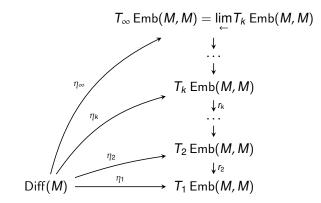
Self-embedding calculus and tautological classes

Nils Prigge

Self-embedding calculus

Let M^d be a smooth closed manifold, then Diff(M) = Emb(M, M). Hence, we can study the space of diffeomorphisms through the Taylor approximations $\eta_k : \text{Diff}(M) \rightarrow T_k \text{Emb}(M, M)$.



Self-embedding calculus

Three themes from Jens' talk:

- (i) Instead of Diff(*M*) we can study the classifying space B Diff(*M*);
- (ii) Tautological classes: For smooth oriented fibre bundle π : E→B with fibre M^d define for c ∈ H^{|c|}(BSO(d))

$$\kappa_c(\pi) := \int_{\pi} c(T_{\pi}E) \in H^{|c|-d}(B);$$

Any such construction that is natural under pullback determines a characteristic class in $H^*(B \operatorname{Diff}(M)).$

(iii) If $\kappa_c(\pi) \neq 0$ for any fibre bundle $\pi : E \rightarrow B$ with fibre *M*, then $0 \neq \kappa_c \in H^*(B \operatorname{Diff}^+(M)).$

Goal for this talk:

- (i) Construct a delooping of the self-embedding tower;
- (ii) Extend the construction of tautological classes over the delooping of the self-embedding tower;
- (iii) Obtain information about (B) $T_k \operatorname{Emb}(M, M)$ similar as in (iii) by showing that certain tautological classes are non-trivial.

Question

How good is the approximation η_k : Diff(M) \rightarrow T_k Emb(M, M)?

Part I - Delooping the self-embedding tower

Classifying spaces

For a topological monoid/ E_1 -algebra M one can construct a space B M. If $\pi_0(M)$ is a group, then $\Omega B M \simeq M$.

• Recall one possible description of the Taylor tower

 $T_k \operatorname{Emb}(M, N) = \mathbb{R} \operatorname{Map}_{\mathsf{PSh}(\mathsf{Disk}_k)}(\operatorname{Emb}(-, M), \operatorname{Emb}(-, N))$

due to Boavida de Brito and Weiss.

- *T_k* Emb(*M*, *M*) is a derived endomorphism space and thus a monoid under compositions — for a suitable choice of derived mapping spaces.
 Remark: Such a description is very good if you want to study the delooping with tools from homotopy theory.
- Goal: Give a more geometric/concrete description.

The Haefliger model of embedding calculus

The following model is due to Goodwillie-Klein-Weiss inspired by work of Haefliger and Dax. All maps are smooth and mapping spaces have C^{∞} -topology.

• The first Taylor approximation is

$$T_{1} \operatorname{Emb}(M, N) = \left\{ \begin{array}{cc} TM \xrightarrow{\overline{f}} TN \\ \downarrow & \downarrow \\ M \xrightarrow{\overline{f}} N \end{array} \middle| \overline{f} \text{ linear vb. monomorphism} \right\}$$

The Haefliger model of embedding calculus

• The second Taylor approximation is the homotopy pullback

$$\begin{array}{ccc} T_2 \operatorname{Emb}(M,N) & \longrightarrow & \operatorname{Map}(M,N) \\ & \downarrow & & \downarrow \\ \operatorname{IvMap}(M^2,N^2) & \rightarrow & \operatorname{Map}^{S_2}(M^2,N^2) \end{array}$$

where

$$IvMap(M^2, N^2) := \{F \in Map^{S_2}(M^2, N^2) | (DF)^{-1}(T\Delta_N) = T\Delta_M \}$$

is the space of strongly isovariant maps. Define

$$T_2\operatorname{Emb}(M,N) := \left\{ H \in \operatorname{Map}^{S_2}(M^2,N^2)^I \middle| \begin{array}{c} H_0 \in \operatorname{Map}(M,N) \\ H_1 \in \operatorname{IvMap}(M^2,N^2) \end{array} \right\}$$

The Haefliger model of sembedding calculus

• For $k \ge 3$ there is a similar description

 $T_k \operatorname{Emb}(M, N) \subset \operatorname{Map}(\Delta^{k-1}, \operatorname{Map}(M^k, N))$

such that the restriction of $F \in T_k \operatorname{Emb}(M, N)$ to the faces $\sigma \subset \Delta^{k-1}$ have image in certain subspaces of $\operatorname{Map}(M^k, N)$.

