HOMOTOPY GROUPS OF SOME EMBEDDING SPACES

Danica Kosanović (ETH Zürich)
@ La réunion annuelle du GDR Topologie algébrique, Nantes, October, 2022

Based on the joint work with Peter Teichner (MPIM Bonn)
https://arxiv.org/abs/2105.13032

Table of contents

1 Motivation

2 The main result today, and applications

3 Metastable homotopy groups

Motivation

Spaces of embeddings

- Consider compact smooth manifolds V and X with nonempty boundary, with $k:=\operatorname{dim} V$, and $d:=\operatorname{dim} X$ such that $1 \leq k \leq d$.
- General goal. Study the homotopy type of the space

$$
\operatorname{Emb}_{\partial}(V, X)
$$

of smooth neat embeddings $K: V \hookrightarrow X$ which near ∂V agree with a fixed basepoint $\mathrm{U}: V \hookrightarrow X$. We denote $\mathrm{s}:=\left.\mathrm{U}\right|_{\partial v}: \partial V \hookrightarrow \partial X$.

Spaces of embeddings

- Consider compact smooth manifolds V and X with nonempty boundary, with $k:=\operatorname{dim} V$, and $d:=\operatorname{dim} X$ such that $1 \leq k \leq d$.
- General goal. Study the homotopy type of the space

$$
\operatorname{Emb}_{\partial}(V, X)
$$

of smooth neat embeddings $K: V \hookrightarrow X$ which near ∂V agree with a fixed basepoint $\mathrm{U}: V \hookrightarrow X$. We denote $\mathrm{s}:=\left.\mathrm{U}\right|_{\partial v}: \partial V \hookrightarrow \partial X$.

- Recall that a smooth map K is an embedding if it is injective and at any $v \in V$ the derivative $\left.d K\right|_{v}$ is injective, and K is neat if it is transverse to the boundary and $K(V) \cap \partial X=K(\partial V)$.

Spaces of embeddings

- Consider compact smooth manifolds V and X with nonempty boundary, with $k:=\operatorname{dim} V$, and $d:=\operatorname{dim} X$ such that $1 \leq k \leq d$.
- General goal. Study the homotopy type of the space

$$
\operatorname{Emb}_{\partial}(V, X)
$$

of smooth neat embeddings $K: V \hookrightarrow X$ which near ∂V agree with a fixed basepoint $\mathrm{U}: V \hookrightarrow X$. We denote $\mathrm{s}:=\left.\mathrm{U}\right|_{\partial v}: \partial V \hookrightarrow \partial X$.

- Recall that a smooth map K is an embedding if it is injective and at any $v \in V$ the derivative $\left.d K\right|_{v}$ is injective, and K is neat if it is transverse to the boundary and $K(V) \cap \partial X=K(\partial V)$.
- For example, for $(k, d)=(1,3)$

Spaces of embeddings

- Consider compact smooth manifolds V and X with nonempty boundary, with $k:=\operatorname{dim} V$, and $d:=\operatorname{dim} X$ such that $1 \leq k \leq d$.
- General goal. Study the homotopy type of the space

$$
\operatorname{Emb}_{\partial}(V, X)
$$

of smooth neat embeddings $K: V \hookrightarrow X$ which near ∂V agree with a fixed basepoint $\mathrm{U}: V \hookrightarrow X$. We denote $\mathrm{s}:=\left.\mathrm{U}\right|_{\partial v}: \partial V \hookrightarrow \partial X$.

- Recall that a smooth map K is an embedding if it is injective and at any $v \in V$ the derivative $\left.d K\right|_{v}$ is injective, and K is neat if it is transverse to the boundary and $K(V) \cap \partial X=K(\partial V)$.
- For example, for $(k, d)=(1,3)$ and $(2,3)$:

Spaces of embeddings

- Consider compact smooth manifolds V and X with nonempty boundary, with $k:=\operatorname{dim} V$, and $d:=\operatorname{dim} X$ such that $1 \leq k \leq d$.
- General goal. Study the homotopy type of the space

$$
\operatorname{Emb}_{\partial}(V, X)
$$

of smooth neat embeddings $K: V \hookrightarrow X$ which near ∂V agree with a fixed basepoint $\mathrm{U}: V \hookrightarrow X$. We denote $\mathrm{s}:=\left.\mathrm{U}\right|_{\partial v}: \partial V \hookrightarrow \partial X$.

- Recall that a smooth map K is an embedding if it is injective and at any $v \in V$ the derivative $\left.d K\right|_{v}$ is injective, and K is neat if it is transverse to the boundary and $K(V) \cap \partial X=K(\partial V)$.
- For example, for $(k, d)=(1,3)$ and $(2,3)$:

- For $V=\mathbb{D}^{k}$, the setting with a dual: if there exists $G: \mathbb{S}^{d-k} \hookrightarrow \partial X$, such that G has trivial normal bundle and $G \pitchfork s=\{p t\}$. Like pictures 2 and 3 !

Spaces of embeddings

- Remark. Embeddings of closed manifolds can be reduced to the setting with boundary, modulo group extensions.

Spaces of embeddings

- Remark. Embeddings of closed manifolds can be reduced to the setting with boundary, modulo group extensions. E.g. use the fibration sequence

$$
\operatorname{Emb}_{\partial}\left(\mathbb{D}^{k}, M \backslash \mathbb{D}^{d}\right) \xrightarrow{-\cdot \nu_{0}} \operatorname{Emb}\left(\mathbb{S}^{k}, M\right) \xrightarrow{D_{0}} V_{k}(T M) .
$$

Spaces of embeddings

- Remark. Embeddings of closed manifolds can be reduced to the setting with boundary, modulo group extensions. E.g. use the fibration sequence

$$
\operatorname{Emb}_{\partial}\left(\mathbb{D}^{k}, M \backslash \mathbb{D}^{d}\right) \xrightarrow{-\cdot \nu_{0}} \operatorname{Emb}\left(\mathbb{S}^{k}, M\right) \xrightarrow{D_{0}} V_{k}(T M) .
$$

- For example, (classical) knot theory studies isotopy classes of circles embedded into the 3-space: this is the set of connected components $\pi_{0} \mathrm{Emb}_{\partial}\left(\mathbb{S}^{1}, \mathbb{R}^{3}\right)$.

