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Existence problem for harmonic maps

M - closed surface equipped with Riemannian metric g

N - compact Riemannian manifold

Question: Is every continuous map φ∶M → N

homotopic to a harmonic map u∶M → N?

A map u ∈ W 1,2(M,N) is harmonic, if u is a

critical point of the Dirichlet energy functional

E(u) = 1

2 ∫M
∣Du∣2 dH2

g.

Theorem (Lemaire, Schoen-Yau, Sacks-Uhlenbeck):

YES whenever π2(N) = 0.

● Recall: π2(N) = 0 iff. every continuous map from S2

to N is homotopic to a constant map.

● Theorem is not true if π2(N) ≠ 0.
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General approach

Let φ∶M → N be continuous. Define

● Λ(φ) ∶= {u ∈W 1,2(M,N) ∶ u cont. and homotopic to φ}

● e(φ) ∶= inf{E(u) ∶ u ∈ Λ(φ)}

Goal: Find u ∈ Λ(φ) satisfying E(u) = e(φ).

Direct variational method:

● Show that Λ(φ) ≠ ∅.

● Let (un) ⊂ Λ(φ) be energy minimizing, i.e. E(un) → e(φ).

● Subsequence of (un) converges to u∶M → N .

● Show that u ∈ Λ(φ).

● Lower semi-continuity of energy gives that u is

energy minimizer in Λ(φ).

● Show that u satisfies further regularity properties.
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Example: Scaling map ψλ∶S
2
→ S2

Let ψλ∶S2 → S2 be the scaling map of factor λ > 0.

● ψλ is conformal,

● ψλ ∈ Λ(id), and

● E(ψλ) = 4π = e(id).

For λn → 0, the sequence (ψλn) ⊂ Λ(id) is
energy minimizing but converges in L2 to

a constant map u∶S2 → S2.

Ô⇒ u ∉ Λ(id)

Damaris Meier Energy minimizing harmonic 2-spheres in metric spaces 4



Non-trivial harmonic spheres

M - closed surface equipped with Riemannian metric g

N - compact Riemannian manifold

Theorem (Sacks-Uhlenbeck): If π2(N) ≠ 0,

then there exists a non-trivial u∶S2 → N mini-

mizing energy within its homotopy class.

Every such u is a conformal branched immersion.
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Non-trivial harmonic spheres

Theorem (Sacks-Uhlenbeck): If π2(N) ≠ 0,

then there exists a non-contractible u∶S2 → N

minimizing energy within its homotopy class.

Every such u is a conformal branched immersion.

Let φ∶M → N be continuous.

● For α > 1, consider perturbed energy functionals

Eα(v) = ∫
M
(∣Dv∣2 + 1)α dH2

g.

● A priori estimates from Euler-Lagrange equation of Eα.

● Convergence of Eα-minimizer vα ∈ Λ(φ) as α→ 1:

● ∃ S ⊂M finite s.th. vα∣M∖S converge in C∞

and limit extends to smooth harmonic map

u0∶M → N.

Damaris Meier Energy minimizing harmonic 2-spheres in metric spaces 5



Non-trivial harmonic spheres

● Convergence of vα as α→ 1:

● For every xi ∈ S a suitable sequence of rescalings of vα near

xi converge to a non-trivial harmonic map

ui∶S2 → N.
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Non-trivial harmonic spheres

● Convergence of vα as α→ 1:

● For every xi ∈ S a suitable sequence of rescalings of vα near

xi converge to a non-trivial harmonic map

ui∶S2 → N.

● Energy gap [Sacks-Uhlenbeck]:

There exists ε > 0 s.th.

E(ui) > ε for all i ≥ 1.

● Energy identity [Jost]:

e(φ) = E(u0) +E(u1) + ... +E(um)

= e(u0) + e(u1) + ... + e(um).
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Non-trivial harmonic spheres in a non-smooth setting

Questions: Do these results generalize to non-smooth targets?

What are the essential assumptions on the target guaranteeing

the existence of non-trivial harmonic spheres?

