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Uniformization of metric surfaces




Uniformization problem

Uniformization problem: Find conditions on a metric
space X homeomorphic to a model space M such that U(CL)

there exists a mapping
u: M — X u(b)

with good geometric and analytic properties.

Dimension 1:

» Every locally rectifiable curve admits
a parametrization by arclength.

o uis 1-Lipschitz, i.e.
d(u(a),u(b)) <L-la—0»b
(u(a), u(b)) | \ a b
for L =1.
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Uniformization problem*%#L

Uniformization problem: Find conditions on a metric
space X homeomorphic to a model space M such that

there exists a mapping
u:M— X

with good geometric and analytic properties.

Dimension 2:

» Classical uniformization theorem: Every simply connected
Riemann surface X is conformally equivalent to the open unit
disc D, the complex plane C, or the Riemann sphere S2.

o Conformal map is locally bi-Lipschitz, i.e. 3L > 1 s.th.

L7t ]a—b| < d(u(a),u(b)) < L-|a— b
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Uniformization problem*%#L

Uniformization problem: Find conditions on a metric
space X homeomorphic to a model space M such that

there exists a mapping

u:M— X

with good geometric and analytic properties.

Dimension 2:

» Classical uniformization theorem: Every simply connected
Riemann surface X is conformally equivalent to the open unit
disc D, the complex plane C, or the Riemann sphere S2.

o Conformal map is locally bi-Lipschitz.

o Maps infinitesimal balls to balls.
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Metric surfaces

Definition: A metric space X is a metric surface if
X is homeomorphic to a 2-dimensional manifold M.
» Non-smooth metric surfaces appear naturally as

o deformations of smooth surfaces,
o limits of sequences of Riemannian surfaces,

o boundaries of Gromov hyperbolic groups.
Goal: Find conditions on X such that there exists a parametrization
u: M — X satisfying certain properties.

» We are interested in non-smooth metric surfaces of locally
finite area (Hausdorff 2-measure 12).
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Lipschitz uniformization

Let X be a metric surface homeomorphic to a Riemannian surface M.
Question: What type of parametrization u: M — X can we expect?

» If u: M — X is Lipschitz, then
luo~y) < L-4(y) forevery curve vy in M.

= Every pair of points in X can be joined by a curve of finite length.
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Uniformization of metric surfaces

Let X be a metric surface homeomorphic to a Riemannian surface M.

Question: What type of parametrization u: M — X can we expect?

1. Quasisymmetric uniformization: A homeomorphism
u: M — X is quasisymmetric if it distorts shapes of
sets in a controlled manner on all scales.

2. Quasiconformal uniformization: A homeomorphism ‘!
u: M — X is quasiconformal if it distorts shapes of sets

in a controlled manner on infinitesimal scales.

3. Weakly quasiconformal uniformization: An almost homeomorphism
u: M — X is weakly quasiconformal if it distorts shapes of sets in a

controlled manner on infinitesimal scales.
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Quasisymmetric uniformization /T\

2-regular metric surface. There exists a quasisymmetric map

Theorem [Bonk—Kleiner 2002]: Let X ~ S be an Ahlfors \ \\

u: 2 — X if and only if X is linearly locally contractible.

Ahlfors 2-regularity: H?(B(x,r)) is comparable to r>.

Linear local contractibility (LLC): B(x, r) is contractible in B(x, Ar).

= Prevent surface from having cusps, thin bottlenecks, dense wrinkles.
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Theorem [Bonk—Kleiner 2002]: Let X ~ S be an Ahlfors
2-regular metric surface. There exists a quasisymmetric map

Quasisymmetric uniformization /T\

u: 2 — X if and only if X is linearly locally contractible.

» Theorem does not generalize to higher dimensions
(Semmes, Heinonen-Wu, Pankka-Wu).
» Ahlfors 2-regularity is not a quasisymmetric invariant.

o id: §% — (5%,d%) for a € (0,1) is quasisymmetry.
» Same statement without Ahlfors 2-regularity would solve:

Cannon’s conjecture: Let G be a Gromov hyperbolic group whose boundary at infinity
O G is homeomorphic to S2 Then G is a Kleinian group, i.e. G admits an isometric,
properly discontinuous, and cocompact action on H3.

Damaris Meier Uniformization of metric surfaces



Geometric quasiconformality

Let X and Y be a metric surfaces of locally finite Hausdorff 2-measure.