Spaces of embeddings

- Remark. Embeddings of closed manifolds can be reduced to the setting with boundary, modulo group extensions. E.g. use the fibration sequence

$$
\operatorname{Emb}_{\partial}\left(\mathbb{D}^{k}, M \backslash \mathbb{D}^{d}\right) \xrightarrow{-\cdot \nu_{0}} \operatorname{Emb}\left(\mathbb{S}^{k}, M\right) \xrightarrow{D_{0}} V_{k}(T M)
$$

- For example, (classical) knot theory studies isotopy classes of circles embedded into the 3-space: this is the set of connected components $\pi_{0} \operatorname{Emb}_{\partial}\left(\mathbb{S}^{1}, \mathbb{R}^{3}\right)$. But we have

$$
\{\text { knots }\} / \text { isotopy }=\pi_{0} \operatorname{Emb}\left(\mathbb{S}^{1}, \mathbb{R}^{3}\right) \cong \pi_{0} \operatorname{Emb}\left(\mathbb{S}^{1}, \mathbb{S}^{3}\right) \cong \pi_{0} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{1}, \mathbb{D}^{3}\right)
$$

Spaces of embeddings

- Remark. Embeddings of closed manifolds can be reduced to the setting with boundary, modulo group extensions. E.g. use the fibration sequence

$$
\operatorname{Emb}_{\partial}\left(\mathbb{D}^{k}, M \backslash \mathbb{D}^{d}\right) \xrightarrow{-\cdot \nu_{0}} \operatorname{Emb}\left(\mathbb{S}^{k}, M\right) \xrightarrow{D_{0}} V_{k}(T M)
$$

- For example, (classical) knot theory studies isotopy classes of circles embedded into the 3-space: this is the set of connected components $\pi_{0} \operatorname{Emb}_{\partial}\left(\mathbb{S}^{1}, \mathbb{R}^{3}\right)$. But we have

$$
\{\text { knots }\} / \text { isotopy }=\pi_{0} \operatorname{Emb}\left(\mathbb{S}^{1}, \mathbb{R}^{3}\right) \cong \pi_{0} \operatorname{Emb}\left(\mathbb{S}^{1}, \mathbb{S}^{3}\right) \cong \pi_{0} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{1}, \mathbb{D}^{3}\right)
$$

Note. Connected sum of knots is on arcs given by stacking the cubes horizontally - so well-defined on space-level!

Spaces of embeddings

- Remark. Embeddings of closed manifolds can be reduced to the setting with boundary, modulo group extensions. E.g. use the fibration sequence

$$
\operatorname{Emb}_{\partial}\left(\mathbb{D}^{k}, M \backslash \mathbb{D}^{d}\right) \xrightarrow{-\cdot \nu_{0}} \operatorname{Emb}\left(\mathbb{S}^{k}, M\right) \xrightarrow{D_{0}} V_{k}(T M) .
$$

- For example, (classical) knot theory studies isotopy classes of circles embedded into the 3-space: this is the set of connected components $\pi_{0} \operatorname{Emb}_{\partial}\left(\mathbb{S}^{1}, \mathbb{R}^{3}\right)$. But we have

$$
\{\text { knots }\} / \text { isotopy }=\pi_{0} \operatorname{Emb}\left(\mathbb{S}^{1}, \mathbb{R}^{3}\right) \cong \pi_{0} \operatorname{Emb}\left(\mathbb{S}^{1}, \mathbb{S}^{3}\right) \cong \pi_{0} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{1}, \mathbb{D}^{3}\right)
$$

Note. Connected sum of knots is on arcs given by stacking the cubes horizontally - so well-defined on space-level!

- Recently, intensively studied is the set of (long) 2-knots in a 4-manifold M :

$$
\pi_{0} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{2}, M\right)
$$

This can be huge - for example, "spinning" a classical knot gives a 2-knot in $\pi_{0} \operatorname{Emb}_{\partial}\left(\mathbb{S}^{2}, \mathbb{R}^{4}\right) \cong \pi_{0} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{2}, \mathbb{D}^{4}\right)$.

So wait, higher homotopy groups are irrelevant in low-dimensional topology?

Theorem (Space level light bulb trick [K-Teichner '21])

So wait, higher homotopy groups are irrelevant in low-dimensional topology?

Theorem (Space level light bulb trick [K-Teichner '21])

For any $1 \leq k \leq d$, in a setting with a dual, any choice of $\mathrm{U}: \mathbb{D}^{k} \hookrightarrow M$ leads to an (explicit) homotopy equivalence

$$
\operatorname{Emb}_{\partial}\left(\mathbb{D}^{k}, M\right) \simeq \Omega \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{k-1}, X\right)
$$

where $X:=M \cup_{\nu G} h^{d-k+1}$.

Recall that setting with a dual means: we have a d-manifold M and embedding $s=\partial \mathrm{U}: \mathbb{S}^{k-1} \hookrightarrow \partial M$, such that there exists $G: \mathbb{S}^{d-k} \hookrightarrow \partial M$ with trivial normal bundle and such that $G \pitchfork s=\{p t\}$.

So wait, higher homotopy groups are irrelevant in low-dimensional topology?

Theorem (Space level light bulb trick [K-Teichner '21])

For any $1 \leq k \leq d$, in a setting with a dual, any choice of $\mathrm{U}: \mathbb{D}^{k} \hookrightarrow M$ leads to an (explicit) homotopy equivalence

$$
\operatorname{Emb}_{\partial}\left(\mathbb{D}^{k}, M\right) \simeq \Omega \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{k-1}, X\right)
$$

where $X:=M \cup_{\nu G} h^{d-k+1}$. In particular, if $d=4$ we have

$$
\pi_{0} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{2}, M\right) \cong \pi_{1} \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{1}, X\right)
$$

Superscript ε means embedded disks are equipped with "push-offs"...

So wait, higher homotopy groups are irrelevant in low-dimensional topology?

Theorem (Space level light bulb trick [K-Teichner '21])

For any $1 \leq k \leq d$, in a setting with a dual, any choice of $\mathrm{U}: \mathbb{D}^{k} \hookrightarrow M$ leads to an (explicit) homotopy equivalence

$$
\operatorname{Emb}_{\partial}\left(\mathbb{D}^{k}, M\right) \simeq \Omega \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{k-1}, X\right)
$$

where $X:=M \cup_{\nu G} h^{d-k+1}$. In particular, if $d=4$ we have

$$
\pi_{0} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{2}, M\right) \cong \pi_{1} \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{1}, X\right)
$$

Superscript ε means embedded disks are equipped with "push-offs"...

The main result today, and applications

How to compute homotopy groups?

- Note. $\operatorname{dim} X-\operatorname{dim} \mathbb{D}^{k-1}<\operatorname{dim} M-\operatorname{dim} \mathbb{D}^{k}$

How to compute homotopy groups?

- Note. $\operatorname{dim} X-\operatorname{dim} \mathbb{D}^{k-1}<\operatorname{dim} M-\operatorname{dim} \mathbb{D}^{k}$
$\Longrightarrow \pi_{n+1} \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{k-1}, X\right)$ is easier than $\pi_{n} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{k}, M\right)$! We use the classical work of Dax to compute this in a range.

How to compute homotopy groups?

- Note. $\operatorname{dim} X-\operatorname{dim} \mathbb{D}^{k-1}<\operatorname{dim} M-\operatorname{dim} \mathbb{D}^{R}$
$\Longrightarrow \pi_{n+1} \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{k-1}, X\right)$ is easier than $\pi_{n} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{k}, M\right)$! We use the classical work of Dax to compute this in a range.

