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Mappings of finite distortion on R?

Let Q C R? be a domain and f € W,L?(Q, R?) be non-constant.
® f has finite distortion if 3 K:  — [1,00) measurable s.th.
[|Df(2)|]> < K(x)- Je(x) for ae. x € Q.
The distortion Ky of f is defined by

[IDf ()] if Jr(z) >0
Kf(ac) _ Ji(x) f( ) )
1, else.

® fis quasiregular if 3 K > 1 s.th. A\
Ky <K ae. :

B
/
® fis quasiconformal if
f is quasiregular and
a homeomorphism. B f( b’)‘ o // ‘B‘ 9
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Mappings of finite distortion on R?

Remark: f is quasiregular with K = 1 iff. f is complex analytic.

Topological properties: continuity, openness and discreteness.

Question: Do same topological properties hold after relaxing conditions?

f

Stoilow factorization Theorem: If f is quasiregular, 0 ——> R?
then f admits a factorization f = g o h with g analytic nlqc
and h a quasiconformal homeomorphism. 4

QI

In particular: f is continuous, open and discrete.

Iwaniec-Sveridk Theorem: If f satisfies
[IDf(x)|)® < K(x)- Js(x) for a.e. © € Q
for some K € Li,.(Q), then f is continuous, open and discrete.

Theorem is sharp by following example.
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Example (Ball’s map)

Define fo: R? = R? by fo(z,y) = (z,n(z,y)), where

‘l‘|y, (.T),y) € E17
n(z,y) =9 2yl — 1) + |22 — W), (w,y) € B2 U B,
Y, else.
Es Jfo(E2)
Er fo fo(E1)
—
I fo
Ey Jo(£3)
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Example (Ball’s map) E,
for R? = R?, fo(z,y) = (z,1(z,y)), =
[y,
n,y) =4 2yl - 1) + 22— b)) . Py
y.
Calculate distortion Kjy,:
1= =
0 |z Jro(@,y) = |,
I zy(2—|yl) ()
Dfo(z,y) = IE Tyl _ || D fo(a ) y)| ,
0 2—|z Jso (2, y) € [1,°
10 Dfo(z,y)|| =1,
DfO(x7y): 7 || fo(x y)”
0 1 Jio (z,y) =1,

Conclusion: Ky, is bounded outside Ey and Ky, (z,y) = 1

Jo
—
fo
= Ky (z,y)

= Kp(e,y) <4

= Ky (z,y)=1

1
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Y(z,y) € E1.
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Mappings of finite distortion

Theory of mappings of finite distortion has been extended to
® Higher dimensions (Euclidean R"™)

° Wll’c1 -maps with exponentially integrable distortion

® Generalized n-manifolds , ‘ \

® Ahlfors n-regular //7
® Poincaré inequality v
® Subriemannian manifolds B F(B)|a = Je(z) - |Bla

Question: How can we set up theory of mappings of finite distortion within a

general metric space setting?
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Metric surfaces

Definition: A metric space X is a metric
surface if X is homeomorphic to a domain
in R? and of locally finite H%.

Appear naturally as boundaries, limits and

deformations of smooth objects.

Tools available for metric surfaces:
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¢ Uniformization of metric surfaces (Ntalampekos-Romney, see
also M.-Wenger): 3 weakly (4/7)-quasiconformal map N U

u: U — X,

where U C R? is a domain.

-

® Coarea inequality for Sobolev maps on metric surfaces
(Esmayli-Tkonen-Rajala, M.-Ntalampekos).

® Area inequality on ”good” part of metric surfaces (M.-Rajala).
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Conformal modulus

Let X be a metric surface and I' a family of curves in X.

® A Borel function p: X — [0, 00] is admissible

for T if %‘
[o21
;

holds for every locally rectifiable curve v € T — |

® The (conformal) modulus of T is

— : 2 02
mOd(F) T P a.dmislsrilkf)‘le for T /;( P dH".
® A property (P) holds for almost every curve in
I'if 31" C T such that (P) holds for every
~v €T’ and
mod(T'\ T") = 0.
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Metric Sobolev maps

Let X and Y be metric surfaces.

