LECTURE 5
Recall: - Eseivariaut Mure cham complex-

$$
\begin{aligned}
& C_{k}^{\tilde{\mu}}:=\mathbb{Z}\left\{g H_{i}^{k}: g \in \pi, 1 \leq i \leq r_{k}\right\} \\
& \delta_{k}^{\tilde{\pi}}\left(g H_{i}^{k}\right):=\sum_{j^{\prime} \in \pi, 1 \leq j \leq \leq r_{k-1}} I\left(g \tilde{A}_{i}^{k} \pitchfork g^{\prime} \tilde{B}_{j}^{k-1}\right) g^{\prime} H_{j}^{k-1}
\end{aligned}
$$

def. Let N be an oriented moth n-manifold and $f_{i}: M_{i} \longrightarrow N$ for $i=1.2$ transverse maps with $\operatorname{dim} M_{1}+\operatorname{dim} M_{2}=\operatorname{dim} N$ and M_{i} simply connected, and $w_{f_{i}}$ a path from the basepoont of N to a basepont of f_{i}.
Let us write $\tilde{f}_{i}:=f_{i} \cup w_{f_{i}}$.
We define the squivanaut intersection number

$$
\tilde{I}\left(\tilde{f}_{1} \pitchfork \tilde{f}_{2}\right):=\sum_{p \in f \not \hbar_{2}} \varepsilon_{p} g_{p} \in \mathbb{Z}\left[\pi_{p} N\right]
$$

for $\varepsilon_{p} \in\{+1-1\}$ and $g_{p} \in \pi_{1} N$ defined as follows:

- $\varepsilon_{p}:=+1$ if oneutation of $T_{f_{1}}\left|\oplus_{p} T f_{2}\right|_{p}$ agrees with that of $\left.T N\right|_{p}$

$$
g_{p}:=\left[w_{f_{1}} \cdot w_{f_{1}, p} \cdot w_{f_{2}, 2}^{-1} \cdot w_{f_{2}}^{-1}\right]^{1}
$$

where:
$w_{f_{i}, x}$ io a path in f_{i} from the basepoint of f_{i} to $p \in f_{1} \cap f_{2}$

Note. - M_{i} are simply connected
$\Rightarrow g_{p}$ does not depend on choices of $w_{f_{i}, x}$ but it does depend on choice of $w_{f_{i}}$.

- \tilde{f}_{i} in a based map, it is a deice of a lift of f_{i} to $\tilde{f}_{i}: M_{i} \longrightarrow \tilde{N}$.
(Recall: a map from simply competed lift to the universal cover).
Lemma. $\tilde{I}\left(\tilde{f}_{1} \pitchfork \tilde{f}_{2}\right)=\sum_{g \in \pi, N} I\left(\tilde{f}_{1} \oplus g \tilde{f}_{2}\right) \cdot g$.
proof. $p \in f_{1} \pitchfork f_{2}$ with $g_{p}=g, \varepsilon_{p}=\varepsilon \Leftrightarrow x \in \tilde{f}_{1} \pitchfork g \tilde{f}_{2}$ with $g_{x}=1, \varepsilon_{x}=\varepsilon$.

Cor. $\delta_{k}^{\tilde{\mu}}\left(H_{i}^{k}\right):=\sum_{1 \in j \leq r_{k-1}} \tilde{I}\left(\tilde{A}_{i}^{k} \Uparrow \tilde{B}_{j}^{k-1}\right) H_{j}^{k-1} \quad$ and $\quad \delta_{k}^{\tilde{\mu}}\left(g H_{i}^{k}\right)=g \cdot \delta_{k}^{\tilde{\mu}}\left(H_{i}^{k}\right)$.

- Handle Slides Lemma -

The change of lass $\tilde{H}_{j}^{k+1} \longmapsto \tilde{H}_{j}^{k+1}+g \tilde{H}_{i^{\prime}}^{k+1}$ (or $\left.\tilde{H}_{j}^{k+1}-g \tilde{H}_{j^{\prime}}^{k+1}\right)$ in $C_{i}^{\tilde{\mu}}$ for some $1 \leq i j^{j} \leq r_{k+1}, g \in \pi$. caul be realised geometrically on the hands decomposition. More precisely, the att. sphere of h_{i}^{k+1} cal be isotpped so that the new handle decomposition induces B on $C_{*}^{\tilde{\mu}}$
proof.
We can attach hecudles of the same modex in any order, no consider $\left(W^{\leq k} \cup h_{i}^{k+1}\right) \cup h_{i}^{(t+1}$ In $\partial_{1}\left(W^{\leqslant k} \cup h_{j^{\prime}}^{k+1}\right)$ we have a push -off of $A_{j^{\prime}}$. which bound a dim $\Delta=$ push off of the core $a h_{j^{\prime}}^{k+1}$ Then we can form an a ambient connected run

