## LECTURE 5

- Esuivariant Morre chain complex -Vecall:  $C_{k}^{\tilde{W}} := \mathbb{Z}\left\{ qH_{i}^{k} : qe\pi, 1\leq i\leq r_{k} \right\}$  $\delta_{k}^{\mathcal{W}}\left(gH_{i}^{k}\right) := \sum_{q' \in \pi, \ i \in j \in r_{k-1}} \prod \left(g\tilde{A}_{i}^{k} \wedge g'\tilde{B}_{j}^{k-1}\right) g'H_{j}^{k-1}$ def. Let N be an unexted smooth n-manifold and  $f_i: M_i \longrightarrow N$  for i=1,2transverse maps with dim  $M_1 + \dim M_2 = \dim N$  and  $M_2$  simply connected, and  $W_{f_i}$  a path from the basepoint of N to a basepoint of  $f_i$ . Let us write fi = fi U Wfi. (1)e define the quivanant intersection number  $\prod_{n=1}^{\infty} (\widehat{f}, \# \widehat{f}_2) := \sum_{P \in F \land f_2} \varepsilon_P g_P \in \mathbb{Z}[\pi, N]$ for  $\xi_p \in j+1, -1$  and  $g_p \in TT_p N$  defined as follows:  $\epsilon_p := +1$  if oneutation of  $Tf_1 \oplus Tf_2$ , agrees with that of  $TN|_p$  $q_{p} = \left[ W_{f_{\star}} \cdot W_{f_{\star}p} \cdot W_{f_{\star}q}^{-1} \cdot W_{f_{\star}}^{-1} \right]$ where : Wfix is a path in fi from the basepoint of fi to pe finfz Note. - Mi are simply connected =>  $g_p$  does not depend on choices of  $W_{f_{i,x}}$ Wf.P Wfip but it does deputs on choices of Wfi--  $\tilde{f}_i$  is a based map, it is a choice of a lift of  $f_i$  to  $\tilde{f_i}: M_i \longrightarrow N$ . ( Recall : a map from simply connected life to the nurrenal current. Zemma.  $\tilde{\Box}(\tilde{f}_1 \oplus \tilde{f}_2) = \sum_{g \in T, N} \Box(\tilde{f}_1 \oplus g \tilde{f}_2) \cdot g$ . proof.  $p \in f_1 \land f_2$  with  $g_p = g_1 \notin p = \emptyset$   $\langle = \rangle \times \in \widetilde{f_1} \land g \widetilde{f_2}$  with  $g_x = 1 \cdot \xi_x = \emptyset$ .

Π

$$Cor. \quad \delta_{k}^{\widetilde{\mathcal{W}}}(H_{i}^{k}) := \sum_{1 \leq j \leq r_{k-1}} \widetilde{\Box}(\widetilde{A}_{i}^{k} \wedge \widetilde{B}_{j}^{k-1}) H_{j}^{k-1} \quad \text{and} \quad \delta_{k}^{\widetilde{\mathcal{W}}}(gH_{i}^{k}) = g \cdot \delta_{k}^{\widetilde{\mathcal{W}}}(H_{i}^{k}).$$

-Haudle Slides Zemma -The change of basis  $\widetilde{H}_{j}^{k+1} \xrightarrow{B} \widetilde{H}_{j}^{k+1} g \widetilde{H}_{j'}^{k+1} (or \widetilde{H}_{j}^{k+1} g \widetilde{H}_{j'}^{k+1}) in C_{*}^{\widetilde{M}}$  for some  $1 \leq j, j' \leq r_{k+1}, g \in \mathbb{T}$ . Can be realised geometrically on the handle decomposition. More precisely, the att. sphere of  $h_{j}^{k+1}$  can be isotroped to that the new handle decomposition induces B on  $C_{*}^{\widetilde{M}}$ .

