Uniformization of metric surfaces

Damaris Meier ETH Zurich

Wednesday 1st October, 2025

ETH Geometry Seminar

Outline

Uniformization of metric surfaces

Uniformization problem

Metric surfaces

Lipschitz uniformization

Quasisymmetric uniformization

Quasiconformal uniformization

Weakly quasiconformal uniformization

Uniformization by minimizing energy

Proof strategy

Existence of non-trivial Sobolev mappings

Applications

Lipschitz-volume rigidity

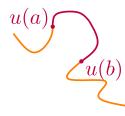
Uniformization of metric surfaces

Uniformization problem

Uniformization problem: Find conditions on a metric space X homeomorphic to a model space M such that there exists a mapping

$$u: M \to X$$

with good geometric and analytic properties.



Dimension 1:

- Every locally rectifiable curve admits a parametrization by arclength.
 - ∘ *u* is 1-Lipschitz, i.e.

$$d(u(a),u(b))\leq L\cdot |a-b|$$

for L=1.

Uniformization problem

Uniformization problem: Find conditions on a metric space X homeomorphic to a model space M such that there exists a mapping

$$u: M \to X$$

with good geometric and analytic properties.

Dimension 2:

- ► Classical uniformization theorem: Every simply connected Riemann surface X is conformally equivalent to the open unit disc D, the complex plane \mathbb{C} , or the Riemann sphere \mathbb{S}^2 .
 - Conformal map is locally bi-Lipschitz, i.e. $\exists L > 1$ s.th.

$$L^{-1} \cdot |a-b| \le d(u(a), u(b)) \le L \cdot |a-b|.$$

Uniformization problem

Uniformization problem: Find conditions on a metric space X homeomorphic to a model space M such that there exists a mapping

$$u: M \to X$$

with good geometric and analytic properties.

Dimension 2:

- ▶ Classical uniformization theorem: Every simply connected Riemann surface X is conformally equivalent to the open unit disc D, the complex plane \mathbb{C} , or the Riemann sphere \mathbb{S}^2 .
 - o Conformal map is locally bi-Lipschitz.
 - Maps infinitesimal balls to balls.

Metric surfaces

Definition: A metric space X is a <u>metric surface</u> if X is homeomorphic to a 2-dimensional manifold M.

- Non-smooth metric surfaces appear naturally as
 - deformations of smooth surfaces,
 - o limits of sequences of Riemannian surfaces,
 - o boundaries of Gromov hyperbolic groups.

Goal: Find conditions on X such that there exists a parametrization $u \colon M \to X$ satisfying certain properties.

▶ We are interested in non-smooth metric surfaces of **locally finite area** (Hausdorff 2-measure \mathcal{H}^2).

Lipschitz uniformization

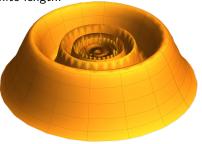
Let X be a metric surface homeomorphic to a Riemannian surface M.

Question: What type of parametrization $u: M \to X$ can we expect?

▶ If $u: M \rightarrow X$ is **Lipschitz**, then

$$\ell(u \circ \gamma) \leq L \cdot \ell(\gamma)$$
 for every curve γ in M .

 \Rightarrow Every pair of points in X can be joined by a curve of finite length.

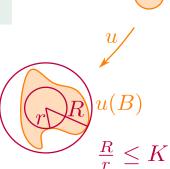


Uniformization of metric surfaces

Let X be a metric surface homeomorphic to a Riemannian surface M.

Question: What type of parametrization $u: M \to X$ can we expect?

- 1. Quasisymmetric uniformization: A homeomorphism $u \colon M \to X$ is quasisymmetric if it distorts shapes of sets in a controlled manner on *all scales*.
- Quasiconformal uniformization: A homeomorphism
 u: M → X is quasiconformal if it distorts shapes of sets in a controlled manner on <u>infinitesimal scales</u>.
- 3. Weakly quasiconformal uniformization: An <u>almost</u> homeomorphism u: M → X is weakly quasiconformal if it distorts shapes of sets in a controlled manner on <u>infinitesimal scales</u>.