- For $k \ge 2$ the map $\eta_k : \operatorname{Emb}(M, N) \to T_k \operatorname{Emb}(M, N)$ assigns an embedding $i : M \to N$ the constant map $\operatorname{const}_{i \circ \pi_1}$. For k = 1 it is defined as $\eta_1(i) = Di$.
- The restriction map $T_2 \operatorname{Emb}(M, N) \rightarrow T_1 \operatorname{Emb}(M, N)$ assigns to a strongly isovariant map $F : M^2 \rightarrow N^2$ the induced bundle monomorphism of normal bundles $\nu(\Delta_M) \rightarrow \nu(\Delta_N)$.

Advantages

- Very concrete and potentially amenable to geometric arguments;
- Diff(M) acts continuously on T_k Emb(M, N) by pre-composition;

The Haefliger model of self-embeddings

...is obviously a monoid for $k \le 2$ For M = N, the Haefliger model for k = 1, 2 is

$$T_{1} \operatorname{Emb}(M, M) = \begin{cases} TM \xrightarrow{\overline{f}} TM \\ \downarrow & \downarrow \\ M \xrightarrow{f} M \end{cases} \left| \overline{f} \text{ linear vb. monomorphism} \right\}$$
$$T_{2} \operatorname{Emb}(M, M) = \begin{cases} H \in \operatorname{Map}^{S_{2}}(M^{2}, M^{2})^{l} \middle| \begin{array}{c} H_{0} \in \operatorname{Map}(M, M) \\ H_{1} \in \operatorname{IvMap}(M^{2}, M^{2}) \end{array} \right)$$

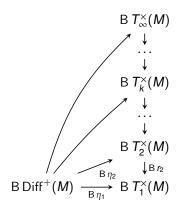
are monoids under composition.

Definition

 $T_k^{\times}(M) \subset T_k \operatorname{Emb}(M, M)$ is the union of path-components that are homotopy invertible under composition. If *M* is oriented, then we further impose that the image in $T_1^{\times}(M)$ is contained in the orientation preserving tangential homotopy equivalences.

$$\eta_k : \mathrm{Diff}^+(M) \longrightarrow T_k^{\times}(M) \subset T_k \mathrm{Emb}(M, M)$$

Delooping the self-embedding tower



Definition

A *TM*-fibration is a fibration $\pi : E \rightarrow B$ with fibre *M* and a vector bundle $T_{\pi}E \rightarrow E$ such that the restriction to the fibres $T_{\pi}E|_{\pi^{-1}(b)}$ is equivalent to the tangent bundle *TM*.

Theorem (Berglund, May)

B $T_1^{\times}(M)$ classifies oriented TM-fibrations.

Consequence: We can define tautological classes/generalized MMM-classes $\kappa_c \in H^*(B T_k^{\times}(M))$ for all $k \ge 1$.

Part II - Studying B $T_k^{\times}(M)$ through tautological classes

Question: Can we detect the difference between $B \eta_k : B \operatorname{Diff}^+(M) \to B T_k^{\times}(M)$ with tautological classes (ideally for $k = \infty$)?

- Reformulation: Is there a relation among tautological classes that holds for fibre bundles but not over B $T_k^{\times}(M)$?
- Most relations among tautological classes (that we know) depend only on the underlying fibration or even just on dim H*(M). Hence, these also hold on B T[×]_k(M).
- One of the few relations that uses the manifold structure is based on the signature theorem.

Theorem. (Hirzebruch) Let M^{4k} be a closed oriented manifold, then the signature is given by sgn(M) = $\langle L_k(TM), [M] \rangle$ where $L_k \in H^{4k}(BSO; \mathbb{Q})$.

$$L_1 = \frac{p_1}{3}$$
 $L_2 = \frac{7p_2 - 4p_1^2}{45}$ $L_3 = \frac{1}{945}(62p_3 - 13p_1p_2 + 2p_1^3)$...

The family signature theorem

Trick: Since $H_*(X; \mathbb{Q}) \cong \Omega^{fr}(X) \otimes \mathbb{Q}$ we can define a cohomology class $H^i(X; \mathbb{Q})$ by defining its evaluation on elements $[f: N^i \to X, \xi] \in \Omega_i^{fr}(X) \otimes \mathbb{Q}$.

