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Mappings of finite distortion on R2

Let Ω ⊂ R2 be a domain and f ∈ W 1,2
loc (Ω,R

2) be non-constant.

• f has finite distortion if ∃ K : Ω → [1,∞) measurable s.th.

||Df(x)||2 ≤ K(x) · Jf (x) for a.e. x ∈ Ω.

The distortion Kf of f is defined by

Kf (x) =


||Df(x)||2

Jf (x)
, if Jf (x) > 0,

1, else.

• f is quasiregular if ∃ K ≥ 1 s.th.

Kf ≤ K a.e.

• f is quasiconformal if

f is quasiregular and

a homeomorphism.

Damaris Meier Mappings of finite distortion on metric surfaces 2



Mappings of finite distortion on R2

Remark: f is quasiregular with K = 1 iff. f is complex analytic.

Topological properties: continuity, openness and discreteness.

Question: Do same topological properties hold after relaxing conditions?

Stöılow factorization Theorem: If f is quasiregular,

then f admits a factorization f = g ◦ h with g analytic

and h a quasiconformal homeomorphism.

In particular: f is continuous, open and discrete.

Iwaniec-Šverák Theorem: If f satisfies

||Df(x)||2 ≤ K(x) · Jf (x) for a.e. x ∈ Ω

for some K ∈ L1
loc(Ω), then f is continuous, open and discrete.

Theorem is sharp by following example.
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Example (Ball’s map)

Define f0 : R2 → R2 by f0(x, y) = (x, η(x, y)), where

η(x, y) =


|x|y, (x, y) ∈ E1,

(2(|y| − 1) + |x|(2− |y|)) y
|y| , (x, y) ∈ E2 ∪ E3,

y, else.
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Example (Ball’s map)

f0 : R2 → R2, f0(x, y) = (x, η(x, y)),

η(x, y) =


|x|y,

(2(|y| − 1) + |x|(2− |y|)) y
|y| ,

y.

Calculate distortion Kf0 :

Df0(x, y) =

(
1 x

|x|y

0 |x|

)
,

||Df0(x, y)|| = 1,

Jf0(x, y) = |x|,
⇒ Kf0(x, y) =

1

|x|

Df0(x, y) =

(
1 xy(2−|y|)

|x| |y|

0 2− |x|

)
,

||Df0(x, y)|| ∈ [1, 2],

Jf0(x, y) ∈ [1, 2],
⇒ Kf0(x, y) ≤ 4

Df0(x, y) =

(
1 0

0 1

)
,

||Df0(x, y)|| = 1,

Jf0(x, y) = 1,
⇒ Kf0(x, y) = 1

Conclusion: Kf0 is bounded outside E1 and Kf0(x, y) =
1
|x| ∀(x, y) ∈ E1.
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Mappings of finite distortion

Theory of mappings of finite distortion has been extended to

• Higher dimensions (Euclidean Rn)

• W 1,1
loc -maps with exponentially integrable distortion

• Generalized n-manifolds

• Ahlfors n-regular

• Poincaré inequality

• Subriemannian manifolds

Question: How can we set up theory of mappings of finite distortion within a

general metric space setting?

Damaris Meier Mappings of finite distortion on metric surfaces 6



Metric surfaces

Definition: A metric space X is a metric

surface if X is homeomorphic to a domain

in R2 and of locally finite H2
X .

Appear naturally as boundaries, limits and

deformations of smooth objects.

Tools available for metric surfaces:

• Uniformization of metric surfaces (Ntalampekos-Romney, see

also M.-Wenger): ∃ weakly (4/π)-quasiconformal map

u : U → X, where U ⊂ R2 is a domain.

• Coarea inequality for Sobolev maps on metric surfaces

(Esmayli-Ikonen-Rajala, M.-Ntalampekos).

• Area inequality on ”good” part of metric surfaces (M.-Rajala).
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Conformal modulus

Let X be a metric surface and Γ a family of curves in X.