Hope: Find a conceptually simpler proof

(not depending on PDE-Methods).
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Sobolev maps into metric spaces

X - compact metric space

M - closed surface equipped with Riemannian metric g

Ω - open subset of M

A measurable map u∶Ω→X is in L2(Ω,X) if for some (any) x ∈X

ux(z) ∶= d(x,u(z)) ∈ L2(Ω).

Definition: u ∈ L2(Ω,X) is in the Sobolev space W 1,2(Ω,X) if
● ux ∈W 1,2(Ω) for every x ∈X, and

● ∃ h ∈ L2(Ω) s.th. for all x ∈X we have

∣∇ux∣g ≤ h a.e. on Ω.

The Reshetnyak energy E2
+ of u ∈W 1,2(Ω,X) is defined by

E2
+(u) ∶= inf {∥h∥2L2(Ω) ∶ h as in the definition above} .
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Setting

Let X be a compact metric space satisfying:

● X admits a local quadratic isoperimetric inequality

(local qii), i.e. ∃ C, l0 > 0 s.th. every Lipschitz curve

γ∶S1 →X of length ℓ(γ) ≤ l0

is the trace of a Sobolev map u ∈W 1,2(D,X) with

Area(u) ≤ C ⋅ ℓ(γ)2.

Theorem [Lytchak-Wenger]: For every Sobolev map u ∈W 1,2(D,X) there
exists v ∈W 1,2(D,X) with

E2
+(v) = inf{E2

+(w) ∶ w ∈W 1,2(D,X), tr(w) = tr(u)}

and tr(v) = tr(u). Any such v has a locally Hölder continuous representative v̄,

which extends continuously to the boundary whenever tr(u) is continuous.

We call the continuous map v̄ Dirichlet solution.

● X is quasiconvex, i.e. ∃ λ ≥ 1 s.th. every pair of points

x, y ∈X can be joined by a curve γ in X with

ℓ(γ) ≤ λ ⋅ d(x, y).

● Every continuous map from S2 to X of sufficiently

small diameter is null-homotopic.

Examples: Closed Riemannian manifolds, compact Lipschitz manifolds, com-

pact locally CAT(κ)-spaces, some compact sub-Riemannian manifolds, ...
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Regularity

M - closed surface equipped with Riemannian metric g

X - compact quasiconvex metric space satisfying a local qii,

every continuous S2 →X of small diam is null-homotopic

Proposition: Every u ∈W 1,2(M,X) minimizing energy

in its homotopy class is harmonic (i.e. locally energy

minimizing), and thus Hölder continuous.

If M = S2, then u is infinitesimally isotropic.

● Hölder continuity is best we can hope for.

● Example: X double cone of small cone

angle and u∶S2 →X radial stretch func-

tion t↦ tα for some α ∈ (0,1).

● Infinitesimal isotropy implies

● infinitesimal
√
2-quasiconformality, i.e.

max stretch at z

min stretch at z
≤
√
2 for a.e. z ∈ S2,

● weak conformality if X is Riemannian or

locally CAT(1).
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Existence

M - closed surface equipped with Riemannian metric g

X - compact quasiconvex metric space satisfying a local qii,

every continuous S2 →X of small diam is null-homotopic

Theorem: If π2(X) = 0, then for every φ∶M →X continuous

there exists an energy minimizer in

Λ(φ) ∶= {u ∈W 1,2(M,X) ∶ u cont. and homotopic to φ}.

● Theorem fails if π2(X) ≠ 0.
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Non-existence of homotopic energy minimizers

Example: Define X ∶= S2 ⊔ [0,1] ⊔ S2/
∼
, then

● π2(X) ≠ 0, and

● X satisfies all standing assumptions.

Let φ∶S2 →X be as illustrated.

Assume there exists an energy minimizer u ∈ Λ(φ).

⇒ u is infinitesimally quasiconformal

⇒ energy of u∣u−1((0,1)) is zero

⇒ u is locally constant on u−1((0,1))

→ not possible!
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Existence

M - closed surface equipped with Riemannian metric g

X - compact quasiconvex metric space satisfying a local qii,

every continuous S2 →X of small diam is null-homotopic

For φ∶M →X continuous, we define

e+(φ) ∶= inf{E2
+(u) ∶ u ∈ Λ(φ)}.