Theorem [K-Teichner '22]
Fix ℓ, d such that $d \geq \ell+3$ and $d-2 \ell \geq 1$. Let X be a d-dimensional smooth compact manifold with boundary, and fix $u: \mathbb{D}^{\ell} \hookrightarrow X$. Then

How to compute homotopy groups?

- Note. $\operatorname{dim} X-\operatorname{dim} \mathbb{D}^{k-1}<\operatorname{dim} M-\operatorname{dim} \mathbb{D}^{R}$
$\Longrightarrow \pi_{n+1} \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{k-1}, X\right)$ is easier than $\pi_{n} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{k}, M\right)$! We use the classical work of Dax to compute this in a range.

Theorem [K-Teichner '22]

Fix ℓ, d such that $d \geq \ell+3$ and $d-2 \ell \geq 1$. Let X be a d-dimensional smooth compact manifold with boundary, and fix $u: \mathbb{D}^{\ell} \hookrightarrow X$. Then

1. For $0 \leq n \leq d-2 \ell-2$ we have $p_{u}: \pi_{n}\left(\operatorname{Emb}_{\partial}\left(\mathbb{D}^{\ell}, X\right), u\right) \cong \pi_{n+\ell} X$.

How to compute homotopy groups?

- Note. $\operatorname{dim} X-\operatorname{dim} \mathbb{D}^{k-1}<\operatorname{dim} M-\operatorname{dim} \mathbb{D}^{k}$
$\Longrightarrow \pi_{n+1} \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{k-1}, X\right)$ is easier than $\pi_{n} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{k}, M\right)$! We use the classical work of Dax to compute this in a range.

Theorem [K-Teichner '22]

Fix ℓ, d such that $d \geq \ell+3$ and $d-2 \ell \geq 1$. Let X be a d-dimensional smooth compact manifold with boundary, and fix $u: \mathbb{D}^{\ell} \hookrightarrow X$. Then

1. For $0 \leq n \leq d-2 \ell-2$ we have $p_{u}: \pi_{n}\left(\operatorname{Emb}_{\partial}\left(\mathbb{D}^{\ell}, X\right), u\right) \cong \pi_{n+\ell} X$.
2. There is a short exact sequence of groups (sets if $d-2 \ell-1=0$):

$$
\mathbb{Z}\left[\pi_{1} X\right] /\langle 1\rangle \oplus \operatorname{rel}_{\ell, d} \oplus \operatorname{dax}\left(\pi_{d-\ell}(X) \underset{\underset{\text { Dax }}{\stackrel{\partial r}{\rightleftarrows}}}{\stackrel{\partial r}{\rightleftarrows}} \pi_{d-2 \ell-1}\left(\operatorname{Emb}_{\partial}\left(\mathbb{D}^{\ell}, X\right), u\right) \xrightarrow{p_{u}} \pi_{d-\ell-1} X .\right.
$$

where Dax is defined on the image of the realisation map $\partial \mathfrak{r}$ and is its explicit inverse, and $r e l_{1, d}:=\emptyset$ and $r e l_{\ell, d}:=\left\langle g-(-1)^{d-\ell} g: g \in \pi_{1} X\right\rangle$ if $\ell \geq 2$

How to compute homotopy groups?

- Note. $\operatorname{dim} X-\operatorname{dim} \mathbb{D}^{k-1}<\operatorname{dim} M-\operatorname{dim} \mathbb{D}^{R}$
$\Longrightarrow \pi_{n+1} \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{k-1}, X\right)$ is easier than $\pi_{n} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{k}, M\right)$! We use the classical work of Dax to compute this in a range.

Theorem [K-Teichner '22]

Fix ℓ, d such that $d \geq \ell+3$ and $d-2 \ell \geq 1$. Let X be a d-dimensional smooth compact manifold with boundary, and fix $u: \mathbb{D}^{\ell} \hookrightarrow X$. Then

1. For $0 \leq n \leq d-2 \ell-2$ we have $p_{u}: \pi_{n}\left(\operatorname{Emb}_{\partial}\left(\mathbb{D}^{\ell}, X\right), u\right) \cong \pi_{n+\ell} X$.
2. There is a short exact sequence of groups (sets if $d-2 \ell-1=0$):
where Dax is defined on the image of the realisation map $\partial \mathfrak{r}$ and is its explicit inverse, and $r e l_{1, d}:=\emptyset$ and $r e l_{\ell, d}:=\left\langle g-(-1)^{d-\ell} g: g \in \pi_{1} X\right\rangle$ if $\ell \geq 2$

- Therefore, we have (after a bit more work to account for ε-augmentations) a (more or less) explicit description of $\pi_{n} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{k}, M\right)$ for $n \leq d-2 k$ and $d \geq 4$, assuming there is a dual for the boundary condition $s: \mathbb{S}^{k-1} \hookrightarrow \partial M$.

How to compute homotopy groups?

- Note. $\operatorname{dim} X-\operatorname{dim} \mathbb{D}^{k-1}<\operatorname{dim} M-\operatorname{dim} \mathbb{D}^{k}$
$\Longrightarrow \pi_{n+1} \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{k-1}, X\right)$ is easier than $\pi_{n} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{k}, M\right)$! We use the classical work of Dax to compute this in a range.

Theorem [K-Teichner '22]

Fix ℓ, d such that $d \geq \ell+3$ and $d-2 \ell \geq 1$. Let X be a d-dimensional smooth compact manifold with boundary, and fix $u: \mathbb{D}^{\ell} \hookrightarrow X$. Then

1. For $0 \leq n \leq d-2 \ell-2$ we have $p_{u}: \pi_{n}\left(\operatorname{Emb}_{\partial}\left(\mathbb{D}^{\ell}, X\right), u\right) \cong \pi_{n+\ell} X$.
2. There is a short exact sequence of groups (sets if $d-2 \ell-1=0$):

$$
\mathbb{Z}\left[\pi_{1} X\right] /\langle 1\rangle \oplus \operatorname{rel}_{\ell, d} \oplus \operatorname{dax}\left(\pi_{d-\ell}(X) \underset{\underset{\operatorname{Dax}}{\stackrel{\partial \mathrm{r}}{\longrightarrow}}}{\stackrel{\partial \mathrm{r}}{\longrightarrow}} \pi_{d-2 \ell-1}\left(\operatorname{Emb}_{\partial}\left(\mathbb{D}^{\ell}, X\right), u\right) \xrightarrow{p_{u}} \pi_{d-\ell-1} X .\right.
$$

where Dax is defined on the image of the realisation map $\partial \mathfrak{r}$ and is its explicit inverse, and $r e l_{1, d}:=\emptyset$ and $r e l_{\ell, d}:=\left\langle g-(-1)^{d-\ell} g: g \in \pi_{1} X\right\rangle$ if $\ell \geq 2$

- Therefore, we have (after a bit more work to account for ε-augmentations) a (more or less) explicit description of $\pi_{n} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{k}, M\right)$ for $n \leq d-2 k$ and $d \geq 4$, assuming there is a dual for the boundary condition $s: \mathbb{S}^{k-1} \hookrightarrow \partial M$.
- We make this more explicit, and compute many classes of examples in K’ 21.