proof.  
We can attach housdus of the same index in any order, no consider 
$$(W^{\leq K} \cup h_{j}^{k+1}) \cup h_{j}^{t+1}$$
.  
In  $\Im_{i}(W^{\leq K} \cup h_{j}^{k+1})$  we have a push-off of  $A_{j}$ , which bounds a dime  $\mathring{\Delta} = push off$  of the core  $\mathfrak{g}(h_{j}^{k+1})$ .  
Then we can firm an ambicut connected num  
 $A_{j} #_{\mathfrak{g}}A_{j} = (A_{j} \cdot Y(p+1) \cup Y(w_{j}^{-1} \cdot \mathfrak{s}^{*} \cdot W_{j})) \cup (A_{j} \cdot Y(p+1))$  where  $\mathfrak{ts}^{*}\mathfrak{g} \in \pi$   
 $w_{j} = para from A_{j}^{*}$   
 $\mathfrak{s}^{*}$ .  
Since  $A_{k}^{k} \cdot Y(p+1)$  is isotopic rel boundary to  $Y(p_{j}^{*} \cdot \mathfrak{s}^{*} \cdot W_{j}) \cup Y(h_{j}^{*} \cdot \mathfrak{s}^{*} \cdot W_{j})$ .

Un the other hand, we clearly have that a handle attached to  $A_j #_{s} A_{j'}$  corresponds to  $H_{j}^{K+1} \neq gH_{j'}^{K+1}$  (to set  $-gH_{j}^{K+1}$  use oppositely oncuted  $A_{j'}$ ).  $\Box$ 

## S WHITNEY TRICK

Recall: Whitney used this frick in the proof of Whitney's embedding theorem in 1940. It is a regular humotopy that removes a pair of (self-) internations.

Recall (L1): Every top. n-manifold admits a top. encedding into  $\mathbb{R}^{n'}$ , and n'=2n enough.

Thm [Whitney, 1936] Every amooth manifold admits a amooth culleddrug into R", and n'= 2n enough.

Let. Fix smooth manifold M, N and a smooth map  $f: M \times [0,1] \longrightarrow N$ . (So f is a smooth homotopy from forto  $f_n$ , where  $f_t := f(-,t): M \rightarrow N, t \in [0,1]$ .) 1° If  $f_t$  is an embedding for every t, then f is a smooth isotopy from for  $t_0$   $f_1$ 2° If  $f_t$  is an immersion for every t, then f is a regular homotopy from for  $t_0$   $f_1$ .

NOTE: A Whitney move is a vogular homotry (in the local model, it goes from an immersion to with 2 double points to an embedding).

The [Whitney]  
A smooth map 
$$f: M \rightarrow N$$
 is homotypic to an embedding if  $n \ge 2m+1$   
and to an immersion if  $n = 2m$ . If  $f, g: M \rightarrow N$  are two humotopic embeddings  
and  $n \ge 2m+2$ , then they are also isotypic.  
Zet  $f_i: M_i \rightarrow N$  be two embeddings with dm  $M_a + dm M_2 = dm N$  and  $f_a \uparrow f_i$ .

