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Existence problem for harmonic maps

M - closed surface equipped with Riemannian metric g

N - compact Riemannian manifold

Question: Is every continuous map ¢: M — N
homotopic to a harmonic map u: M — N?

A map v € W"3(M,N) is harmonic, if u is a
critical point of the Dirichlet energy functional

1
E(u):§/M|Du|2dH§.

Theorem (Lemaire, Schoen-Yau, Sacks-Uhlenbeck):
YES whenever m2(N) = 0.

® Recall: ma(N) =0 iff. every continuous map from S*

to IV is homotopic to a constant map.

® Theorem is not true if mo(N) # 0.
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General approach

Let ¢p: M - N be continuous. Define
* A(p) == {ue W"?(M,N) : u cont. and homotopic to ¢}

® e(p) =inf{E(u):uelA(p)}
Goal: Find u e A(p) satisfying E(u) = e(y).

Direct variational method:
® Show that A(p) #+ @.
® Let (un) c A(p) be energy minimizing, i.e. E(un) — e(¢). N
® Subsequence of (un) converges to u: M — N. \Le
® Show that u e A(p).

® Lower semi-continuity of energy gives that u is

energy minimizer in A(y).

® Show that u satisfies further regularity properties.
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Example: Scaling map y: S? - S? ﬁ

Let ¢x: 8% — S? be the scaling map of factor A > 0.

® 1y is conformal, w
Ber)

® ¢y € A(id), and P
Stereogrophic
o B(iy) = 4 = e(id). " Pm&i}?ﬁf\ §
\\J = \J( eéiq:l
\ e
For A, — 0, the sequence (¥x,, ) c A(id) is ot ZNE

energy minimizing but converges in L? to

a constant map w:S* - S2.

AR
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Non-trivial harmonic spheres

M - closed surface equipped with Riemannian metric g w
N - compact Riemannian manifold

Theorem (Sacks-Uhlenbeck): If m2(N) # 0,
then there exists a non-trivial u:S? - N mini-

mizing energy within its homotopy class.

(Ve /‘7
Every such u is a conformal branched immersion.
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Non-trivial harmonic spheres

Theorem (Sacks-Uhlenbeck): If m2(N) # 0,
then there exists a non-contractible u:S? — N
minimizing energy within its homotopy class.

Every such u is a conformal branched immersion.

Let ¢o: M — N be continuous.

® For a > 1, consider perturbed energy functionals
2 @ 002
Ea(v) = fM (IDvf? + 1) au?.

® A priori estimates from Euler-Lagrange equation of E,.

* Convergence of E,-minimizer vo € A(p) as o — 1:
® 3 S c M finite s.th. va|pms converge in C*

and limit extends to smooth harmonic map

ug: M — N.
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trivial harmonic spheres

Non-

® Convergence of v, as a — 1:

® For every x; € S a suitable sequence of rescalings of v, near

converge to a non-trivial harmonic map

Zq

ui: S% > N.
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Non-trivial harmonic spheres

® Convergence of v, as o — 1:

® For every x; € S a suitable sequence of rescalings of v, near

x; converge to a non-trivial harmonic map

uizsz — N.

¢ Energy gap [Sacks-Uhlenbeck]:
There exists € > 0 s.th.

E(u;) >e for all ¢ > 1.

¢ Energy identity [Jost]:

e(p) =E(uo) + E(u1) + ... + E(um)

=e(uo) +e(ur) +... + e(um).
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Non-trivial harmonic spheres in a non-smooth setting

Questions: Do these results generalize to non-smooth targets?
What are the essential assumptions on the target guaranteeing

the existence of non-trivial harmonic spheres?

Hope: Find a conceptually simpler proof
(not depending on PDE-Methods).
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Sobolev maps into metric spaces

X - compact metric space
M - closed surface equipped with Riemannian metric g

Q) - open subset of M
A measurable map u:Q — X is in L*(Q, X) if for some (any) z € X

U, (2) = d(z,u(z)) € L*(Q).

e 2 e 8 1,2 . mn
Definition: u e L=(€, X) is in the Sobolev space W==(Q, X) if [Q X

* u, e W-2(Q) for every z € X, and
w di)
* 3 heL*(Q) s.th. for all z € X we have \| V
|[Vuz|g <h a.e. on Q. R

The Reshetnyak energy E? of u e WH2(Q, X) is defined by

Ei(u) = inf{||h||iz(g) :h as in the definition above}.
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Setting

