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CONFIGURATION CATEGORIES

PEDRO BOAVIDA

These are some rather terse notes written after a talk at the seminar ”Building
bridges” organised by Danica Kosanovic. I hope they are nevertheless more readable
than the scribbles I made during the talk. More importantly, I’m including some
references1 for those who would like to learn more.

Throughout, emb(M,N) denotes the space of smooth embeddings from M to
N with the weak topology (and so composition is continuous), and imm(M,N)
denotes the space of smooth immersions, also with the weak topology.

1. Immersion theory

Theorem 1.1. (Smale-Hirsch) Let Mm and Nn be smooth manifolds and m < n.
Then the inclusion

imm(M,N) ↪→ mapO(m)(framem(M), framem(N))

is a weak homotopy equivalence2. Here framem stands for the tangent m-frame
bundle, and mapO(m)(. . . , . . . ) the space of O(m)-equivariant maps.

For a group G and G-spaces X and Y , a derived G-map X → Y is the data of:
a map f : X → Y ; for each g ∈ G, a homotopy ∆1 → map(X,Y ) from g · f to f · g;
(· · · ) for each n-tuple g1, · · · , gn of elements of G, an n-parameter homotopy

∆n → map(X,Y )

restricting to the previously chosen homotopies on the boundary. I denote the space
of such by maphG(X,Y ). Taking constant homotopies there is an inclusion

mapG(X,Y ) ↪→ maphG(X,Y )

from the space of G-maps to the space of derived G-maps. (If X is a point,
mapG(∗, Y ) is the space of G-fixed points of Y , whereas maphG(∗, Y ) is the so-
called space of homotopy fixed points.) In general, this inclusion is not a weak
homotopy equivalence3, but it is if the G-action on X is free.

The crucial property of maphG(X,Y ) is homotopy invariance: if X → X ′ is a
G-map which is a weak homotopy equivalence, the induced map maphG(X,Y ) →
maphG(X ′, Y ) is a weak homotopy equivalence (and similarly in the Y variable).

1The list is not exhaustive; it is meant as a possible entry point to the topic, and is invariably

shaped by my perspective. Please let me know of any unforgivable omission.
2As Oscar Randal-Williams pointed out, if M is compact, both spaces are of the homotopy

type of CW complexes, so this is an actual homotopy equivalence.
3E.g. for the circle with Z/2-action given by reflection, the space of fixed points is discrete,

but that’s very much not the case for the homotopy fixed point space
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Going back to immersion theory: since O(m) acts freely on the m-frame bundle
and the derivative-at-zero map emb(Rm,M) → framem(M) is a weak equivalence
of O(m)-spaces, we conclude that:

mapO(m)(framem(M), framem(N)) ' maphO(m)(emb(Rm,M), emb(Rm, N))

In particular, Smale-Hirsch says that the homotopy type of the space of immersions
only depends on the O(m)-homotopy type of the frame bundles. The reformulation
in terms of derived mapping spaces is not necessarily helpful for direct computation
here, but it has some advantages, e.g. it has a meaningful generalisation.

Example 1.2. The space of immersions between discs imm(Dm, Dn) ' ΩmVm,n

where Vm,n is the Stiefel manifold of linear injections Rm → Rn.

2. Embedding calculus

The standard references are [26] and [17] (for the modern accounts closer to this
section, see [7] and [4]). For k ≥ 0, write k = {1, . . . , k} (0 is the empty set) and S
for the category of spaces and continuous maps. The idea, starting from immersion
theory, is to replace:

the manifold Rm by the manifolds Rm × k, for k ≥ 0

the group O(m) by a category Disk

the space emb(Rm,M) by a functor emb(−,M) : Diskop → S

This category Disk has as objects the non-negative integers i ≥ 0; a morphism
i→ j is a smooth embedding i×Rm → j ×Rm. (Note: the dimension m is fixed.)
The morphism sets are naturally morphism spaces, and composition is continuous.
The functor emb(−,M) is clear: the value on an object i is emb(i × Rm,M) and
morphisms act by composition.

