Energy minimizing harmonic 2-spheres in metric spaces

joint work with Noa Vikman and Stefan Wenger

Damaris Meier

University of Fribourg

Differentialgeometrie im Grossen

Oberwolfach 2025

Existence problem for harmonic maps

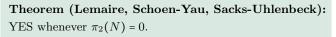
 ${\cal M}$ - closed surface equipped with Riemannian metric g

 ${\cal N}$ - compact Riemannian manifold

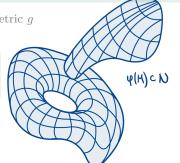
Question: Is every continuous map $\varphi: M \to N$ homotopic to a harmonic map $u: M \to N$?

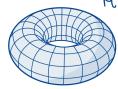
A map $u \in W^{1,2}(M,N)$ is harmonic, if u is a critical point of the Dirichlet energy functional

$$E(u) = \frac{1}{2} \int_{M} |Du|^{2} d\mathcal{H}_{g}^{2}.$$



- Recall: $\pi_2(N) = 0$ iff. every continuous map from S^2 to N is homotopic to a constant map.
- Theorem is not true if $\pi_2(N) \neq 0$.



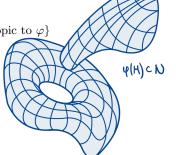


General approach

Let $\varphi: M \to N$ be continuous. Define

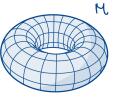
- $\Lambda(\varphi) := \{ u \in W^{1,2}(M,N) : u \text{ cont. and homotopic to } \varphi \}$
- $e(\varphi) := \inf\{E(u) : u \in \Lambda(\varphi)\}$

Goal: Find $u \in \Lambda(\varphi)$ satisfying $E(u) = e(\varphi)$.



Direct variational method:

- Show that $\Lambda(\varphi) \neq \emptyset$.
- Let $(u_n) \subset \Lambda(\varphi)$ be energy minimizing, i.e. $E(u_n) \to e(\varphi)$.
- Subsequence of (u_n) converges to $u: M \to N$.
- Show that $u \in \Lambda(\varphi)$.
- Lower semi-continuity of energy gives that u is energy minimizer in $\Lambda(\varphi)$.
- Show that u satisfies further regularity properties.



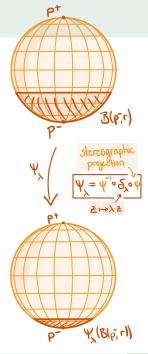
Example: Scaling map $\psi_{\lambda}: S^2 \to S^2$

Let $\psi_{\lambda}: S^2 \to S^2$ be the scaling map of factor $\lambda > 0$.

- ψ_{λ} is conformal,
- $\psi_{\lambda} \in \Lambda(id)$, and
- $E(\psi_{\lambda}) = 4\pi = e(\mathrm{id}).$

For $\lambda_n \to 0$, the sequence $(\psi_{\lambda_n}) \subset \Lambda(\mathrm{id})$ is energy minimizing but converges in L^2 to a constant map $u: S^2 \to S^2$.

$$\Longrightarrow u \notin \Lambda(id)$$

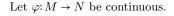


M - closed surface equipped with Riemannian metric g

 ${\cal N}$ - compact Riemannian manifold

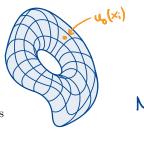
Theorem (Sacks-Uhlenbeck): If $\pi_2(N) \neq 0$, then there exists a non-trivial $u: S^2 \to N$ minimizing energy within its homotopy class. Every such u is a conformal branched immersion.

Theorem (Sacks-Uhlenbeck): If $\pi_2(N) \neq 0$, then there exists a non-contractible $u: S^2 \to N$ minimizing energy within its homotopy class. Every such u is a conformal branched immersion.