Main Theorem: Every continuous map φ∶M → X has an iterated decompo-

sition into φ0∶M →X and finitely many φ1, . . . , φk ∶S2 →X such that

e+(φ0) + e+(φ1) + ⋅ ⋅ ⋅ + e+(φk) = e+(φ)

and such that every φi contains an energy minimizer in its homotopy class.

Theorem also holds for a general definition of energy E. We recover:

● Theorems of Lemaire, Schoen-Yau and Sacks-Uhlenbeck for X = N .

● Result of Breiner-Fraser-Huang-Mese-Sargent-Zhang for X locally CAT(1).
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Decompositon

Definition: φ0∶M →X and φ1∶S2 →X

decompose φ∶M →X if

● φ0 agrees with φ on M ∖B,

● φ1 obtained by gluing φ∣B and φ0∣B
along ∂B,

● φ1 is essential, and if M = S2 also φ0.

Iterated decomposition:

0-step: φ0 = φ,
k-step: φ0∶M →X and

φ1, . . . , φk ∶S2 →X obtained from

decomposing a map in a (k − 1)-
step iterated decomposition of φ.
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Fine triangulation of M

Proof of main theorem: First facts

(A) Existence of homotopic Sobolev mappings: For every φ∶M →X

continuous, the set Λ(φ) is not empty.

● Choose fine enough triangulation of M and set

u∣M0 = φ∣M0 .
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Proof of main theorem: First facts

(A) Existence of homotopic Sobolev mappings: For every φ∶M →X

continuous, the set Λ(φ) is not empty.

● Choose fine enough triangulation of M and set u∣M0 = φ∣M0 .

● Use quasiconvexity to extend u∣M0 to a Lipschitz map

u∣M1 ∶M1 →X.
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Fine triangulation of M

Proof of main theorem: First facts

(A) Existence of homotopic Sobolev mappings: For every φ∶M →X

continuous, the set Λ(φ) is not empty.

● Choose fine enough triangulation of M and set u∣M0 = φ∣M0 .

● Use quasiconvexity to extend u∣M0 to a Lipschitz map u∣M1 ∶M1 →X.

● Local qii + [Lytchak-Wenger]: u∣M1 extends to a

u ∈W 1,2(M,X) continuous.
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Proof of main theorem: First facts

(A) Existence of homotopic Sobolev mappings: For every φ∶M →X

continuous, the set Λ(φ) is not empty.

● We have shown: ∀ ε > 0 ∃ u ∈W 1,2(M,X) with dist(u,φ) < ε.

● Construct homotopy between u and φ by using quasiconvexity, local

qii and contractibility of spheres of small diameter.
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Proof of main theorem: First facts

(A) Existence of homotopic Sobolev mappings:

For every φ∶M →X continuous, the set

Λ(φ) ∶= {u ∈W 1,2(M,X) ∶ u continuous and homotopic to φ}

is not empty.

(B) Spheres of small area are null-homotopic:

There exists ε0 > 0 s.th. every u ∈W 1,2(S2,X)
with Area(u) < ε0 is null-homotopic.

● Energy gap for essential maps:

If u ∈W 1,2(S2,X) is essential, then

E2
+(u) ≥ Area(u) ≥ ε0.
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Energy distributed minimizing sequences

(1) Convergence of energy distributed minimizing sequence: A

sequence (un) of continuous mappings in W 1,2(M,X) of uniformly

bounded energy is minimizing if

E2
+(un) − e+(un) → 0 for n→∞.

● Rellich-Kondrachov: A subsequence of (un) converges in L2 to

u ∈W 1,2(M,X), i.e.

∫
M
d2(u(z), un(z))dH2(z) n→∞Ð→ 0.

● A priori, there is no reason that u has a continuous representative.

● Even if (un) ⊂ Λ(φ) and u has a continuous representative ū we

might have

ū ∉ Λ(φ).

Theorem: Let (un) be a minimizing sequence converging in L2 to

u ∈W 1,2(M,X). If ∃ r0 > 0 s.th.