Let X be a compact metric space satisfying:

® X admits a local quadratic isoperimetric inequality — 4r{a)\&)
(local qii), i.e. 3 C,lo > 0 s.th. every Lipschitz curve

v S' > X of length L) <o /
is the trace of a Sobolev map u € W?(D, X) with
Area(u) < C-£(7)%.
Theorem [Lytchak-Wenger]: For every Sobolev map u ¢ W ?(D, X) there
exists v € W?(D, X) with
EZ(v) = inf{EZ(w) : w e W"*(D, X), tr(w) = tr(u)}

and tr(v) = tr(u). Any such v has a locally Holder continuous representative 7,

which extends continuously to the boundary whenever tr(u) is continuous.

We call the continuous map v Dirichlet solution.
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Setting

Let X be a compact metric space satisfying: /\/

® X admits a local quadratic isoperimetric inequality — 4rla)\&)
(local qii), i.e. 3 C,lo > 0 s.th. every Lipschitz curve

1
v:S" > X of length £(v) <lo /
is the trace of a Sobolev map u € W?(D, X) with
Area(u) < C-£(7)%.

® X is quasiconver, i.e. 3 A > 1 s.th. every pair of points
z,y € X can be joined by a curve v in X with

&

ot quasicenvex

Cx
¥

X

XCE’

£(y) < A-d(z,y).
e Every continuous map from S to X of sufficiently :

small diameter is null-homotopic. =

Examples: Closed Riemannian manifolds, compact Lipschitz manifolds, com-

pact locally CAT(x)-spaces, some compact sub-Riemannian manifolds, ...
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Regularity

M - closed surface equipped with Riemannian metric g
X - compact quasiconvex metric space satisfying a local qii,

. 2 . . . .
every continuous S° — X of small diam is null-homotopic

Proposition: Every u € W'?(M, X) minimizing energy
in its homotopy class is harmonic (i.e. locally energy
minimizing), and thus Holder continuous.

If M = S, then u is wnfinitesimally isotropic.

¢ Holder continuity is best we can hope for.

¢ Example: X double cone of small cone
angle and u: 5% - X radial stretch func-

tion ¢ — ¢* for some a € (0,1).

_ Energy minimizing harmonic 2-spheres in metric spaces
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Regularity

M - closed surface equipped with Riemannian metric g
X - compact quasiconvex metric space satisfying a local qii,

every continuous S° — X of small diam is null-homotopic

Proposition: Every u € W'?(M, X) minimizing energy
in its homotopy class is harmonic (i.e. locally energy
minimizing), and thus Holder continuous.

If M = S, then u is wnfinitesimally isotropic.

¢ Holder continuity is best we can hope for.
® Infinitesimal isotropy implies
* infinitesimal \/2-quasiconformality, i.e.

max stretch at z

<V2 for ae. zeS?
min stretch at z ’

® weak conformality if X is Riemannian or

locally CAT(1).
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Existence

M - closed surface equipped with Riemannian metric g

X - compact quasiconvex metric space satisfying a local qii,

. 2 . . . .
every continuous S° — X of small diam is null-homotopic

Theorem: If m2(X) = 0, then for every ¢: M — X continuous / Y
v

there exists an energy minimizer in

A(p) = {u e W?(M, X) : u cont. and homotopic to ¢}.

® Theorem fails if w2 (X) # 0.
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Non-existence of homotopic energy minimizers

Example: Define X := $> 1 [0,1]u SQ/N, then
® m(X) #0, and

® X satisfies all standing assumptions.

Let ¢: S - X be as illustrated.

Assume there exists an energy minimizer u € A(p).

= is infinitesimally quasiconformal
= energy of ul,-1¢(0,1)) is zero

= wu is locally constant on u™((0,1))

— not possible! ﬁ

1 L\

///)

[y

—717

(i L1
L )

)
A\ 4
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Existence

M - closed surface equipped with Riemannian metric g
X - compact quasiconvex metric space satisfying a local qii,

. 2 . . . .
every continuous S° — X of small diam is null-homotopic

For ¢p: M - X continuous, we define
e () = inf{E(u) :u e A(p)}.

Main Theorem: Every continuous map ¢: M — X has an iterated decompo-

sition into @o: M — X and finitely many 1, ..., @r: S - X such that
e+ (o) +es(p1) + -+ e (k) = e4(9)
and such that every ; contains an energy minimizer in its homotopy class.

