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Uniformization problem

Uniformization problem: Find conditions on a metric

space X homeomorphic to a model space M such that

there exists a mapping

u : M → X

with good geometric and analytic properties.

Dimension 1:

▶ Every locally rectifiable curve admits

a parametrization by arclength.

◦ u is 1-Lipschitz, i.e.

d(u(a), u(b)) ≤ L · |a− b|

for L = 1.
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Uniformization problem

Uniformization problem: Find conditions on a metric

space X homeomorphic to a model space M such that

there exists a mapping

u : M → X

with good geometric and analytic properties.

Dimension 2:

▶ Classical uniformization theorem: Every simply connected

Riemann surface X is conformally equivalent to the open unit

disc D, the complex plane C, or the Riemann sphere S2.

◦ Conformal map is locally bi-Lipschitz, i.e. ∃L ≥ 1 s.th.

L−1 · |a− b| ≤ d(u(a), u(b)) ≤ L · |a− b|.

.

◦ Maps infinitesimal balls to balls.
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Metric surfaces

Definition: A metric space X is a metric surface if

X is homeomorphic to a 2-dimensional manifold M.

▶ Non-smooth metric surfaces appear naturally as

◦ deformations of smooth surfaces,

◦ limits of sequences of Riemannian surfaces,

◦ boundaries of Gromov hyperbolic groups.

Goal: Find conditions on X such that there exists a parametrization

u : M → X satisfying certain properties.

▶ We are interested in non-smooth metric surfaces of locally

finite area (Hausdorff 2-measure H2).
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Lipschitz uniformization

Let X be a metric surface homeomorphic to a Riemannian surface M.

Question: What type of parametrization u : M → X can we expect?

▶ If u : M → X is Lipschitz, then

ℓ(u ◦ γ) ≤ L · ℓ(γ) for every curve γ in M.

⇒ Every pair of points in X can be joined by a curve of finite length.

Example: Surface of revolution X

▶ Possesses finite Hausdorff 2-measure,

▶ Smooth except for 0,

▶ Every curve passing through 0 has infinite length.

⇒ X does not possess a Lipschitz parametrization u : D → X .
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Uniformization of metric surfaces

Let X be a metric surface homeomorphic to a Riemannian surface M.

Question: What type of parametrization u : M → X can we expect?

1. Quasisymmetric uniformization: A homeomorphism

u : M → X is quasisymmetric if it distorts shapes of

sets in a controlled manner on all scales.

2. Quasiconformal uniformization: A homeomorphism

u : M → X is quasiconformal if it distorts shapes of sets

in a controlled manner on infinitesimal scales.

3. Weakly quasiconformal uniformization: An almost homeomorphism

u : M → X is weakly quasiconformal if it distorts shapes of sets in a

controlled manner on infinitesimal scales.
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Quasisymmetric uniformization

Theorem [Bonk–Kleiner 2002]: Let X ≈ S2 be an Ahlfors

2-regular metric surface. There exists a quasisymmetric map

u : S2 → X if and only if X is linearly locally contractible.

Ahlfors 2-regularity: H2(B(x , r)) is comparable to r2.

Linear local contractibility (LLC): B(x , r) is contractible in B(x , λr).

⇒ Prevent surface from having cusps, thin bottlenecks, dense wrinkles.

▶ Theorem does not generalize to higher dimensions

(Semmes, Heinonen-Wu, Pankka-Wu).

▶ Ahlfors 2-regularity is not a quasisymmetric invariant.

◦ id : S2 → (S2, dα
S2) for α ∈ (0, 1) is quasisymmetry.

▶ Same statement without Ahlfors 2-regularity would solve:

Cannon’s conjecture: Let G be a Gromov hyperbolic group whose boundary at infinity

∂∞G is homeomorphic to S2. Then G is a Kleinian group, i.e. G admits an isometric,

properly discontinuous, and cocompact action on H3.
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Geometric quasiconformality

Let X and Y be a metric surfaces of locally finite Hausdorff 2-measure.

Observation: X and Y contain an abundance of locally rectifiable curves.