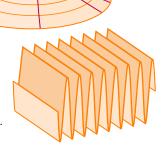
Quasisymmetric uniformization

Theorem [Bonk–Kleiner 2002]: Let $X \approx S^2$ be an <u>Ahlfors 2-regular</u> metric surface. There exists a quasisymmetric map $u: S^2 \to X$ if and only if X is <u>linearly locally contractible</u>.

Ahlfors 2-regularity: $\mathcal{H}^2(B(x,r))$ is comparable to r^2 .

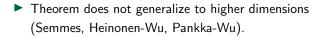
Linear local contractibility (LLC): B(x,r) is contractible in $B(x,\lambda r)$.

⇒ Prevent surface from having cusps, thin bottlenecks, dense wrinkles.



Quasisymmetric uniformization

Theorem [Bonk–Kleiner 2002]: Let $X \approx S^2$ be an <u>Ahlfors 2-regular</u> metric surface. There exists a quasisymmetric map $u: S^2 \to X$ if and only if X is *linearly locally contractible*.

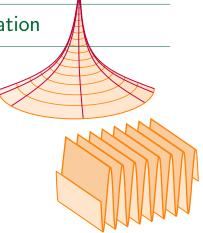




o id:
$$S^2 \to (S^2, d^{\alpha}_{S^2})$$
 for $\alpha \in (0, 1)$ is quasisymmetry.

► Same statement without Ahlfors 2-regularity would solve:

Cannon's conjecture: Let G be a Gromov hyperbolic group whose boundary at infinity $\partial_{\infty}G$ is homeomorphic to S^2 . Then G is a Kleinian group, i.e. G admits an isometric, properly discontinuous, and cocompact action on \mathbb{H}^3 .



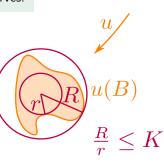
Geometric quasiconformality

Let X and Y be a metric surfaces of **locally finite Hausdorff 2-measure**.

Observation: X and Y contain an abundance of locally rectifiable curves.

▶ A homeomorphism $u: X \to Y$ is **quasiconformal** if it distorts shapes of sets in a controlled manner on infinitesimal scales.

A homeomorphism $u: X \to Y$ is **geometrically quasiconformal** if it distorts *families of curves* in a controlled manner.



Question: How can we measure "largeness" of families of curves?

Geometric quasiconformality

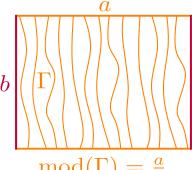
Let X, Y be metric surfaces and Γ a family of curves in X.

ightharpoonup The (conformal) modulus of Γ is

$$\operatorname{mod}(\Gamma) := \inf \int_X \rho^2 d\mathcal{H}^2,$$

where the infimum is taken over all Borel functions $\rho \colon X \to [0, \infty]$ with

$$\int_{\gamma} \rho \geq 1 \quad \text{for every locally rectifiable } \gamma \in \Gamma.$$



$$\operatorname{mod}(\Gamma) = \frac{a}{b}$$

▶ $u: X \to Y$ is geometrically quasiconformal if $\exists K > 1$ s.th.

$$K^{-1} \operatorname{mod}(\Gamma) \leq \operatorname{mod}(u \circ \Gamma) \leq K \operatorname{mod}(\Gamma)$$

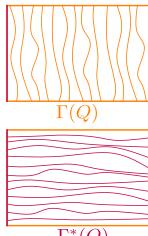
for every family Γ of curves in X.

Geometric quasiconformality

Modulus in the plane:

(1) If $Q \subset \mathbb{R}^2$ is a quadrilateral, then

$$\operatorname{\mathsf{mod}}(\Gamma(Q))\cdot\operatorname{\mathsf{mod}}(\Gamma^*(Q))=\frac{a}{b}\cdot\frac{b}{a}=1.$$



Quasiconformal uniformization

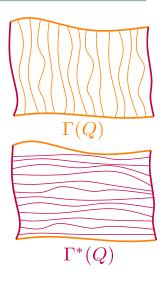
If $u \colon U \subset \mathbb{R}^2 \to X$ is geometrically quasiconformal, then

(1) For every quadrilateral $Q \subset X$

$$mod(\Gamma(Q)) \cdot mod(\Gamma^*(Q)) \le \kappa.$$

For example: \mathbb{R}^2 and Ahlfors 2-regular metric spaces.