Theorem also holds for a general definition of energy E. We recover:

® Theorems of Lemaire, Schoen-Yau and Sacks-Uhlenbeck for X = N.
® Result of Breiner-Fraser-Huang-Mese-Sargent-Zhang for X locally CAT(1).

_ Energy minimizing harmonic 2-spheres in metric spaces
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Decompositon

Definition: po: M — X and ¢1:5% - X
decompose p: M — X if

Iterated decomposition:

0-step: o = @,
® o agrees with ¢ on M \ B, k-step: po: M - X and
g2 :
® 1 obtained by gluing ¢|s and ¢o|s 150005 k: 57 > X obtained from

along 0B, decomposing a map in a (k- 1)-

) step iterated decomposition of (.
® ¢ is essential, and if M = 5= also ¢g.
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Proof of main theorem: First facts

(A) Existence of homotopic Sobolev mappings: For every ¢: M — X

continuous, the set A(y) is not empty.
® Choose fine enough triangulation of M and set

ular0 = a0

< N/ °
P ey

A N\
AN

?

15
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Proof of main theorem: First facts

(A) Existence of homotopic Sobolev mappings: For every ¢: M — X
continuous, the set A(y) is not empty.

® Choose fine enough triangulation of M and set u|p0 = ¢|ps0.
® Use quasiconvexity to extend w0 to a Lipschitz map

U|M1:M1 - X.

’/-“\\‘“'7"‘\ Ul
N
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Proof of main theorem: First facts

(A) Existence of homotopic Sobolev mappings: For every ¢: M — X
continuous, the set A(y) is not empty.

® Choose fine enough triangulation of M and set u|p0 = ¢|ps0.

® Use quasiconvexity to extend w0 to a Lipschitz map U|M1:M1 - X.

® Local gii + [Lytchak-Wenger]: u|y;1 extends to a

we W"?(M, X) continuous.

_ Energy minimizing harmonic 2-spheres in metric spaces
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Proof of main theorem: First facts

(A) Existence of homotopic Sobolev mappings: For every ¢: M — X
continuous, the set A(y) is not empty.

* We have shown: ¥ & >0 3 u e WH?(M, X) with dist(u,¢) <e.

® Construct homotopy between u and ¢ by using quasiconvexity, local

qii and contractibility of spheres of small diameter.

_ Energy minimizing harmonic 2-spheres in metric spaces
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Proof of main theorem: First facts

(A) Existence of homotopic Sobolev mappings:

For every ¢: M — X continuous, the set
A() = {u e W"*(M, X) : u continuous and homotopic to ¢}

is not empty.

(B) Spheres of small area are null-homotopic:

There exists g > 0 s.th. every u e W?(52%, X)
with Area(u) < go is null-homotopic.

* Energy gap for essential maps:
If uwe WH2(S?, X) is essential, then

EZ(u) > Area(u) > €.

_ Energy minimizing harmonic 2-spheres in metric spaces
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Energy distributed minimizing sequences

(1) Convergence of energy distributed minimizing sequence: A
sequence (u,) of continuous mappings in W"?(M,X) of uniformly

bounded energy is minimizing if
EZ(un) —es(un) >0 for n — oo.

* Rellich-Kondrachov: A subsequence of (u,) converges in L* to
we WHA(M, X), ie.

/Md2(u(z),un(z))d7-[2(z) i}

® A priori, there is no reason that u has a continuous representative.

® Even if (un) ¢ A(¢) and u has a continuous representative u we

might have
u ¢ A(p).
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Energy distributed minimizing sequences

(1) Convergence of energy distributed minimizing sequence: A
sequence (u,) of continuous mappings in W"?(M,X) of uniformly

bounded energy is minimizing if

EZ(un) —es(un) >0 for n — oo.

Theorem: Let (u,) be a minimizing sequence converging in L? to
we W'3(M, X). If 379 >0 s.th.

15(0)
E2(un|B(pirg)) < =  VpeM,VneN,

then u has a continuous representative u € W1’2(M , X)) with
* 4 satisfies F2(@) = €2 (@), and

® 4 is homotopic to u, for large n.

Idea: Build homotopy between u, and u as in (A) while using (B).

Problems: Lack of continuity of u and "only” L?-convergence.