® A Borel function p*: X — [0,00] is a (weak) upper gradient of f: X — Y if

dy (F(x), () < / P ds

~

V z,y € X and (almost) every rectifiable curve v in X joining x, y. f(y)
e fis in the Newton-Sobolev Space N.*(X,Y) if
@ = dy (y, f(2)) € Lige(X) f(@)

for some y € Y and f has an upper gradient p* € L (X). ff

Properties: Every f € NL22(X,Y)

loc

® is absolutely continuous along a.e. curve 7 in X.

® has a minimal weak upper gradient p} € L (X).

—» Corresponds to maximal stretch of f.
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Lower Gradients

For f € N, 1’2(X ,Y') the weak upper gradient inequality is equivalent to:

loc

Z(fcw)S/p“ds

Y

for almost every rectifiable curve v in X.

Definition: A Borel function p': X — [0, o0] is a weak
lower gradient of f € N22(X,Y) if p! < p} a.e. and /f

loc

f(fov)z/plds

s

for almost every rectifiable curve v in X.

® 0 is always a lower gradient.

® Every f € N1’2(X, Y) has a mazimal weak lower gradient plf € L} (X).

loc

— Corresponds to minimal stretch of f.
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Sense-preservation

Note: Non-negativity of the Jacobian and integration by parts
gives that f € WI’Q(Q, R?) of finite distortion is sense-preserving.

loc

Let X and Y be metric surfaces. l

®* Amap f: X = Y is sense-preserving if for every
domain Q C X, Q C X with f|pn continuous

deg(y, f,2) 2 1 N8

for every y € f(Q)\ f(09).

sense-preserving

not sense-preserving

Proposition: Let f € N2?(X,R?) be sense-preserving. Then

® f is continuous,

* f satisfies Lusin (N), i.e. if E C X with #*(E) = 0, then |f(FE)|> = 0.
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Distortion along paths

8

Definition: f € N, 1’2(X ,Y') sense-preserving has finite distor-

loc

tion along paths if 3 K: X — [1, 00) measurable s.th.
P (x) < K(x) - p(x) for a.e. x € X.
® The distortion along paths Ky of f is

2D it pl(a) #0,

K e AN
) 1,f else. 'Oﬁt(m)l

py(x)

® fis quasiregular if Ky is uniformly bounded and

quasiconformal along paths if f is also a homeomorphism.

Theorem 1: If f € N2 (X, R?) is a mapping of finite distortion Generalization of

loc

along paths with K; € Li,.(X), then f is open and discrete.

Iwaniec-Sverdk
Theorem

Theorem 2: If f € N ?(X,R?) is an injective mapping of finite Generalization of

distortion with Ky € LL(X), then f~' € N22(f(X), X).

loc

Theorem of
Hencl-Koskela
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Analytic distortion

We define the Jacobian
f(B)

Jy(w) = lim sup W.

Definition: f € N1’2(X7 Y) has finite analytic distortion if 3

loc

C': X — [1,00) measurable s.th. /f

pf(x)? < CO(z) - Jy(z) for ae. z € X,

® The analytic distortion Cy of f is B
PEE it () £0
Cf(l’) — T (@) f( )7é y
1, if J;(z) = 0.

e If X=UCR?or Y =R? and f is a homeomorphism onto its image, then

dv

= M, Radon-Nikodym derivative of Vv w.r.t. sz

Jg

where v(B) = H3 (f(B)) is the pullback measure of H3 under f.
_ Mappings of finite distortion on metric surfaces
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Equivalence of definitions of distortion

Theorem 3: Let f € N-?(X,R?) be sense-preserving.

loc
1. If f is of finite distortion along paths and K € Li,.(X), then f is of finite
analytic distortion and
Ci(z) <4V2Ks(x) for ae. z € X.
2. If f is of finite analytic distortion, then f is of finite distortion along paths

and
Ki(z) < 4V2Cs(z) for ae. z € X.

Corollary: If f: X — f(X) C R? is a homeomorphism, then t.f.a.e.
1. f is quasiconformal along paths,
2. f is analytically quasiconformal,

3. f is geometrically quasiconformal, i.e. 4 K > 1 s.th.
% mod(T") < mod(f oT') < K mod(T")

V family I' of curves in X.