Note also that emb(i × Rm,M) is homotopy equivalent to the space of framed
configurations of i points in M , i.e. the m-frame bundle of emb(i,M). A point in
the latter space is an injection k ↪→M together with an m-frame at each point.

Remark 2.1. In operadic language, Disk is the (PROP associated to) the framed
little m-discs operad. A functor Diskop → S is a right module.

Varying the number of disks, we have subcategories

Disk≤1 ⊂ Disk≤2 ⊂ Disk≤3 ⊂ · · · ⊂ Disk .

(Disk≤1 is O(m), viewed as a category with a single object, with the empty set
thrown in as an object.). And by restriction emb(−,M) can be viewed as a functor
on each Disk≤k.

Definition 2.2. Let k ≥ 0. The k-th approximation to the space of embeddings is
the space

Tkemb(M,N) := maph
Disk≤k

(emb(−,M), emb(−, N))

(k may be ∞, in which case Disk≤k = Disk.)

Explanations: Without the h, mapDisk≤k
(emb(−,M), emb(−, N)) means space

of natural transformations from the functor emb(−,M) to emb(−, N). It is a
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subspace of ∏
i≥0

map(emb(i× Rm,M), emb(i× Rm, N))

where map denotes the space of maps (with respect to the compact-open topology).
In analogy with what was said before, a point in Tkemb(M,N) can be concretely
thought of as a coherent choice, for every n-tuple (i0, . . . , in), n ≥ 0, of an n-
parameter homotopy

mor(i0, · · · , in)×∆n → map(emb(i0 × Rm,M), emb(in × Rm, N))

where mor(i0) := {i0} and, for n ≥ 1, mor(i0, · · · , in) denotes the space of mor-
phisms i0 → · · · → in in Disk≤k, that is, the product emb(i0×Rm, i2×Rm)×· · ·×
emb(in−1 × Rm, in × Rm).

Remark 2.3. As in immersion theory, the key point is homotopy invariance: it
may not be completely apparent from the description above, but Tkemb(M,N) only
depends on the weak homotopy type of the functors emb(−,M) and emb(−, N) on
Disk≤k. This is related to the recurring question: why derived mapping spaces?
Ultimately, we are interested in the homotopy (and homology) of embedding spaces,
so whatever spaces we find as approximations should be invariant under homotopy
equivalences. The concrete description above does not really say what derived
mapping spaces are, or how to compute them. This is explained by the theory of
derived functors; but one can think of the relation between map and maph as akin
to the relation between Hom and Ext in homological algebra.

A side point: Tkemb(M,N) can be regarded as a homotopy limit over the cat-
egory Disk≤k/M . (We have a choice as to whether we remember the topology
of objects and morphisms in Disk≤k/M or not. It turns that, for the purpose of
computing that homotopy limit, it does not matter.)

Evaluation (restriction) provides inclusions

emb(M,N) ↪→ mapDisk(emb(−,M), emb(−, N)) ↪→ T∞

and hence a tower

emb(M,N)→ T∞ → · · · → Tk → · · · → T1

Theorem 2.4 (Goodwillie-Klein [16]). The k-th approximation

evk : emb(M,N)→ Tkemb(M,N)

is (3− n+ (m+ 1))(n−m− 2)-connected, except if m = 1 and n = 3. (Kosanovic
[20]) Holds also for 1-dimensional connected M and n = 3.