• A Borel function ρ : X → [0,∞] is admissible

for Γ if ∫
γ

ρ ≥ 1

holds for every locally rectifiable curve γ ∈ Γ.

• The (conformal) modulus of Γ is

mod(Γ) := inf
ρ admissible for Γ

∫
X

ρ2 dH2.

• A property (P ) holds for almost every curve in

Γ if ∃ Γ′ ⊂ Γ such that (P ) holds for every

γ ∈ Γ′ and

mod(Γ \ Γ′) = 0.
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Metric Sobolev maps

Let X and Y be metric surfaces.

• A Borel function ρu : X → [0,∞] is a (weak) upper gradient of f : X → Y if

dY (f(x), f(y)) ≤
∫
γ

ρu ds

∀ x, y ∈ X and (almost) every rectifiable curve γ in X joining x, y.

• f is in the Newton-Sobolev Space N1,2
loc (X,Y ) if

x 7→ dY (y, f(x)) ∈ L2
loc(X)

for some y ∈ Y and f has an upper gradient ρu ∈ L2
loc(X).

Properties: Every f ∈ N1,2
loc (X,Y )

• is absolutely continuous along a.e. curve γ in X.

• has a minimal weak upper gradient ρuf ∈ L2
loc(X).

→ Corresponds to maximal stretch of f .
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Lower Gradients

For f ∈ N1,2
loc (X,Y ) the weak upper gradient inequality is equivalent to:

ℓ(f ◦ γ) ≤
∫
γ

ρu ds

for almost every rectifiable curve γ in X.

Definition: A Borel function ρl : X → [0,∞] is a weak

lower gradient of f ∈ N1,2
loc (X,Y ) if ρl ≤ ρuf a.e. and

ℓ(f ◦ γ) ≥
∫
γ

ρl ds

for almost every rectifiable curve γ in X.

• 0 is always a lower gradient.

• Every f ∈ N1,2
loc (X,Y ) has a maximal weak lower gradient ρlf ∈ L2

loc(X).

→ Corresponds to minimal stretch of f .
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Sense-preservation

Note: Non-negativity of the Jacobian and integration by parts

gives that f ∈ W 1,2
loc (Ω,R

2) of finite distortion is sense-preserving.

Let X and Y be metric surfaces.

• A map f : X → Y is sense-preserving if for every

domain Ω ⊂ X, Ω ⊂ X with f |∂Ω continuous

deg(y, f,Ω) ≥ 1

for every y ∈ f(Ω) \ f(∂Ω).

Proposition: Let f ∈ N1,2
loc (X,R2) be sense-preserving. Then

• f is continuous,

• f satisfies Lusin (N), i.e. if E ⊂ X with H2(E) = 0, then |f(E)|2 = 0.
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Distortion along paths

Definition: f ∈ N1,2
loc (X,Y ) sense-preserving has finite distor-

tion along paths if ∃ K : X → [1,∞) measurable s.th.

ρuf (x) ≤ K(x) · ρlf (x) for a.e. x ∈ X.

• The distortion along paths Kf of f is

Kf (x) :=


ρuf (x)

ρl
f
(x)

, if ρlf (x) ̸= 0,

1, else.

• f is quasiregular if Kf is uniformly bounded and

quasiconformal along paths if f is also a homeomorphism.

Theorem 1: If f ∈ N1,2
loc (X,R2) is a mapping of finite distortion

along paths with Kf ∈ L1
loc(X), then f is open and discrete.

Generalization of

Iwaniec-Šverák

Theorem

Theorem 2: If f ∈ N1,2
loc (X,R2) is an injective mapping of finite

distortion with Kf ∈ L1
loc(X), then f−1 ∈ N1,2

loc (f(X), X).

