LECTURE 3
§ How To (DE) CONSTRUCT MANIFOLDS
$\operatorname{det}$ (GLUE) Given two roth manifolds with $\operatorname{dm} N_{1}=\operatorname{dm} N_{2}=n$ a rank ( $m-n$ ) bundle $E \longrightarrow Y$ over a smooth $m$-manifold, $m \leq n$ and neat two. nohds $\gamma_{i}: E \hookrightarrow N$ of neat nubmanifolds $\gamma_{i}(Y)$.
Define:

$$
N_{1}, v_{1} \|_{\nu_{2}} N_{2}:=N_{1} \backslash \nu_{1}(Y) \sqcup N_{2}, \nu_{2}(Y) / \nu_{1}(v)=\nu_{2}\left(\operatorname{rev}(|v|) \cdot \frac{v}{|v|}\right), \forall v \in E
$$ where rev: $(0, \infty) \rightarrow(0, \infty)$ is an orecutation reversing diffeomerphim.



NoTE: For $v_{i}: E \hookrightarrow \partial N_{i}$ can still define $N_{1} \# v_{1} v_{2} N_{2}$.
We can first glue the boundaries: $\quad \partial N_{1} r_{1} V_{1} \partial N_{2}$
But then we have to mane sure we can "put $N_{1}$ and $N_{2}$ baum in" and still have a roth structure. We can do this using "half-tubular" neighbourhoods

THM. This operation yields a well-defined smooth manifold, which up to deffeomorplinus does not depend on rev aud depends only on $v_{i}$ up to isotopy.
Some special cares:
10 connelted mum $N_{1} \# N_{2}$ for $Y=p t, E=\mathbb{R}^{n}$. $\gamma_{i}: \mathbb{R}^{n} \hookrightarrow \operatorname{in} t N_{i}$
$2^{\circ}$ boundary connected nam $N_{1} \not q N_{2}$ for $Y=p t, E=\mathbb{R}^{n-1}, v_{i}: \mathbb{R}^{n-1} \hookrightarrow \partial N_{i}$
THM [Palais]
Any two $\mathbb{D}^{n} \subset N$, either both orient. preserving or reversing, are aubiently isotopic. Hence, connetted \& boundary connected sun are well-defined and indep. of all choices.

30 handle attachment: $\quad N_{1}=N, N_{2}=\mathbb{D}^{n} . Y=\mathbb{S}^{k-1}$

$$
v_{1}: \mathbb{S}^{k-1} \times \mathbb{R}^{n-k} \hookrightarrow \partial N, \quad v_{2}: \mathbb{S}^{k-1} \times \mathbb{R}^{n-k} \hookrightarrow S^{k-1} \times D^{n-k} \leq \mathbb{D}^{k} \times D^{n-k} \approx \mathbb{D}^{n}
$$

Examples.


$$
K=1
$$


$k=3 \quad t u_{s}$ is boundary connected mun with $D^{3}$ (so not ponsibk for $N=S^{\prime} \times D^{2}$ )
Note: We simplify ley thinking of handle attachment as jest $N U_{\varphi} h^{k} \equiv N_{v_{1} \#_{v_{2}}} D^{n}$ where

$$
h^{k}:=\mathbb{D}^{k} \times D^{n-k}
$$

is the handle of index $k$ ( $k$-howell) $\varphi:=\bar{\nu}_{1}: \mathbb{S}^{k-1} \times D^{n-k} \hookrightarrow \partial N$ is the attaching region


3-dim' 2 -handle $h^{2}$
Note: The usual def $n$ of $N v_{e} h^{k}$ as the gluing of top. mocues is apron not a moth manifold, beet our def $N \underset{v_{1} v_{2}}{\#} D^{n}$ is!
$\qquad$

Exercise. Use the Haudicoody Decomposition The to prove the dasrification of compact sultans.
Exercise. Relate surgery on a (k-1)-sphere and handle attachment of a k-houste.
§ handle calculus
Cor of The. - $\left.\right|_{\text {sotopy }}$ Lemma - If $\varphi_{i}: \mathbb{S}^{k-1} \times D^{n-k} \hookrightarrow \partial N$ are jotopic $i=1,2$. then $N U_{\varphi, i} h^{k}$ are diffeomorphic $i=1,2$.