Applications of the two theorems

In this talk: After giving some applications, we discuss this theorem in detail. Recall $X:=M \cup_{\nu G} h^{d-1}$.

Applications of the two theorems

In this talk: After giving some applications, we discuss this theorem in detail. Recall $X:=M \cup_{\nu G} h^{d-1}$.
$k=1: \operatorname{Emb}_{\partial}\left(\mathbb{D}^{1}, M\right) \simeq \Omega \operatorname{Emb}_{\partial}^{\Sigma}\left(\mathbb{D}^{0}, X\right) \simeq \Omega \mathbb{S}^{d-1} \times \Omega X$

Applications of the two theorems

In this talk: After giving some applications, we discuss this theorem in detail. Recall $X:=M \cup_{\nu G} h^{d-1}$.
$k=1: \operatorname{Emb}_{\partial}\left(\mathbb{D}^{1}, M\right) \simeq \Omega \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{0}, X\right) \simeq \Omega \mathbb{S}^{d-1} \times \Omega X$
$d=2$: The map amb is "point-pushing":
\{arcs in a surface M, with ends fixed on two components of ∂M \}/isotopy $\cong \mathbb{Z} \oplus \pi_{1}\left(M \cup_{G} h^{2}\right)$.

Applications of the two theorems

In this talk: After giving some applications, we discuss this theorem in detail.
Recall $X:=M \cup_{\nu G} h^{d-1}$.
$k=1: \operatorname{Emb}_{\partial}\left(\mathbb{D}^{1}, M\right) \simeq \Omega \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{0}, X\right) \simeq \Omega \mathbb{S}^{d-1} \times \Omega X$
$d=2$: The map amb is "point-pushing":
\{arcs in a surface M, with ends fixed on two components of ∂M \}/isotopy $\cong \mathbb{Z} \oplus \pi_{1}\left(M \cup_{G} h^{2}\right)$.
$d=3$: This recovers the classical LBT:
\{arcs in a 3 -manifold M with ends on two components of ∂M, one of which is $\left.\mathbb{S}^{2}\right\}$ /isotopy
$\cong \pi_{1}\left(M \cup_{G} h^{3}\right)$

Applications of the two theorems

In this talk: After giving some applications, we discuss this theorem in detail.
Recall $X:=M \cup_{\nu G} h^{d-1}$.
$k=1: \operatorname{Emb}_{\partial}\left(\mathbb{D}^{1}, M\right) \simeq \Omega \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{0}, X\right) \simeq \Omega \mathbb{S}^{d-1} \times \Omega X$
$d=2$: The map $\mathfrak{a m b}$ is "point-pushing":
\{arcs in a surface M, with ends fixed on two components of ∂M \}/isotopy $\cong \mathbb{Z} \oplus \pi_{1}\left(M \cup_{G} h^{2}\right)$.
$d=3$: This recovers the classical LBT:
\{arcs in a 3-manifold M with ends on two components of ∂M, one of which is $\left.\mathbb{S}^{2}\right\} /$ isotopy
$\cong \pi_{1}\left(M \cup_{G} h^{3}\right)$
\Longrightarrow any knot in the chord to which a light bulb attaches can be unknotted!

Applications of the two theorems

In this talk: After giving some applications, we discuss this theorem in detail.
Recall $X:=M \cup_{\nu G} h^{d-1}$.
$k=1: \operatorname{Emb}_{\partial}\left(\mathbb{D}^{1}, M\right) \simeq \Omega \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{0}, X\right) \simeq \Omega \mathbb{S}^{d-1} \times \Omega X$
$d=2$: The map $\mathfrak{a m b}$ is "point-pushing":
\{arcs in a surface M, with ends fixed on two components of ∂M \}/isotopy $\cong \mathbb{Z} \oplus \pi_{1}\left(M \cup_{G} h^{2}\right)$.
$d=3$: This recovers the classical LBT:
\{arcs in a 3-manifold M with ends on two components of ∂M, one of which is $\left.\mathbb{S}^{2}\right\} /$ isotopy
$\cong \pi_{1}\left(M \cup_{G} h^{3}\right)$
\Longrightarrow any knot in the chord to which a light bulb attaches can be unknotted!

Applications of the theorem

$$
k=2: \operatorname{Emb}_{\partial}\left(\mathbb{D}^{2}, M\right) \simeq \Omega \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{1}, X\right)
$$

Applications of the theorem

$$
\begin{aligned}
& k=2: \operatorname{Emb}_{\partial}\left(\mathbb{D}^{2}, M\right) \simeq \Omega \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{1}, X\right) . \\
& d=4: \pi_{0} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{2}, M\right) \cong \pi_{1} \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{1}, M \cup_{\nu G} h^{3}\right) .
\end{aligned}
$$

Applications of the theorem

$$
\begin{aligned}
k=2: & \operatorname{Emb}_{\partial}\left(\mathbb{D}^{2}, M\right) \simeq \Omega \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{1}, X\right) . \\
& d=4: \pi_{0} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{2}, M\right) \cong \pi_{1} \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{1}, M \cup_{\nu G} h^{3}\right) . \\
& \quad \Longrightarrow \text { We classify isotopy classes of 2-disks in 4-manifolds in the setting with a dual. }
\end{aligned}
$$

Applications of the theorem

$$
\begin{aligned}
k=2: & \operatorname{Emb}_{\partial}\left(\mathbb{D}^{2}, M\right) \simeq \Omega \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{1}, X\right) . \\
d= & 4: \pi_{0} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{2}, M\right) \cong \pi_{1} \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{1}, M \cup_{\nu G} h^{3}\right) . \\
& \Longrightarrow \text { We classify isotopy classes of 2-disks in 4-manifolds in the setting with a dual. } \\
& \Longrightarrow \text { We recover (and generalise) LBT for spheres of Gabai '20 and } \\
& \text { Schneiderman-Teichner '21. }
\end{aligned}
$$

Applications of the theorem

$$
\begin{aligned}
k=2: & \operatorname{Emb}_{\partial}\left(\mathbb{D}^{2}, M\right) \simeq \Omega \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{1}, X\right) . \\
d= & 4: \pi_{0} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{2}, M\right) \cong \pi_{1} \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{1}, M \cup_{\nu G} h^{3}\right) . \\
\Longrightarrow & \text { We classify isotopy classes of 2-disks in 4-manifolds in the setting with a dual. } \\
\Longrightarrow & \text { We recover (and generalise) LBT for spheres of Gabai '20 and } \\
& \text { Schneiderman-Teichner '21. } \\
& \cdot \text { Moreover, we get an (unexpected) group structure on } \pi_{0} \operatorname{Emb} \operatorname{Em}_{\partial}\left(\mathbb{D}^{2}, M\right) \text { ! }
\end{aligned}
$$

