
THE WEISS FIBER SEQUENCE AND SOME APPLICATIONS

Abstract. These are Mauricio Bustamante’s notes for his talk at the “Building Bridges
Seminar: Invariants of embedding spaces”, organized by Danica Kosanović in the middle of a
pandemic in 2020-2021.

1. The Weiss fiber sequence

Throughout we fix a d-dimensional compact smooth manifold M and a codimension 0
submanifold N ⊂ ∂M of its boundary, and we thicken it to an N × I ⊂M , where I = [0, 1].

The Weiss fiber sequence expresses BDiff∂(N × I) as the difference between BDiff∂(M) and
B Emb

∼=
∂/2(M), where Emb

∼=
∂/2(M) is the topological monoid of self-embeddings of M which are

the identity on a neighborhood of ∂M − int(N), and are isotopic (through such embeddings) to
a diffeomorphism that is the identity on a neighborhood of ∂M . More precisely, the Weiss fiber
sequence is

(1) BDiff∂(N × I)→ BDiff∂(M)→ B Emb
∼=
∂/2(M).

In order to obtain (1) we set V := M − int(N × [0, 1]). The boundary of V decomposes as

∂V = (∂M − int(N)) ∪ ∂1V
for some other manifold ∂1V . We will use the notation ∂/2 = ∂M − int(N). By the isotopy
extension theorem1, restriction gives rise to a fibration

Diff∂(M − int(V ))→ Diff∂(M)→ Embext
∂/2(V,M)

where the last term is the space of embeddings of V into M which restrict to the inclusion on
∂/2 and are isotopic to an embedding that extends to a self-diffeomorphism of M . Observe that
the fiber of this fibration is exactly Diff∂(N × I). The base of the fibration can be identified
with Emb

∼=
∂/2(M) as follows2: again we have a fibration sequence

Emb
∼=
∂/2(M)→ Embext

∂/2(V,M)

whose fiber over the inclusion is the space of self-embeddings of N × I which restrict to the
identity on N × {0} ∪ ∂N × I. This space is contractible by the existence and uniqueness of
collars. So the previous restriction map is a homotopy equivalence. In total, we get a fibration
sequence

Diff∂(N × I)→ Diff∂(M)→ Emb
∼=
∂/2(M)

which deloops to (1) as all the maps are compatible with the operation of composition.

The delooped Weiss fiber sequence. It turns out that one can use the operation “stacking
in the interval direction” to give a unital topological monoid model for BDiff∂(N×I), and a right
BDiff∂(N × I)-module model for BDiff∂(M). This gives rise to a delooping of BDiff∂(N × I)
and yields a delooped Weiss fiber sequence (established by A. Kupers)

(2) BDiff∂(M)→ B Emb
∼=
∂/2(M)→ B2 Diff∂(N × I)

This sequence is the result of a more general fact: if X is a simplicial or topological right
A-module, for A some path-connected unital topological monoid, then there is a fibration
sequence of the form

X → X �A→ BA.

Date: April 2, 2021.
1It is perhaps safer to apply the isotopy extension theorem to proper embeddings. So one should change V by

another isotopy equivalent manifold V ′ such that ∂V ′ = ∂/2. For example V ′ = M − int(N) × I.
2During the talk I realized that maybe an easier argument is just to show that V and M are isotopy equivalent.
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In our case, X = BDiff∂(M) and A = BDiff∂(N × I). The most involved step is to identify
BDiff∂(M) �BDiff∂(N × I) with B Emb

∼=
∂/2(M). This can be done by showing that there is a

weak homotopy equivalence

BDiff∂(M) �BDiff∂(N × I)→ B Emb
∼=
∂/2(M)× ∗ �BDiff∂(N × I)→ B Emb

∼=
∂/2(M).

In the end this also follows from the isotopy extension theorem.

2. Applications

The Weiss fiber sequence can be used to obtain “qualitative” information about BDiff∂(M).

Theorem 2.1 (A. Kupers). The homotopy groups πk(BDiff∂(Dd)) are finitely generated for
all k ≥ 2, d ≥ 6 and d 6= 7. Furthermore, if Md is 2-connected, then πk(BDiff∂(M)) is finitely
generated for all k ≥ 2.

Theorem 2.2 (Bustamante–Krannich–Kupers). If d = 2n ≥ 6 and π1(M) is finite then
πk(BDiff∂(M)) is finitely generated for all k ≥ 2.

Remark. The case k = 1 (i.e. mapping class groups) in the previous theorems had been
handled before: The group π0(Diff∂(Dd)) is isomorphic to the group Θd+1 of homotopy (d+ 1)-
spheres, which is finite by Kervaire–Milnor. When π1(M) = 0 and ∂M = ∅, Sullivan shows
that π0(Diff(M)) is a group commensurable up to finite kernel with an arithmetic group. In
particular of type F∞. Later Triantafillou extended Sullivan’s result to closed manifolds with
finite fundamental group.