_ Energy minimizing harmonic 2-spheres in metric spaces
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Energy distributed minimizing sequences

Fix fine enough triangulation of M.

® Control along 1-skeleton: After ”wiggling” we find good triangulation

M of M s.th. (up to taking subsequence)
* (un| Mgl) has uniformly bounded length and

uniformly

un|M£1 cont. rep. of U|M§1-

— Uses methods introduced in [Soultanis-Wenger].
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Energy distributed minimizing sequences

Fix fine enough triangulation of M.

® Control along 1-skeleton: After ”wiggling” we find good triangulation
Me of M s.th. (un| Mgl) has uniformly bounded length and

uniformly £
un|M§1 ——> cont. rep. o u|M§1

e Compare u to the continuous map v € W"2(M, X) defined as follows:
. U|M£1 agrees with the cont. rep. of u|M£1, and

® v|a is Dirichlet solution with trace ulpa for all A e M.

- q

= \

vy V@)
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Energy distributed minimizing sequences

® u, is homotopic to v for large n e N:
Use quasiconvexity and local qii to
construct Sobolev annulus of small area

N
between un|oa and v|pa for every A e ME

® Gluing this annulus to un|a and v|a

gives Sobolev sphere of small area.

<)
(B): Induces homotopy between u, and v.

Aralv) ) & Ei(vus &

S
u“\h\ P\n(unl A\$ E:(u“ lA‘é %

er(v) < Ef(v) < Ef (u) <liminf B (up) = e+ (v).

® LSC of energy + minimality of (un):

= u|a Is an energy minimizer for every A € Mg

= [Lytchak-Wenger|: u has a continuous representative

Repeat arguments to build homotopy between @ and u,, for large n.
_ Energy minimizing harmonic 2-spheres in metric spaces
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Energy distributed minimizing sequences

(1) Convergence of energy distributed minimizing sequence: A
sequence (u,) of continuous mappings in W"?(M,X) of uniformly

bounded energy is minimizing if

EZ(un) —es(un) >0 for n — oo.

Theorem: Let (u,) be a minimizing sequence converging in L? to
we WHA(M, X). If 3 70 > 0 s.th.

Ef(un|3(pm))§%0 VpeM,VneN,
then u has a continuous representative @ € W"2(M, X) with
* 4 satisfies FZ () = €2 (@), and

® 4 is homotopic to u, for large n.

Idea: Build homotopy between u, and w as in (A) while using (B).
Problems: Lack of continuity of u and "only” L?-convergence.

_ Energy minimizing harmonic 2-spheres in metric spaces
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Uniformly distributing energy

(2) e-indecomposability implies uniformly distributed energy:
(up to precomposition with conformal diffeomorphisms)

Condition: A continuous map ¢: M — X is
e-indecomposable if for any decomposition
wo: M — X and ¢1: 5% - X of ¢ we have

e+(po) +ex(p1) 2 e4(p) +e.
Proposition: If ¢: M — X is e-indecomposable for some 0 < € < &g,
then there exists 7o > 0 s.th. the following holds:

If u € A(yp) is almost energy minimizing, then there exists a con-

formal diffeomorphism n: M — M s.th.

€0
E2(uwon|p(p,re)) < - el

* We can choose 7 = id if M # S2.

20
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Uniformly distributing energy

M + SQ: Let ro > 0 be well-chosen

(decreases as e+ () increases).

® Assume 3 pe M s.th. Ef(u|5(p’ro)) > %0, ﬂ

e We find Jordan curve v: S - M 3’1
“surrounding” B(p,ro) with

E*(uovy)<d and L(uony)<lo. U"\(/
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Uniformly distributing energy

M + SQ: Let ro > 0 be well-chosen

(decreases as e+ () increases).

® Assume 3 p e M s.th. Ef(u|5(p’ro)) > %0.

e We find Jordan curve v: S* - M
“surrounding” B(p,ro) with J
v

E*(uovy)<d and L(uony)<lo. U’\(/

® Let v e W"2(D, X) be the Dirichlet

solution with trace u o ~.
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Uniformly distributing energy

Use v to construct two continuous maps
wo € WH(M, X) and ¢, € WH2(52, X). Q),.‘./
)
® If 5 is null-homotopc, then g is homotopic to ¢ and
E2(g0) = E2(u) ~ B2 (ul) + E2(0) < e1 (). 4 Nee

