bessel.hh File Reference

#include "toolbox/sequence.hh"
#include "formula.hh"

Go to the source code of this file.

Classes

class  concepts::BesselJ< n >
 Class for evaluating the Bessel function of first kind. More...
 
class  concepts::BesselY< n >
 Class for evaluating the Bessel function of second kind. More...
 

Namespaces

 concepts
 Basic namespace for Concepts-2.
 

Functions

Real concepts::besselJ0 (const Real x)
 
Real concepts::besselJ1 (const Real x)
 
Real concepts::besselJn (const Real x, const int n)
 Evaluates the Bessel function $J_n(x)$. More...
 
Sequence< Real > concepts::besselJn (const Real x, const Sequence< int > &n)
 Evaluates the Bessel function $J_n(x)$ for several orders. More...
 
Real concepts::besselY0 (const Real x)
 
Real concepts::besselY1 (const Real x)
 
Real concepts::besselYn (const Real x, const int n)
 Evaluates the Bessel function $ Y_n(x) $. More...
 
Cmplx concepts::hankel_1_deriv_n (const Real x, const int n)
 Evaluates the derivative $ H^{(1)}_n{}'(x) $ of the Hankel function $ H^{(1)}_n(x) = J_n(x) + \mathrm{i}Y_n(x) $. More...
 
Sequence< Cmplx > concepts::hankel_1_deriv_n (const Real x, const Sequence< int > &n)
 
Cmplx concepts::hankel_1_n (const Real x, const int n)
 Evaluates the Hankel function $ H^{(1)}_n(x) = J_n(x) + \mathrm{i}Y_n(x) $. More...
 
Sequence< Cmplx > concepts::hankel_1_n (const Real x, const Sequence< int > &n)
 
Cmplx concepts::hankel_2_deriv_n (const Real x, const int n)
 Evaluates the derivative $ H^{(2)}_n{}'(x) $ of the Hankel function $ H^{(2)}_n(x) = J_n(x) - \mathrm{i}Y_n(x) $. More...
 
Sequence< Cmplx > concepts::hankel_2_deriv_n (const Real x, const Sequence< int > &n)
 
Cmplx concepts::hankel_2_n (const Real x, const int n)
 Evaluates the Hankel function $ H^{(2)}_n(x) = J_n(x) - \mathrm{i}Y_n(x) $. More...
 
Sequence< Cmplx > concepts::hankel_2_n (const Real x, const Sequence< int > &n)
 

Detailed Description

Bessel functions as Concepts formulas.

Author
Kersten Schmidt, 2010
Adrien Semin, 2015

Definition in file bessel.hh.

Page URL: http://wiki.math.ethz.ch/bin/view/Concepts/WebHome
21 August 2020
© 2020 Eidgenössische Technische Hochschule Zürich