Theorem 2.5 (Weiss [26]). The k-th layer Lk := hofiber(Tk → Tk−1) is weakly
equivalent to the space of partial sections over a certain fibration

E → C(k,M)

over the space C(k,M) = emb(k,M)/Σk of finite subsets of M of cardinality k,
and with fiber given by the homotopy fiber of

emb(k × Rm,M)→ holim
s(k

emb(s× Rm,M)

”Partial” means sections are already prescribed in a neighbourhood of the fat diag-
onal in M×k/Σk ⊂ C(k,M).
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Idea of proof. The basepoint Tk−1 is a derived map f : Diskop
≤k−1 → S. We want to

describe the space of lifts to a derived map F : Diskop
≤k → S. So the first thing we

must do is determine the image of F on the new object k, i.e. a map

F (k) : emb(k × Rm,M)→ emb(k × Rm, N)

which should be equivariant for the Aut(k) = O(m)×k oΣk actions. But the space
of G-equivariant maps X → Y between G-spaces, where the G-action on X is free,
is identified with the space of sections of the fibration associated to X → X/G with
fiber Y . So a map F (k) is the same data as a section of the fibration associated to
emb(k × Rm,M)→ C(k,M) with fiber emb(k × Rm, N).

Moreover, if F is to be an extension of f , the following should be verified:

(1) for every embedding i : s × Rm ↪→ k × Rm such that the induced map on
path components is injective (but not bijective), the composition

emb(k × Rm,M)
F (k)−−−→ emb(k × Rm, N)

i∗−→ emb(s× Rm, N)

must factor through f(s) : emb(s× Rm,M)→ emb(s× Rm, N).
(2) for every embedding i : k × Rm ↪→ ` × Rm such that the induced map on

path-components is surjective (but not bijective), the composition

emb(`× Rm,M)
i∗−→ emb(k × Rm,M)

F (k)−−−→ emb(k × Rm, N)

must factor through f(`) : emb(`× Rm,M)→ emb(`× Rm, N),

Reformulated in terms of section spaces, condition (1) says that the fiber over a
point in C(k,M) ought to be the homotopy fiber in the statement of the theorem.
And (2) is the condition that sections are already given in a neighbourhood of the
fat diagonal. (This is a Reedy-type argument.) �

Example 2.6. If M is the interval, and if we write ∂ for a neighbourhood of the fat
diagonal, then the inclusion ∂ ⊂ C(k,M) is homotopy equivalent to the boundary
inclusion ∂∆k−2 ⊂ ∆k−2 for k > 2. So, for k > 2, Lk is identified with the (k− 2)-
fold loop space Ωk−2 of the homotopy fiber in the statement of the theorem. This
case has been studied extensively by Sinha [23], who first explained a relation to
the little disks operad.

3. Configuration categories

Having thickened points to balls, the differential and configuration space data
are intertwined. We would like to separate them.

Definition 3.1. Let M be a topological manifold. The configuration category of
M – denoted con(M) – is the category whose

• objects are configurations of points in M , i.e. injections k →M , for k ≥ 0.
• a morphism from x : k →M to y : `→M is a pair (f,H) where f : k → `

is a map of finite sets and H is an exit path in Mk from x to fy: a path
Ht ∈ Mk such that if the ith and jth component of HT agree for some T ,
then they agree for all t ≥ T .

Composition is given by concatenation, and the identity morphisms are the con-
stant paths. There is an obvious projection functor con(M) → Fin. The category
con(M) is naturally a category internal to spaces (i.e. it has spaces of objects and
morphisms). Finally, for each k ≥ 0, there is a subcategory con(M ; k) spanned by
the objects consisting of ` ≤ k points.



A SHORT INTRODUCTION TO EMBEDDING CALCULUS AND CONFIGURATION CATEGORIES5

Evaluation gives maps of spaces

emb(M,N) ↪→ mapFin(con(M), con(N)) ↪→ maph
Fin(con(M), con(N))

and the composition factors through Tkemb(M,N).

Theorem 3.2 ([8]). Given smooth manifolds M and N and k ≥ 1, there is homo-
topy pullback square:

Tkemb(M,N) maph
Fin(con(M ; k), con(N))

Γ(p) Γ(p′k)

where the meaning of the lower row is explained below.

The space Γ(p) is the space of sections over the fibration p : E →M where

E := {(x, y, F ) : x ∈M,y ∈ N,F : TxM ↪→ TyN} .
So Γ(p) is simply T1emb(M,N), or imm(M,N), by Smale-Hirsch.