Moreover, if f satisfies any of these conditions, then so does f~1.
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Proof of Theorem 3

AT A7
““:““‘\\\\Ill L2

Theorem (Ntalampekos-Romney):

72
275 AN
S
12 2 s \ &
Jue NY2(U,X), U C R? s.th.
® 1y is sense-preserving,

® u is v/2-quasiregular.

Consider: f € N2?(X,R?) sense-preserving.

— h:=foue NY?

loc (U7 RQ)
% f R? is sense-preserving.
A = U =U;5,G; with |Go|2 =0 and \ U
“T ulg,, hlg, j-Lipschitz ¥ j > 1.
UcCR? P f and h satisfy Lusin (N): U
|f(Xo)l2 = [h(Go)|2 = 0 for Xo := u(Go)

Lemma 1: Let f € Nlt’f

(X,R?) be sense-preserving, then
Jy =0 a.e. in Xp.

Mappings of finite distortion on metric surfaces
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Proof of Theorem 3

® U=UjsoGj with |Go|2 = 0 and ulg,, hle, j-Lipschitz V j > 1.

® Set Xo :=u(Gop) and X' := X \ Xo. = X' is countably 2-rectifiable.

q q . 2 _
Theorem (Kirchheim): 3E C X, H*(E) = 0, s.th. be f R2
2 / h
1im%1;)mx):1 vz € X'\ E. UT /
r—0 r 2
UcCR

Linear approzimation of Jy and Kirchheim’s Theorem give:

Lemma 2: Let f € Nl’Q(X, R?) be sense-preserving. Then for E C X Borel

loc
/ Ji(z) dHE < / N, f, E) dy,
E R2

with equality if f is furthermore open and discrete.

loc

— For a homeo f € N.2(X,R?) we have J; = ddTl;’ where v(B) = |f(B)]2.
x
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Proof of Theorem 3
Area inequality: Let f € NL2(X,Y). Then for E C X’ Borel

loc

/ (@) (@) dHl < /3 / Ny, f, E) dHZ.
E Y

If f also satisfies Lusin’s condition (N), then
u 1 2 1 / 2
a x)dHx > —= [ Ny, f, E)dHy.
/Epf( )pf() X_4ﬂ v (yf ) Y

If f € Nb?(X,R?) is of finite analytic distortion:

loc
* Lemma 2 + Area ineq: Jy(z) < 4v/2 p%(z)p} () for ae. z € X'.
® Lemma 1: p% =0 a.e. on Xo. 1
ST Pf(m)
= By definition: p% = 0 a.e. on Xjo. =
= pjﬁ < 4\/§plf a.e. on Xp. 'Of(x)

If f € N2(X,R?) is of finite distortion along paths with K; € L{,.(X):

® Theorem 1: f is open and discrete.

* Lemma 2 + Area ineq: p%(z)p}(z) < 4v/2 Js () for ae. z € X'.
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Proof of Theorem 3
Proposition: If f € N.?(X,R?) is of finite distortion along paths with
Ky € L. (X), then plf =0 a.e. in Xp.

Proof: By Theorem 1, f is a local homeomorphism on X \ By, where By is a
discrete set of branch points.

Assume: The set A := {z € Xy : p}(z) > 0} has positive measure. Vo

Lemma 3: 3A’ C A\ By of positive measure s.th. Vo € A’ \f
® Jv, parametrized by arclength, © = v, (t) for ¢ € (0, 4(Vz)),

® 3b,,e. € (0,1) s.th. VR € (0,04)
diam(|f o yr|) > ez R, [l &R
where Yr = Ya|[t—R,t+R]-
= Je > 0s.th. A. ;= {z € A" : &, > ¢} is of positive measure.

Claim: Jf(a:) > 0 for a.e. x € A;. Contradicts Lemma 1.
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Proof of Theorem 3

Claim: J¢(z) > 0 for a.e. z € A..

Let M be large enough and R > 0 s.th.
5MR < 6.

Fu(R) :={t € (0,eR) : n; C B(xz, MR)}

Lemma: For a.e. x € A. M < oo s.th.
eR

Gu(R) = J @cf(B(x,MR))

teEFN (R) =1,

eR® <2R- |Fu(R)h = |Gum(R))2
< [f(B(z, MR))l2

Iy

()
>(0, eR)

R

©,0
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Quasiconformal uniformization of metric surfaces

Theorem A: If X admits a quasiregular map f : X — R2, then X admits a
quasiconformal homeomorphism ¢ : X — U C R?.