Generalization of

Theorem of

Hencl-Koskela

Damaris Meier Mappings of finite distortion on metric surfaces 12



Analytic distortion

We define the Jacobian

Jf (x) = lim sup
r→0

H2
Y (f(B(x, r)))

πr2
.

Definition: f ∈ N1,2
loc (X,Y ) has finite analytic distortion if ∃

C : X → [1,∞) measurable s.th.

ρuf (x)
2 ≤ C(x) · Jf (x) for a.e. x ∈ X,

• The analytic distortion Cf of f is

Cf (x) :=


ρuf (x)2

Jf (x)
, if Jf (x) ̸= 0,

1, if Jf (x) = 0.

• If X = U ⊂ R2 or Y = R2 and f is a homeomorphism onto its image, then

Jf =
dν

dH2
X

, Radon-Nikodym derivative of ν w.r.t. H2
X .

where ν(B) = H2
Y (f(B)) is the pullback measure of H2

Y under f .
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Equivalence of definitions of distortion

Theorem 3: Let f ∈ N1,2
loc (X,R2) be sense-preserving.

1. If f is of finite distortion along paths and Kf ∈ L1
loc(X), then f is of finite

analytic distortion and

Cf (x) ≤ 4
√
2Kf (x) for a.e. x ∈ X.

2. If f is of finite analytic distortion, then f is of finite distortion along paths

and
Kf (x) ≤ 4

√
2Cf (x) for a.e. x ∈ X.

Corollary: If f : X → f(X) ⊂ R2 is a homeomorphism, then t.f.a.e.

1. f is quasiconformal along paths,

2. f is analytically quasiconformal,

3. f is geometrically quasiconformal, i.e. ∃ K ≥ 1 s.th.

1

K
mod(Γ) ≤ mod(f ◦ Γ) ≤ Kmod(Γ)

∀ family Γ of curves in X.

Moreover, if f satisfies any of these conditions, then so does f−1.
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Proof of Theorem 3

Theorem (Ntalampekos-Romney):

∃ u ∈ N1,2
loc (U,X), U ⊂ R2, s.th.

• u is sense-preserving,

• u is
√
2-quasiregular.

Consider: f ∈ N1,2
loc (X,R2) sense-preserving.

=⇒ h := f ◦ u ∈ N1,2
loc (U,R

2)

is sense-preserving.

=⇒ U =
⋃

j≥0 Gj with |G0|2 = 0 and

u|Gj , h|Gj j-Lipschitz ∀ j ≥ 1.
Prop
=⇒ f and h satisfy Lusin (N):

|f(X0)|2 = |h(G0)|2 = 0 for X0 := u(G0)

Lemma 1: Let f ∈ N1,2
loc (X,R2) be sense-preserving, then

Jf = 0 a.e. in X0.
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Proof of Theorem 3

• U =
⋃

j≥0 Gj with |G0|2 = 0 and u|Gj , h|Gj j-Lipschitz ∀ j ≥ 1.

• Set X0 := u(G0) and X ′ := X \X0. ⇒ X ′ is countably 2-rectifiable.

Theorem (Kirchheim): ∃E ⊂ X, H2(E) = 0, s.th.

lim
r→0

H2(B(x, r) ∩X ′)

πr2
= 1 ∀x ∈ X ′ \ E.

Linear approximation of Jf and Kirchheim’s Theorem give:

Lemma 2: Let f ∈ N1,2
loc (X,R2) be sense-preserving. Then for E ⊂ X Borel∫
E

Jf (x) dH2
X ≤

∫
R2

N(y, f, E) dy,

with equality if f is furthermore open and discrete.

=⇒ For a homeo f ∈ N1,2
loc (X,R2) we have Jf =

dν

dH2
X

, where ν(B) = |f(B)|2.
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Proof of Theorem 3

Area inequality: Let f ∈ N1,2
loc (X,Y ). Then for E ⊂ X ′ Borel∫

E

ρuf (x)ρ
l
f (x) dH2

X ≤ 4
√
2

∫
Y

N(y, f, E) dH2
Y .

