spin 
structure, this means that TM is trivialized over the !-skeleton of M \I:, 
and this trivialization extends to the 2-skeleton, and even further to the 3-
skeleton. Thus, we consider TMIM\L:U{point} as trivialized. 

Choose a set of generators for 1t1 ( M), represented as embedded disjoint cir
cles C 1, ... , Rm in M \ I: U {point}. Since T M is trivialized over each Ck, it 
follows that the normal bundle of each Ck is trivialized; in other words, each 
Ck has a favorite framing in M4 . 

Thicken M toM x [O,e]. Attach 5--dimensional 2-handles D 2 x [)3 to each 
ck X E, respecting their framing in M X E. The result is a cobordism between M 
and a simply-connected 4-manifold Mo. Since the 2-handles were attached 
away from I:, we observe that the surface I: survives untouched into Mo. See 
figure 10.10. 

10.10. Make it simply-connected 

This trivialization of TMIM\l:U{point} extends to a trivialization of TMx[O,e] 
away from I: x [o, e] and point x [0, e]. Moreover, because of our choice of 
framing for the attached 2-handles, this trivialization extends across these 
2-handles as well, and yields a trivialization of T Mo I Mo \1: u {point}. Since I: 
in Mo is still the obstruction to extending the trivialization of T Mo across all 
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Mo, it follows that it is still a characteristic surface in Mo. The signature and 
self-intersection of ..E are, of course, unchanged. 

Add spheres. Now, take Mo and thicken it to a trivial cobordism M0 x [0,1]. Put 
this alongside the 5 -manifold S2 x D 3 , thought of as a cobordism between 
0 and S2 x S2 . This yields a cobordism between Mo and the disjoint union 
Mo U S2 x S2 , as in figure 10.11. This cobordism, of course, can be continued 
with a cobordism that connect-sums the two components, as suggested in fi
gure 10.12. We end up with a cobordism14 between Mo and Mo # S2 x S2 . 

,.,-······· ········-... 
Mo......._ .,.,. 

10.11. Adding a copy of S2 X S2 

10.12. Cobordism between Mo u S2 X S2 and Mo # S2 X S2 

The intersection form of Mo # S2 X S2 is QMo EB H' and since the new term is 
even, ..E is still a characteristic surface in Mo # S2 x S2 • 

The even case. Assume first that the intersection form of Mo is even. Then, since 
its signature is zero, we must have 

QMo = EB n H and hence QM0uszxsz = EB (n + 1) H. 

Thus, Mo # S2 X S2 has the same intersection form as # ( n + 1) S2 X S2 • There
fore Wall's theorem on h-cobordisms, combined with Wall's theorem on sta
bilizations (i.e., the corollary on page 155), implies that we have a diffeomor-

phism Mo#kS2 X S2 ~ #mS2 X 52 

for some suitably large k and corresponding m = n + k + 1. 

Adding the extra S2 x 52-terms needed is not a problem: we proceed as we 
did for the first S2 x S2 , and end up with a cobordism between Mo and Mo # 
kS2 x S2 • Owing to Wall's diffeomorphism above, we like to view the latter 

14. Of course, the whole resulting cobordism between Mo and Mo # 52 x 52 is nothing but, succinctly, 
the boundary sum (Mo x [0, 1]) q 52 x JD3 . Boundary sums were briefly recalled on page 13. 
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as a cobordism between Mo and # m S2 X S2 . The surface L: survives as a 
characteristic surface embedded in the top boundary #m S2 X S2 . 

Now choose a basis {a 1' a 1' ... 'am' lYm} for the homology of #m S2 X S2 ' with 
each pair { ako ak} coming from an S2 X S2 -term, and with the only non-zero 
intersections being ak . ak = + 1 . Every characteristic element of # m S2 X S2 

can be written as a sum of even multiples of these generators, and hence, since 
L: is characteristic, we can write in homology 

L: = 2a1a1 + 2a1a1 + · · · + 2amam + 2amam 

for some integers a1, a1, ... , am, am. 

Using Wall's theorem on automorphisms (page 152), we deduce that the class 
of 1:: can be taken through automorphisms of #m S2 X S2 's intersection form 
to any other characteristic element with the same self-intersection. Since L: · 
L: = 0, there must exist, for example, an automorphism cp* such that 

cp*(L:) = 2a1 . 

Further, Wall's theorem on diffeomorphisms (page 153) implies that this al
gebraic automorphism can be realized through a self-diffeomorphism cp of 
#mS2 x S2 . 

We use this diffeomorphism cp to attach15 q m JD3 x S2 to the top of our earlier 
cobordism between Mo and #m S2 X S2 ' as in figure 10.13. Think of the class 
a 1 as represented by a JD3 X 1 of the first term of Q m JD3 X S2 . 

10.13. Closing it up 

Since the class 2a1 bounds in q m JD3 X S2 ' the surface cp[L:] embedded in a( q 
m JD3 x S2 ) must itself bound some oriented 3 -manifold Z inside q m ID3 x 
S2 . This follows from a mild refinement of the argument used for representing 

15. Here, X q Y denotes the boundary sum of X and Y, which was explained on page 13. If you do 
not like boundary sums, you can always imagine starting with m copies of JD3 x 52 and continuing 
them with a small cobordism that connects their boundary 52 x 52 's into #m 52 x 52 . 
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homology 2-classes by surfaces in 4-manifolds. Further, Z3 is dual to Wz of 
its ambient. 

Stacking, one on top of the other, all the small cobordisms that we encoun
tered, we end up with a characteristic pair (WS, Y3) whose boundary is our 
initial (M, I:). 

The odd case. The case when the intersection form of Mo is odd proceeds simi
larly, but literally with a twist. Since sign Mo = 0, we must have 

QMo = EB m [ -1] EB m [ + 1] , 

and hence QMo#Sz x 5z = EB m [ -1] EB m [ + 1] EB H. We change basis and 
rewrite the latter as 

QMo#Szxsz = EB m H EB [~ ~] . 

(This is possible because of the classification of indefinite forms: the right
hand term has the same rank, parity and signature.) 

Thus, Mo # S2 x S2 has the same intersection form as # m S2 x S2 # S2 x 
S2 , where S2 x S2 is the nontrivial 2-sphere bundle over S2 . After adding 
enough extra copies of S2 x S2 , we end up with a cobordism between Mo 
and #n S2 x S2 # S2 x S2 , with I: surviving as a characteristic surface. 

Choose a basis {ar, ifr, ... , ttm, ttm, f3o, f3I} for the homology of #m S2 x S2 # 
S2 x S2 , with the a's as before, and with f30 the class of the fiber of S2 x S2 

and f3r the class of its base; in other words, f3o · f3o = 0, f3o · {31 = + 1, and 
{3 1 · {3 1 = + 1. In homology, we must have 

I:= 2arttr + 2arifr + · · · + 2amttm + 2am"ifm + 2(bo + 1)f3o + 2brf3r. 

Using Wall's theorems, we choose an automorphism cp* such that 

then find a diffeomorphism cp corresponding to it, and use it to attach the 
cap q m D 3 x S2 q D 3 x S2 to the top of our cobordism, where D 3 x S2 is 
the nontrivial 3-disk bundle over S2 and f30 = a D 3 x 1. Since the class f3o 
bounds, the surface cp[I:] must also bound a 3-manifold, and the conclusion 
of the theorem follows. o 

Note: Modeling spine structures by using quaternions 

If complex numbers model rotations and homotheties of the plane JR2 , the quater
nions model the geometry of both JR3 and JR4 . Indeed, this is how they were 
discovered by Hamilton. In what follows, we will use them to model the ingredi
ents of a spine structure, i.e., the Lie groups, maps, spinors, Clifford multiplication, 
and squaring map. 
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Meet the quaternions. Remember that the division algebra of quaternions is de
fined as the 4-dimensional real algebra 

H = lR{l,i,j,k} 

with the multiplication governed by the relations P = -1, p = -1, k2 = -1, and 
ij = k, jk = i, ki = j. The quaternions are not commutative. 

The span of i, j, k is called the imaginary part of H and is denoted by Im H = 
lR{i,j,k}. Given a random quaternion x =a+ bi + cj + dk, its conjugate is :X= 
a- bi- cj- dk. The natural metric of JR4 can be recovered through 

fxf = X·X. 

In particular, for every unit-length quaternion i; E 53 , we have c;- 1 = ~. More 
generally, we have (x, y) = Re(x · y). 
Also, if we restrict to ImH, then quaternion multiplication in ImH coincides ex
actly with the cross-product of JR3 : we have x x y = x · y. The identification 
JR3 = ImH is in fact the reason why the directions in JR3 are traditionally16 la
beled i, j, k. 

Quaternion multiplication is best understood as follows: if one picks a unit-length 
quaternion i;, then the map 

x~C:·x 

is the isometry of JR4 that acts on the plane lR{l, s} as the rotation of angle {j that 
sends 1 to c;, and acts on the complementary plane lR{l, s}j_ by rotating with 
the same angle fJ, in the direction compatible with the orientation of JR4 , as in 
figure 10.14. 

A choice of a favorite direction of rotation in a plane is the same thing as an orientation of that 
plane. Orienting a plane P in JR4 , together with the standard orientation of JR4 , induces a pre
ferred orientation of its complement Pj_, and thus a favorite direction of rotation in Pj_. 

10.14. Quaternion multiplication 

The map X ~X. s acts similarly, only that the complement lR{l, s}j_ is spun in 
the opposite direction. 

16. In fact, quaternions were historically so fashionable that their supporters vehemently opposed the 
modern view on dot-product and cross-product; thus, when the latter inevitably prevailed, quaternions 
fell into a disgrace that lingers to the present day. 
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Lie groups. The quaternions can model all the isometries of JR4 . Indeed, the action 
of S0(4) on JR4 coincides with the action of S3 x S3 on H given by 

(s+.s-)= n----+s+·x·C1 • 

Since (s+· s-) and (-s+· -S"-) actthesame,thisexhibits 

so(4) = s3 x s3 1 ±1, 

and therefore its double-cover can only be 

Spin(4) = s3 x s3 • 

In particular, one can readily see the homotopy groups 

n 1 S0(4) = Z 2 , n2S0(4) = 0, n3S0(4) = ZEElZ, 

and identify their generators, etc. 

At the level of Lie algebras, since g = T c 11 , we have 

so ( 4) = Im H EEl lm H , 

and the action of so ( 4) on JR4 , as skew-symmetric endomorphisms, is modeled by 

(a+, a_): x ~ a+· x - x ·a_ . 

On the other hand, if we look at the action of S3 by conjugation 

S: X ~ S . X • S-1 ' 
the first thing to notice is that it fixes 1, and thus the whole real line lR c H. If 
we look at its complement ImH and identify the latter with JR3 , we recover the 
action of S0(3) on JR3 . Thus 

S0(3) = S3 I ±1 and Spin(3) = S3 • 

In particular, the group S0(3) is diffeomorphic to JRJP3 . 

The Lie algebras and adjoint action are 

so(3) = lmH with a: x ~a· x- x ·a. 

The splitting so(4) = so(3) EElso(3) is now obvious, and appears as the differential 
of the natural map 

S0(4) ---> S0(3) x S0(3): 

Complex groups. On the complex side of the world, we can identify C2 with H. 
There are two ways of doing this, and one of them is wrong. We will work with 

C2 = H: (z1,zz) = z1 +zzj. 

This has the advantage, over the alternative (zi> z2) = z1 + jz2 , of preserving the 
natural orientations of C2 and H = JR4 . 

In this identification, the complex structure of H appears by multiplying with 
complex scalars on the left. Multiplication by quaternions on the right is then C
linear. In fact, the action of S3 on H on the right as 

s: X~ X·s-1 
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is modeling the action of SU(2) on C2 . Therefore 

SU(2) = S3 . 

The corresponding Lie algebra and adjoint action are 

su(2) = ImJH: with a: x ~-------> -x ·a. 

Also, the double cover S3 ---+ IRJP3 can be viewed as a natural map 

SU(2) --4 S0(3): 
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We can enrich the action of SU(2) with determinants from U(I), by coupling the 
right-action of S3 with a left action of S1, as in 

(A, s) : x 1-------> A . x . s-- 1 . 

This exhibits the unitary group U(2) as 

U(2) = s1 x s3 1 ±I, 

with Lie algebra and adjoint action 

u(2) = ilREBimJH: with (ir, a): x ~-------> irx - x ·a. 

The inclusion of U(2) into S0(4) is simply 

U(2) c S0(4): [A, sl 1-------> r A, sl , 
as induced by S1 c S3 . 

Finally, the complex spin group is 

Spinc(4) = s1 x s3 x s3 1 ±I 

and fits in the happy diagram: 

U(I) 

det r 
U(2) ~ SpinC(4) P+ U(2) ---------) 

l l l 
S0(3) 

L 
S0(4) ~+ S0(3) A2 +-------- ---------) 

det r 
[A, s-l P- [A, S+· s-l +--------

l l 
rs--l 

L 
rs-+. s-l +--------

This diagram was already mentioned earlier (page 425). 

~[A.s+l 

l 
~ [s+l 
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Cocycles and spine structures. To make notations readable, we will drop the sub
scripts tx{3 from all cocycles discussed. 

Let{[~+·~-]} be the S0(4)-cocycleof TM,gluing TM throughitsactionas 

[~+· ~-]: v f-----t ~- . v. ~+ 1 . 

Then{[~+]} is the S0(3)-cocycle that glues A;_(TMJ by acting on ImlH through 

[~+]: 1Xf-----t~+·IX·~+ 1 . 

Let s = { [A, ~ +, ~ -]} be a spine structure on M. Then its determinant line bundle 
.C has cocycle {A 2}, while the spinor bundles w± are glued by the U ( 2) --cocycles 
{[A.~±]},actingby _1 

[A, ~±]: w f-----t A· w · ~± . 

Clifford multiplication is the map 

V•W = W·V. 

This local definition can be checked to be compatible with the cocycles of T M, w+ 
and w- I and thus to be globally well-defined. Its adjoint T M X w- ~ w+ is 
given by v • w = -w · v, and we have indeed v • (v • w) = -lvl 2 w. The induced 
action A;_ X w+ ~ w+ is given by a. w = w. a, where a is the quaternion 
coordinate of a 2-form17 from A;_ and w is a spinor field from w+. 

The squaring map (T: w+ ----? i A;_ I which is characterized by cr( cp) • cp = ! I cp 12 cp I 
can be described as sending the self-dual spinor of coordinate w to i times the self
dual2-forrn of quaternion coordinate ! w· i · w: 

cr(w) = i· (!w·i·w). 

(The outside i from i A;_ needs to stay apart from i as quaternion coordinate inside 
A;_; thus, the cumbersome phrase 11 i times blah", or the symbol II·".) 

If one prefers complex coordinates, then by writing w = z1 + z2j with z1,Z2 E C, 
one gets 

Connections. Assume that the Levi-Civita connection V of the Riemannian met
ric on M is locally described as 

Vlu = dflat + e 

for some local so ( 4) -valued 1-forrn e E r (so ( 4) ® TM I u) . Here dflat v is the 
differential of the local-coordinate components of the vector field v. 

Using quatemion coordinates, we write so(4) = ImlH EB ImlH, and we split e = 
(e+,B-) with B± E r(ImlH ® TMiu). The Levi-Civita connection is then de
scribed by 

Vvlu = dflat v + G+· v - v · e_ 

for any vector field locally described by v: U ---+ lH. 

17. For example, the 2-form 1 1\ i + j 1\ k (written using quatemion coordinates on TM ~ TM) has 
quatemion coordinate 2i. 
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The Levi-Civita connection induces a natural connection V'+ on A;_(TM), given by 

V'+alu = dflata + E>+·a- a·E>+ 
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for any 2-form locally described by a: U--> ImH. Since the Levi-Civita is torsion-free, a funda
mental property of V'+ is that it can be used to compute exterior derivatives: 

da = [;ek !\ V'~a and d*a = - [;ek _j V'~a 

for any local orthonormalframe {eJ, e2, e3, e4} in TM ,:,; TM. Here, d*: r(A2) ----> r(A1) denotes 
the formal adjoint of d, given by d* = - * d *. 

Let A denote some U(1)-connection on £,which acts on a section locally de
scribed by f: U ---+ C through the formula 

dAflu =~ate+ iDA ·f 

for some suitable local 1-form DA E r ( T.M I u) . Then the induced connection V' A 
on w+ actsas 

'VA<Piu = dflat q> + ~iDA. q> - q>. 8+ 

for every self-dual spinor field locally described by q>: U ---+ lH. (The 1/2-factor 
appears because the map Spine (4)---+ U(1) is the map 51 x Spin(4)/ ± 1 ---->51 

given by [A, s] r-+ A2 .) 

The complex case. Assume that M is endowed with an almost-complex structure 
I, and that the corresponding U ( 2) -cocycle of T M is {[A, s -J} . The anti-canonical 
line bundle K* has U ( 1) -cocycle {A 2}. 

The bundle A~(T.M) has S0(3)-cocycle {[A]}. Writing a E ImlH as a= ai + bj + 
ck, we have AaA - 1 = ai + A2 (bj + ck), and thus we see that A2(T.M) splits as 

A~(T.M) = lRw EB K*. 

In this writing, the fundamental form w has quaternion coordinate i. 

The canonical spine structure induced by I is the Spine (4)-cocycle {[A, s-. A]}, 
whose determinant bundle is indeed £ = K* . Further, the way the spinor bundles 
are glued-up can easily be used to establish the complex-bundle isomorphisms 

w+ = !:_EBK* and 

Indeed, on one hand w- and T M have the same cocycle, acting in the same way. 
On the other hand, if w = z, + Z2j is the quaternion coordinate in w+ I then the 
actionofitscocycle {[A,A]} is A(z1 +z2j)A-1 = z1 +A2z2,thusexhibiting w+'s 
splitting. 

In the almost-complex case, the earlier description of the squaring map CT: w+ ---+ 
i A~ can be rearranged according to the splittings of both w+ and A~: If z1 + z2j 
is the quaternion coordinate of a self-dual spinor from w+ = !:. EB K* I with z, 
being the coordinate in !:_ and z2 the coordinate in K*, then CT(Z1 + z2j) is the 
imaginary-valued 2-form made by adding i · (lz,l 2 -1z2l2) w from ilRw together 
with i · (2iz1z2) from iK*. 
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Usingcomplex-valuedforms. The isomorphisms w+ = ~EBK* and w- = (TM,J) 
are most often written as 

w+ = A0•0 EB A0•2 and w- = A0• I I 

where AP·q is the bundle of complex-valued forms of type18 (p, q). Indeed, K* = 
detc (TM, J) can on one hand be identified with A0•2 , and on the other included in 
A~ as the complement of w. The composition K* C A~ C A~ ® C ---. A0·2 is 
an isomorphism of complex-line bundles.19 

In this case, the representation of the Clifford multiplication T M x w+ ---. w
becomes the map TM x (A0•0 EB A0•2) ------+ A0• I given by 

v • (f + a) = v'2 f · v0• I - v'2 ( v .J a) 0• I . 

Here v ~-+ v0• I denotes the identification of T M with A 0• I through 

v0·I = 1(v* -i(Jv)*), 

where w*( ·) = ( ·, w)R. Also, (v.Ja)0·I denotes the projection to A0·I of the 
contraction (interior product) v .J a E AI ® C of the 2-form a by v. The 1-form 
v .J a is defined by the formula 

(v.Ja)( ·) = a(v, ·), 

while the projection AI ® C ---. A0· I: f3 ~-+ [3°· I is given by 

f3o,I = Hf3+if3U. )) . 

The factor V2 merely ensures that the Clifford multiplication preserves lengths. 

By writing w+ = A0•0 EB A0•2 and A~ = lRw EB A0•2 , we end up with the follow
ing characterization of cr: 

and 

The Kahler case. Assume now that M is a Kahler manifold. This means that the 
Levi-Civita connection is in fact C-linear, and therefore, in its local description as 

\lvlu = dflatv + B+·v- v·B_, 

all the local forms 6>+ must take values in i JR. Further, the operators 

d Ao .€1 U = dflat .e + 26>+ · .e 

match up to define a U(I)-connection Ao on the anti-canonical bundle K*. This 
Ao is a special connection, and we explore it further: 

Take the spine structure determined by K* and use dAo as a fixed connection on 
£ = K* . Then the induced connection on w+ acts through 

\7Aotpiu = dflat tp + (9+. tp - tp. 6>+. 

18. These were mentioned in the end-notes of chapter 3 (complex duals, page 136), and explained in 
the end-notes of the preceding chapter (connections and holomorphic bundles, page 365). 

19. Remember also the decomposition A~ 0 C = Cw Ell A0•2 Ell A0•2 , where A2•0 Ell A0•2 = K* 0 C. 



10.7. Notes 439 

We now split w+ = ~ EB K*, and correspondingly write <p = z1 + z2 j for some 
local z1, z2: U -t C that describe, respectively, a complex-valued function on M 
and a section in K* . We have 

\7A0 (z1 +z2j)lu = dflatZl + dflatZ2j + EJ+.z2j- Z2(EJ+ I 

since EJ+ · z1 = z1 · EJ+. On one hand, we can identify dflat z1 with the complex
valued differential dz1 of z1 : U -t C. On the other hand, we can identify z2 

through the inclusion K* C lRw EB K* = i\~ with a self-dual 2-form; then we 
read the action of \7Ao on the spinor Z2 as identical to the action of \7+ on the 
2-form Z2, where v+ is the connection on i\~ induced from the Levi-Civita con
nection. 

Going global, we think of our <p = z1 + z2 j as the local description of the sum 
f +a, with f E f(i\0•0), i.e., f: M -t C, and a E r(K*) = f(i\0•2). Then we write 

\7Ao(f +a)= df + \7+a. 

Using the earlier description of Clifford multiplication as v • (! + a) = J2 f · 
v0• 1 - J2 ( v _J a) 0• 1, as well as the description of the Dirac operator as locally 
vAo <p = L: ek • \7~0 <pI we deduce that 

vAo(f+a) = Vl(df)0,1 + Vl(d*a)0,1 

or, in other words, 
)2 vAo (! + a) = a f + a* a 1 

where a*: f(i\0•2 ) _., f(i\0•1) istheformaladjointto a: f(i\0• 1) -t f(i\0•2). The 
Cauchy-Riemann operators a have been encountered in the end-notes of the pre
ceding chapter (page 365). 

Using these last observations, in the end-note on page 457 ahead, we will rewrite 
the Seiberg-Witten equations so as to explore the complex geometry of Kahler 
surfaces, and extend the discussion to symplectic manifolds on page 465. Indeed, 
symplectic manifolds are close enough to the complex realm that there exists a 
connection Ao on K* so that the induced Dirac operator is still )2 VAo = a+ a*. 
If the manifold is merely almost-complex, this does not happen. 2 

Note: The Seiberg-Witten moduli space 

In this note we will argue that the Seiberg-Witten moduli space is a smooth ori
entable manifold, as well as lay the foundation for proving in the next note (page 
454) Donaldson's theorem by using Seiberg-Witten theory. 

The analytic setup. We start by outlining some technical details that ensure that 
we can reasonably manipulate the infinite-dimensional creatures involved in the 
definition of the Seiberg-Witten invariants. We will not go deeper than a mere 
sketch, and afterwards will just assume that the various spaces encountered can 
be handled similarly to finite-dimensional manifolds. 

While we all know and love smooth functions, they are not best suited for the 
study of infinite-dimensional beasts. Indeed, completeness of the various spaces 
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becomes an important issue. For example, the space of all smooth sections in w+ 
can, of course, be endowed with the L 2 inner product 

(cp,t/J) = JM(cp,t/Jh7.. volM, 

but the resulting topology of r(W+) is not complete: there are Cauchy sequences 
with no limit. 

One possibility for dealing with this is to refine the inner product to control all 
derivatives.20 Another possibility is to use a suitable completion of r(W+) by ac
cepting, alongside sections with components locally described by functions from 
coo, sections locally described by elements of some suitable Sobolev spaces L%. 

Definition of Sobolev spaces. Let f: U ---> lR be a locally integrable function, with U C lRn. Iff 
had a partial derivative g = <Jd, then, by using a simple integration by parts, one would have 

fu g . v = - fu f . (Jk v 

for every smooth compactly-supported test function v E CQ'(U). Without assuming that f has 
any partial derivatives, we call weak derivative off any function g satisfying the above property 
for all smooth v 's, and even write <Jkf =g. 

A measurable function f: U---> lR is an element of L2 (U) ifitis square-integrable, i.e., if fu 1!1 2 < 
oo. A measurable function f: U ---> lR is an element of q ( U) if it is square-integrable and has 
weak derivatives up to order k that are square-integrable. 

The Sobolev space 

(using multi-index notation21) is the Hilbert space that appears as the completion of the space 
C00 (U) with respect to the inner product 

(f.g) = E 1 a«f-a«g • 
1«19 u 

Other notations often used for L~(U) are Hk·2 (U) and Wk·2 (U). 

If one controls enough derivatives, the elements of L~ (U) begin to be continuous and have actual 
derivatives. For example, if U C lR4 , then the closure of C0 (U) in LhU) is in fact contained in 
cm(IT), form with o :<::: m :<::: k- 2. In particular, the closure of CQ'(U) in Li(U) contains only 
continuous functions, while its closure in Lj(U) is made of C1 -functions. 

Thus, we extend the setting of the Seiberg-Witten invariants to allow for L%
sections, L%-connections, L%-gauge-transformations, and so on. This means that 
in local coordinates everybody is described by elements from22 Lt(U) 's. We pick 
k big enough so that we control enough of the derivatives involved in connections, 
curvature, gauge actions, etc. For example, k = 4 will do. 

20. For example, use the inner product (cp, 1/J) = L -dr JM ((Y'A)kcp, (V'A)k1f!) volM, where A is a ran

dom connection on £,and (V'A )k: r(W+) ---> r(w+ 0 (TM)®k) is the operator obtained by compo
sition of k times V'A combined with the Levi-Civita connection on TM; of course, (V'A)0cp = cp. The 
factor tr is there simply to ensure the convergence of the series. 

21. That is,«= (kJ, ... ,kn) with 1«1 = k1 + · · · + kn, and <J«f = <J~ 1 • • • d~" f. 
22. Of course, for a coordinate-free alternative, one can build a global theo7 of spaces like q (W+), 
made of all measurable sections cp: M ---> w+ such that L: i:Sk J M I ( V' A )1 cp I volM < oo for some ran
dom choice of connection V'A on w+ and Riemannian metric on M, with (V'A)Jcp being thew+
valued j-form that appears after applying V'A for j times (weak derivatives, of course). Cute. 
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The fundamental fact is that the moduli space VJt does not become bigger after 
all this, only its surroundings get nicer. Indeed, the Seiberg-Witten equations are 
elliptic, and we have 

Weyl's Lemma. Let P be an elliptic partial differential operator. If, when given v E coo 
and using weak derivatives, we have Pu = v, then u E coo, and further we also have 
Pu = v when using genuine derivatives. o 

Rigorously, in all that follows in this note, f(E) should be understood to denote 
the space of all L~-sections of E, while Conn(E) should denote the space of all 
L~-connections onE, and so on. The Seiberg-Witten equations should be under
stood in terms of weak derivatives. In the same spirit, the gauge group ~(£) 
will be the space of all L~-maps M ----+ S1 . It can be proved that ~(£) is an 
infinite-dimensional Lie group, modeled on Hilbert spaces. Its action on r(W+) x 
Conn(£) is smooth (in the appropriate sense). 

The configuration space 

SB = r(W+) x Conn(£) I~(£) 

is the natural ambient for the Seiberg-Witten moduli space VJt. At the outset, since 
~(£) is not compact, it is not obvious that this orbit space is even a Hausdorff 
space, in other words, that there cannot exist any orbits of~(£) 's action that keep 
getting closer-and-closer inside r(W+) x Conn(L). Thus, one first needs to prove 
that SB is Hausdorff. It has been done. 

Since the action of ~ ( £) on r(W+) x Conn ( £) fails to be free on the pairs ( qJ. A) 
with qJ = 0, we can cut these out and look at the space 

SB* = (r(w+) \ o) x Conn(£) I~(£) . 

This open subset SB* = SB \ { [0, Al} of SB is the natural ambient of the moduli 
space VJt* of irreducible solutions. If there are no reducible Seiberg-Witten solu
tions,23 then SB* is the ambient of the whole VJt. It can be proved that SB* is a 
smooth infinite-dimensional manifold, modeled on Hilbert spaces. 

Everything proceeds from here on as if we were dealing with smooth manifolds of 
finite dimension. The complete proofs detailing this similarity are quite extensive. 
See J. Morgan's The Seiberg-Witten equations and applications to the topology 
of four-manifolds [Mor96] for a better outline, or L. Nicolaescu's Notes on Sei
berg-Witten theory [NicOO] for complete and detailed arguments. 

As far as we are concerned, in what follows we will accept that everything can be 
checked to be wonderful in the infinite-dimensional realm, and we will treat such 
creatures as if they were finite-dimensional smooth manifolds. In particular, we 
will drop any mention of Lt's altogether. 

Even so, there is plenty of work ahead for proving that VJt is a smooth orientable 
manifold. 

23. For example, if hi ( M) 2: 1 and we pick a generic Riemannian metric. 
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Differential of the Seiberg-Witten map. For studying the Seiberg-Witten moduli 
space, we define the map 

stu: r(W+) x Conn(£) ------> r(W-) x if( A~) 

stu(qJ,A) = ('DAqJ, FJ -CT(£P)). 

The Seiberg-Witten solution space 6 is the zero-set of this function, while 9J1 is 
the quotient of 6 by r.1 ( £) . 

We compute the derivative 

dstu: Trcw+)xConn(.C)I(tp,A)------> Trcw-)xir(A~)(o,o) 

of this function, at a Seiberg-Witten solution (£P,A). Since r(W±) and f(A~) 
both are vector spaces, they are their own tangent spaces. Since Conn(£) is an 
affine space modeled on i r ( A1), the latter will be its tangent space. 

Therefore, we pick some tfJ E r(W+) and U E f(A1) and consider the variation 

t ~-----+stu ( £P + ttp, A+ it-&) . 

Then we compute dstu by using 

dstul (tp, A) ( 1/J, iU) = ft lt=/tu( £P + t1jJ, A+ it-&) . 
We have: 

On one hand, we get 

vA+itU(qJ+ttfJ) = 'DAqJ + t'DAl/J + !it'O•qJ + !it2'0•1/J 

= t('DAtfJ + !i-&•£P) + iit20•1/J, 

by using that 7JAqJ = 0, that 7JA is linear, and that it satisfies24 7JA+i0 tp = 7JA1jJ + 
iiD • tfJ. On the other hand, we have 

cr( qJ + ttp) ( £P + ttfJ) ® ( £P + ttfJ) * - i 1 £P + tl/J 12 . id 

£P ® 'P* + ttp ® 'P* + tqJ ® t/J* + t2 tp ® 1/J* 

- ii£PI 2 ·id- t!2(£P,tfJ)JR·id- t2 !ltfJI2 ·id. 

Since cr(£P) = £P ® qJ*-! I£PI 2 · id and FJ = cr(qJ), we conclude that 

FJ + it a+ 0 - cr( £P + ttp) = 

= t(i a+o - tfJ ® 'P*- £P ® 1/J*- (£P, t/J). id) - t2! 11/!1 2 . id. 

Therefore 
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Differential of the gauge-action. Fix a random solution ( cp, A) and consider the 
gauge action of ~(.C) on ( cp, A) as a map 

g: ~(.C) ------> r(W+) x Conn(.C) 

g(g) = (g- 1cp, A+ 2g- 1dg) . 

Locally (or, if M is simply-connected, globally) g = eif and then 

g(eif) = (e-ifcp, A+2idf). 

Thetangentspaceto ~(.C) at 1 is the space {if: M----. ilR} = if(IR). Consider 
the variation 

We will compute the derivative of fJ at 1, 

as the derivative at t = 0 of this variation. We have 

g( ei1f) = (e-itf cp, A+ 2it d f) , 

and thus 

The setup. Combining the action of the gauge group and the evaluation of the 
Seiberg-Witten functional, consider the composition 

I dg I dsro I 
Tff(.C) 1 -----+ Tr(w+)xConn(.C) (q.>,A) ---------+ Tr(w-)xif(A;_) (0,0) · 

Since the Seiberg-Witten equations are gauge-invariant, we expect this composi
tion to be trivial, and indeed we can check it: 

dsro(dg(if)) = 
= dsro(-ifcp, 2idf) 

= (VA( -ifcp) + idf • cp, 

id+df- ( -ifcp) ® cp*- cp ® ( -ifcp)*- (cp, -ifcp)JR. id) 

= (-idf•cp- ifVAcp + idf•cp, 

i(ddf)+- (-ifcp)®(·,cp)c- cp®(·,-ifcp)c- (cp,-ifcp)JR·id 

= (0,0) 1 

where we used that25 IJA(fcp) = df • cp + fVAcp, and that ( ·, · )c is complex
linear in the first, but complex-anti-linear in the second argument. 
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The tangent space. If (cp,A) were a regular point of .stu, that is, if d.stul(tp,A) were 
surjective, then Kerd.stul(tp,A) would represent the tangent space to the space of 
solutions 6 = .stu-1 [(0,0)] at (cp,A). 
On the other hand, if (cp,A) were an irreducible solution, then g would be an 
embedding of ~(.C) onto the orbit of (cp,A), and hence Imdgl 1 would represent 
the tangent space to this orbit at ( cp, A). 
Therefore, in the orbit space 9Jl, the tangent space to 9Jl at [cp, A] would be exactly 

T wd [tp,A] = T e; I (tp,A) I T~(.C)·(tp,A) = Ker d.stu I (tp,A) I Imdgl 1 • 

To better catch this, we formalize the setting as follows: 

The complex. For every Seiberg-Witten solution ( cp, A), we have checked that we 
have d.stu o dg = 0. Hence we can write 

I ag I asm I 
0------+ T~(.C) 1 ------> Tf(w+)xConn(.C) (tp,A) ----> Tf(w-)xif(A;_) (0,0) ------+ 0 

and consider it as a differential complex. Its zeroth cohomology group, 

H~tp,A) = Kerdg 1 

is trivial if and only if ( cp, A) is an irreducible solution. The first cohomology, 

H(cp,A) = Kerd.stu I Imdg 1 

is called the Zariski tangent space of 9Jl, and, as suggested above, it has a good 
chance of actually being the tangent space of 9Jl at [ cp, A]. Finally, the second 
cohomology group, '1..12 d 

' ~ ( cp,A) = Coker .stu , 

measures the failure of ( cp, A) from being a regular point of .stu; it is called the 
obstruction space at ( cp, A). 

Smoothness. Wesaythat9Jlissmoothat [cp,A] ifboth 1{~cp.A) and H(cp,A) vanish. 

Smoothness Lemma. If for all Seiberg-Witten solutions ( cp, A) we have 

H~cp.A) = 0 and H(cp,A) = 0, 

then the space 9Jl is either empty or is a smooth compact submanifold26 of 113*. In this 
case, its tangent space at [ cp, A] is precisely 

TVJII[cp,A] = H(cp,A). 

Proof, or review. The vanishing of all 1{2 's means that ( 0, 0) is a regular 
value of the smooth map .stu. Therefore the solution space 6 = .stu - 1 [ ( 0, 0)] 
is either empty or is a smooth (infinite-dimensional) submanifold of r (w+) x 
Conn(£). 

The vanishing of all 1{0 's means that there are no reducible solutions. In this 
case, the gauge group ~ (.C) acts freely on 6, and thus its quotient 9Jl will be 
a smooth submanifold of the configuration space 113*. 

The argument for the compactness of 9Jl was already outlined in the main 
text, back on page 400. o 

26. Remember that 'B.= (r(w+) \ 0) x Conn(£) /~(.C). 
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Reducible monopoles. To ensure that all the HY 's are trivial means to avoid all re
ducible Seiberg-Witten solutions, i.e., solutions with cp = 0. When cp = 0, the 
Seiberg-Witten equations read simply FJ = 0, and hence avoiding reducible so
lutions means avoiding anti-self-dual connections on C. In the end-notes of the 
preceding chapter (page 357), we argued that, by perturbing the Riemannian met
ric, this is always possible if bi ( M) 2:: 1. Further, if bi ( M) 2:: 2, then any two 
such good metrics can be linked by a path of good metrics. 

Hence, if we have bi ( M) 2:: 2 and we manage to ensure that all 1t2 's also vanish, 
then the moduli spaces 9Jt obtained for various good metrics can always be linked 
by a cobordism of smooth moduli spaces. 

At the other extreme, if bi(M) = 0, then reducibles are unavoidable, and 9Jt will 
always have singularities. If M is simply-connected, there is exactly one such 
singularity,27 and a neighborhood of it looks like a cone on ClPm, with 2m = 
dimwt- 1. 

We will argue later that the obstruction spaces 7t2 can always be made to disappear. 
Accepting this last claim, it follows that, no matter what bi(M) is, it can always 
be arranged that 9Jt be either empty or a smooth manifold with singularities at the 
reducible monopoles. 

Before discussing the obstruction spaces 7t2 , let us first compute the dimension 
of the Zariski tangent spaces (the virtual dimension of wt), and see how we can 
orient these (and thus orient the smooth manifold wt). 

Computing the virtual dimension ofwt. Assume that ( cp, A) is an irreducible solu
tion, and hence that 1t(rp,A) = 0. We compute in two ways the Euler characteristic 
X(rp,A) of the complex 

0 ---t if(lR) ~ r(W+) X if(A1) ~ r(W-) X if( At) ---t 0. 

On one hand, X(rp,A) is the difference of dimensions 

X( rp,A) = - dim 1t ~ rp,A) + dim 7tf rp,A) . 

On the other hand, X(rp,A) can be computed from the indices of the differential 
operators involved. 

Since the index is strongly invariant and depends only on the symbol (i.e., on the 
highest-derivative terms), we can deform the above complex to get rid of all zeroth 
order terms, and end up with the complex 

0 ---t if(lR) 
(0,2d) 

The Euler characteristic of this complex is still X( rp,A), but this complex can now be 
viewed as the sum of two complexes, 

0 ----+ 0 ----+ 0 

0 ----+ if(lR) ----+ 0. 

27. In general, the singular set of 9Jt can be identified with the torus Hi (M; R) /Hi (M; Z). 
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Both these complexes are elliptic and can be analyzed using standard Atiyah
Singer technology.28 The Euler characteristic of the first complex is just the op
posite of the real29 index of the Dirac operator, and hence 

XI= !(signM-ci(s)·ci(s)). 

The Euler characteristic of the second complex is easily computed to be 

Xz = 1 - b1 ( M) + bt ( M) . 

Indeed, inside the end-notes of the preceding chapter (connections on line bundles, 
page 357), we showed on page 360 that Ker d = Ker d+, and on page 361 that 
f(J\:;_) ~ H~(M;R) EBimd+; it follows that the cohomology groups of the second 
complex are H0 (M;R), HI(M;R) and H~(M;R). 

Since Euler characteristics are additive, we have X( cp,A) = XI + x2 , and we conclude 
that 

-dim 1-{~cp.A) +dim H(cp,A) = 

= 1- bi (M) + bt + !(signM- ci (s) 2 ) 

= !(4- 4bi(M) + 4bt(M) + bt(M)- b2(M)- ci(s)2 ) 

= H3 signM + 2x(M) - ci (s)2), 

since signM = bt- b2 and x(M) = 2- 2bi + bt + b2. Therefore: 

Lemma. If ( cp, A) is an irreducible solution and its obstruction space H(cp,A) vanishes, 
then the dimension of the Zariski tangent space of 9Jt at [ cp, A] is 

vdimwt = Hci(s) 2 -3signM-2x(M)). o 

The quantity vdim 9Jt is the expected dimension of 9Jt and is called the virtual 
dimension of wt. 

If 1{2 vanishes for all solutions ( cp, A), this means that (0, 0) is a regular value of 
sttJ, and therefore its preimage 6 = sttJ -I [ ( 0, 0)] is a smooth (infinite-dimensio
nal) manifold in r(W+) x Conn(£). Nonetheless, (0, 0) often is a regular value of 
sttJ without being being an actual value30 of sttJ. Hence the solution space 6 could 
be empty. Certainly, if the virtual dimension of 9Jt is negative and we somehow 
ensure the vanishing of all'H2 's, then 9Jt will necessarily be empty (or contain only 
reducible monopoles). In conclusion: 

Dimension Lemma. If the Riemannian metric on M is such that there are no reducible 
solutions, and if the obstruction spaces vanish for all solutions, then the moduli space 9Jt 
is either empty or a smooth compact manifold of dimension 

dimwt = Hci(s)2 -3signM-2x(M)). o 

28. See for example, B. Lawson and M·L. Michelson's Spin geometry [LM89). 

29. The complex index of VA is the difference of complex dimensions of the kernel and cokernel of vA. 
The real index is the difference of their real dimensions, and thus is twice the complex index. 

30. As M. Hirsch put it: This is in accordance with the principle that in mathematics a "red herring" does not 
have to be either red or a herring. [Hir76, Hir94, p 22]. 
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Orientations for 9J1. Assume that all is good, namely that at every Seiberg-Witten 
solution ( <p, A) the spaces 1-{0 and 1-{2 both vanish, and thus that 

T!ml[<p,A] = Kerd.stu / Imdg. 

This tangent space appears as the first cohomology 1-{1 of the complex 

0 ------t if(lR) ~ r(W+) x if(A1) ~ r(W-) x if(A~) ------t 0. (<>) 

and it is the only non-vanishing cohomology group of this complex. 

As before, this complex can be deformed by eliminating the zeroth order terms 
into the simpler complex 

0 ------t if(JR) (O,Zd) r(W+) X if(A1) VAE!ld+ r(W-) X if( A~) ------t 0. (o) 

The cohomology groups of this deformed complex are 

Hg = H0 (M;JR) 

Hb = Ker'DA E9 H 1 (M; JR.) 