Definition (Signature classes)

For *d* even define for all $i + d \equiv 0 \mod 4$ classes $\sigma_i \in H^i(B \operatorname{Diff}^+(M^d); \mathbb{Q})$ which assign to $[f : N^i \to B \operatorname{Diff}^+(M), \xi] \in \Omega^{\operatorname{fr}}(B \operatorname{Diff}^+(M)) \otimes \mathbb{Q}$ the signature of the pullback bundle $\operatorname{sgn}(f^*E)$.

Theorem (Family signature theorem)

Let $\pi: E \rightarrow B$ be a fibre bundle with fibre M^d a closed, oriented manifold. Then

$$c_{L_i} = egin{cases} \sigma_{4i-d} & ext{if } d ext{ is even} \ 0 & ext{if } d ext{ is odd} \end{cases}$$

Studying B $T_k^{\times}(M)$ through tautological classes

- The signature of the total space of an oriented *M*-fibration π : E→B only depends on the local coefficient system H^{d/2}(π⁻¹(b); Z) over B (due to Meyer).
- Hence, σ_i is pulled back from a class in $H^i(B\operatorname{Aut}(H^{d/2}(M), \langle, \rangle); \mathbb{Q})$.
- In particular, it can be pulled back to $\sigma_i \in H^i(B T_k^{\times}(M); \mathbb{Q})$.

Question

Does the family signature theorem hold on B $T_k^{\times}(M)$ (ideally for $k = \infty$), i.e. is $\kappa_{L_i} = \sigma_{4i-2d} \in H^{4i-2d}(B T_k^{\times}(M^{2d}); \mathbb{Q})$?

Theorem (P.)

The family signature theorem does not hold on B $T_2^{\times}(M^{2d})$. For M^{2d} smooth, closed oriented $0 \neq \kappa_{L_i} - \sigma_{4i-2d} \in H^{4i-2d}(B T_2^{\times}(M); \mathbb{Q})$ for $d < 2i \leq 2d - 2$.

A sketch of the proof

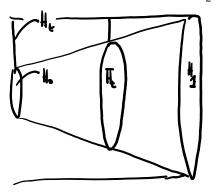
۲

• Find a space X with a map $X \rightarrow B T_2^{\times}(M)$ for which we can compute the pullback of the MMM-classes.

$$\mathcal{G}(TM) = \begin{cases} TM \xrightarrow{\overline{f}} TM \\ \downarrow & \downarrow \\ M \xrightarrow{Id} M \end{cases} \middle| \overline{f} \text{ vb. isomorphism} \\ \end{cases}$$
$$h\mathcal{G}^{S_2}(S(TM)) = \begin{cases} S(TM) \xrightarrow{\overline{f}} S(TM) \\ \downarrow & \downarrow \\ M \xrightarrow{Id} M \end{cases} \middle| \overline{f} \text{ fibrewise } S_2\text{-htpy eq.} \\ \end{cases}$$
$$F(M, 2) := \text{hofib}_{Id}(\mathcal{G}(TM) \longrightarrow h\mathcal{G}^{S_2}(S(TM)))$$

A sketch of the proof

Claim: There is a map $F(M, 2) \longrightarrow T_2^{\times}(M)$.



Recall:

• An element $H \in F(M, 2)$ is a map $H: S(TM) \times I \rightarrow S(TM)$ such that H_t is S_2 -equivariant over Id_M, H_0 is linear and $H_1 = Id$. • An element $F \in T_2^{\times}(M)$ is a map $F: M^2 \times I \rightarrow M^2$ such that F_t is S_2 -equivariant, H_0 is strongly isovariant and $H_1 = f \times f$.

Observation: This map deloops B $F(M, 2) \longrightarrow$ B $T_2^{\times}(M)$.

A sketch of the proof

Easier to study B F(M, 2):

- 1.) $BG(TM) = Map(M, BSO(d))_{TM}$
- 2.) $Bh\mathcal{G}^{S_2}(S(TM)) =$ Map $(M, B hAut^{S_2}(S^{d-1}))_{S(TM)}$

For d even:

• $\mathsf{B}\mathsf{SO}(d) \simeq_{\mathbb{Q}} K(\mathbb{Q}, d) \times \prod_{i=1}^{d/2-1} K(\mathbb{Q}, 4i)$

• $\mathsf{B} \mathsf{hAut}^{S_2}(S^{d-1}) \simeq_{\mathbb{Q}} K(\mathbb{Q}, d)$

Theorem (Thom) $Map(X, K(G, n))_f \simeq \prod_{i=1}^n K(H^{n-i}(X; G), i)$ **Corollary** $\pi_*(BF(M, 2)) \otimes \mathbb{Q} \neq 0$ "often" Sidenote: [B, B F(M, 2)] classifies the following data

- 1.) A vector bundle $T_{\pi}E \rightarrow B \times M$ such that $T_{\pi}E|_{b \times M} \cong TM$,
- 2.) $S(T_{\pi}E)$ is S_2 -htpy. eq. to $B \times S(TM)$ over B.