Theorem [Rajala 2017]: Let $X \approx \mathbb{R}^2$ be a metric surface of locally finite \mathcal{H}^2 . There exists a geometrically quasisconformal map from a domain $U \subset \mathbb{R}^2$ onto X if and only if X satisfies (1).



Quasiconformal uniformization

Definition: A metric surface X is **reciprocal** if X satisfies

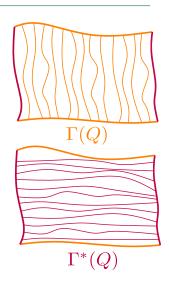
(1) For every quadrilateral $Q \subset X$

$$\mathsf{mod}(\Gamma(Q)) \cdot \mathsf{mod}(\Gamma^*(Q)) \leq \kappa.$$

For example: \mathbb{R}^2 and Ahlfors 2-regular metric spaces.

Theorem [Rajala 2017]: Let $X \approx \mathbb{R}^2$ be a metric surface of locally finite \mathcal{H}^2 . There exists a geometrically quasisconformal map from a domain $U \subset \mathbb{R}^2$ onto X if and only if X is *reciprocal*.

- ➤ X Ahlfors 2-regular and LLC: Quasiconformal maps are quasisymmetric ⇒ recover Theorem of Bonk–Kleiner.
- ▶ In general, reciprocality condition is difficult to verify.
- ▶ There exist plenty of metric surfaces that are not reciprocal.

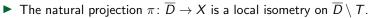


12

Quasiconformal uniformization

Example: Consider a small ball $T := \overline{B}(0, \varepsilon)$ for $0 < \varepsilon < 1$.

Let $X := \overline{D}/T$ be the **quotient space**.



$$u \colon \overline{D} \to X \text{ with } u(0) = x_0 := \pi(T).$$

▶ The map $v: \overline{D} \setminus \{0\} \to \overline{D} \setminus T$ defined by

$$v=\pi^{-1}\circ u|_{\overline{D}\setminus\{0\}}$$

is quasiconformal. \rightarrow **not possible!** (Grötzsch)

 \Rightarrow X does **not** possess a quasiconformal parametrization $u \colon \overline{D} \to X$.

 \overline{D}

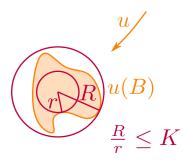
Weakly quasiconformal uniformization

Let $X \approx M$ be a compact metric surface of finite \mathcal{H}^2 .

Definition: A continuous, surjective map $u: M \to X$ is weakly quasiconformal if

- ightharpoonup u is a uniform limit of homeomorphisms $M \to X$, and
- ▶ there exists $K \ge 1$ s.th. for every family Γ of curves in M $mod(\Gamma) < K \cdot mod(u \circ \Gamma)$.

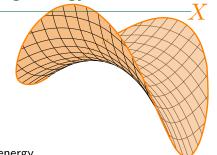
Question (Rajala–Wenger): Can X always be parametrized by a *weakly quasiconformal map u*: $M \to X$?



YES if *X* is **locally geodesic** (M.–Wenger, Ntalampekos–Romney, M.).

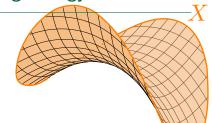
YES always (Ntalampekos-Romney).

Theorem [M.–Wenger]: Let $X \approx \overline{D}$ be a locally geodesic metric surface. If $\mathcal{H}^2(X) < \infty$ and $\ell(\partial X) < \infty$, then there exists a weakly quasiconformal map $u \colon \overline{D} \to X$.