Theorem 2.3 (Bustamante–Randal-Williams). Let p be a prime number. Then the group
π2p−3(BDiff∂(S1×D2n−1)) contains a subgroup isomorphic to

⊕∞ Z/p, provided 2p−3 < n−1.

Remark. In the concordance stable range (roughly 2p − 3 < 2n/3), this follows from Wald-
hausen’s parametrized h-cobordism theorem and work of Hatcher, Igusa, Hesselholt, and
Grunewald-Klein-Macko.

An example: finiteness for the moduli space of the even dimensional disk. Let us
see how the delooped Weiss fiber sequence is actually used in showing that the higher homotopy
groups of BDiff∂(D2n) are degreewise finitely generated if 2n ≥ 6, which is a special case of
Kupers’ result mentioned above. First we stabilize the disk by attaching g n-handles. The
stabilized manifold is

Wg,1 := D2n#(Sn × Sn)#g.

This will be our M . We pick a (2n − 1)-disk in ∂Wg,1 = S2n−1, which will be our N . In this
case the Weiss fiber sequence takes the form

BDiff∂(Wg,1)→ B Emb
∼=
∂/2(Wg,1)→ B2 Diff∂(D2n).

As the space B2 Diff∂(D2n) is 1-connected, it suffices to show that the homology groups of
B2 Diff∂(D2n) are finitely generated. This will follow from the Serre spectral sequence of the
previous fibration if

• The homology groups of BDiff∂(Wg,1) are finitely generated.
• The homology groups of B Emb

∼=
∂/2(Wg,1) are finitely generated.

To show the first item we use the work of Galatius and Randal-Williams: the stable homology
of BDiff∂(Wg,1) is isomorphic to the homology of a component of the infinite loop space of
the Thom spectrum of the inverse of θ∗2nγ2n, where γ2n is the canonical 2n-plane bundle over
BO(2n), and θ : BO(2n)[n,∞)→ BO(2n) is an n-connected cover of BO(2n). Basic algebraic
topology let us show that the homology groups of this infinite loop space are finitely generated.
The statement for finite g follows from homological stability.

As for the second item we consider the “universal cover fibration”

B Embid
∂/2(Wg,1)→ B Emb

∼=
∂/2(Wg,1)→ Bπ0(Emb

∼=
∂/2(Wg,1)).

A spectral sequence argument shows that the homology groups of B Emb
∼=
∂/2(Wg,1) are finitely

generated if
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(1) The homology groupsHk(π0(Emb
∼=
∂/2(Wg,1));A) are finitely generated for all Z[π0(Emb

∼=
∂/2(Wg,1)]-

modules A which are finitely generated as abelian groups.
(2) The homology groups of B Embid

∂/2(Wg,1) are finitely generated.

To show (1) one can use the bottom part of the long exact sequence in homotopy groups of the
Weiss fiber sequence to obtain an extension

1→ F → π0(Diff∂(Wg,1))→ π0(Emb
∼=
∂/2(Wg,1))→ 1

where F is a quotient of the group of homotopy (2n+ 1)-spheres, and so finite. The mapping
class group of Wg,1 was studied by Kreck. He showed that this group is an extension of an
arithmetic group by a finitely generated abelian group. In particular it is of type F∞. It then
follows that π0(Emb

∼=
∂/2(Wg,1)) is a group of type F∞. This implies (1).

To prove (2) we observe that B Embid
∂/2(Wg,1) is a 1-connected space and hence its homology

groups are finitely generated if its homotopy groups are finitely generated. Now the relative
handle dimension of Wg,1 is n, whereas the geometric dimension of Wg,1 is 2n. Thus from
the point of view of embedding calculus, self-embeddings Wg,1 → Wg,1 relative to ∂/2 have
codimension n. Therefore, if n ≥ 3, the embedding calculus tower converges and in particular

πk(B Emb
∼=
∂/2(Wg,1)) = πk−1(Emb

∼=
∂/2(Wg,1)) ∼= πk(T∞ Emb

∼=
∂/2(Wg,1)).

It’s not hard to show that the homotopy groups of T1 Emb
∼=
∂/2(Wg,1) and of the layers Lr Emb

∼=
∂/2(Wg,1)

are finitely generated for all r. An induction over the embedding tower will complete the proof
of (2). �

We won’t comment on the other theorems here. But it is important to know that at the core
of the proof of all of them lies the same “principle”: the effect of stabilization by genus on the
moduli space of N × I is measured by the classifying space of the monoid of self-embeddings
(with a relaxed boundary condition) of the stabilized manifold.
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