Observation: X and Y contain an abundance of locally rectifiable curves.

» A homeomorphism u: X — Y is quasiconformal if it distorts

shapes of sets in a controlled manner on infinitesimal scales.

ﬁ (&>

» A homeomorphism u: X — Y is geometrically quasiconformal
if it distorts families of curves in a controlled manner.

Question: How can we measure "largeness” of families of curves?
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Geometric quasiconformality

S

Let X, Y be metric surfaces and I a family of curves in X.

» The (conformal) modulus of T is
mod() := inf/ p? dH?,
X

where the infimum is taken over all Borel functions
p: X — [0, 00] with

/p > 1 for every locally rectifiable v € T'.
g mod(I") =

S

» u: X — Y is geometrically quasiconformal if 3K > 1 s.th.
K=t mod(I") < mod(uoT) < K mod(I)

for every family ' of curves in X.
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Geometric quasiconformality

Modulus in the plane:

(1) If Q C R? is a quadrilateral, then

mod(F'(Q)) - mod(M(Q)) =

[o IS}
oo
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Quasiconformal uniformization

If u: U C R?> - X is geometrically quasiconformal, then

(1) For every quadrilateral Q C X

mod('(Q)) - mod(IM(Q)) < .
For example: R? and Ahlfors 2-regular metric spaces.

Theorem [Rajala 2017]: Let X ~ R? be a metric surface of locally
finite H2. There exists a geometrically quasisconformal map from
a domain U C R? onto X if and only if X satisfies (1).
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Quasiconformal uniformization

Definition: A metric surface X is reciprocal if X satisfies

(1) For every quadrilateral Q C X

mod(M(Q)) - mod(I(Q)) < k.
For example: R? and Ahlfors 2-regular metric spaces.

Theorem [Rajala 2017]: Let X ~ R? be a metric surface of locally
finite H2. There exists a geometrically quasisconformal map from
a domain U C R? onto X if and only if X is reciprocal.

» X Ahlfors 2-regular and LLC: Quasiconformal maps are
quasisymmetric = recover Theorem of Bonk—Kleiner.

> In general, reciprocality condition is difficult to verify.

» There exist plenty of metric surfaces that are not reciprocal.
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Quasiconformal uniformization

Example: Consider a small ball T := B(0,¢) for 0 < e < 1.
Let X := D/ T be the quotient space.

» The natural projection 7: D — X is a local isometry on D\ T.

» Assume there exists a quasiconformal parametrization D
u: D — X with u(0) = xp := m(T).
» The map v: D\ {0} — D\ T defined by
-1
v=m""0ulp ()

is quasiconformal. — not possible! (Grotzsch)

= X does not possess a quasiconformal parametrization u: D — X.
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Weakly quasiconformal uniformization

Let X ~ M be a compact metric surface of finite 2.

Definition: A continuous, surjective map u: M — X is weakly quasiconformal if Q
» 1 is a uniform limit of homeomorphisms M — X, and y

» there exists K > 1 s.th. for every family ' of curves in M

mod(I) < K -mod(uoT). Q y <B)
P

Question (Rajala—Wenger): Can X always be parametrized
by a weakly quasiconformal map u: M — X ? R < K
r =

YES if X is locally geodesic (M.—Wenger, Ntalampekos—Romney, M.).

YES always (Ntalampekos—Romney).
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Uniformization by minimizing energy

Theorem [M.—Wenger]: Let X ~ D be a locally geodesic
metric surface. If H2(X) < oo and £(0X) < oo, then there

exists a weakly quasiconformal map u: D — X.

Strategy of proof:
1. Define a class A(X) of candidates v: D — X.

o v € A(X) is regular enough to define a notion of energy,

o v € A(X) spans the metric surface X.
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Uniformization by minimizing energy

Theorem [M.—Wenger]: Let X ~ D be a locally geodesic
metric surface. If H2(X) < oo and £(9X) < oo, then there
exists a weakly quasiconformal map u: D — X.

Strategy of proof:
1. Define A(X) := {v: D — X Sobolev: tr(v): S' — X almost parametrizes X }.

o v € A(X) is regular enough to define a notion of energy, ¢

o v € A(X) spans the metric surface X.

Metric space valued Sobolev maps: A map v: D — X is Sobolev if Vx € X

> postcomposition v, with distance function d(-, x) is in W12(D),

> 3 he L?D)sth. |[Vv| < hae onD.