- 1. Define a class $\Lambda(X)$ of **candidates** $v: D \to X$.
 - $\circ v \in \Lambda(X)$ is **regular enough** to define a notion of energy,
 - ∘ $v \in \Lambda(X)$ spans the metric surface X.

Theorem [M.–Wenger]: Let $X \approx \overline{D}$ be a locally geodesic metric surface. If $\mathcal{H}^2(X) < \infty$ and $\ell(\partial X) < \infty$, then there exists a weakly quasiconformal map $u \colon \overline{D} \to X$.



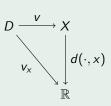
Strategy of proof:

- 1. Define $\Lambda(X) := \{v : D \to X \text{ Sobolev: } \operatorname{tr}(v) \colon S^1 \to X \text{ almost parametrizes } \partial X\}.$
 - ∘ $v \in \Lambda(X)$ is **regular enough** to define a notion of energy,
 - $\circ v \in \Lambda(X)$ spans the metric surface X.

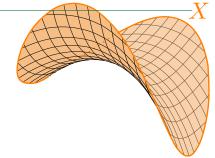
Metric space valued Sobolev maps: A map $v: D \to X$ is Sobolev if $\forall x \in X$

- **•** postcomposition v_x with distance function $d(\cdot, x)$ is in $W^{1,2}(D)$,
- ▶ $\exists h \in L^2(D)$ s.th. $|\nabla v_x| \leq h$ a.e. on D.

Reshetnyak energy: $E_+^2(v) := \inf \left\{ \|h\|_{L^2(D)}^2 : h \text{ as above} \right\}.$



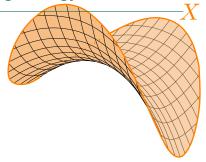
Theorem [M.–Wenger]: Let $X \approx \overline{D}$ be a locally geodesic metric surface. If $\mathcal{H}^2(X) < \infty$ and $\ell(\partial X) < \infty$, then there exists a weakly quasiconformal map $u \colon \overline{D} \to X$.



- 1. Define a class $\Lambda(X)$ of candidates $v \colon \overline{D} \to X$.
- 2. Show that $\Lambda(X)$ is **not empty**. \rightarrow highly non-trivial
 - ▶ X might contain a purely 2-unrectifiable part that is dense in X.
 - ▶ In general, \exists only few Lipschitz maps from open subsets of D to X.

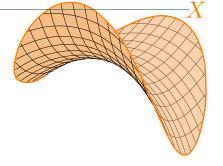
Theorem [M.–Wenger]: Let $X \approx \overline{D}$ be a locally geodesic metric surface. If $\mathcal{H}^2(X) < \infty$ and $\ell(\partial X) < \infty$, then there exists a weakly quasiconformal map $u \colon \overline{D} \to X$.

- 1. Define a class $\Lambda(X)$ of candidates $v : \overline{D} \to X$.
- 2. Show that $\Lambda(X)$ is **not empty**. \rightarrow highly non-trivial
- 3. Show that there exists an **energy minimizer** $u \in \Lambda(X)$.
 - Direct variational method.



Theorem [M.–Wenger]: Let $X \approx \overline{D}$ be a locally geodesic metric surface. If $\mathcal{H}^2(X) < \infty$ and $\ell(\partial X) < \infty$, then there exists a weakly quasiconformal map $u \colon \overline{D} \to X$.

- 1. Define a class $\Lambda(X)$ of candidates $v : \overline{D} \to X$.
- 2. Show that $\Lambda(X)$ is **not empty**. \rightarrow highly non-trivial
- 3. Show that there exists an **energy minimizer** $u \in \Lambda(X)$.
- 4. Use the fact that *u* is energy minimizing to derive further **regularity** and **distortion** properties of *u*.
 - ▶ Show that u has a continuous representative \bar{u} .
 - $ightharpoonup \bar{u}$ is uniform limit of homeomorphisms. (Lytchak–Wenger)
 - $ightharpoonup \bar{u}$ has desired distortion property. (Lytchak–Wenger)



Let $X \approx \overline{D}$ be locally geodesic, $\mathcal{H}^2(X) < \infty$ and $\ell(\partial X) < \infty$.