= o and ¢ form a decomposition of ¢ and

A o)
(o) + Ed(g1) = B2 +2B5(0) < ex(p) +e. 4 &4\5;®
\ [/

72\ B j

A

”=§“‘!!“"i Y Ol
NS
S @ =
(XS

N
L0
&5
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Uniformly distributing energy

Use v to construct two continuous maps

0o e WH3(M, X) and @1 € WH2(S?, X). Qﬁ;
® If 5 is null-homotopc, then g is homotopic to ¢ and '\
wo\s
E(po) = B (u) - B (ulp) + EX(v) <ev(p). 4
= o and ¢ form a decomposition of ¢ and 1
CAR
E(po) + Ei (1) = EX(u) +2EZ(v) <ei(p) +e. 4 g
M = S?: Contradiction to e-indecomposability st
only if p1 and g are essential. N
® Precompose u with a certain diffeomorphism // / { ’ l \ \ \\

5% - S

® Use a similar construction as above.

_ Energy minimizing harmonic 2-spheres in metric spaces
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Existence

M - closed surface equipped with Riemannian metric g
X - compact quasiconvex metric space satisfying a local qii,

. ~2 . . .
every continuous S° — X of small diam is null-homotopic

Main Theorem: Every continuous map ¢: M — X has an iterated decompo-
sition into @o: M — X and finitely many 1, ..., @r: S - X such that

e+(po) +er(p1) +- +es(pr) = e ()

and such that every piece contains an energy minimizer

in its homotopy class.

‘We have established:

(1) Convergence of energy distributed minimizing

sequences.

23
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Proof of main theorem

Note: Every iterated decomposition of ¢

satisfies

er(p) <er(po) +er(pr) +-- +es(pr). (1)

~—— ~——
(B) (B)
>'eg >"eg

Let m be largest integer s.th. ”=" holds in (1).

Take: Sequences of m-step iterated @
M

decompositions of ¢ satisfying

ZS TS
o S RN
er(po) +er(p1) + +er(pm) — exr(p). ’5‘“‘!’!"7%\ ¢
WFRERY
Then ¢} is e-indecomposable for suitable e. \QQ. [V
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Proof of main theorem

Take: Sequences of m-step iterated decompo-

sitions of ¢ satisfying

® ;' is e-indecomposable,

* en(@p) +en(pl) + e (en) = ei(p).

Choose: ui € A(p}) s.

1
B2 ul) < er(ol) + o
(2): 3 r; >0 and conformal diffeos 7;" s.th.
€
B2 (ui o) € 5

(1): u? on? converges in L? to a continuous map

u; € WH(M;, X)

and w; is homotopic to u; on;' (and thus to

oy for sufficiently large n.

th.

with  EZ(u;) = €3 (us),

Energy minimizing harmonic 2-spheres in metric spaces
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Open questions

Question 1: Let X be a compact metric space with
non-trivial k-th homotopy group for some k£ > 2. Under
what additional conditions does X admit a non-trivial
harmonic 2-sphere?

Recall: Energy minimizing spheres in homotopy classes

are harmonic and infinitesimally quasiconformal.

Question 2: Let X be as in main theorem and let
w:S% - X be a harmonic map. Is it true that

is infinitesimally quasiconformal?

_ Energy minimizing harmonic 2-spheres in metric spaces

26



Outline

Introduction
Homotopic energy minimizers in a smooth setting
Homotopic energy minimizers in a non-smooth setting
Definitions
Sobolev maps into metric spaces
Setting
Regularity
Existence
Main theorem
Decomposition
Proof of main theorem
First facts
Energy distributed minimizing sequences

Uniformly distributing energy “0
Proof of main theorem

Open questions

_ Energy minimizing harmonic 2-spheres in metric spaces 27



	Introduction
	Homotopic energy minimizers in a smooth setting
	Homotopic energy minimizers in a non-smooth setting

	Definitions
	Sobolev maps into metric spaces
	Setting

	Regularity
	Existence
	Main theorem
	Decomposition

	Proof of main theorem
	First facts
	Energy distributed minimizing sequences
	Uniformly distributing energy
	Proof of main theorem

	Open questions
	d11d1326-6f74-5b11-9d65-b97e779de82b.pdf
	Introduction
	Homotopic energy minimizers in a smooth setting
	Homotopic energy minimizers in a non-smooth setting