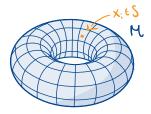
• For $\alpha > 1$, consider perturbed energy functionals

$$E_{\alpha}(v) = \int_{M} (|Dv|^{2} + 1)^{\alpha} d\mathcal{H}_{g}^{2}.$$

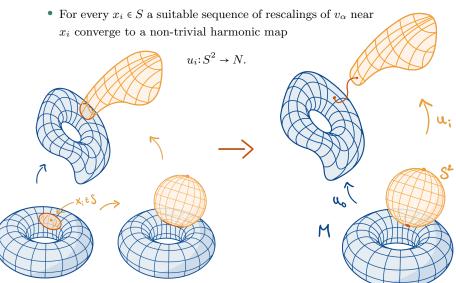


- A priori estimates from Euler-Lagrange equation of E_{α} .
- Convergence of E_{α} -minimizer $v_{\alpha} \in \Lambda(\varphi)$ as $\alpha \to 1$:
 - $\exists S \subset M$ finite s.th. $v_{\alpha}|_{M \setminus S}$ converge in C^{∞} and limit extends to smooth harmonic map

$$u_0:M\to N.$$



• Convergence of v_{α} as $\alpha \to 1$:



• Convergence of v_{α} as $\alpha \to 1$:

• For every $x_i \in S$ a suitable sequence of rescalings of v_α near x_i converge to a non-trivial harmonic map

$$u_i:S^2\to N$$
.

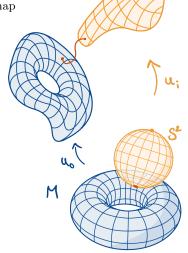
• Energy gap [Sacks-Uhlenbeck]: There exists $\varepsilon > 0$ s.th.

$$E(u_i) > \varepsilon$$
 for all $i \ge 1$.

• Energy identity [Jost]:

$$e(\varphi) = E(u_0) + E(u_1) + \dots + E(u_m)$$

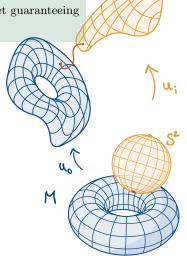
= $e(u_0) + e(u_1) + \dots + e(u_m)$.



Non-trivial harmonic spheres in a non-smooth setting

Questions: Do these results generalize to non-smooth targets? What are the essential assumptions on the target guaranteeing the existence of non-trivial harmonic spheres?

Hope: Find a conceptually simpler proof (not depending on PDE-Methods).



Sobolev maps into metric spaces

X - compact metric space

M - closed surface equipped with Riemannian metric g

 Ω - open subset of M

A measurable map $u \colon \Omega \to X$ is in $L^2(\Omega, X)$ if for some (any) $x \in X$

$$u_x(z) \coloneqq d(x, u(z)) \in L^2(\Omega).$$

Definition: $u \in L^2(\Omega, X)$ is in the Sobolev space $W^{1,2}(\Omega, X)$ if

- $u_x \in W^{1,2}(\Omega)$ for every $x \in X$, and
- $\exists h \in L^2(\Omega)$ s.th. for all $x \in X$ we have

$$|\nabla u_x|_g \le h$$
 a.e. on Ω .

The Reshetnyak energy E_+^2 of $u \in W^{1,2}(\Omega, X)$ is defined by

$$E_{+}^{2}(u)\coloneqq\inf\left\{\left\Vert h\right\Vert _{L^{2}\left(\Omega\right)}^{2}:h\text{ as in the definition above}\right\}.$$

Setting

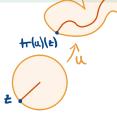
Let X be a compact metric space satisfying:

• X admits a local quadratic isoperimetric inequality (local qii), i.e. $\exists C, l_0 > 0$ s.th. every Lipschitz curve

$$\gamma: S^1 \to X$$
 of length $\ell(\gamma) \le l_0$

is the trace of a Sobolev map $u \in W^{1,2}(D,X)$ with

$$Area(u) \le C \cdot \ell(\gamma)^2.$$



Theorem [Lytchak-Wenger]: For every Sobolev map $u \in W^{1,2}(D,X)$ there exists $v \in W^{1,2}(D,X)$ with

$$E_+^2(v) = \inf\{E_+^2(w) : w \in W^{1,2}(D,X), \operatorname{tr}(w) = \operatorname{tr}(u)\}$$

and $\operatorname{tr}(v) = \operatorname{tr}(u)$. Any such v has a locally Hölder continuous representative \bar{v} , which extends continuously to the boundary whenever $\operatorname{tr}(u)$ is continuous.