Goal: Construct $v \in \Lambda(X)$ as limit of Lipschitz mappings

$$v_n \colon \overline{D} \to N_{1/n}(X) \subset E(X)$$

of uniformly bounded area and $v_n|_{S^1}$ parametrizing ∂X .

Area formula for Lipschitz maps:

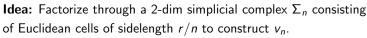
$$Area(v_n) = \int_{E(X)} \underbrace{|v_n^{-1}\{x\}|}_{\text{multiplicity of } x} d\mathcal{H}^2(x)$$

Let $X \approx \overline{D}$ be locally geodesic, $\mathcal{H}^2(X) < \infty$ and $\ell(\partial X) < \infty$.

Goal: Construct $v \in \Lambda(X)$ as limit of Lipschitz mappings

$$v_n \colon \overline{D} \to N_{1/n}(X) \subset E(X)$$

of uniformly bounded area and $v_n|_{S^1}$ parametrizing ∂X .

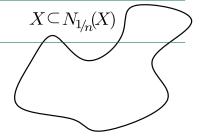


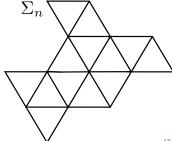
► There exist Lipschitz maps

$$\psi_n \colon X \to \Sigma_n$$
 and $\varphi_n \colon \Sigma_n \to N_{1/n}(X) \subset E(X)$

that are almost inverse to each other.

(Jørgensen-Lang, Basso-Wenger-Young)





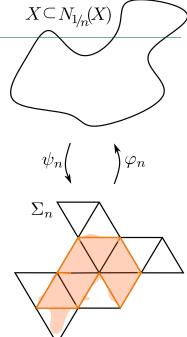
Let $X \approx \overline{D}$ be locally geodesic, $\mathcal{H}^2(X) < \infty$ and $\ell(\partial X) < \infty$.

Goal: Construct $v \in \Lambda(X)$ as limit of Lipschitz mappings

$$v_n \colon \overline{D} \to N_{1/n}(X) \subset E(X)$$

of uniformly bounded area and $v_n|_{S^1}$ parametrizing ∂X .

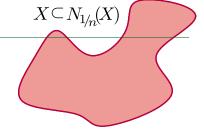
1. Construct a **continuous** map $\varrho_n \colon \overline{D} \to \Sigma_n$ of **small** "area" such that $\varrho_n|_{S^1} \colon S^1 \to \Sigma_n^{(1)}$ is Lipschitz and close to $\psi_n(\partial X)$.

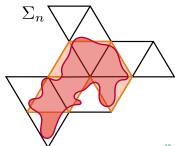


1) Construct **continuous** ρ_n of small "area":

- Let $\eta \colon \overline{D} \to X$ be homeomorphism extending a constant speed parametrization of ∂X . (Jordan-Schoenflies)
- ightharpoonup "Push" $\psi_n \circ \eta|_{S^1}$ to 1-skeleton $\Sigma_n^{(1)}$ by a Lipschitz homotopy H of small area.
- $\triangleright \rho_n$ obtained by gluing $\psi_n \circ \eta$ and H and reparametrizing satisfies

$$\int_{\Sigma_{-}} \left| \varrho_n^{-1} \{z\} \right| d\mathcal{H}^2(z) \le C(\mathcal{H}^2(X) + \ell(\partial X)). \tag{1}$$





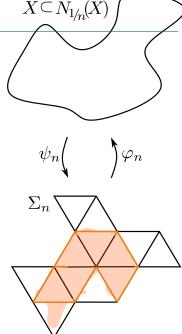
Let $X \approx \overline{D}$ be locally geodesic, $\mathcal{H}^2(X) < \infty$ and $\ell(\partial X) < \infty$.

Goal: Construct $v \in \Lambda(X)$ as limit of Lipschitz mappings

$$v_n \colon \overline{D} \to N_{1/n}(X) \subset E(X)$$

of uniformly bounded area and $v_n|_{S^1}$ parametrizing ∂X .