▶ A homeomorphism u : X → Y is quasiconformal if it distorts

shapes of sets in a controlled manner on infinitesimal scales.~w
▶ A homeomorphism u : X → Y is geometrically quasiconformal

if it distorts families of curves in a controlled manner.

Question: How can we measure ”largeness” of families of curves?
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Geometric quasiconformality

Let X ,Y be metric surfaces and Γ a family of curves in X .

▶ The (conformal) modulus of Γ is

mod(Γ) := inf

∫
X

ρ2 dH2,

where the infimum is taken over all Borel functions

ρ : X → [0,∞] with∫
γ

ρ ≥ 1 for every locally rectifiable γ ∈ Γ.

▶ u : X → Y is geometrically quasiconformal if ∃K ≥ 1 s.th.

K−1 mod(Γ) ≤ mod(u ◦ Γ) ≤ K mod(Γ)

for every family Γ of curves in X .
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Geometric quasiconformality

Modulus in the plane:

(1) If Q ⊂ R2 is a quadrilateral, then

mod(Γ(Q)) ·mod(Γ∗(Q)) =
a

b
· b
a
= 1.
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Quasiconformal uniformization

If u : U ⊂ R2 → X is geometrically quasiconformal, then

(1) For every quadrilateral Q ⊂ X

mod(Γ(Q)) ·mod(Γ∗(Q)) ≤ κ.

For example: R2 and Ahlfors 2-regular metric spaces.

Theorem [Rajala 2017]: Let X ≈ R2 be a metric surface of locally

finite H2. There exists a geometrically quasisconformal map from

a domain U ⊂ R2 onto X if and only if X satisfies (1).

▶ X Ahlfors 2-regular and LLC: Quasiconformal maps are

quasisymmetric ⇒ recover Theorem of Bonk–Kleiner.

▶ In general, reciprocality condition is difficult to verify.

▶ There exist plenty of metric surfaces that are not reciprocal.
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Quasiconformal uniformization

Definition: A metric surface X is reciprocal if X satisfies

(1) For every quadrilateral Q ⊂ X
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Quasiconformal uniformization

Example: Consider a small ball T := B(0, ε) for 0 < ε < 1.

Let X := D/T be the quotient space.

▶ The natural projection π : D → X is a local isometry on D \T .

▶ Assume there exists a quasiconformal parametrization

u : D → X with u(0) = x0 := π(T ).

▶ The map v : D \ {0} → D \ T defined by

v = π−1 ◦ u|D\{0}

is quasiconformal. → not possible! (Grötzsch)

⇒ X does not possess a quasiconformal parametrization u : D → X .

Damaris Meier Uniformization of metric surfaces 13



Weakly quasiconformal uniformization

Let X ≈ M be a compact metric surface of finite H2.

Definition: A continuous, surjective map u : M → X is weakly quasiconformal if

▶ u is a uniform limit of homeomorphisms M → X , and

▶ there exists K ≥ 1 s.th. for every family Γ of curves in M

mod(Γ) ≤ K ·mod(u ◦ Γ).

Question (Rajala–Wenger): Can X always be parametrized

by a weakly quasiconformal map u : M → X ?

YES if X is locally geodesic (M.–Wenger, Ntalampekos–Romney, M.).

YES always (Ntalampekos–Romney).
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Uniformization by minimizing energy
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Uniformization by minimizing energy

Theorem [M.–Wenger]: Let X ≈ D be a locally geodesic

metric surface. IfH2(X ) <∞ and ℓ(∂X ) <∞, then there

exists a weakly quasiconformal map u : D → X .

Strategy of proof:

1. Define a class Λ(X ) of candidates v : D → X .

◦ v ∈ Λ(X ) is regular enough to define a notion of energy,

◦ v ∈ Λ(X ) spans the metric surface X .

2. Show that Λ(X ) is not empty. → highly non-trivial

3. Show that there exists an energy minimizer u ∈ Λ(X ).

4. Use the fact that u is energy minimizing to derive

further regularity and distortion properties of u.

▶ Show that u has a continuous representative ū.