Applications of the theorem

$$
\begin{aligned}
k=2: & \operatorname{Emb}_{\partial}\left(\mathbb{D}^{2}, M\right) \simeq \Omega \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{1}, X\right) . \\
d= & 4: \pi_{0} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{2}, M\right) \cong \pi_{1} \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{1}, M \cup_{\nu G} h^{3}\right) . \\
\Longrightarrow & \text { We classify isotopy classes of 2-disks in 4-manifolds in the setting with a dual. } \\
\Longrightarrow & \text { We recover (and generalise) LBT for spheres of Gabai '20 and } \\
& \quad \text { Schneiderman-Teichner '21. } \\
& \quad \text { Moreover, we get an (unexpected) group structure on } \pi_{0} \operatorname{Emb}{ }_{\partial}\left(\mathbb{D}^{2}, M\right)! \\
k=d-1: & \operatorname{Emb}_{\partial}\left(\mathbb{D}^{d-1}, \mathbb{S}^{1} \times \mathbb{D}^{d-1}\right) \simeq \Omega \operatorname{Emb}_{\partial}\left(\mathbb{D}^{d-2}, \mathbb{D}^{d}\right) \\
d= & 4: \pi_{0} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{3}, \mathbb{S}^{1} \times \mathbb{D}^{3}\right) \cong \pi_{1} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{2}, \mathbb{D}^{4}\right), \text { cf. Budney-Gabai. }
\end{aligned}
$$

Applications of the theorem

$$
\begin{aligned}
& k=2: \operatorname{Emb}_{\partial}\left(\mathbb{D}^{2}, M\right) \simeq \Omega \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{1}, X\right) . \\
& d=4: \pi_{0} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{2}, M\right) \cong \pi_{1} \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{1}, M \cup_{\nu G} h^{3}\right) .
\end{aligned}
$$

\Longrightarrow We classify isotopy classes of 2-disks in 4-manifolds in the setting with a dual.
\Longrightarrow We recover (and generalise) LBT for spheres of Gabai '20 and Schneiderman-Teichner '21.

- Moreover, we get an (unexpected) group structure on $\pi_{0} \mathrm{Emb}_{\partial}\left(\mathbb{D}^{2}, M\right)$!
$k=d-1: \operatorname{Emb}_{\partial}\left(\mathbb{D}^{d-1}, \mathbb{S}^{1} \times \mathbb{D}^{d-1}\right) \simeq \Omega \operatorname{Emb}_{\partial}\left(\mathbb{D}^{d-2}, \mathbb{D}^{d}\right)$

$$
d=4: \pi_{0} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{3}, \mathbb{S}^{1} \times \mathbb{D}^{3}\right) \cong \pi_{1} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{2}, \mathbb{D}^{4}\right) \text {, cf. Budney-Gabai. }
$$

$k=d$: Recovers a theorem (and proof) of Cerf '68:

Theorem (Cerf '68)

There is a homotopy equivalence $\operatorname{Diff}_{\partial}^{+}\left(\mathbb{D}^{d}\right) \simeq \Omega \operatorname{Emb}_{\partial}\left(\mathbb{D}^{d-1}, \mathbb{D}^{d}\right)$. In particular,

$$
\pi_{0} \operatorname{Diff}_{\partial}^{+}\left(\mathbb{D}^{4}\right) \cong \pi_{1}\left(\operatorname{Emb}_{\partial}\left(\mathbb{D}^{3}, \mathbb{D}^{4}\right) ; \mathrm{U}\right)
$$

Applications of the theorem

$$
\begin{aligned}
k= & 2: \operatorname{Emb}_{\partial}\left(\mathbb{D}^{2}, M\right) \simeq \Omega \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{1}, X\right) . \\
& d=4: \pi_{0} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{2}, M\right) \cong \pi_{1} \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{1}, M \cup_{\nu G} h^{3}\right) .
\end{aligned}
$$

\Longrightarrow We classify isotopy classes of 2-disks in 4-manifolds in the setting with a dual.
\Longrightarrow We recover (and generalise) LBT for spheres of Gabai '20 and Schneiderman-Teichner '21.

- Moreover, we get an (unexpected) group structure on $\pi_{0} \mathrm{Emb}_{\partial}\left(\mathbb{D}^{2}, M\right)$!
$k=d-1: \operatorname{Emb}_{\partial}\left(\mathbb{D}^{d-1}, \mathbb{S}^{1} \times \mathbb{D}^{d-1}\right) \simeq \Omega \operatorname{Emb}_{\partial}\left(\mathbb{D}^{d-2}, \mathbb{D}^{d}\right)$
$d=4: \pi_{0} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{3}, \mathbb{S}^{1} \times \mathbb{D}^{3}\right) \cong \pi_{1} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{2}, \mathbb{D}^{4}\right)$, cf. Budney-Gabai.
$k=d$: Recovers a theorem (and proof) of Cerf '68:

Theorem (Cerf '68)

There is a homotopy equivalence $\operatorname{Diff}_{\partial}^{+}\left(\mathbb{D}^{d}\right) \simeq \Omega \operatorname{Emb}_{\partial}\left(\mathbb{D}^{d-1}, \mathbb{D}^{d}\right)$. In particular,

$$
\pi_{0} \operatorname{Diff}_{\partial}^{+}\left(\mathbb{D}^{4}\right) \cong \pi_{1}\left(\operatorname{Emb}_{\partial}\left(\mathbb{D}^{3}, \mathbb{D}^{4}\right) ; \mathrm{U}\right) .
$$

Open problem

Is π_{0} Diff $_{\partial}^{+}\left(\mathbb{D}^{4}\right)$ trivial? Compute it.
See Budney-Gabai, Gay, Watanabe for some candidate diffeomorphisms.

Metastable homotopy groups

Stable, metastable, meta²stable...(?)

A generic smooth immersion $V^{\ell} \leftrightarrow X^{d}$ has transverse self-intersections only of multiplicity $n \leq \frac{d}{d-\ell}$.

- Whitney ' 40 s: stable range $\ell<\frac{d}{2}$.
$\Longrightarrow n<2 \Longleftrightarrow$ generically no double points.

Stable, metastable, meta²stable...(?)

A generic smooth immersion $V^{\ell} \leftrightarrow X^{d}$ has transverse self-intersections only of multiplicity $n \leq \frac{d}{d-\ell}$.

- Whitney ' 40 s: stable range $\ell<\frac{d}{2}$.
$\Longrightarrow n<2 \Longleftrightarrow$ generically no double points.