1-{~ = Coker vA E9 H~ ( M; JR.) I 

where, again, we use that d+ tx = 0 if and only if dtx = 0 (see page 360), and that 
f(A~)/ Imd+ = H~(M; JR.) (see page 361). 

Orient them. The line H0 (M; JR.) has a canonical orientation, given by the class of 
the constant function X 1---+ 1. Since vA is elliptic, both Ker vA and Coker vA are 
finite-dimensional vector spaces. Further, since vA is (:-linear, both Ker 1)A and 
Coker 1)A are complex spaces, and thus have natural orientations of their own. 

Thus, to endow each of 1-{~, Hb and 1-{~ with an orientation, we need only pick 
orientations of H1(M;JR) and of H~(M;JR). 

Assume we choose some orientations of H 1 ( M; JR.) and H~ ( M; JR.). Then in effect 
we have oriented the three cohomology spaces 1-{~, H0, and 1-{~, and in particu
lar oriented their determinant lines Atop 1-{~, Atop H0, and Atop 1-{~ . This becomes 
an orientation of the line 

( Atop?-{g) * ®lR ( AtopHb) ®lR (Atop?-{~)* . 

Transport them. The fundamental point is that, by standard Fredholm technology, 
the above real line can be identified across the deformation of our initial Seiberg
Witten complex (<>)into its zeroth-order-free version ( o ), and hence its orientation 
can be transported back to ( <> ). 

Fredholm's line. A linear operator F: V -> W is called Fredholm if it is bounded and has 
finite-dimensional kernel and cokernel; all elliptic operators are examples of Fredholm operators. 
Given a Fredholm operator, we define its determinant line det F as the line 

detF = (Atop KerF) ®IR (Atop Coker F)* • 

This determinant line can be identified across continuous deformations (or families). Indeed, let 
Ft: V -> W be a homotopy through Fredholm operators. Then det Ft >--> t determines a real-line 
bundle over [0, 1 J, which can only be trivial and thus offers an identification of det Fo with det F1 • 
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This is remarkable because across such homotopies the dimensions of both Ker ft and Coker ft 
can change,31 but nonetheless the determinant line stays the same. 

The situation of interest to us is when we are dealing with the line L = (Atop H0)* 0 (Atop H 1) 0 
(At0PH2 )*, appearing from a complex 

O--->A~B__!>__,c___,o 

of Fredholm operators. We have H0 = Ker a = Coker a* (where a*: B ---> A is the adjoint of a), 
and H 1 = Kerb I Im a = Kerb n Coker a = Kerb n Ker a*, as well as H2 = Coker b. Therefore 

(Atop~)* 0 (Atop HI) 0 (AtopH2 )* = det(a*EB b) , 

for a• EB b: B ---> A EB C. Since deformations of complexes translate into deformations of the 
corresponding Fredholm operators a* EB b, the transport of the line L across homotopies follows. 

Using this identification of the line ( A.10P'Jig) * @ ( A.10P'H0) @ ( A.10P'Ji~) * with the 

line (A.10P'H(cp,A))* 0 (A.10P'Ji~cp,A)) 0 (A.10P'H(cp,A))* across the homotopy of(<>) 
into ( o ), together with the assumption that the only non-zero cohomology of ( <>) 
is the Zariski tangent space 1i ~ cp,A), we end up with an orientation of 

A top 'IJl 
H I ~(cp,A) . 

This is in effect an orientation of the Zariski tangent space 'H~cp.A) = T9Jtl [cp,A] itself, 
and thus of the moduli space wt at [ cp, A]. We still need to argue that repeating 
this for all solutions ( cp, A) yields an orientation of the whole moduli space wt: 

Compatibility. The orientations induced through the above procedure on the vari
ous tangent spaces T 9Jt I [ cp.A l = '}-{ ~ cp,A) fit into a global orientation of wt. 

Consider the real-line bundle L::> over r(W+) x Conn( .C), given by: 

L,: (A.top'H~)*@ (A.top'Hb)@ (A.top'H~)* r---+ (cp,A). 

The bundle L0 has its fibers determined by constant operators ( d and d+) and 
complex vector spaces (KerDA and CokerDA ), and hence is triviaP2 Since L0 is 
'i9'(.C)-equivariant, its triviality descends to the triviality of its quotient bundle L0 

over ~ = r(W+) x Conn(.C) / 'i9'(.C) given by 

Lo: ( A.top'H~) * @ ( A.top'Hb) @ ( A.top'H~) * r---+ [ cp, A] . 

This L0 ---> ~ has fibers that can be identified back across the deformation of ( <>) 
into ( 0) with the fibers of the line bundle L0 ---> ~ given by 

L<>: ( A.top'H(cp,A)) * @ (A.top'H~cp,A)) @ ( A.top'H(cp,A)) * r---+ [ cp, A] . 

It follows that the latter line bundle is a global trivial line-bundle on ~. Since its 
fibers over wt coincide with the tangent spaces of the moduli space, it follows that 
wt can be coherently oriented. We have proved: 

Orientation Lemma. If the Riemannian metric on M is such that there are no reducible 
solutions, and if the obstruction spaces vanish for all solutions, then the moduli space 

31. Observe that nonetheless the dimensional jumps are balanced: the index dim Ker ft - dim Coker ft 
must stay constant. 

32. It is a real-line bundle, so it is either trivial or non-orientable. 
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9Jt is either empty or an orientable smooth manifold. An orientation of 9Jt is uniquely 
determined by a choice of orientations of the vector spaces 

H 1(M;JR) and H~(M;JR). 0 

Notice that in fact the orientation argument above works just as well if there hap
pen to be reducible solutions in !m, and yields an orientation of the irreducible 
part !m* of 9Jt. 

Transversality. Finally, we need to argue that all 1t2 's can be made to vanish. Re
call that 1t2 at (cp,A) measures whether the Seiberg-Witten map stu: r(W+) x 
Conn(£) ----+ r(W-) x if(A~) has (cp,A) as a regular point. In other words, it 
detects whether its differential 

dstul(q~,A): r(W+) X ir(A1) -----> f(W-) X if(A~) 

dstul(q~,A)(t/J, itJ) = ('DAtp + ~tJ•cp, id+tJ -tp®cp*- cp®tp*- (cp,tp) ·id) 

is surjective. 

First component. The differential dstu is always onto the r(W-) -factor: 

Lemma. If ( cp, A) is an irreducible Seiberg-Witten solution, then the map 

r(W+) X if(A1) -----> r(W-): (tp, itJ) 1------7 DAtp + ~f}. cp 

is always surjective. 

Proof. Pick a section I; E f(W-) that is L2-orthogonal to the image of our 
map above. In other words, assume that for every ( tp, itJ) we have 

r A · 
}M(D 1/J + ~tJ•cp, s)JR =0. 

In particular fM(DAtp, s) = 0 for alltp. This means that I; ..l lm DA. Then 
we must have I; E CokerDA, that is, I; E Ker(DA )*,in other words, 

(DA)* I;= 0 

for the adjoint Dirac operator (DA)*: r(W-) ----+ r(W+). However, this ad
joint is an elliptic operator, and therefore it satisfies the unique continuation 
property (stated in section 10.2, on page 393). Hence, either I; is constantly
zero, or there is no open set on which I; vanishes identically. 

Assume that I; E r(w-) is not trivial. Then there are no open sets on which 
I; is identically-zero. On the other hand, cp E r(W+) itself has DAcp = 0. 
Therefore, since ( cp, A) was assumed not reducible, cp cannot be trivial, and 
hence there are no open sets on which cp is identically-zero either. It follows 
that there must be some point x E M where neither cp nor I; vanish. Since 
both cp and I; are continuous, choose a small round neighborhood U of x so 
that both cp and I; are nowhere-zero on U. 

Clifford multiplication exhibits an isomorphism T M ® C ~ Hoillc (W+, w-) 
(indeed, Clifford multiplication is modeled on quaternion-multiplication, see 
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the previous note on page 432). In particular, there must be some local vector 
field Do E r(TMiu) so that 

(the role of the "i" is purely aesthetic, for later use). Multiply Do with your 
favorite bump-function on U to obtain a vector field Do that approaches 0 
as you get close to aU. We still have (iDo • cp, s)I~ > 0 over all U. The 
vector field Do can be extended by 0 over the whole manifold M and has the 
property that 

Since fM('DAtjJ, s) was assumed to be zero, it follows that 

r A · 1M (D 1/J + ~Do. cp, s)JR > 0 I 

but then s cannot be orthogonal to the image of ( 1/J, iD) f-t 'DAt/J + ~D • cp. 

Therefore, the only possibility left for a section s E r(W-) to be L2-ortho
gonal to the image of our map is for s to be constantly-zero. This effectively 
proves that our map is onto.33 o 

Second component: varying the metric. Therefore, to ensure that (0, 0) is a regular 
value of .stu, the problem left is to make the differential d.stu surjective onto the 
f (A;_) -factor. 

There are two approaches to this: one is aesthetically-pleasing but technically 
harder to prove, while the other is more elementary. The first choice is to use a 
perturbation of the Riemannian metric: 

Generic Metric Theorem. For a generic set of Riemannian metrics on M, the obstruc-
tion spaces_are all trivial, that is, rt(cp,A) = 0 for all irreducible solutions ( cp, A). o 

A proof of this theorem can be read in T. Friedrich's Dirac operators in Rieman
nian geometry [FriOO, app A]. You might need some background on the space 
of Riemannian metrics on a manifold, see D. Ebin's On the space of Riemannian 
metrics [Ebi68]. 

Second component: perturbing the equations. A quite simpler approach is to perturb 
the equations, then deal with solutions of the perturbed equations, showing that 
the corresponding obstruction spaces vanish and that the resulting Seiberg-Witten 
invariants do not depend on this perturbation. 

The perturbed Seiberg-Witten equations are 

{
'DAcp = 0 

FJ = cr(cp) + i1J+. 

for some self-dual 2-form 1J + E r (A~ ( TM:)) . 

33. Here, of course, rigorously one must use that r(w-) is complete for the L~ -inner product used, 
that the image of our map is closed in this Hilbert space and thus it must admit orthogonal comple
ments, which hence are empty only when the map is surjective, etc. 
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Dealing with all perturbations at once, we define the map 

Pstu: r(W+) x Conn(£) x r(A~) ___. r(W-) x if( A~) 

Pstu(cp, A, 1]) = ('DAcp, FA+ - cr(cp) - iiJ+). 

451 

Its differential at an irreducible solution ( cp, A, 17+), obtained as before by using 
the derivative at t = 0 of a variation t ~ Pstu ( cp + tl/J, A + ittJ, 17+ + ta+), is 
computed to be 

dPsroi(cp,A,I]+): r(w+) x if(A1) x r(A~) ___. r(w-) x if( A~) 

dPstui(cp,A,IJ+)(tfJ, itJ, a+)= 

= (VAtp + £D•cp, id+tJ- 1/J®cp*- cp®tp*- (cp,tp) ·id- ia+). 

This differential is still onto the f(W-) -factor, just as before, but moreover, owing 
to the ia+ -term in the second component above, it is also obviously surjective onto 
the f (A~) -factor. Therefore we have: 

Lemma. Assuming there are no reducible monopoles, the point (0, 0) is a regular value 
of the map Pstu. o 
The consequence is that the collection of all solutions ( cp, A, 17+) of the perturbed 
Seiberg-Witten equations always make up an (infinite-dimensional) submanifold 
P6 of r(W+) x Conn(L) x f(A~). 

If we avoid reducible solutions, then the quotient of P6 by the gauge-action of 
f§(£) on r(W+) x Conn(L) x f(A~) (acting by the identity on the 17+ 's) will be 
a smooth (infinite-dimensional) manifold PSJJt, i.e., the moduli space of all per
turbed Seiberg-Witten monopoles. 

The parametrized moduli space PSJJt has an obvious projection 

p: PSJJt ---> f(A~) I 

coming from the projection of r(W+) x Conn(L) x f(A~) onto its third factor. 
Denote the fiber of p over any 17+ E f(A~) by 

S)Jtl]+ = p-1[1]+]. 

It is the moduli space of solutions to the perturbed Seiberg-Witten equations for a 
fixed perturbation 17+. 

By the Sard-Smale theorem, the smooth map p must have plenty of regular val
ues.34 Therefore, combining with parametrized versions of previously presented 
arguments, we eventually obtain: 

Generic Perturbation Theorem. For a generic set of 17+ 's from f(A~), the moduli 
space SJJtiJ+ of the 17+ -perturbed Seiberg-Witten equations is either empty or is a smooth 
manifold of dimension 

dimSJJtlJ+ = !{c1 (s) 2 - 3 sign M- 2x(M)) . 

34. The Sard-Smale theorem, in a mild version, states: Let f: X --> !f) be a smooth map between infinite
dimensional (Banach) manifolds and assume that dflx is Fredholm at all x E X. Then,for most y E !f), the 
preimage f- 1 [y] is either empty or a smooth manifold of dimension dimKerdf- dimCokerdf. It was proved 
inS. Smale's An infinite dimensional version of Sard's theorem [Sma65]. 
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Further, 9Jt11+ is compact and orientable. Its bordism class inside r(W+) x Conn( .C.) x 

f(A~) I ~(.C.) does not depend on Yf+. o 

One can then proceed and define the Seiberg-Witten invariant S'WM(s) as deter
mined by the homology class of any one of the nice 9Jt11+ 's for s, and the whole 
theory develops analogously to the outline from the main text. 

Nonetheless, we prefer to work under the light of the generic metric theorem 
rather than under that of the generic perturbation theorem. That is to say, we will 
continue to work with unperturbed equations and unperturbed moduli spaces. 
(Nonetheless, a perturbation where lrt+ I --+ oo will be essential when analyzing 
the Seiberg-Witten equations on symplectic manifold, in the note on page 465 
ahead.) 

When not of simple type. Of course, when 9Jt is zero-dimensional, then all one 
needs to do in order to obtain an invariant is to count the points of 9Jt, with signs. 
This is expected to be the case for all simply-connected 4-manifolds with bt 2: 2. 

Nonetheless, there are plenty of examples of manifolds with bi :S 1 or non-sim
ply-connected that each have moduli spaces of dimensions as high as one pleases. 
It is thus worth taking a look at the definition of S'WM ( s) in case the dimension of 
9Jt is positive. 

Ambient cohomology. If dim9Jt > 0, then we can locate the homology class [9Jt] 
inside H* (23; Z) by evaluating the cohomology classes of 23 on it. For that, of 
course, we need to understand the cohomology of this ambient space 

23 = r(W+) x Conn(.C.) I ~(.C.) . 

The action of ~ (.C.) has as fixed points all pairs ( 0, A), and thus these create singu
larities in the quotient 23. Removing these singularities, we are left with the space 

23* = (r(W+) \ 0) x Conn(.C.) I ~(.C.) 
of all gauge classes of pairs ( qJ, A) with <P not everywhere-zero. The action of 
~(.C.) is now free, and thus 23* is in fact an infinite-dimensional smooth manifold. 
If bt(M) 2: 1 and reducible solutions are avoided, then the moduli space 9Jt is 
wholly included in 23*. 

A different way of dealing with the non-free points of ~(.C.) is to "fix the gauge". 
Namely, consider the subgroup 

~0 (.C.) = {g: M--+ S1 I g(p) = 1}, 

where pis yourfavorite random point of M. We clearly have ~(.C.) = ~0 (.C.) X S1 I 

with 51 realized as constant 51-valued functions on M. 

The action of ~0 (.C.) on r(W+) x Conn(.C.) has the advantage of always being free. 
Thus, we can define its quotient 

23° = r(W+) x Conn(.C.) I ~0 (.C.), 

and correspondingly build 23~ and 9JtO, and all these will always be smooth man
ifolds. 
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Clearly SB = SB0 I 51, and similarly SB* = SB~ I 51 and 9J1 = 9J10 I 51. Moreover, 
the projection 

SB~ -. SB* 
is a fiber-bundle with fiber 51 • As such, it is associated to a complex-line bundle 
and a corresponding Chern class 

u E H2 (SB*; Z) . 

These, of course, restrict to a corresponding line bundle and 2-class on 9Jl:* . 

The class u is in fact fundamental for the space SB*: 

Theorem. The configuration space SB * is the classifying space of the gauge group: SB * = 
~t:.#(£). Its cohomology ring is 

H*(SB*; Z) = z[u] 0z A*(H1(M;Z)), 

where u is the first Chern class of the bundle SB~ -. SB*. o 

This is shown by arguing that (r(W+) \ 0) x Conn(£) is contractible, and thus its 
quotient by the free action oft:.#(£) must be the classifying space35 oft:.#(£). Then 
one uses a result of R. Thorn to evaluate the cohomology. For details, one can start 
with the third edition of D. Husemoller's Fibre bundles [Hus94, ch 7]. 

Definition of the invariants. When bi ( M) ;::: 1 we can avoid reducible solutions and 
thus make the moduli space 9J1 wholly included in SB*. Then we can evaluate the 
cohomology classes of the latter on 9Jl:. 

- If the space 9J1 has even dimension, which happens if and only if bi ( M) + 
b1 (M) is odd, then, after a choice of orientation on 9Jl:, we can define 

S'WM(s) = jrJR udimrJR/2. 

If bi(M) ;::: 2, then the moduli spaces for various generic metrics can be 
linked by a bordism inside SB*, and thus the invariants do not change. 

If bi ( M) = 1, then the bordism might encounter a reducible solution. In this 
case, after removing a neighborhood of the singular point, we obtain a bor
dism inside SB* between 9Jl:l and 9J12 U ±(:Jpm, and therefore the invariants 
might change by ± 1. In certain cases (such as when c1 (s )2 > 0), reducible 
solutions do not appear. 

- If the space 9J1 has odd dimension, which happens if and only if bi ( M) + 
b1 (M) is even,36 then we must define the Seiberg-Witten invariants to be 
trivial: 

- If the manifold M is not simply-connected, then we can refine the invariants 
by also evaluating on 9J1 the cohomology classes of SB* appearing from 
H 1(M; R). In this case it is best to think of S'WM(s) as a function 

S'WM(s): Z[u]0;z:A*(H1(M;Z)) ----+Z. 

35. Compare with an inserted note back on page 205, inside the end-notes of chapter 4 (classifying 
spaces, page 204). 

36. Notice how, if M does not admit any almost-complex structure, then the Seiberg-Witten invariants 
are powerless. 
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Note: The Seiberg-Witten proof of Donaldson's theorem 

Using our better understanding of the Seiberg-Witten moduli space 9Jt gained 
from the preceding note, we will now offer a proof of 

Donaldson's Theorem. If M is a smooth 4-manifold with negative-definite intersection 
form, then in fact its intersection form must be 

QM = EB m [ -1] . 

The presentation will take the preceding note (starting on page 439) as a requisite. 
Further, since reducible solutions play an essential role, we will make use of state
ments presented in the end-notes of the preceding chapter (connections on line 
bundles, page 357). This proof of Donaldson's theorem is due toP. Kronheimer, 
with a finishing touch from N. Elkies. 

Assume that M is a smooth 4-manifold with negative-definite intersection form. 
In other words, bi(M) = O,and thus b2(M) = b2(M) and signM = -b2(M). 

Let JQ be any characteristic element of M. Then we must have JQ · JQ = sign M 
(mod 8) and hence 

JQ · JQ + b2 ( M) = 0 (mod 8) . 

Characteristic elements JQ correspond to spine structures s with c1(s) = JQ. The 
virtual dimension of the corresponding Seiberg-Witten moduli spaces is 

vdim9Jt= HJQ·JQ- 3signM- 2x(M)) 

= HJQ·JQ + b2(M)) -1. 

A consequence is that the dimension of the moduli space is always odd. 

Assume there is some characteristic element JQ for which the virtual dimension 
vdim 9Jt is non-negative, that is to say, at least 1. Then the moduli space is either 
empty or a (singular) manifold of the expected dimension. Since bi = 0, there are 
always reducible solutions in mt, which hence cannot be empty. 

The space mt0 of Seiberg-Witten solutions modulo the action of 

~0 (.C) = {g: M ---7 S1 I g(p) = 1} 

is a smooth manifold of dimension vdim 9Jt + 1. Its dimension is even and at least 
2. The group S1 acts on mtD with fixed points at the reducible solutions, and its 
quotient is 9Jt. 

Assume first that H 1 (M; JR.) = 0. Then there is a unique gauge class of reducible 
solutions. In other words, there is only one fixed point of the action of S1 on 9J1. 

For the manifold mtD, a discussion in terms of the complex 

I ag I dstr:J I 
0-----+ T~o(.c) 1 ___. Tr(w+)xConn(.C) (q.>,A) -----7 Tr(w-)xif(A~) (0,0) -----> 0 

can be undertaken, quite analogous to the one developed for 9Jt in the preceding 
note. It leads to an identification of the tangent space of mtD with the first coho
mology group of this complex, 

T!mol[q.>,A] = Htq.>,A). 
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The only difference now is that the tangent space T(§O(£) 11 is not the full space 
if (lR) = {if: M ~ i lR}, but its codimension 1 subspace of maps with f (p) = 0. 

At every reducible solution ( 0, A), the derivatives are 

d.sltll(o,A)(tp, itJ) = (VAtp, id+tJ) and dgl 1(if) = (0, 2idf), 

and thus the tangent space to 9J1° at [ 0, A] is merely 

H(o,A) = KerVA, 

since H 1(M;R) was assumed trivial. 

We think of T wto I [o,A] = Ker VA as an approximation to the manifold 9J1° around 
the point [0, A]. The action of 51 on 9J1D, for which [0, A] is a fixed point, is well 
approximated by the standard multiplicative action of 51 on the complex vector 
space37 Ker vA ~ em+ 1 I with 2 ( m + 1) = dim 9J1° and hence 2m = dim 9J1 - 1 . 

Therefore, the quotient 9J1° /5 1 looks near [0, A] like a a cone on the quotient 
sZm+I jS1 = ClPm. Hence, a small neighborhood U in 9J1 of the singularity [0, A] 
has boundary () U = ClPm, and must itself be a cone on ClPm (2m = dim 9J1 - 1 ). 

One case. If m = 0, one should think of CJP0 as made of a point. In this case the 
interior of U must be a copy of [0, oo). Since there is only one reducible solution 
up to gauge, this implies that 9J1 is a compact manifold of dimension 1, whose 
boundary is made of only one point. This, of course, is impossible. 

Another case. If m 2: 1, we reach a contradiction by arguing as follows: The bundle 
9J1D ~ 9J1 restricts to ClPm as the circle-bundle of its universal bundle. The univer
sal bundle over ClPm is the complex-line bundle that has as fiber over each point 
of ClPm the complex-line represented by that point. Indeed, this is exactly what 
happens here: over each point of ClPm C 9J1 lies the circle of 9J1D from which it is 
coming. 

Therefore the class u evaluates on d U as 

r um = ±1, 
lcJPm 

since u, being the Chern class of 9J1° ~ 9J1 which is universal over cJPm = () u I 
must restrict to ClPm as the Poincare-dual of ±[CJP1] E H2 (ClPm;z). 

On the other hand, our cJPm bounds in 113*: 

ClPm = d(9J1 \ U) . 

Therefore its homology class [ClPm] in Hzm(23*; .Z) must be trivial. Since u is a 
global cohomology class of 113* and urn· [ClPm] = ±1, this is impossible. 

37. These statements can be made quite rigorous through the use of the so-called Kuranishi technique. 
This technique was created by M. Kuranishi's On the locally complete families of complex analytic 
structures [Kur62] in the study of moduli spaces of complex varieties, and was then applied to vari
ous other moduli space settings. Its use in gauge theory originates with M. Atiyah, N. Hitchin and 
I. Singer's Self-duality in four-dimensional Riemannian geometry [AHS78]. 
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We have proved that, as soon as we assume the virtual dimension of 9J1 to be non
negative, contradictions ensue. Hence, for all spine structures on M, we must 
have38 vdim 9J1 :::; -1. That is to say, 

H~Q · IQ + bz ( M)) - 1 < -1 

for all characteristic elements IQ of M. 

Theorem. If M is a smooth manifold with negative-definite intersection form, then for 
every characteristic element IQ of M we must have 

IQ · IQ :::; - bz(M) . 

Proof The theorem was already proved above in the case when H 1(M;JR) = 
0. If H1(M;lR) =F O,wewillreduceittothesettledcasebykilling H1 through 
some simple surgery. 

Namely, let { € 1, ... , fm} be a basis of H1 ( M; lR) made of integral classes. Rep
resent each of them by disjointly embedded circles in M. These circles do 
not bound any surface in M and (not being torsion) neither does any of their 
(homological) multiples. 

Let 51 be such a circle. Its neighborhood is a copy of 51 X D 3 • If we remove 
it from M, we obtain a new manifold M 0 with boundary 51 X 52 , to which 
we can then glue a copy of D 2 x s2 • Since neither 51 nor a bunch of parallel 
copies of 51 bounds any surface in M0 , the added disk D 2 (or a bunch of 
parallel copies of it) will not cap anything that would create new homology 
classes. Thus, after surgery, the class of 51 is trivial, but the 2-homology of 
M is unscathed. 

Repeating this for all fk's results in a new manifold M, which has b1 (M) = 0. 
Moreover, since the second homology was untouched, it has QM: = QM, and 
hence the same characteristic elements as M. Then we can apply the b1 = 0 
part of the theorem to M and reach the needed conclusion. D 

While the above theorem is not yet the full Donaldson theorem, it is already strong 
enough, for example, to exclude all even definite intersection forms: 

Corollary. If M is a smooth manifold with definite intersection form, then QM cannot be 
even. 

Proof Any even form would have IQ = 0 as characteristic element, and thus 
IQ · IQ = 0 > - bz ( M), which contradicts our theorem. D 

For example, Es EEl Es is hereby expelled from the smooth realm. 

Without further ado, to obtain the full Donaldson theorem, one needs to use the 
following algebraic result, proved in A characterization of the zn lattice [Elk95]: 

Lemma ( N. Elkies ). Let Q: Z x Z ----+ Z be a symmetric unimodular bilinear form. If 
Q is neither EEl [ -1] nor EEl [ + 1] , then there exists a characteristic vector IQ so that 

II!::· I!::l < rankQ. D 

38. Remember that vdim !m is always odd. 
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In other words, the forms EB [ -1] and EB [ + 1] are the only forms without short 
characteristic vectors; their shortests are :fQ = E eb with l:fQ · :fQI = rank Q. 

Since a short characteristic element in a negative-definite intersection form QM 
means :fQ · :fQ > - bz ( M), the full Donaldson theorem follows. 

Note: Seiberg-Witten on Kahler surfaces 

Seiberg-Witten theory is strongly related to complex geometry. In what follows 
we will explore this. We will use concepts and notations from the end-notes of the 
preceding chapter (complex-valued form, a-operators, and holomorphic bundles, 
page 365) as well as results proved in a previous note (rewritings of the spinor 
bundle, squaring map, and Dirac operator, page 438). 

Canonical spine structure. Assume that M is a Kahler surface and denote by w its 
Kahlerform w(x,y) = (Jx, y). The complex structure J of M induces a canonical 
spine structure s1 on M, with determinant line bundle £ 51 = KM, and with spinor 
bundles 

w+ = A.O,O EB A.0,2 and w- = A.0,1 . 
~ ~ 

Here A. 0· 0 = A. 0 ® C = L while A. 0· 1 denotes the half of A.1 ® C represented 
by complex-valued C-anti-linear 1-forms, and A.0·2 is the subbundle of A.2 ® C 
containing C-bi-anti-linear forms. 

The Levi-Civita connection of the Kahler metric induces a canonical U ( 1) -con
nection Ao on KM = detc_ TM_ = A.0·2. Since Ao is compatible with the natural 
holomorphic structure of KM (i.e., aAo = aK* ), we have F!~2 = 0. The induced 
Dirac operator VAo is: 

vAo: f(A.O,O EB A.0·2) ------; f(A.0,1) 

_LvAo =a EB a* 
..fi ' 

where a*: f(A.0·2) ~ f(A.0·1) istheformaladjointofa: f(A.0·1) ~ f(A.0·2),char
acterized by 

for all a E f(A.0·1) and {3 E f(A.0·2). Each operator a: f(A.0·k) ~ f(A.O,k+ 1) is part 
of the (complexified) exterior derivative d: f(A.k ®C) ~ f(A.k+l ®C). Since M 
is a complex surface, we have a a = 0, and a f vanishes if and only if f: M ~ C 
is holomorphic. 

Proof that VAo = y'2(() + ()*). While this statement has been argued in a previous note (page 
438) by using quatemions, we also present an alternative argument. The Kahler 2-fonn w acts 
by CliHord multiplication on w+ and splits it into eigenbundles as w+ = !;_ Ell K*, with w 
acting on !;_ as - 2i and on K* as + 2i. Fix a section 3 of!;_ c w+ of constant length 1 . Through 
CliHord multiplication, this section induces the identification 

Ao,o EBAo,z = w+: f + f3 ~ (f + !f3) •3. 

The factor ! is there to insure that the map is an isometry. Similarly, we obtain the identification 

A0•1 =W-: a~ }z«•3. 
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For any connection A on K*, we have vA+ill3 = V"A3 + !iD · 3, and therefore there exists a 
unique choice of connection Ao such that \7Ao3 is C-orthogonal to the subbundle ~ of w+, 
that is, (V'~0 3, 3)c = 0. Using this special connection A0 , we compute: 

\i"Ao(W•3) = (\i"w)•3+Wo(\i"Ao3), 

Since we have W•3 = -2i3 and W• (VAo3) = +2i\i"Ao3, we obtain vAo3 = k(V"w) •3· However, 
w is a Kahler form, and so \7' w = 0 and therefore 

\i"Ao3 = 0 • 

Through the identification 11.0•0 Ef) 11.0•2 = w+' we compute 

\7~0 (! + {3) = Y'~0 ((f + !f3) •3) = (df(X) + !Vxf3) •3 + (f + !f3) • \7'~0 3 
and the last term vanishes. The Dirac operator corresponding to Ao is 

'DA0 (f + {3) = [ek • \7'~0 (/ + {3) = [df(ek)ek"3 + !(ep V",k{3) •3 • 

The Clifford multiplication on forms acts as Volt= v 1\.x- v .JIX, and thus I:ek. v.kf3 = df3 +d* {3. 

Since for any !-form ')' we have r • ip+ = - ( * ')') • ip+ and since d* f3 = - * df3 (as f3 is a self
dual 2-form), we get (df3 + d* {3) •3 = 2d* f3 • 3 and finally obtain VAo(J + {3) = df • 3 + d*f3 • J. 

Passing this back through the identification 11.0• I = w- yields vAo (f + {3) = Vi(a f +a* f3)' as 
claimed. o 

The other spine structures. All other spine structures on M can be obtained using 
translations by H 2 ( M; Z), as explained in section 10.2 (page 389). 

Specifically, for every class e. we build a complex-line bundle Le such that c1 (Le) = 
e.. Then the determinant line bundle corresponding to the spine structure s1 +e. 
appears as Cr;1+e = K'M 0 Lr'2, while its spinor bundles are 

w: +e = Le EB (Le 0 A0•2 ) and w; +e = Le 0 A0• 1 
I 

J J 

since A0•0 0 Le is simply Le. Each term Le 0 A0·k is understood as made of Lc 
valued (O,k)-forms on M. 

Choose some Hermitian fiber-metric on Le. Any choice of a U(1)-connection 
B on Le combines with the special connection Ao on K'M to yield a connection 
A = Ao + 2B on Cr;1+e· Varying B E Conn(Le) covers all connections A from 
Conn ( Lr; +e) . (This procedure works for Lr; itself: tensoring with the trivial bundle 
L0 = ~ ~nd varying the connections B on7 ~ covers all connections A = A 0 + 2 B 
on £;;1 .) 

The connection Ao + 2B on C;+e induces a Dirac operator vAo+ZB. It is easy to 
check that we can write 

vAo+ZB: f(Le EB (Le 0 A0•2)) ~ f(Le 0 A0• 1) 

...!_ vAo+2B - a EB a* .j2 - B B· 

Here, for every .e E f(Le), we set aB.e to be the (0, 1)-partofthe Lcvalued 1-form 

dB .e. Further, a; denotes the the formal adjoint of aB: r(Le 0A0· 1) ---t f(Le 0 A0·2) I 
with the latter appearing as part of dB: f(Le 0 A1) ---t f(Le 0 A2). We thus have 

JM (aBIX, {3) = JM (IX, a; f3) 

for all IX E f(Le 0 A0• 1) and {3 E f(Le 0 A0•2). 
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The Seiberg-Witten equations. Choose a spinC structure s1 + e on M. The Sei
berg-Witten equations are 

where cp is a self-dual spinor field from w: +e, and A is a connection on £ 5 +r. We 
rewrite them while taking advantage of oJr special situation. 1 

First, we write cp = ( .e, f3) , where .e E r ( Le) and f3 E r ( Le Q9 i\ 0• 2 ) . Second, we 
use the rewriting of the squaring map obtained on page 438, so that the second 
equation becomes 

and 

where .e* is the image of .e under the (complex anti-linear) isomorphism Lr ~ 
L; induced from the metric of Le, while .e* f3 is the image of .e* Q9 f3 under the 
evaluation map L; Q9 (Le Q9 i\0,2) ----t i\0,2. 

We now notice that we can write A = Ao + 2B and hence FA = FA0 + 2F8 , where 
F8 is the curvature of the connection B on Le. However, since Ao defines the holo
morphic structure of K*, it follows that F1~2 = 0. What appears are the equations 

{
aB.e+a;f3=o 
F~·2 = .e* f3 
(FJ)I,l = i (l.el2 -1/312) w. 

In this way, a solution to the Seiberg-Witten equations is now viewed as a triplet 
(.e,f3,B), with .e E f(Lr), f3 E f(Lr ®i\0· 2) and BE Conn(Le). 

Computation. Assume that ( .e, {3, B) is a solution. We apply a B to the first equa
tion above to get 

This is just 
F~· 2 . .e+ a8 a;f3 = o, 

and by using the second equation we obtain 

We take the inner product with f3, integrate over M and use that a B is adjoint to 
a; . The result is 

Therefore both integrals need to vanish, and we must have both 

and l.ell/31 = 0. 

Since l.ell/31 = 0, it follows that .e* f3 = 0, and thus that we have 

F 0,2 = 0 
B - ' 

after applying the second equation. By the integrability theorem (page 369), this 
implies that B defines a holomorphic structure on Le. 
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On the other hand, since a; f3 = 0 I the first equation implies that a B .e = 0 I which 
means that .e is a holomorphic section of Le, for the holomorphic structure deter
mined by B. Dually, * f3 E f(A2•0 ® L;) is a holomorphic section in KM ® L; 
(since KM = A2•0 ). 

Further, since lfll/31 = 0, this means that at each point of M one of .e or f3 must 
vanish. Therefore there must be an open set of M on which one of them vanishes. 
Since both are holomorphic, this implies that either 

.e::=o or {3:::::0. 

Therefore, either we are dealing with ( .e, 0, B) and .e is a holomorphic section of Le, 
or we are dealing with (0, {3, B) and f3 is a holomorphic section of KM ® r:, or we 
have (0, 0, B) with FJt = 0. 

Interpretation. We are now ready to translate the Seiberg-Witten monopoles into 
complex-geometric terms: 

One case. Assume that .e is nontrivial, and thus f3 = 0. Then Le is a holomorphic 
line bundle on M, with holomorphic section .e. Therefore the zero set of .e is a 
.Z-linear combination of curves in M with positive coefficients, representing the 
Chern class c1 (Le) = E. Thus, a solution of the Seiberg-Witten equations for the 
spine structure 5! + E yields a representation of the class E as a combination of 
complex curves with positive coefficients.39 

If two solutions ( .e', 0, B') and (.en, 0, Bn) are gauge-equivalent, then the induced 
holomorphic structures on Le must be isomorphic, with the isomorphism carry
ing the section .e' to .e". Since a self-isomorphism of a holomorphic line bundle 
can only be the multiplication by constant scalar, it follows that .e' = c .en, and 
their zero-set is the same. Thus a gauge-class of solutions is indeed just a positive 
combination of complex curves representing E. 

We are left with the third equation, namely (F;t) 1• 1 = i(lfl2 -lf312 ) w, where A= 
Ao + 2B is a connection on the determinant line-bundle Cs,+e = K* ® L~2 . Since 
f3 = 0, this becomes ( F;t) 1,1 = i If 12 w, but c1 (C) is represented by the form 2~ FA, 

and so it follows that c1(£) · [w] = f( 2~FA, w) = J( 2~(F;t)l.l, w) and hence 

c1 (£) · [w] < 0, i.e., (KM + le). [w] < 0 . 

The converse can be proved to be true as well: For every positive linear combina
tion of complex curves that represents a class E withE· [w] < 0, the spine struc
ture 5! + E admits a monopole ( .e, 0, B) as above. Indeed, such a combination deter
mines a unique holomorphic structure on Le and section .e, up to multiplication by 
constants. If Le is further endowed with a Hermitian metric, then the holomorphic 
structure determines uniquely a compatible connection B. The task is to find the 
right Hermitian metric on Le so that the curvature of the corresponding B satisfies 
the third equation. The full argument involves varying the Hermitian metric and a 
study of non-linear equations like D.f + ae2f = g, and corresponding results from 
J. Kazdan and F. Warner's Curvature functions for compact 2-manifolds [KW74]. 

39. In complex-geometric terms, this is an effective divisor of class e. 
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Another case. When {3 is nontrivial and f = 0, a similar reasoning ends up with 
{3 defining a holomorphic section of KM ® L; and thus representing KM - e by a 
positive combination of curves, and with cr (.C)· [w] > 0, i.e., 

(KM+2e)·[w] >0. 

Reducible case. If both £ and {3 vanish identically, then we are dealing with a re
ducible monopole, and the third equation implies that (KM + 2e) · [w] = 0. Since 
no perturbations were made, these might be unavoidable (for example, when 
e = 0 for K3 surfaces, since KK3 = 0). 

In conclusion, we have: 

Theorem (E. liVitten ). Let M be a Kiihler surface with bi ( M) 2: 0, and e any class in 
H 2 (M;Z). Then: 

- If (KM + 2e) · [w] < 0, then the Seiberg-Witten moduli space 9JtK*+2e coincides 
with the space of all representations of e as positive-coefficient combinations of com
plex curves40 in M. 

- If (KM + 2e) · [w] > 0, then the Seiberg-Witten moduli space 9JtK*+2e coincides 
with the space of all representations of KM - e as positive-coefficient combinations 
of complex curves in M. 

- If (KM + 2e) · [w] = 0, then the Seiberg-Witten moduli space 9JtK*+2e contains 
only reducible solutions. o 

This result is due to E. Witten in the founding paper Monopoles and four-mani
folds [Wit94]. Notice that the first two cases are linked through the Seiberg-Wit
ten involutions f-7 -s with S'WM( -s) = ± S'WM(s) (page 405). Indeed, if KM + 
2e1 = -(K* + 2e11 ), then e' = KM- e11 • On the complex-geometric side, the two 
cases are linked by Serre duality. 

Of course, one is now tempted to interpret S'WM ( K* + 2e) as counting the number 
of representations of either e or KM - e as complex curves in M. The problem is 
that the whole argument above was made without any perturbations, namely, we 
did not perturb the metric (since we needed the Kahler structure) and we did not 
perturb the equations. Therefore, the above moduli spaces might not be cut trans
versely by the equations. In particular, the actual dimension of 9JtK*+2e might 
be bigger than the expected dimension KM · e + e · e. Consequently, the above de
scription of the moduli spaces cannot in general be used directly to evaluate the 
Seiberg-Witten invariants. 

Nonetheless, these descriptions allow one to translate the Seiberg-Witten equa
tions into algebraic geometric terms (Hilbert scheme of curves) and, after a careful 
analysis of the failure of transversality (i.e., of the obstruction spaces 1-i2 ), leads 
to a complete evaluation of the Seiberg-Witten invariants. This argument can be 
found, for example, in R. Friedman and J. Morgan's Obstruction bundles, semireg
ularity, and Seiberg-Witten invariants [FM99] or, for a different approach (evalu
ating the excess intersection by using a localized Euler form), in R. Brussee's The 
canonical class and the C"" properties ofKiihler surfaces [Bru96]. 

40. In other words, !D1 is the space of all effective divisors of class e, or the number of holomorphic 
sections of the bundle L,, up to scalar multiplication, as in #lP(I/101 (L,)). 
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E. Witten himself [Wit94] proposed perturbing the equation F~· 2 = f* f3 to F~· 2 = 
f*[3 + Jlforsomeholomorphic (2,0)-form fl. E f(A2•0). When P1(M) 2: 1 (equiv
alently, when bi 2: 3), the bundle A2•0 = ~ admits such a non-trivial holomor
phic section fl.· Its zeros Zeros(ft) represent the class c1 (KM) as a positive combi
nation of complex curves in M. These perturbed Seiberg-Witten equations then 
lead to different moduli spaces mt~.+2e, which can be identified with the space 
of decompositions Zeros(fi.) = D' + D" into two positive combinations of curves, 
so that D' represents e. The argument can be read from L. Nicolaescu's Notes on 
Seiberg-Witten theory [NicOO, sec 3.2.2]. 

Without any of this extra technology, but by directly using the description from 
the above theorem, we notice that, if S'WM(KM: + 2e) =/= 0, then the above non
perturbed moduli space m1K*+2e must be non-empty, and therefore certain bun
dles must admit holomorphic sections. 

Combining this with the classification of complex surfaces directly yields restric
tions on basic classes for surfaces of general type and for proper elliptic ones, as 
we will see in what follows. Remember from chapter 7 that a minimal Kahler sur
face is of general type if KM · KM > 0 and KM · [w] > 0, and is proper elliptic if 
KM · KM = 0 and KM · [w] > 0 (page 295). 

Surfaces of general type. 

Theorem. If M is a Kiihler surface of general type, minimal with respect to blow-downs, 
then its basic classes are exactly ±KM:, with S'WM ( ±KM:) = ± 1. 

