- Handle Trading Lemma-

Assume $\left(W \partial_{0} W, \partial_{1} W\right)$ is an h-cobordime with $\operatorname{dim} W=n \geqslant 6$ and a handle decomposition with no haudles of index $\leq k-1$ for nome $1 \leq k \leq n-2$
Then the decomposition can be modified so that precisely one k-handle is removed and precisely one $(k+2)$-hauche is added.
proof of Handle Trading Lemma.
Let h^{k} be the x-handle we wish to remove.
The idea is to use the reverse of the (aucellation Lemma to add a canceling pair $h^{k+1} \cup h^{k+2}$ so that h^{k+1} cancels our h^{k} and leaves h^{k+2} behind. In other words we will have:
$\partial_{0} \omega \times(0,1)$,

$$
\begin{aligned}
& W^{\leq k} \cong W^{\leqslant k} \not \square D^{n} \\
& \cong\left(W^{\leqslant k-1} \cup \text { other } k \text {-handles } \cup h^{k}\right) \cup\left(h^{k+1} \cup h^{k+2 k}\right) \\
& \cong\left(W^{\leq k-1} \cup \text { other } k \text {-handles }\right) \cup\left(h^{k} \cup_{\varphi_{\mu_{k}} k^{k+1}}^{\varphi_{k+1}}\right) \cup_{\varphi_{h^{k+2}}}^{e_{n^{k+2}}} h^{k+2} \\
& \cong\left(W^{\leq k-1} \cup \text { over } k \text {-handles) } \bigcup_{\varphi_{k} k^{2+2}}^{\varphi_{k+2} l^{k+k^{k}}}\right.
\end{aligned}
$$

ley $G \mathbb{D}^{n}$ does nothing (exercise) by reverse of the Cancellation Lena by the Reordering Jane by the Cancellation Jenna. att.sph
once we find

$$
A:=\left.\varphi_{Q^{k+1}}\right|_{S^{k} \times 0} \leq \partial_{1} W^{\leq k} \text { such that: }
$$

$1^{\circ} A$ goes over h^{k} geom. once (for Canc to apply) $\Leftrightarrow A \pitchfork$ belt sphere of $l^{k}=\{p t\}$
$2^{\circ} A$ is unknotted (for rev. of (aus \mathcal{Z} to apply) $\Leftrightarrow A$ isotopic to the ununot.
Let us construct much au A. We need to distinguish the case $k=1$ from $k \geqslant 2$.

$$
\text { Case } K=1 . \Leftarrow \text { works also for } \mathrm{dm} W \geqslant 5
$$

Firstly, let $L \leq \partial h^{1}$ be a push -off of the core of h^{1}. The endpoints $\partial L \leq \partial_{0} W$ an be connected by an arc $\alpha \leq \partial_{0} W$ (by connectedness assumption on $\partial_{0} W$) which can be chosen to miss attaclung regions of all otter 1-hauckes. Then $A:=L \cup \alpha$ is a circle in $\partial_{1} W^{\leq 1}$ which can be assumed to be smooth and disjoint from all att. circles of 2 -handles, so lives in $\partial_{1} W^{\leq 2}$. By contraction. A goes over h^{1} geometrically once. i \downarrow

Lemma. The arc α cam be chosen so that $A:=\operatorname{Lu\alpha }: S^{\prime} \hookrightarrow \partial_{1} W^{\leq 2}$ is null homotopic. Assuming thin, we will have that A is unknotted since $\operatorname{dim}\left(\partial_{1} W^{\leq 2}\right) \geq 4.2 \circ D$.
proof of Lemma. Since attacking a k-hcudre is homotory equivalent to attacking a k-cell,
only 1- and 2 -handles can change π_{1}.
Thus: $\pi_{1} W \leq 2 \stackrel{ }{\leftrightharpoons} \pi_{1} W$
and $\pi_{1} \partial_{1}\left(W^{\leq 2}\right) \stackrel{\cong}{\leftrightharpoons} \pi_{1} W^{\leq 2}$ (ley turning $W^{\leq 2}$ upside down).
By the h-wbordion assumption $\pi_{1} \partial_{0} W \stackrel{\cong}{\cong} \pi_{1} W$. Therefore,