We call the continuous map \bar{v} Dirichlet solution.

Setting

Let X be a compact metric space satisfying:

• X admits a local quadratic isoperimetric inequality (local qii), i.e. $\exists C, l_0 > 0$ s.th. every Lipschitz curve

$$\gamma: S^1 \to X$$
 of length $\ell(\gamma) \le l_0$

is the trace of a Sobolev map $u \in W^{1,2}(D,X)$ with

$$Area(u) \le C \cdot \ell(\gamma)^2$$
.

• X is quasiconvex, i.e. $\exists \ \lambda \ge 1$ s.th. every pair of points $x,y \in X$ can be joined by a curve γ in X with

$$\ell(\gamma) \le \lambda \cdot d(x,y).$$

• Every continuous map from S^2 to X of sufficiently small diameter is null-homotopic.

tr(a)(2)

Examples: Closed Riemannian manifolds, compact Lipschitz manifolds, compact locally $CAT(\kappa)$ -spaces, some compact sub-Riemannian manifolds, ...

Regularity

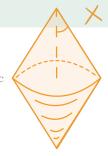
 ${\cal M}$ - closed surface equipped with Riemannian metric g

X - compact quasiconvex metric space satisfying a local qii, every continuous $S^2\to X$ of small diam is null-homotopic

Proposition: Every $u \in W^{1,2}(M,X)$ minimizing energy in its homotopy class is *harmonic* (i.e. locally energy minimizing), and thus Hölder continuous.

If $M = S^2$, then u is infinitesimally isotropic.

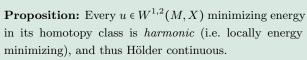
- Hölder continuity is best we can hope for.
 - Example: X double cone of small cone angle and u: S² → X radial stretch function t → t^α for some α ∈ (0,1).



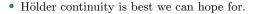
Regularity

 ${\cal M}$ - closed surface equipped with Riemannian metric g

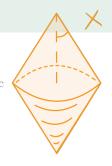
X - compact quasiconvex metric space satisfying a local qii, every continuous $S^2\to X$ of small diam is null-homotopic



If $M = S^2$, then u is infinitesimally isotropic.



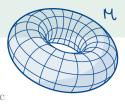
- Infinitesimal isotropy implies
 - infinitesimal $\sqrt{2}$ -quasiconformality, i.e. $\frac{\max \text{ stretch at } z}{\min \text{ stretch at } z} \leq \sqrt{2} \quad \text{for a.e. } z \in S^2,$
 - weak conformality if X is Riemannian or locally CAT(1).



Existence

 ${\cal M}$ - closed surface equipped with Riemannian metric g

X - compact quasiconvex metric space satisfying a local qii, every continuous $S^2\to X$ of small diam is null-homotopic

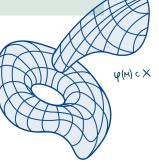


Theorem: If $\pi_2(X) = 0$, then for every $\varphi: M \to X$ continuous there exists an energy minimizer in

J q

 $\Lambda(\varphi) := \{ u \in W^{1,2}(M,X) : u \text{ cont. and homotopic to } \varphi \}.$

• Theorem fails if $\pi_2(X) \neq 0$.



Non-existence of homotopic energy minimizers

Example: Define $X := S^2 \sqcup [0,1] \sqcup S^2/_{\mathbb{Z}}$, then

- $\pi_2(X) \neq 0$, and
- X satisfies all standing assumptions.