Proof. We will show that the only spine structures that admit monopoles are 
±KM:. Let £ = KM: + 2e be a spine structure on M that admits monopoles 
and so that the expected dimension of mt is non-negative, i.e., KM: · e + e · e 2: 0. 
This latter condition can be written as 

KM:·KM: ~ £.£. 

However, M is of general type and we must have KM · KM > 0, and hence 

£.£ > 0. 

Maybe after using the involution .s ~ -.s, we can assume that we are in the 
case when (KM: + 2e) · [w] < 0, that is, when 

£. [w] <0. 

Then a Seiberg-Witten monopole for £ is the same with a holomorphic struc
ture on Le and a non-trivial holomorphic section f E f(Le). Since e is thus 
represented by a positive-coefficient combination of complex curves and since 
KM is nef, it follows that KM · e 2: 0. We write this as KM: · e ~ 0, then rewrite 
it as KM: · (KM: + 2e- KM:) ~ 0 or KM: · (£- KM:) ~ 0, and hence 

KM: · £ ~ KM: · KM: . 

Further, since M is of general type, we must have KM · [w] > 0, or 

-KM:· [w] > 0. 
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Since on the other hand we have£· [w] < 0, it follows that there must exists 
some real t 2: 0 so that 

(t£ - KN.r) · [w] = 0. 

Since [w] · [w] > 0, the geometric Hodge signature theorem41 (page 278) im
plies that 

(t£ - KN.r) . (t£ - KN.r) ::; 0 I 

that is, t2 (£ · £) - 2t(KN.r · £) + (K;, · KN.r) ::; 0. Since KM · KN.r ::; £ · £ 
(from the dimension condition) and KN.r · £ ::; KN.r · KN.r (from KN.r nef and Le 
admitting sections), it follows that 

0 2: t2 (£ · £) - 2t(KN.r · £) + (KN.r · KN.r) 

2: t2 (KN.r. KN.r)- 2t(KN.r · KN.r) + (KN.r · KN.r) 

= (t2 - 2t + 1)(KN.r · KN.r) 

= (t- 1)2 (KN.r · KN.r) 2: 0. 

Therefore the caught quantities must all be zero, t must be 1, and we have 
both 

(£- KN.r) · (£- KN.r) = 0 and (£- KN.r) · [w] = 0. 

Using again Hodge's theorem, it follows that£- KN.r is a torsion class. How
ever, £- KN.r = 2e and e was representable by complex curves, and therefore 
the only option is that £ = KN.r. 

Furthermore, the holomorphic section of Le, since now Le = !:_,can only be 
nowhere-zero and constant, so that 9J1K* only contains one point. One can 

M 
then verify directly that this moduli space is cut transversely, and thus that 
S'WM(KN.r) = ±1. (An alternative argument that S'WM(KN.r) = ±1 will be 
made in the next note, page 465, for symplectic manifolds in general.) D 

In particular, it follows that if M' and M 8 are two minimal surfaces of general 
type, then any diffeomorphism f: M' ~ M 8 must carry the class KM' to ±KM" . 

Proper elliptic surfaces. 

Theorem. If M is a proper elliptic Kiihler surface, minimal with respect to blow-downs, 
then every Seiberg-Witten basic class of M must be a rational multiple of KM, namely 
some tKM with t E Q and itl ::; 1. 

Proof. We assume that M is simply-connected. As in the argument for gen
eral type surfaces, we set£= KN.r + 2e and assume that 

£· [w] < 0. 

The Seiberg-Witten moduli space has expected dimension non-negative when 
£ · £ 2: KN.r · KN.r, but since M is elliptic we have KN.r · KN.r = 0, and thus 

£.£2:0. 

41. The Hodge signature theorem states that, if A · A > 0 and A · B = 0, then either B · B < 0 or B = 0 
or B is torsion. 
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If S'WM(£) -I= 0, then Le must admit a non-trivial holomorphic section, and 
therefore KM · E 2': 0, which leads to K'M · (£- K'M) :::; 0. Since K"M · K'M = 0, 
that means 

K'M · £:::; 0. 

Furthermore, since M is proper elliptk we have KM · [w] > 0, or 

-K'M· [w] > 0. 

Since £ · [ w] < 0 and - K'M · [ w] > 0, there must exist some real t 2': 0 so that 

(t£-K'M)·[w]=O. 

From the Hodge signature theorem, this implies that either ( t £ - K"M) · ( t £ -
K"M) < 0 or that t £ - K'M = 0. 

Assume first that (t£- K'M) · (t£- K'M) < 0, and so 

t2 (£. £) - 2t(K'M · £) < 0. 

However, K'M · £ :::; 0 and so -2t(K'M · £) 2': 0. The above inequality then 
forces £ · £ < 0, but the dimension requirement on the moduli space had 
£ · £ 2': 0, and thus this cannot happen. 

As an alternative argument, consider the function s2 (£ · £) - 2s(KM · £) in the variables. 

The minimum of this function is -(KM · £)2 / (£ · £). Since KM · £ ::; 0, if£·£ < 0, this 
function never drops below 0. 

Therefore we must have t£- K"M = 0. Since both £ and K'M are integral 
classes, this coefficient t must be rational. 

Now write t£- K'M as t(K'M + 2e)- K'M = (t- l)K'M + 2te. Since (t£
K'M) · [w] = 0, this implies that 

(t- l)(K'M · [w]) = -2t(e · [w]). 

However, on one hand Le admits a non-trivial section and thus either E • [ w] > 
0 or E = 0. On the other hand, K'M · [w] > 0. Therefore we must have 
t - 1 :::; 0, that is, 0 :::; t :::; 1. o 

Remember that the canonical class of the elliptic surface E ( n) p, q is 

KE(n)p.q = (n- 2)[F] + (p- l)[Fp] + (q -l)[Fq], 

where F is the generic fiber and Fp, Fq are the multiple fibers. Using the homology 

class [Fpq] = iq [F], this can be written 

KE(n)p,q = (npq- p- q)[Fpq]. 

Therefore the above theorem allows as basic classes any k[Fpq] with lkl :::; npq
p - q. Compare this with the actual basic classes listed in section 10.6 (page 413), 
where the restriction k = npq- p- q (mod 2) is added. 
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Note: Seiberg-Witten on symplectic manifolds 

We will present here only the case of the canonical spine structure s1 with deter
minant line bundle KM_ and prove the simplest result, namely that 

S'WM(±KM_) = ±1. 
As mentioned before, the proof of Taubes' general results on symplectic manifolds 
needs the dense 400 pages of Seiberg-Witten and Gromov invariants for sym
plectic 4-manifolds [TauOOa]. We will use notations and concepts from the end
notes of the preceding chapter (holomorphic bundles and connections, page 365), 
as well as from the preceding note (which started on page 457). 

A simple attempt to make the argument used in the above Kahler case work in the 
symplectic case fails immediately. That is owing to the role now taken in many 
formulae by the Nijenhuis tensor N. This tensor is defined by 

N(x,y) = i([Jx,Jy]- [x,y]- J[x,Jy]- J[Jx,y]) 

and measures the failure of the almost-complex structure J from being integrable, 
i.e., from corresponding to actual complex-holomorphic coordinates42 on M. The 
tensor N appears for example in formulae like a a f = -(a f) (N). 

Therefore, we need a new approach for dealing with the Seiberg-Witten equations 
on symplectic 4-manifolds. This approach is to perturb the Seiberg-Witten equa-

tions to look like { DA cp = O 

Fj - Flo = CT(cp) - p2w, 

where Ao is a special connection on K*, while p E JR. is a parameter that we 
will grow to oo. We will show that, as p grows, the equations admit exactly one 
solution up to gauge, and therefore that S'WM(K*) = ±1. 

Preparation: Almost-complex geometry. We choose an almost-complex structure 
J compatible with our symplectic structure w. Since M is merely symplectic, its 
Nijenhuis tensor N does not vanish. We also choose a compatible Riemannian 
metric. 

Complex-valued exterior forms can still be split into types. For example, 

AI ®C = AI,OEBAO,I, 

where i\1•0 is made of those complex-valued 1-forms that are complex-linear (as 
maps TM----+ C), while i\0• 1 contains the complex-anti-linear ones. Also, 

Az®C = Az,oEBAI,I EB.t\0,2, 

42. The celebrated Newlander-Nirenberg theorem states that an ahnost-complex structure J on a manifold 
X corresponds to an actual complex structure on X if and only if the Nijenhuis tensor N vanishes. A 
proof under the simplifying assumption that everything is real-analytic can be read from S. Kobayashi 
and K. Nomizu's classic Foundations of differential geometry [KN69, KN96, vol II, app 8] . For the 
general Newlander-Nirenberg theorem, see the original paper of A. Newlander and J. Nirenberg Com
plex analytic coordinates in almost complex manifolds [NN57], or, in monographs, L. Hormander's 
An introduction to complex analysis in several variables [Hor66, Hor90], or G. Folland and J. Kohn's 
The Neumann problem for the Cauchy-Riemann complex [FK72]. 
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where A1·1 contains all 2-forms tx with tx(Jx,Jy) = tx(x,y), while A0·2 contains 
complex-hi-anti-linear 2-forms. 

The definitions of the AP· q 's cannot use dz 's and dZ 's, since now there are no such complex 
coordinates on M. Instead, one can start with any orthonormal local frame {el.fl,ez,fz} in 
TM such that Je1 = /J and fez = !z. This induces a dual frame {e1,f1,e2,j2} in TM, which 
defines the complex frame { e1 = e1 + i f 1, e2 = e2 + i p, e1 = e1 - i J1, e2 = e2 - i J2} in 
TM ® C, which is to be used as proxy for {dz~o dzz, d.Z1,d.Z2}. Then AP·q is defined as the part of 
AP+q(TM) ® C that is locally spanned by p of the ek-s and q of the ek-s. In particular, A0•1 is the 
complex span C{e1, e2}, while A0•2 is C{e1 i\ e2}. 

The first exterior derivative d: f(A0 ®C) ---+ f(A1 ®C) still splits as d = a+ a 
with a: f(A0·0) ---t f(A0· 1). However, on higher-degree forms the exterior deriv
ative d is no longer exhausted by the corresponding sum a+ a. For example, for 
every (X E f(A0· 1) we get dtx = (X 0 N + a (X + a tx, with (X 0 N E r(A2·0). 

Also, as mentioned above, we no longer have a a f = 0 I but instead 

a a f = -(a f) oN . 
This formula can be checked by direct computation. More generally, when dealing 
with sections of some bundle E endowed with a connection A, we have 

a A aAf = FJ' 2 - (oAf) oN. 
In what follows, we will also need: 

Lemma ( Weitzenbock-type formula for a A ). For every symplectic manifold M and 
every smooth complex bundle Eon M endowed with a connection A, we have 

2a~ aAP = dAdA£- i(FA,w) ·f. 

Proof. We remark that for every 1-form tx we have J tx = * ( w 1\ tx) . Then we 
compute directly: 

2a~aA 2a~(proj0,1odA) = a~(dA-ifdA) 

a~ (dA- i*(wl\dA)) = dA (dA- i*(wl\dA)) 

dAdA- dAi*(wl\dA) =dAdA- (-*dA*)i*(wl\dA) 

dAdA + i * dA * * ( w 1\ dA) = dAdA - i * dA ( w 1\ dA) 

dAdA- i*(dwl\dA + wl\dAdA) = dAdA- i*(wi\FA) 

dAdA-i*(wi\FA) = dAdA-i(w,FAl· o 

This formula becomes false on merely almost-complex manifolds, where one needs 
to add the correction term i(d*w, dAP). 

Rewriting and perturbing the equations. The canonical structure sf has bundles 

w+ = A0•0$A0·2 and w- = A0·1 

and determinant line bundle C = K'M. Further, one can still find a special U ( 1)
connection Ao on K'M such that the induced Dirac operator is 

vAo: f(Ao,o EB Ao,2) ~ f(Ao, 1) )2vAo =a EB a*. 
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The existence of such an Ao needs that w be symplectic. 

Proof that VAn = yli (a + a*) . We follow the same thread as in the Kahier-case proof from the 
inserted note on page 457. Pick a unit-length section 3 in w+ and choose the unique connection 
Ao on K* so that (V'Ao3, 3)c = 0. Then, since w • 3 = -2i3 and w. (V'Ao3) = +2i'\7Ao3, from 

the formula V'Ao(w. 3) = ('Vw) • 3 + W• (V'Ao3) 

follows that '\7Ao3 = £('Vw) •3· Identifying f + f3 from A0•0 EB A0•2 with (f + if3) •3 from w+, 
we can now compute 

'\7~0 (/+{3) = Y'~0 ((f+!f3)•3) = (df(X)+~Y'xf3)•3 + U+if3)•V'Ao3 

= (df(X) + i'Vxf3+ if·Y'xw+ kf3•Y'xw)•3 • 

Since w has constant length, Y'xw ..l wand Y'xw E f(K*) c r(A~). Further, as f3 E f(A0•2),a 
quick Clifford computation in coordinates43 shows that Y'xw • f3 • 3 = 0. We are left with 

'\7~0 (/+{3) = (df(X) + i'Vxf3+ £f·Y'xw)•3 • 

The corresponding Dirac operator is then 

vAo(f + {3) = Eek" '\7~0 (! + {3) = L(df(ek)ek + h. Y'xf3 + £!. ep Y'xw) •3 

= (df+d*f3+~f·d*w)•3· 

However, w is a symplectic form and thus d*w = 0. Weare left with vAo (f + {3) = (df + d* {3) •3, 
which, after using the identification of It from A0• 1 with )2a: • 3 from w-, yields the formula 
VAo (f + {3) = y'2(;j f +a* {3). D 

Just as in the Kahler case, we parametrize all connections A on K* as A = Ao + 2B, 
with B a connection on the trivial line bundle Le = !:_. We then have FA = FAo + 
2F8 and the equations then look like 

{ ~t+a;f3=o F1~2 + 2Fg· 2 = 2J· f3 
(F,40 ) 1• 1 + 2(Fit) 1• 1 = i(l/1 2 -lf31 2)w, 

where cp = (f, {3) is a spinor field made of a function f: M ---> C and a ( 0, 2) -form 
f3 E r ( i\ 0• 2), while B is a U ( 1) -connection on the trivial bundle !:_. 

Further, as was seen in a previous note (page 450), the Seiberg-Witten invariants 
are unchanged by suitable perturbations that change the equation F,4 = u( cp) to 
F,t = u( cp) + YJ+. In our case, we use the equation 

F,4 = u( cp) + F,40 - ip2w 

for some scalar p. The second equation above then becomes Fg· 2 = J· {3, while 

thethirdis (Fit) 1•1 = ~(lfl 2 -lf31 2 -p2)w,whichwerewriteas 

i(FB, w) = 1/312 -1/12 + p2. 
In conclusion, the p-perturbed Seiberg-Witten equations are now: 

{
aBf + a;f3 = o 
Fg·2=J·f3 
i(FB, w) = 1/312-1/12 + p2 

43. That is, one can show that, for every fl E r(A~) with fl ..l w, every complex 1J E r(A0•2 ) and 
every self-dual cp E qw+), one gets 1J • f1 • q> = 0. 
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and we are ready to start working on them. 

Computing. We start with the aforementioned Weitzenbock-type formula 

2a; aB =dB dB- i(FB, w). 

We apply it to f: M -+ C and then use the second equation i(F8, w) = 1,812-
1!12 + p2 , obtaining 

d'BdBf = 2a; asf + (I,BI2-Ifl2+p2) ·!. 
We take the inner product with f and integrate over M: 

JM ldBfl2 = 2 JM \0B a sf, f) + JM (1,812 -lfl2 + p2 ) lfl2 · 

Then we use the first equation () 8 f = - a; ,8 to get: 

jMidBfl 2 = -2 jM\,8. aBasf) + jM(If312-lfl2+p2) lfl2. 

However, a B a sf = F~· 2 . f - ( aBJ) 0 N' and using the second equation yields: 

JM ldsfl2 = -2 JM \,B. 1!12 ,8- (aBJ) oN) + JM (1,812- 1!12 + p2 ) 1!12 , 
which can then be rearranged to: 

JM ldBfl2 = JM 2\,8. (oBf) oN) - lfl2lf31 2 - (1!12- p2 ) 2 - p2(lfl2- p2). 

Crucial step. We have 
]M\F8 , w) = 0. 

Indeed, JM(F8 , w) = JMFB 1\*W = JMFB 1\w = Obecause [F8 ] = -2nici(~) 
and thus is zero, while w is closed and therefore JM F8 !\ w = [F8 J · [w] = 0. 

The third equation states that i(F8 , w) = 1,812- lfl2 + p2 , and so we get 

JM(Ifl2- p2) = JM 1,812 . 

More computing. Picking up where we left off, we have 

JM ldsfl2 = 2 JM (,8, (osf) oN) - JM lfl2lf31 2 - JM(Ifl2- P2)2- P2 JM lf31 2 • 

Moving the terms around we get 

jM ( ldsfl2 + lfl2 lf31 2 + (lfl 2 - P2 ) 2 + P2lf31 2 ) = 2 jM \,8. (oBJ) 0 N), 

where all the terms on the left are now non-negative. 

Since M is compact and o8f is part of d8 f, we see that the mysterious term 
(,8, (o8 f) oN) can be bounded above by 

\,8. (oBf) oN) ::; C · I,BI · ldsfl 
for some constant C that depends on Nand the geometry of M, but on neither B 
nor f. Using the happy inequality ab ::; ~a2 + b2 , this implies that 

\,8. (oBf) oN) ::; ~ ldsfl 2 + C2 I,BI2 . 
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Still more computing. We were saying: 

JM ldsfl2 + 1!1 2 1.61 2 + (1!1 2 - P2)2 + P2 I.BI 2 = 2 JM (.B. (aBf) oN) . 

Using the bound above and expressing everything in terms of L2-norms, we get: 

lldsfll 2 + 11!11 2 11.611 2 + II 1!1 2 - P2 ll 2 + P2 11.611 2 :::; ! lldBfll 2 + 2C2 11.611 2 • 

We can move terms around to get 

! II dB fll 2 + 11/11 2 11.611 2 + 111/1 2 - P2 ll 2 :'S (2C2 - P2 ) 11.611 2 • 

If we push p -+ oo (in fact as soon as p2 > 2C2 ), we see that we must have 

and and 11.611 = 0 I 

which implies that If I = p, and thus (after suitably rotating by a change of gauge) 
that f must be constant. Since d8f = 0, the only possible choice for the connection 
B on ~ must then be the flat connection d8 = d. 

In conclusion, for p big enough, the only Seiberg-Witten solution (f, ,B, B) for the 
canonical spinC structure s1 coincides, up to changes of gauge, with (p, 0, d). 

Conclusion. We have proved Taubes' simplest result: 

Theorem (C. Taubes ). For every symplectic manifold M with bi 2:: 2, we must have 

S'WM(±KM:) = ±1 I 

where KM: = c1 ( w) is the anti-canonical class of M. 0 

This result was proved in C. Taubes' The Seiberg-Witten invariants and symplec
tic forms [Tau94], by using a more sophisticated perturbation involving the Nijen
huis tensor. 

Bounds on the other basic classes. Following essentially the same technique, we 
can also prove that all other basic classes K* + 2e must satisfy the bounds 

0 :::; e · [ w] :::; - K* · [ w] . 

Indeed, for the other spine structures K* + 2e, the spinor bundles are w+ = Le E/3 
(J\0•2 ®Le) and w- = J\0•1 0Le. ThenwecanwritetheSeiberg-Wittenequations 
just as in the previous case, 

{ 
aBR + a; .B = o 
F~·2 = R*,B 
i(FB, w) = 1.61 2 -1£1 2 + p2 

but now, instead off: M-+ C, we haveR E f(Le); instead of ,6 E f(J\0•2), we 
take a Le-valued form .B E f(J\0•2 0 Le), and B is a unitary connection on Le. 

Following essentially the same computation up to the "crucial step", we obtain 

/MidB£1 2 = /M2(,6, (aBR)oN)- 1£1 2 1.61 2 - (IRI 2 -p2) 2 - p2 (IRI 2 -p2). 
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At the crucial step, on one hand we have J (FB, w) = -2ni (e · [w]) (since FB is 
the curvature of Le and so [FB] = -2nie) and, on the other hand, i(FB, w) = 

1,612- l.€12 + p2 (from the third equation). Therefore 

jM(I.€12- P2) = JM 1,612- 2n(e · [w]), 

which, plugged into our previous computation, yields 

JM ldB.el2 = 2 JM (,6, (aB.e) oN) - JM l.€121.612 - JM (l.€12- p2)2 

- p2 JM 1,612 + p2. 2n(e. [w]) . 

Proceeding with the same game plan, we get 

jM ( ldB.€12 + l.€121.612 + (l.€12- P2)2 + P2I,BI2) - 2np2(e · [w]) 

= 2 JM (,6, (aB.e) 0 N) :S ! ldB.€12 + 2C2I,BI2 

and therefore 

!lldB.€112 + II.€II2II,BII2 + III.€12-P2II2 - 2np2(e·[w]) :S (2C2-p2)II.BII2 . 
As soon as p2 > 2C2 , the term on the right is negative or zero. Therefore the sum 
on the left must be non-positive as well. Since the only term on the left that can be 
negative is - 2n p2 ( e · [ w]), it follows that we must have 

e · [w] ~ 0, 

which is half of what we set out to prove. 

Finally, if .sis a basic class, then so must -.s. In other words, if K* + 2e is a basic 
class, then so must be -(K* + 2e) = K* + 2(K- e). Therefore we can repeat the 
whole argument above with K - e instead of e and end up with 

(K-e)·[w]~O. 

This quickly rearranges asK· [w] ~ e · [w] or -K* · [w] ~ e · [w]. Therefore 

0 ::; e · [w] ::; -K* · [w] 
and we are done. 

This latter result was proved in C. Taubes' More constraints on symplectic forms 
from Seiberg-Witten invariants [Tau95a]. 

The analysis of the Seiberg-Witten equations on symplectic manifolds does not 
stop here. Essentially the same perturbation, but very delicate arguments and 
estimates, is used to show that a solution to the equations corresponds, in the 
limit p ---+ oo, to holomorphic sections of a line bundle, thus making apparent the 
relation with the J -holomorphic curves of M. Glance through C. Taubes' papers, 
collected in the volume Seiberg-Witten and Gromov invariants for symplectic 
4-manifolds [TauOOa], for a feel. For a softer introduction, read M. Hutchings 
and C. Taubes's An introduction to the Seiberg-Witten equations on symplectic 
manifolds [HT99]. 
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Note: The Gromov-Taubes invariants of symplectic 4-manifolds 

The best way to state C. Taubes' general theorem on Seiberg-Witten theory and J
holomorphic curves is to relate the Seiberg-Witten invariants to certain so-called 
Gromov-Taubes invariants that count J -holomorphic curves in symplectic mani
folds. In what follows, we will explain the setting of these invariants. 

Consider a symplectic 4-manifold M, endowed with a generic compatible almost
complex structure J. We will look at the J -holomorphic curves of M. 

Compactness. First off, notice that a J -holomorphic curve 5 in a symplectic man
ifold is never homologically-trivial: indeed [5] · [w] = fs w > 0. It is also worth 
noting the following fundamental result, which is a consequence of the fact that 
the area of a J -holomorphic curves 5 is exactly44 J5 w: 

Gromov's Compactness Theorem. Every sequence {fn: 5 --+ M} of J-holomorphic 
curves has a subsequence that converges to some J -holomorphic f: 5* --+ M that might 
have nodal singularities (transverse double-points). o 

Here we think of 5 as a real surface; the map fn: 5 --+ M is called J -holomorphic 
if the tangent bundle of fn [ 5] is J -invariant. Such a map is allowed to have singu
larities, just like a complex curve.45 For each n, the surface 5 inherits a complex 
structure, pulled-back through46 fn, so that d fn ( i v) = J ( d fn ( v)) . 

The limit-surface 5* is obtained from 5 by collapsing embedded circles (ala van
ishing cycles). The nodal singularities of the limit appear in Min the same manner 
as the one suggested in figure 10.15: the collapse of z1z2 = e to z1z2 = 0. 

The evolution of fibers in an elliptic surface are good examples to exercise one's un
derstanding of the compactness theorem, 47 and help can be received from R. Kirby 
and P. Melvin's The Es-manifold, singular fibers and handlebody decompositions 
[KM99]. 

collap~sing circle 

)j 
l Z1Z2 = f 

I > f---70 > 

10.15. Apparition of singularities 

44. One can generalize Gromov's theorem to general almost-complex manifolds by adding the require
ment that the sequence fn be bounded in area. 

45. Indeed, D. McDuff proved in Singularities of J -holomorphic curves in almost complex 4-mani
folds [McD92] that the singularities that can appear have the same topology as those of a complex 
curve inside a complex surface. 

46. Thus, the induced complex structures on 5 vary with n, depending on the map fn. If 5 had a 
fixed complex structure that all fn 's were required to respect, then the nodes of the limit could only 
separate sphere-components ("bubbling"); in the statement above, though, for example, a torus can 
evolve toward a fishtail. 

47. Example: how does Gromov's theorem account for a generic torus fiber approaching a cusp fiber? 
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Gromov's theorem as stated in general fails for non-symplectic almost-complex 
structures. An example (essentially due toY. Eliashberg) of an almost-complex 
structure where a sequence of J -holomorphic curves has no decent limit is sug
gested in figures 10.16 and 10.17 (fourth dimension in time slices, all surfaces J
holomorphic). 

t = ±3 t = ±2 t =±I t=O 

10.16. Bad almost-complex structure, I 

10.17. Bad almost-complex structure, II 

Gromov-Taubes invariants. Given a class tX E H2 (M; Z), we define 

SJa 

to be the space of all J -holomorphic curves representing the class tX in M. It is 
proved that, for a generic almost-complex structure J, the space SJa is in fact a 
compact smooth oriented manifold, with dimension 

dimSJa = cr(w)·tt+tt·tX. 

(Note that "generic J" might not include "the obvious choice of J".) The strategy 
follows the broad outlines sketched for gauge theory in section 9.1 (page 332), and 
the techniques are analogous to the ones used on the Seiberg-Witten moduli space 
in the previous note on page 439. 

From the complex adjunction formula, all the elements of SJa are surfaces with 

,t(S) = cr(w) · tX- tX · tX 

and a priori they might have singularities. A fundamental remark is that the 
curves in SJa can be disconnected, and thus this theory is at the outset distinct from 
Gromov-Witten theory48 (where all curves are connected). 

48. Nonetheless, the Gromov-Taubes invariants are computable from the Gromov-Witten invariants, 
see E. lone! and T. Parker's The Gromov invariants of Ruan-Tian and Taubes [IP97]. 
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To reduce the dimension of Sja: when d = dim.fja: is positive, we can choose d/2 
random points in M (d is always even) and restrict to the curves from Sja: that 
pass through these dj2 points. Denoting this space by 

Sj~, 

we have that, for a suitably generic J and generic choice of points, Sj~ is an ori
ented finite 0-dimensional manifold, and thus its points can be counted (with 
signs). The result of this count is the Gromov-Taubes invariant 

Gr(a) = #Sj~. 
Generically, Sj~ contains no singular curves. If M is Kahler, then all points of Sj~ 
have positive orientation. 

In order to make this a genuine symplectic invariant, one wishes to achieve invari
ance under isotopies of symplectic forms. This creates problems that are solved 
through a very delicate and peculiar count of the tori from Sj~, especially the multi
ply-covered ones. 

Relation with Seiberg-Witten theory. The full version of C. Taubes' result is: 

Taubes' Theorem. If M is symplectic and bi ( M) ;:::: 2, then 

S'WM(K1 + 2a) = ± Gr(a). 

Further, if S'WM ( K1 + 2 a) -:} 0, then the dimension d = 0. D 

Therefore, if S'WM(K1 + 2a) -:} 0, then no fixed points need to be chosen, and 
Gr( a) just counts all the curves representing a. 

Since dim9J1K* +2a: = dim.fja:, another consequence is that all symplectic 4-mani
M 

folds are of Seiberg-Witten simple type, i.e., the nontrivial Seiberg-Witten invari-
ants occur only for almost-complex spine structures. 

References. C. Taubes' theorem was first announced in The Seiberg-Witten and 
Gromov invariants [Tau95b], while its proof appeared spread through the four 
heavy papers [Tau96b, Tau99b, Tau96a, Tau99a], which were later gathered in 
the volume Seiberg-Witten and Gromov invariants for symplectic 4-manifolds 
[TauOOa]. The Gromov-Taubes invariant was introduced in Counting pseudo-holo
morphic submanifolds in dimension 4 [Tau96a]. See also D. McDuff's Lectures on 
Gromov invariants for symplectic 4-manifolds [McD97]. 

C. Taubes also pushed this interpretation of the Seiberg-Witten invariants beyond 
the symplectic world, proposing that we study symplectic structures off embed
ded circles49 and count J -holomorphic curves that limit on these circles, see Sei
berg-Witten invariants and pseudo-holomorphic subvarieties for self-dual, har
monic 2-forms [Tau99c] and Seiberg-Witten invariants, self-dual harmonic 2-
forms and the Hofer-Wysocki-Zehnder formalism [TauOOb ]. Technical details are 
contained in The structure of pseudo-holomorphic subvarieties for a degenerate al
most complex structure and symplectic form on S1 X JB3 [Tau98c], while a recent 

49. "Near-symplectic" structures, in the terms of the earlier note on Lefschetz pencils, page 419. 
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technical paper is A compendium of pseudoholomorphic beasts in R X (51 X 52) 

[Tau02]. This is still a program in progress. 

M. Gromov's compactness theorem appeared in the founding paper Pseudoholo
morphic curves in symplectic manifolds [Gro85], and discussions of this theorem 
and other remarkable applications of J -holomorphic curves in symplectic geom
etry (of general dimension) are gathered in the volume Holomorphic curves in 
symplectic geometry [AL94], edited by M. Audin and J. Lafontaine. See also 
D. McDuff and D. Salamon's J-holomorphic curves and quantum cohomol
ogy [MS94], or the more recent J-holomorphic curves and symplectic topology 
[MS04]. A proof of the compactness theorem is written down in C. Hummel's 
Gromov's compactness theorem for pseudo-holomorphic curves [Hum97]. For a 
statement of the Gromov compactness theorem generalized as much as reasonable, 
seeS. Ivashkovich and V. Shevchishin's Gromov compactness theorem for stable 
curves [1599]. 

Note: The Bochner technique 

Let X be an m-manifold, endowed with a Riemannian metric. The Bochner tech
nique refers to vanishing results obtained from assumptions on curvatures. They 
use what are known as Weitzenbock formulae, namely the comparison of two 
Laplace operators. A Laplace operator on a Riemannian manifold is defined as 
any second-order operator with symbol - I · 12 . 

Typically one of the Laplacians is the connection Laplacian \7* \7 of the Levi-Civi
ta connection on X, while the other is the Laplacian of a Dirac-type operator, for 
example the familiar Hodge Laplacian tJ. = d d* + d* d, or the Laplacian TJ* 1J of 
a Dirac operator on spinors. 

What makes the comparison useful is that the difference turns out to be a zero
order operator (instead of a first-order operator). Further, the difference can be 
expressed in terms of curvature contributions. The flavor of the arguments leading 
to vanishing results is the same as of, say, the proof of Seiberg-Witten's vanishing 
for positive scalar curvature (page 405): a geometric hypothesis forces an analytic 
conclusion. 

The first applications of the Bochner technique were on harmonic functions, then 
later on exterior harmonic forms. For example, S. Bochner's Curvature and Betti 
numbers [Boc48] proved, for every 1-form a on the Riemannian manifold xn, the 

formula A "* n + 'T}· ·( ) ult = v v IX t'\..lCCl IX 1 

where tJ. is the Hodge Laplacian, \7 is the Levi-Civita connection of X, and Ricci 
is the Ricci curvature. Since every class of H 1 (X; R) can be represented by a har
monic 1-form (with !:itt= 0), an immediate consequence is: 

Theorem. Let X be a closed Riemannian manifold. If Ricci > 0, then the first Betti 
number b1 (X) must vanish. o 

A similar formula and argument applied to higher-degree forms, due to S. Gallot 
and D. Meyer's Operateur de courbure et laplacien des formes differentielles d'une 
variete riemannienne [GM75], yields the following: 
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Theorem. Let xm be a Riemannian closed manifold. If the curvature operator R: A2 ----+ 

A2 is everywhere positive-definite, then all the Betti numbers b1 (X), ... , bm-l (X) must 
vanish, and thus X is a rational-homology m-sphere. o 

Moving on from exterior forms to spinor fields, A. Lichnerowicz's Laplacien sur 
une variete riemannienne et spineurs [Lic62a] proved that, for every spinor field cp 
on a spin-manifold X, we have the Lichnerowicz formula: 

V* Vcp = \7* \7 cp + i seal ·cp, 
and therefore: 

Theorem. A compact spin-manifold X with everywhere-positive scalar curvature does 
not admit any spinor fields with D cp = 0. o 

A striking consequence was obtained inN. Hitchin's Harmonic spinors [Hit74]: 

Theorem. In every dimension m > 8 with m = 1 or 2 (mod 8), there are smooth man
ifolds 2:.m homeomorphic to the sphere sm, but admitting no Riemannian metrics of posi
tive scalar curvature. o 

Of course, all standard spheres in all dimensions admit Riemannian metrics of 
constant positive scalar curvature. The manifolds above must be exotic spheres. 

These are but a few of the applications that the Bochner technique has found in 
geometry. Throughout this chapter we have seen frequent uses of the coupled Lich
nerowicz formula 

(DA)* VA cp = (\i'A)* \i'Acp + i scal·cp + iFJ • cp. 

In a previous note (page 466), we also used a Weitzenbock-type formula for a to 
investigate the Seiberg-Witten equations on symplectic manifolds. 

For proofs of the above statements, the source of choice is B. Lawson and M
L. Michelson's Spin geometry [LM89, sec II.8]. For more applications of the 
Bochner technique, try H-h. Wu's monograph The Bochner technique in differ
ential geometry [Wu88]. The proof of the coupled Lichnerowicz formula can also 
be found in J. Morgan's The Seiberg-Witten equations and applications to the 
topology of smooth four-manifolds [Mor96], and, for that matter, in most com
prehensive expositions of Seiberg-Witten theory. 

Bibliography 

General sources for the Seiberg-Witten invariants are S.K. Donaldson's nice sur
vey The Seiberg-Witten equations and 4-manifold topology [Don96a] (which also 
compares Seiberg-Witten with Donaldson theory), J. Morgan's introductory book 
The Seiberg-Witten equations and applications to the topology of smooth four
manifolds [Mor96], or L. Nicolaescu's textbook Notes on Seiberg-Witten theory 
[NicOO]. 

For a better understanding of spine structures, one should try to first understand 
spin structures, and for that the inevitable reference is B. Lawson and M-L. Michel
son's Spin geometry [LM89]. 
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For a proof of the unique continuation property, one can refer to the general re
sult of N. Aronszajn's A unique continuation theorem for solutions of elliptic 
partial differential equations or inequalities of second order [ Aro57], or read from 
B. BooB-Bavnbek and K. Wojciechowski's Elliptic boundary problems for Dirac 
operators [BBW93, ch 8]. 

The Seiberg-Witten equations were written in the physics papers of N. Seiberg 
and E. Witten [SW94b, SW94a, SW94c]. The Seiberg-Witten invariants as a tool in 
smooth topology were introduced in E. Witten's Monopoles and four-manifolds 
[Wit94], together with their interpretation on Kahler manifolds. Most of the gen
eral properties of the Seiberg-Witten invariants were already uncovered in Wit
ten's founding paper. A proof of the general blow-up formula appeared in R. Fin
tushel and R. Stern's Immersed spheres in 4-manifolds and the immersed Thom 
conjecture [FS95], together with a direct proof of Seiberg-Witten vanishing from 
spheres of non-negative intersection. References for the adjunction inequality will 
be discussed at the end of next chapter, on page 529. A different-flavored proof for 
the vanishing theorem for connected sums is presented in D. Salamon's Remov
able singularities and a vanishing theorem for Seiberg-Witten invariants [Sal96]. 

A general introduction to symplectic manifolds is D. McDuff and D. Salamon's 
Introduction to symplectic topology [MS95, MS98]. For J-holomorphic curves, 
one should continue with their I -holomorphic curves and symplectic topology 
[MS04], and the collection Holomorphic curves in symplectic geometry [AL94], 
edited by M. Audin and J. Lafontaine. 

The various results of C. Taubes appeared in the papers [Tau94, Tau95a, Tau95b, 
Tau96b, Tau99b, Tau96a, Tau99a], some of which were later gathered in the book 
Seiberg-Witten and Gromov invariants for symplectic 4-manifolds [TauOOa]. 
A good place to start is M. Hutchings and C. Taubes' lecture notes An intro
duction to the Seiberg-Witten equations on symplectic manifolds [HT99]. Other 
overviews are C. Taubes' short The geometry of the Seiberg-Witten invariants 
[Tau98a] and his longer [Tau98b] (with the same title), which also include an expo
sition of his work on extending the J -holomorphic interpretation beyond the sym
plectic world. For details of the latter, see Seiberg-Witten invariants and pseudo
holomorphic subvarieties for self-dual, harmonic 2-forms [Tau99c], and Seiberg
Witten invariants, self-dual harmonic 2-forms and the Hofer-Wysocki-Zehnder 
formalism [TauOOb ]. Some technical developments are contained in The structure 
of pseudo-holomorphic subvarieties for a degenerate almost complex structure 
and symplectic form on S1 X JB3 [Tau98c], while a recent technical paper is A com
pendium ofpseudoholomorphic beasts in lR x (51 x 52 ) [Tau02]. More papers in 
this direction will soon be published. 

The invariants of E(n)p,q were computed in R. Fintushel and R. Stem's Ratio
nal blowdowns of smooth 4-manifolds [FS97a]. For an different approach, see 
E. Witten's Monopoles and four-manifolds [Wit94] (for bi ;::: 3 ), R. Friedman 
and J. Morgan's Obstruction bundles, semiregularity, and Seiberg-Witten invari
ants [FM99], and R. Brussee The canonical class and the C"" properties of Kahler 
surfaces [Bru96]. See also R. Friedman and J. Morgan's Algebraic surfaces and 
Seiberg-Witten invariants [FM97]. Compare also with the references at the end of 
chapter 7 (page 299) and of chapter 8 (page 322). The computation of the invariants 
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of elliptic surfaces can also be found in L. Nicolaescu's Notes on Seiberg-Witten 
theory [NicOO, sec 3.3.2]. These also follow from general gluing formulae that will 
be stated in section 12.1 (page 532). 

It is worth noting that, in a spirit similar to the vanishing theorem for positive 
scalar curvature, the interaction between the Seiberg-Witten invariant and the 
differential geometry of 4-manifolds is very strong, as is explored in the work 
of C. LeBrun. A survey is his Einstein metrics, four-manifolds, and differential 
topology [LeB03], and one of many important papers is Ricci curvature, minimal 
volumes, and Seiberg-Witten theory [LeBOl]. Most striking consequences have 
been obtained on the existence of Einstein metrics on 4-manifolds. 

We already mentioned the cohomotopy refinement of the Seiberg-Witten invariant 
due to S. Bauer and M. Furuta, which (unlike SWM) can be used to explore con
nected sums. The papers are A stable cohomotopy refinement of Seiberg-Witten 
invariants: I & II [BF04], and an exposition is Refined Seiberg-Witten invariants 
[Bau03]. See also M. Furuta's survey Finite dimensional approximations in geom
etry [Fur02]. 

The Seiberg-Witten equations can also be written on 3-manifolds, and they yield 
torsion invariants of the 3-manifold.50 See G. Meng and C. Taubes' SW =Mil
nor torsion [MT96], then M. Hutchings and Y-j. Lee's Circle-valued Morse the
ory, Reidemeister torsion, and Seiberg-Witten invariants of 3-manifolds [HL99b] 
and Circle-valued Morse theory and Reidemeister torsion [HL99a], as well as 
T. Mark's Torsion, TQFT, and Seiberg-Witten invariants of 3-manifolds [Mar02]. 

These torsion invariants turn out to be the Euler characteristic of a Seiberg-Witten
Floer homology of the 3-manifold, a complete package of which has been built by 
P. Kronheimer and T. Mrowka, in a volume to appear. This is relevant to 4-mani
folds because every 4-dimensional cobordism between two 3-manifolds yields a 
morphism between the Floer homologies of its ends, and thus can be used to com
pute the Seiberg-Witten invariants of closed 4-manifolds by cutting these along 
3-submanifolds.51 (This type of approach proved quite fruitful for Donaldson's 
instanton invariants; compare also with the Ozsvath-Szab6 approach below.) 

The Seiberg-Witten equations are effective but mysterious. At the moment there 
are two geometric interpretations of the Seiberg-Witten invariants. One of them is 
due to C. Taubes, who generalizes his interpretation from symplectic manifolds to 
all 4-manifolds: on any 4-manifold there are 2-forms that are symplectic off a few 
embedded circles; then the Seiberg-Witten invariant counts J -holomorphic curves 
in the circles' complement that limit nicely near these circles; see [Tau99c, TauOOb ]. 

The other interpretation is due toP. Ozsvath and Z. Szabo via their Floer homology 
of 3-manifolds and is briefly discussed below. 

50. The easiest way to define the Seiberg-Witten invariants of a 3-manifold N3 is as the Seiberg-Wit
ten invariants of the 4-manifold N x 51 . Of course, there are intrinsically 3-dimensional descriptions 
as well. 