Stable, metastable, meta²stable...(?)

A generic smooth immersion $V^{\ell} \leftrightarrow X^{d}$ has transverse self-intersections only of multiplicity $n \leq \frac{d}{d-\ell}$.

- Whitney '40s: stable range $\ell<\frac{d}{2}$.
$\Longrightarrow n<2 \Longleftrightarrow$ generically no double points.
- Can show: $\operatorname{Emb}(V, X) \hookrightarrow \operatorname{Imm}(V, X)$ is $(d-2 \ell-1)$-connected.

Stable, metastable, meta² stable...(?)

A generic smooth immersion $V^{\ell} \leftrightarrow X^{d}$ has transverse self-intersections only of multiplicity $n \leq \frac{d}{d-\ell}$.

- Whitney '40s: stable range $\ell<\frac{d}{2}$.
$\Longrightarrow n<2 \Longleftrightarrow$ generically no double points.
- Can show: $\operatorname{Emb}(V, X) \hookrightarrow \operatorname{Imm}(V, X)$ is $(d-2 \ell-1)$-connected.
- Haefliger '60s and Dax '70s: metastable range $\ell<\frac{2 d}{3}$.
$\Longrightarrow n<3 \Longleftrightarrow$ generically no triple points.

Stable, metastable, meta² stable...(?)

A generic smooth immersion $V^{\ell} \leftrightarrow X^{d}$ has transverse self-intersections only of multiplicity $n \leq \frac{d}{d-\ell}$.

- Whitney '40s: stable range $\ell<\frac{d}{2}$.
$\Longrightarrow n<2 \Longleftrightarrow$ generically no double points.
- Can show: $\operatorname{Emb}(V, X) \hookrightarrow \operatorname{Imm}(V, X)$ is $(d-2 \ell-1)$-connected.
- Haefliger '60s and Dax '70s: metastable range $\ell<\frac{2 d}{3}$.
$\Longrightarrow n<3 \Longleftrightarrow$ generically no triple points.

Stable, metastable, meta² stable...(?)

A generic smooth immersion $V^{\ell} \leftrightarrow X^{d}$ has transverse self-intersections only of multiplicity $n \leq \frac{d}{d-\ell}$.

- Whitney '40s: stable range $\ell<\frac{d}{2}$.
$\Longrightarrow n<2 \Longleftrightarrow$ generically no double points.
- Can show: $\operatorname{Emb}(V, X) \hookrightarrow \operatorname{Imm}(V, X)$ is $(d-2 \ell-1)$-connected.
- Haefliger '60s and Dax '70s: metastable range $\ell<\frac{2 d}{3}$.
$\Longrightarrow n<3 \Longleftrightarrow$ generically no triple points.
- Dax upgraded this to:

$$
\operatorname{Emb}(V, X) \hookrightarrow P_{2}(V, X) \text { is }(2 d-3 \ell-3) \text {-connected, }
$$

for a certain space $P_{2}(V, X)$ built out of pairs of points in X.

Stable, metastable, meta² stable...(?)

A generic smooth immersion $V^{\ell} \leftrightarrow X^{d}$ has transverse self-intersections only of multiplicity $n \leq \frac{d}{d-\ell}$.

- Whitney '40s: stable range $\ell<\frac{d}{2}$.
$\Longrightarrow n<2 \Longleftrightarrow$ generically no double points.
- Can show: $\operatorname{Emb}(V, X) \hookrightarrow \operatorname{Imm}(V, X)$ is $(d-2 \ell-1)$-connected.
- Haefliger '60s and Dax '70s: metastable range $\ell<\frac{2 d}{3}$.
$\Longrightarrow n<3 \Longleftrightarrow$ generically no triple points.
- Dax upgraded this to:

$$
\operatorname{Emb}(V, X) \hookrightarrow P_{2}(V, X) \text { is }(2 d-3 \ell-3) \text {-connected, }
$$

for a certain space $P_{2}(V, X)$ built out of pairs of points in X.

- Goodwillie-Klein-Weiss embedding calculus.
- Construct a tower of spaces $P_{n}(V, X), n \geq 1$, with:

$$
P_{1}=\operatorname{Imm}(V, X) \text { and } P_{2}(V, X)=\text { the Haefliger-Dax space. }
$$

Stable, metastable, meta² stable...(?)

A generic smooth immersion $V^{\ell} \leftrightarrow X^{d}$ has transverse self-intersections only of multiplicity $n \leq \frac{d}{d-\ell}$.

- Whitney '40s: stable range $\ell<\frac{d}{2}$.
$\Longrightarrow n<2 \Longleftrightarrow$ generically no double points.
- Can show: $\operatorname{Emb}(V, X) \hookrightarrow \operatorname{Imm}(V, X)$ is $(d-2 \ell-1)$-connected.
- Haefliger '60s and Dax '70s: metastable range $\ell<\frac{2 d}{3}$.
$\Longrightarrow n<3 \Longleftrightarrow$ generically no triple points.
- Dax upgraded this to:

$$
\operatorname{Emb}(V, X) \hookrightarrow P_{2}(V, X) \text { is }(2 d-3 \ell-3) \text {-connected, }
$$

for a certain space $P_{2}(V, X)$ built out of pairs of points in X.

- Goodwillie-Klein-Weiss embedding calculus.
- Construct a tower of spaces $P_{n}(V, X), n \geq 1$, with: $P_{1}=\operatorname{Imm}(V, X)$ and $P_{2}(V, X)=$ the Haefliger-Dax space.
- $\operatorname{Emb}(V, X) \rightarrow P_{n}(V, X)$ is $(n d-(n+1) \ell-(2 n-1))$-connected (hard!).
- Use homotopy theoretic tools to study $\mathrm{P}_{n}(V, X)$.

About the lowest degree in the metastable range

- Therefore, part 1) in the Main Theorem, which said
$p_{u}: \pi_{n}\left(\operatorname{Emb}_{\partial}\left(\mathbb{D}^{\ell}, X\right), u\right) \cong \pi_{n}\left(\operatorname{lmm}_{\partial}\left(\mathbb{D}^{\ell}, X\right), u\right) \cong \pi_{n+\ell} X, \quad$ for $0 \leq n \leq d-2 \ell-2$.
is just the well-known computation of the homotopy groups of immersions, using Smale-Hirsch theory.

About the lowest degree in the metastable range

- Therefore, part 1) in the Main Theorem, which said
$p_{u}: \pi_{n}\left(\operatorname{Emb}_{\partial}\left(\mathbb{D}^{\ell}, X\right), u\right) \cong \pi_{n}\left(\operatorname{Imm}_{\partial}\left(\mathbb{D}^{\ell}, X\right), u\right) \cong \pi_{n+\ell} X, \quad$ for $0 \leq n \leq d-2 \ell-2$.
is just the well-known computation of the homotopy groups of immersions, using Smale-Hirsch theory.
- For $n=d-2 \ell-1$ we still have a surjection

$$
\pi_{d-2 \ell-1} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{\ell}, X\right) \rightarrow \pi_{d-2 \ell-1} \operatorname{Imm}_{\partial}\left(\mathbb{D}^{\ell}, X\right) \cong \pi_{d-\ell-1} X
$$

Dax tells us how to compute its kernel.