Let $\varphi: S^2 \to X$ be as illustrated.

Assume there exists an energy minimizer $u \in \Lambda(\varphi)$.

- $\Rightarrow u$ is infinitesimally quasiconformal
- \Rightarrow energy of $u|_{u^{-1}((0,1))}$ is zero
- \Rightarrow u is locally constant on $u^{-1}((0,1))$
- → not possible!

Existence

- ${\cal M}$ closed surface equipped with Riemannian metric g
- X compact quasiconvex metric space satisfying a local qii, every continuous $S^2\to X$ of small diam is null-homotopic

For $\varphi: M \to X$ continuous, we define

$$e_+(\varphi) := \inf\{E_+^2(u) : u \in \Lambda(\varphi)\}.$$

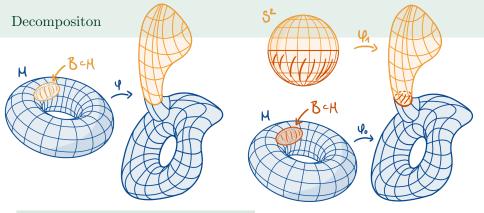
Main Theorem: Every continuous map $\varphi: M \to X$ has an iterated decomposition into $\varphi_0: M \to X$ and finitely many $\varphi_1, \dots, \varphi_k: S^2 \to X$ such that

$$e_{+}(\varphi_{0}) + e_{+}(\varphi_{1}) + \cdots + e_{+}(\varphi_{k}) = e_{+}(\varphi)$$

and such that every φ_i contains an energy minimizer in its homotopy class.

Theorem also holds for a general definition of energy E. We recover:

- Theorems of Lemaire, Schoen-Yau and Sacks-Uhlenbeck for X = N.



Definition: $\varphi_0: M \to X$ and $\varphi_1: S^2 \to X$ decompose $\varphi: M \to X$ if

- φ_0 agrees with φ on $M \setminus B$,
- φ_1 obtained by gluing $\varphi|_B$ and $\varphi_0|_B$ along ∂B ,
- φ_1 is essential, and if $M = S^2$ also φ_0 .

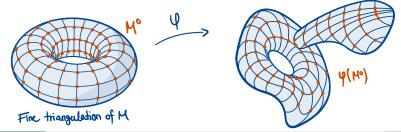
Iterated decomposition:

0-step: $\varphi_0 = \varphi$, $k \text{ step: } \varphi_0 : M \to X \text{ an}$

k-step: $\varphi_0: M \to X$ and $\varphi_1, \dots, \varphi_k: S^2 \to X$ obtained from decomposing a map in a (k-1)-step iterated decomposition of φ .

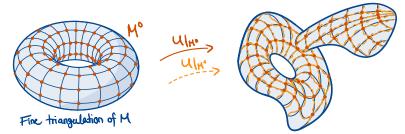
- (A) **Existence of homotopic Sobolev mappings:** For every $\varphi: M \to X$ continuous, the set $\Lambda(\varphi)$ is not empty.
 - \bullet Choose fine enough triangulation of M and set

$$u|_{M^0} = \varphi|_{M^0}.$$



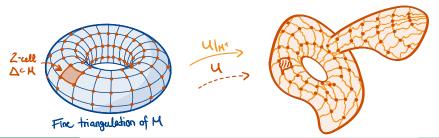
- (A) **Existence of homotopic Sobolev mappings:** For every $\varphi: M \to X$ continuous, the set $\Lambda(\varphi)$ is not empty.
 - Choose fine enough triangulation of M and set $u|_{M^0} = \varphi|_{M^0}$.
 - Use quasiconvexity to extend $u|_{M^0}$ to a Lipschitz map