51. This fundamental interaction between 3- and 4-manifold theories is the most painful omission 
from this volume. 
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Ozsvath-Szab6 do the Floer. Starting with a handle decomposition of a 3-mani
fold N 3 , P. Ozsvath and Z. Szab6look at the surface S separating the 0- and 1-
handles from the 2- and 3-handles. If the genus of S is g, then the decomposition 
of N must have g 1-handles and g 2-handles. The belt spheres of the 1-handles 
are a collection of disjoint embedded circles lXI, ... , ag in S, while the attaching 
spheres of the 2-handles are a collection of disjoint embedded circles /31, ... , {3g in 
S. The surfaceS together with the a's and the f3's offer a complete recipe for the 
manifold N3 and is called a Heegaard diagram for N. 

Ozsvath and Szabo then consider the g-fold symmetric product Symg S of S (de
fined as the quotient of the g-fold product S x · · · x S by the action of symmetric 
group on g letters; a point in Symg S is a g-tuple { x1, .•. , Xg} of points of S, irre
spective of their order; Symg S is a smooth manifold). A complex structure on S 
induces a complex structure on Symg S, while the a's and the f3's make up g-tori 
'I'~ = lXI x · · · IXg and 'I' .8 = f31 x · · · x {3g that are totally-real 52 in Symg S. The 
intersection points 'I'~ n'I',s are g-tuples {x1, ... ,xg} with each xk an intersection 
point of ak and f3k in S. 

After this, Ozsvath and Szabo define homology theories based on chain complexes 
generated by these intersection points 53 of 'I'~ and 'I' ,B, and with boundary maps 
determined by counting holomorphic Whitney disks in Symg S between these inter
section points. The various homology theories-denoted by HP"', HF-, Hf+, 
and HF -depend on a choice of spinC structure .s on N3 • They call these the He
egaard-Fioer homology (while others call them the Ozsvath-Szab6 homology). 

A fundamental remark is that a holomorphic disk u : D 2 ---+ Symg S is equivalent 
to a holomorphic g-fold branched cover54 F ---+ D 2 together with a holomorphic 
map fi: F---+ S; with care, this allows reading these holomorphic disks (and thus 
the homology theories) directly from the Heegaard diagram. 

Any cobordism M4 between two 3-manifolds N' and N" induces a morphism 
from the homologies of N' to the homologies of N". This eventually leads to an in
variant of closed 4-manifolds (endowed with spine structures and with bi ~ 2), 
which is quite analogous to the Seiberg-Witten invariant. Using this invariant, 
Ozsvath and Szabo were able to re-prove most results analogous to statements 
from Seiberg-Witten theory, including Donaldson's theorem, vanishing for con
nected sums, non-vanishing for symplectic manifolds, an adjunction inequality, 
etc. In fact, the Seiberg-Witten invariants and the Ozsvath-Szabo 4-dimensional 
invariants are conjectured to coincide. A program to prove this conjecture is pro
posed in Y-J. Lee's Heegaard Splittings and Seiberg-Witten monopoles [Lee04]. 

An interesting feature of the Ozsvath-Szabo invariant for 4-manifolds is that, 
unlike Donaldson's or Seiberg-Witten's, it is not particularly helped by the 4-
manifold's admitting a complex (or symplectic55) structure. A drawback is that 

52. A submanifold A inside an (almost-)complex manifold is called totally real if J[TA] n TA = 0. 

53. Twisted by integral data tracking the relative position of Whitney disks in n2(Symg S) (which is 
~ Z when g 2': 2); also, the intersection points are grouped after spine structures on N. 

54. Branched covers were defined in footnote 6 on page 308. 

55. The non-vanishing property for symplectic manifolds was proved in [OS04c] by using Lefschetz 
pencils, and not directly the symplectic form. 
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it has not yet been proved that the only Ozsvath-Szab6 basic classes of a surface 
of general type are ±KM. An advantage, though, might be that this theory will 
allow a much better exploration of the far-from-complex realm than was afforded 
by classical gauge theories. In general, the Ozsvath-Szab6 invariant of a random 
4-manifold is more computable than the Seiberg-Witten invariant, the former hav
ing a somewhat combinatorial nature, but the latter is more closely related to the 
geometries (complex, symplectic, Riemannian) of the 4-manifold. 

The foundational proofs of Ozsvath-Szab6 theory are very hard and are contained 
in P. Ozsvath and Z. Szab6's Holomorphic disks and topological invariants for 
closed three-manifolds [OSOlb] and Holomorphic disks and three-manifold in
variants: properties and applications [OSOla]. A good place to start is the survey 
Heegaard diagrams and holomorphic disks [OS04a], followed by [OSOlb]. For 
4-manifolds,. the relevant papers are Holomorphic triangles and invariants for 
smooth four-manifolds [OSOlc], with further applications in Holomorphic trian
gle invariants and the topology of symplectic four-manifolds [OS04c] and in Ab
solutely graded Floer homologies and intersection forms for four-manifolds with 
boundary [0503]. 

It is likely that this "combinatorial" approach to gauge theory and obtaining 4-
manifold invariants by slicing along 3-manifolds will prove remarkably produc
tive. However, we have chosen not to discuss these developments at any length in 
this volume. Nonetheless, this is an area that might explode in the future, and the 
reader should keep an open eye on it. 

In any case, modulo complete proofs of the equivalence conjectures, it appears that 
a same insight into 4-manifolds emerges from three radically different construc
tions: (1) Donaldson's instantons, (2) Seiberg-Witten's monopoles, and (3) the 
newborn Ozsvath-Szab6 Heegaard combinatorics. Combining and jumping be
tween these versions will likely be a very fertile avenue.56 In contrast, the reader 
should keep in mind the fact that gauge theory, in any of its incarnations, only 
helps to distinguish objects, but can never show that two creatures are diffeomor
phic. 

56. The partially-proved equivalence between Donaldson and Seiberg-Witten has already yielded 
fruits: seeP. Kronheimer and T. Mrowka's Witten's conjecture and property P [KM04], where they 
prove the longstanding property-P conjecture for knots. 





The Minimum Genus of 
Embedded Surfaces 

Chapter 11 

THE problem of the least genus needed to represent a given homology 
~ class by embedded surfaces is the focus of this chapter. While all ho
mology classes can be represented by smoothly embedded surfaces, the 
questions that arise are: How much complexity is needed? What is the 
minimum genus of a surface representing a given class? Can we succeed 
to represent it by a sphere? 

M 

> 
11.1. Increasing genus is easy 

The state of this problem before and after gauge theory offers a rather strik
ing perspective. Before, all one dared to ask was whether a class could 
be represented by a sphere, and the tools were consequences of Rokhlin' s 
theorem and various ingenious constructions. 

With the advent of Seiberg-Witten theory it was shown that inside a Kahler 
surface the genus of a surface representing a fixed homology class is mini
mized by complex curves. Similarly, for symplectic manifolds the genus is 
minimized by J -holomorphic curves. By moving away from the complex 
realm, though, while one still has genus bounds involving Seiberg-Witten 
basic classes, it is not known when these inequalities are sharp, and the 
problem of determining the basic classes themselves becomes nontrivial. 

-481 
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We start by proving the Kervaire--Milnor generalization of Rokhlin's theo
rem, and show how it can be used to show that certain homology classes 
cannot be represented by spheres. A further generalization of Rokhlin's 
theorem is explained in the end-notes (page 502), and its direct proof (page 
507) is in particular a complete proof of Rokhlin's theorem itself. A spin
flavored alternative proof of Rokhlin's theorem is explained in the note on 
page 521. 

In section 11.2 (page 486) we state the Seiberg-Witten adjunction inequality 
for classes of positive self-intersection, which offers upper bounds on genus 
from basic classes; its proof is detailed in the end-notes (page 496). We 
continue by discussing the case of CP2 (the Thorn conjecture), and then 
state the adjunction inequality for manifolds of Seiberg-Witten simple type. 
Since the latter can be applied to general Kahler and symplectic manifolds, 
it shows that complex or ] -holomorphic curves minimize genus. 

Finally, in section 11.3 (page 491) we take a short trip in dimension 3, where 
the problem of minimum genus is much better understood and intrinsically 
related to the theory of taut foliations. 

11.1. Before gauge theory: Kervaire-Milnor 
Before the advent of gauge theory, the main tool for deciding whether a 
homology class can be represented by a sphere was the following general
ization of Rokhlin's theorem:1 

Kervaire-Milnor Theorem. Let M be a smooth 4-manifold. If I: is a charac
teristic sphere in M, then we must have: 

signM- I:· I: = 0 (mod 16). 

Remember that a characteristic sphere is a sphere representing a character
istic element of M, i.e., an integral lift of w2 (TM). If I: were merely some 
random characteristic surface, not a sphere, then all we would know is that 
sign M - I: · I: = 0 (mod 8) . 

Proof. Assume given such a sphere with I;· I;> 0. We write I;· I;= 

m + 1, and connect-sum M with m copies of CP 2 , obtaining 

M(m) = M#mCP 2 • 

Then we connect-sum I: with one copy CP1 inside each of the m added 
CP2 's, by using thin disjoint tubes inside M(m). We obtain a new sphere 
,r;(m) in M(m). Since each CP1 adds a negative self-intersection to .r;(m) 

(see figure 11.2), it follows that .r;(m) has self-intersection + 1. 

1. Recall that Rokhlin's theorem states that, if M4 is smooth and w2(TM) = 0, then signM = 0 
(mod 16); see section 4.4 (page 170). 
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) 

.r;(m) 

11.2. Joining L: to a copy of CP1 for modifying its normal bundle 

The boundary of a tubular neighborhood of ,E(m) in M(m) is a circle
bundle of Euler class + 1 over the sphere ,E(m). It is therefore isomor
phic to the Hopf bundle.2 Hence the boundary of this tubular neigh
borhood must be a 3-sphere. We can then cut _E(m), together with its 
surrounding neighborhood, out of M(m), and glue a standard 4-ball in 

their stead; denote the result by M1jb. 
This means that we eliminated a characteristic surface from the mani
fold, and with it, the class Wz ( M). Therefore Wz ( M1jb) = 0, as there is 
now no obstruction to the existence of a spin structure on this surgered 

M1jb. Hence Rokhlin's theorem applies, and the signature of M1jb 
must be a multiple of 16. By keeping track of all the numerical modifi
cations along the way, the formula above follows. 

If 1: ·1: ~ 0, we can proceed similarly, but start by connect-summing 
with copies of CJP2 instead of CJP2 , join 1: to CJP 1 's until ,E(m) has 
self-intersection + 1, and then continue as above. o 

Blow it up. As an equivalent way of describing the procedure in the 1: · 1: > 0 
case, we could have said: we blow-up M at m points that belong to 1:, and 
then take the proper transform of 1:. Since the blow-ups occur at m points of 
1:, each of these points are removed from 1: and replaced by a copy of CJP 1 

plugged into M. The proper transform l:(m) of 1: is simply the closure of 
1: \ { m points} in M(m) = M #m CJP2 . In other words, it is obtained by com
pleting 1: at each puncture with the point of ClP 1 that describes the direction 
of T I: at the blow-up point. Each blow-up removes one seH-intersection of S, 
as suggested in figure 11.3 on the next page. The result is therefore a sphere 
l:(m) with self-intersection + 1. 

To see that l:(m) ·l:(m) = + C before blowing, first perturb 1: off the blow-up 
points; the resulting surface 1:0 survives the blow-ups as a surface in M(m) 

and represents there the image of 1: 's homology class. The homology class 
of l:(m) in M(m) can be written l:(m) = 1:0 - E1 - · · · -Em, where Ek are the 

2. The Hop£ map S3 ---> S2 was recalled in footnote 34 on page 129. 
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E 

) 

11.3. Ironing the normal bundle of .E by blow-ups 

ClP 1 's from the blow-ups (the ( -1) -curves). Therefore l:(m) · l:(m) = 1: · 1: -
m = +1. 
Further, to see that l:(m) = J:fJ - E1 - · · · -Em, one can think as follows: 
Consider the singular surface l:(m) U E1 and remove the double-point in the 
usual fashion to obtain the surface l:(m)u E1. Since E1 · E1 = -1 and l:(m) · 

E1 = + 1 and the class of l:(m) # E1 is l:(m) + E1, it follows that we have 
(l:(m)u E1) · E1 = 0. Therefore we can slide l:(m)u E1 completely off E1. See 
figure 11.4. Repeating this for each added sphere Eb we end up with the 
surface l:(m) # E1 # · · · #Em, of homology class l:(m) + E1 + · · · +Em and slid 
off all Ek 's. Since the Ek 's were the only thing added to M to make it into 
M(m), l:(m) # E1 # · · · #Em can be viewed as a surface in the initial M. It can 
in fact be further moved until it coincides in M with 1: itself, and therefore in 
homology we have l:(m)+ E1 +···+Em= 1:. 

E E 

11.4. Computing the class of the proper transform 

Sphere, no sphere. The Kervaire-Milnor theorem immediately imposes re
strictions on which classes can be represented by spheres. 

For example, the class 2a + 2a in 52 x 52 , where a = [52 x 1] and a= [1 x 
52], cannot be represented by any sphere. Indeed, 2a + 2a is characteristic 
and its ambient 52 x 52 has signature 0, but its self-intersection is 8. 

Neither can the class 3 [CJP1] in CJP2 be represented by a sphere. Nonethe
less, after adding a bit more room, it can: 

Lemma. The class (3,0) in ClP2 #ClP2 , i.e., the class of3[ClP1] from the first 
CJP2 , can be represented by a sphere. 

Proof. In the first copy of C1P2 , we represent 3 [ClP1] as an immersed 
sphere with one self-intersection point of sign + 1. This can be achieved 
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by taking three generic projective lines (each of them meeting another 
in exactly one point), and replacing two of their three intersections by 
annuli, as in figure 11.5. (If we were to eliminate the last intersection as 
well, we would end up with a torus, as sketched in figure 11.6.) 

11.5. Representing 3 [(:JP1 J by an immersed sphere in (:JP2 

> 

11.6. Representing 3 [CJP1 J by an embedded torus in CJP2 

In the second copy of CJP2 , we represent the trivial class 0 by two pro
jective lines with opposite orientations (which thus cancel homologi
cally). These are two spheres that intersect each other at a point with 
negative sign. 

We now connect-sum these two copies of CJP2 , but take care to do it 
at the double-points, i.e., by cutting out from each a neighborhood of 
their surfaces' double-point and fitting the surfaces' leftovers to each 
other, as suggested in figure 11.7 on the next page. Then the double
points disappear from CJP2 #CJP2 , and the immersed sphere from the 
first CJP2 joins the two spheres from the second CJP2 to make up an 
embedded sphere representing the class (3, 0) in CJP2 #CJP2 . o 

This style of ingenious constructions and reductions were characteristic 
of the early attempts to deal with the sphere-representation problem, and 
many results of this type were thus obtained. Now that you have a taste of 
it, let us move on: 
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1 
{:JP2#CJP2 

11.7. Eliminating double-points by connect-summing 

11.2. Enter the hero: the adjunction inequality 

With the advent of gauge theory, the problem of representing classes by 
spheres could be attacked much more effectively. Moreover, one could 
now tackle the more general question of the minimum genus needed to 
represent a class. It all started of course with Donaldson theory,3 but the 
major tool came along the wings of Seiberg-Witten theory. We are talking 
about the adjunction inequality.4 

Adjunction inequality for positive self-intersections 

The full adjunction inequality, as stated back in section 10.4 (page 408), was 
proved in two stages. The first stage is the following statement: 

Adjunction Inequality for Positive Self-Intersection. Let M be simply-con
nected with bi(M) 2:: 2. Let 5 be any embedded connected surface such that 

5·52::0, 

and that 5 is homologically nontrivial. Then, for every basic class K of M, we 
must have: 

X( 5) + 5 · 5 :::; K · 5 . 

3. Recall, for example, that our first construction of an exotic R 4 stemmed from the impossibility of 
representing a certain class of E ( 1) = CJP2 #9 {]P2 by a smooth sphere; see section 5.4 (page 250). 

4. Please do not confuse the Seiberg-Witten adjunction inequality with the (almost-)complex adjunc
tion formula for J -holomorphic curves. 
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Notice that changing the orientation of S only changes one sign, and hence 
we must have x(S) + S · S s -K · S as well. Thus, we can write a sharper 
version of the adjunction inequality as 

x(S) + S · S s -IK · sj . 

Keep in mind that, since x(S) = 2- 2genus(S), the adjunction inequality 
by putting an upper bound on x( S) effectively offers a lower bound on the 
genus of a surface S representing a fixed homology class, and thus mea
sures the complexity needed to fit that class inside M. Note also that it 
is unknown precisely for which manifolds the inequality is sharp, i.e., for 
which there exist surfaces that realize the minimum allowed by the adjunc
tion inequality. 

Outline of proof. Every solution ( cp, A) to the Seiberg-Witten equa
tions must satisfy the inequality 

//seal// ~ 2Vz IIFJ II , 
where seal denotes the Riemannian scalar curvature of M, and we 
used L 2 -norms. This is a direct consequence of the Lichnerowicz for
mula (page 393) and was already proved under the name of "integral 
curvature bound", on page 398. This inequality provides the needed 
bridge between Seiberg-Witten theory and the Riemannian geometry 
of M. The bridge between Riemannian geometry and the genus of S is 
then offered by GaufS-Bonnet. 

Assume first that S has zero self-intersection. On one hand, since S 
has trivial normal bundle, we can embed a copy of S x 51 x [0, 1 J in 
M (think: a thickened normal circle-bundle of S), and then choose a 
Riemannian metric on M that restricts on S x 51 x [0, 1] to the product
metric endowing the S-factor with the metric of constant scalar cur
vature 4nx(S) and area 1, assigning length 1 to the 51-factor, and 
setting the [0, 1 J -factor to have length p. When stretching this cylinder 
by pushing p ---+ oo, we get:5 

iisealpiiP = -JP4nx(S) + 0(1). 

On the other hand, since i[FA] = 2nc1(£) = 2nK, a closer investiga
tion also yields the inequality 

II Fj II p ~ J2P 7t ( s . K) + 0 ( 1) . 

5. Remember that O(f) is the Landau symbol that represents any quantity q that grows at most at the 
rate of f,i.e.,any q(t) sothatthereissomeconstant C so that lq(t)l < C.f(t). Thus, q is 0(1) if and 
only if q is bounded. 
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Combining these three inequalities and letting the scaling parameter p 
go to infinity makes it inevitable that 

s ·" ;:::: -x(s) I 

which, after an orientation flip, is exactly the result in the S · S = 0 case. 

To finish the proof by dealing with the case S · S > 0, a standard 
blow-up argument (similar to the one used in the proof of the Kervaire
Milnor theorem, but spiced-up by the blow-up formula for the Seiberg
Witten invariants) reduces the S · S > 0 case to the above S · S = 0 
case. 0 

The above outline is expanded into a complete proof in the end-notes of 
this chapter (page 496). 

The Thorn conjecture 

The adjunction inequality works only when bt 2: 2. If our 4-manifold has 
bt = 0 or bt = 1, then a first thing to try is to switch orientation and look 
at the manifold M, since flipping orientations changes6 b:; into bt. 

If this does not help, then it means that M is homeomorphic to one of 

54 or ± ClP2 or 52 x 52 or ClP2 #ClP2 . I I I 

There are no known exotic 54 's, CJP2 's, 52 x 52 's or CJP2 #CJP2 's (and that 
is in good part due to their unavoidably small bt ). We are thus limited to 
exploring their standard versions. 

Spheres. Since the 4-sphere (or its possible exotic versions) has no homol
ogy, the minimum genus problem inside spheres is vacuous. 

Sphere-bundles. The manifolds 52 x 52 and CJP2 #CJP2 = 52 x 52 are well
understood: 

Theorem (D. Ruberman ). The minimum genus of a surface representing the 
class m IX + n IX in 52 x 52 is 

gmin(mtX+niX) = (fmf-1)(fnf-1), 

when m and n are not zero. If m = 0 or n = 0, then the class can be represented 
by a sphere. 

6. It also changes the sign of the self-intersection of S, but we will not worry about that for now. See 
T. Lawson's The minimal genus problem [Law97] for a more comprehensive survey; also see ahead 
the adjunction inequality for simple type (page 489) and have some faith in the simple type conjecture 
(page402). 
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The minimum genus of a surface representing the class m rx + n a inside CJP2 # 
CJP 2 = 52 x 52 is 

gmin(m fX + na) = Him I- 1 )(lml- 2) + 11nl (In I- 1) I 

when m > n. If m < n, reverse the roles of m and n. If m = n, then the class 
can be represented by a sphere. o 

Here, as usual, rx is the class [52 x 1], while a= [1 x 52] (or, for the second 
case, rx and a are the classes of the CJP1's in CJP2 and in CJP 2 ). 

The complex projective plane. A long-standing conjecture on genera of sur
faces in CJP2 , attributed to R. Thorn and proved by P. Kronheimer and 
T. Mrowka, is: 

Thom Conjecture. The minimum genus of a surface representing a fixed homol
ogy class in CJP2 is always realized by a complex curve (with either orientation). 

Remember that, by the complex adjunction formula/ a complex curve of 
degree d in CJP2 always has genus 1 ( d - 1) ( d - 2). We can then rephrase: 
The minimum genus of a surface representing d [CJP1] in CJP2 is 

gmin(d) = 1(1dl-1)(ldl- 2) · 
Idea of proof. Let S be a surface representing the class d[CJP1] and 
with8 d ~ 4, which can be assumed to not be a sphere. Blow-up CJP2 

d2 -times at points of S, then remove singularities, ending up with a 
surface su of the same genus as S but with trivial normal bundle. Em
bed a cylinder s# X 51 X [0, 1] around s# and stretch the [0, 1]-factor. A 
careful study of the Seiberg-Witten equations shows that the Seiberg
Witten moduli space is non-empty (since bi(CJP2 ) = 1, a priori one 
expects problems with reducible solutions), and then a reasoning simi
lar to the one in the proof of the adjunction inequality can be used. o 

Adjunction inequality for simple type 

Besides the restriction bi ~ 0 on which we commented above, the adjunc
tion inequality as stated above is powerless in dealing with classes of nega
tive self-intersection. After a delicate analysis of the Seiberg-Witten invari
ants, this restriction can be partly eliminated: 

Adjunction Inequality for Simple Type. Let M be simply-connected with 
bi (M) ~ 2. Assume M is of Seiberg-Witten simple type, i.e., that the only 
basic classes of M correspond to almost-complex spinC structures. Let S be any 

7. The adjunction formula states that a complex (or J -holomorphic) curve C in M must have x( C) + 
C · C = c, (M) · C; see section 6.3 (page 281) and section 10.1 (page 377). 

8. Since the cases 0 :S d :S 3 are either obvious or dealt with by Kervaire-Milnor. 
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embedded connected surface in M that is not a sphere. Then for every basic class 
K of M we have: 

X(S) + 5 · 5 :S K · 5. D 

This result was proved by P. Ozsvath and Z. Szab6. After flipping the ori
entation of S, the inequality can be sharpened to x(S) + S · S :::; -IK · Sl. 
Furthermore, remember that it is conjectured that all 4-manifolds that have 
bi ~ 2 and are simply-connected might be of Seiberg-Witten simple type; 
certainly all known ones are. 

Since C. Taubes showed that all symplectic manifolds are of simple type, 
the above statement implies: 

Corollary. For every surface S, not a sphere, embedded in a symplectic manifold 
M with bi ( M) ~ 2, we must have: 

x( s) + s · s :::; KM · s , 
where KM = c1 ( w) is the Chern class of the symplectic structure. D 

In the particular case when M is Kahler, since any complex curveS must 
have x(S) + s. s = KM. S, the following generalization of the Thorn con
jecture follows: 

Kahler Thom Conjecture. Inside every Kahler surface with bi ~ 2, non-sin
gular complex curves always realize the minimum genus needed to represent their 
homology class. o 

Furthermore, just as a complex structure on a manifold distinguishes its 
complex submanifolds, a symplectic structure will distinguish certain sub
manifolds of its own. Specifically, if w is a symplectic structure on M4 , then 
a surface S in M is called a symplectic surface of ( M, w) when we have9 

wls > 0. 

(In particular such an S is never homologically-trivial, since S · [w] =/= 0.) 

Saying "S is a symplectic surface inside ( M, w)" is equivalent to asking 
that there be some almost-complex structure Js on M that is compatible 
with wand makes S be Js-holomorphic. Therefore S must satisfy the com
plex adjunction formula: x(S) + S · S = cr(w) · S. We thus get a further 
generalization of the Thorn conjecture: 

Symplectic Thom Conjecture. Inside every symplectic 4-manifold with bi ~ 
2, symplectic surfaces always realize the minimum genus needed to represent their 
homology class. o 

9. We write wls > 0 to mean w(x,y) > 0 for every pair x,y E Ts that compatibly orients S. 
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The above could be rephrased more succinctly as: Inside symplectic manifolds, 
J -holomorphic curves always minimize genus. 

However, keep in mind that the existence of a symplectic structure is nec
essary. Indeed, a weaker statement like '1nside almost-complex manifolds, 
J -holomorphic curves minimize genus" is false. 

Keep it symplectic. This is shown by an example of G. Mikhalkin10 that 
proves that if we take the manifold #3 CJP2 (which does not admit any sym
plectic structures11) and endow it with the almost-complex structure J of anti
canonical class12 Kj = (3, 3, 1), then any J -holomorphic representative of 
this class necessarily has genus 3; but the class (4,0,0) can be represented 
by a torus. In light of this example, J -holomorphic curves can automatically 
be assumed to minimize genus only when the almost-complex structure J is 
tamed by a symplectic structure. 

Even with these very powerful adjunction inequalities, the minimum genus 
problem is far from settled. Leaving aside technical difficulties involved 
with actually finding the Seiberg-Witten basic classes of random far-from
complex 4-manifolds, we do not know when the adjunction inequality is 
sharp: Are there surfaces that actually realize the equality? Are there bet
ter bounds? Note that there are known examples (non-simply-connected; 
see below, page 494) where basic classes indeed fail to offer the best genus 
bound. 

As is often the case with gauge theory, the farther one moves from the com
plex world, the less useful its tools become. 

11.3. Digression: the happy case of 3-manifolds 

Unlike dimension 4, in the case of dimension 3 we have a pretty good 
understanding of the minimum genus problem. 

What is genus? On a 3-manifold, every homology class a: E H2 (N3;Z) 
can be represented by an embedded surface. Such a surface though, un
like in dimension 4, often needs to be disconnectedP Therefore, it is not 

10. See G. Mikhalkin's J-holomorphic curves in almost complex surfaces do not always minimize 
the genus [Mik97]. 

11. Proof: The manifold # 3 CD:'2 , being a connected sum of two manifolds with bi 2': 1, must have 
trivial Seiberg-Witten invariants and thus no basic classes. However, if # 3 CD:'2 admitted some sym
plectic structure w, then it would be necessary that c1 ( w) be a basic class. Therefore #3 CD:'2 does not 
admit any symplectic structure. 

12. Such an almost-complex structure exists owing to the existence result from section 10.1 (page 377). 

13. In a 4-manifold there is enough room to connect components with thin tubes while avoiding 
creation of self-intersections. Not so in dimension 3. 
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reasonable to talk about "minimizing genus" as such, but about maximiz
ing the Euler-Poincare characteristic X = 2- 2 genus. Even so, if we admit 
sphere-components (which each adds 2 to x), this might artificially bump 
down our evaluation of the "genus". 

Thus, let us define for every surface S embedded in a 3-manifold a quan
tity x( S) as the sum, over all components Sk of S that are not spheres, of 
the negative Euler characteristic -X( Sk): 

x(s) = E -x(sk) . 
genusSk 21 

Notice that minimum "genus" corresponds to maximum x(S) but mini
mum x(S). Notice also that, since each component adds 2, more compo
nents mean a lower X ( S) . One might call X ( S) the complexity of S. 

For every homology class tx E H2 ( N3; Z), we define its Thurston norm by 

Xmin(tx) = min{x(S) I [S] = tx}. 
It detects the least complexity needed for representing tx. The name of 
"norm" is justified by the following remarkable property: 

Theorem ( W Thurston). For every closed oriented 3-manifold N 3 , the function 
X min on H2 ( N; Z) satisfies the triangle inequality: 

Xmin(tx + f3) :; Xmin(tx) + Xmin(f3)' 
and is linear on rays: 

Xmin(na) = nxmin(tx) · 
Therefore Xmin is the restriction to H2(N; Z) of a semi-norm on H2(N; JR). D 

Enter foliations. Surfaces of minimum genus are strongly related to taut 
foliations of 3-manifolds. 

A foliation by surfaces of a manifold N is a complete decomposition of N 
into surface-slices, called leaves of the foliations. Locally, a foliation looks 
like figure 11.8 on the facing page. The leaves are injectively immersed, but 
if they are non-compact then their ends can run and wrap around forever, 
and the leaf itself can be dense14 in N. 

A foliation of N is called taut if and only if there is some Riemannian metric 
on N such that all leaves become minimal surfaces (i.e., surfaces of critical 
area = surfaces that locally minimize area = surfaces whose mean curva
ture vanishes). In dimension 3, this is equivalent to the non-existence of 
dead ends, namely the absence of torus leaves that would cut N into two 
separated halves. A typical example of a dead end is a Reeb component, 
sketched in figure 11.9 on the next page: a solid-torus region bounded by a 
torus leaf and with its interior foliated by leaves that look like a paraboloid 
engulfing itself. 

14. For example, think of a line of irrational slope in the standard 2-torus. 
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11.8. Local model of a foliation 

11.9. A Reeb component 

Theorem ( W Thurston). Assume N 3 is a closed 3-manifold that is not 51 x 52 . 

Let § be any taut foliation of N. Then, for every embedded surface S in N, we 
have:15 

x(S) ~ e('J§-) · S. D 

One could think of this inequality as an analogue, in dimension 3, of the 
4-dimensional Seiberg-Witten adjunction inequality. 

A consequence of it is that, if S is the union of compact leaves of a taut foli
ation, then S must achieve minimum X in its homology class. Remarkably, 
the converse is also true: 