▶ ū is uniform limit of homeomorphisms. (Lytchak–Wenger)

▶ ū has desired distortion property. (Lytchak–Wenger)
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metric surface. IfH2(X ) <∞ and ℓ(∂X ) <∞, then there
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Strategy of proof:
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◦ v ∈ Λ(X ) spans the metric surface X .

Metric space valued Sobolev maps: A map v : D → X is Sobolev if ∀x ∈ X

▶ postcomposition vx with distance function d(·, x) is in W 1,2(D),

▶ ∃ h ∈ L2(D) s.th. |∇vx | ≤ h a.e. on D.

Reshetnyak energy: E 2
+(v) := inf

{
∥h∥2L2(D) : h as above

}
.

D X

R

v

vx
d(·, x)
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Existence of Sobolev maps

Let X ≈ D be locally geodesic, H2(X ) <∞ and ℓ(∂X ) <∞.

Goal: Construct v ∈ Λ(X ) as limit of Lipschitz mappings

vn : D → N1/n(X ) ⊂ E (X )

of uniformly bounded area and vn|S1 parametrizing ∂X .

Area formula for Lipschitz maps:

Area(vn) =

∫
E(X )

|v−1
n {x}|︸ ︷︷ ︸

multiplicity of x

dH2(x)

Damaris Meier Uniformization of metric surfaces 17



Existence of Sobolev maps

Let X ≈ D be locally geodesic, H2(X ) <∞ and ℓ(∂X ) <∞.

Goal: Construct v ∈ Λ(X ) as limit of Lipschitz mappings

vn : D → N1/n(X ) ⊂ E (X )

of uniformly bounded area and vn|S1 parametrizing ∂X .

Idea: Factorize through a 2-dim simplicial complex Σn consisting

of Euclidean cells of sidelength r/n to construct vn.

▶ There exist Lipschitz maps

ψn : X → Σn and φn : Σn → N1/n(X ) ⊂ E (X )

that are almost inverse to each other.

(Jørgensen-Lang, Basso-Wenger-Young)
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Existence of Sobolev maps

Let X ≈ D be locally geodesic, H2(X ) <∞ and ℓ(∂X ) <∞.

Goal: Construct v ∈ Λ(X ) as limit of Lipschitz mappings

vn : D → N1/n(X ) ⊂ E (X )

of uniformly bounded area and vn|S1 parametrizing ∂X .

1. Construct a continuous map ϱn : D → Σn of small

”area” such that ϱn|S1 : S1 → Σ
(1)
n is Lipschitz and

close to ψn(∂X ).
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Existence of Sobolev maps

1) Construct continuous ϱn of small ”area”:

▶ Let η : D → X be homeomorphism extending a

constant speed parametrization of ∂X .

(Jordan-Schoenflies)

▶ ”Push” ψn ◦ η|S1 to

1-skeleton Σ
(1)
n by a

Lipschitz homotopy H

of small area.

▶ ϱn obtained by gluing

ψn ◦ η and H and

reparametrizing satisfies∫
Σn

∣∣ϱ−1
n {z}

∣∣ dH2(z) ≤ C (H2(X ) + ℓ(∂X )). (1)
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Existence of Sobolev maps

Let X ≈ D be locally geodesic, H2(X ) <∞ and ℓ(∂X ) <∞.

Goal: Construct v ∈ Λ(X ) as limit of Lipschitz mappings

vn : D → N1/n(X ) ⊂ E (X )

of uniformly bounded area and vn|S1 parametrizing ∂X .

1. Construct a continuous map ϱn : D → Σn of small

”area” such that ϱn|S1 : S1 → Σ
(1)
n is Lipschitz and

close to ψn(∂X ).

2. Transform ϱn into a Lipschitz map ϱn : D → Σn.
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Existence of Sobolev maps

2) Make ϱn Lipschitz:

▶ For every 2-cell σ in Σn choose y ∈ int(σ) with∣∣ϱ−1
n {y}

∣∣(
multiplicity of y

) ≤ 1

|σ|2

∫
σ

∣∣ϱ−1
n {z}

∣∣ dH2(z)(
average multiplicity in σ

)
and |ι(ϱn, x)| ≤ 1(

winding number
) for any x ∈ ϱ−1

n (y) (Radó).