$$
\pi_{1} \partial_{1} W^{\leq 2} \cong \pi_{1} \partial_{0} W
$$

- If $\pi_{1} \partial_{0} W \cong\{1\}$ we immadiately have $A \sim *$ in $\partial_{1} W^{\leq 2}$.
- More generally: A might be nontrivial $[A] \neq 0 \in \pi_{1} \partial_{1} W^{\leq 2} \cong \pi_{1} W^{\leq 2} \cong \pi_{1} \partial_{0} W_{1}$, Let β be a loop in $\partial_{0} W$ realizing this class, chosen no that it miss all att-spreres of 1 -and 2 -handles. Thus, β lives in $\partial_{1} W^{\leq 2}$, and replaying α with $\alpha \beta^{-1}$ gives $A:=L \cdot \alpha \beta^{-1} \simeq *$ in $\partial_{1} W \leq 2$

Case $k \geq 2$.
IDEA: Start from $A:=$ small unienot and isotope it using handle slides until it goes over h^{k} geometrically once.
find red sphere
that Games a dim
Since $\mathbb{H}_{*}\left(\tilde{W}, \partial_{0} \tilde{W} ; \mathbb{Z}\right) \stackrel{\sum_{=}^{\text {h-cos.amumption }}=0}{ }$ we have that \ldots
Then $C_{k-1}^{\tilde{\mu}}=0$ implies that $\int_{k+1}^{\tilde{\mu}}$ is subjective.

$$
\text { So: } \exists z_{i} \in \mathbb{Z}, 1 \leq j \leq r_{k+1}, g_{j} \in \mathbb{\pi} \text { with } \tilde{H}^{k}=\int_{k+1}^{\tilde{\mu}}\left(\sum_{j=1}^{r_{1+1}} z_{j} g_{j} \tilde{H}_{j}^{k+1}\right) \text {. }
$$

laue HANDLE SLiDES Lemma: we can start from a small unknot $\mathbb{S}^{k} \hookrightarrow \partial_{1} W^{\leq k-1}$ and Side it over handles h_{j}^{k+1} with coefficients $z_{j} g_{j}$ until we have $A: S^{k} \hookrightarrow \partial_{1} W^{\leq k-1}$ with $[\tilde{A}]=\sum_{j=1}^{1,4 n} z_{j} g_{j} \tilde{H}_{j}^{k+1}$. Since handle rides are iotopies, A is unknotted. On the other hand, $\delta_{k+1}^{\tilde{u}}[\tilde{A}]=\tilde{H}^{k}$ gays that A goes over h^{k} algebraically once. Then the Whitney Trick Lemma finishes the proof:

need: $\operatorname{dim} \partial_{1} W^{\leq k-1} \geqslant 5$ so $\operatorname{dim} W \geqslant 6$
key The [Scale 1961] - 1 -cobordinm Theorem -
If $\left(W, \partial_{0} W, \partial_{1} W\right)$ is an s-cobordimn with $\operatorname{dm} W=n \geqslant 6$,
then it is smoothly trivial.
i.e. there is a diffeomompuim $\left(W, \partial_{0} W, \partial_{1} W\right) \cong\left(\partial_{0} W \times[0,1], \partial_{0} W \times\{0\}, \partial_{0} W_{\times} \times 14\right)$.
proof.
Pica a handle decomposition of $(W, \partial, W, \partial, W)$.
Thanes to Remove 0 -and n-handles Lemme, we can annuve no 0 - and n-handles
Step 1. - Normal Form Lemma-
For every h-cobordirn of dimension $n \geq 6$ and any $2 \leq l \leq n-3$
there is a handle decomposition of the form

$$
\partial_{0} W_{x}[0,1] \cup \bigcup_{i=1}^{r_{i}} h_{i}^{l} \cup \bigcup_{i=1}^{r_{t+1}} h_{p}^{l+1}
$$

proof of Normal Form Lemma. We first prove we cal remove all hades of index $\leq l-1$. Indeed, using Handle Trading Lemma we trade
1- for 3-hcudles, then 2-for 4-hcuades, ec. (l-1)- for (lt1)-handles. Thus, we have $W \cong \partial_{0} W \times[0,1] \cup l$-handles $\cup(l+1)$-Lourdes $v \ldots \cup(n-1)$-houdces Wow, we can turn this handle decomposition upside down and repeat the procedure:
in effect, we will be trading $(n-1)$-for $(n-3)$-hocudles..... ($l+2)$-for l-hands.
Thus, we are left with only l - and $(l+1)$-hcoudes, as desired.