$$u|_{M^1}:M^1\to X.$$

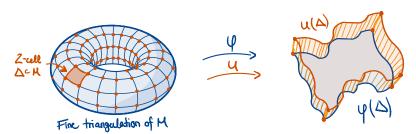


- (A) **Existence of homotopic Sobolev mappings:** For every $\varphi: M \to X$ continuous, the set $\Lambda(\varphi)$ is not empty.
 - Choose fine enough triangulation of M and set $u|_{M^0} = \varphi|_{M^0}$.
 - Use quasiconvexity to extend $u|_{M^0}$ to a Lipschitz map $u|_{M^1}:M^1\to X.$
 - Local qii + [Lytchak-Wenger]: $u|_{M^1}$ extends to a

$$u \in W^{1,2}(M,X)$$
 continuous.



- (A) **Existence of homotopic Sobolev mappings:** For every $\varphi: M \to X$ continuous, the set $\Lambda(\varphi)$ is not empty.
 - We have shown: $\forall \ \varepsilon > 0 \ \exists \ u \in W^{1,2}(M,X) \ \text{with } \mathrm{dist}(u,\varphi) < \varepsilon$.
 - Construct homotopy between u and φ by using quasiconvexity, local qii and contractibility of spheres of small diameter.



(A) Existence of homotopic Sobolev mappings:

For every $\varphi: M \to X$ continuous, the set

$$\Lambda(\varphi) \coloneqq \{u \in W^{1,2}(M,X) : u \text{ continuous and homotopic to } \varphi\}$$

is not empty.

(B) Spheres of small area are null-homotopic:

There exists $\varepsilon_0 > 0$ s.th. every $u \in W^{1,2}(S^2, X)$ with Area $(u) < \varepsilon_0$ is null-homotopic.

Energy gap for essential maps:

If $u \in W^{1,2}(S^2, X)$ is essential, then

$$E_+^2(u) \ge \operatorname{Area}(u) \ge \varepsilon_0.$$

(1) Convergence of energy distributed minimizing sequence: A sequence (u_n) of continuous mappings in $W^{1,2}(M,X)$ of uniformly bounded energy is *minimizing* if

$$E_+^2(u_n) - e_+(u_n) \to 0 \quad \text{for } n \to \infty.$$

• Rellich-Kondrachov: A subsequence of (u_n) converges in L^2 to $u \in W^{1,2}(M,X)$, i.e.

$$\int_{M} d^{2}(u(z), u_{n}(z)) d\mathcal{H}^{2}(z) \stackrel{n \to \infty}{\longrightarrow} 0.$$

- ullet A priori, there is no reason that u has a continuous representative.
- Even if $(u_n) \subset \Lambda(\varphi)$ and u has a continuous representative \bar{u} we might have

$$\bar{u} \notin \Lambda(\varphi)$$
.

(1) Convergence of energy distributed minimizing sequence: A sequence (u_n) of continuous mappings in $W^{1,2}(M,X)$ of uniformly bounded energy is *minimizing* if

$$E_+^2(u_n) - e_+(u_n) \to 0 \quad \text{for } n \to \infty.$$

Theorem: Let (u_n) be a minimizing sequence converging in L^2 to $u \in W^{1,2}(M,X)$. If $\exists r_0 > 0$ s.th.

$$E_+^2(u_n|_{B(p,r_0)}) \le \frac{\varepsilon_0}{5} \quad \forall p \in M, \forall n \in \mathbb{N},$$

then u has a continuous representative $\bar{u} \in W^{1,2}(M,X)$ with

- \bar{u} satisfies $E_+^2(\bar{u}) = e_+^2(\bar{u})$, and
- \bar{u} is homotopic to u_n for large n.

Idea: Build homotopy between u_n and u as in (A) while using (B).

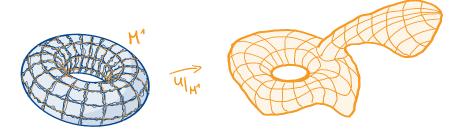
Problems: Lack of continuity of u and "only" L^2 -convergence.