▶ Define ϱn on small balls B such that

▶ ϱn|B is constant with image in ∂σ if ι(ϱ, x) = 0,

▶ ϱn|B is a biLipschitz homeomorphism and ϱn|∂B is homo-

topic to the projection of ϱn|∂B to ∂σ if |ι(ϱ, x)| = 1.
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2) Make ϱn Lipschitz:
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n (y) (Radó).

▶ Define ϱn on small balls B such that

▶ ϱn|B is constant with image in ∂σ if ι(ϱ, x) = 0,

▶ ϱn|B is a biLipschitz homeomorphism and ϱn|∂B is homo-

topic to the projection of ϱn|∂B to ∂σ if |ι(ϱ, x)| = 1.

▶ Use extension properties of Σ
(1)
n to extend ϱn|⋃B∪S1 to

Lipschitz map ϱn : D → Σn satisfying (1).
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Existence of Sobolev maps

Let X ≈ D be locally geodesic, H2(X ) <∞ and ℓ(∂X ) <∞.

Proposition: For every n ∈ N there exists a Lipschitz map

vn : D → N1/n(X ) ⊂ E (X )

of uniformly bounded area and vn|S1 parametrizing ∂X .

1. Construct a continuous map ϱn : D → Σn of small

”area” such that ϱn|S1 : S1 → Σ
(1)
n is Lipschitz and

close to ψn(∂X ).

2. Transform ϱn into a Lipschitz map ϱn : D → Σn.

3. Use extension properties of N1/n(X ) ⊂ E (X ) to change

φn ◦ ϱn into the desired Lipschitz map vn.
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Applications
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Applications of weakly quasiconformal uniformization

Let f : X → Y be a Sobolev map between metric surfaces X and Y of locally finite area.

▶ Without more assumptions on X and/or Y , there is no notion of derivative of f .

General idea: Let u : M → X be the weakly quasiconformal

uniformization map, where M is a smooth surface.

▶ u ∈ W 1,2(M,X ) and h = f ◦ u ∈ W 1,2(M,Y ).

▶ We can ”differentiate” u and h.

▶ Allows to prove statements about f .
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Lipschitz-volume rigidity

Question: Let f : X → Y be a 1-Lipschitz and surjective map between

metric spaces that have the same volume. Is f an isometry?

Theorem [Folklore]: YES, if X and Y are closed Riemannian n-manifolds.

▶ Proofs by (Burago–Ivanov) and (Besson–Courtois–Gallot).

Question: Does the same hold for non-smooth metric surfaces?

NO, for example π : S2︸︷︷︸
=X

→ S2/I︸︷︷︸
=Y

.

Theorem [M.–Ntalampekos 2024, Basso–Marti–Wenger 2024]:

Let X be a closed metric surface and Y a closed Riemannian surface

with H2(X ) = H2(Y ). Then every 1-Lipschitz and surjective map

f : X → Y is an isometry.

▶ Proof highly depends on weakly quasiconformal uniformization.

▶ Intermediate results depending on regularity of Y . (M.-Ntalampekos)

▶ Higher dimensional variant under additional assumptions on X . (Marti)
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Application: Lipschitz-volume rigidity

Let X ,Y be metric surfaces with H2(X ) = H2(Y ) <∞.

Let f : X → Y be 1-Lipschitz and surjective.

▶ f is area-preserving, i.e. H2
X (A) = H2

Y (f (A)) for every A ⊂ X .

Theorem [M.–Ntalampekos 2024]:

X Y f Conclusions about f

Reciprocal - (1-)Lip. (1-)BLD on a.e. curve

- Reciprocal (1-)Lip. (1-)QC homeom., and

(1-)BLD on a.e. curve

- Upper regular Lip. QC homeom., BLD

- Riemannian 1-Lip. Isometry

f is of bounded length distortion (BLD) (along a.e. curve) if ∃K ≥ 1 s.th.

K−1 · ℓ(γ) ≤ ℓ(f ◦ γ) ≤ K · ℓ(γ) for (a.e.) curve γ in X .
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