- 1. Construct a **continuous** map $\varrho_n \colon \overline{D} \to \Sigma_n$ of **small** "area" such that $\varrho_n|_{S^1} \colon S^1 \to \Sigma_n^{(1)}$ is Lipschitz and close to $\psi_n(\partial X)$.
- 2. Transform ϱ_n into a **Lipschitz** map $\overline{\varrho_n} \colon \overline{D} \to \Sigma_n$.



2) Make ϱ_n Lipschitz:

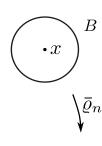
▶ For every 2-cell σ in Σ_n choose $y \in \text{int}(\sigma)$ with

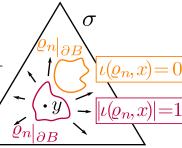
$$\left|\varrho_n^{-1}\{y\}\right| \leq \frac{1}{|\sigma|_2} \int_{\sigma} \left|\varrho_n^{-1}\{z\}\right| d\mathcal{H}^2(z)$$
average multiplicity in σ

and
$$|\iota(\varrho_n, x)| \le 1$$
 for any $x \in \varrho_n^{-1}(y)$ (Radó). winding number

• $\varrho_n|_B$ is constant with image in $\partial \sigma$ if $\iota(\varrho,x)=0$,

▶ $\overline{\varrho_n}|_B$ is a biLipschitz homeomorphism and $\overline{\varrho_n}|_{\partial B}$ is homotopic to the projection of $\varrho_n|_{\partial B}$ to $\partial \sigma$ if $|\iota(\varrho, x)| = 1$.





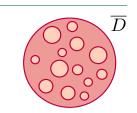
2) Make ρ_n Lipschitz:

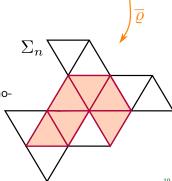
▶ For every 2-cell σ in Σ_n choose $y \in \text{int}(\sigma)$ with

$$\left|\varrho_{n}^{-1}\{y\}\right| \leq \frac{1}{|\sigma|_{2}} \int_{\sigma} \left|\varrho_{n}^{-1}\{z\}\right| d\mathcal{H}^{2}(z)$$
average multiplicity in σ

and
$$|\iota(\varrho_n,x)| \le 1$$
 for any $x \in \varrho_n^{-1}(y)$ (Radó). winding number

- $\triangleright \rho_n|_B$ is constant with image in $\partial \sigma$ if $\iota(\rho, x) = 0$,
- $ightharpoonup \overline{\varrho_n}|_{\mathcal{B}}$ is a biLipschitz homeomorphism and $\overline{\varrho_n}|_{\partial \mathcal{B}}$ is homotopic to the projection of $\varrho_n|_{\partial B}$ to $\partial \sigma$ if $|\iota(\varrho, x)| = 1$.
- Use extension properties of $\Sigma_n^{(1)}$ to extend $\overline{\varrho_n}|_{LB \cup S^1}$ to Lipschitz map $\overline{\rho_n} \colon \overline{D} \to \Sigma_n$ satisfying (1).





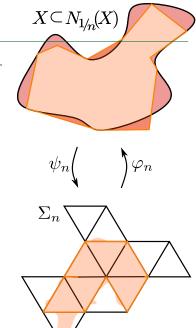
Let $X \approx \overline{D}$ be locally geodesic, $\mathcal{H}^2(X) < \infty$ and $\ell(\partial X) < \infty$.

Proposition: For every $n \in \mathbb{N}$ there exists a Lipschitz map

$$v_n \colon \overline{D} \to N_{1/n}(X) \subset E(X)$$

of uniformly bounded area and $v_n|_{S^1}$ parametrizing ∂X .