Since $A_{C}^{k}, \nu(p t)$ is isotopic rel bomuday to $\gamma(p t)$, via \triangle, we have inotopmes

On the other hand, we dearly have that a hourly attacked to $A_{j} \#_{\gamma} A_{j}$; corresponds to $H_{j}^{k+1}+g H_{j}^{k+1} \quad$ (t ogee $-g H_{j}^{k+1}$ use oppontely crecuted $A_{j^{\prime}}$).
§ Whitney trick
Recall: Whitney used this trick in the proof of Whitney's embedding theorem in 1940n. It is a regular homotopy tat removes a pair of (reft-) intersections.

Recall (L1): Every top. n-manifold admits a top. eculedding into $\mathbb{R}^{n^{\prime}}$, and $n^{\prime}=2 n$ enough.
Them [Whitney, 1936]
Every smooth manifold adulits a roth culeddrng into $\mathbb{R}^{n^{\prime}}$, and $n^{\prime}=2 n$ enough.
def. Fix smooth manifold M, N and a smooth map $f: M \times[0,1] \rightarrow N$.
(So f is a smooth homotory from fo to f_{1}, where $f_{t}:=f(-, t): M \rightarrow N, t \in[0,1]$).
1^{-}It f_{t} is au ecubedding for every t. then $f i s$ a smooth isotopy from fo to f_{1}
2° It f_{t} is an immersion for every t, then f is a regular homotong from f_{0} to f_{1}
Note: A Whitney move is a regular homotong (in the local model, it goes from an immersion fo with 2 double points to an eunsedding).

The [whitney]
A smooth map $f: M \rightarrow N$ is homotrpic to an ecubedding if $n \geq 2 m+1$ and to an immersion if $n=2 m$. If $f, g: M \hookrightarrow N$ are two hanotopic euleddings and $n \geq 2 m+2$, then they are also isotopic.
Let $f_{i}: M_{i} \hookrightarrow N$ be two embeddings with $\operatorname{dim} M_{1}+\operatorname{dim} M_{2}=\operatorname{dim} N$ and $f_{n} \pitchfork f_{2}$ We assume points $p, 2 \in f_{1} \cap f_{2}$ are nun that:
there are arcs $\gamma_{i} \leq f_{i}\left(M_{i}\right)$ from p to 2 and an cubedded dim $W: \mathbb{D}^{2} c N$. with $\partial W=\gamma_{1}^{v} \gamma_{2}^{-1}$ and int W disjoint from $f_{i}\left(M_{i}\right), i=1,2$.
I. Now define a subbundle ξ of $\left.\nu_{W \leq N}\right|_{\partial W}$ of rank $K-1$.
1^{0} dong γ_{1} define $\left.\xi_{1}\right|_{\gamma_{1}}:=\nu_{\gamma_{1}} \leqslant f_{1}$
2° along γ_{2} define ξ_{1} as the rama $k-1$ nubburdle of $\nu_{f_{2}} \leq\left. N\right|_{\gamma_{2}}$ (this is sank k) that is normal to W (so $\left.z_{1}\right|_{\gamma_{2}}$ is the complement of $\left.\nu_{\gamma_{2}} \leq f_{2} \leq \gamma_{f_{2}} \leq\left. N\right|_{\gamma_{2}}\right)$

Thus, $\}$ is tangent to f_{1} and normal to f_{2}.

The normal bundle $V_{W \leq N}$ is trivial (as $D^{2} \simeq *$) and we would line to extend ξ_{1} to a nubbundle of $\nu_{w \leq N}$ over the whole diss W.
This corresponds to extending the map $2 \mathbb{D}^{2} \rightrightarrows G r_{k-1} \mathbb{R}^{n-2}$ over \mathbb{D}^{2}. This is possible off $[3]=1 \in \pi_{1} G r_{k-1} \mathbb{R}^{n-2} \cong \mathbb{Z} / 2$. unless $k-1=1, n-2=2 \quad *$ whore nontrivial element is given ley taking a place to itself with opposite orecutation For $\$$ use that oriented $G r a s m m$. $G_{r i}^{+} \mathbb{R}^{j} \cong S O(j) / S O(i) \times S O(j-i)$ double covers $G r_{k-1} \mathbb{R}^{n+2}$ and in simply connected as $\pi_{1} S O(i) \rightarrow \pi_{1} S O(j)$, if $j \geqslant i>1$.