	Definitions
	Sobolev maps into metric spaces
	Setting

	Regularity
	Existence
	Main theorem
	Decomposition

	Proof of main theorem
	First facts
	Energy distributed minimizing sequences
	Uniformly distributing energy
	Proof of main theorem

	Open questions

	d11d1326-6f74-5b11-9d65-b97e779de82b.pdf
	Introduction
	Homotopic energy minimizers in a smooth setting
	Homotopic energy minimizers in a non-smooth setting

	Definitions
	Sobolev maps into metric spaces
	Setting

	Regularity
	Existence
	Main theorem
	Decomposition

	Proof of main theorem
	First facts
	Energy distributed minimizing sequences
	Uniformly distributing energy
	Proof of main theorem

	Open questions

	d11d1326-6f74-5b11-9d65-b97e779de82b.pdf
	Introduction
	Homotopic energy minimizers in a smooth setting
	Homotopic energy minimizers in a non-smooth setting

	Definitions
	Sobolev maps into metric spaces
	Setting

	Regularity
	Existence
	Main theorem
	Decomposition

	Proof of main theorem
	First facts
	Energy distributed minimizing sequences
	Uniformly distributing energy
	Proof of main theorem

	Open questions

	d11d1326-6f74-5b11-9d65-b97e779de82b.pdf
	Introduction
	Homotopic energy minimizers in a smooth setting
	Homotopic energy minimizers in a non-smooth setting

	Definitions
	Sobolev maps into metric spaces
	Setting

	Regularity
	Existence
	Main theorem
	Decomposition

	Proof of main theorem
	First facts
	Energy distributed minimizing sequences
	Uniformly distributing energy
	Proof of main theorem

	Open questions

	d11d1326-6f74-5b11-9d65-b97e779de82b.pdf
	Introduction
	Homotopic energy minimizers in a smooth setting
	Homotopic energy minimizers in a non-smooth setting

	Definitions
	Sobolev maps into metric spaces
	Setting

	Regularity
	Existence
	Main theorem
	Decomposition

	Proof of main theorem
	First facts
	Energy distributed minimizing sequences
	Uniformly distributing energy
	Proof of main theorem

	Open questions

	d11d1326-6f74-5b11-9d65-b97e779de82b.pdf
	Introduction
	Homotopic energy minimizers in a smooth setting
	Homotopic energy minimizers in a non-smooth setting

	Definitions
	Sobolev maps into metric spaces
	Setting

	Regularity
	Existence
	Main theorem
	Decomposition

	Proof of main theorem
	First facts
	Energy distributed minimizing sequences
	Uniformly distributing energy
	Proof of main theorem

	Open questions

	d11d1326-6f74-5b11-9d65-b97e779de82b.pdf
	Introduction
	Homotopic energy minimizers in a smooth setting
	Homotopic energy minimizers in a non-smooth setting

	Definitions
	Sobolev maps into metric spaces
	Setting

	Regularity
	Existence
	Main theorem
	Decomposition

	Proof of main theorem
	First facts
	Energy distributed minimizing sequences
	Uniformly distributing energy
	Proof of main theorem

	Open questions

	d11d1326-6f74-5b11-9d65-b97e779de82b.pdf
	Introduction
	Homotopic energy minimizers in a smooth setting
	Homotopic energy minimizers in a non-smooth setting

	Definitions
	Sobolev maps into metric spaces
	Setting

	Regularity
	Existence
	Main theorem
	Decomposition

	Proof of main theorem
	First facts
	Energy distributed minimizing sequences
	Uniformly distributing energy
	Proof of main theorem

	Open questions

	d11d1326-6f74-5b11-9d65-b97e779de82b.pdf
	Introduction
	Homotopic energy minimizers in a smooth setting
	Homotopic energy minimizers in a non-smooth setting

	Definitions
	Sobolev maps into metric spaces
	Setting

	Regularity
	Existence
	Main theorem
	Decomposition

	Proof of main theorem
	First facts
	Energy distributed minimizing sequences
	Uniformly distributing energy
	Proof of main theorem

	Open questions

	d11d1326-6f74-5b11-9d65-b97e779de82b.pdf
	Introduction
	Homotopic energy minimizers in a smooth setting
	Homotopic energy minimizers in a non-smooth setting

	Definitions
	Sobolev maps into metric spaces
	Setting

	Regularity
	Existence
	Main theorem
	Decomposition

	Proof of main theorem
	First facts
	Energy distributed minimizing sequences
	Uniformly distributing energy
	Proof of main theorem