If f also satisfies Lusin’s condition (N), then∫
E

ρuf (x)ρ
l
f (x) dH2

X ≥ 1

4
√
2

∫
Y

N(y, f, E) dH2
Y .

If f ∈ N1,2
loc (X,R2) is of finite analytic distortion:

• Lemma 2 + Area ineq: Jf (x) ≤ 4
√
2 ρuf (x)ρ

l
f (x) for a.e. x ∈ X ′.

• Lemma 1: ρuf = 0 a.e. on X0.

⇒ By definition: ρlf = 0 a.e. on X0.

⇒ ρuf ≤ 4
√
2 ρlf a.e. on X0.

If f ∈ N1,2
loc (X,R2) is of finite distortion along paths with Kf ∈ L1

loc(X):

• Theorem 1: f is open and discrete.

• Lemma 2 + Area ineq: ρuf (x)ρ
l
f (x) ≤ 4

√
2 Jf (x) for a.e. x ∈ X ′.
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Proof of Theorem 3

Proposition: If f ∈ N1,2
loc (X,R2) is of finite distortion along paths with

Kf ∈ L1
loc(X), then ρlf = 0 a.e. in X0.

Proof : By Theorem 1, f is a local homeomorphism on X \ Bf , where Bf is a

discrete set of branch points.

Assume: The set A := {x ∈ X0 : ρlf (x) > 0} has positive measure.

Lemma 3: ∃A′ ⊂ A \ Bf of positive measure s.th. ∀x ∈ A′

• ∃γx parametrized by arclength, x = γx(t) for t ∈ (0, ℓ(γx)),

• ∃δx, εx ∈ (0, 1) s.th. ∀R ∈ (0, δx)

diam(|f ◦ γR|) ≥ εxR,

where γR = γx|[t−R,t+R].

=⇒ ∃ε > 0 s.th. Aε := {x ∈ A′ : εx ≥ ε} is of positive measure.

Claim: Jf (x) > 0 for a.e. x ∈ Aε. Contradicts Lemma 1.
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Proof of Theorem 3

Claim: Jf (x) > 0 for a.e. x ∈ Aε.

Let M be large enough and R > 0 s.th.

5MR < δx.

FM (R) := {t ∈ (0, εR) : η′
t ⊂ B(x,MR)}

Lemma: For a.e. x ∈ Aε ∃M < ∞ s.th.

|FM (R)|1 ≥ εR

2
.

GM (R) :=
⋃

t∈FM (R)

f(η′
t)︸ ︷︷ ︸

=It

⊂ f(B(x,MR))

εR2 ≤ 2R · |FM (R)|1 = |GM (R)|2
≤ |f(B(x,MR))|2
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Quasiconformal uniformization of metric surfaces

Theorem A: If X admits a quasiregular map f : X → R2, then X admits a

quasiconformal homeomorphism φ : X → U ⊂ R2.

Theorem A is sharp:

• ∃ a metric surface X that does not

admit a quasiconformal homeomor-

phism φ : X → U ⊂ R2 but admits

f ∈ N1,2
loc (X,R2) of finite distortion

along paths with Kf ∈ L1
loc(X).

Generalization of Stöılow factorization Theorem:

Theorem B: If f : X → R2 is quasiregular, then f

admits a factorization f = g ◦ v for v : X → V ⊂ R2

quasiconformal and g : V → R2 analytic.

• Follows from Theorem A and measurable Riemann Mapping Theorem.
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Quasiconformal uniformization of metric surfaces

Theorem A: If X admits a quasiregular map f : X → R2, then X admits a

quasiconformal homeomorphism φ : X → U ⊂ R2.

Proof: Assume f : X → R2 is K-quasiregular.

Ntalampekos-Romney: ∃ u ∈ N1,2
loc (U,X), U ⊂ R2, s.th.