Theorem A is sharp:

® 3 a metric surface X that does not

admit a quasiconformal homeomor- Er o . fo(E1)
—

phism ¢: X — U C R? but admits T

f € N2 (X,R?) of finite distortion F

along paths with K, € Ll (X).

Generalization of Stoilow factorization Theorem: f

X — > R?
Theorem B: If f: X — R? is quasiregular, then f
admits a factorization f = gowv for v: X — V C R? /Ulqc
quasiconformal and g: V — R? analytic. Ve R2

® Follows from Theorem A and measurable Riemann Mapping Theorem.
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Quasiconformal uniformization of metric surfaces

Theorem A: If X admits a quasiregular map f : X — R2, then X admits a
quasiconformal homeomorphism ¢ : X — U C R?.

Proof: Assume f: X — R? is K-quasiregular.

Ntalampekos-Romney: Ju € Nl’Q(U,X)7 U C R?, s.th. X —— R?

loc
h
® u is v/2-quasiregular, UT /

® y is monotone, i.e. u”'(z) is connected V z € X. U cC R2
— h:= fou€ N-?(U,R?) is vV2K-quasiregular.

Thm 1 . . .
— f and h are discrete = wu is discrete . * .
L]

w mon

u is a homeomorphism * B r

Let By be the (discrete) set of branch points of f. . .

— Vaz € X\ By Inbhd V, C X sith. fly, is homeo. ~ ° *
Cor * o o

= flv, and h|,-1(y,) are geometrically qc — . .

— 'y, is geometrically qc. .
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Quasiconformal uniformization of metric surfaces

Theorem A: If X admits a quasiregular map f : X — R2, then X admits a
quasiconformal homeomorphism ¢ : X — U C R?.

Proof: We have established that u71| X\B; is geometrically qc.

WL e NL2(X\ By, R?) is analytically qc

loc
Set T* := {y € T'(X) : ™" is not abs. cont. along 7}.
® mod(T) =0 for T'o:=T"NIT(X \ By)
® VyeTI™: |y|N By is finite ¢
=~ has a subcurve in I'g

= modI™ <modI'g =0

Conclusion: ¢ :=u~! € NL?(X,R?) satisfies

ph()’ < C - Jp(z) ae. ]

_ Mappings of finite distortion on metric surfaces
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Example

Proposition (M.-Rajala 23): 3 a metric surface X that does not admit a

quasiconformal homeomorphism ¢: X — U C R? but admits f €
of finite distortion along paths with K € L, (X).

Recall Ball’s map: Let fo: R* = R?, fo(z,y) = (z,n(z,y)) with

]y,
n(z,y) =
Y,

® fo is not open and discrete:
f571(0,0) =1,

® Ky, is bounded outside F; and

1

(l’y) € E17

else.

Ey

Jo

—

Mappings of finite distortion on metric surfaces
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Jo(E1)
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Example
Let p > 1. Define a weight w: R? — [0,1] by p
1, if dist(z,I) > 1,
w(z) =
dist(z, )P, else.
and set
do(z,y) = inf/ wds,
¥
where inf is taken over all rect v: [0,1] — R?, (0) = z, y(1) = y.
Define: X := (R?/I,d,,) and 7, := id, o 7, where R2
e 7: R* - R?/T is the natural projection, and ﬂi T :=ideom
® id,: R?*/I — X is the identity map. R2/I ide, X

® X is homeo to R? and of locally finite 2.
® [Raj17]: X does not admit a quasiconformal homeo ¢: X — U C R%.

_ Mappings of finite distortion on metric surfaces

27



Example

Define: f: X - R? by f:= foom, .

° fe NUX(X,R?): X
® f is absolutely continuous on a.e. curve,
® p¥(z) < L-(w(2))"" for ae. z € X with L = Lip(fo) = 2,

= For every Borel set £ C X

[ anz <22 [ w2 an = 2 (Bl
E

B
* Kj € Lige(X):
® Ky (2) = K¢(m;'(2)) for ae. z € X,

® Ky, is bounded outside E; and

/ Ky dH. = Ky (2)w” dzz/ |z|?* " dx dy < oco.
7w (E1) Ey

Ey

_ Mappings of finite distortion on metric surfaces
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