- 1. Construct a **continuous** map $\varrho_n \colon \overline{D} \to \Sigma_n$ of **small** "area" such that $\varrho_n|_{S^1} \colon S^1 \to \Sigma_n^{(1)}$ is Lipschitz and close to $\psi_n(\partial X)$.
- 2. Transform ϱ_n into a **Lipschitz** map $\overline{\varrho_n} \colon \overline{D} \to \Sigma_n$.
- 3. Use extension properties of $N_{1/n}(X) \subset E(X)$ to change $\varphi_n \circ \overline{\varrho_n}$ into the desired Lipschitz map v_n .



Applications

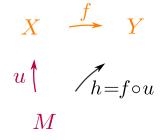
Applications of weakly quasiconformal uniformization

Let $f: X \to Y$ be a Sobolev map between metric surfaces X and Y of locally finite area.

 \blacktriangleright Without more assumptions on X and/or Y, there is no notion of derivative of f.

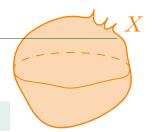
General idea: Let $u: M \to X$ be the weakly quasiconformal uniformization map, where M is a smooth surface.

- ▶ $u \in W^{1,2}(M,X)$ and $h = f \circ u \in W^{1,2}(M,Y)$.
- ▶ We can "differentiate" u and h.
- ► Allows to prove statements about *f* .



Lipschitz-volume rigidity

Question: Let $f: X \to Y$ be a 1-Lipschitz and surjective map between metric spaces that have the same volume. Is f an isometry?



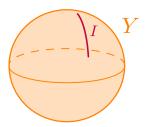
Theorem [Folklore]: YES, if *X* and *Y* are closed Riemannian *n*-manifolds.

▶ Proofs by (Burago–Ivanov) and (Besson–Courtois–Gallot).

Įf

Question: Does the same hold for non-smooth metric surfaces?

NO, for example
$$\pi: \underbrace{S^2}_{=X} \to \underbrace{S^2/I}_{=Y}$$
.



Lipschitz-volume rigidity

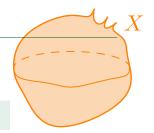
Question: Let $f: X \to Y$ be a 1-Lipschitz and surjective map between metric spaces that have the same volume. Is f an isometry?

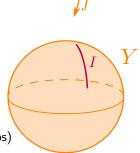
Theorem [Folklore]: YES, if X and Y are closed Riemannian *n*-manifolds.

▶ Proofs by (Burago–Ivanov) and (Besson–Courtois–Gallot).

Theorem [M.–Ntalampekos 2024, Basso–Marti–Wenger 2024]: Let X be a closed metric surface and Y a closed Riemannian surface with $\mathcal{H}^2(X) = \mathcal{H}^2(Y)$. Then every 1-Lipschitz and surjective map $f: X \to Y$ is an isometry.

- ▶ Proof highly depends on weakly quasiconformal uniformization.
- ▶ Intermediate results depending on regularity of *Y*. (M.-Ntalampekos)
- ightharpoonup Higher dimensional variant under additional assumptions on X. (Marti)





Application: Lipschitz-volume rigidity

Let X, Y be metric surfaces with $\mathcal{H}^2(X) = \mathcal{H}^2(Y) < \infty$.

Let $f: X \to Y$ be 1-Lipschitz and surjective.

▶ f is area-preserving, i.e. $\mathcal{H}^2_X(A) = \mathcal{H}^2_Y(f(A))$ for every $A \subset X$.

Theorem [MNtalampekos 2024]:			
Χ	Y	f	Conclusions about f
Reciprocal	-	(1-)Lip.	(1-)BLD on a.e. curve
-	Reciprocal	(1-)Lip.	(1-)QC homeom., and
			(1-)BLD on a.e. curve
-	Upper regular	Lip.	QC homeom., BLD
-	Riemannian	1-Lip.	Isometry

$$X \xrightarrow{f} Y$$

$$u \uparrow \qquad f = f \circ u$$

$$M$$

f is of **bounded length distortion (BLD)** (along a.e. curve) if $\exists K \geq 1$ s.th.

$$K^{-1} \cdot \ell(\gamma) \le \ell(f \circ \gamma) \le K \cdot \ell(\gamma)$$
 for (a.e.) curve γ in X .