If
$$c(T_{\pi}E) = x \otimes [M] + \ldots \in H^*(B) \otimes H^*(M)$$
, then $\kappa_c = x$.

 $\alpha \in H^{n-i}(X; G) \rightarrow adjoint map$

 $f_{\alpha} : S^{i} \times X \rightarrow K(G, n)$. Then $f_{\alpha}^{*}(\iota_{n}) = [S^{i}] \times \alpha + 1 \times f(\iota_{n})$

Result: There are elements $\pi_{4i-d}(BF(M, 2)) \otimes \mathbb{Q}$ for which $0 \neq \kappa_{L_i}$ but $\sigma_{4i-d} = 0$ by construction.

What about k > 2?

Rewrite:

$$\begin{split} \mathcal{G}(TM) &= \mathsf{Map}^{\mathsf{SO}(d)}(\mathsf{Fr}^+(M),\mathsf{SO}(d)) \\ h\mathcal{G}^{\mathsf{S}_2}(TM) &= \mathsf{Map}^{\mathsf{SO}(d)}(\mathsf{Fr}^+(M),\mathsf{hAut}^{\mathsf{S}_2}(S^{d-1})) \end{split}$$

Observation:

$$hAut^{S_2}(S^{d-1}) = Aut^h_{Op^{\leq 2}}(E_d)$$

Definition:

 $F(M,k) := \mathsf{hofib}_{\mathsf{Id}} \left(\mathsf{Map}^{\mathsf{SO}(d)}(\mathsf{Fr}^+(M),\mathsf{SO}(d)) \to \mathsf{Map}^{\mathsf{SO}(d)}(\mathsf{Fr}^+(M),\mathsf{Aut}^h_{\mathcal{O}_{\mathcal{P}} \leq k}(E_d)) \right)$

Recall: Configuration categories

Due to Boavida de Brito and Weiss — Associate to a manifold M an ∞ -category con(M). There is a homotopy pullback square

$$T_{k} \operatorname{Emb}(M, M) \longrightarrow \mathbb{R} \operatorname{Map}_{\operatorname{Fin}}(\operatorname{con}(M, k), \operatorname{con}(M))$$

$$\downarrow$$

$$F(M, k) \rightarrow T_{1} \operatorname{Emb}(M, M) \rightarrow \mathbb{R} \operatorname{Map}_{\operatorname{Fin}}(\operatorname{con}(M, k)^{\operatorname{loc}}, \operatorname{con}^{\operatorname{loc}}(M)) =: Z$$

where

$$Z \simeq \Gamma \left(\begin{array}{c} X \iff (m' \in M, f \in \operatorname{Map}_{Op}^{h}(E_{d}(T_{m}M), E_{d}(T_{m'}M)) \\ \downarrow \qquad \qquad \downarrow \\ M \longleftarrow m \end{array} \right)$$

What about k > 2?

One can get some information on $\pi_*(\operatorname{Aut}^h_{Op^{\leq k}}(E_d))$ for finite k > 2 to infer that $\pi_*(F(M, k)) \otimes \mathbb{Q} \neq 0$ "sometimes" (work in progress). The signature theorem fails for the same reason for these homotopy classes as before.

Underlying Question

Is $\pi_*(SO(d)) \otimes \mathbb{Q} \rightarrow \pi_*(\operatorname{Aut}_{Op}^h(E_d)) \otimes \mathbb{Q}$ trivial on Pontrjagin classes?

What about $k = \infty$?

The previous discussion leads one to believe that the family signature theorem does *not* hold on B $T_{\infty}^{\times}(M)$.

Conjecture. (Randal-Williams) There is a rational fibration sequence

$$\mathsf{BDiff}_{\partial}(D^{2n}) \longrightarrow \mathsf{B} T_{\infty} \operatorname{Emb}_{\partial}(D^{2n}, D^{2n}) \longrightarrow \Omega^{\infty+2n}L(\mathbb{Z})$$

 $\mathsf{B}\operatorname{Diff}^+(M^{2n}) \longrightarrow \mathsf{B} T^{\times}_{\infty}\operatorname{Emb}(M,M) \longrightarrow \Omega^{\infty+2n}L(\mathbb{Z})$