We assume points  $p_{i,2} \in f_i \wedge \tilde{f_2}$  are nucli that: there are arcs  $\delta_i^{v} \in f_i(M_i)$  from  $p \neq 2$  and an embedded dim  $W: \mathbb{D}^2 \longrightarrow N$ . with  $\partial W = \delta_i^{v} \delta_2^{v-1}$  and int W disjoint from  $f_i(M_i)$ , i=1,2. Now define a subbundle z of YwEN 2W of rank K-1. 1° along  $\mathfrak{V}_n$  define  $\mathfrak{Z}_n|_{\mathfrak{V}_n} := \mathcal{V}_{\mathfrak{V}_n \in \mathfrak{f}_n}$ 2° along  $\delta_2'$  define  $h_1$  as the round K-1 nubbundle of  $V_{f_2 \leq N}|_{s_1}$  (this is rank K) that is normal to W (so  $3|_{\delta_2}$  is the complement of  $V_{\delta_2 \in f_2} \leq V_{f_2 \in N}|_{\delta_2}$ ) Thus, 3 is tangent to for and normal to f2 The normal buildle  $V_{W \in N}$  is trivial (as  $D^z \simeq *$ ) and we would like to extend by to a nubboundle of  $\mathcal{V}_{W \subseteq N}$  over the whole dime W. This corresponds to extruding the map  $2\mathbb{D}^2 \xrightarrow{4} Gr_{k-1}\mathbb{R}^{n-2}$  over  $\mathbb{D}^2$ . This is possible off [2]=1 & TT\_1 Gr\_{K-1} R^{n-2} = 2/2, unless k-1=1, n-2=2 + whose nontrivial element is given by taking a plane to itself with opposite orientation For \* use that oriented Gramm.  $Gr_i^+ \mathbb{R}^{i} \cong \frac{SO(i)}{SO(i) \times SO(j-i)}$  double covers  $Gr_{k-1} \mathbb{R}^{n_2}$ and is simply connected as  $\pi_1 SD(i) \longrightarrow \pi_1 SO(j)$ , if  $j \ge i > 1$ , and  $\pi_1 SO(j-i) \longrightarrow \pi_1 SO(j)$  if i=1, j-i>1whereas  $\pi_1 \operatorname{Gr}_1(\mathbb{R}^2) \cong \pi_1 \operatorname{RP}^1 \cong \pi_1 \operatorname{SO}(2) \cong \mathbb{Z}$ We will have [2]=1 iff 2 is an oneutable builde. (For K=2, n=4 consider proj. to 3/2) Zemma by is uncertable iff the internetion points have opposite signs,  $\varepsilon_2 = -\varepsilon_p$ i.e. if  $df_n \models df_n \models TN \models$  is oneut pres at precisely one x=p.g. By definition: proof.  $\frac{1}{2} \quad \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array}_{1} \end{array}_{y_{1}} \oplus \ T \overline{s}_{1} \end{array} \cong \ T f_{1} \bigg|_{y_{1}} \quad aud \quad \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}_{1} \bigg|_{y_{2}} \oplus \ \mathcal{V}_{y_{2} \in \mathcal{W}} \end{array} \cong \ \mathcal{V}_{f_{2} \in \mathcal{W}} \bigg|_{y_{2}} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array}_{z_{1}} \quad aud \quad \begin{array}{c} \begin{array}{c} \end{array}_{y_{1}} \oplus \ \mathcal{V}_{y_{2} \in \mathcal{W}} \end{array} \cong \ \mathcal{V}_{f_{2} \in \mathcal{W}} \bigg|_{y_{2}} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array}$ Note that  $\operatorname{Ter}_{x} \cong \mathcal{V}_{\chi_{2} \in W}|_{x}$  is one of precisely one of x = p.2. Say p.On the other hand, is is oneutable off induced ineutations of 31/2, and 31/22 either agree or disagree at 604 p.2. They agree at p  $T_{f_{1}} \in p = +1$ , and they agree at 2  $T_{f_{2}} \in s_{2} = -1$ . Π.

## (ase k=2, n=4.

In this case it does not nuffice that  $\mathcal{E}_{\mathcal{E}} = -\mathcal{E}_{\mathcal{P}}$ : this only ensures that  $\mathcal{Z}_{i}$  is oneutable, but it might not extend to W. Namely,  $[\mathcal{Z}_{i}] \in \mathbb{Z} \cong \pi_{i} \operatorname{SO}(2)$  is the relative Eder number of W, obtained by rentricting a framming  $\mathcal{V}_{W \in \mathcal{N}} \cong \mathbb{D}^{2} \times \mathbb{R}^{2}$  to  $\partial W$ . In practice, one has to ensure W to correct the framming (might not always be possible).

## Π.

Now annune we found a framed Whitney dime ( so W together with an extension of z to W). We can then perform the Whitney move:

1° extens W nightly 2° pice a tubular neighbourhood  $\mathbb{D}^2 \times \mathbb{D}^{n_2}$  together with the sub-nobilit corresponding to  $z \cong \mathbb{D}^2 \times \mathbb{D}^{k_1}$ 3° the boundary of twin sub-nobilit is a sphere  $\mathbb{S}^k \hookrightarrow \mathbb{N}$  which intersects  $f_1$  in a nobilit of  $\mathcal{S}_2^r$ . 4° we push this ship  $\mathcal{S}_1^r \times \mathbb{D}^{k_2}$  across the sub-nobilit to become the union of: a nobilit of  $\mathcal{S}_2^{t}$  ( $\cong \mathbb{D}^1 \times \mathbb{D}^{k_2}$ ) with the sphere bundle over  $\mathbb{D}^2$  ( $\cong \mathbb{D}^2 \times \mathbb{S}^{k_2}$ ).

This is an isotropy of fi that removes 2 of its intermedian points with f2.  
Viewed together, this is a regular humotropy of the immersion 
$$M_1 \sqcup M_2 \xrightarrow{f_1 \sqcup f_2} N$$
.