$$
\text { and } \pi_{1} S O(j-i) \longrightarrow \pi_{1} S O(j) \text { of } i=1, j-i>1
$$

whereas $\pi_{1} G r_{1}\left(\mathbb{R}^{2}\right) \cong \pi_{1} R P^{1} \cong \pi_{1} S O(2) \cong \mathbb{Z}$
We will have $\left[\xi_{1}\right]=1$ iff ξ_{h} is an rentable bundle. (For $k=2, n=4$ comider prog. to $\mathbb{Z} / 2$)
Lemma. Is is correctable of the intersection points have opposite signs, $\varepsilon_{g}=-\varepsilon_{p}$ i.e. if $\left.\left.\left.d f_{1}\right|_{x} \oplus d f_{2}\right|_{x} \cong T N\right|_{x}$ is orient. pres at precisely one $x=p, 2$.
 By definition:

$$
\left.\left.\dot{z}\right|_{\gamma_{1}} \oplus T_{\gamma_{1}} \cong T f_{1}\right|_{\gamma_{1}} \quad \text { and }\left.\quad \xi_{\mid} \oplus \nu_{\gamma_{2} \leq W} \cong \nu_{f_{2} \leq W}\right|_{\gamma_{2}}
$$

Pick an orientation for W. This corrects ∂W so also $T_{\gamma_{1}}$ and $\nu_{\gamma_{2}} \leq W$.
$\left.N_{\text {Ole that }} T_{\gamma_{1}}\right|_{x} \cong \nu_{\gamma_{2}} \leq\left. w\right|_{x}$ is oreent-pres. for precisely one of $x=p . q$. Say p.
On the other hand, ξ_{1} is orreurable off induced crieutations of $\xi_{r_{1}}$ and $\xi_{\gamma_{2}}$ either agree or disagree at-6oth P.2. They agree at p if $\varepsilon_{p}=+1$, and they agree at ε of $\varepsilon_{\Sigma}=-1$.

Case $k=2, n=4$.
In thin care it does not nuffrice that $\varepsilon_{g}=-\varepsilon_{p}$: thin only eumures that ξ is creatable, but it might not extend to W. Namely, $\left[\tilde{n}_{7}\right] \in \mathbb{Z} \cong \pi_{1} S O(2)$ is the relative Ewer

In practice, one has to clause W to correct the framing (might not always le parrock).

II.

Now amuse we found a framed Whinny dime (10 W together with au exteusion of in to W). We cu then perform the Whitey move:
1° exteus W rightly

3° the baumary of thin nus-nobd is a pere $\mathbb{S}^{k} \hookrightarrow N$ which meleraces f_{1} in a nobs of γ_{1}°.
4° we push this strip $\gamma_{1} \times \mathbb{D}^{k-2}$ across the mub-nohd to become the union of:
a mhd of $\gamma_{2}^{t}\left(\cong \mathbb{D}^{\prime} \times \mathbb{D}^{k-2}\right)$ with the sphere bumble were $\mathbb{D}^{2}\left(\cong \mathbb{D}^{2} \times \mathbb{S}^{k^{k 2}}\right)$.
∇_{0} This is au isotery of f_{1} that removes 2 of its intersection points with f_{2}
Viewed together, tun in a cegtuar hemoting of the immersion $M_{1} \stackrel{M_{2}}{2} \xrightarrow{f_{1} \cup f_{2}} N$.

Lemma $\tilde{I}\left(\tilde{f}_{1}, \tilde{f}_{2}\right)$ is au mvaricut of bared maps \tilde{f}_{i} under Whitney moves.
proof. We check that $\tilde{I}\left(f, i f_{2}\right)$ remains unchanged after a Whitey move. To perform the Whitney move we need points pig and patties γ_{1}, γ_{2} from p to g mech that $\gamma_{1} \gamma_{2}^{-1}$ in mullhomotopic in N. and $\varepsilon_{2}=-\varepsilon_{p}$.
Claim. $\gamma_{1} \gamma_{2}^{-1}$ is mullhomotopic in N it $g_{2}=g_{p}$.

proof of Claim.