Vx

Reshetnyak energy: EZ(v) := inf {||h||i2(D) has above} . R
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Uniformization by minimizing energy

Theorem [M.—Wenger]: Let X ~ D be a locally geodesic
metric surface. If H2(X) < oo and £(0X) < oo, then there

exists a weakly quasiconformal map u: D — X.

Strategy of proof:
1. Define a class A(X) of candidates v: D — X.

2. Show that A(X) is not empty. — highly non-trivial
» X might contain a purely 2-unrectifiable part that is dense in X.
» In general, 3 only few Lipschitz maps from open subsets of D to X. /’U
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Uniformization by minimizing energy

Theorem [M.—Wenger]: Let X ~ D be a locally geodesic
metric surface. If H2(X) < oo and £(0X) < oo, then there

exists a weakly quasiconformal map u: D — X.

Strategy of proof:
1. Define a class A(X) of candidates v: D — X.

2. Show that A(X) is not empty. — highly non-trivial
3. Show that there exists an energy minimizer u € A(X).

» Direct variational method. /’U
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Uniformization by minimizing energy

Theorem [M.—Wenger]: Let X ~ D be a locally geodesic
metric surface. If H2(X) < oo and £(0X) < oo, then there
exists a weakly quasiconformal map u: D — X.

Strategy of proof:
1. Define a class A(X) of candidates v: D — X.

2. Show that A(X) is not empty. —  highly non-trivial
3. Show that there exists an energy minimizer u € A(X).

4. Use the fact that v is energy minimizing to derive
further regularity and distortion properties of u.
» Show that v has a continuous representative .

» i is uniform limit of homeomorphisms. (Lytchak—Wenger)

» i has desired distortion property. (Lytchak—-Wenger)
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Existence of Sobolev maps

Let X ~ D be locally geodesic, H?(X) < oo and £(0X) < oc.
Goal: Construct v € A(X) as limit of Lipschitz mappings
Vo D — Ny/n(X) C E(X)

of uniformly bounded area and v,|s: parametrizing 0X.

Area formula for Lipschitz maps:

Area(vn):/ v, x| dH3(x)
E(X) ~——~

multiplicity of x
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Existence of Sobolev maps X C Ny, (X)
N\
Let X ~ D be locally geodesic, H?(X) < oo and £(0X) < oc. \/
Goal: Construct v € A(X) as limit of Lipschitz mappings
Va: D — Ni/p(X) C E(X)
of uniformly bounded area and v,|s: parametrizing 0X.
Yn > “n
Idea: Factorize through a 2-dim simplicial complex ¥, consisting

of Euclidean cells of sidelength r/n to construct v,. 5,
» There exist Lipschitz maps
Yo: X =X, and @, X, = Np/p(X) C E(X)
that are almost inverse to each other.
(Jorgensen-Lang, Basso-Wenger-Young) \@A/
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Existence of Sobolev maps

XC Ny, (X) m

Let X ~ D be locally geodesic, H?(X) < oo and £(0X) < oc.

Goal: Construct v € A(X) as limit of Lipschitz mappings
Va: D — Ni/p(X) C E(X)

of uniformly bounded area and v,|s: parametrizing 0X.

1. Construct a continuous map g,: D — ¥, of small
"area” such that g,|s1: St — ¥
close to 9,(0X).

is Lipschitz and
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Existence of Sobolev maps XC N, (X)

1) Construct continuous g, of small "area”:

» Let : D — X be homeomorphism extending a
constant speed parametrization of 90.X.
(Jordan-Schoenflies)

> "Push” 9, 0 7ls: to D
1-skeleton Zf,l) by a
Lipschitz homotopy H
of small area.

» 0, obtained by gluing
Ypon and H and
reparametrizing satisfies

/z |07 {2} dH3(2) < COHA(X) + £(0X)). (1)
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Existence of Sobolev maps XCNl/n(X)m

N\

Let X ~ D be locally geodesic, H?(X) < oo and £(0X) < oc. \/

Goal: Construct v € A(X) as limit of Lipschitz mappings
Va: D — Ni/p(X) C E(X)

of uniformly bounded area and v,|s: parametrizing 0X.

1. Construct a continuous map g,: D — ¥, of small
"area” such that g,|s1: St — ¥
close to 9,(0X).

is Lipschitz and

2. Transform g, into a Lipschitz map 5,: D — %,.
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Existence of Sobolev maps

2) Make g, Lipschitz:

B
> For every 2-cell o in X, choose y € int(c) with
_ 1 _
et < o [ et dne)
e |U|2 o
multiplicity of y _
average multiplicity in o (Q’I’L

and | | <1 for any x € 0;'(y) (Radd).