Moreover, a linear injective map TxM → TyN gives, by restriction, a (derived)
map con(TxM)→ con(TyN) over Fin. So, writing

E′k := {(x, y, F ) : x ∈M,y ∈ N,F : con(TxM ; k)→ con(TyN ; k)}
and p′k : E′k →M for the projection, we have inclusions:

Γ(p)→ Γ(p′k) .

for each k. This is the lower row in the theorem. It forgets the vector bundle
structure, it only remembers its ”configuration space” part.

Example 3.3. The case k = 2. It is not difficult to prove that

maph
Fin(con(Rm; 2), con(Rn; 2)) ' maphΣ2(Sm−1, Sn−1)

where Σ2 acts via the antipodal map on the spheres. So, for k = 2, the lower
row in the square of the theorem is essentially the forgetful map from the space of
tangent bundle monomorphisms TM → TN to the space of Σ2-equivariant maps
of spherical tangent bundles STM → STN , where Σ2 acts antipodally on fibers.
(The configuration category of M contains STM as the subspace of morphisms
in con(M) whose underlying map of finite sets is 2 → 1.) The top right-hand
corner is essentially the space of maps (with Σ2-equivariance) from the diagram
M ← STM ↪→ emb(2,M) to the diagram N ← STN ↪→ emb(2, N). c.f. Haefliger’s
metastable range approximation to embedding spaces.

Remark 3.4. The right-hand column only depends on the configuration categories
of M and N , and as such it does not depend on the smooth structures of M and
N . Moreover (see below), the lower horizontal map is roughly (2n − 3m − 4)-
connected, so in that range Tkemb(M,N) does not depend on the smooth structures
of M and N . If M is 1-dimensional more is true: the lower horizontal map is an
isomorphism on homotopy groups for k = 2 and injective for k > 2. Therefore,
taking k = ∞ and using Goodwillie-Klein estimates, emb(M,N) does not depend
on the smooth structure of N whenever n ≥ 4. The relation between embedding
calculus and smooth structures has been recently investigated by Arone-Szymik [3]
and Knudsen-Kupers [19].
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4. Long knots

In the case of long knots Dm → Dn which restrict to the standard inclusion near
the boundary, the top-right hand corner in theorem 3.2 turns out to be contractible
(”Alexander trick” . . . ), so we conclude:

Theorem 4.1. There is a homotopy fiber sequence

Tkemb∂(Dm, Dn)→ ΩmVm,n → Ωmmaph
Fin(con(Rm; k), con(Rn; k))

where the basepoints are those corresponding to the standard inclusion Rm → Rn.

Remark 4.2 (Operads!). The space maph
Fin(con(Rm), con(Rn)) turns out to be

weakly equivalent to the space maph(Em, En) of derived operad maps between
little disks operads [8]. Weiss also proved the corresponding truncated statement.

In particular, if n − m ≥ 2, the space emb∂(Dm, Dn) is an m-fold loop space
with delooping given by the homotopy fiber of the map

(4.1) Vm,n → maph
Fin(con(Rm), con(Rn)) .

Writing emb
∂
(Dm, Dn) for the homotopy fiber of emb∂(Dm, Dn) → ΩmVm,n, it

follows that

(4.2) emb
∂
(Dm, Dn) ' Ωmmaph

Fin(con(Rm), con(Rn)) .

Remark 4.3. The equivalence (4.2) was first proved, when m = 1, by Dwyer-Hess
[14] (k = ∞) and Turchin [24] (any k) by operadic methods. In [8], we proved
the general case, theorem 4.1. A different proof has appeared in [12] and [13],
generalising the operad-theoretic arguments of Turchin’s first proof.

Here is a sample consequence:

Corollary 4.4 (Haefliger, Budney [9]). For n −m > 2, emb∂(Dm, Dn) is (2n −
3m− 4)-connected.

Proof. By Goodwillie-Klein, the map emb∂(Dm, Dn)→ T2emb∂(Dm, Dn) is (2n−
3m − 4)-connected. The right-hand map in theorem 4.1, with k = 2 is, by the
discussion in example 3.3, the m-fold loop space Ωm of the map

Vm,n → mapΣ2(Sm−1, Sn−1) .