About the lowest degree in the metastable range

- Therefore, part 1) in the Main Theorem, which said
$p_{u}: \pi_{n}\left(\operatorname{Emb}_{\partial}\left(\mathbb{D}^{\ell}, X\right), u\right) \cong \pi_{n}\left(\operatorname{Imm}_{\partial}\left(\mathbb{D}^{\ell}, X\right), u\right) \cong \pi_{n+\ell} X, \quad$ for $0 \leq n \leq d-2 \ell-2$.
is just the well-known computation of the homotopy groups of immersions, using Smale-Hirsch theory.
- For $n=d-2 \ell-1$ we still have a surjection

$$
\pi_{d-2 \ell-1} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{\ell}, X\right) \rightarrow \pi_{d-2 \ell-1} \operatorname{Imm}_{\partial}\left(\mathbb{D}^{\ell}, X\right) \cong \pi_{d-\ell-1} X
$$

Dax tells us how to compute its kernel.

- Firstly, study the relative homotopy group

$$
\pi_{d-2 \ell-1}(\operatorname{Imm}(V, X), \operatorname{Emb}(V, X))
$$

About the lowest degree in the metastable range

- Therefore, part 1) in the Main Theorem, which said

$$
p_{u}: \pi_{n}\left(\operatorname{Emb}_{\partial}\left(\mathbb{D}^{\ell}, X\right), u\right) \cong \pi_{n}\left(\operatorname{Imm}_{\partial}\left(\mathbb{D}^{\ell}, X\right), u\right) \cong \pi_{n+\ell} X, \quad \text { for } 0 \leq n \leq d-2 \ell-2
$$

is just the well-known computation of the homotopy groups of immersions, using Smale-Hirsch theory.

- For $n=d-2 \ell-1$ we still have a surjection

$$
\pi_{d-2 \ell-1} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{\ell}, X\right) \rightarrow \pi_{d-2 \ell-1} \operatorname{Imm}_{\partial}\left(\mathbb{D}^{\ell}, X\right) \cong \pi_{d-\ell-1} X
$$

Dax tells us how to compute its kernel.

- Firstly, study the relative homotopy group

$$
\pi_{d-2 \ell-1}(\operatorname{Imm}(V, X), \operatorname{Emb}(V, X))
$$

- Then study the image of the map

$$
\delta_{\mathrm{Imm}}: \pi_{d-2 \ell} \operatorname{Imm}(V, X) \rightarrow \pi_{d-2 \ell-1}(\operatorname{Imm}(V, X), \operatorname{Emb}(V, X))
$$

About the lowest degree in the metastable range

- Therefore, part 1) in the Main Theorem, which said

$$
p_{u}: \pi_{n}\left(\operatorname{Emb}_{\partial}\left(\mathbb{D}^{\ell}, X\right), u\right) \cong \pi_{n}\left(\operatorname{Imm}_{\partial}\left(\mathbb{D}^{\ell}, X\right), u\right) \cong \pi_{n+\ell} X, \quad \text { for } 0 \leq n \leq d-2 \ell-2
$$

is just the well-known computation of the homotopy groups of immersions, using Smale-Hirsch theory.

- For $n=d-2 \ell-1$ we still have a surjection

$$
\pi_{d-2 \ell-1} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{\ell}, X\right) \rightarrow \pi_{d-2 \ell-1} \operatorname{Imm}_{\partial}\left(\mathbb{D}^{\ell}, X\right) \cong \pi_{d-\ell-1} X
$$

Dax tells us how to compute its kernel.

- Firstly, study the relative homotopy group

$$
\pi_{d-2 \ell-1}(\operatorname{Imm}(V, X), \operatorname{Emb}(V, X))
$$

- Then study the image of the map

$$
\delta_{\mathrm{Imm}}: \pi_{d-2 \ell} \operatorname{Imm}(V, X) \rightarrow \pi_{d-2 \ell-1}(\operatorname{Imm}(V, X), \operatorname{Emb}(V, X))
$$

- The desired kernel is the cokernel of $\delta_{\text {Imm }}$.

About the lowest degree in the metastable range

- Therefore, part 1) in the Main Theorem, which said

$$
p_{u}: \pi_{n}\left(\operatorname{Emb}_{\partial}\left(\mathbb{D}^{\ell}, X\right), u\right) \cong \pi_{n}\left(\operatorname{Imm}_{\partial}\left(\mathbb{D}^{\ell}, X\right), u\right) \cong \pi_{n+\ell} X, \quad \text { for } 0 \leq n \leq d-2 \ell-2
$$

is just the well-known computation of the homotopy groups of immersions, using Smale-Hirsch theory.

- For $n=d-2 \ell-1$ we still have a surjection

$$
\pi_{d-2 \ell-1} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{\ell}, X\right) \rightarrow \pi_{d-2 \ell-1} \operatorname{Imm}_{\partial}\left(\mathbb{D}^{\ell}, X\right) \cong \pi_{d-\ell-1} X
$$

Dax tells us how to compute its kernel.

- Firstly, study the relative homotopy group

$$
\pi_{d-2 \ell-1}(\operatorname{Imm}(V, X), \operatorname{Emb}(V, X)) \cong \mathbb{Z}\left[\pi_{1} X\right] / r e l_{\ell, d}
$$

- Then study the image of the map

$$
\delta_{\mathrm{Imm}}: \pi_{d-2 \ell} \operatorname{Imm}(V, X) \rightarrow \pi_{d-2 \ell-1}(\operatorname{Imm}(V, X), \operatorname{Emb}(V, X))
$$

- The desired kernel is the cokernel of $\delta_{\text {Imm }}$.

About the lowest degree in the metastable range

- Therefore, part 1) in the Main Theorem, which said

$$
p_{u}: \pi_{n}\left(\operatorname{Emb}_{\partial}\left(\mathbb{D}^{\ell}, X\right), u\right) \cong \pi_{n}\left(\operatorname{Imm}_{\partial}\left(\mathbb{D}^{\ell}, X\right), u\right) \cong \pi_{n+\ell} X, \quad \text { for } 0 \leq n \leq d-2 \ell-2
$$

is just the well-known computation of the homotopy groups of immersions, using Smale-Hirsch theory.

- For $n=d-2 \ell-1$ we still have a surjection

$$
\pi_{d-2 \ell-1} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{\ell}, X\right) \rightarrow \pi_{d-2 \ell-1} \operatorname{Imm}_{\partial}\left(\mathbb{D}^{\ell}, X\right) \cong \pi_{d-\ell-1} X
$$

Dax tells us how to compute its kernel.