Fix fine enough triangulation of M.

- Control along 1-skeleton: After "wiggling" we find good triangulation M_{ξ} of M s.th. (up to taking subsequence)
 - $(u_n|_{M_{\xi}^1})$ has uniformly bounded length and

$$u_n|_{M_\xi^1} \xrightarrow{\text{uniformly}} \text{cont. rep. of } u|_{M_\xi^1}.$$

→ Uses methods introduced in [Soultanis-Wenger].

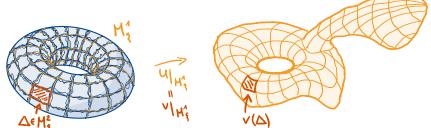


Fix fine enough triangulation of M.

• Control along 1-skeleton: After "wiggling" we find good triangulation M_{ξ} of M s.th. $(u_n|_{M_{\xi}^1})$ has uniformly bounded length and

$$u_n|_{M^1_{\xi}} \xrightarrow{\text{uniformly}} \text{cont. rep. of } u|_{M^1_{\xi}}.$$

- Compare u to the continuous map $v \in W^{1,2}(M,X)$ defined as follows:
 - $v|_{M^1_\xi}$ agrees with the cont. rep. of $u|_{M^1_\xi}$, and
 - $v|_{\Delta}$ is Dirichlet solution with trace $u|_{\partial\Delta}$ for all $\Delta \in M_{\xi}^2$.



- u_n is homotopic to v for large $n \in \mathbb{N}$: Use quasiconvexity and local qii to construct Sobolev annulus of small area between $u_n|_{\partial\Delta}$ and $v|_{\partial\Delta}$ for every $\Delta \in M_{\xi}^2$.
 - Gluing this annulus to $u_n|_{\Delta}$ and $v|_{\Delta}$ gives Sobolev sphere of small area.

(B): Induces homotopy between u_n and v.

• LSC of energy + minimality of (u_n) :

$$e_+(v) \le E_+^2(v) \le E_+^2(u) \le \liminf_{n \to \infty} E_+^2(u_n) = e_+(v).$$

- $\Rightarrow u|_{\Delta}$ is an energy minimizer for every $\Delta \in M_{\xi}^2$.
- \Rightarrow [Lytchak-Wenger]: u has a continuous representative \bar{u} .

Repeat arguments to build homotopy between \bar{u} and u_n for large n.



(1) Convergence of energy distributed minimizing sequence: A sequence (u_n) of continuous mappings in $W^{1,2}(M,X)$ of uniformly bounded energy is *minimizing* if

$$E_+^2(u_n) - e_+(u_n) \to 0 \quad \text{for } n \to \infty.$$

Theorem: Let (u_n) be a minimizing sequence converging in L^2 to $u \in W^{1,2}(M,X)$. If $\exists r_0 > 0$ s.th.

$$E_+^2\big(u_n|_{B(p,r_0)}\big) \leq \frac{\varepsilon_0}{5} \qquad \forall \, p \in M, \, \forall \, n \in \mathbb{N},$$

then u has a continuous representative $\bar{u} \in W^{1,2}(M,X)$ with

- \bar{u} satisfies $E_+^2(\bar{u}) = e_+^2(\bar{u})$, and
- \bar{u} is homotopic to u_n for large n.

Idea: Build homotopy between u_n and u as in (A) while using (B).

Problems: Lack of continuity of u and "only" L^2 -convergence.

(2) ε -indecomposability implies uniformly distributed energy: (up to precomposition with conformal diffeomorphisms)

Condition: A continuous map $\varphi: M \to X$ is ε -indecomposable if for any decomposition $\varphi_0: M \to X$ and $\varphi_1: S^2 \to X$ of φ we have

$$e_+(\varphi_0) + e_+(\varphi_1) \ge e_+(\varphi) + \varepsilon.$$

Proposition: If $\varphi: M \to X$ is ε -indecomposable for some $0 < \varepsilon < \varepsilon_0$, then there exists $r_0 > 0$ s.th. the following holds:

If $u \in \Lambda(\varphi)$ is almost energy minimizing, then there exists a conformal diffeomorphism $\eta: M \to M$ s.th.