» Define g, on small balls B such that
> 0,|s is constant with image in do if t(0,x) =0,

» 0,|s is a biLipschitz homeomorphism and g,|ss is homo-
topic to the projection of g,|ss to 9o if |t(g, x)| = 1.
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Existence of Sobolev maps

2) Make g, Lipschitz:

> For every 2-cell o in X, choose y € int(c) with

oyl < ﬁ / |07 {z}| dH2(2)

multiplicity of y

average multiplicity in o

and | | <1 for any x € 0;'(y) (Radd).

» Define g, on small balls B such that 3
n
> 0,|s is constant with image in do if t(0,x) =0,

» 0,|s is a biLipschitz homeomorphism and g,|ss is homo-

topic to the projection of g,|ss to 9o if |t(g, x)| = 1.

» Use extension properties of Zf,l)

to extend 7,y Bus: to
Lipschitz map 9,: D — ¥, satisfying (1).
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Existence of Sobolev maps

XC Ny, (X)

Let X ~ D be locally geodesic, H?(X) < oo and £(0X) < oc.

Proposition: For every n € N there exists a Lipschitz map
Va: D — Ny/p(X) C E(X)

of uniformly bounded area and v,|s: parametrizing 0.X.

1. Construct a continuous map g,: D — ¥, of small
"area” such that g,|s:: S — Zf,l)
close to ¥,(9X).

is Lipschitz and
2. Transform g, into a Lipschitz map g,: D — X,,.

3. Use extension properties of Ny ,,(X) C E(X) to change
(©n © 0 into the desired Lipschitz map v,,.
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Applications
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Applications of weakly quasiconformal uniformization

Let f: X — Y be a Sobolev map between metric surfaces X and Y of locally finite area.

» Without more assumptions on X and/or Y, there is no notion of derivative of f.

General idea: Let u: M — X be the weakly quasiconformal
uniformization map, where M is a smooth surface.
> ue WH2(M,X)and h=foue WH3(M,Y). U T
h=fou

» We can "differentiate” v and h.

» Allows to prove statements about 7. M
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Lipschitz-volume rigidity

Question: Let f: X — Y be a 1-Lipschitz and surjective map between
metric spaces that have the same volume. Is f an isometry?

Theorem [Folklore]: YES, if X and Y are closed Riemannian n-manifolds.

> Proofs by (Burago—lvanov) and (Besson—Courtois—Gallot).

Question: Does the same hold for non-smooth metric surfaces?

~—~—
=X —y

L2 2
NO, for example 7: S° — S°/I. \[
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Lipschitz-volume rigidity

Question: Let f: X — Y be a 1-Lipschitz and surjective map between
metric spaces that have the same volume. Is f an isometry?

Theorem [Folklore]: YES, if X and Y are closed Riemannian n-manifolds.

> Proofs by (Burago—lvanov) and (Besson—Courtois—Gallot).

Theorem [M.—Ntalampekos 2024, Basso—Marti-Wenger 2024]:
Let X be a closed metric surface and Y a closed Riemannian surface
with H?(X) = H?(Y). Then every 1-Lipschitz and surjective map
f: X — Y is an isometry.

» Proof highly depends on weakly quasiconformal uniformization.
» Intermediate results depending on regularity of Y. (M.-Ntalampekos)

» Higher dimensional variant under additional assumptions on X. (Marti)
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Application: Lipschitz-volume rigidity

Let X, Y be metric surfaces with H2(X) = H?(Y) < oo.
Let f: X — Y be 1-Lipschitz and surjective.

> f is area-preserving, i.e. H3(A) = H3 (f(A)) for every A C X.

Theorem [M.—Ntalampekos 2024]:

X Y f Conclusions about f
Reciprocal - (1-)Lip. | (1-)BLD on a.e. curve
- Reciprocal (1-)Lip. | (1-)QC homeom., and
(1-)BLD on a.e. curve
- Upper regular Lip. QC homeom., BLD
- Riemannian 1-Lip. Isometry

uf

M

f is of bounded length distortion (BLD) (along a.e. curve) if 3K > 1 s.th.

K™t 0(y) < Uf o) < K-£(7)

Uniformization of metric surfaces
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