- Unknot Lemma -
 then $N$ is a $D^{n-k}$-bundle over a smooth manifold homemorpmic to $\mathbb{S}^{n}$.
proof. Push the interior of $\Delta_{\text {into }} D^{n}, s_{0} \Delta^{\prime}: D^{k}<D^{n}, \partial \Delta^{\prime}=A$. Then $D^{n}$ con be vexed as a two nod $\nu_{\Delta}: \mathbb{D}^{k} \times D^{n-k} \cong \mathbb{D}^{n}$. Then: $N=\mathbb{D}^{n} v_{\varphi} h^{k} \cong\left(\mathbb{D}^{k} \times D^{n-k}\right)_{\left.S^{*} \times 0^{n-k}\right)_{\varphi}}\left(\mathbb{D}^{k} \times D^{n-k}\right)$ Now, the projections $\mathbb{D}^{k} \times D^{n-k} \longrightarrow \mathbb{D}^{k}$ slue together


eff. For a diffoomorpuim $A: S^{k-1} \cong \cong$ define the smooth manifold $S(A):=\mathbb{D}^{k} \cup_{A} \mathbb{D}^{k}$.
Lemma. $S(A)$ is always homeomorpuic to $S^{k}$.
proof. Define a homeoomorpuinu $\mathbb{D}^{k} \cup_{A} \mathbb{D}^{k} \xrightarrow[\approx]{\overline{A_{u i d}}} \mathbb{D}^{k} \cup_{i d} \mathbb{D}_{\text {si }}^{k}=S^{k}$ where $\bar{A}: D^{k} \longrightarrow \mathbb{D}^{k}, \begin{gathered}\bar{A}(r, v)=(r, A(v)) \text { is a haneomompuism exteresing } A \text { radially. } \\ {\left[0, i, \delta^{k}\right.}\end{gathered}$
NoTE: $S(A)$ is not diffeomomuic to $S^{k}$ in general. It in called a "twisted sphere".
We will see:
Smalt's h-cobordionn Thu $\Rightarrow$ Every exotic sphere of dm $\geqslant 5$ is a twisted sphere.

Exercise. A twisted sphere $S(A)=\mathbb{D}^{k} \cup_{A} \mathbb{D}^{k}$ is diffeomarplic to $\mathbb{S}^{k}$ if and only if $A: \mathbb{S}^{k-1} \rightarrow \mathbb{S}^{k-1}$ extends to a diffeomorpuirm $\mathbb{D}^{k} \longrightarrow \mathbb{D}^{k}$.

Note: The Ununot lecuma is not true of $\Delta \leq \mathbb{D}^{n}$ instead of $\Delta \leq \partial D^{n}$. The condition $\triangle \leq \partial D^{n}$ is eguivalcut to $A$ being "unknotted", $A \cong U$ whereas $\Delta \subseteq D^{n}$ io guivalent to $A$ being "slice".
For excuuple: $\exists$ many $A: S^{1} \subseteq S^{3}$ nit. $A \neq U$ but $A$ 10 rice 1.9. SO
Cor. If $A: S^{k-1} \hookrightarrow \partial N$ bauds a dix $\triangle: D^{k} \hookrightarrow \partial N$,

$$
\text { then } \quad N_{u_{y}} h^{k} \cong N_{q} E
$$

where $E \rightarrow S(A)$ io a $D^{n-k}$-bundle.


- Upride Down Leumna - For every handle decomposition of (W, , W, , , W) there is an "upnide-down" decomposition of $\left(W, \partial_{1} W, \partial_{0} W\right)$ wither handles of index $n-k$ attached along the belt spheres of $k$-handles of the original decomposition.
proof. FACT: Every handle decomposition corresponds to a Moore function, call it $h$. Then $-h$ yields a decomposition of the upside-down cobordime We pest observe that turning a $k$-handle upride-down tums its belt region into the attacking region.

- Reordering Lamina - ff $k \leqslant l$ then (N $\left.U_{e_{1}} h_{1}^{l}\right) \cup_{e_{2}} h_{2}^{k} \cong\left(N U_{e_{2}^{\prime \prime}} h_{2}^{k}\right) \cup_{e_{1}^{\prime}} h_{1}^{l}$ for some inotropic attaching map $\varphi_{2}^{\prime} \cong \varphi_{2}$, with in $\varphi_{2} \subseteq \partial N_{1}$, and $\varphi_{1}^{\prime}$ has the nalue image as $\varphi_{1}$.
proof. Denote $A_{2}:=$ the attaching sphere of $h_{2}, B_{1}:=$ the belt sphere of $h_{1}$.
Tho [Thom] ff $A: M \rightarrow N$ a sooth map and $B \subseteq N$ a compact nebmanifold then there is an aubicut isotopy of $N$. taming $A$ to $A^{\prime}$ such that $A^{\prime} \pitchfork B$. Moreover, the isotopy can be assumed to be the identity outside of any open none of $B$.