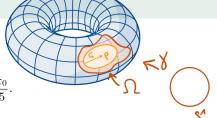
$$E_+^2(u \circ \eta|_{B(p,r_0)}) \le \frac{\varepsilon_0}{5} \qquad \forall p \in M.$$

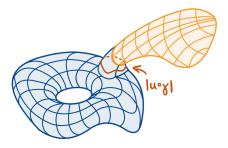
• We can choose $\eta = id$ if $M \neq S^2$.

 $M \neq S^2$: Let $r_0 > 0$ be well-chosen (decreases as $e_+(\varphi)$ increases).

- Assume $\exists p \in M \text{ s.th. } E_+^2(u|_{B(p,r_0)}) > \frac{\varepsilon_0}{5}.$
- We find Jordan curve $\gamma: S^1 \to M$ "surrounding" $B(p, r_0)$ with

$$E^2(u \circ \gamma) < \delta$$
 and $\ell(u \circ \gamma) < l_0$.



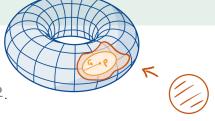


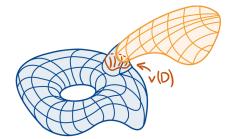
 $M \neq S^2$: Let $r_0 > 0$ be well-chosen (decreases as $e_+(\varphi)$ increases).

- Assume $\exists p \in M \text{ s.th. } E_+^2(u|_{B(p,r_0)}) > \frac{\varepsilon_0}{5}.$
- We find Jordan curve $\gamma: S^1 \to M$ "surrounding" $B(p, r_0)$ with

$$E^{2}(u \circ \gamma) < \delta$$
 and $\ell(u \circ \gamma) < l_{0}$.

• Let $v \in W^{1,2}(D,X)$ be the Dirichlet solution with trace $u \circ \gamma$.



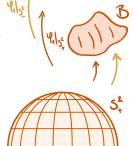


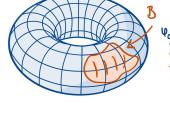
Use v to construct two continuous maps $\varphi_0 \in W^{1,2}(M,X)$ and $\varphi_1 \in W^{1,2}(S^2,X)$.

$$E_+^2(\varphi_0) = E_+^2(u) - E_+^2(u|_B) + E_+^2(v) < e_+(\varphi).$$
 4

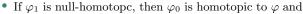
 $\Rightarrow \varphi_0$ and φ_1 form a decomposition of φ and

$$E_{+}^{2}(\varphi_{0}) + E_{+}^{2}(\varphi_{1}) = E_{+}^{2}(u) + 2E_{+}^{2}(v) < e_{+}(\varphi) + \varepsilon.$$
 4





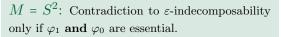
Use v to construct two continuous maps $\varphi_0 \in W^{1,2}(M,X)$ and $\varphi_1 \in W^{1,2}(S^2,X)$.



$$E_+^2(\varphi_0) = E_+^2(u) - E_+^2(u|_B) + E_+^2(v) < e_+(\varphi).$$
 4

 $\Rightarrow \varphi_0$ and φ_1 form a decomposition of φ and

$$E_{+}^{2}(\varphi_{0}) + E_{+}^{2}(\varphi_{1}) = E_{+}^{2}(u) + 2E_{+}^{2}(v) < e_{+}(\varphi) + \varepsilon.$$
 4



ullet Precompose u with a certain diffeomorphism

$$\eta: S^2 \to S^2$$
.

• Use a similar construction as above.