Theorem (D. Gabai ). Let N 3 be an irreducible16 3-manifold, and S an em
bedded surface of nontrivial homology class. Assume that S minimizes X in its 
homology class. Then there exists a taut foliation § on N such that S is a union 
~~~. D 

Hence, in brief, a surface in a 3-manifold minimizes genus if and only if it 
is the leaf of a taut foliation. 

15. Here, e(T$) · 5 is not an intersection number, but the evaluation of e(T$) E H2 (N; Z) on [5] E 
Hz(N; Z). The bundle T$ is the subbundle of TN made of the tangent planes to the leaves of ff. 

16. An n-manifold is called irreducible if it does not split as a connected sum of simpler manifolds 
(homotopy spheres do not count). 
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Comparison with 4-manifolds 

Comparing the above results with the state of knowledge about analogous 
statements on 4-manifolds is a depressing affair. For 4-manifolds, the 
quantity similar to x above would be -(x(S) + S · S). In regard to its 
being a semi-norm, we only have the very light lemma: 

Lemma. Let S be a connected embedded surface in the 4-manifold M. Assume 
that either S · S > 0, or that S · S = 0 and S is not a sphere. Then, for every 
integer n, we can represent the class n [ S] by a connected embedded surface Sn 
such that 

x(Sn) + Sn · Sn = n(x(S) + S · S) . 
Proof. If S · S = m > 0, then we take n push-off copies of S. Each 
copy will intersect each other copy exactly m times. After eliminating 
all these intersection points, we obtain an embedded connected surface 
Sn as above. 

If S · S = 0, since we assumed S to have some genus, that allows us 
to locate, inside the normal circle-bundle of S, an n-periodic cover Sn 
of S (for example, Sn will twist by 2nj n while traveling over a fixed 
homologically-nontrivial circle o£17 S). o 

Of course, this does not exclude that the class n [ S] be representable with 
less genus. In fact, it is not known at all whether minimum genus might 
satisfy an equality as above, or even if there are some 4-manifolds where 
that might hold true. 

Finally, the only hint that there might be a relation between minimum genus 
surfaces and taut foliations on 4-manifolds is the following result: 

Theorem (P. Kronheimer). Consider the 4-manifold 

N 3 x 51 
' 

with N a closed irreducible 3-manifold. Let § be a taut foliation of N with Euler 
class e = e('J§ ). Let e E H 2 (N x 51; Z) be the pull-back of e E H2 (N;Z). 
Then for any embedded connected surface S in N x 51 we have 

x( s) + s . s ~ -e. s . D 

The proof uses a version of the Seiberg-Witten invariants and, in part, an 
argument similar to the proof of the adjunction inequality. At times the 
classes e are not Seiberg-Witten basic classes (they admit monopoles, but 
their count cancels to zero). Thus, the adjunction inequality is not sharp on 
such (admittedly, not simply-connected) 4-manifolds. 

17. When 5 is a torus, this procedure could be suggested by the pictures used earlier when describing 
logarithmic transformations, back in section 8.3 (page 310). 
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One might conjecture that something like this theorem-taut foliations18 

on 4-manifolds yielding minimum genus bounds-might hold on more 
general 4-manifolds and foliations, but there is no method in sight that 
could plausibly be used in hunting for an answer. In fact, it is not clear 
whether there is any relation between general taut foliations and Seiberg
Witten monopoles. We do not know either whether a compact leaf of a taut 
foliation might minimize genus in a 4-manifold. 

Sigh ... 

18. A foliation of a 4-manifold by surfaces is called taut if its leaves are minimal surfaces for some 
Riemannian metric on M. Nonetheless, there is no interpretation in terms of dead ends or Reeb com
ponents, and in general the structure of codimension 2 foliations is very poorly understood. Notice 
that the class if from Kronheimer's theorem is the Euler class ofT.¥ for the taut foliation.§:= ff x 51 

obtained simply by stacking copies of .§: around 51 . 
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Note: Proof of the adjunction inequality 

We present the proof of the adjunction inequality for surfaces of positive self-inter
section. Recall its statement: 

Adjunction Inequality. Let M be simply-connected with bi(M) 2': 2. LetS be any 
embedded connected surface in M such that S · S 2': 0 and S is homologically nontrivial. 
Then for every basic class K of M we have: 

x(s) + s · s ::; K. s. 

The result will follow from three inequalities. We begin by repeating the outline of 
the argument. 

Outline of proof. Every solution ( cp, A) to the Seiberg-Witten equations must sat
isfy the inequality 

llscalll 2': 2VljjFJII, 
where seal denotes the Riemannian scalar curvature of M, and we used L 2 -norms. 
This is a direct consequence of Lichnerowicz's formula (page 393) and was already 
proved in section 10.3 (page 398). This inequality provides the needed bridge be
tween Seiberg-Witten theory and the Riemannian geometry of M. The bridge be
tween Riemannian geometry and the genus of S will be offered by GaufS-Bonnet. 

Assume first that S has zero self-intersection. On one hand, since S has trivial 
normal bundle, we can embed a copy of S x 5 1 x [0, 1] in M, then choose a Rie
mannian metric for M which on S x 5 1 x [0, 1] is the product-metric that endows 
the 5-factor with the metric of constant scalar curvature 4nx(S) and area 1, as
signs length 1 to the 5 1-factor, and sets the [0, 1]-factor to have length p. When 
stretching this cylinder by pushing p ----t oo, we will evaluate 

iiscalpjjP = -y'p4nx(S) + 0(1). 

On the other hand, since [FA] = -2ni c1 (.C) = -2ni K, we will also obtain the 
inequality 

IIFJIIP 2': J2Pn(S · K) + 0(1). 
Combining these three inequalities and pushing the scaling parameter p toward 
infinity makes it inevitable that 

5·K2':-x(S), 
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which, after an orientation flip, is exactly the result in the 5 · 5 = 0 case. 

To finish the proof by dealing with the case 5 · 5 > 0, a simple blow-up argument 
will reduce the 5 · 5 > 0 case to the above 5 · 5 = 0 case. 

The rest of this note is taken by the expansion of this outline. 

Preparation: Monopoles and scalar curvature. Start with the coupled Lichnero
wicz formula 

('DA)* DA cp = (\7A)* \7Acp + ! scal·cp + ~FA • cp. 

Assume ( cp, A) is a Seiberg-Witten monopole, so that DA cp = 0 and FJ = o-( cp). 
Use this in the above formula, then inner-multiply with cp and integrate over M, 
rearrange and use the Cauchy-Schwarz inequality, use that lo-(cp) I = Jz lcpl 2 and 
obtain that, for every monopole ( cp, A), we must have: 2 2 

2hiiFJII :::; llscaJII, 
written in terms of L2-norms.1 The detailed proof was displayed on page 398, 
under the name of "integral curvature bound". 

Case without self-intersection: Stretching the cylinder. Let K be a Seiberg-Witten 
basic class of M. Then, for every metric on M, the spine structure corresponding 
to K has at least one Seiberg-Witten monopole. Thus, we are free to choose our 
favorite metric on M. 

Assume 5 · 5 = 0. Then the normal bundle Ns;M is trivial, and its circle bundle is 
a copy of 5 x 51 . Therefore we can thicken it and make appear in M an embedded 
cylinder 

Cy£ = 5 x 51 x [o, 1] , 

surrounding 5 as suggested in figure 11.10. 

11.10. Cylinder S x S1 x [0, 1] around a surface S 

Next, we choose a metric on M that, when restricted to the cylinder Cy£, is a prod
uct metric that makes the [ 0, 1]-factor have length p and the S 1-factor have length 

1. Remember that the L2 -norm of a is lla:ll 2 = JM la:l2 volM. Its value depends on the chosen Rieman
nian metric of M, both through the length-measurement Ia: I and the volume element volM. 
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1 and endows the 5-factor with the 2-dimensional metric of constant scalar-cur
vature2 4nx(5) and area 1. Then, for such a choice of Riemannian metric on M, 
its scalar curvature seal is everywhere on Cy£ equal to the constant 4nx(5): 

scallcye = 4n x( 5) . 

Indeed, the scalar curvature is essentially (twice) the sum of the four sectional cur
vatures; owing to the product structure of the cylinder, the only non-zero sectional 
curvature is the one in the direction of the 5-factor. 

We now start modifying the metric of M by pushing the scaling parameter p to oo, 
in other words, by stretching the cylinder Cy£ as pictured in figure 11.11. Then the 
curvature contribution of this expanding cylinder Cy£ will eventually overshadow 
anything else that might happen in the rest of M. 

11.11. Stretching the cylinder 

Assume that 5 is not a sphere, and hence that 4nx(5) ::; 0. Then, in terms of the 
L 2-norms II · lip corresponding to the p-scaled metrics, we have: 

= p(4nx(5)) 2 + c, 

where C represents the integral of (sca1) 2 over the rest of M, which is the region 
where the metric is kept unchanged asp grows.3 Therefore4 

llscaJPIIP = -JP4nx(5) + 0(1), 

with the minus-sign appearing because we assumed 4nx(5) ::; 0. 

2. Keep in mind that the scalar curvature of a surface is twice its Gau!Sian curvature. 

3. We are ignoring the small perturbation needed to keep the metric smooth while p changes. 

4. Remember that 0( 1) denotes an arbitrary bounded quantity. 
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The stretch and the monopole. Remember that K was a basic class. Thus, for every 
Riemannian metric, there must be at least one solution to the Seiberg-Witten equa
tions. In particular, for every one of the special metrics above there is at least one 
monopole (cp,A) = (cpp.Ap)· 

Since the corresponding 2-form FA is the curvature of a connection on .C, the class 

2~ [FA] must represent the class K = c1 (.C). We will first deduce that II FA II > 
J15 2n ( S · K) . This follows from the facts that 

_i_ {FA = 5 · K 
2n ls 

and that such an equality will still hold when integrating over every parallel copy 
of S inside the cylinder Cyf = S x 51 x [0, 1]. Since the cylinder is stretching as 
p --> oo, the contribution to II FA II from the part of FA over the cylinder overshad
ows all the rest. We have 

and therefore, as claimed, 

IIFAII 2: J152n(S · K). 

To get from II FA II to IIFJ II, we recall that for every 2-form IX we have 

lltxll 2 = lltx+ll 2 + lltx-11 2 

lltx+ 11 2 - lltx-11 2 = [tx] . [tx] . 
The latter was proved as '1emma Z" in section 10.3 (page 399). Therefore 

IIFAII 2 = 2IIFJII 2 - 4~K. K. 

Combining with the above inequality and cleaning up yields 

II FJ II 2: J15 . v'2 7t ( s . K) + 0 ( 1) . 

Stretching the conclusion. We have proved the following three relations: 

J{5 · 4n (5 · K) + 0(1) :S 2v'2//F~ lip 

2v'21/F~ 1/P < !!scalp liP 

!!scalp liP = -JP 4nx(S) + 0(1) . 

When p --> oo, comparing them leads to the conclusion that the only way the three 
can coexist peacefully is if we have 

S·K :S -x(S), 

which is just x(S) :S -K · S. After flipping the orientation of S, we get x(S) :S 
K · 5. 
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General case. For the general case, when 5 · 5 > 0 and the normal bundle of 5 is 
not trivial, one can argue as follows: 

Let m = 5 · 5. Blow M up m times at points of 5, obtaining 

M(m) = M#mCJP2 • 

Denote by Ek the copy of CJP 1 in the kth copy of CJP 2 . In particular, we have 
Ek. Ek = -1. 

Just as in the proof of the Kervaire-Milnor theorem (page 483), we take the proper 
transform 5(m) I whose homology class is 5- E1 - ... -Em, and therefore has 
5(m) · .r;(m) = 0 and trivial normal bundle (see figure 11.12), and thus the adjunc
tion case already proved above is applicable to it. 

E 

> 

11.12. Straightening the normal bundle of I: by blow-ups 

Since K is a basic class of M, from the Seiberg-Witten blow-up formula5 it follows 
that K + E1 + · · · + Em must be a basic class of M(m). Applying the adjunction 
inequality obtained above to 5(m) I we get: 

X(5(m))::; -(K+E1+···+Em)·(5-E1-···-Em)· 

Since (K + E1 +···+Em)· (5- E1- ···-Em) = K · 5 + m = K · 5 + 5 · 5, we 
write: 

X( 5) ::; -K " 5 - 5 · 5 1 

which we like to rearrange as 

X( 5) + 5 . 5 ::; -K . 5 . 

Since flipping the orientation of 5 only changes one sign, we can also write 

x( 5) + 5 · 5 ::; K . 5 . 

This concludes the proof of the adjunction inequality. D 

Notice that, unlike connect-summing with CJP 2 , summing with CJP2 destroys the 
Seiberg-Witten invariants.6 Thus, if 5 had negative self-intersection, then we 
could not simply reduce to the case 5 · 5 = 0 by increasing its self-intersection 
inside M # m CJP2 . 

5. The blow-up formula was discussed back in section 10.4 (page 404). 

6. From Seiberg-Witten's vanishing for connect sums with bi (terms) 2 1, see section 10.4 (page 406). 
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Note: The Arf invariant 

The Arf invariant is a Zz-valued invariant of a quadratic form on a Zz-module. 
It will play an essential role in the Freedman-Kirby generalization of Rokhlin's 
theorem that will be presented in the next note (page 502). Since the latter will be 
proved from scratch and thus prove Rokhlin's theorem itself, it follows that the 
Arf invariant underpins Rokhlin's theorem. 

In fact the presence of the Arf invariant in topology is ubiquitous. One could 
even say that, whenever one encounters a Z 2 , there might be a corresponding Arf 
invariant hiding behind the scenes: in dimension 3, the Rokhlin invariant; in high
dimensions, the Kirby-Siebenmann invariant; in surgery theory, the Arf invariant 
holds for ( 4k + 2)-manifolds the role that signatures play for 4k-manifolds; etc. 

Definition. Let Z be a finite-dimensional Zz -module. Assume that Z is endowed 
with a unimodular symmetric bilinear form 

ZxZ------tZz: (x,y)~--------+x·y. 

A most frequent case is to take Z = H 1 ( S; Zz) for some oriented surface S, to
gether with its intersection form. Here we are talking about the modulo 2 reduc
tion of S'sskew-symmetric intersection form Q5 : H1 (S;Z) x H1 (5; Z) ~ Z, which 
governs the intersection of curves inside S. For brevity, we will call any abstract 
unimodular symmetric form, on a general Zz-module Z, an intersection form as 
well. 

A function q: Z ~ Zz is called a quadratic enhancement (or quadratic form) for 
the intersection form of Z if it satisfies 

q(x + y) = q(x) + q(y) + x · y (mod 2) 

for all x, y E Z. Such an enhancement does not exist on every random ( Z, · ) . 

Pick in Z any basis {el> ... , em, e1, ... , em} such that the only non-zero intersec
tions are ek · ek = 1. This is known as a symplectic basis for (Z, ·) and always 
exists. We define the Arf invariant of q as 

Arf(q) = l:q(ek) q(ek), 

which is a well-defined Zz -valued invariant of ( Z, · , q) . 

Interpretation. Playing with the equality q(x + y) = q(x) + q(y) + x · y, one no
tices that we must always have q(O) = 0, but also that the existence of a quadratic 
enhancement q on ( Z, · ) forces that x · x = 0 for all x E Z. 

Since the intersection form of Z is unimodular, for every x E Z there exists a dual 
element y E Z such that x · y = 1. Then on the pair { x, y} the intersection form 

has matrix [ 
1 

1] ' 

and therefore the pair { x, y} must have an orthogonal complement in Z. 

We can then keep on splitting off such hyperbolic pairs till we exhaust all of Z and 
split it into a sum z = Hl EEl ... EEl Hp I 

with each Hk containing four elements, Hk = {0, x, y, x + y} with x · y = 1. 
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Now, considering the possible behaviors of q on Hb it turns out that either q is 1 
on all three of x, y, x + y, or else q is 1 on one of them and 0 on the other two. 
Denote a pair (Hb q) in the first case by H 1• 1 , and in the second by H 0•0 . We have 
obtained a splitting ( ) 1 1 o o 

Z,q :::::: t:BmH · t:BnH · . 

Then the Arf invariant Arf(q) counts the number of copies of H 1• 1 modulo 2: 

Arf(q) = m (mod 2) . 

Notethatasimplechangeofbasisfrom {xl,y1;x2,y2} to {xi +YI +x2, x1 +y1 + 
y2, XI + x2 + Y2· Yl + x2 + Y2} establishes an isomorphism 

HI, I ffi HI, I :::::: HO,O ffi HO,O I 

so that a modulo 2 count is the very best we can hope for. In other words: 

Lemma (C. Arf). Two quadratic enhancements are isomorphic if and only if they have 
the same Arf invariant. D 

Finally, notice that evaluating the Arf invariant is merely a matter of majorities: 

Voting Lemma. We have Arf(q) 1 if and only if q sends more elements of Z to 1 
than it sends to 0. D 

The Arf invariant was introduced in C. Arf's Untersuchungen iiber quadratische 
Formen in Korpern der Charakteristik 2. I [Ar£41]. 

Note: The Freedman-Kirby generalization of Rokhlin's theorem 

Recall that Rokhlin's theorem states: Every smooth 4-manifold M with w2 (M) 
0 must have sign M = 0 (mod 16). Kervaire-Milnor's generalization states: Ev
ery smooth 4-manifold M and characteristic sphere L must have sign M - L · L = 0 
(mod 16). 

A further extension is due to M. Freedman and R. Kirby's A geometric proof 
of Rochlin's theorem [FK78]. The restriction to spheres from Kervaire-Milnor is 
dropped, at the price of an extra term: 

Freedman-Kirby Theorem. Let M be a smooth 4-manifold, and L any characteristic 
surface in it. Then we must have: 

signM - L · L = 8 · Arf(M, L) (mod 16). o 

Here Arf(M, L) is the Arf invariant of a suitably defined quadratic enhancement 
on H1 (L; Z2), which turns out to depend only on the homology class of L. 

On a merely topological 4-manifold, this theorem does not hold (just as Rokhlin's theorem does 
not hold either). Nonetheless, the measure of its failure is the Kirby-Siebenmann7 invariant of 
the manifold: we have ks(M) = !(sign M - l: ·l:) - Arf(M, 1:), for any characteristic l: in M. 

In what follows we will present the motivation and the outline of proof for this 
generalized Rokhlin theorem. The complete proof is explained in the next note 
(page 507). It will, in particular, prove the original Rokhlin theorem as well. 

7. For the Kirby-Siebenmann invariant, see the end-notes of chapter 4 (page 207). 
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Strategy. Recall van der Blij's lemma,8 stating that, for every intersection form Q 
and each of its characteristic elements gz_, we must have 

sign Q - gz_ · IQ = 0 or 8 (mod 16) . 

Rokhlin's theorem states that 8 is excluded whenever gz_ = 0, while Kervaire
Milnor shows that 8 is excluded whenever gz_ can be represented by a sphere. 
Therefore, a possible approach to generalizing Rokhlin's theorem is to start by 
representing a characteristic element gz_ by some embedded surface ~, and then 
see what obstructions we encounter while trying to modify ~ into a sphere. 

Can I make you sphere? An obvious method for reducing the genus of ~ is the 
following: start with a circle C embedded in ~ that represents some generator in 
H1 ( ~; Z). Assume that we are lucky and can choose a circle C for which there is 
a disk D embedded in M so that aD = C. Then we could cut-and-cap ~ along 
such a disk and thus reduce its genus, as in figure 11.13 

> 

11.13. Cutting a surface along a disk 

For such a cut to actually be possible, one needs that: (1) the interior of the disk D 
not intersect~; and (2) the normal line-bundle Nao;:r: of C in~ be extendable 
over the whole disk D as a normal line-field inside N 0 ; M. This second condition 
is needed in order to define two parallel copies of D to be used for capping the 
sliced-up ~-

Algebraically, these two obstructions are reflected in two numbers: for ( 1) we 
have the intersection number 

~-D, 

while for (2) we can compare the normal line-field Nao;:r: with a trivialization of 
N 0 ; M, obtaining another integer 

Indeed, since D is a disk, there is a unique trivialization, up to homotopy, of the 
plane-bundle No; M' and therefore over the boundary aD we can count the twists 
of the line-bundle Nao;:r: with respect to this trivialization of No;M; we denote 
this twist number by d0 . 

8. Stated back in section 4.4 (page 170), proved in the end-notes of chapter 5 (page 263). 
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Spinning, then kissing spheres. Given such a configuration-a characteristic sur
face I::, a circle C in it, and an embedded disk D meeting I:: normally along 
aD = C and transversely along Int D-we can modify it. 

For example, we can spin the disk D around its boundary C, as suggested in fi
gures 11.14 and 11.15. That modifies the framing of Nc;D by 1 and creates an 
intersection point of D and I::. Namely, we have: 

and I::·D f----> I::·D±l. 

Repeating this enough times, we can arrange to have either d0 or I:: · D vanish. 

D D 

) 

..... ········ 

Q 

11.14. Spinning a disk around its boundary 

1_1_) 
v 

11.15. Spinning a disk around its boundary: the movie 

Thus, a better invariant would seem to be the combined quantity 

d0 -I::· D, 

which is unchanged by spinning. 

On the other hand, assume that M contains an embedded sphere S. We can then 
connect D and S by using a thin tube, thus replacing D by the disk D # S. Then the 
twist d0 changes to d0 + S · S, while the intersections I:: · D become I:: · D +I:: · S. 
Hence 

d0 - I:: · D f----> d0 + S · S - ;r; · D - ;r; · S . 

Since I:: is a characteristic surface, we must also have I:: · S = S · S (mod 2), and 
hence we still have an unchanged quantity here, namely 

q(C) = d0 - I::· D (mod 2) . 

This seems a good candidate for an obstruction to surger C away from I:: and 
reduce genus. Of course, there is still the issue of finding embedded disks D. 



11.4. Notes 505 

Stabilizations, and Mr Arf. Notice that a sum-stabilization of M (i.e., connect
summing with copies of 52 x 52 ) does not change the signature of M, and the 
class of~ will still be a characteristic element. Nonetheless, stabilization certainly 
makes it possible to find embedded disks D for any circle C (by undoing self
intersections of some immersed disk, as recalled in figure9 11.16). Therefore, we 
can assume that for every generator C we can find a disk D embedded in some 
M # k S2 x 52 and thus obtain corresponding numbers ~ · D and d0 . 

) 

11.16. Eliminating an intersection by summing with a sphere 

Of course, if a circle C does not have a good setting that would allow a genus
reducing cut of ~~ then we can always try our luck with another generator of 
H1 (~; Z). It turns out that, up to stabilizations, whether we eventually are suc
cessful in cutting~ all the way to a sphere depends entirely on the Arf invariant 
Arf( M, ~) of the quadratic enhancement 

q: Hl(~;Zz) ----+Zz 

that assigns to each class x E H1 (~; Zz) the corresponding number 

q(x) =do +~·D (mod2) 

for any circle C representing x on ~, and any disk D bounded by C. This q can 
be checked to be well-defined and quadratic with respect to the natural modulo 2 
intersection form on H1 (~; Zz). 

One could then prove that ~ can be modified to a sphere embedded in some M # 
k S2 x 52 if and only if Arf( q) = 0. In that case, since ~ is still characteristic in 
M # k S2 x 52 and the signature is unchanged, we could apply the Kervaire-Milnor 
theorem to it and deduce that we must have sign M - ~ · ~ = 0 (mod 16). 

Thatwouldshowthat Arf(M,~) = 0 implies signM- ~ = 0 (mod 16). 

Definition of Arf(M,l:) without stabilizations. We can define the quadratic en
hancement q directly, without any use of stabilizations: 

Start with a circle C embedded in a characteristic surface ~. Then, assuming 
M is simply-connected, C must bound some embedded surface F (allowed to 
transversely-intersect ~). Since F is homotopy-equivalent to 51 V · · · V 51 and its 

9. See back in section 4.2 (page 149) for the full argument. 
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normal bundle NF 1M is an orientable plane-bundle, it follows that NF 1M is a triv
ial bundle. Moreover, every trivialization of NF 1M induces the same unique trivial
ization10 of NFIMic· Thus, we always have a naturally trivialized normal bundle 
NFIMic, and we can count the twists of the line-bundle NeiL. inside NFIMic with 
respect to this trivialization. We denote the number of twists by dF, and define 

q(C) = dF + L. · F (mod 2) . 

By varying the circle Cover the elements of H1(L.;Zz), we end up with a well
defined quadratic enhancement q: H1 (L.; Zz) ---> Zz, which has an associated Arf 
invariant Arf( M, L.) . 

tl tl tl NF/M 

F 

11.17. Comparing framings along C 

Characteristic cobordisms and outline of proof. Either way, so far we only out
lined an argument for showing that, if Arf( M, L.) = 0, then sign M - L. · L. = 0 
(mod 16); but not that, if Arf(M,L.) = 1, then the residue must be 8. 

The best and natural setting for the whole discussion is the characteristic cobor
dism group n~har, already discussed earlier in the end-notes of the preceding chap
ter (page 427), where it was identified with the spinC cobordism group and fully 
evaluated. This setting, in fact, allows us to prove the Freedman-Kirby theorem di
rectly, without relying on Rokhlin's theorem (under the guise of Kervaire-Milnor), 
and thus in particular does prove Rokhlin's theorem itself. 

Recall that the characteristic cobordism group 

o.char 
4 

is the cobordism group11 generated by pairs ( M, L.) where M is a smooth 4-mani
fold and L. is a characteristic surface inside M. Further, M \ L. is endowed with 
a spin structure that does not extend across L.. Two such pairs ( M', L.') and 
( M", L.") are considered cobordant when there is a cobordism W5 between M' 
and M", containing an unoriented 3-manifold Y3 that is itself a cobordism be
tween L.' and L.". Further, it is required that Y3 be dual to w2 (W), and that W \ Y 
be endowed with a spin structure not extending across Y and inducing on each of 
M' \ L.' and M" \ L." their chosen spin structures. 

10. Any two trivializations of NF;M differ by a map g: F--> S0(2). Since a F is homologically-trivial 
in F, and since S0(2) =51 = K(Z, 1) and so H 1 (F;Z) = [F, S0(2)], a simple argument shows that 
gla F must always be homotopic to the trivial map gla F = 1. 

11. Compare with other cobordism groups in the end-notes of chapter 4 (page 227). 
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It was proved in the end-notes of the preceding chapter (page 427) that we have 
an isomorphism 

o.t;tar ~ z E8 z via (M, ..E) f---7 (sign M, -§-(..E . ..E - sign M)) I 

and that o~har thus has generators (CJP2, CJP1) and (CJP2 #CJP2, #3 CJP1 #CJP 1). 

To prove the Freedman-Kirby theorem, one shows that the Arf invariant of a char
acteristic surface ..E inside some M is invariant under cobordisms. In other words, 
that the Arf invariant induces a well-defined morphism 

Arf: O~har ~ z2 . 
It is then checked directly on the generators of o~har that 

Arf(..E) = -§-(sign M - ..E ·..E) (mod 2) . 

Then this relation must extend to the whole group o~har I and hence finishes the 
proof. The full details are presented in the following note. 

Note: Proof of Freedman-Kirby's and Rokhlin's theorems 

In the preceding note (starting on page 502) we have provided motivation and 
heuristics for the proof to follow. Other requisites for fully absorbing this note is 
the earlier note defining the Arf invariant of an algebraic quadratic enhancement 
(page 501), as well as the end-note of the preceding chapter (page 427) where the 
characteristic cobordism group o~har was shown to be z E8 z. 

Definition of the quadratic enhancement. Let ..E be a characteristic surface in M. 
Let C be any family of circles embedded in ..E, and let F be any oriented surface 
bounded by C. Arrange that F meets ..E normally along C = a F and transversely 
otherwise, see figure 11.18. At times we will call F a membrane for the circles C. 

c 

c 
11.18. Characteristic surface, 1----{:ycle, and membrane 

The normal bundle Nc;E. of the circles C in ..E is a trivial real-line bundle. Since 
F is an orientable surface with boundary, it is homotopically-equivalent to S1 V 
· · · V S1, and thus its (orientable) normal bundle NF 1M in M is a trivial real-plane 
bundle. The line bundle Nc;E. is a subbundle of the plane bundle NF;Mic, and 
we can count how many times Nc;E. twists with respect to some trivialization of 
NF/M· 



508 11. The Minimum Genus of Embedded Surfaces 

Specifically, choose a trivializing frame fer of Nco:. (hence fer is tangent to ..E) 
and add a complementary section12 fm (normal to both F and ..E) to obtain the 
trivializationfrr: = {fer,Jm} of NFIMic induced by ..E. On the other hand, choose 
a trivialization frF of the whole NF 1M over F. Compare the two induced framings 
frr: andfrFic of NF!Mic· Since n1S0(2) = Z, the result of the comparison over 
each circle is an integer (which does not depend on the chosen trivialization of 
NF 1M). We reduce these integers modulo 2 and add them over all circles of C, 
obtaining an element 

In other words, de is the modulo 2 count of the twists of NeiL: with respect to a 
trivialization of NF 1M; that is to say, de is the number of twists of ..E along C with 
respect to a trivialization of NF 1M. 

y y YNF/M 

F 

11.19. Comparing framings along C 

That de is independent of the various choices can be seen by thinking of de as the 
obstruction to extending the trivializationfrr: of NFIMic across the whole mem
brane F. In other words, we have 

dc(frr:,frF) = w2(NFIM•frr:)[F,d], 

where w2(NF/M•frr:) E H2(F,dF; .Z2) is the Stiefel-Whitney class of NFIM rel
ative to the framing frr: on dF = C, while [F,d] E H2(F,dF; Z2) is the Z2-
orientation cycle of F. Of course, here we think of w2 in terms of obstruction 
theory.B Notice that, if we actually define de by the above formula, then there is 
no need for the membrane F to be oriented or even orientable. 

Another numerical data that can be extracted from F is the number of intersections 
(modulo 2) of Int F and ..E; denote the latter simply by 

..E·FEZ2. 
We add these two to obtain 

q(F) = dc(frr;. frF) + ..E ·F. 

As we will see, this q depends only on C and not on F. 

Furthermore, we will prove that q is invariant under appropriate cobordisms of 
the configuration ( M, ..E, C), and hence in particular invariant under cobordisms 

12. The reason for these awkward notations is that the frame {fu.fm} will soon be part of a 5-frame 
{fu.fm.ft.fc./v}, where simple numerical indices would be harder to follow. We will set ft tangent to 
F, fc tangent to C, and fv normal to M, which left us to denote by f m the one that is tangent to M. 

13. For an overview of obstruction theory, see the end-notes of chapter 4 (page 197). 
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that merely change the C 's. Therefore, q in fact descends to a well-defined map 
q: H1 (1:; Zz) --> Zz, which is a quadratic enhancement of the intersection form of 
1: and thus has an Arf invariant, denoted by Arf(M, 1:). 

Independence from membrane. As a warm-up, we start by proving that q depends 
only on C and not on F, even though this is also a consequence of the cobordism 
invariance that we will prove afterwards. 

Lemma. The number q(F) depends only on the family of circles C =a F 

Proof As in figure 11.20, take another surface F' bounded by the same circles 
C. Spin F' around C until the inner-pointing normals of C in F and in F' are 
everywhere-opposite along C, as in figure 11.21, and thus F U F' makes up 
a closed immersed surface in M. Notice that such a 2n-spin of F' around 
C changes de (frL., frF') by 1 but also creates an intersection point between 
IntF' and 1:, and therefore q(F') is unchanged by this spinning. Denote by 
B = F U F' the immersed closed surface formed from F and F'. 

e 

11.20. Two membranes with the same boundary 

F' F 
e' 

11.21. Fit F and F' into an immersed surface B 

Trivialize Np 1M with a framing frF, then trivialize NF' 1M with a framing frF'. 
These two induce framings along C, which can be compared modulo 2 yield
ing what we denote by dc(frF, frF') E Zz. We can also use these framings 
to push B off itself and compute its self-intersection modulo 2. A part of the 
self-intersections is counted by de (frp. frF'), the other part is caught by F · F'. 
Since any intersection point of F and F' is a double point of B, it creates two 
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intersection points between B and its push-off, as in figure 11.22. Thus, the 
contribution ofF· F' is invisible modulo 2. We are thus left with 

B. B = dc(frp, frF') . 

The latter can be split into the sum of the comparisons of each of frF and frF' 
with the framing fr.r: induced by the position of I: in NB; M: 

B · B = de (fr.r:, frF) + de (fr.r;, frF') (mod 2) . 

On the other hand, I: is a characteristic surface in M, and hence 

B · B = I: · B = I: · F + I: · F' (mod 2) . 

It follows that q(F) = q(F') (mod 2). 

11.22. Double-points and self-intersections 

D 

Invariance under cobordisms. Consider now two configurations (M', I:', C') and 
( M", I:", C''), made of a 4-manifold, a characteristic surface embedded in it, and 
a family of circles embedded in the surface. We will call two such configura
tions cobordant if there exists a configuration (W, Y, A), made of an oriented 5-
manifold W 5 , an embedded unoriented 3-manifold Y3 that is Poincare-dual to 
w2 ( T w), and an unoriented surface A embedded in Y, such that a W = M' U M", 
a y = I:' u I:" I and a A = C' u C". See figure14 11.23 on the facing page. We prove 
that two cobordant configurations lead to the same value of q: 

Lemma. If (M', I:', C') and (M", I:", C") are cobordant, then q(C') = q(C"). 

Proof. The proof is a refinement of the previous proof, with the added un
pleasantness of having to cross the bridge A between C' and C". 

Choose a membrane F' in M' with a F' = C' and normal to I:', and similarly 
F" in M". We want to show that 

de' (fr.r:', frF') + I:' · F' = den (Jr.r;n ,frpn) + I:" · F" (mod 2) . 

We build the closed surface B = F' U A U F". The manifold Y3 determines a 
class in H3(W,aW; Z2), dual to w2(Tw) E H2(W;Z2); the surface B deter
mines a class in H2(W;Z2). We can thus couple Y and Band compute their 
intersection pairing Y · B. The strategy of the proof is to compute Y · B in two 
ways, once using geometric intersections, and once by evaluating w2 (Tw) on 
B. The argument stretches on through page 514. 

14. In figure 11.23, notice how A does not smoothly continue F' or F0 • Indeed, F' is normal to .E' in 
M', while Y starts near M' as .E' crossed with its normal direction into W. Therefore, F' is normal to 
Y at C', and thus normal to A. Similarly for F0 and A. 
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M" M' 

11.23. (W, Y, A) is a cobordism between (M', .E1, C') and (M", .E", C") 

Evaluate by intersections. On one hand, we push Y off itself and count inter
sections with B. This push-off must be done by using a vector field normal 
to Y, but also tangent to () W and normal to F' and F". Indeed, we need the 
pushed-off Y* to still be a nicely embedded 3-manifold with () Y* c () W, 
and we want its boundary to be transverse to F' and F". Such a vector field 
can be obtained by extending across Y the vector field f m on C', which was 
normal to both I:.' and F'; similarly along C". See figure 11.24. (We have al
ready encountered f m as the second component of the framing .fri:' = {fo-, f m} 
of NF' /M'ict .) 

A I~ 
C' 

:~.-·········· : .. 
y• : ..... .... 

~F' 
W5 M' 

11.24. Pushing Y off itself, parallel to a W 

After pushing off, we can count the intersections with each of F', F", and A: 

Y · B = I:.' · F' + Y · A + I:." · F" . 

The intersection number Y · A is an intersection in the 5-manifold W, while 
I:.' · F' and J:." · F" are intersections inside the 4-manifolds M' and M". 
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The middle term Y · A can be interpreted as the obstruction to extending f m 

across A as a nowhere-zero vector field normal to Y. We complete fm to a 
framing {f m. ft} of Ny ;w lcr by adding the inner-pointing normals ft of C' 
in F', see figure 11.25. (Indeed, since Ny;wiM' = Nl:' !M', and both fm and ft 
are normal to I:,', they are normal to Y as well.) Similarly along C". Thus, we 
have 

Y·A = w2(Ny;w. {fm.ft})[A,a] (mod2). 
Therefore 

Y·B = L 1 ·F' +I:," ·F" + w2(Ny;w. Um.ft})[A,o]. 

Evaluate by Stiefel-Whitney. On the other hand, since Y is dual to w2 (Tw ), we 
evaluate 

Y·B = w2(Tw)[B] (mod2) 

= W2(TwiB) = W2(TB 87 NB/W) 

= W2(TB) + w2(NB/W) + WI (TB) ·WI (NB/W) . 

However, W is oriented, so w1 (Twl 8 ) = 0, and hence w1 (TB) +WI (NB/W) = 
0. Therefore, we have: 

Y · B = w2(TB) + w2(NB;w) - (wl(TB)) 2 

= w2(TB) + w2(NB/W) - w2(TB), 

after using Wu's formula for surfaces. So: 

Y · B = w2(NB;w). 

W 5 M' 

11.25. Framing the bridge 

Take the vector field ft normal to C' in F'; it is normal to I:,' and thus normal ,. 
toY. Then the frame {fcr,Jm.ft} trivializes NA;wlcr (with fer spanning NA/Y 
and {fm.ft} spanning Ny;w), as suggested in figure 11.25. Similarly along 
C". Using this framing of NB;w along the seams C' U C", we split w2(NB/W) 
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into relative classes following the splitting B = F' U F" U A: 

Y · B = wz(NF'IM' U NF"IM" U NA/w)[B] 

= wz(NF'IM'• {fa-,Jm})[F',a] + wz(NF"IM"• {fa-./m})[F",a] 

+ wz(NA;w. {fo-,Jm.fr})[A,iJ] 

= dc(frL'•frF') + dc,(jrL"•frF") + Wz(NA/W• {fo-,Jm,.fj})[A,iJ]. 

We will show that the last term evaluates to Y · A. 
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Middle intersections. Split the 3-plane bundle NA;w into the line bundle NA;Y 
and the 2-plane bundle Ny ;w: 

NA/W = NA;Y EB Ny;w. 

Along the seam C', the bundle N A/Y coincides with NC' 1 L', and thus is 
framed by fa-. Similarly along C". The bundle Ny ;w is framed along C' U C" 
by {f m. fr}. We thus write: 

wz(NA/W• {fo-,Jm.fr}) 

= wz(NA;yEBNy;w. fo-EB{fm.fr}) 

= wr(NA;Y./a-) ·wr(Ny;w. {fm.fr}) + wz(Ny;w. {fm,fr}) · 

We argue that the product-term vanishes. 

The framing {fa-,fm.fr} of NA;wb can be completed by using a section fc 
of TC' and the normal field /v of C' in A, to a framing {fo-,Jm.fr,Jc,Jv} of 
T w I C', as in figure 11.26. Similarly over C". 

W 5 M' 

11.26. Framing the circles 

We have: 
Wr (Tw, {fv,Jc,fo-,Jm.fr}) = 0 

wr (TA EB NA/Y EB Ny /W• Uv,Jc} EB Ia- EB {fm.fr}) = 0 

wr(TA, Uv,Jc}) + wr(NA;Y./a-) + wr(Ny;w. {fm.fr}) = 0 

wr(TA, {fv,Jc}) = wr(NA;Y.fo-) + wr(Ny;w. {fm.fr}) (mod2). 
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Applying Wu's formula, we have that w1 (TA, {fv,Jc}) ·a: = a:· a: for all a E 
H 1(A,()A; Z 2 ). For a:= wl(NA/y,f(T),thisbecomes: 

W1 (TA, {fv,Jc}) · W! (NA;Y,JO") 

(wl(NA;Y./£T)+wl(Ny;w. {fm.ft})) ·wl(NA;Y./£T) 

(wl(NA;Y.f£T)) 2 + wl(Ny;w. {fm,ft}) · W!(NA;Y,f£T) 

w1(Ny;w. {fm.ft}) ·wl(NA;Y./£T) 

Tracking backwards, we have: 

w2(NA/W• {f£T,Jm.ft}) 

(wl(NA;Y.f£T)/ 

(wl(NA;Y,f£T)) 2 

(wl(NA;Y,f£T)) 2 

= 0. 

= wl(NA;Y,f£T)·wl(Ny;w. Um.ft}) + w2(Ny;w. Um.ft}) 

= w2(Ny;w. {fm,ft}) · 

Recall that f m was the vector field normal to Y that we used to push Y off 
itself and compute the intersection Y · A. Then the obstruction to extending 
{f m, ft} over A is that intersection number, and hence 

Tracking back some more, we have 

Y·B = dc,(frL.'•frF') + dcn(frL.n,frFn) + w2(NA/W• {f£T,Jm.ft})[A,d] 

= dc~(frL.'•frF') + dcn(frL.n,frFn) + Y ·A, 

and the same intersection Y · B was also evaluated at the beginning as 

Y · B = L.' · F' + L-11 • F" + Y · A . 

It follows that 

de' (frL.', frF') + L. · F = dc(frL., frF") + L. · F" (mod 2) 

or, in other words, that q( C') = q( C"), which is what we set out to show. o 

We have a quadratic. An immediate consequence of the invariance of q under 
cobordisms is 

Corollary. The formula q( C) = de (frL., frF) + L. · F describes a well-defined function 
q: H1(L.;Z2)-----* Z2. o 

When M is not simply-connected, not all elements of H1 (I:.; Z2) bound mem
branes in M. Nonetheless, we can modify M by a cobordism in the usual way, 
by adding 2-handles to kill H1 (M; Z) without touching I:., and then every C in 
L, will bound some surface F as required. Invariance under cobordisms ensures 
that the result does not depend on the particular surgery. 

Lemma. The function q: H1 ( L.; Z) -----* Z2 is a quadratic enhancement of the intersection 
form of L.. 
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Proof. Assume that IX and {3 are two 1-cycles from H 1 ( L; Z 2 ) and assume 
that they are represented by two circles meeting at only one point. Then a 
circle representing IX+ {3 is obtained simply by eliminating the double point, 
as in figure 11.27. We wish to show that 

q(IX + {3) = q(IX) + q(f3) + IX· {3 (mod 2), 

which in this case has IX· {3 = 1. 

> 

11.27. Adding two I -cycles on I: 

Let FIX and Ff3 be the corresponding membranes for IX and {3. Figures 11.28 
and 11.29 explain how to obtain a membrane Fet+f3 for the sum, essentially by 
gluing a twisted ribbon to unite FIX and Ff3, then pushing the interior of the 
ribbon off L in the fourth dimension. 

11.28. Building the membrane for the sum 

To compute q(IX + {3), on one hand we notice that Fet+f3 intersects L only 
where FIX and Ff3 did, but not along the added ribbon. Thus, 

L . F1X+{3 = L . FIX + L . Ff3 • 

On the other hand, in order to compute the obstruction term d~X+f3' we extend 
the normal framing of IX and of {3 to a framing of IX + {3 in L, as suggested back 
in figure 11.28. The obstruction det+f3 to extending this framing as a normal 
field across all F~X+{3 is the obstruction diX to extend across FIX, together with 
the obstruction df3 to extend across Ff3, together, finally, with the obstruction 
to extend across the ribbon. 

The obstruction to extend the normal framing over the ribbon is the self-inter
section of the ribbon; that is to say, we push the ribbon off itself so that its 
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11.29. Understanding the sum-membrane 

boundary moves according to its normal framing, and we count intersection 
points modulo 2. We remember, from an argument made during the proof 
of Whitehead's theorem (page 148) and recalled in figure 11.30, that the in
tersection numbers of two surfaces in dimension 4, bounding knots in a 3-
dimensional slice, are given by the linking numbers of those knots. Thus, 
it is enough to focus on the boundary of our ribbon, push it off using the 
framing to get another loop, then notice that the two circles link once in the 
3-dimensional slice at which we are looking. See figure 11.31 on the facing 
page. Therefore, the ribbon and its push-off will have to meet once, and hence 
the obstruction over the ribbon is 1. We have 

d1X+{3 = d/X + df3 + 1 . 

Therefore, q(tX + f3) = q(tX) + q(f3) +IX· f3, as we wished. The other cases are 
argued in a similar style. o 

K" Seifert surface for K" 

----+) [(!jl5~ 
11.30. The linking numbers of the K 's are the intersection numbers of the S 's 

The Arf invariant. Since now we know q to be a quadratic enhancement, of course 
we look at its complete invariant, namely its Arf invariant. Thus, for any 4-mani
fold M and embedded characteristic surface ~, we denote by 

Arf( M, ~) E Zz 

the Arf invariant of the corresponding q. 

Lemma. The Arf invariant Arf( q) of q depends only on the characteristic cobordism class 