Step 2.
We are lett with $0 \rightarrow C_{k+1}^{\tilde{\mu}} \xrightarrow{\delta_{u m}^{\tilde{u}}} C_{k}^{\tilde{\mu}} \rightarrow 0$ and we wish to remove there as well. Since $H_{*}\left(C_{*}^{\tilde{u}}, \delta_{*}^{\tilde{u}}\right)=0$. $\delta_{k+1}^{\tilde{u}}$ is an iromorpuinn $(\mathbb{Z} \pi)^{r_{k}} \longrightarrow(\mathbb{Z} \pi)^{r_{k}}$.
represented lay the equivariaut intersection matrix $\mathcal{J}^{\tilde{\mu}}:=\left(\tilde{I}\left(\tilde{A}_{i} \pitchfork \tilde{B}_{j}\right)\right)_{1 \leq i, i \leq i \leq k}$ Remark. $\tau_{w}=0$ if $\partial_{i} W c W$ are simple homotiry equivalences.

Lemma. $J^{\tilde{\mu}}$ au be modified to the identity matrix $I d_{(2 \pi)^{x x}}$ by the moves linted low, if and only if all the remaining houses caul be put into alg. canceling position.
MOVES: 10 interchcunge rows: $(\bar{\equiv})<u s(\bar{\equiv})$
2° add rows: $(\bar{\equiv}) \mathrm{m},(\stackrel{\overline{+\cdots}}{=}) \quad \because \in \mathbb{Z}(\mathrm{m})$
30 (del stabilise: $(\overline{\bar{\equiv}})$ un s $\left(\overline{\overline{\underline{ }}}{ }_{1}\right)$

proof. Show that each move on matrices cauls realised by a move on hackles. [Exerasee]. D.
def. The Whitehead group Wh (π) is the set of egeivalence classes under moves $1^{\circ}-4^{\circ}$ of invertible matrices of arbitrary size with ecutrics in $\mathbb{Z}[\pi]$ with group structure $J+J^{\prime}=\left(\begin{array}{cc}7 & 0 \\ 0 & J^{\prime}\end{array}\right)$.
Note: $\sum_{\text {guivaleurly }}, W h(\pi):=\frac{G L(\mathbb{Z} \pi)^{a b}}{\langle[g],[-g]: g \in \pi\rangle}$
where $G L(R):=\operatorname{col}_{n \rightarrow \infty} G L_{n}(R)$ for ing R, and at denotes abeciamisation $\left(K_{1}(R):=G L(R)^{\text {as }}\right)$
Examples. Wh $(112)=0$ since $\mathbb{Z} 11\}=\mathbb{Z}$ has Euclidean algorithm
Wh $(\pi)=0$ for $\pi=$ free aleclican group [Ban-Heller-Swan '64]
$W_{h}(\mathbb{Z} / \mathbb{Z})=\mathbb{Z}$ generated lay the whit $t+t^{-1}-1 \in G L_{1}$.
Cunieture. Why $(\pi)=0$ if π is torsion-free.
def. Whitehead torsion of $\left(W, \partial_{0} W, \partial_{1} W\right)$ is $\tau_{\omega}=\left[\gamma^{\tilde{\mu}}\right] \in W h(\pi, W)$.
gives the nave to
the 0 coborddimu Then.

Step 3.
Corollaries.
We now want to use Whitney mores to turn an algebraically canceling pair of handles, into a geometrically canceling par.