This map is (2n− 2m− 3)-connected (Haefliger-Hirsch: deduce it by induction on
m. The map from the fiber of Vm,n → Vm−1,n to the fiber of mapΣ2(Sm−1, Sn−1)→
mapΣ2(Sm−2, Sn−1) is the unit map Sn−m → ΩmΣmSn−m, and so the Freuden-

thal suspension theorem applies). Therefore, T2emb∂(Dm, Dn) is (2n − 3m − 4)-
connected. �

Question 4.5. By regarding Rn as Rm×Rn−m and using the known corresponding
statement for operads con(Rn) ' con(Rm) � con(Rn−m) (the so-called additivity
theorem), it follows that the space of linear isometries O(n −m) acts on the map

(4.1) in a basepoint preserving manner. This means that T∞emb∂(Dm, Dn) is in

fact an Em-algebra in O(n −m)-spaces. Is the evaluation map emb∂(Dm, Dn) →
T∞emb∂(Dm, Dn) equivariant? (What should the action be on the source? There’s
an obvious one, spinning.)
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4.1. The first non-trivial homotopy group, m = 1. Specifying to m = 1, we
have that emb∂(D1, Dn) is (2n− 7)-connected. It is also known that

π2n−6T3emb∂(D1, Dn) ' Z

which is π2n−6emb∂(D1, Dn) for n ≥ 4 by Goodwillie-Klein. (For a sketch, see

below.) When n = 3, there is a nice geometric interpretation of π0emb∂(D1, D3)→
π0T3emb∂(D1, D3) ∼= Z in [11] and its relation to the finite type invariant of degree
2.

About π2n−6: By investigating the layers, one can identify T3emb∂(D1, Dn) with
Ω2 of the space of maps (rel ∂)

∆1 ' C(3,R1)→ F3

where

F3 = hofiber(emb(3,Rn)→
∏
2⊂3

emb(2,Rn)) ' hofiber(Sn−1∨Sn−1 → Sn−1×Sn−1)

(c.f. Theorem 2.5). Therefore: T3 ' Ω3hofiber(Sn−1 ∨Sn−1 → Sn−1×Sn−1). The
generator of π2n−6T3 = π2n−3hofiber(Sn−1 ∨ Sn−1 → Sn−1 × Sn−1) ' Z is the
Whitehead product of the two inclusions of Sn−1 in the wedge Sn−1 ∨ Sn−1.

Remark 4.6. This is really the beginning of a story. The rational homotopy and
homology of the space of long knots has been studied extensively using embedding
calculus and its relation to the little disks operads and their formality, [2], [1], [21],
[4], [5], culminating in [15], see also references in these papers and forthcoming talks
in this seminar by Arone and Turchin. For the connection to finite type invariants,
starting points are [25], [10], [20]. For non-rational results about the tower, see
Geoffroy’s talk and [6].
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[21] Lambrechts, P., Turchin, V., and Volić, I. The rational homology of spaces of long knots

in codimension > 2. Geom. Topol. 14, 4 (2010), 2151–2187. 7
[22] Munson, B. A. Embeddings in the 3/4 range. Topology 44, 6 (2005), 1133–1157.

[23] Sinha, D. Operads and knot spaces. Journal of the American Mathematical Society 19, 2

(2006), 461–486. 4
[24] Turchin, V. Delooping totalization of a multiplicative operad. J. Homotopy Relat. Struct.

9, 2 (2014), 349–418. 6

[25] Volic, I. Finite type knot invariants and the calculus of functors. Compositio Mathematica
142, 01 (2006), 222–250. 7

[26] Weiss, M. Embeddings from the point of view of immersion theory. I. Geom. Topol. 3 (1999),
67–101. 2, 3


	1. Immersion theory
	2. Embedding calculus
	3. Configuration categories
	4. Long knots
	4.1. The first non-trivial homotopy group, m = 1.

	References