(M, ~). Therefore, we have a well-defined additive morphism 

Arf: o~har ----+ Zz . 
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11.31. Measuring the new obstruction 

Proof. Let (M',I::') and (M",I::") be cobordant in O~har through (W, Y). 
Consider the inclusion i: I::' U 1:11 C Y of Y's boundary and denote its 1-
homology kernel by 

K = Ker(i*: H1(1:1 UI::11 ; Zz)--+ H1(Y;Zz)). 

Following a modulo 2 version of the argument used for proving that signa
tures of boundaries must vanish (page 120), we have15 

dimK = ! dim H1 (I::' U I::"; Zz) . 

Consider q I I:' u I:" = q I I:' EB q I I:", defined on H 1 (I::' U I::"; Zz); clearly 

We will now argue that q I I:' u I:" vanishes on all elements of K. Indeed, let C' U 
C" represent a class in K and let A be a surface in Y such that a A = C' U C". 
Now, instead of interpreting (W, Y,A) as a cobordism from (M',I::',C') to 
(M", 1:11, C"), view it instead as a cobordism from (M' U M", 1:1 U 1:11 , C' U C") 
to (0, 0, 0). Since we proved q to be invariant by cobordisms, it follows that 

q(C' U C") = q(0) = 0. 

Therefore q vanishes on all K. 

Then q cannot be 1 on a majority of elements of H1 (I::' U I::"; Zz), and hence 
Arf(qJI:tui:") = 0 (from the "voting lemma", page 502). By additivity, it fol
lows that Arf(qii:') = Arf(qii:"), better written as Arf(M',I::') = Arf(M",I::"). 

0 

Corollary. The Arf invariant Arf( M, I:) depends only on the homology class of I:; thus, 
we can define Arf( M, !Q) for any characteristic element 1Q of M. o 

15. Review: Argue first that, if c', c" both bound some a', a", then c' · c11 = 0, since their intersection 
points are linked by the arcs making up a' n a". Then, if c does not bound, then it admits a dual 
a E H2 (Y, a Y; Zz) so that c ·a = 1 in Y; then c* = a a in a Y will have c · c* = 1 and, since it bounds, 
c* · c* = 0. Therefore, c and c* span a unimodular subspace for the modulo 2 intersection form of 
a Y; split it off and proceed. In the end, we obtain a splitting of H1 (a Y; Zz) into c's that do not bound 
and c• 's that do. Hence dimK = ! dimH1 (aY;Zz). 
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Characteristic cobordisms. First, two fundamental examples: 

Lemma. We have Arf(CIP2 , CIP1) = 0 and Arf(CIP2, #3 CJP1) = 1. 

Proof. Since CIP 1 is a sphere and thus has no 1-homology, the first case 
follows trivially. 

For the second case, notice that the class #3 CIP 1 can be represented by a torus. 
One way to see that its Arf invariant is 1 is as follows: Since the Arf invariant 
is a cobordism invariant, we have the additivity 

Arf(M' #M11 , E' #E11 ) = Arf(M',E') + Arf(M",E"). 

Since Arf(CIP2, CIP 1) = 0, it follows that 

Arf(CIP2, #3CIP 1) = Arf(CIP2 #9CIP 2 , #3CIP 1 #9CIP 1). 

The latter is simply Arf(E(1), T), where E(1) is the rational elliptic surface 
discussed in section 8.1 (page 302) and T is a regular torus fiber.l6 If we 
choose the fibration so that T sits near a cusp fiber, then that implies that two 
circle generators of H1 (T; Z2) are vanishing cycles, i.e., they bound disks D 
embedded in M \ T with self-intersection -1. However, this self-intersection 
modulo 2 is what we denoted by dc(frr, fro), i.e., the obstruction to extend
ing Nc;r across D. Therefore q assigns 1 to both generators, and hence 
Arf(q) = 1. D 

Now remember the characteristic cobordism group 04har, with 

04har :::::: Z EB Z via (M, E) f-------+ (sign M, k (E · E- sign M)) . 

This was proved in the end-notes of the preceding chapter (page 427). Then the 
characteristic cobordism group can be viewed as generated by 

(CIP2,CIP1) = (1,0) and (CJP2 , #3CIP 1) = (1,1). 
Both functions 

(M, E) f-------+ k (E · E- sign M) and ( M, E) f-------+ Arf( M, E) 

are additive group morphisms 04har --+ Z2, and they coincide on the generators. 
Therefore, they must coincide over the whole 04har, and we have: 

Corollary (Freedman-Kirby Theorem). For all characteristic surfaces E embedded in 
any smooth 4-manifold M, we have 

Arf(M,E) = k(E·E-signM) (mod2). D 

Corollary (Kervaire-Milnor Theorem). If M is smooth and contains a characteristic 
sphere E, then 

E · E = sign M (mod 16) . D 

Corollary (Rokhlin's Theorem). If M is smooth and has w2(TM) = 0, then 

signM = 0 (mod 16). D 

16. Indeed, recall how E(l) was obtained: we picked a cubic family, containing tori (some singular) 
meeting in nine points, blew up those nine points, and obtained an elliptic fibration; its fiber is #3 (]P 1 

blown-up nine times, i.e., summed with one (]P 1 from each of the nine (:JP2 's. 
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Stable genus bounds. Getting back to the main topic of this chapter-minimum 
genus of surfaces-a consequence of the above discussion is a solution of the genus 
problem, up to stabilizations: 

Theorem (M. Freedman and R. Kirby). Assume M is simply-connected, and let IQ be 
a characteristic element of M. If Arf( M, IQ) = 0, then there is an integer k so that IQ can 
be represented by an embedded sphere in M # k S2 x 52 . If Arf( M, IQ) = 1, then IQ can 
be represented by an embedded torus. 

Proof. Recall from section 4.2 (page 149) that the main advantage of stabiliz
ing is that the extra spheres from 52 X 52 allow US to undo intersections and 
self-intersections. 

Let I: be a characteristic surface in M and assume that Arf( M, I:) = 0. Then 
there must be a subspace K of H1 (I:;Zz) so that q vanishes on it, the inter
section pairing vanishes as well, and K covers half of H 1 (I:;Zz), i.e., dimK = 

! dimH1 (I:;Zz). 

If we could find nice disks for the generators of K and cut-and-cap I: along 
them (as explained in the preceding note, on page 502), then I: would become 
a sphere. 

Let C be an element of K. Since M is simply-connected, there is an im
mersed disk D in M that is bounded by C. By connect summing with enough 
52 x 52 's, we can eliminate all self-intersections of D, as was explained in sec
tion 4.2 (page 149) and is recalled in figure 11.32. We end up with a disk D, 
embedded in M # k S2 x 52 • Further, I: is untouched and still characteristic. 

) 

11.32. Eliminating an intersection by summing with a sphere 

We have q(C) = 0, meaning that de+ I:· D = 0 (mod 2). Spin D around 
C (as explained on page 504 and recalled in figure 11.33) till I:· D = 0 as an 
integer. This means that the intersection points of I: and D appear in pairs 
with opposite signs. By adding even more copies of 52 x 52 , we can use the 
Whitney trick to eliminate all common points of I: and Int D. 

11.33. Spinning a membrane around its boundary 

Thus we are left with de = 0 (mod 2), and so dc(frL-,fro) =2m for some inte
ger17 m. Connect sum with m more copies of 52 x 52 . Join D with either the 

17. Here we think of de as the integral relative Euler class, instead of the modulo 2 relative Stiefel
Whitney class. 
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diagonal or the anti-diagonal sphere s from each new copy of 52 X 52 . Homo
logically, s = 52 X 1 ± 1 X 52 ' and hence s . s = ±2. Therefore, substituting 
D by D # S will change de to de + 2 or de - 2. 

We eventually obtain an embedded disk D that only touches 1: along its 
boundary C, and whose normal bundle can be trivialized by extending the 
normal framing of C in 1:. We can then cut 1: open along C and cap it to a 
surface of lesser genus, as recalled in figure 11.34. 

)( > )( 
11.34. Cutting a surface along a disk 

Repeating this procedure for whoever is left inK eventually surgers 1: to an 
embedded sphere in M #(huge) 52 X 52 . D 

For non-characteristic elements, we have a sharper result: 

Theorem (C.T.C. Wall). Assume M is simply-connected and QM is indefinite. Let 
IX E H2 (M; Z) be an indivisible class that is not characteristic. Then IX can be represented 
by a sphere embedded in M #52 x 52 . 

This result follows from Wall's theorem on diffeomorphisms (page 153), by mov
ing spheres from 52 X 52 (or from18 52 X 52 ) around and using the realization of 
automorphisms of H2(M #52 x 52; Z) by sel£-diffeomorphisms. It was proved in 
C.T.C. Wall's Diffeomorphisms of 4-manifolds [Wal64b]. 

References. Our exposition follows M. Freedman and R. Kirby's original paper 
A geometric proof of Rochlin's theorem [FK78]. Other proofs are L. Guillou and 
A. Marin's Une extension d'un theoreme de Rohlin sur la signature [GM86c], and 
Y. Matsumoto's An elementary proof of Rochlin's signature theorem and its exten
sion by Guillou and Marin [Mat86], both inside the volume A la recherche de la 
topologie perdue [GM86a]. Both the latter papers extend the result to unoriented 
characteristic surfaces, which leads to a modulo 4 version. The origin of all these 
geometric proofs of Rokhlin' s theorem involving the Arf invariant can be traced 
to lectures of A. Casson from around 1975. 

A proof of Rokhlin's theorem, streamlined through the use of spin structures, can 
be found in R. Kirby's The topology of 4-manifolds [Kir89, ch XI] and will be 
explained in the following note. 

For more references and historical comments on Rokhlin's theorem, see the refer
ences back on page 235, at the end of chapter 4. 

18. Recall that, when QM is odd, M #52 X 52 ~ M #52 X 52 . Spheres from 52 X 52 are needed to 
realize classes of odd self-intersection. 
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Note: Alternative proof of Rokhlin's theorem 

In what follows we explain an alternative geometric proof of Rokhlin's theorem, 
taken from R. Kirby's The topology of 4-manifolds [Kir89, ch XI]. Instead of the 
acrobatics with characteristic classes from the preceding note, we will play with 
spin structures, both partial spin structures on 4-manifolds and spin structures 
on lower-dimensional manifolds. 

The characteristic cobordism group still has a crucial role, but we will also in
voke lower-dimensional spin cobordism groups. Thus, maybe a glance back at 
the end-notes of chapter 4 (cobordism groups, page 227) and a quick visit with the 
end-notes of the preceding chapter (characteristic cobordism group, page 427) are 
recommended.19 

We start by discussing spin structures on 1- and 2-dimensional manifolds: 

Spin structures and spin cobordism in low dimensions. Recall that a spin structure 
on a manifold xn is in general defined as a trivialization of T x over the !-skele
ton of X that can be extended across the 2-skeleton of X. Furthermore, two spin 
manifolds X' and X" are said to be spin-cobordant if there is some manifold yn+ 1 

with a Y = X' U X" and endowed with a spin structure that induces20 the chosen 
spin structures on X' and X". This leads to the spin cobordism group ofjfin, as 
was mentioned already in the end-notes of chapter 4 (page 229). 

Since n 1SO(n) = Z 2 only for n at least 3, defining spin structures on lower
dimensional manifolds needs a bit of care, by first raising the fiber-dimension of 
T x by stabilization. 

Specifically, for a surface S a spin structure on S is a trivialization of Ts EB lR over 
the 1-skeleton of S that extends across all S. For a !-dimensional manifold C, a 
spin structure is a trivialization of Tc EB JR2 . 

Spin structure on circles. On a circle C, there are exactly two21 spin structures, as 
pictured in figure22 11.35 on the following page. One of them appears from seeing 
the circle as bounding a disk D, with the trivialization of Tc EB lR induced from 
the natural trivialization of To. The other one is often called the Lie-group spin 
structure, as it can be obtained by translating a frame using the multiplication of 
51 . Let us denote the bounding spin structure by sa and the Lie-group one by Sue. 

Since two circles with the Lie-group spin structure spin-bound the cylinder C x 
[0, 1], while a lone Lie-group circle does not spin-bound anything, it follows that 
the spin cobordism group in dimension 1 is exactly Zz: 

Lemma. We have ofpin = Zz, with generator (51, sue). D 

19. If you read the preceding note and survived, then there is no need for that. 

20. A spin structure on Y induces a spin structure on its boundary in a manner analogous with the way 
an orientation on Y induces an orientation on its boundary: arrange that the trivialization of Ty over 
the !-skeleton of oY fits the decomposition Tylay = Tay EB Nay;y; then this defines a trivialization of 
Ta y over the !-skeleton. 

21. "Two", just as in n 1S0(3) = Zz, of course. 

22. The third vector of the trivializing frame of Tc EB ]R2 should be imagined perpendicular to the page. 
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bounding spin structure non-bounding spin structure 

11.35. Spin structures on a circle 

Spin structures on surfaces. Since every orientable surface is a connected-sum of tori, 
we first investigate the case of spin Structures on a torus 1'2 = 51 X 51 . 

Recall that H 1 (Xn; Z 2 ) acts transitively on the spin structures of23 xn. Since 
H 1(1'2;Z2 ) = EB 2Z2 , we expect to find exactly four distinct spin structures 
on 1'2 • Indeed, these can be built immediately as products of spin structures on 
circles. Specifically, we have (51, sue) x {51, sue), which does not spin-bound 
any 3-manifold, as well as {51, sue) x {51, sa), {51, sa) x {51, sue) and {51, sa) x 
(51, sa), which spin-bound, respectively, 51 x D 2 , D 2 x 51, and both. Since sue x 
sue can be seen as obtained from a frame translated around 1'2 using the Lie group 
structure of 1'2 , we will call it the Lie-group spin structure on 1'2 and denote it by 
sue as well. 

Moving on to general surfaces S = #m 1'2 , first we notice that a spin structure on 
S can be built from spin structures on its torus-terms. If all the torus-terms are 
endowed with bounding spin structures, then their connected-sum S will spin
bound a suitable boundary-sum of 51 X D 2 's and D 2 X 51 's. At the other ex
treme, if S = #2k1'2 is a sum of an even number of tori, each endowed with the 
non-bounding spin structure, then S is nonetheless the spin-boundary of the 3-
manifold ( ( # k 1'2 ) \disk) x [0, 1]. (This is in tune with the general fact that X# X 
bounds (X\ ball) x [0, 1], as suggested in figure 11.36.) 

11.36. X# X is the boundary of (X \ ball) x [ 0, 1] 

Such reasoning leads us to: 

23. This was mentioned, for example, in the inserted note on page 164, and of course follows neatly 
from obstruction theory, etc. 
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Lemma. We have O~pin = Z2, with generator (1I'2, sue). D 

Finally, notice that a spin structure on a surface 5 is completely determined by 
the spin structures induced on a family of circle-generators of H1 ( S; Z). Indeed, 
let C 1, ... , Cm, C\, ... , Cm be a family of circles embedded in 5 so that their only 
intersections are one for each pair ck and ckt and so that they generate HI ( S; Z)' 
as in figure 11.37. Such a choice of circles corresponds to a splitting of 5 as a 
connected sum of tori Ck X C1c. If each of the circles is endowed with a spin struc
ture, then so will each ck X c/c and thus 5 itself. (This can also be deduced from 
the isomorphism H 1 (5; Z2) ~ H 1 (u ck u C~c; Z2)' induced by inclusion.) 

11.37. Circles on a surface 

Spin cobordism of surfaces and the Arf invariant. The isomorphism O~pin = Z2 can be 
realized by means of the Arf invariant24 of a suitable quadratic form on H1 ( S; Z2). 

Specifically, let 5 be a random surface endowed with a spin structures, i.e., with 
a trivialization of Ts EB JR. Then every circle C embedded in 5, as it has trivial 
normal bundle, inherits a spin structure sic. Define 

q(C) = [c, sic] 
. 0 spin 
In I ' 

in other words, set q( C) = 0 if C inherits the bounding spin structure and set 
q(C) = 1 if C inherits the Lie-group spin structure. It turns out that this q de
scends to a well-defined map q: H1 (S; Z2) __, Z2 that is a quadratic enhancement 
of the intersection form of 5, and therefore q has an Arf invariant. 

Lemma. The map O~pin ----+ Z 2 : ( 5, s) ~-----+ Arf( q) is an isomorphism. 

Sketch of proof On one hand, if Arf( q) = 0, then there exists a symplectic 
basis of25 H1 ( S; Z2) corresponding to a decomposition26 ( H1 ( S; Z2), q) = 

EB m H 0•0 . With some care, this decomposition can be realized as a connected
sum splitting 5 = # m 1I'2 , with each 1I'2 corresponding to an H 0• 0 -term, and 
thus endowed with a bounding spin structure. On the other hand, if Arf( q) = 
l,thenwehave (H1(S;Z2), q) = EBmH0•0 EBHU,andthelasttermcanbe 
made to correspond to a torus-term with the Lie-group spin structure. D 

24. The Arf invariant was explained in the note on page 501. 

D 

25. A symplectic basis is a basis e1, ... , em, e1, ... , em with the only non-zero intersections ek · ek = 1. 

26. We use the notation from the earlier note on the Arf invariant (page 501), where H 0· 0 denoted the 
Z 2 -module {O,x,y,x+y} with x·y =I and q(x) = 0 and q(y) = 0. 
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Spin structures on the 3-torus. All 3-manifolds have trivial tangent bundle, and 
thus admit spin structures. Furthermore, it is known that 

0~0 = 0 and [)~pin = 0 . 

We will not prove these statements here, but merely focus on the simple case of 
3-tori. 

The 3-torus 1['3 = 5 1 X 51 X 5 1 has H 1 (1r3 ; Z2) = EB 3 z2 and thus must admit 
eight distinct spin structures. These can all be realized, just as for the 2-torus, 
by products of spin structures on its circle-factors. In particular, seven of these 
spin structures will contain at least one (51, .&a)-factor and thus spin-bound some 
product like [)2 X 5 1 X 5 1 . 

The eighth spin structure on 1r3 comes from three Lie-group 51 's and will be called 
the lie-group spin structure of 1r3 and denoted by .&ue. Nonetheless, (1r3 , .&Lie) 

does spin-bound a 4-manifold, namely the complement of a generic fiber in the 
rational elliptic fibration E ( 1): 

Lemma. The spin 3-torus (1r3, .&ue) spin-bounds. 

Proof. Let E ( 1) = CIP2 # 9 (::IP 2 be the rational elliptic surface. Let T be a 
generic torus-fiber near a cusp fiber. Its normal bundle is trivial, and thus 
its normal circle-bundle 5NT/E(I) is isomorphic to T X 5 1, a 3-torus. Cut a 
tubular neighborhood ofT out of E(1) and denote the resulting 4-manifold 
by M = E(1) \[)NT!E(I)· The boundary of M is the 3-torus 5NT/E(I)· 

The fiber T has homology class 3eo + e1 + · · · + e9 (a cubic torus in (:lP2 

blown-up nine times) and therefore is a characteristic surface in E ( 1). As 
T represents the obstruction w2 to the existence of a spin structure on E ( 1), 
this implies that E ( 1) \ T (and thus M) admits a (unique)27 spin structure that 
does not extend across T. We will argue that this spin structure of M induces 
on its boundary 3-torus 5N the Lie-group spin structure. 

Begging the question. Assume that the spin structure on M induced on SN = iJ M is a spin 
structure other than the Lie-group one. This would mean that the 3 -torus SN spin-bounds 
some [)2 x S1 x S1 , which could then be glued to M in order to obtain a closed manifold, 
endowed with a natural spin structure from its nicely-glued pieces. However, that would 
create a closed spin 4-manifold with signature 8, which is forbidden by Rokhlin's theo
rem. Therefore the spin structure on SN can only be the Lie-group one. Neat-if only our 
eventual goal were not to actually prove Rokhlin 's theorem. 

The actual argument will split 5N into a product of three circles with the Lie
group spin structure. The first such circle is easy to locate: 

The normal circle-fibers. Since the outside spin structure does not extend across 
T, it must induce the Lie-group spin structure on each circle-fiber28 of 5N ---+ 

T, as in figure 11.38 on the next page. Thus, one 51-factor of the 3-torus 5N 
has the Lie-group spin structure. We will show that two other circle-factors of 
5N must also inherit the Lie-group spin structure from E(1) \ T. 

27. Unique, since £(1) \Tis simply-connected, and thus Hi = 0. 

28. This is a general fact about characteristic surfaces and was mentioned in the end-notes of chapter 4 
(spin structures, page 179). 
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11.38. Outside spin structure, not extending across T 

Vanishing cycles. Since E ( 1) contains a cusp-fiber near T, it follows that two 
generating circles of H1 (T; .:Z:) are vanishing cycles, i.e., each bounds a disk 
embedded in E(1) \ T with self-intersection -1, as suggested in figure 11.39. 
We will show that the ( -1) -twist around these disks has to be counterbal
anced by a twist in the spin structures of their boundary-circles, which thus 
have to inherit the Lie-group spin structure. To rigorously set this up, we will 
split T M above such a disk into its normal and tangent part; in the normal 
part will live the ( -1) -twist of the disk, while in the tangent part will appear 
the spin-twisting. 

T 

11.39. Vanishing cycle 

Take such a vanishing cycle Co in T, bounding a disk Do embedded in E ( 1) \ 
T with self-intersection -1. We move everything into M = E(1) \ lDNT/E(I). 

Namely, Don M is a smaller disk D, bounding a circle C = Don d Min the 
3-torus SN, as pictured in figure 11.40 on the next page. The disk D still has 
self-intersection -1. This self-intersection of D is detected as follows: take a 
nowhere-zero vector field normal to C in T (seen as a factor in SN = T x S1 ), 

extend it as a section of N 0 ; M, then push D following this normal section and 
count the intersections between D and its pushed copy, as already suggested 
in figure 11.39. 
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11.40. Disk, and smaller disk 

Translation. This is equivalent to the following: Choose some random refer
ence trivialization No;M ~ D x JR2 . On the boundary-circle C, the normal 
plane-bundle No;Mie already has a natural trivialization induced from the 
line-bundle Ne;r, namely as No;Mie ~ Ne;r EB T51le (where S1 denotes the 
circle-fiber of the bundle SN). The latter trivialization, when viewed through 
the reference trivialization of all N01 M' determines a loop f' in S0(2). If [f.'] 
were 0 in n 1S0(2) = Z, then the boundary-trivialization could be extended 
across D. In general, the integer [f.'] counts the self-intersections of D. There
fore, in our case, [f.'] = -1. 

The rest of TMio· On the tangent side of things, the bundle To has a natural 
trivialization as To ~ D x JR2 . On the boundary C, another trivialization 
of Tole appears from the spin structure of C. Namely, a spin structure on 
C means a trivialization of Te EB JR2 , or a trivialization of Te EB lR considered 
only up to 4n-twists. (Indeed, the natural morphism n 1S0(2) -+ n1S0(3) 
merely forgets 4n-twists and projects Z onto Z 2 .) Identifying Te EB lR with 
Te EB Ne;o = Tole, we obtain a trivialization of Tole, determined by the spin 
structure of C only up to 4n-twists. When compared with the natural trivi
alization of the whole To, the spin-induced trivialization of To I e determines 
a loop f" in S0(2). The parity of [f."] in n1 S0(2) = Z detects whether the 
spin structure of C matches the trivialization of T 0 . In other words, [ £"] = 0 
(mod 2) if C has the bounding spin structure, while [f."] = 1 (mod 2) if C has 
the Lie-group spin structure. 

Assembly. Think now of D as part of the 2-skeleton of M and of C as part of 
its 1-skeleton. The spin structure of M offers a trivialization of T M I e that can 
be extended across D. This means that, after picking a reference trivialization 
of TMio ~ D x lR4 , the trivialization of TMie must determine a loop f. in 
S0(4) that is null-homotopic. However, TMie = Te EB Ne;o EB Ne;r EB T51, 
while TMio = To EB No;M· As we have seen, on one hand, the matching of 
Ne;T EB T51 with No;M is measured by the loop f' in S0(2), whose class is 
[f.'] = -1, while on the other hand, the matching of Te EB Ne;o (trivialized 
by the spin structure on C) with To is measured by the loop f" in S0(2). The 
overall matching of TMie with TMio (i.e., extendability) is measured by the 
loop f.= f' EBf" in S0(2) EBS0(2) c S0(4). Since [f.]= 0 and [f.']= -1, 
it follows that [f."] must be odd. However, this is equivalent with the spin 
structure of C being non-bounding. 
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Therefore, if Co is a circle of T that bounds a disk Do with self-intersection 
-1, then the circle C = Do n SN must inherit from E ( 1) \ T the Lie-group 
spin structure. Since T contains two such independent vanishing cycles, this 
implies (together with the Lie-group spin structure on the normal circle-fibers 
of SN) that the 3-torus SN inherits the Lie-group spin structure. o 

Inducing spin structures on characteristic surfaces. Let M be some 4-manifold 
and let E be a characteristic surface in M. Assume M \ E is endowed with a spin 
structure that does not extend across E. The normal-circle bundle SN:r;;M inherits 
a spin structure from M \E. We will show that this allows us to endow E itself 
with a canonical spin structure, depending only on the chosen spin structure of 
M \ E. In other words, we will describe a well-defined map 

1J: {non-extendable spin structures on M \ E} --> {spin structures onE} . 

The fundamental fact is that, since the spin structure on M \ E does not extend 
across E, each circle-fiber of the circle-normal bundle SN:r;; M must inherit the 
Lie-group spin structure. 

11.41. Spin structure on M \ E, not extending across E 

Assume first that the normal bundle of E is trivial. Then SN:r;;M = Ex 51 . As a 
3-submanifold of M \ E (with trivial normal bundle), SN:r;; M inherits a spin struc
ture .s M\L., that is to say, a trivialization of its tangent bundle. Since each circle-fiber 
has the Lie-group spin structure, it follows that the spin-induced trivialization of 
TsN can be arranged to fit the splitting T:r; x T51 and thus offer a trivialization of 
T:r;, as sketched in figure 11.42. In other words, there is a spin structure on E fitting 
in the formula (E X 51, .SM\L.) = E X (51, .Sue). 

11.42. If SNr,;M were trivial 
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In general, when .E's normal bundle is not trivial, such an argument does not 
work. Nonetheless, one can still think of SNr.; M as a twisted product .E x S1 . 

While this bundle does not admit any global sections, a reasoning as above could 
still be applied locally. Moreover, it turns out that we do not need to fit all of .E 
inside SNr.;M to endow it with a spin structure, but only enough of it to cover all 
of H1 (.E; Z2). 

Specifically, choose a family of circles C1, •.. , Cb C1, ... , Ck embedded in .E, with 
Ck · Ck = 1 the only non-zero intersections, so that the circles generate H1 (.E; Z2). 
Take a thin neighborhood U C .E of their union. Notice that, if we endow U with 
a spin structure, then it automatically extends as a spin structure across the whole 
.E. Furthermore, this extension is unique. 

Since Nr.;M is a plane-bundle over a surface, a generic section in Nr.;M has only 
isolated zeros. Thus, we can always choose a section that is non-zero along U and 
think of it as a section cr in SNr.;Miu· The 3-manifold SNr.;M has a spin structure, 
inherited from M \.E. Its submanifold cr[U] has a normal line-bundle, with fibers 
along the circle fibers of SN, and thus trivialized. Therefore cr[U] inherits a spin 
structure from SN. This can be pulled back to a spin structure on U, which then 
extends to a spin structure of .E. 

This spin structure on .E does not depend on the choice of section cr. Indeed, along 
each circle ck (or ck ), two choices of sections cr' and cr" can only differ by twists 
around the normal circle-fiber of SN, as in figure 11.43. Since these circle-fibers 
have the Lie-group spin structure, the induced spin structures on cr' [U] and cr'' [U] 
are in fact equivalent. 

11.43. Two sections in SNL/M 

As an example, consider again the elliptic surface E ( 1) and its generic torus fiber 
T. Since E ( 1) \ T is simply-connected, its spin structure is unique. Moreover, as 
we have seen earlier (page 524), the normal circle-bundle SNr;E(ll is a 3-torus 
that inherits the Lie-group spin structure. Since SNT/E(l) = T x S , this implies 
that the induced spin structure on T must be the Lie-group one as well. In brief: 
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Finally, the proof We have all the ingredients for proving Rokhlin's theorem. 

Consider the characteristic cobordism group O~har, generated by pairs ( M, I:) 
with M a 4-manifold, I; a characteristic surface, and M \I; endowed with a spin 
structure that does not extend across I:. Two such pairs (M', I:') and (M", I:") are 
considered cobordant if there is a 5-manifold W5 with a W = M' U M", with a 
3-submanifold Y3 dual to w2 (W) and such that a Y = I:,' U I:", and together with 
a spin structure on W \ Y that restricts to the chosen spin structures of M' \ I:' and 
M"\I:". 

As we have seen above, the spin structures on M' \I:' and M" \I:" induce unique 
spin structures on I:' and I:". However, arguing in a similar manner as above, 
one can show that the spin structure on W \ Y induces a spin structure on Y. 
Furthermore, this Y now establishes a spin-cobordism between I:' and I:". In 
other words, there is a well-defined morphism 

1J . ochar ----t [).Spin 
. 4 2 . 

On one hand, we have seen earlier that O~pin = Z2. On the other hand, we have 
proved in the end-notes of the preceding chapter (page 427) that we have 

O~har ~ ZEBZ via (M,I:) ~-------+ (signM, k(I:·I:- signM)). 

We will argue that the morphism 1J: O~har ---+ O~pin is just the modulo 2 reduction 
of the second component of the above isomorphism, i.e., 

1J(M, I:) = k(I: ·I; - signM) (mod 2) . 

All we need to do is check on the generators of o~har. These are ( CIP2 , CJP1) and 
(CIP2 #CJP2, #3 CIP1 #CIP 1), or, more useful for us, (CIP2, CIP1) and (E(l ), T). 
For ( CIP2 , CIP1), since CIP1 is a sphere, the only spin structure it can inherit is the 
trivial one, and thus 1J(CIP2, CIP1) = 0, fitting the claimed formula. For (E(l), T), 
as we have seen, 1J(E(1), T) = [T2,sue] and thus 1J(E(1), T) = 1, also fitting the 
formula. Therefore, the above formula, being true on generators, extends to the 
whole cobordism group o~har. 

Immediate consequences are both Rokhlin's theorem and the Kervaire-Milnor gen
eralization. Indeed, when w2 ( M) = 0, we can take I; = 0 and sign M = 0 
(mod 16) follows. If w2(M) can be represented by a sphere I:, then 1J(M,I:) = 0 
and I;· I;- signM = 0 (mod 16) follows. 

Furthermore, by COqlbining the above formula for 1J: o~har ---+ D~pin with the iso
morphism Arf: O~pm ~ Z 2 (page 523), a slightly different version of Freedman
Kirby's theorem appears. It is instructive to compare both the techniques of the 
proofs and the actual conclusions of this note and of the Freedman-Kirby theo
rem/proof from the previous notes. 
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The Fintushel-Stern 
Surgery 

Chapter 12 

w.E present a remarkable procedure for modifying the smooth structure 
of a 4-manifold without altering the underlying topological 4-mani

fold. This easily produces many new infinite families of homeomorphic 
but non-diffeomorphic 4-manifolds. 

Roughly, the procedure removes a neighborhood 1'2 x D 2 of a nice torus in 
M and replaces it with a knotted version. The knotted version is obtained 
from the complement of a knot K in S3 . While M and the resulting MK are 
homeomorphic, they are rarely diffeomorphic. Indeed, the Seiberg-Witten 
invariants of MK and M differ exactly by the Alexander polynomial of K. 

The chapter starts by quoting results about the Seiberg-Witten invariants of 
manifolds obtained by gluing along 3-tori. Some of these statements were 
used by R. Fintushel and R. Stern in the proof of their result; others were 
not, but they nonetheless are of independent interest. In section 12.2 (page 
539) we review the Alexander polynomial of a knot, while in section 12.3 
(page 541) we describe the surgery procedure outlined above and the Sei
berg-Witten invariants of the result. Section 12.4 (page 545) contains some 
quick applications, such as the construction of infinitely-many exotic K3's 
that do not admit any symplectic structures. 

-531 
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12.1. Gluing results in Seiberg-Witten theory 
In this section we review gluing results for the Seiberg-Witten invariants 
of manifolds built by attachment along boundary 3-tori. These boundaries 
usually appear after cutting out neighborhoods of embedded 2-tori. 

Preparation 

We present the type of 2-tori most relevant for the surgeries of this chapter. 
Then we rewrite the Seiberg-Witten invariants as a Laurent polynomial, 
which will help us to write the gluing formulae succinctly and comfortably. 

Nice tori. Let M be a simply-connected 4-manifold. Let T be a torus em
bedded in M, homologically nontrivial, and with zero self-intersection: 

T·T=O. 

Notice that, owing to the adjunction inequality, T must be orthogonal to all 
basic classes1 of M. 

Furthermore, we assume that H1 (T; Z) is generated by two embedded cir
cles, intersecting each other exactly once, so that each bounds a disk of 
self-intersection -1 in M (they are vanishing cycles, as in figure 12.1). 

vanish~ing cycle 

T>J ----+> 1e_~'----+) -fJZz=O 
1 e ____, 0 

12.1. A vanishing cycle 

This concept of "disk of self-intersection -1" needs a bit of care: Consider a 
disk D in M, with aD embedded as a circle in T and Int D included in the 
complement of T. Pick a random orientation of D. This induces an orienta
tion of aD inside the oriented torus T, and thus aD has a preferred nowhere
vanishing normal vector field v inside T. Extend v across the whole disk D as 
a normal vector field and use it to push D off itself. Then count with signs the 
intersection points of D with this pushed-off copy to get its self-intersection 
number. See figure 12.2 on the facing page. The result does not depend on the 
choices made along the way. 

In what follows, an embedded torus T will be called near-cusp embedded 
(or c-embedded) if a couple of generators of H1 (T; Z) are vanishing cycles, 
i.e., if they bound such disks of self-intersection -1. Notice that every near
cusp embedded torus automatically has zero self-intersection. 

1. We have x(T) + T · T ::; -IK · Tl and hence K · T = 0. Notice that this does not exclude T itself 
from being a basic class. 
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T 

12.2. Self-intersection of a disk 

The name of "near-cusp embedded" is justified as follows: A torus T is 
near-cusp embedded if and only if a neighborhood of T in M looks like a 
neighborhood U of a generic torus fiber inside some elliptic fibration, so 
that U contains a cusp fiber and so that T corresponds to a regular fiber. 

Indeed, take a thickened 2-torus '1'2 x D 2 , choose two circles C', C" in '1'2 that 
generate H1 ('1'2 ; Z), then attach to each of them a thickened disk (2-handle) 
D 2 X D 2 , by identifying the attaching circle S1 X 0 with C' X 1 or C" X 1 respec
tively, and gluing the thickening 0 x D 2 with a twist of -1 along the circle. In 
short, attach to each of C' x 1 and C" x 1 a 2-handle with framing -1. The 
resulting 4-manifold with boundary is diffeomorphic to a neighborhood of 
a cusp fiber inside an elliptic fibration, and '1'2 x o corresponds to a regular 
fiber. 

In what follows, we will glue 4-manifolds along near-cusp embedded tori, 
and thus generalize the fiber-sum and logarithmic transformations that 
were defined earlier for elliptic surfaces. 2 

The Seiberg-Witten series. To more concisely express the results of this 
chapter, we need to introduce a few notations: First, for any class a: E 

H 2 (M; Z), we introduce its formal exponential ea. We then have 

ea · ef3 = ea+f3 . 

This formal rule is in fact the whole point of introducing these exponentials. 
We now formally rewrite the Seiberg-Witten invariant as a combination of 
such exponentials: 

K basic 

2. See back, section 8.2 (page 306) and section 8.3 (page 310). 
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For example, for the K3 surface, since 0 is its only basic class and the value 
of the invariant is 1, we write S'U-h = 1 · e0 = 1. 

Formalities. An algebraically more satisfying method for dealing with the 
above convention is the following: Consider H 2 (M;Z) as an Abelian group 
(with addition), but write its group operation multiplicatively. In particu
lar, the trivial homology class will be denoted by 1, not 0. Then build the 
group-ring Z [ H 2 ( M; Z) J . Its elements are of the form L mk fXkJ with addition 
defined on the coefficients mb and multiplication set as (mitxi) · (mjtxj) = 
mimj(txi + txj). Then one writes simply SWM = [SWM(tx) tx, as an element 
of Z [ H2 ( M; Z) J . While on one hand this makes disappear cumbersome ex
ponentials and the troubling word "formal series", it leads to conflicts with 
the usual notations.3 In what follows, we will stick with the exponentials.4 

Generalized fiber sums 

Assume that we have two smooth 4-manifolds M' and M", each contain
ing a homologically-nontrivial near-cusp embedded torus, T' and T". We 
can then choose small tubular neighborhoods around these tori and remove 
them from M' and M"; for convenience we denote the results by M' \ T' 
and M" \ T" and call them directly "the complements of T' and T" in M' 
and M"". 

Since both T' and T" have zero self-intersection, their normal bundles are 
trivial, and thus the boundaries of their complements M' \ T' and M" \ T" 
are two copies of the 3-torus 1'3 = 1'2 x 51 . Any identification of the torus 
T' with T" induces an (orientation-reversing) identification of a(M' \ T') 
with5 a(M" \ T"). Then M' \ T' and M" \ T" can be glued together in the 
usual fashion, as in figure 12.3 on the next page. Denote the result by 

M' #T'=T" M" . 

This is a generalization of the fiber sum used to build the elliptic surfaces 
E ( n) in section 8.2 (page 306). 

Theorem (J. Morgan and T. Mrowka and Z. Szab6 ). Let M' and M" be 
two 4-manifolds with bi ~ 2 and assume that each contains a homologically
nontrivial near-cusp embedded torus, T' and T". Then: 

nAI nAI nAI ( T' -T') ( T11 -T") 
5-rv(M' #T'=T" M") = 5-rvM' · 5-rvM" · e - e · e - e . 0 

3. For example, IXi • IXj is now supposed to mean IXi + IXj and not QM (1Xi, IXj) as before. 

4. Of course, there are middle ways as well, denoting by ta the element IX E H2 (M;Z) when under
stood as an element of the multiplicatively-written Abelian group, with ta · t13 = ta+f3. Pick your own 
favorites. 

5. Simply multiply the chosen identification T' ~ T" with a reflection (complex conjugation) on S1 to 
get the required orientation-reversing diffeomorphism T' x S1 ~ T" x S1 . 
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glue 

12.3. Building M' #T'=Tu M" 

Example. Since E(4) = E(2) ll_riber E(2), we have that S'U'£(4) = (eF- e-F)2 = 
e2F - 2e0 + e-2F, and thus E ( 4) has basic classes ±2F and 0, with values 1 
and -2 respectively. 

Since the rational elliptic surface E ( 1) = CP2 # 9 CP2 has bi = 1, general
ized fiber sums with it need to be treated as a separate case: 

Theorem (f. Morgan and T. Mrowka and Z. Szab6 ). Let M be a 4-manifold 
with bi ( M) 2:: 2 and assume that M contains a homologically-nontrivial near
cusp embedded torus T. By gluing M \ T to the complement of some regular fiber 
Fin E(1), we have: 

S'Wc_Mur=FE(l)) = SWM . (eT- e-T) . D 

Example. Thus, knowing that the K3 surface has S'Uh = 1 and that all 
E ( n) = K3 ll_riber ( n - 2) E ( 1), one immediately obtains the formula 

Scu1 ( F -F)n-2 
·rvE(n) = e - e 

for all n 2:: 2. This is a concise way of rewriting the results stated in section 
10.6 (page 413). 

Finally, assume that a single 4-manifold M contains two nontrivial disjoint 
near-cusp embedded tori T' and T". Then their complement M \ T' U T" 
can be closed-up by identifying the 3-torus surrounding T' with the 3-
torus surrounding T". Denote the resulting self-sum by 

#T'=T" M. 

The corresponding gluing formula is: 

Theorem (f. Morgan and T. Mrowka and Z. Szab6 ). Let M be a 4-mani
Jold with bi ( M) 2:: 2 and assume that it contains two disjoint homologically
nontrivial near-cusp embedded tori T' and T". Then: 

cu1 ( T1 -T')2 
S'Wc_ur'=r"M) = SrvM IT'=T". e - e . D 
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Generalized logarithmic transformations 

In what follows, we will cut a neighborhood of a torus out of a 4-manifold, 
then glue it back after twisting by a diffeomorphism of the boundaries. 
(One could think of this procedure as a 4--dimensional analogue of Dehn 
surgery on 3-manifolds.) 

Let M be a closed 4-manifold and let T be any torus embedded in M, with 
zero self-intersection. Consider a tubular neighborhood of T in M (which 
is a copy of T x JD2 ) and cut it out of M. Denote the resulting 4-manifold 
by M \ T; its boundary is a copy of 1['3 = S1 X S1 X st. 
Any orientation-reversing self-diffeomorphism of 1f3 can now be used to 
glue T x JD2 back into M \ T. The 3-torus is an especially nice space, and 
every self-diffeomorphism of 1I'3 is isotopic to a linear self-diffeomorphism. 
That is to say, the self-diffeomorphisms of 1I'3 are classified, up to isotopy, 
by Autz(H1(1f3;Z)). If we choose a basis in H1(1I'3;Z), then all orienta
tion-reversing self-diffeomorphisms of 1I'3 are represented by integral 3 x 3 
matrices with determinant -1. 

Let {Jl, a', a"} be a basis in H1 (1I'3 ; Z), with 1I'3 = T x 51 viewed as the 
boundary of T x JD2 , and so that Jl is the class of point x st, while a' and 
a" come from some fixed splitting T = S1 x st. 
Let cp: 1I'3 ~ 1['3 be any orientation-reversing self-diffeomorphism. Then 
in homology we have 

cp* (Jl) = PJI + ma' + na" 

for some integers p, m, n. Just as Jf, the element cp*(Jl) must be indivisible 
in H1 (1I'3; Z), i.e., p, m, n have no common divisor. Furthermore, the val
ues of cp*(a') and cp*(a") have no influence on the result of attaching D 2 x 
T to M \ T. Indeed, if two orientation-reversing self-diffeomorphisms cp 
and l/J of T x S1 have cp* (Jl) = l/J* (Jl), then they can be linked through 
a self-diffeomorphism of the whole T x D 2 . Conversely, for any three in
tegers p, m, n with no common divisors there exist orientation-reversing 
self-diffeomorphisms cp: 1f3 ~ 1I'3 with cp* (Jl) = PJI + ma' + na". 

In conclusion, given any three integers p, m, n with no common divisor, 
there is a unique smooth 4-manifold 

M(p,m,n) = M\ T uq:> T X JD2 I 

obtained by attaching T x JD2 to M \ T by using some orientation-reversing 
self-diffeomorphism cp of d(T x JD2 ) with cp*(Jl) = PJI + ma' + na". Of 
course, we have M(l,o,o) = M. 

If E is an elliptic surface and T is a regular torus fiber in E, then the above 
procedure turns out to smoothly coincide with the logarithmic transforma
tion of multiplicity p. Indeed, we have: 
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Theorem ( R. Gompf). Let E be any elliptic surface containing a cusp fiber and 
let T be a regular fiber of E. Then, for every p, m, n with no common divisor, we 
have 

Ep ~ E(p,m,n) 1 

where Ep denotes the logarithmic transformation of multiplicity p. 0 

In light of this, we will call M(p,m,n) the generalized logarithmic transfor
mation of M along T, no matter whether M is elliptic or not, or whether T 