Arsmiving this, we have $A_{2}^{\prime} \pitchfork B$ i.e. $d A_{2}^{\prime}\left(T S^{k-1}\right)_{a}+d B\left(T S^{n-(-1}\right)_{b}=T \partial\left(N u h_{1}\right)_{x}$ for every $a, b$ ot. $A_{2}^{\prime}(a)=B(b)$. However, since

$$
\operatorname{dim} B_{1}+\operatorname{dim} A_{2}=n-l-1+k-1=(n-1)+(k-l)-1<n-1=\operatorname{dim} \partial\left(N \cup h_{1}\right)
$$

we must have $A_{2}^{\prime} \cap B=\varnothing$. We can isotype further, go that $A_{2}^{\prime \prime} \leq \partial N$ (i.e. the colt region) By the Ambient isotopy Extension thin we have $\varphi_{2}^{\prime \prime}\left(S^{k-1} \times D^{n-k}\right) \leq \partial N$. Thus, the two haubles can be attached in any order (or simultaneously).
sketch proof of Them's Then:
Firstly, find a tubular nohd $U_{B}$ of $B$ contained in the given open set $U \geq B$. Then apply to $E=U_{B} \rightarrow B$ the following:
Lem. If $f: M \rightarrow E$ is smooth and $E \xrightarrow{\pi} N$ a smooth vector bundle, then there exist a section s: $N \rightarrow E$ mim that $f \rightarrow s$.
Thus, there is an obvious isotory from $B$ to $s(B) \subseteq U_{B} \subseteq \cup$ and we can extend it ley id on N.V.
To prove the Lemma, use Morre-Sard Tum to get the result for trivial bundles, and extend to all bundles using that all vector bundles have stable inverses.

Exalumple. $\quad n=3, k=l=1$


- Cancellation Lemma - ft $A_{2} \pitchfork B_{1}=\{p\}$ then $\left(N U_{e_{1}} h_{1}^{k}\right) \cup_{e_{2}} h_{2}^{k+1} \cong N$.

We say tut $h_{1}$ and $h_{2}$ are
in a geometrically canceling position.
Or $h_{2}$ goes over $h_{1}$ geometrically once.
proof. Since $A_{2}^{k-1}$ and $B_{1}^{n-k-1}$ intersect transversely, and $\nu_{B_{1} \leq N v_{r}} h_{1}$ can be identified with the belt region $D^{k} \times \partial D^{n-k} \leq \partial h_{1}^{k}$, we can assumive $A_{2} \cap \partial h_{1}^{k} \cong D^{k} \times\{p\}$ (the fibre of $\gamma_{B_{1}} \subseteq N_{v_{1}} h_{1}$ at $p \in B_{1}$ ). Then le Cor. of Unknot Lemma for

$$
N^{\prime}:=N_{e_{1}} h_{1}^{k} \text { and } A:=A_{1} \text { and } \Delta:=A_{2} \cap \partial N
$$


we have differs:

$$
\left(N \cup_{r_{1}} h_{1}^{k}\right) \cup_{r_{2}} h_{2}^{k+1} \cong(N \not G E) \cup_{r_{2}} h_{2} \cong N \nsubseteq\left(E \cup_{\varphi_{2}} h_{2}\right) \cong N \nsubseteq \mathbb{D}^{n} \cong N .
$$

Example. $n=3$


Note: We can reverse the argument to show that a canceling pair can be added.

Example. $\begin{array}{ll}\mathbb{D}^{n}=\mathbb{D}^{k} \times \mathbb{D}^{n-k} \\ A: \mathbb{S}^{k-1} \longrightarrow \partial \mathbb{D}^{n} \text { as }\left\{\left(x_{k}, x_{n-k}\right):\left|x_{k}\right|=1, x_{n-k}=0\right\}\end{array}$
twen the half. tub. nbhd of $A$ is $\left\{\left(x_{k}, x_{n-k}\right):\left|x_{k}\right|>\varepsilon\right\}$
can tave $\Delta=\left\{\left(x_{k}, x_{n-k}\right):\left|\left(x_{k}, x_{n-k}\right)\right|=1,\left|x_{n-k}\right| \geqslant 0\right\}$
can tave $\Delta^{\prime}=\left\{\left(x_{k}, x_{n-k}\right): x_{n-k}=0\right\}$
Then
$\mathbb{D}^{n}=\mathbb{D}^{k} \times 0^{n-k}$ is a tw. nond of $\Delta^{\prime}=\mathbb{D}^{k} \times 103$.