	Open questions

	d11d1326-6f74-5b11-9d65-b97e779de82b.pdf
	Introduction
	Homotopic energy minimizers in a smooth setting
	Homotopic energy minimizers in a non-smooth setting

	Definitions
	Sobolev maps into metric spaces
	Setting

	Regularity
	Existence
	Main theorem
	Decomposition

	Proof of main theorem
	First facts
	Energy distributed minimizing sequences
	Uniformly distributing energy
	Proof of main theorem

	Open questions

	d11d1326-6f74-5b11-9d65-b97e779de82b.pdf
	Introduction
	Homotopic energy minimizers in a smooth setting
	Homotopic energy minimizers in a non-smooth setting

	Definitions
	Sobolev maps into metric spaces
	Setting

	Regularity
	Existence
	Main theorem
	Decomposition

	Proof of main theorem
	First facts
	Energy distributed minimizing sequences
	Uniformly distributing energy
	Proof of main theorem

	Open questions

	d11d1326-6f74-5b11-9d65-b97e779de82b.pdf
	Introduction
	Homotopic energy minimizers in a smooth setting
	Homotopic energy minimizers in a non-smooth setting

	Definitions
	Sobolev maps into metric spaces
	Setting

	Regularity
	Existence
	Main theorem
	Decomposition

	Proof of main theorem
	First facts
	Energy distributed minimizing sequences
	Uniformly distributing energy
	Proof of main theorem

	Open questions

	d11d1326-6f74-5b11-9d65-b97e779de82b.pdf
	Introduction
	Homotopic energy minimizers in a smooth setting
	Homotopic energy minimizers in a non-smooth setting

	Definitions
	Sobolev maps into metric spaces
	Setting

	Regularity
	Existence
	Main theorem
	Decomposition

	Proof of main theorem
	First facts
	Energy distributed minimizing sequences
	Uniformly distributing energy
	Proof of main theorem

	Open questions

	d11d1326-6f74-5b11-9d65-b97e779de82b.pdf
	Introduction
	Homotopic energy minimizers in a smooth setting
	Homotopic energy minimizers in a non-smooth setting

	Definitions
	Sobolev maps into metric spaces
	Setting

	Regularity
	Existence
	Main theorem
	Decomposition

	Proof of main theorem
	First facts
	Energy distributed minimizing sequences
	Uniformly distributing energy
	Proof of main theorem

	Open questions

	d11d1326-6f74-5b11-9d65-b97e779de82b.pdf
	Introduction
	Homotopic energy minimizers in a smooth setting
	Homotopic energy minimizers in a non-smooth setting

	Definitions
	Sobolev maps into metric spaces
	Setting

	Regularity
	Existence
	Main theorem
	Decomposition

	Proof of main theorem
	First facts
	Energy distributed minimizing sequences
	Uniformly distributing energy
	Proof of main theorem

	Open questions

	d11d1326-6f74-5b11-9d65-b97e779de82b.pdf
	Introduction
	Homotopic energy minimizers in a smooth setting
	Homotopic energy minimizers in a non-smooth setting

	Definitions
	Sobolev maps into metric spaces
	Setting

	Regularity
	Existence
	Main theorem
	Decomposition

	Proof of main theorem
	First facts
	Energy distributed minimizing sequences
	Uniformly distributing energy
	Proof of main theorem

	Open questions

	d11d1326-6f74-5b11-9d65-b97e779de82b.pdf
	Introduction
	Homotopic energy minimizers in a smooth setting
	Homotopic energy minimizers in a non-smooth setting

	Definitions
	Sobolev maps into metric spaces
	Setting

	Regularity
	Existence
	Main theorem
	Decomposition

	Proof of main theorem
	First facts
	Energy distributed minimizing sequences
	Uniformly distributing energy
	Proof of main theorem

	Open questions

	d11d1326-6f74-5b11-9d65-b97e779de82b.pdf
	Introduction
	Homotopic energy minimizers in a smooth setting
	Homotopic energy minimizers in a non-smooth setting

	Definitions
	Sobolev maps into metric spaces
	Setting

	Regularity
	Existence
	Main theorem
	Decomposition

	Proof of main theorem
	First facts
	Energy distributed minimizing sequences
	Uniformly distributing energy
	Proof of main theorem

	Open questions