is anything more than merely an embedded torus with zero self-intersection 
(not necessarily near-cusp embedded). 

Analogous to the case of a multiple fiber appearing from a logarithmic 
transformation, the homology class of the initial T from M survives as 
a class in M(p, m, n), and there this class is p times the homology class repre
sented by the copy ofT that is plugged into M(p,m,n) packaged in T x 102 • 

Thus, when talking homology, we will be careful and denote by T only the 
class of the initial torus T from M, while the class of the new torus plugged 
in M(p, m, n) will be denoted by Tp; hence we write 

T = p · Tp 

For the Seiberg-Witten invariants, we have: 

Theorem ( R. Fintushel and R. Stem). Let M be 4-manifold and T a near
cusp embedded torus, homologically nontrivial, non-torsion, and with zero self
intersection. Then we have: 

SWM = 0, 
(O,m,n) 

SWM · (eTr- e-Tr) = SWM · (eT- e-T) . 
(p,m,n) 

Writing everything in terms of Tp, 

SWM = SWM. (e(p-l)Tp + e(p-2)Tp + ... + e-(p-l)Tr). o 
(p,m,n) 

Example. In the particular case of the elliptic surfaces E(n) with n 2 2, it 
follows that performing one logarithmic transformation yields 

S'WE(n)p = (eF- e-Ft-2. (e(p-l)Fp + ... + e-(p-l)Fr)' 

where Fp is the class of the multiple fiber being created and F = p Fp is the 
class of the regular fiber. 

Performing two logarithmic transformations of coprime multiplicities gets 

S'WE(n)p,q = (eF- e-Fr-2. (e(p-l)Fp + .. ·). (e(q-I)Fq + .. ·) / 
where Fp and Fq are the classes of the multiple fibers and F = p Fp = q Fq is 
the class of the regular fiber of E ( n) . (Remember that there also exists a class 
Fpq so that F = pqFpq/ and the above can be expressed fully in terms of Fpq.) 
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These are merely a rewriting of the results stated in section 10.6 (page 413), 
which led to the infinite families of homeomorphic but non-diffeomorphic 
elliptic surfaces from section 8.4 (page 314). Of course, these results were 
obtained easier and earlier than the general gluing results above by using 
complex geometry and the special shape of the Seiberg-Witten invariants on 
Kahler surfaces. 

When T is not near-cusp embedded, the invariants of M(p,m,n) will no 
longer depend only on6 p, but will involve the values of m and n as well. 
The corresponding gluing result is: 

Theorem (]. Morgan and T. Mrowka and Z. Szab6 ). Assume that M has 
bi ( M) 2: 3 and let T be any torus embedded in M with zero self-intersection. 
On one hand, if K is a characteristic element of M(p, m, n) that restricts non trivially 
to the plugged-in T x JD2 , i.e., if K · Tp =!= 0, then we have 

S'WM (K) = 0. 
(p,m,n) 

On the other hand, let c be any characteristic element of M \ T and denote by 
{ c} (p, m, n) the set of all characteristic elements K of M(p. m, n) that restrict to c on 
M \ T, i.e., { c }(p,m,n) = { K characteristic in M(p,m,n), KIM\T = c}. We have 

"SW. (K) -LJ M(p,m,n) -
K E{c }(p,m,n) 

p · [: S'WM ( K) + m · [: S'WM ( K) + n · [: S'WM ( K) . 
(1,0,0) (0, 1,0) (0,0, !) 

KE{c}(i,O,O) KE{c}(O,!,O) KE{c}(o,O,l) 

Further, if the class of pfl +miX'+ niX" from H1 (a(T x JD2 ); Z) is indivisible in 
H1 ( M(p. m, n); Z), then the sum on the left reduces to at most one term. o 

For simplicity, in the statement above we assumed that M has no 2-torsion. 

A frequently-used particular case of the theorem is when T is null-homolo
gous in M = M(l, o, O). In this case, all characteristic elements K of M have 
K • T = 0, and thus can be identified with unique characteristic elements 
in each of the M(p,m,n) 's. Further, the classes of the copies of T plugged 
back into M(o, 1,o) and M(o,o, 1) are nontrivial and are the only classes not 
inherited from M \ T. Therefore, for every characteristic element K of M, 
all the characteristic elements of M(o, 1,o) or M(o,o. 1) that restrict on M \ T 
to K can be written as K + 2 t To. 

6. Keep in mind that, even though the Seiberg-Witten invariants depend only on p, nobody knows 
whether M(p, m', n') and M(p, m", n") are diffeomorphic or not; we merely know that Seiberg-Witten does 
not distinguish them. 
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Corollary. Assume further that T is null-homologous. Then we have 

SWM (K) = p. SWM(K) 
(p,m,n) 

+ m · L SWM ( K + 2t To) 
(0, 1,0) 

+ n · L SWM ( K + 2 t To) , 
(0,0, I) 

tEZ tEZ 

where To denotes the class of the torus T plugged along with T x JD2 into M(o. 1, o) 
and M(o,o. 1) respectively. o 
Of course, since there are only finitely-many basic classes, each of the sums 
above necessarily has only finitely-many non-zero terms. 

12.2. Review: the Alexander polynomial of a knot 
Remember now that the Alexander polynomial 

f..K E Z[t,t-1] 

of an oriented knot K is the Laurent polynomial that can be defined through 
the following skein relation: 

f..K+ (t) = f..K_ (t) + (e/2- t- 1/2) · f..Ko 

for any three knots K+, K-, K 0 whose diagrams differ only in a neighbor
hood that looks like figure 12.4. We normalize the values of f.. by requiring 
that on the unknot 0 it yields 

t-.0 (t) = 1 . 

12.4. Crossings for the skein relation 

Since changing crossings eventually allows one to untie any knot, the above 
conditions completely determine the Alexander polynomial of a knot. 7 Of 
particular help in computations is the property that the Alexander polyno
mial is zero on any split link (i.e., any link whose components can be drawn 
apart). 

Keep in mind that there are plenty of knot invariants which are quite finer 
than the Alexander polynomial. For example, the Jones polynomial distin
guishes between a knot and its mirror image, while the Alexander polyno
mial does not. 

7. The hard part is to prove that !J.K is well-defined. 
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!>.K = -t-i + 1- t 

12.5. Two knots, two polynomials 

Cyclic-cover definition. An equivalent definition of the Alexander polyno
mial of K uses the infinite-cyclic cover of its complement CK = 53 \ K. Indeed, 
we have H1 ( CK; Z) = Z and thus 1t1 CK I [n1 CK, 1t1 CK] = Z, leading to a 
cover map CK ----t CK whose group of deck transformations is infinite-cyclic. 
The cover space C K can be built starting with some choice of Seifert surface S 
for K in S3, as suggested in figure 12.6. 

12.6. Building the infinite-cyclic cover of a knot complement 

Denote by t the generator of the deck transformations of CK ---:; CK. Encoding 
the action of the deck transformations on the homology of CK, we consider 
H1(CK; Z) as a module over Z[t, t-1]. Then H1(CK; Z) is the quotient of 
Z[t, t-1] by an ideal, and that ideal must in fact be a principal ideal, i.e., gen
erated by a single element ~dt): 

HI(CK;Z) = Z[t, t-1] I (~K)' 
where (~K) = Z[t, t-1] · ~dt) is the ideal generated by the polynomial ~K. 
Notice that there are several possible choices of polynomials for such a gener
ating ~K E Z[t, t-1], differing by multiplication by some en. We choose ~K 
to be the symmetric representative, i.e., the one for which the coefficients of 
each tk and t-k are the same, and we call it the Alexander polynomial of K. 
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While talking about the knot complement, it is worth mentioning the fol
lowing remarkable result: 

Theorem (C. Gordon and f. Luecke). The knot complement determines the 
knot completely. In other words, if two knots K' and K" in 53 have diffeomorphic 
complements 53 \ K' ~ 53 \ K", then the two knots are equivalent. 8 o 

12.3. The knot surgery 

Finally, we are ready to describe the Fintushel-Stem surgery: 

Carve the torus out. Let M be a simply-connected smooth 4-manifold con
taining a near-cusp embedded torus T, that is to say, an embedded torus 
T that is homologically nontrivial, of zero self-intersection, and with a ba
sis of H 1 (T; Z) represented by two circles each bounding a disk with self
intersection -1. Assume further that the complement M \ T is simply-con
nected. 

Take a small tubular neighborhood ofT and cut it out. This means remov
ing a thickened torus T x JD2 from M. For simplicity, denote by 

M\T 

the resulting 4-manifold; its boundary is a 3-torus. 

In what follows, we will use the complement of a knot in 53 to build a 
homological copy of T x JD2 • The purpose is that, when we cut T x JD2 out of 
M and replace it with this homological copy, the homology of the resulting 
4-manifold be the same as that of M, with the same intersection form, and 
hence that the two 4-manifolds be homeomorphic. However, they will not 
be diffeomorphic. 

Build the cork. Choose your favorite knot K in 53 , take a small tubular 
neighborhood of it and remove it to get the knot complement, which for con
venience we denote by 

This is a 3-manifold having as boundary a 2-torus, see figure 12.7 on the 
following page. 

It is not hard to see that homologically the knot complement is indistinguish
able from a solid torus 51 x D 2 , as in figure 12.8 on the next page. 

8. Two knots are called equivalent if there is an (orientation-preserving) diffeomorphism 53 --->53 that 
takes K' to K". 
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[)) 
K ~\K 

12.7. Knot, and knot complement 

Indeed, the knot K bounds a Seifert surface in S3, which draws a circle Cm on 
the torus boundary a(S3 \ K) of S3 \ K, as in figure 12.9 on the facing page. 
The circle Cm is a longitude of the tubular neighborhood of K. Nonetheless, 
for the homology of the knot complement S3 \ K, it plays the same role that 
the meridian 1 X S1 plays for the solid torus S1 X D 2 . Since we are focused on 
the complement, we will call Cm a meridian of S3 \ K. (In short, a longitude of 
K is a meridian of S3 \ K.) The homology class of a meridian Cm of S3 \ K is 
uniquely determined, up to sign. Indeed, the class of Cm generates the kernel 
of the natural map H1 (a(S3 \ K); Z) ----+ H1 (S3 \ K; Z) induced by inclusion. 

Similarly, the meridian Ce of the neighborhood of K represents the generator 
of H1 (S3 \ K; Z) = .Z, and homologically plays the same role for S3 \ K that 
the longitude S1 X 1 plays for the solid torus S1 X D 2 • Thus, we call Ce the 
longitude of the knot complement. (In short, a meridian of K is a longitude of 
S3 \ K, and vice-versa.) 

! ! 

12.8. Homologically, a knot complement is a solid torus 
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longitude of K = meri? c. of S' \ K 

12.9. A longitude bounds in the knot complement 

Since the knot complement 53 \ K is homologically identical to the solid 
torus 51 x D 2 , it follows that the 4-manifold 

(53 \ K) X 51 

will be homologically indistinguishable from a thickened torus 51 x 51 x 
D 2 . In other words, (53 \ K) x 51 is a homological copy ofT x JD2 (where T 
is the nice torus of M that was expelled earlier). Further, both (53 \ K) x 51 

and T x JD2 have boundary a 3-torus. We identify these boundaries in a 
manner that respects the homological identification of (53 \ K) x 51 with 
T X JD2 • 

Thatis to say, we choose an identification of a((53 \ K) X 51) with a(T X D 2) 

such that the meridian Cm x 1 of (53 \ K) x 51 be sent to the meridian 1 x s1 

ofT x D 2 • (The longitude Ce x 1 of (53 \ K) x 51 can be sent to any generator 
of H1 (1I'2 ; Z) in 1I'2 x 51; there is no canonical choice here.) 

Plug it in. Using such an identification, we glue (53 \ K) x 51 to M \ T, 
as in figure 12.10 on the next page. Since homologically this is the same 
as gluing T x JD2 back into M \ T and rebuilding M, it follows that the 
resulting 4-manifold 

MK = M\ T u(lxSI)=(Cmxl) (53 \K) X 51 

has the same homology as M, and in particular the same intersection form. 

Since we assumed that M \ T was simply-connected, the resulting MK will 
be simply-connected as well, and therefore it follows from Freedman's clas
sification that the two 4-manifolds are in fact homeomorphic: 

MK ~ M. 

Since the construction of MK depends upon several other choices besides 
picking the knot K, in the sequel MK will denote any manifold obtained 
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glue 

M\T 

12.10. Knot surgery 

after such a surgery. (It is possible that all such are diffeomorphic, but 
nothing is known about that.) 

The result. The gluing statements presented earlier allow one to compare 
the Seiberg-Witten invariants of MK and M and show that in general MK 
and M are not diffeomorphic. Indeed, the Seiberg-Witten invariants of M 
and MK differ exactly by the Alexander polynomial !:!.K of the knot K: 

Fintushel-Stem Theorem. Let M bea 4-manifoldwith bi(M) ~ 2. Assume 
that it contains a homologically-nontrivial near-cusp embedded torus T. Perform 
surgery along T using some knot K and denote by MK the resulting 4-manifold. 
Then: 

SWM = SWM . /).K I 
K 

where the Alexander polynomial !:!.dt) is here evaluated on t = e2r. 

One can rewrite the above result explicitly as: 

L SWM/K) · eK = ( L SWM(K) · eK) · !:!.K (e2T) . 
K basic in MK K basic in M 

Idea of the proof. By using the earlier Seiberg-Witten gluing formulae 
and various ingenious constructions, one obtains a skein-like relation 
for the Seiberg-Witten invariants of knot-surgered manifolds. Since 
this skein relation reveals itself to be the same with the one defining the 
Alexander polynomial, the result follows. Indeed, when t = e2T, the 
factor (eT- e-T) from the gluing results corresponds to (t'/2- t-'12 ) 

for the Alexander polynomial. o 

Looking closer at the proof of this result, one can notice that in fact the 
knot surgery is interpreted as a series of generalized logarithmic transfor
mations on null-homologous tori. Indeed, the unknotting of K is done by 
a series of crossing changes, each achieved through a simple surgery on a 
surrounding torus. 



12.4. Applications 545 

Finally, it should come as no surprise that MK is fragile: just one stabiliza
tion is enough to undo it: MK # 52 x 52 ~ M # 52 x 52 . 

12.4. Applications 

The technique above can be applied to any smooth 4-manifold that con
tains a suitable torus. As an example, consider the K3 surface: 

Exotic K3's. The K3 surface has S'WK3 = 1. Then, picking for T above a 
generic torus fiber F of K3 and for K some random knot, we get 

S'WK3 =L">K(e2F). 
K 

Since it is known that every symmetric Laurent polynomial ant-n + · · · + 
an tn with coefficient sum an + · · · + ao + · · · + an = ± 1 can be realized as 
the Alexander polynomial of some knot, we conclude that: 

Corollary. There are infinitely-many 4-manifolds homeomorphic but not diffeo-
morphic to K3. o 

Of course, something like this was already known from performing loga
rithmic transformations on E(2), which yielded infinitely-many complex 
surfaces homeomorphic but not diffeomorphic9 to K3. What is essentially 
new here is that most of these K3K's are not even symplectic: 

Non-symplectic manifolds. No matter what M is, if it contains a suitable 
torus, then the result MK of a random knot surgery will most likely not 
admit any symplectic structures: 

Corollary. If L">K is not monic, then MK cannot admit any symplectic structures. 

Proof. This happens because MK hasnoclassin H2 (M;Z) thatmight 
play the role of the anti-canonical class K~. If MK were symplectic, 
then S'WM ( K~) = ± 1. However, since L">K is not monic, there is no 
class K folwhich we could have S'WM (K) = ±1. D 

K 

Thus, beyond the dose-to-complex realm lie truly vast fields of unexplored 
non-symplectic 4-manifolds, of which we know close to nothing. 

Knots and mazes. Remember that the manifold MK depends on certain 
choices made during the surgery. A first mystery is whether the various 
possible versions of MK are diffeomorphic or not; the Seiberg-Witten in
variants are blind here. 

9. See section 8.4 (page 314). 
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In fact, using certain distinct knots with the same Alexander polynomial 
and a more involved construction, Fintushel and Stern built (non-simply
connected) symplectic 4-manifolds that have the same Seiberg-Witten in
variants, but are non-diffeomorphic (they were distinguished by the Sei
berg-Witten invariants of their cyclic covers). 

Moreover, in light of the Fintushel-Stern surgery theorem, it is clear that 
4-dimensional topology sees some knot theory. The question is whether 
it sees only the Alexander polynomial, or if it also detects differences be
tween knots to which the Alexander polynomial is oblivious. While, as we 
mentioned, the complement of a knot determines completely the knot, it is 
not clear how much of this information survives the surgery procedure. 

For example, a proposed conjecture is: 

Fintushel-Stem Conjecture (open). Two 4-manifolds 

K3K' and K3K" 

are diffeomorphic if and only if K' and K" are equivalent knots. 

As stated, the conjecture is not true, since we have 

Lemma ( S. Akbulut ). If - K denotes the mirror-image of the knot K, then we 
have a diffeomorphism 

MK ~ M_K. D 

Of course, it is still possible that this is the only reduction, and that two non
equivalent knots yield diffeomorphic MK 's if and only if they are mirror
images of each other. If true, this would mean that 4-manifold topology 
includes essentially the whole complexity of knot theory. 
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Note: Rational blow-downs 

In this note we present an interesting construction, due toR. Fintushel and R. Stern, 
called rational blow-down. A usual blow-down replaces the neighborhood of a 
( -1) -sphere by a 4-ball. A rational blow-down replaces a neighborhood of a 
certain configuration of spheres by a rational-homology 4-ball. 

The relevance of this construction is that, on one hand, any logarithmic transforma
tion can be described as a sequence of blow-ups followed by a rational blow-down. 
On the other hand, the change of the Seiberg-Witten invariants under a rational 
blow-down is particularly amenable. Finally, rational blow-downs can be used to 
reduce the homology of a 4-manifold, and recently rational blow-downs and their 
generalizations have been used to build exotic 4-manifolds with small homology, 
for example exotic CJP2 #5 C:JP 2 's. 

Ingredients. Take p - 1 copies of S2 and build on them disk-bundles of Euler 
classes -(p + 2), -2, ... , -2, then plumb these according to the diagram in fi
gure 12.11. The result is a simply-connected 4-manifold Cp, whose boundary is 
the lens space1 L(p2, p- 1). In particular, n1 (a Cp) = Zpz. 

-2 -5 
C3:---. 

-(p+2) -2 
Cp: 

-6 -2 -2 
C4: ---+---e 

-2 -2 

p-2 

12.11. Plumbing diagram for Cp 

Lemma. The 4-manifold Cp can be embedded in #(p- 1)(:JP2 . 

Proof. All we need to do is locate a configuration of p - 1 embedded spheres 
in #(p - 1 )(:JP2 that intersect according to the diagram above; then a neigh
borhood of those spheres will be a copy of Cp. 

Start with (:JP2 and denote by e1 the class of CJP 1 . Take two projective lines 
in C:JP2 and eliminate their single intersection point in the usual fashion, as 
suggested in figure 12.12 on the next page. The result is a sphereS of homol
ogy class 2e1, with self-intersection -4. Therefore, a neighborhood of S is 
the manifold C2 . 

1. The lens space L ( m, n) is the closed 3 -manifold obtained as the quotient of 53 c C2 by the action 
of Zm induced by (zr,zz) ,__. (e'mlmzr. e" '"'lmzz). Its fundamental group is Zm. 
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12.12. Embedding C2 in (:JP 2 

Take now another projective line L1 in CJP2 , meeting S in two points, as in fi
gure 12.13. Orient L1 so that both intersection points are positive (thus, [ L1] = 
-e1 ). Blow-up at one of the two intersection points and denote by ez the class 
of the added exceptional curve. The result in (CJP 2)' = CJP 2 #CJP2 is one 
sphere S' of class 2e1 - ez and another one Li of class -e1 - ez. These spheres 
have self-intersections -5 and -2 and meet in one positive point. Therefore, 
a neighborhood of S' U Li is a copy of C3. 

12.13. Embedding C3 in #2CP2 

The exceptional sphere of the blown-up CJP 2 can be represented by a sphere 
Lz of class -ez, meeting each of 51 and Li in one positive point, as sketched 
in figure 12.14. If we blow-up the intersection point of Lz with S', the result 
in # 3 CJP2 is a configuration of three spheres: a sphere S" of class 2e1 -
e2 - e3, a sphere Lf of class -e1 - ez, and a sphere L~ of class -ez - e3. A 
neighborhood of S" u Lr u L~ is a copy of C4 . 

12.14. Embedding C4 in #3 CP2 

This procedure can be continued in the obvious manner, yielding embeddings 
of Cp in #(p - 1) CJP2 , as a neighborhood of spheres of classes 2e1 - e2 - · · · -

ep-1• - ez- e3, - e3- e4, ... , - ep-2- ep-1· See Figure 12.15. D 
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12.15. Embedding Cp in #(p - 1 )CJP2 

Now notice that, instead of embedding Cp in #(p- 1 )CJP2 , we can reverse orienta
tions and embed Cp inside #(p- 1 )CJP2 . Then the complement #(p- 1 )CJP2 \ Cp 
is a 4-manifold BpI with boundary L (p2 ' p - 1). The inclusi~::m a Bp c Bp induces 
a surjective morphism n1 (a Bp) ---> n1 (Bp) and we have n1 (Bp) = Zp. Nonethe
less, since the homology of Cp exhausts all of Hz ( #(p- 1 )CJP2 ; Q), it follows that 
Bp has H*(Bp; Q) = 0. In conclusion, 

Lemma. The manifold Cp has the same boundary as a rational-homology 4-ball Bp. o 

Construction of a rational blow-down. If Cp is embedded inside some 4-mani
fold M, then we could cut it out of M and replace it by a copy of Bp. Specifically, if 
M contains a configuration of embedded 2-spheres as prescribed in the plumbing 
diagram of Cp, then a neighborhood of this configuration in M must be a copy of 
Cp. Then M can be split as M _ Mo C 

- Ua p· 

By replacing Cp by Bp we obtain the new manifold 

M(p) = M 0 Ua Bp, 

which is called the rational blow-down2 of Cp from M. 

Notice that, if both M and M 0 are simply-connected, then so is M(p). The ho
mology Hz(M(p); Z) can be identified with the QM-orthogonal complement of 
H2(Cp;Z) in H2(M; Z); in other words, with the complement of the classes repre
sented by the spheres in Mused to embed Cp. Since moving from M to M(p) elim
inates classes of negative self-intersection, it follows that bi M = bi M(p) while the 
signature has increased. 

Logarithmic transformations. Imagine that some 4-manifold M contains an im
mersed sphere S with only one double-point of positive sign. Assume further that 
S has zero self-intersection in homology, [SJ · [S] = 0. The typical example is when 
M is an elliptic surface and S is a fishtail fiber. 

In this situation, the double-point of S can be blown-up, creating a sphere 51 em
bedded in M #CJP2 and of homology class [S'] = [S] - 2e1, as in figure 12.16 on 
the following page. This is a sphere of self-intersection -4 and thus its neighbor
hood is a copy of c2. 

2. The resulting M(p) does not depend on the particular choice of gluing used to fit M 0 to Bp along 
their common boundary L(p2 , p- 1), because one can prove that any self-diffeomorphism of L(p2 , p -
1) extends to a self-diffeomorphism of Bp. 
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) 

12.16. C2 in M' from an immersed sphere in M 

One can settle with rationally blowing-down Cz, or one can continue with more 
blow-ups. Then, just as in our construction of the embedding of Cp in #(p -
1) CJP2 , one obtains an embedding of Cp in M # (p - 1) CJP2 , with spheres of clas
ses [S]- 2e1- ez- · · ·- ep-1• e1 - ez, ez- e3, ... , ep-2- ep-1· See figure 12.17. 

12.17. Building Cp on an immersed sphere 

In the case when M is an elliptic surface and S is a fishtail fiber, the result of such 
a sequence of blow-ups followed by a rational blow-down is in fact diffeomorphic 
to a logarithmic transformation: 

Theorem ( R. Fintushel and R. Stem). If E is an elliptic surface containing a cusp 
fiber and Cp is built inside E #(p - 1) CJP2 by starting with a fishtail fiber S of E, then 
the result of the rational blow-down of Cp is diffeomorphic to the result of a logarithmic 
transformation of multiplicity p, performed on a regular torus fiber near S: 

(E #(p- 1) CJP2) (p) ~ Ep. 

Idea of proof. One uses Kirby calculus. The cusp fiber is present to ensure 
that there is no ambiguity for the logarithmic transformation. See R. Gompf 
and A. Stpsicz's 4-Manifolds and Kirby calculus [GS99, sec 8.5]. o 

Seiberg-Witten invariants. Consider a 4-manifold M containing a suitable con
figuration of spheres so that Cp embeds in M. Then M splits as M = M 0 Ua Cp 
and leads to the corresponding rational blow-down M(p) = M 0 Ua Bp. The Sei
berg-Witten invariants of M and M(p) fit rather nicely: 

Theorem (R. Fintushel and R. Stem). Assume that both M and M(p) are simply-con
nected. For every characteristic element K of M(p) there exists a characteristic element K 
of M so that KIMo = RIMo and K ·K- K · K = p- 1. Then we have 

SWM (K) = SWM(K). 
(p) 
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Idea of proof First off, one can identify H2(M(p); Z) with the complement 
of the spheres from Cp in H2(M; Z). The requirement that K> K- 1C · K = p-I 
merely ensures that the Seiberg-Witten moduli spaces corresponding to K on 
M(p) and to K on M have the same (expected) dimension, dim9J1K = dim9J1j(. 

For the actual formula, the starting point is the fact that Bp admits a metric 
of positive scalar curvature. Then the argument flows similarly to the proof 
of the usual Seiberg-Witten blow-up formula (page 407), by stretching the 
connecting neck a X ( -£,£) between M 0 and Bp. 0 

Notice that the above result is interesting only when K · K 2 3 signM + 2X(M), 
since otherwise the expected dimension of 9J1K is negative and then automatically 
S<WM(1C) = 0 and S'WM (K) = 0. 

(p) 

Using this theorem, one can evaluate the Seiberg-Witten invariants of 4-mani
folds obtained as rational blow-downs from better-understood 4-manifolds. In 
particular, the Seiberg-Witten invariants of elliptic surfaces can be evaluated in 
this fashion. 

References. The rational blow-down procedure and its effect on gauge theory in
variants was first explored in R. Fintushel and R. Stem's Rational blowdowns 
of smooth 4-manifolds [FS97a], where the invariants of E(n )p,q were thus evalu
ated. A nice exposition can be read from R. Gompf and A. Stpsicz's 4-Manifolds 
and Kirby calculus [GS99, sec 8.5]. 

The rational blow-down construction can be extended to more general configu
rations of spheres. Namely, one can consider the 4-manifold Cp,q obtained by 
plumbing a string of disk-bundles with Euler classes specified by the coefficients 
of the continued fraction expansion of - p2 I pq- 1, with p > q and coprime. The 
boundary of Cp,q is the lens space L(p2, pq- I), which was known since A. Cas
son and J. Harer's Some homology lens spaces which bound rational homology 
balls [CH81] to bound a rational-homology 4-ball Bp,q· Therefore such configu
rations of spheres can be used for a generalized rational blow-down. This gener
alization was studied in M. Symington's Generalized symplectic rational blow
downs [SymOl] and J. Park's Seiberg-Witten invariants of generalised rational 
blow-downs [Par97]. Recently, generalized rational blow-downs have been used 
to build new exotic 4-manifolds, for example exotic (:JP2 #5 (:JP2's. 
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Vast geographies. At first, there was the conjecture that all simply-connected 4-
manifolds might split into connected sums of complex surfaces, with either ori
entation. This fell with the construction of irreducible3 non-complex examples in 
R. Gompf and T. Mrowka's Irreducible 4-manifolds need not be complex [GM93]. 
Then, there was hope that all simply-connected 4-manifolds might decompose 
into sums of symplectic manifolds, with either orientations. This was negated in 
Z. Szabo's Simply-connected irreducible 4-manifolds with no symplectic struc
tures [Sza98]. Today, we have no conjecture about what the building blocks of all 
4-manifolds might be. 

Certainly before any conjectures can even be attempted, we need to construct 
enough examples, and hope that eventually some patterns will become appar
ent. Thus, some energy has been devoted in recent years toward this goal, by 
using mainly fiber sums, logarithmic transformations, (generalized) rational blow
downs4 and Fintushel-Stem surgeries, often in the direction of building exotic 
manifolds with smaller-and-smaller homology. A starting reference is R. Stern's 
optimistically-titled Will we ever classify simply-connected smooth 4-manifolds? 
[Ste05]. In what follows, we gather a rather random sampling of such constructive 
results: 

On one hand, for every even form 

Q = EEl ±2m Es EEl n H 

that satisfies the 3/2-conjecture (i.e.,5 X 2: ~ lsignl) and also has bi = n odd and 
sign = 8m non-zero, D. Park and Z. Szabo's The geography problem for irreducible 
spin four-manifolds [PSOO] built simply-connected irreducible 4-manifolds realiz
ing that form; for each such Q, they had both symplectic (for the orientation with 
sign < 0) and non-symplectic examples. (Symplectic examples for the orientation 
with sign > 0 were constructed in [Par02d].) The case of even forms with sign = 0, 
that is to say, of manifolds homeomorphic to #m S2 X S2 I was attacked by J. Park's 
The geography of Spin symplectic 4-manifolds [Par02d], which proved that there 
must be some (undetermined) mo such that for all odd m 2: mo the friendly mani
fold #m S2 X S2 must admit infinitely-many smooth structures. 

On the other hand, on the side of odd intersection forms 

Q=EElm[+l]EEln[-1], 

we have seen exotic smooth structures on #3 (:JP2 #19(:IP 2 and ClP2 #9CIP 2 from 
logarithmic transformations on E(2) and E(l). Then J. Park's Exotic smooth 
structures on 4-manifolds [Par02c] showed that each form Q with n 2: m + 7 
and m = bi odd 2: 3 is realized by infinitely-many smooth manifolds; all these 
are irreducible when 2x + 3 sign 2: 0. For the study of the positive-signature 
cases, Lefschetz fibrations were used in A. Stispicz's Simply connected symplectic 
4-manifolds with positive signature [Sti99], and combined with Fintushel-Stem 
surgery in J. Park's Exotic smooth structures on 4-manifolds. II [Par03a]. 

3. Remember that a manifold M4 is called irreducible if it does not split into a connected sum of two 
manifold, none of which is homeomorphic to 54 , i.e., each term splits off some homology from M. 

4. See the preceding note, on page 547. 

5. Where x is viewed as determined by the intersection form through x = 2 + b:{" + bz . 
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For manifolds homeomorphic to #3 CJP2 #n CJP2 , we have D. Park's Constructing 
infinitely many smooth structures on 3 CJP2 # n CJP2 [Par02a]; his structures are 
both symplectic and non-symplectic, are built for all n 2 10, and are irreducible 
when 10 ::; n ::; 13. Recently, infinitely-many smooth structures on # 3 CJP2 # 

9CJP2 were built in A. Stipsicz and Z. Szabo's Small exotic 4-manifolds with 
bt = 3 [SSOS]. 

For manifolds homeomorphic to CJP2 #n CJP2 , we had D. Kotschick's On mani
folds homeomorphic to CJP2 # 8 CJP2 [Kot89], which proved that the Barlow sur
face6 is an exotic CJP2 # 8 CJP 2 . More recently, J. Park's Simply connected sym
plectic 4-manifolds with bt = 1 and c~ = 2 [Par03b] used rational blow-downs 
to build an exotic CJP2 # 7 CJP2 and inspired a whole series of new constructions. 
It was first followed by A. Stipsicz and Z. Szabo's An exotic smooth structure on 
CJP2 # 6 CJP2 [SS04]. Then R. Fintushel and R. Stern's Double node neighborhoods 
and families of simply connected 4-manifolds with b+ = 1 [FS04] built infinitely
many distinct (non-symplectic) smooth structures on CJP2 # n CJP 2 for n = 6, 7, 8. 
Shortly afterwards, J. Park, A. Stipsicz and Z. Szabo's Exotic smooth structures 
on CJP2 # 5 CJP2 [PSS04] dealt with the n = 5 case. How low can you go? 

New results in this direction seem to appear all the time, and thus the above para
graphs might become obsolete even before this volume reaches bookstores ... 

6. The Barlow surface is a simply-connected complex surface of general type, built in R. Barlow's A 
simply connected surface of general type with pg = 0 [Bar85]. 







Epilogue 

Under the light of the various examples seen in this book, it seems reason
able to conjecture that, if a topological 4-manifold admits a smooth struc
ture at all, then it might admit infinitely many. 

While gauge theory was how the door was opened on those vast unex
plored realms, it might not be how these will be charted. We have seen that 
there are whole realms where the Seiberg-Witten invariants cannot help us. 
For example, the theory is blind on 4-manifolds that admit metrics of pos
itive scalar curvature, on homology 4-spheres (which in particular leaves 
the smooth 4-dimensional Poincare conjecture with no solution in sight), 
on all manifolds with bi even, and in general on 4-manifolds that are far 
from complex. 

More, gauge theory offers only negative results (as in "two manifolds are 
not diffeomorphic"). Indeed, the field of 4-manifolds lacks enough tech
niques for obtaining affirmative results (as in "two manifolds are diffeomor
phic"). Looking back, the only affirmative results we encountered came ei
ther from ad hoc constructions, from Kirby calculus, or from complex geom
etry. The field also lacks techniques for building enough examples, which 
might one day be organized into any sort of classification scheme. We are 
lost in an ever-growing jungle. 

Hence the final conclusion of this volume can only be that 

We know that we don't know. 

This only makes it all the more exciting ... 

January 2005 
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:: anti-self-dual connection see 
connection/ anti-self-dual 

:: classification 359, 360 
: on Riemannian manifolds 346 
: parallel section 

:: from covariant derivative 339 
:: from parallel transport 338 
::from plane-field 342 

: parallel transport 336-338 
:: from covariant derivative 339 

:spinconnections 384,392 
:: and Dirac operator 393 
:: Kiihler case 439 
:: the quatemionic view 436-437 

: torsion-free connection 346 
::the Levi-Civita connection 346 

contact structure 343fn. 

contractible space 83fn. 
: and classifying spaces 205 

:: the Seiberg-Witten config space 453 
:contractible 4-manifolds see Freedman's fake 

4-balls 
:fake 4-balls see under Freedman's 

core of a handle 36 

cork see Akbulut cork 

corners, and their smoothing 14 

covariant derivative 340, see also connection 

(:Jf>n 17,- complex projective n-space 
: and Kahler surfaces 276 

C['2 124, - complex projective plane 
: and blow-ups 288 
: and rational surfaces 291 
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:: and the rational elliptic surface 302 
:: Castelnuevo's criterion 295 

: as building block 244, 247 
::for complex surfaces 317 

: canonical class 280 
:fake CJP2 241-243 
: genus of complex curves 302 
: genus of embedded surfaces 489 

::Thorn's conjecture 489 
:handle description 94, 148,241-242 
: pencil of tori on CJP2 302 

critical point 33 

curvature 347, see also connection 
: and characteristic classes 347 
: and gauge theory 

:: Donaldson 244, 354 
:: Seiberg-Witten 396 

: and holomorphic bundles 369-370 
: and trivial bundles 343, 347 
: Bianchi identity 348 

:: and Yang-Mills 354 
::on line bundle 350,395 

: Bochner technique 474-475 
: Chem-Weil method 347 
: definition 

:: from covariant derivative 348-349 
:: from parallel transport 349-350 
:: from plane field 343 

: local form 348 
: of G-connections 347, 350 
: of Levi-Civita connection 350 
:on line bundles 350,358-360 
: on Riemannian manifolds 350 
: scalar curvature 350 

:: and Seiberg-Witten 405, see under 
Seiberg-Witten 

:: and the Bochner technique 475 
:: l.ichnerowiczformula 475 
:: l.ichnerowiczformula (coupled) 393 

: zero-curvature see connection/ flat 

curve 
: complex curve 277, 279 

:: ( -1 )-curve 286, 291, 297, see also blow-up 
::adjunction formula 281 
:: elliptic curve 295 
:: exceptional curve see ( -1 )-curve 
::genus 281 
:: Hodge signature theorem 278 
:: Kodaira dimension of a curve 295 
:: Lefschetz theorem on (1, 1)-classes 278 
:: rational curve 295 
::singularity 304, 317-319 

: J-holomorphic curve 376 
::adjunction formula 377 
::and Seiberg-Witten 411-412 

:: controlling their areas 382 
:: from curve to almost-complex str 421 
::genus 377 
:: Gromov's compactness theorem 471 
:: Gromov-Taubes invariant 471-474 
:: Gromov-Witten theory 472 
:: minimizing genus 490-491 
:: Taubes' theorem 411,473 

cusp singular fiber 304 
cut-and-paste 12-14, 118fn 

D 
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V 384, - Dirac operator, see also under spin 

VA 393,- Dirac operator, see also under spine 

D, as in DE 8,- disk bundle of E 
on 17,- standard n-disk (ball) 

a, as in ax 6,- boundary of X 

a 366,- Cauchy-Riemann operator 

a A 368,- Cauchy-Riemann operator 

dv 340,- connection 
il M 371,- Donaldson series of M 
.14 83,- Freedman's fake 4-balls 

ll, as in llf 400, 474,- Laplace operator 

ll, as in llK 539,- Alexander polynomial 

de Rham's theorem 361 
definite intersection form 120, see under 

intersection form 

deformation of a complex surface 276.fn 

Dehn surgery (dim 3) 95 
:and logarithmic transformations (dim 4) 311 

Dehn's lemma (dim 3) 102 

derivative 8 
: weak derivative 440 

determinant line bundle 
: of a spine structure 387 
: of a Fredholm operator 447 
: of an almost-complex structure see 

anti-canonical bundle 

diagonalizing boundary operator 43, 60 
: non-simply-connected case 63-64 

DIFF( m) 213,- group of self-diffeomorphisms 
oflRm 

diffeomorphism 5 
difference cocycle, of fiber bundle sections 201, 

202, see obstruction theory 

differential 8 
dimension, virtual 446 

Dirac operator 
: and Cauchy-Riemann operators 393 

:: Kahler case 457 
:: symplectic case 466 
:: the quaternionic view 439 
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: and a-operators see Cauchy-Riemann 
operators 

: and Seiberg-Witten 396, see also under 
Seiberg-Witten 

: and the Bochner technique 475, see also under 
Seiberg-Witten 

: on Kahler manifolds 439 
::and Seiberg-Witten 458 

: on symplectic manifolds 439 
:: and Seiberg-Witten 466 

: spin case 384 
:: its index 385 
:: Lichnerowiczformula 475 

: spine case 393 
:: its index 393, 446 
:: Lichnerowiczformula (coupled) 393 

: unique continuation property 393 

disk bundle 8 

divisibility 152 

divisor, for complex surfaces 278fn 
: canonical divisor 280, see under canonical 
:effective divisor 279fn 

:: and Seiberg-Witten 461 
:: effective class, effective cone 283 

dodecahedral space 88, see Poincare homology 
3-sphere 

Dolbeault cohomology 137, 367 

Dold-Whitney theorem 167 

Donaldson theory 
:and bi 355 
: and complex geometry 368-370 
: and holomorphy 368-370 
: and Seiberg-Witten theory 356 

::equivalence 370-372 
:: Seiberg-Witten proof of Donaldson's thm 

454-457 
::Witten's conjecture (open) 371 

: anti-self-dual connections on line bundles 
357-365 

: basic class 3 71 
: Donaldson's theorem 243 

:: Seiberg-Witten-based proof 454-457 
: exclusion of intersection forms 

:: definite case 243-246 
::Donaldson's theorem 243,454-457 
::for open manifolds 258 
:: indefinite case 248 

: invariants 353--356 
:: Donaldson polynomial 355 
::Donaldson series 371 
:: Kronheimer-Mrowka str thm 371 

: on open manifolds 258 
: reducible solution see under reducible 

dual 

: dual basis, dual class 117 
: dual cellular decomposition 183 
: dual form see Hodge operator 

Index 

: dual of a complex space or bundle 134-137 
: dual of a vector bundle 8 

duality operator see Hodge operator 

E 
gFG 204,- universal G-bundle of fiber F 

e(TM) 166,-EulerclassofM 

E ( 1) 305,- the rational elliptic surface 

E(2) 307,- the K3 surface 

E ( n) 307, see elliptic surface 

E ( n) p. q 312, see elliptic surface 

Es 125-127, see also intersection forms 
: and algebraic classification 238 
: and smooth exclusions 

:: 3/2-conjecture (open) 247 
:: 11/s-conjecture (open) 247 
:: from Rokhlin 's thm 171 
::Furuta's 10/&-theorem 248 

: E8-plumbing 
:: dimension 4 87 
:: high-dimensions 97 

: Es Dynkin diagram 86 
: E8-manifold 89 

:: as building block 244 
::higher-dimensional analogues 98 
::is non-smoothable 171 
:: its intersection form 125 
:: its Kirby-Siebenmann invariant 222 
::summed 240,242-243 

: from E ( 1) surface 306 
: from K3 surface 128 
: from ME8 125 
: its automorphisms 265 
:variants 137-138 

effective divisor see under divisor 

Eilenberg-Maclane space 114fn 

Elkies 's lemma 456 

elliptic curve 292 

elliptic fibration 292, see also elliptic surface 

elliptic surface 292-293 
: and classification of complex surfaces 292, 

295,296 
:and diffeomorphisms 314-316 
: and gauge theory 

:: Donaldson 322 
:: Seiberg-Witten 322,413-414,463-464 

: bi(M) 308,312 
: canonical bundle 307, 312 
:characterization 
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:: Kahler characterization 296 
:: Kodaira dim characterization 295 
:: numerical dim characterization 292 

:classifications 314--316 
: E ( 1) 305,- rational elliptic surface 
: E(2) 307, see K3 surface 
: E ( n) 307, see also fiber sum 

:: its Seiberg-Witten basic class 413 
: E(n)p.q 312, see also log transformation 

::and classifications 314--316 
:: its Seiberg-Witten basic class 413 

: elliptic fibration 292 
: exotic elliptic surfaces 545 
: fiber sum 306-309 

:: and diffeomorphisrns 535 
:: and Seiberg-Witten 535 
:: generalized fiber sum 534--535 
:: holomorphic construction 308-309 

: its intersection form 308, 312 
: K3 surface see under K3 
: Kummer surface see K3 under K 
:logarithmic transformation 310--314 

::and classifications 314--316, 413 
:: and diffeomorphisms 315, 413, 537 
:: and Seiberg-Witten 537 
:: as rational blow-down 550 
::generalized logarithmic transformation 

536-539 
:: holomorphic construction 312-314 

: multiple fiber 311 
: proper elliptic surface 293 

::Kahler characterization 296 
:: Kodaira dim characterization 295 
::numerical dim characterization 292 

: rational elliptic surface 305 
:: construction 302-306 
:: its intersection form 306 

: singular fiber 
::classification 319-322 
:: cusp fiber 304, 533 
:: fishtail fiber 304 
:: in Kummer K3 132-133 
:: monodromy 321 
:: necklace fiber 319 
:: plumbing its neighborhood 321 

: vanishing cycle 304, 532 

embedding 9 

end sum, for open manifolds 254 

Enriques-Kodaira classification of complex 
surfaces 285-295 

Euler characteristic class 166 
: Dold-Whitney theorem 167 

even intersection form 120, see under intersection 
form 

exactsequence 11jn 

exceptional curve 286, see ( -1 )-curve and 
blow-up 

exotic 18 
:exotic K3 manifolds 316,545 
: exotic Casson handle 80 
: exotic # m G::JP2 # n O::::JP 2 553 
: exotic elliptic surfaces 545 
:exotic Rn's vii, 221 
:exotic R 4's 223,250--259 
: exotic # m 52 x 52 553 
:exotic spheres 30, 32,97-100,475 

:: and smoothing manifolds 217 
:: Brieskom spheres 318 
::from complex singularities 318 
:: from Gluck twists 82 
:: from plumbings 98 
:: Kervaire spheres 98 

exterior forms 8 

F 
Fv, FA 347,- curvature 
cPL 279, 281, see pluri-canonical maps 

fake 18 
:fake 4--ball 83, see under Freedman's 
: fake CJP2 242 

fiber bundle 204 