• u is
√
2-quasiregular,

• u is monotone, i.e. u−1(x) is connected ∀ x ∈ X.

Thm 1
=⇒ h := f ◦ u ∈ N1,2

loc (U,R
2) is

√
2K-quasiregular.

Thm 1
=⇒ f and h are discrete ⇒ u is discrete

u mon
=⇒ u is a homeomorphism

Let Bf be the (discrete) set of branch points of f .
Cor
=⇒ ∀ x ∈ X \ Bf ∃ nbhd Vx ⊂ X s.th. f |Vx is homeo.

Cor
=⇒ f |Vx and h|u−1(Vx) are geometrically qc

u mon
=⇒ u−1|Vx is geometrically qc.
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Quasiconformal uniformization of metric surfaces

Theorem A: If X admits a quasiregular map f : X → R2, then X admits a

quasiconformal homeomorphism φ : X → U ⊂ R2.

Proof: We have established that u−1|X\Bf
is geometrically qc.

[Wil12]
=⇒ u−1 ∈ N1,2

loc (X \ Bf ,R2) is analytically qc

Set Γ∗ := {γ ∈ Γ(X) : u−1 is not abs. cont. along γ}.

• mod(Γ0) = 0 for Γ0 := Γ∗ ∩ Γ(X \ Bf )

• ∀γ ∈ Γ∗: |γ| ∩ Bf is finite

⇒ γ has a subcurve in Γ0

⇒ modΓ∗ ≤ modΓ0 = 0

Conclusion: φ := u−1 ∈ N1,2
loc (X,R2) satisfies

ρuφ(x)
2 ≤ C · Jφ(x) a.e. □
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Example

Proposition (M.-Rajala 23): ∃ a metric surface X that does not admit a

quasiconformal homeomorphism φ : X → U ⊂ R2 but admits f ∈ N1,2
loc (X,R2)

of finite distortion along paths with Kf ∈ L1
loc(X).

Recall Ball’s map: Let f0 : R2 → R2, f0(x, y) = (x, η(x, y)) with

η(x, y) =


|x|y, (x, y) ∈ E1,

(2(|y| − 1) + |x|(2− |y|)) y
|y| , (x, y) ∈ E2 ∪ E3,

y, else.

• f0 is not open and discrete:

f−1
0 (0, 0) = I,

• Kf0 is bounded outside E1 and

Kf0(x, y) =
1

|x| ∀(x, y) ∈ E1.
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Example

Let p > 1. Define a weight ω : R2 → [0, 1] by

ω(z) =

1, if dist(x, I) ≥ 1,

dist(x, I)p, else.

and set

dω(x, y) = inf

∫
γ

ω ds,

where inf is taken over all rect γ : [0, 1] → R2, γ(0) = x, γ(1) = y.

Define: X := (R2/I, dω) and πω := idω ◦ π, where

• π : R2 → R2/I is the natural projection, and

• idω : R2/I → X is the identity map.

• X is homeo to R2 and of locally finite H2.

• [Raj17]: X does not admit a quasiconformal homeo φ : X → U ⊂ R2.
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Example

Define: f : X → R2 by f := f0 ◦ π−1
ω .

• f ∈ N1,2
loc (X,R2):

• f is absolutely continuous on a.e. curve,

• ρuf (z) ≤ L · (ω(z))−1 for a.e. z ∈ X with L = Lip(f0) = 2,

⇒ For every Borel set E ⊂ X∫
E

(ρuf )
2 dH2

ω ≤ L2

∫
E

ω−2 dH2
ω = L2|π−1

ω (E)|2.

• Kf ∈ L1
loc(X):

• Kf0(z) = Kf (π
−1
ω (z)) for a.e. z ∈ X,

• Kf0 is bounded outside E1 and∫
πω(E1)

Kf dH2
ω =

∫
E1

Kf0(z)ω
2 dz =

∫
E1

|x|2p−1 dx dy < ∞.
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