E2
+(un∣B(p,r0)) ≤

ε0
5

∀p ∈M, ∀n ∈ N,

then u has a continuous representative ū ∈W 1,2(M,X) with
● ū satisfies E2

+(ū) = e2+(ū), and
● ū is homotopic to un for large n.

Idea: Build homotopy between un and u as in (A) while using (B).

Problems: Lack of continuity of u and ”only” L2-convergence.
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● ū is homotopic to un for large n.

Idea: Build homotopy between un and u as in (A) while using (B).

Problems: Lack of continuity of u and ”only” L2-convergence.

Damaris Meier Energy minimizing harmonic 2-spheres in metric spaces 16



*

e

Energy distributed minimizing sequences

Fix fine enough triangulation of M .

● Control along 1-skeleton: After ”wiggling” we find good triangulation

Mξ of M s.th. (up to taking subsequence)

● (un∣M1
ξ
) has uniformly bounded length and

un∣M1
ξ

uniformlyÐÐÐÐÐ→ cont. rep. of u∣M1
ξ
.

→ Uses methods introduced in [Soultanis-Wenger].
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Energy distributed minimizing sequences

Fix fine enough triangulation of M .

● Control along 1-skeleton: After ”wiggling” we find good triangulation

Mξ of M s.th. (un∣M1
ξ
) has uniformly bounded length and

un∣M1
ξ

uniformlyÐÐÐÐÐ→ cont. rep. of u∣M1
ξ
.

● Compare u to the continuous map v ∈W 1,2(M,X) defined as follows:

● v∣M1
ξ
agrees with the cont. rep. of u∣M1

ξ
, and

● v∣∆ is Dirichlet solution with trace u∣∂∆ for all ∆ ∈M2
ξ .
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for large n:
Sobolev annulus

of area- Eo/5

*
I

Area(vi)Eiü Ara(Unk)Eun

Energy distributed minimizing sequences

● un is homotopic to v for large n ∈ N:
Use quasiconvexity and local qii to

construct Sobolev annulus of small area

between un∣∂∆ and v∣∂∆ for every ∆ ∈M2
ξ .

● Gluing this annulus to un∣∆ and v∣∆
gives Sobolev sphere of small area.

(B): Induces homotopy between un and v.

● LSC of energy + minimality of (un):

e+(v) ≤ E2
+(v) ≤ E2

+(u) ≤ lim inf
n→∞

E2
+(un) = e+(v).

⇒ u∣∆ is an energy minimizer for every ∆ ∈M2
ξ .

⇒ [Lytchak-Wenger]: u has a continuous representative ū.

Repeat arguments to build homotopy between ū and un for large n.
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Energy distributed minimizing sequences

(1) Convergence of energy distributed minimizing sequence: A

sequence (un) of continuous mappings in W 1,2(M,X) of uniformly

bounded energy is minimizing if
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● ū is homotopic to un for large n.

Idea: Build homotopy between un and u as in (A) while using (B).
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Uniformly distributing energy

(2) ε-indecomposability implies uniformly distributed energy:
(up to precomposition with conformal diffeomorphisms)

Condition: A continuous map φ∶M →X is

ε-indecomposable if for any decomposition

φ0∶M →X and φ1∶S2 →X of φ we have

e+(φ0) + e+(φ1) ≥ e+(φ) + ε.

Proposition: If φ∶M →X is ε-indecomposable for some 0 < ε < ε0,
then there exists r0 > 0 s.th. the following holds:

If u ∈ Λ(φ) is almost energy minimizing, then there exists a con-

formal diffeomorphism η∶M →M s.th.

E2
+(u ○ η∣B(p,r0)) ≤

ε0
5

∀p ∈M.

● We can choose η = id if M ≠ S2.
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Uniformly distributing energy

M ≠ S2: Let r0 > 0 be well-chosen

(decreases as e+(φ) increases).

● Assume ∃ p ∈M s.th. E2
+(u∣B(p,r0)) >

ε0
5
.

● We find Jordan curve γ∶S1 →M

“surrounding” B(p, r0) with

E2(u ○ γ) < δ and ℓ(u ○ γ) < l0.