- Whitney Trick Lemma -

$$
\Sigma^{\text {bared }} \text { spheres: }: \begin{aligned}
& \tilde{A}=A \cup w_{A} \\
& \tilde{B}=B \cup w_{B}
\end{aligned}
$$

$$
\text { If } \operatorname{dim} N \geqslant 5 \text { and } \tilde{A}: \mathbb{S}^{n_{1}} \underset{\sim}{\sim} N, \tilde{B}: \mathbb{S}_{\sim}^{n_{2}} \leftharpoonup N \text { have } \tilde{I}(\tilde{A} \oplus \tilde{B})=+1
$$

then there is an isotopy of \widetilde{A} such that $\tilde{A}^{\prime} \uparrow \widetilde{B}=\{p t\} . \quad\left(n_{1}+n_{2}=n=\operatorname{dm} N\right)$
proof. Having $\tilde{I}(\tilde{A} N \tilde{B})=\sum_{p \in A B B} \varepsilon_{p} g_{p}=+1=(\overbrace{\varepsilon_{p} g_{p}+\varepsilon_{2} g_{2}}^{0})+\ldots+\varepsilon_{i 1}^{\prime} g_{r}$
implies that we can find pairs $p, g \in A \cap B$ mich that $\varepsilon_{2} g_{2}=-\varepsilon_{p} g_{p}$
$\Rightarrow \exists$ Whitney circle $\gamma_{1} \cdot \gamma_{2}^{-1}$ through p and 2 , which is mull humotupic in N Since $n_{i} \leq n-3 \quad i=1,2 \Rightarrow \pi_{1}(N,(A \cup B)) \cong \pi_{1} N \Longrightarrow \gamma_{1} \gamma_{2}^{-1} \simeq *$ in $N, A \cup B$.
$\Rightarrow \gamma_{1} \gamma_{2}^{-1}$ bounds an immersed dire in $N, A \cup B$.
Since $n \geqslant 5 \Rightarrow \gamma_{1}^{\sim} \gamma_{2}^{-1}$ bocuch an culledded $\operatorname{dim} W: D^{2} \hookrightarrow N$ with int $W \wedge A \cup B=\varnothing$
Since $\varepsilon_{\varepsilon}=-\varepsilon_{p}$ and $n>4 \Rightarrow W$ can be framed.
\Rightarrow We au perform the Whitney move to remove p,q. Continue with other pairs, until precisely one intersection p with $\varepsilon_{p} g_{p}=+1 \mathrm{lcft}$.

Thm - Top Poincare Conjecture in dm $\geqslant 6-$
It N is a smooth homotory n-sphere and $n \geqslant 6$,
then N is homeomompic to \mathbb{S}^{n} (i.c. N is an exotic n-pere).
proof. Remove two small diss from N. The resulting manifold is a simply connected h-cobordimn from S^{n-1} to itself, so ley the h-coburdimn theorem:

$$
\left.\left(N, \mathbb{D}_{1}^{n} \cup \mathbb{D}_{2}^{n}, \partial \mathbb{D}_{1}^{n}, \partial \mathbb{D}_{2}^{n}\right) \cong\left(\partial \mathbb{D}_{1}^{n} \times[0,1], \partial \mathbb{D}_{1}^{n} \times\{0\}, \partial \mathbb{D}_{1}^{n} \times 21\right\}\right)
$$

We can glue back \mathbb{D}_{1}^{n} ley id ∂D_{1}^{n}, beet D_{2}^{n} has to be glued back ley a homeomorpuime extending the diffeomospuim $\partial \mathbb{D}_{2}^{n} \rightarrow \partial \mathbb{D}_{1}^{n} \times 114$ (use the radial exteunin, see (ecture 3)

Tum [Dip Schoenflies Conjecture in dm ≥ 6]
It $K: \mathbb{S}^{n-1} \hookrightarrow \mathbb{S}^{n}$ is a smooth embedding aud $n \geqslant 6$,
then the closure of each component of $\mathbb{S}^{n}, K\left(\mathbb{S}^{n-1}\right)$ is diffeomorphic to \mathbb{D}^{n}.
proof. Since K has a tubular neighbourhood, we re that the closure of each component of $\mathbb{S}^{n}, ~ K\left(\mathbb{S}^{n-1}\right)$ is a smooth manifold with boundary \mathbb{S}^{n-1} It is simply connected by Seifert-vau-Kaumpen Theorem.
Thus, it we remove from it a small dime we get a simply connected h-cobordim By the h-cobordimu Theorem this is diffeomerpluic to $\mathbb{S}^{h-1} \times[0,1]$, and we can put baum the dime le the identity to get a diffeomorpuime to \mathbb{D}^{n}.