- Firstly, study the relative homotopy group

$$
\pi_{d-2 \ell-1}(\operatorname{Imm}(V, X), \operatorname{Emb}(V, X)) \cong \mathbb{Z}\left[\pi_{1} X\right] / r e l_{\ell, d}
$$

- Then study the image of the map

$$
\delta_{\mathrm{Imm}}: \pi_{d-2 \ell} \operatorname{Imm}(V, X) \rightarrow \pi_{d-2 \ell-1}(\operatorname{Imm}(V, X), \operatorname{Emb}(V, X))
$$

It turns out this is given as the image of a certain homomorphism dax: $\pi_{d-\ell} X \rightarrow \mathbb{Z}\left[\pi_{1} X \backslash 1\right]$.

- The desired kernel is the cokernel of $\delta_{\text {Imm }}$.

About the lowest degree in the metastable range

Theorem [Dax '72]
 There is an isomorphism $\pi_{d-2 \ell-1}(\operatorname{Imm}(V, X), \operatorname{Emb}(V, X), u) \cong \Omega_{0}\left(\mathcal{C}_{u} ; \theta_{u}\right)$, the degree 0 normal bordism group of a certain space \mathcal{C}_{u} with a stable normal bundle θ_{u} over it.

About the lowest degree in the metastable range

Theorem [Dax '72]

There is an isomorphism $\pi_{d-2 \ell-1}(\operatorname{Imm}(V, X), E m b(V, X), u) \cong \Omega_{0}\left(\mathcal{C}_{u} ; \theta_{u}\right)$, the degree 0 normal bordism group of a certain space \mathcal{C}_{u} with a stable normal bundle θ_{u} over it.

Theorem [K-Teichner '22]

There is an isomorphism Dax: $\pi_{d-2 \ell-1}(\operatorname{Imm}(V, X), \operatorname{Emb}(V, X), u) \rightarrow \mathbb{Z}\left[\pi_{1} X\right] / r e l_{\ell, d}$ given as follows: represent a relative class by a "perfect" map

$$
F:\left(\mathbb{I}^{d-2 \ell-1}, \mathbb{I}^{d-2 \ell-2} \times\{0\}, \mathbb{I}^{d-2 \ell-2} \times\{1\} \cup \partial \mathbb{I}^{d-2 \ell-2} \times \mathbb{I}\right) \rightarrow(\mathrm{Imm}, \text { Emb, u })
$$

i.e. F is smooth and its track

$$
\tilde{F}: \mathbb{I}^{d-2 \ell-1} \times v \rightarrow \mathbb{I}^{d-2 \ell-1} \times X, \quad(\vec{t}, v) \mapsto(\vec{t}, F(\vec{t}, v)),
$$

has no triple points and double points $\left(\vec{i}_{i}, x_{i}\right) \in \mathbb{I}^{d-2 \ell-1} \times V$ for $i=1, \ldots, r$ are isolated and transverse.

About the lowest degree in the metastable range

Theorem [K-Teichner '22]

There is an isomorphism Dax: $\pi_{d-2 \ell-1}(\operatorname{Imm}(V, X), \operatorname{Emb}(V, X), u) \rightarrow \mathbb{Z}\left[\pi_{1} X\right] /$ rel $l_{\ell, d}$ given as follows: represent a relative class by a "perfect" map

$$
F:\left(\mathbb{I}^{d-2 \ell-1}, \mathbb{I}^{d-2 \ell-2} \times\{0\}, \mathbb{I}^{d-2 \ell-2} \times\{1\} \cup \partial \mathbb{I}^{d-2 \ell-2} \times \mathbb{I}\right) \rightarrow(\mathrm{Imm}, \mathrm{Emb}, u)
$$

i.e. F is smooth and its track

$$
\tilde{F}: \mathbb{I}^{d-2 \ell-1} \times v \rightarrow \mathbb{I}^{d-2 \ell-1} \times X, \quad(\vec{t}, v) \mapsto(\vec{t}, F(\vec{t}, v)),
$$

has no triple points and double points $\left(\vec{t}_{i}, x_{i}\right) \in \mathbb{T}^{d-2 \ell-1} \times V$ for $i=1, \ldots, r$ are isolated and transverse. Then $\operatorname{Dax}([F])=\sum_{i=1}^{r} \varepsilon_{\left(\tilde{t}_{i}, x_{i}\right)} g_{\left(\tilde{t}_{1}, x_{i}\right)}$ is the sum of signed double point loops of \widetilde{F}.

The realisation map and the Dax invariant

Moreover, the inverse of Dax can be made explicit: for $g \in \pi_{1} X \backslash 1$ the relative homotopy class $\partial \mathbf{r}(g)$ is given by

The realisation map and the Dax invariant

Moreover, the inverse of Dax can be made explicit: for $g \in \pi_{1} X \backslash 1$ the relative homotopy class $\partial \mathfrak{r}(g)$ is given by

The realisation map and the Dax invariant

Moreover, the inverse of Dax can be made explicit: for $g \in \pi_{1} X \backslash 1$ the relative homotopy class $\partial \mathfrak{r}(g)$ is given by

Finally, for $V=\mathbb{D}^{\ell}$ we can describe $\mathrm{im}\left(\delta_{\mathrm{lmm}}\right)$ as $\langle 1\rangle \oplus \operatorname{im}(\operatorname{dax})$ where

$$
\operatorname{dax}: \pi_{d-\ell} X \rightarrow \mathbb{Z}\left[\pi_{1} X \backslash 1\right], \quad \operatorname{dax}(a)=\operatorname{Dax}(\widetilde{A})
$$

where we represent $a \in \pi_{d-\ell} X$ by a map $A: \mathbb{I}^{d-2 \ell} \times \mathbb{D}^{\ell} \rightarrow X$.

The realisation map and the Dax invariant

Moreover, the inverse of Dax can be made explicit: for $g \in \pi_{1} X \backslash 1$ the relative homotopy class $\partial \mathfrak{r}(g)$ is given by

Finally, for $V=\mathbb{D}^{\ell}$ we can describe $\mathrm{im}\left(\delta_{\mathrm{lmm}}\right)$ as $\langle 1\rangle \oplus \operatorname{im}(\operatorname{dax})$ where

$$
\operatorname{dax}: \pi_{d-\ell} X \rightarrow \mathbb{Z}\left[\pi_{1} X \backslash 1\right], \quad \operatorname{dax}(a)=\operatorname{Dax}(\widetilde{A})
$$

where we represent $a \in \pi_{d-\ell} X$ by a map $A: \mathbb{I}^{d-2 \ell} \times \mathbb{D}^{\ell} \rightarrow X$.
We can compute this in many classes of examples! See [$K^{\prime} 21$].

Thank you!