fiber sum 306-309, see under elliptic 
: generalized fiber sum 534-535 

fiber-metric 336 

finger move 74 

Fintushel-Stem 
: Fintushel-Stern conjecture (open) 546 
: Fintushel-Stern theorem 544 
: knot surgery 541-544 
: rational blow-down 547-551 

fishtail singular fiber 304 

flat connection see under connection 
Floer homology 67, 373, 477 

foliation 492 
: and flat connections 343 
: on 3-manifolds 492-493 
: on 4--manifolds 494--495 

:: Kronheimer's theorem 494 
:taut foliation 492, 495jn 

:: and genus of surfaces 492-495 
:: Gabai's theorem (dim 3) 493 
:: Kronheimer's theorem (dim 4) 494 
::Thurston's theorem (dim 3) 493 

formal adjoint 394 
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forms of type (p, q) see type of complex-valued 
forms 

frame field 7 
framed 
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: framed bordism groups 230-234 
: framed bundle 7 
: framed cobordism see framed bordism 
: framed knot/link see framing 

framing 92,144, see also knot or link, and framed 
bundle 

Fredholm operator 447 
: determinant line/bundle 447 

free action of a group 164fn 

Freedman's contractible 4-manifolds see 
Freedman's fake 4-balls 

Freedman's fake 4-balls 
: bounding homology 3-spheres 83 
: construction 83-86 
: for building ME8 88 
: for classification theorem 240, 262 

Freedman's theorems 
: classification theorem 240 
: theorem on Casson handles 79 
: theorem on connected sum splittings 119 
: theorem on homeomorphisms 153 
: theorem on homeomorphic smooth manifolds 

155, see also Freedman's classifthm 
: theorem on fake 4-balls 83 
: theorem on homology 3-spheres 83 
:topological h-cobordism thm (dim 4) 80 
: topological Poincare conjecture (dim 4) 81 

Freedman-Kirby generalized Rokhlin thm 502 

fundamental 2-form of an almost-complex 
structure 379 

fundamental cycle of a manifold 9, see 
orientation 

fundamental group 
: and 3-manifolds 101, 102 
:and finger moves 74,76 
: and h--cobordisms 6Q-66 
: and homology spheres 86 
: and simple-homotopy type 60-66 
: non-simply-connected 4-manifolds 

:: counterexamples 494, 546 
: of a disk complement 76 
: of GraBmannians 56 
:of PE8 88 
: of SO( n) 177, 434 

:: and spin structures 162, 177, 207 
::and spine structures 386 
::and wz(E) 162, 195,203,207,386 

:plus-construction 59fn, 83-86 
::and algebraic K-theory 59fn 
::and contractible 4-mfld's 83-86 
::and fake 4-balls 83-86 

: reducing the fundamental group 
:: by adding handles 156, 456 

::finger moves 74,76 
::plus-construction 59fn, 83-86 

Furuta see also Bauer-Furuta 

Furuta's 10/s-theorem 248 

G 
~(E) 355,395,- gauge group of E 

r4k lattice 265 

f(E) 18,-sectionsof E 

gafl - cocycle for bundle 

gafl 175 

G-bundle 336 

G--connection 344 
: its curvature 347, 350 
:localforms 345 

Gabai's theorem on foliations (dim 3) 493 

gauge 
: change of gauge 332 
: gauge equivalence 332 

:: and moduli space 332 
:: in Donaldson theory 245, 355 
:: in Seiberg-Witten theory 397 

:gauge field 347fn, 358fn,- curvature 

Index 

: gauge group 332, see also gauge equivalence 
:gauge potential 340fn, 358fn,- connection 
: gauge theory 332, see Donaldson and 

Seiberg-Witten 

general linear group, GL( n) 334 

general linear group, complex, GLc (n) 334 

general position 10 

general type surface see under complex surface 

genus, minimum see minimum genus of surfaces 

geometric genus of a complex surface 281, see 
also pluri-genus 

: and classifying elliptic surfaces 315 

geometrization conjecture (dim 3) 101 

gl( n) 334,- endomorphisms of Rn 

Gluck twist 82 

glue 12-14,118/n 

Gompf's theorem on exotic R 4 's 255 

Grauert's criterian 280 

Gromov's compactness theorem 471 

Gromov-Taubes invariant 471-474 
:and Seiberg-Witten theory 473 

Gromov-Witten theory 472 

grope 103 

group 
: action, free and transitive 164fn 
: complex spin group, Spine ( n) 335 
: D/FF(m) 213 
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H 

:fundamental group, n 1 (A) see under 
fundamental 

:gauge group, q(E) see under gauge 
: general linear group, GL( n) 334 
: general linear group, complex, GLc ( n) 334 
: group of cobordism classes, Om see under 

cobordism 
:group of exotic spheres, Elm 99-100,220 
: group of homotopy spheres see group of 

exotic spheres 
: homotopy group see ?Tn (A) under P 
:Lie group 333, see under Lie 
:linear group, GL(n) 334 
:linear group, complex, GLc(n) 334 
: orthogonal group, 0( n) 176, 206 
: perfect group 76, 86 
: PL(m) 219 
: special orthogonal group, SO( n) 334 
:special unitary group, SU(n) 334 
:spin group, Spin(n) 335 
: structure-group of a bundle see 

structure-group 
: TOP(m) 209 
:unitary group, U(n) 334 
: Whitehead group 63 

H 124, see also intersection form 
: and algebraic classification 238 
: and smooth exclusions 

:: 3/2--Conjecture (open) 247 
:: 11/s-conjecture (open) 247 
:: Furuta's 10/s--theorem 248 

Hi ( M) 352, see also self-dual2-form 

HP· q ( M) 278, 367,- Dolbeault cohomology of 
M 

fim(M; §') 190,192,- Cech cohomology of M 
with coefficients in §' 

H 433,- quaternions 

h-cobordism 29 
: dimension 4 

:: Akbulut cork 90, 253 
:: anatomy of nontrivial h-cobordisms 89-90, 

253 
:: and diffeomorphisms 149 
::and small exotic R4 's 253 
:: examples of nontrivial h-cobordisms 316, 

545 
:: smooth failure 89-90, 253, 316, 545 
:: topological h-cobordism theorem 80 
:: Wall's thm on h-cobordisms 155 
::Wall's thm on stabilizations 149 

: high-dimensions 
:: h-cobordism theorem 29 

handle 34 
: Casson handle 79 

:: Casson's embedding theorem 96 
:: construction 76-79 
:: embedding Casson handles 96-97 
::Freedman's theorem 79 
:: is smoothly exotic 80 
:: is topologically standard 79 
::use for exotic R4's 251, 252 
::use for fake 4-balls 85 
::use in plus-construction 85 
::use on topological h-cobordisms 80 

: dimension of a handle 34fn 
: handle decomposition 37 

:: ascending cobordism 33 
:: turning it upside-down 50-51 

: handle homology 39-40 
: handle moves 40-43 

:: cancelling 0-handles 47-48 
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::handle creation/cancellation 40-42,93 
:: handle sliding 42-43, 93 
:: handle trading 47 
::in Kirby calculus 93 

:handle smoothing 214-215 
:: handle smoothing theorem 215 

:Kirby calculus 91-96, 148 
: order of a handle 34fn 

handlebody structure see handle decomposition 

Heegaard-Floer homology ix, 478-479 

Heegard diagram (dim 3) 478 

Hermitian 
: almost-Hermitian manifold 378 
: Hermitian metric, manifold 378 
: inner product, for vector spaces 135 
: metric, for bundles 336 

Hirzebruch's signature theorem 166,230 

Hirzebruch surface 291fn 

Hodge 
: Hodge signature theorem 278 
: Hodge star operator 137, 351 
: Hodge theory 

:: complex Hodge theory 137 
::real Hodge theory 354,356,361-362 

holomorphic 
: holomorphic bundle 278fn, 368 

:: and connections 368-370 
:: and Donaldson theory 368-370 
::and Seiberg-Witten theory 459-464 
::dual bundles 134-137 
:: holomorphic line bundle 278-282, 368-370 
:: holomorphic section 279,368-369,460 
:: holomorphic structure 369 
:: meromorphic section 279 
:: Riemann-Roch theorem 282 
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: holomorphic curve see under curve 
: holomorphic map 6 
: holomorphic section 279,368 

::and <PL 279, 281 
:: and connections 368-370 
::and Kodaira dimension 294 
:: and pluri-genera 281 
::and Seiberg-Witten theory 459--464 
:: Riemann-Roch theorem 282 

: holomorphic structure 369 

holonomy of a connection 360 

homeomorphism 5 

homology from handle decompositions 39--40 
: Ozsvath-Szab6's Heegaard-Floer homology 

478--479 
:twisted by 7TJ (M) 61-63 

homology sphere 86, see under sphere 

homotopy 10 
:homotopy equivalence 18ft! 
:homotopy group 198ft! 

:: and characteristic classes 202-204 
:: and framed bordisms 232-234 
:: and immersed surfaces 112 
::and obstruction theory 197-202 
::and Rokhlin's theorem 234 
:: and the Hopf map 129 
::and Whitehead's theorem 140-143 
::of SO(n) 434 
::of spheres 129ft!, 232-234 
:: n 1 see under fundamental group 
:: n2 and 3-manifolds 102 
:: n3 52 129 frl, 233 
:: 7In+l sn 233 
:: 7In+2 sn 233 
:: 7In+3 sn 234 

:homotopy sphere 81, 86ft! 
:: Poincare conjectures see Poincare 

Hopf map 129ft!, 148 
: and spine squaring map 395 

horizontal plane field 341, see also under 
connection 

Hurewicz's theorem 112, 140,142 

I 
Iitaka's conjecture 295 

immersion 9 

incidence number 39 
:twisted by n 1 (M) 62 

indefinite intersection form 120, see under 
intersection form 

index of a critical point 33 

index of a manifold see signature 

indivisible 152 

Index 

instanton 245, 354, see connection/ anti-self-dual 

Int M 6,- interior of the manifold M 

integrability theorem 
: for almost-complex structures see 

Newlander-Nirenberg 
: for holomorphic bundles 369 

integrable plane field 343ft!, see foliation 

interior of a manifold 6 

intersection form 87,111-112 
: algebraic classification 238-239 

::Serre's classification 238 
: and characteristic classes 

::PI (TM) and signature 166 
:: Rokhlin's theorem 171 
:: w2(TM) and parity 163 
:: w2(TM) and signature 171 

: and cobordisms 
:: cobordism groups 229 
:: from same signature 123 
:: h-cobordism failure 316, 545 
:: h-cobord failure and exotic R4 's 253-254 
:: invariance of signatures 123 
::spin cobordisms 165 
:: Wall's thm on h-cobordisms 155 
::proof of Wall's theorem 155-160 

: and connected sums 
:: additivity 118 
::Freedman's thm on splittings 119 
::splitting failure and exotic R4 's 250-253 

: and diffeomorphisms 
:: failure 316, 545 
:: obstructions 153ft! 
:: up to stabilizations 155 

: and homeomorphisms 244 
::Freedman's classification theorem 240 
::Freedman's thm on smooth mflds 155 

:and homotopy type 140-149 
::Whitehead's theorem 140 

:and Kirby calculus 148 
: and spin structures 164, 165 
: automorphisms 152-154 

::Freedman's thm on homeomorphisms 153 
:: Wall's thm on automorphisms 152 
:: Wall's thm on diffeomorphisms 153 

: characteristic element 168, see under 
characteristic 

:definite forms 120 
:: algebraic count 239, 264-266 
::Donaldson's theorem 243 
::Donaldson's thm, proof 454--457 
:: Elkies's lemma 456 
:: r4k lattice 265 
:: Leech lattice 265 
:: Minkowski-Siegelformula 264 
:: smooth exclusions 243-246, 258, 454--457 
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: Donaldson's theorem 243 
:: Seiberg-Witten-based proof 454-457 

: E8 125-127, see under E 
: even forms 120 

:: 3/2-conjecture (open) 247 
:: 11/s-conjecture (open) 247 
:: and second Stiefel-Whitney class 163 
::and spin structures 164 
:: and spin bounding 165 
:: classification if indefinite 238 
::Furuta's 10/s-theorem 248 
::smooth exclusions 171, 247-248 

: Freedman's classification theorem 240 
: Furuta's 10/&-theorem 248 
: H 124, see under H 
: Hirzebruch 's signature theorem 166 
: indefinite forms 120 

:: 11/s-conjecture (open) 247 
:: 3/'J:-Conjecture (open) 247 
::algebraic classification 238-239,262-263 
::Furuta's 10/s-theorem 248 
:: Meyer's lemma 238 
:: smooth exclusions 247-248 

: intersection form of boundaries 165 
: invariants 

:: definiteness 120 
::parity 120, see even or odd 
::rank 120 
:: signature 120, see signature 
:: type see parity 

: odd forms 120 
:: and stabilizations 151 
:: classification if indefinite 238, 262-263 

:of boundaries 120-123,166-167 
:of elliptic surfaces 128, 308, 312 
: of K3 surface 128 
: parity 120, see even or odd 
: Rokhlin's theorem .171 
: Serre's algebraic classification 238 
:signature 120, 166,278 

:: additivity 120, 224-225 
::and characteristic elements 170,263-264 
:: and cobordisms 123, 229 
::and index of Dirac operator 385,393 
:: and orientation-reversal 120 
::and spin structures 229 
:: and spin bounding 165 
:: and spin cobordism 229 
::and spin cobordisms 165 
:: Hirzebruch's signature theorem 166 
:: Novikov 's additivity theorem 225 
::of boundaries 120-123,166-167 
:: Rokhlin's theorem 171 
::signature zero 120-123, 165-167 
::van der Blij's lemma 170,263-264 

: smooth exclusions 243-248 

:: 3/'J:-Conjecture (open) 247 
:: 11/s-conjecture (open) 247 
::Donaldson's theorem 243 
::Donaldson's thm, proof 454-457 
:: for definite forms 243-246, 454-457 
::for even forms 171,247-248 
::for open manifolds 258 
::Furuta's tO/a-theorem 248 
:: Rokhlin 's theorem 171 

:type see parity 
: unimodularity 116-117 

::dual basis, dual class 117 
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:: for manifolds with boundary 88, 240, 261 

intersection number 10 

invariants 
: Arf invariant see under Arf 
: Donaldson invariants see under Donaldson 
: Gromov-Taubes invariant see under 

Gromov-Taubes 
: Kirby-Siebanmann invariant see under 

Kirby-Siebenmann 
: ~~-invariants see Rokhlin invariant 
: of intersection form see under intersection 

form 
: quantum invariants see under quantum 
: Rokhlin invariant see under Rokhlin 
: Seiberg-Witten invariants see under 

Seiberg-Witten 

involution 89fn 

irreducible manifold 13, 247 
: 3/'1:-conjecture (open) 247 
: dimension 3 493 
: fallen conjectures 272, 553 
: symplectic 408 

isomorphism of (bundle) cocycles 176 

isotopy 10 
: isotopic smooth structures 214 

J 
J 376,- almost-complex structure 

J-holomorphic curve 376, see under curve and 
under symplectic 

join of two sets 183fn, 205fn 

K 
K ( G, m) 114fn, - Eilenberg-MacLane space 

KM 280, - canonical bundle of M 

K'M 376,- anti-canonical bundle of M 

K-theory 58-59 

K1 (R), for rings 59 
: and cobordisms 60-66 

K3 complex surface 128 
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: algebraic definition 130, 292 
: and spin cobordism 229 
: as building block 247 
: characterization 

:: Kahler characterization 296 
:: Kodaira dim characterization 295 
::numerical dim characterization 292 

: E ( 2) elliptic fibration 307 
:exotic K3's 

:: Fintushel-Stern conjecture (open) 546 
:: from Fintushel-Stern surgery 545 
::from logarithmic transformations 316 

: fiber-sum construction 307 
: its Seiberg-Witten basic class 410 

::from adjunction inequality 409 
: its blow-up 411 
: its canonical bundle 292, 307 
: its intersection form 128 
:Kummer construction 127-133 
:Kummer elliptic fibration 131-133 

:: its singular fibers 132-133 

Kahler surface 276, see also complex surface 
: among complex surfaces 276 
:and Seiberg-Witten theory 412-414, see also 

symplectic 
:: proof 457-464 
::Witten's theorem 461 

: classification 296 
: Kahler form 276, see also symplectic 

::and classification of Kahler surfaces 296 
:: and intersection of curves 278 
:: and the Levi-Civita connection 381 
:: and type of complex-valued forms 367 
::Hodge signature theorem 278 

Kervaire sphere 98 

Kervaire-Milnor generalized Rokhlin theorem 172, 
482 

Kirby calculus 91-96, 148, 241fn, 552 

Kirby-Siebenmann invariant 68, 216-224 
: and Arf invariant 222, 502 
: and Freedman-Kirby gen Rokhlin thm 502 
: and Rokhlin 's theorem 221-222 
:in dimension 4 221-224,243 

::and Freedman's classification 240, 241 

Kirby-Siebenmann product theorem 214 

Kister-Mazur theorem 210 

knot see also Kirby calculus 
: Alexander polynomial 539 
:and 2-handles 92, 148, 242 
:framing 144 
: knot complement 541 
:knot surgery (Fintushel-Stern) 541-544 
: knot theory and 4-dim topology 546 

:: Fintushel-Stern conjecture (open) 546 

: knotted spheres 82 
: link 143, see under link 
:Seifert surface 145fn, 147 
: trefoil knot 

:: and cusp singularity 304 
:: and fake (:JP2 242 
:: and Poincare sphere 242 

: unknot 148ft! 

kod(M) 294,- Kodaira dimension of M 

Kodaira dimension 
: of a complex curve 295 
: of a complex surface 294 

:: and classification 295 
:: and numerical dimension 294 
:: and of its fibers 295 
:: Iitaka's conjecture 295 
:: smooth invariance 297 

Kodaira's 

Index 

: classification of complex surfaces 285-295 
: classification of singular fibers 319-322 

Kronheimer's theorem on foliations (dim 4) 494 

Kronheimer-Mrowka's 
:proof of adjunction inequality 487-488, 

496-500 
: structure theorem, for Donaldson theory 371 
: Thorn conjecture 489 

Kummer complex surface 130, see K3 surface 

Kuranishi technique 455ft! 

L 
£ 387, - determinant line bundle of spine 

structure 

L2-norm 398,497fr! 

N(TM) 8,-exterior p-forms on M 

A;_(TM) 352,367,- bundle of self-dual2-forms 
onM 

N·q 136-137,365-368,- complex-valued 
(p, q )-forms, see under type 

Laplace operator 400, 474 

large exotic R 4 250 

lattice see intersection form 
: £8 lattice 125-127, see under E 
: r4k lattice 265 
: H lattice 124, see under H 
: Leech lattice 265 
: Minkowski-Siegel mass formula 264 
: Serre's classification 238 

leaf (of a foliation) 492, see also foliation 

Leech lattice 265 

Lefschetz fibration ix, 293, 416-420, 478ft! 

Lefschetz theorem on ( 1, 1 )-classes 278 
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lens space 547fn 

Levi-Civita connection 346 

Lichnerowiczformula 475 

Lichnerowiczformula (coupled) 393 
: and Seiberg-Witten theory 497 

::adjunction inequality 487 
:: blow-up formula 407 
:: compactness of moduli space 400-401 
:: integral scalar curvature bound 398-399 
:: most moduli spaces empty 398-400 
:: pointwise scalar curvature bound 400-401 
:: vanishing for connected sums 406 
::vanishing from curvature 405 

: and Bochner technique 475 

Lie 
: Lie algebra 333 

:: gl(n) 334 
:: so(n) 334,353 

: Lie group 333 
:: GL(n) 334 
:: GLc(n) 334 
::SU(n) 334,353,391 
:: modeled by quaternions 434-435 
:: examples 333-335 
:: SO( n) 334, 353, 425 
::Spin(n) 335,353 
:: SpinC(n) 335,385 
:: U(n) 334,390,391 

line bundle 
: ample line bundle see under ample 
:and Cech cohomology 193-194 
: and representing homology by surfaces 115 
: anti-canonical bundle, K'M 376, see 

anti-canonical 
:canonical bundle, KM 280, see canonical 
: Chern class 

::from Cech cocycle 194 
::from curvature 350 

:connections, curvatures 350,358-360 
:: and holomorphic structures 368-370 
:: and reducible solutions 365 
:: and Seiberg-Witten 396, see 

Seiberg-Witten 
:: anti-self-dual connections 360-365 
::classification 359, 360 

: determinant bundle, C 387, see under spine 
: holomorphic bundle 278-282, 368 

::ample line bundle 280, see under ample 
:: and connections 368-370 
::and Seiberg-Witten theory 459-464 
:: Grauert's criterion 280 
::Hodge signature theorem 278 
:: holomorphic section 279,368-369,460 
:: holomorphic structure 369 
:: Lefschetz theorem on (1, 1)-classes 278 

:: meromorphic section 279 
::Nakai's criterion 282 
:: nef line bundle 282, see under nef 
:: Riemann-Roch theorem 282 

: nef line bundle see under nef 

linear group, GL(n) 334 

linear group, complex, GLc(n) 334 

link 143 
:and 2-handles 92, 148,242 
:and complex singularities 317-319 
:and Kirby calculus 91-96 
: and 7t3 52' 7tn+ 1 sn 233 
:and Whitehead's theorem 143-149 
: framed link 144 
: Hopf link 318 
: linking number 145, 146 
:Seifert surface 145fn, 147 

link of a vertex 208fn 

lk(L, K) 145, -linking number of Land K 
local gauge 332 
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logarithmic transformation 310-314, see under 
elliptic 

: as rational blow-down 550 
: generalized logarithmic transformation 
53~539 

loop theorem (dim 3) 102 

M 
ME8 88,- Es-manifold 

ME~ 98 
9R 332,- moduli space 

~~-invariant see Rokhlin invariant 

/l(N) 226,- Rokhlin invariant (dim 3) 

manifold 5 
:almost-completely decomposable 317 
:combinatorial manifold 6fn, see under 

piecewise-linear 
: complex manifold 6, see complex surface 
: irreducible 13, 247, see under irreducible 
: manifolds of dimension 3 

:: Dehn surgery 95 
:: foliations 492-493 
:: Kirby diagrams 94-96 
::minimum genus of surfaces 491-493 
:: opening comment vii 
::overview 101-102 
:: quantum invariants 95, 96 
:: Rokhlin invariants 225-227 
::Seifert manifolds 311 

: manifolds of dimension 4 69-557 
::as boundaries 120-123,229 
::as spin boundaries 165,229 
:: opening comment vii 
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:: their boundaries 83, 225-227 
: manifolds of dimension 5 or more 

::exotic spheres 97-100 
:: handle theory 27--{;8 
:: opening comment vii 
::smoothing theory 207-221 

:open/closed/with boundary 6-7 
: piecewise-linear (PL) manifold 6, see under 

piecewise-linear 
: Riemannian manifold see under Riemannian 
: smooth manifold 5 
: symplectic mfld 381, see under symplectic 
: topological manifold 5, see under topological 

mapping cylinder 65 

meromorphic section 279 

metric 
: for bundles 336 
: for manifolds 346, see Riemannian 
: metric connection 344, see also Levi-Civita 

Meyer's lemma 238 
: and classification of indefinite odd forms 262 

microbundle 209 
:and smoothing manifolds 214,216 
: Kister-Mazur theorem 210 
:Milnor's smoothing theorem 214 
: smoothing microbundles 216-221 
: tangent microbundle 211 

Milnor see also Kervaire-Milnor 

Milnor plumbing see also plumbing 
:and exotic spheres 97-100 

Milnor's smoothing theorem 214 

minimal model, for complex surfaces 292 
: minimal model theorem 291 

minimum genus of surfaces 
:adjunction inequality 

:: for positive self-intersections 486 
::for Seiberg-Witten simple type 489 
:: proof 496-500 

: and gauge theory 486-491 
:and stabilizations 519-520 
: and taut foliations 

:: in dim 3 492-493 
:: in dim 4 494-495 

: for positive self-intersections 486 
: inside 3-rnanifolds 491-493 
: inside connected sums 407 
: inside CJP2 489 
: inside Kahler surfaces 490 
: inside manifolds of simple type 489 
: inside S2 x S2 488 
: inside symplectic manifolds 490-491 
: Kronheimer's theorem 494 
: the case of 2-spheres 482-485, 519 

: without gauge theory 482-485 
Minkowski-Siegel mass formula 264 

moduli space 332 
: Donaldson moduli space 

::for Donaldson's theorem 245 
:: in general 355 

Index 

: Seiberg-Witten moduli space 397, see under 
Seiberg-Witten 

monodromy of a singular fiber 321 

monopole 396, see Seiberg-Witten 
Morse theory 67 

: ascending cobordism 33 
: critical point 33, see also handle 
: Morse function 33-36 

Mrowka see Kronheimer-Mrowka 

multiple fiber 311, see also elliptic surface 

N 
Ny 1 x 11, - normal bundle of Y in X 
N 465, - Nijenhuis tensor 
Nakai's criterion 282 
near-cusp embedded torus 532 
necklace singular fiber 319 

nef line bundle 282 
: nef as limit of ample 283 
: nef canonical bundle 

:: and classification of complex surfaces 292 
:: and Kodaira dimension 294 
:: and numerical dimension 292 
:: by blowing-down 291 

: nef class, nef cone 283 

negative spinor -anti-self-dual spinor 
negative-definite intersection form 120, see under 

intersection form 
Newlander-Nirenberg theorem 465fn 

: in terms of a 367 
: in terms of N 465 fn 

Nijenhuis tensor, N 465 
Noether's 

: Noether'sformula 282.fn 
: Noether's inequality 293fn 
: Noether's lemma 422 

non-simply-connected see fundamental group 
normal bundle 11 
Novikov additivity theorem 225 
num(M) 292,- numerical dimension of M 

numerical dimension of a complex surface 292 

0 

: and Kodaira dimension 294 
: smooth invariance 297 

ot,amed (X) 231, - framed bordism group 
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0~0 227, - oriented cobordism group 

nfl(in 229,- spin cobordism group 

nf!:inC 427, - spine cobordism group 

O~p 224fn,- topological cobordism group 

n;::ar 506,- characteristic cobordism group 

w 381, - symplectic form 

obstruction cocycle 200, see obstruction theory 

obstruction space, for moduli 444 

obstruction theory 197-204 
: and characteristic classes 202-204 
: and smoothing manifolds 216-221 
: and spin structures 206-207 

odd intersection form 120, see under intersection 
form 

open manifold 7 

operator 
: adjoint operators 394 
:Cauchy-Riemann operators 366,369, see 

under Cauchy-Riemann 
: Dirac operator 384, 393, see under Dirac 
: duality operator see Hodge 
: formal adjoint operators 394 
: Fredholm operator 447 
: Hodge star operator 351 
:Laplace operator 400,474 

orientation 
:for bundles 206, 336 

:: and Cech cohomology 194 
:: and classifying spaces 206 
:: and structure groups 177 

: for manifolds 8, 161 
: for moduli spaces 

:: Donaldson theory 355 
:: in general 332 
:: Seiberg-Witten theory 402 
:: Seiberg-Witten, proof 447-449 

: for vector spaces 8 

oriented cobordism group 227-229 

orthogonal group, SO( n) 334 

Ozsvath-Szab6' s 
: adjunction inequality 489 
: Heegaard-Floer homology ix, 478-479 

p 
Pm (M) 281,- mth pluri-genus of M 

PE8 87, 224,- 4-dim Es-plumbing 

PE~k 97, - 4k-dim Milnor plumbing 

PI (T M) 166,- Pontryagin class of M 

p8 (M) 281,- geometric genus of M 

n1 (A) -fundamental group of A 

nn(A) 198fn,- nth homotopy group of A 

nn (A, B) 49fn 

parallel 
: parallel section 338 
: parallel transport 337 

parallel section see under connection 

parallel transport see under connection 

parallelizable manifold 166fn, 225 

parity of an intersection form 120, see under 
intersection form 

perfect group 76, 86 

piecewise-linear (PL) map 6fn 

piecewise-linear (PL) structure 6, 68,208, 
219-221 

PL(m) 219,- group of piecewise-linear 
self-homeomorphisms of Rm 

plumbing 86 
: and Casson handles 78 
:and elliptic singular fibers 321 
:and exotic spheres 97-100 

603 

:and Freedman's classification 240, 260-262 
: and the E8-manifold 86-89 
: and the Poincare homology sphere 86-88 
:high-dimensions 97-100,262 
: self-plumbing 78 

pluri-canonical maps 281 

pluri-genus of a complex surface 281, see also 
geometric genus 

: and Kodaira dimension 294 
:: classification 295 

: detecting rational surfaces 295 
: general type case 293 
: smooth invariance 297 

plus-construction 59fn, 83-86 

Poincare conjecture 
: 3-dimensional (open) 32,101 

:: history 86 
:: proof? 101 

: 4-dimensional 
::smooth (open) 32, 82, 557 
:: topological 31, 81 

: high-dimensional 30, 66 

Poincare duality 9 

Poincare homology 3-sphere 88 
:gluing along it 224 
: handle construction 242 
: its higher-dim analogues 97 
: its orientations 224 
: its Rokhlin invariant 226 
: other descriptions 88 
: plumbing construction 86-88 
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Poincare manifold see Poincare homology 
3-sphere 

Pontryagin characteristic class 166 
:and signatures 166 
: Dold-Whitney theorem 167 

Pontryagin-Thorn construction 230---234 
: and homotopy groups 232-234 
:and Whitehead's theorem 143-146 

positive spinor - self-dual spinor 

positive-definite intersection form 120, see under 
intersection form 

primary obstruction, of a fiber bundle 202, see 
obstruction theory 

principal bundle 180 

product structure theorem 214 

projective analytic surface 275 

proper elliptic surface 293, see under elliptic 

proper map 96fn 

proper transform 483 

pseudo-holomorphic curve see J-holomorphic 
curve, under curve or symplectic 

pull-back of a bundle 7 

Q 
QM 111, -intersection form of M 

Q 17,- rational numbers 

qp,r 355,- Donaldson invariant 

quadratic enhancement 233,501 
: Arf invariant 233, 501, see under Arf 

quadratic form see intersection form, or 
quadratic enhancement 

quantum invariants of 3-manifolds 95, 96 

quaternions 433 

R 

: modeling almost-complex structures 
437--438 

: modeling bundle cocycles 436 
: modeling Lie groups 434--435 
: modeling spine structures 436 

:: almost-complex case 437--439 
:: symplectic/Kahler case 438--439 

R 17, -real numbers 

Rn 17,- real (Euclidean) n-space 
:exotic R 4 's 250---259 
:exotic Rn's vii, 221 

p(.r:) 226,- Rokhlin invariant of homology 
3-sphere .r: 

rank QM 120, -rank of intersection form of M or 
bz(M) 

Index 

rank of an intersection form 120, see under 
intersection form 

rational blow-down 547-551 
: and Seiberg-Witten 550 
: and logarithmic transformations 550 
:generalized 551 

rational complex surface 291 
: rational elliptic surface 305 

reducible solution 333, 357-365 
: and bi 364-365 

:: in Donaldson theory 355 
:: in Seiberg-Witten theory 397 

: as anti-self-dual connection 357-365 
:in Donaldson theory 245fn, 365 

:: and bi 355, 364 
:: and proof of Donaldson's theorem 245 fn 
:: finding and avoiding 357-365 

: in Seiberg-Witten theory 365, 397 
:: and bi 365, 397 
:: and proof of blow-up formula 407 
::and proof of Donaldson's theorem 454 
:: finding and avoiding 357-365 

Reeb component (of a foliation) 492 

regular value 9 

retraction 11 fn 

Riemann-Rock theorem 282 

Riemannian manifold, metric 346 
: L 2-norm 398, 497fn 
: Levi-Civita connection 346 

::and Kahler forms 381 
: scalar curvature 350 
:volume form 351, 497fn 

Rokhlin invariant (dim 3) 225-227 

Rokhlin's theorems 
: Rokhlin 's theorem 171 

:: and 3-manifold invariants 225-227 
::and 7Cn+3 sn 234,235 
:: and the Kirby-Siebenmann invariant 

221-222 
:: generalizations 172 
:: generalizations: Freedman-Kirby 502-507, 

507-520 
:: generalizations: Kervaire-Milnor 172, 

482--485 
::history 235-236 
:: proof 507-529 

: theorem on bounding 4-manifolds 123 
::proof outline 166-167 

: theorem on bounding spin 4-manifolds 165 
::use in Wall's thm on h-cobordisms 158fn 

rounding comers 14 

RlPn 17, -real projective n-space 

ruled complex surface 291 
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s 
Lp 88,- Poincare homology 3-sphere 

L~k-i 97, see under Milnor plumbing 

5, as in 5£ 8,- sphere bundle of the vector 
bundle E 

5n 17, -standard n-sphere 

s± 384, - spinor bundle, see under spin 

cr: w+ --->A~ 394,- squaring map, see under 
spine 

.s 387, - a spine structure 

s-cobordism 64 
: s-cobordism theorem 65 

52 X 52 124, 155 
:and stabi!izations 149-151 
: as building block 244, 247 
: genus of embedded surfaces 488 
: handle description 94 

52 x 52 124, 151 
: and stabilizations 151 

Sard's theorem 9 

Sard-Smale theorem 451 

scalar curvature 350, 405, see also curvature 

Seiberg-Witten invariant 
: adjunction inequality 408 

:: for positive self-intersections 486 
:: for simple type 489 
::proof 496-500 

: and bi 397-398, 445, see also 
connection/ anti-self-dual, and reducible 

:and complex surfaces 412-414 
::Witten's theorem 461 
::Witten's theorem, proof 457-464 

: and connected sums 406-407 
:and Donaldson theory 371-372 

:: comments 248, 356 
::Witten's conjecture 371 

: and genus bounds 408-409, 486-491 
:: adjunction ineq, positive self-inters 486 
:: adjunction ineq, proof 496-500 
::adjunction ineq, simple type 489 
:: from foliations 494 
:: inside CJP2 489 
:: inside 52 x 52 488 
:: Thom's conjecture 489 

: and intersection forms 
::Furuta's 10/s-theorem 248 
:: proof of Donaldson's theorem 454-457 

:and J-holomorphic curves 411-412 
: and knot surgery 544 
:and Lichnerowicz's formula 497 

:: adjunction inequality 487 
:: blow-up formula 407 
:: compactness of moduli space 400-401 

605 

:: integral scalar curvature bound 398-399 
:: most moduli spaces empty 398-400 
:: pointwise scalar curvature bound 400-401 
:: vanishing for connected sums 406 
::vanishing from curvature 405 

: and logarithmic transformation 536-539 
: and rational blow-down 550 
: and scalar curvature 405 
: and symplectic manifolds 409-412 

:: and Gromov-Taubes' invariant 473 
:: proof for Kahler case 457-464 
:: proof of symplectic non-vanishing 

465-470 
: blow-up formula 407 
: fiber sums 534-535 
:Furuta's 10/s-theorem 248 
: gluing results 534-539 

::fiber sums 534-535 
:: logarithmic transformation 536-539 

: involution 405 
: moduli space 397, 439-453 

:: is a manifold 397 
:: is a manifold, proof 449-452 
:: is compact 400 
:: is non-singular 397, 445, see also bi 
:: is orientable 402 
:: is orientable, proof 447-449 
:: its dimension 445-446 

: monopole 396,- solution 
: non-vanishing for symplectic 408 

::proof 465-470 
: on 3-manifolds 477 
:proof of Donaldson's theorem 454-457 
:reducible solution see under reducible 
: Seiberg-Witten equations 396 
: Seiberg-Witten series 533-534 
:simple type 403,489-490 

::simple type conjecture (open) 402 
: Thom conjecture 489 

::generalized 490 
: vanishing for connected sums 406 
: vanishing from curvature 405 
: vanishing from spheres 409 
: when not of simple type 452-453 
:Witten's conjecture (open) 371 
:Witten's theorem 461 

Seiberg-Witten-Floer homology 477 

Seifert surface 92, 145.fn, 147 

Seifert-fibered 3-manifold 311 

self-dual 2-forms 352 
: and spine structures 426 

self-dual spinor 391, see spine 

self-plumbing 78, see plumbing 

Serre duality 282.fn 
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: symplectic analogue 412 

Serre's classification of intersection forms 238 
: proof for indefinite odd case 262-263 

sheaf cohomology 193, see Cech cohomology 

sign M 120,- signature of M 

signature 120, see under intersection form 
: signature theorem see Hirzebruch signature thm 

(or maybe Hodge signature thm) 

simple type 
: in Donaldson theory 371 
: in Seiberg-Witten theory 403, 489-490 

:: and genus of surfaces 408, 489 
:: and symplectic manifold 410, 473 
::simple type conjecture (open) 402 
:: when not of simple type 452-453 

simple-homotopy type 60-66 

simplex 182fn 

simply-connected 17 
: non-simply-connected see fundamental 

group 
singular fiber see also under elliptic surface 

: classification 319-322 
: cusp fiber 304 
: fishtail fiber 304 
: in Kummer K3 132-133 
: monodromy 321 
: necklace fiber 319 
: plumbing its neighborhood 321 

singularity of complex hypersurface 317-319 

skeleton 160 

sliding handles 42-43, see under handle 

small exotic R4 250 

smooth 5 
: smooth structure see under structure or 

smoothing 

smoothing 
:smoothing (micro)bundles 216-221 
: smoothing comers 14 
: smoothing handles 214-215 

:: handle smoothing theorem 215 
: smoothing topological manifolds 207-224 

:: dimension 4 221-224, 243-248 
:: opening comment vii 

SO( n) 334,- special orthogonal group 

so ( n) 334, - skew-symmetric endomorphisms 
ofRn 

Sobolev space 440 

special orthogonal group, SO(n) 334 

special unitary group, SU(n) 334 

sphere 
: Brieskom sphere 318 
:exotic spheres 30, 32,97-100,475 

:: and smoothing manifolds 217 
:: Brieskom spheres 318 
:: from complex singularities 318 
:: from Gluck twists 82 
:: from plumbings 98 

Index 

: group of homotopy spheres 99-100, see also 
exotic spheres 

: homology sphere 86 
::and unimodularity 88fn, 240, 261 
:: bounding contractible manifolds 83, 240, 

262 
:: Brieskorn spheres 318 
::Casson invariant (dim 3) 227 
:: Rokhlin invariant (dim 3) 226 

:homotopy sphere 81, 86fn 
: Kervaire sphere 98 
: knotted spheres 82 
: Poincare homology 3-sphere 88 

:: gluing along it 224 
:: handle construction 242 
:: its higher-dim analogues 97 
:: its orientations 224 
:: its Rokhlin invariant 226 
::other descriptions 88 
:: plumbing construction 86-88 

: reflections on spheres 153 
: sphere bundle 8 
:sphere theorem (dim 3) 102 
:transverse sphere 150, see also Wall's theorem 

on stabilizations 

Spin(n) 335,~spingroup 

spin structure 164, 225, 383-385 
:actionofH1(M;Z2) 164 
: and intersection forms 164, 171 
: and spin bounding 165 
: and spinC structures 387 
: Clifford multiplication 384 
: definition 

::equivalence of definitions 181-189 
::through bundle cocycles 177-179 
::through Cech cocyles 195-197 
:: through classifying maps 206-207 
:: through partial trivializations 164 
::through principal bundles 181 

:Dirac operator 384 
:failure to be spin 179-180 

:: and spine structures 385-387 
::the Cech view 195-197 

: Lie-group spin structure 521, 522, 524 
:lower-dimensional spin structures 521-527 
: spin structures on characteristic surfaces 

527-528 
: spin cobordism group 229 
: spin connections 384 
:spin group, Spin(n) 335 
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: spinor bundle/spinor field 384 

Spine ( n) 335, 385,- complex spin group 

spine structure 386 
:action of H2 (M;Z) 389 
:and almost-complex structures 437-439 

:: induced spine structure 390 
:: partial alm-cx str from spine str 426-427 
:: spine str as generalized alm-cx str 387 
:: spine str from partial alm-cx str 421 

: and quaternions 436-439 
: Chern class 387 

:: almost·complex case 390 
:: identifying the structure 389 

: classification 389 
: Clifford multiplication 391 

:: the quaternionic view 436 
: determinant line bundle 387 

:: almost-complex case 390 
:: from characteristic surface 388 
::the quaternionic view 436 

: Dirac operator 393, see under Dirac 
: existence 386 

:: characteristic surface proof 386-387 
:: cocycle/Cech proof 423-425 

: Lichnerowiczformula 393 
: Seiberg-Witten invariant see Seiberg-Witten 
: spin connections 392 

::and Dirac operator 393,439 
:: Kahler case 439 
:: the quaternionic view 436-437 

:spin group, complex, Spine(n) 335 
: spine cobordism group 427-432 
: spinor bundle 391 

::almost complex case 437-439 
::and (p, q )-forms 438-439 
:: and 2-forms 425-426 
:: the quaternionic view 436 

: spinor field 391 
: squaring map 394 

:: and Hop£ maps 395 
::and Seiberg-Witten 396 
:: the quaternionic view 436 

spinor 391, see under spin/spine structures 

squaring map 394, see also under spine 

stabilization 
: for 4-manifolds 149 

::and diffeomorphisms 155 
:: and embedding char spheres 505 
::and smoothing topological mfld's 222 
:: Wall's thm on stabilizations 149 

: for bundles 219, 232 
: for matrices 59 

stabilizer 333 fn 

stable bundle 232, see also stabilization 

stable homotopy group 232 

star( v) 191,- star of a vertex 

star operator 351, see Hodge operator 

Stiefel-Whitney characteristic class 160-166 
:first Stiefel-Whitney characteristic class 

::and orientations 161 
::the Cech view 194 
:: the classifying space view 206 

:second Stiefel-Whitney class 162-165 
::and intersection forms 163, 171 
::and spin structures 164,383 
:: and spine structures 386 
:: and surfaces 162-163, 168 
:: Dold-Whitney theorem 167 
:: integral lifts 170, see also characteristic 

element 
::the Cech view 195-197 
:: the obstruction theory view 203 

structure 
: almost-complex structure 376, see under 

almost-complex 
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: complex structure 6, see also complex surface 
and Newlander-Nirenberg 

: handlebody structure see handle 
decomposition 

: holomorphic structure, on a bundle 369, see 
holomorphic bundle 

: Kahler structure 276, see under Kahler 
: piecewise-linear (PL) structure 6, 68, 208, 

219-221 
: smooth structure 5 

::and microbundle smoothing 214, 216 
::concordant smooth structures 99,214,217 
:: existence 207-224, 243-248 
:: handle smoothing theorem 215 
:: isotopic smooth structures 214 
::Milnor's smoothing theorem 214 
:: opening comment vii 
::product structure theorem 214 

: spin structure 164, see under spin 
: spine structure 386, see under spine 
: symplectic structure see under symplectic 

structure group, for bundles 204, 336 
:reduction of structure group 176 

structure-group, for bundles see also cocycle for 
bundles 

submanifold 9 

submersion 9 

sum 
:boundary sum 13,228, 430fn 
:connected sum 117-118 
:end sum 254 
: fiber sum 306-309 

:: generalized fiber sum 534-535 
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sum-stabilization 149, see stabilization 

surface 
: and Kirby-Siebenmann invariant 222 
: and 7tn+2 sn 233-234 
: characteristic surface see under characteristic 
: complex surface see under complex 
: embedding surfaces 112-115, see also 

minimum genus 
:inside (almost-)complex or symplectic 

manifolds see under curve 
: of minimum genus see under minimum 

S'WM 404, 533,- Seiberg-Witten 
invariant/ series 

symplectic manifold 381 
:and Lefschetz fibration 418-419 
: and Seiberg-Witten 409-412 

:: Gromov-Taubes' invariant 473 
::proof for Kii.hler case 457-464 
:: proof of symplectic non-vanishing 

465-470 
: blow up, blow down 412 
: Chern class 381 
: is irreducible 408 
: J-holomorphic curve 376 

::adjunction formula 377 
::and Seiberg-Witten 411-412 
::genus 377 
:: Gromov's compactness theorem 471 
:: Gromov-Taubes invariant 471-474 
:: minimizing genus 490-491 
:: Taubes' theorem 411,473 
:: their areas 382 

: non-symplectic manifolds 545, 553 
: overview 380-382 
: symplectic form 276, 381, see also Kii.hler 
: symplectic structure 381, see symplectic form 
: symplectic submanifold 490 

Szab6 see Ozsvath-Szab6 

T 
T x 8, - tangent bundle of X 

TJ( 8,- cotangent bundle of X (or 1-forms) 

1rn 17,- standard n-torus 

Elm 99, 220,- group of exotic m-spheres 

T(W, M) 64,- Whitehead torsion 

Tc 337, - parallel transport 

iJ 200,- obstruction cocycle 

tangent bundle of a manifold 8 
: cocycle description 175 
:for topological mfld's see topological tangent 

bundle 
: topological tangent bundle 211 

tangent microbundle 211 

tangent space see also tangent bundle 
: Zariski tangent space 444 

Taubes' theorems 
: theorem on exotic JR4 's 255 
:theorem on intersection forms of open 

4-manifolds 258 

Index 

: theorems on symplectic manifolds 410-412 
:: Seiberg-Witten and Gromov-Taubes 

invariant 473 
:: Seiberg-Witten and J-holomorphic curves 

411 
:: Seiberg-Witten non-vanishing 410, 

465-470 
:: Seiberg-Witten simple type 410 
::beyond symplectic 474 

taut foliation 492, 495fn, see under foliation 

Thorn conjecture 489 
: generalized 490, see also adjunction ineq 

Thurston's 
: geometrization conjecture (dim 3) 101 
:norm (dim 3) 492 
:theorem on genus of surfaces (dim 3) 493 

TOP( m) 209,- group of self-homeomorphisms 
oflRm 

topological manifold 5 
: 4-dimensional 69-97 

::classification 239-243 
::smoothing 221-224 

: dimension 4 
::smoothing 171-172,243-248 

:smoothing 207-224 

topological tangent bundle 211 

torsion 
: of a 3-manifold 477 
: of connection see under torsion-free 

torsion-free connection 346 
: Levi-Civita connection 346 

totally real submanifold 478fn 

transitive action of a group 164fn 
transverse 10 

:transverse sphere 150, see also Wall's theorem 
on stabilizations 

trefoil knot 
: and cusp singularity 304 
: and fake CJP2 242 
: and Poincare sphere 242 

triangulation 182fn 
trivial cobordism 28 

trivial/ trivialized bundle 7 

tubular neighborhood 11 

turning upside-down a handle decomposition 
5o-51, see also under handle 

twistor space 379 
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:: integrability theorem 369 
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: and spinors 

:: Kahler case 457 
:: symplectic case 465 
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: Cauchy-Riemann operators see under 
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:Hodge signature theorem 278 
: Lefschetz theorem 278 

U(n) 334,- unitary group 

unimodular 116, see also under intersection form 

unique continuation property for Dirac operators 
393 

unitary group, U(n) 334 

universal bundle 204 

unknot 148.fn 

upper boundary 34, see also cobordism 

upside-down, for handle decompositions 50-51 
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van der Blij's lemma 170 
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vanishing cycle 304, 532 

vdim !lJt 446,- virtual dimension, of moduli 

vector bundle 7, 175, 335 
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::proof 155-160 

: theorem on automorphisms 152 
: theorem on diffeomorphisms 153 
: theorem on stabilizations 149 
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weak derivative 440 
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