● Let v ∈W 1,2(D,X) be the Dirichlet

solution with trace u ○ γ.

● Energy filling inequality [LW]:

∃ C′ depending only on C s.th.

E2
+(v) ≤ C′E2(u ○ γ) < C′δ.
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Uniformly distributing energy

Use v to construct two continuous maps

φ0 ∈W 1,2(M,X) and φ1 ∈W 1,2(S2,X).

● If φ1 is null-homotopc, then φ0 is homotopic to φ and

E2
+(φ0) = E2

+(u) −E2
+(u∣B) +E2

+(v) < e+(φ). ☇

⇒ φ0 and φ1 form a decomposition of φ and

E2
+(φ0)+E2

+(φ1) = E2
+(u)+2E2

+(v) < e+(φ)+ ε. ☇
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Uniformly distributing energy

Use v to construct two continuous maps

φ0 ∈W 1,2(M,X) and φ1 ∈W 1,2(S2,X).

● If φ1 is null-homotopc, then φ0 is homotopic to φ and

E2
+(φ0) = E2

+(u) −E2
+(u∣B) +E2

+(v) < e+(φ). ☇

⇒ φ0 and φ1 form a decomposition of φ and

E2
+(φ0)+E2

+(φ1) = E2
+(u)+2E2

+(v) < e+(φ)+ ε. ☇

M = S2: Contradiction to ε-indecomposability

only if φ1 and φ0 are essential.

● Precompose u with a certain diffeomorphism

η∶S2 → S2.

● Use a similar construction as above.
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Existence

M - closed surface equipped with Riemannian metric g

X - compact quasiconvex metric space satisfying a local qii,

every continuous S2 →X of small diam is null-homotopic

Main Theorem: Every continuous map φ∶M → X has an iterated decompo-

sition into φ0∶M →X and finitely many φ1, . . . , φk ∶S2 →X such that

e+(φ0) + e+(φ1) + ⋅ ⋅ ⋅ + e+(φk) = e+(φ)

and such that every piece contains an energy minimizer

in its homotopy class.

We have established:

(1) Convergence of energy distributed minimizing

sequences.

(2) ε-indecomposability implies uniformly distributed energy.
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Proof of main theorem

Note: Every iterated decomposition of φ

satisfies

e+(φ) ≤ e+(φ0) + e+(φ1)
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
(B)
≥ ε0

+ ⋅ ⋅ ⋅ + e+(φk)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
(B)
≥ ε0

. (1)

Let m be largest integer s.th. ”=” holds in (1).

Take: Sequences of m-step iterated

decompositions of φ satisfying

e+(φn
0 ) + e+(φn

1 ) + ⋅ ⋅ ⋅ + e+(φn
m)

n→∞Ð→ e+(φ).

Then φn
i is ε-indecomposable for suitable ε.
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Proof of main theorem

Take: Sequences of m-step iterated decompo-

sitions of φ satisfying

● φn
i is ε-indecomposable,

● e+(φn
0 ) + e+(φn

1 ) + ⋅ ⋅ ⋅ + e+(φn
m)

n→∞Ð→ e+(φ).

Choose: un
i ∈ Λ(φn

i ) s.th.

E2
+(un

i ) ≤ e+(φn
i ) +

1

n
.

(2): ∃ ri > 0 and conformal diffeos ηni s.th.

E2
+(un

i ○ ηni ∣B(p,ri)) ≤
ε0
5
.

(1): un
i ○ ηni converges in L2 to a continuous map

ui ∈W 1,2(Mi,X) with E2
+(ui) = e2+(ui),

and ui is homotopic to un
i ○ ηni (and thus to

φn
i ) for sufficiently large n. ◻
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Open questions

Question 1: Let X be a compact metric space with

non-trivial k-th homotopy group for some k ≥ 2. Under

what additional conditions does X admit a non-trivial

harmonic 2-sphere?

Recall: Energy minimizing spheres in homotopy classes

are harmonic and infinitesimally quasiconformal.

Question 2: Let X be as in main theorem and let

u∶S2 →X be a harmonic map. Is it true that u

is infinitesimally quasiconformal?
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