Existence

- M closed surface equipped with Riemannian metric g
- X compact quasiconvex metric space satisfying a local qii, every continuous $S^2\to X$ of small diam is null-homotopic

Main Theorem: Every continuous map $\varphi: M \to X$ has an iterated decomposition into $\varphi_0: M \to X$ and finitely many $\varphi_1, \dots, \varphi_k: S^2 \to X$ such that

$$e_{+}(\varphi_{0}) + e_{+}(\varphi_{1}) + \dots + e_{+}(\varphi_{k}) = e_{+}(\varphi)$$

and such that every piece contains an energy minimizer in its homotopy class.

We have established:

- (1) Convergence of energy distributed minimizing sequences.
- (2) ε -indecomposability implies uniformly distributed energy.

Proof of main theorem

Note: Every iterated decomposition of φ satisfies

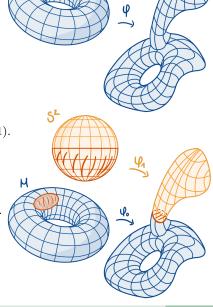
$$e_{+}(\varphi) \leq e_{+}(\varphi_{0}) + \underbrace{e_{+}(\varphi_{1})}_{\substack{(B) \\ \geq \varepsilon_{0}}} + \cdots + \underbrace{e_{+}(\varphi_{k})}_{\substack{(B) \\ \geq \varepsilon_{0}}}.$$
 (1)

Let m be largest integer s.th. "=" holds in (1).

Take: Sequences of m-step iterated decompositions of φ satisfying

$$e_+(\varphi_0^n) + e_+(\varphi_1^n) + \dots + e_+(\varphi_m^n) \xrightarrow{n \to \infty} e_+(\varphi).$$

Then φ_i^n is ε -indecomposable for suitable ε .



Proof of main theorem

Take: Sequences of m-step iterated decompositions of φ satisfying

- φ_i^n is ε -indecomposable,
- $e_+(\varphi_0^n) + e_+(\varphi_1^n) + \dots + e_+(\varphi_m^n) \xrightarrow{n \to \infty} e_+(\varphi).$

Choose: $u_i^n \in \Lambda(\varphi_i^n)$ s.th.

$$E_{+}^{2}(u_{i}^{n}) \leq e_{+}(\varphi_{i}^{n}) + \frac{1}{n}.$$

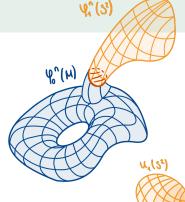
(2): $\exists r_i > 0$ and conformal diffeos η_i^n s.th.

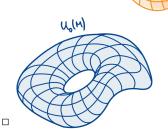
$$E_+^2(u_i^n \circ \eta_i^n|_{B(p,r_i)}) \le \frac{\varepsilon_0}{5}.$$

(1): $u_i^n \circ \eta_i^n$ converges in L^2 to a continuous map

$$u_i \in W^{1,2}(M_i, X)$$
 with $E_+^2(u_i) = e_+^2(u_i)$,

and u_i is homotopic to $u_i^n \circ \eta_i^n$ (and thus to φ_i^n) for sufficiently large n.





Open questions

Question 1: Let X be a compact metric space with non-trivial k-th homotopy group for some $k \geq 2$. Under what additional conditions does X admit a non-trivial harmonic 2-sphere?

Recall: Energy minimizing spheres in homotopy classes are harmonic and infinitesimally quasiconformal.

Question 2: Let X be as in main theorem and let $u: S^2 \to X$ be a harmonic map. Is it true that u is infinitesimally quasiconformal?

Outline

Introduction

Homotopic energy minimizers in a smooth setting

Homotopic energy minimizers in a non-smooth setting

Definitions

Sobolev maps into metric spaces

Setting

Regularity

Existence

Main theorem

Decomposition

Proof of main theorem

First facts

Energy distributed minimizing sequences

Uniformly distributing energy

Proof of main theorem

Open questions

